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Abstract—The amount of data generated in Industry
4.0 and the introduction of advanced data analytics sup-
port establishing ‘“‘smart factories” and one of its crucial
characteristics — predictive maintenance. Current solutions
mostly focus on offline predictions and do not provide end-
to-end scalable solutions. Furthermore, there is a lack of
support for incremental machine learning for predictive
maintenance. This paper addresses these limitations by
proposing MARTIN, a scalable microservice architecture
for predictive maintenance which can collect, store, and
analyse the data, and make decisions based on the machine
state. The architecture uses incremental learning as a basis
for predictions. The designed system is implemented, and
its performance is evaluated by conducting an experiment.
The results show that the solution is able to provide high
accuracy of prediction in practical processing time.

Index Terms—Predictive maintenance, Machine Learn-
ing, Microservice, Architecture

I. INTRODUCTION

The industry is continuously developing and adopting
technological improvements to adapt and improve its
functioning, which has led to what is known as the
fourth industrial revolution, Industry 4.0 [1], [2]. A basic
principle of Industry 4.0 is the reduction of human
intervention in decision making processes by automating
and optimising them using artificial intelligence [3],
which is stimulated by the need to enhance productivity,
efficiency, and flexibility of production processes.

However, equipment maintenance is a crucial factor
that impacts long-term success of manufacturers, rep-
resenting 15-60% of their total operational costs [4].
Unexpected downtime costs industry circa $50 billion a
year in the US alone, with 42% of this being attributed
to equipment failure [5].

Predictive maintenance is one effective approach that
utilises data to prepare for equipment failure before it
happens, which reduces downtime and increases profits.
Such data are collected through monitoring the oper-
ational environment. For example, a smart factory is
a cyber-physical system that contains large number of
networked devices and machines that are monitored by
sensors. The monitoring data includes machine compo-
nent states (e.g., heat, pressure, motor rotation, circuit
interruption, transmitter fault, etc.). The collected data
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are leveraged to reason about issuing maintenance oper-
ations.

In this context, data are crucial in generating knowl-
edge that is key in making automated predictive de-
cisions. These decisions are needed to predict trends
and behaviour patterns — using machine learning models
— in order to predict component failures. This enables
proactive decision making and avoids system failures
and downtime, which, in turn, increases productivity and
profit [6].

Predictive maintenance has attained considerable im-
portance in the literature. There are existing approaches
that incorporate several technologies such as Machine
Learning, Big Data and the Internet of Things [3].
However, most of these attempts rely on collecting large
amounts of data to perform batch learning (offline by
experts) to predict failures. There is limited support
for online learning capabilities that would incremen-
tally provide insights about the running performance of
system components, which enables dynamic adaptation
to new patterns in data. In addition, there has been
little on studying how to holistically address predictive
maintenance through a scalable architecture that provides
all the functionalities as an end-to-end solution. We argue
that a scalable end-to-end solution is needed to enable
adaptive and timely predictive decision making.

This work develops a Microservice architecture for
pRedicTive malnteNance (MARTIN) to support incremen-
tal learning in industry 4.0. MARTIN facilitates smart
factory characteristics such as real-time decision making
and increased visibility, and provides predictive mainte-
nance mechanisms. MARTIN uses microservice concepts
to provide reliability and scalability, as is now the de
facto standard practice in developing and deploying
applications [7]. Furthermore, the architecture supports
the application of incremental machine learning for
predictive maintenance tasks [8]. MARTIN can serve as a
basis for a data-agnostic mechanism to support multiple
smart factories within the same system. In summary, the
main contributions of this paper are as follows:

e Design an architecture to facilitate data collection,
data storage, real-time decision making, alert system,
and predictive maintenance mechanisms.



e Evaluate the solution by executing use cases that
involve multiple different time-series datasets.

e Evaluate the performance of the incremental machine
learning method for predictive maintenance.

The remainder of this paper is organised as follows.
Section II discusses related works. Sections IIT and IV
present the design and implementation of the proposed
architecture. Section V presents scenarios to demonstrate
the users’ interaction with the architecture. Sections VI
and VII evaluate the performance of the architecture and
the present the results. Finally, section VIII provides
a discussion of the main findings and the threats of
validity. Section IX concludes the paper and outlines
future work.

II. RELATED WORK

Many publications studied different approaches to
create an effective predictive maintenance mechanism.
Sipos et al. [9] designed a system that uses logs gen-
erated by machines to create a model that is evaluated
by data scientists then used to predict failures. Paolanti
et al. [10] created a data analysis mechanism with a
Random Forest approach trained using Azure Machine
Learning Studio and reached 95% accuracy. Kaiser and
Gebraeel [11] used a combination of component-specific
real-time degradation signals together with historical
data about reliability. These papers focused only on pre-
dictive maintenance aspects, omitting challenges related
to the scalability of the predictive maintenance solution.
It is hard to make the predictive maintenance mech-
anism optimal in real-life scenarios without a proper
architecture to support it. The work in [12] developed
a platform for integrating production environments with
Industrial DevOps and applied predictive maintenance as
an application scenario of the platform. In contrast to the
above contributions, this paper describes an end-to-end
solution to facilitate scalable predictive maintenance.

The solution proposed Akbar et al. [13] implements a
generic architecture to combine predictive maintenance
with Complex Event Processing (CEP) [14], which is
CEP is a technique that processes data from different
streams to infer complex events in real-time. CEP usually
works by having a set of predefined rules and matching
them with the data to identify specific events. The
authors of [14] used an adaptive approach to predict
future data and apply CEP rules. The implementation
resulted in high accuracy, however, it is limited only to
one data domain. In contrast, MARTIN supports various
data domains simultaneously and provides support for
customisable set of CEP rules. In addition, the MARTIN
does not forecast future data to use it in the CEP engine
but predicts if there will be a failure within a spe-
cific period and matches this information against user-
specified rules together with real-time data. There are
other related contributions (e.g., [15], [16]), but these are

only theoretical models with no actual implementation of
a prototype.

The work of Wang et al. [17] uses CEP together with
dynamic Bayesian Networks, and applies the results to
road traffic data. Christ et al. [18] tried to apply condi-
tional density estimations to change CEP from reactive to
predictive. The AutoCEP framework [19] uses historical
data to predict patterns and transform them into CEP
rules which are later used to configure the CEP engine.
The work described in [20] connects CEP, predictive
maintenance, and the microservices architecture in a
single solution to predict potentially dangerous situations
and act accordingly using offline learning. In contrast,
this paper leverages incremental machine learning which
enables adaptive real-time decision making. Further-
more, MARTIN allows users to alternate event processing
rules dynamically, without the need to redeploy the
architecture, reducing potential downtime.

III. DESIGN

This section presents the design of the architecture. It
first discusses the requirements that guided the design of
the architecture then describes its components.

A. Requirements

MARTIN was designed based on the following set of
requirements that are based on our analysis of the related
works. The architecture should:

e accept, analyse, and store the generated data in real-
time using an industry-standard communication pro-
tocol. Using popular protocols will make the architec-
ture available and reduce compatibility issues.

e be able to process various data domains, ideally orig-
inating from multiple organisations. This would allow
the system to be used by multiple companies without
implementation adjustments.

e be capable of matching data with defined complex
event rules and make decisions based on the actions
defined in event processing rules, which is necessary
for predictive maintenance tasks.

e be able to predict failures within a specified time-
frame in order to allow users to schedule appropriate
actions and avoid sudden failures.

e have means to alert system users about potential
threats with a notification; such as email.

o allow users to define custom rules for event processing
and custom schema of the gathered data.

e store raw sensor data, predictions, and decisions for
analytical and historical purposes. Such data can be
used to assess the performance of predictive mainte-
nance and adjust the settings accordingly.

e be divided into loosely coupled microservices; each
responsible for one functionality, allowing easier
maintainability, and enabling scalability, flexibility
and reusability.
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Figure 1: An overview of MARTIN, the predictive maintenance architecture.

B. Architecture components

MARTIN is based on a microservice pattern to provide
a reusable and flexible set of components that fulfil the
design requirements. The system is made of independent
microservices that communicate with each other. The
boundary between services is set appropriately to allow
services to be operationally independent and keep related
functionalities within a single component [21]. This
approach increases scalability and the ability to maintain
each service independently. Furthermore, the designed
architecture aims to minimise the number of direct
links between services, which should further reduce the
coupling between services and increase performance and
availability [21]. Figure 1 depicts the MARTIN architec-
ture, which is composed of the following components:

1) Data Entry Service.: This is an entry point of
the architecture that accepts data from IoT sensors.
The service supports REST as a popular and language-
independent means of data exchange. Once a data point
arrives, the service fetches the appropriate schema from
the Schema service (explained below) and validates the
entry. If the received data matches the schema, the
service forwards the entry to the message broker, which
sends it to other services that use the information for
their tasks. If the data does not match the defined
schema, the service does not push the data further into
the system, and it is rejected.

2) Schema Service.: This service is responsible for
managing various data schemes supported by the system.
It allows the user to define the data structure that the
system accepts. Furthermore, the user can mark required
fields, which will lead to the data being rejected if one of
these fields is missing. Apart from schema management,
the service provides saved schemes if requested, and in
the proposed architecture Data Entry service asks for
various schemes when IoT data arrives.

3) Data Service.: This service listens for the raw data
points published by the message broker and stores them
in the database. The raw data can be later retrieved from
the database using the service and used for various tasks
such as offline analytics or the training process of the
prediction model if the architecture will be extended to
support traditional machine learning. In MARTIN, Data
communicates directly with Data Retrieval service (ex-
plained below) and provides raw data used to generate
system reports.

4) Prediction Service.: This service is responsible for
two major tasks: incremental training of models and
predicting the possible failure of the asset based on the
incoming data points. The service listens for the data,
fulfils the prediction tasks, and publishes the result to
the message broker. In addition, it stores each prediction
in the database. Furthermore, the service supports the
learning process and stores trained models in a separate
database. Although it looks like the service is broad and
can be potentially split into two independent services —
one for training and one for predictions — it was decided
to keep those two functionalities within a single service.
With two different services the system will have to
maintain duplicated models in multiple databases, which
could cause consistency issues.

5) Event Processing Service.: This service handles
event processing with a CEP engine that runs with a
customizable set of event rules. The service allows users
to create and deploy new conditions to be matched
against the incoming data without redeploying the sys-
tem. Furthermore, the component listens for the data
published by the Data Entry service and predictions from
the Prediction service. The architecture utilises CEP to
detect valuable behaviours that the user wants to catch.
The acquired information is analysed and compared with
the specified rules. If any of the rules are matched, the
system makes a decision by looking at the action defined



in it and create the action object later published to the
message broker. The service can also translate user-
defined rules from an initial JSON structure to a syntax
understood by the CEP engine. All decisions made by
the system and rules defined by the user are stored in
the dedicated database.

6) Notification Service.: This service listens for ac-
tions that involve any type of user notification, reads the
information, and notifies users with a notification topic
and details. Currently the service is designed to notify
users by email. This kind of notification represents an
example of how actions can be consumed by the system.
However, this service can be extended to perform other
actions such as shutting down faulty assets, redirecting
the manufacturing process somewhere else, or schedul-
ing maintenance tasks that involve humans.

7) Data Retrieval Service.: This service uses data
stored by other services, e.g., Prediction, Event Process-
ing and Data services, to generate generate reports about
the system.

8) Message broker.: The message broker implements
asynchronous interaction between the architecture ser-
vices. It works as a publish/subscribe system with dif-
ferent services subscribing and pushing messages to
various topics. The component also increases the con-
sistency and reliability of the architecture. The broker
stores generated messages until the subscriber is able
to consume them. The asynchronous communication
enables independent evolution of the architecture e.g
when adding and removing services. In order to get
access to the data streamed to the system, the services
basically needs to subscribe to the specific topic, and all
new data entries will be pushed to it.

9) Knowledge base.: This component is a logical
collection of databases. It encapsulates all databases
within the architecture that are used to store historical
data and information required by specific services. Each
service has its own independent database that makes the
architecture less coupled. The databases are grouped in
the diagram to increase clarity.

As seen in Figure 1, most of the components within
the architecture communicate using an asynchronous
message broker except the communication between the
Data Entry service and the Schema service. The syn-
chronous communication between these services is cru-
cial to increase reliability and provide a better user expe-
rience. For example, with synchronous communication,
it is easier to indicate the status of the request to store
data. If the request is rejected (which may indicate a
fault in a component), the user needs to be promptly
notified. For this purpose, the Data Entry Service and
Schema Service communicating synchronously. In Fig-
ure 1, synchronous operations are depicted with arrows
pointing directly from one service to another, not through
the Message broker.

C. Coordinating multiple organisations

One of the requirements of the proposed architec-
ture states that it should support multiple data domains
incoming from various organisations; therefore, design
decisions are taken to allow for such functionality. The
system can be accessed by multiple companies where
each one is uniquely identified using the organisationld.
All requests accepted by the architecture need to have
organisationld to allow access to appropriate resources
within the system. Each of the services uses the identifier
while handling the requests, and it is required to locate
the information needed to fulfil the request. Furthermore,
the system is able to dynamically adjust to different
data structures thanks to the user-defined schemes. Each
schema can be identified using a schemald that is unique
within the organisation. Using the schema, users can
decide which fields from the sensor readings should be
expected and used by the system. The final parameter
used by the architecture is the deviceld that uniquely
identifies the sensor or machine within the system. These
three values are used to support predictive maintenance
for multiple companies or factories within a single
system, without the need to adjust the solution for each
individual customer.

All sensor readings arriving into the architecture
should contain organisationld as well as schemald and
deviceld. The Data Entry service can use organisationld-
schemald pair to execute the interface exposed by the
Schema service and fetch the schema that the submitted
reading should match. Furthermore, the Schema service
uses the values to manage the database structure where
schemes are stored. The Event Processing service utilises
organisationld and deviceld to manage storage and exe-
cution of event matching rules. The rules can be defined
within the organisation on two different levels: general
conditions for the devices having the same type (using
the device type information encoded in the deviceld)
or conditions for the specific device. The Data service
structures the raw data storage by dividing the database
using organisationld and the Prediction service utilises it
together with deviceld to separate and locate prediction
models responsible for different types of devices.

D. Prediction mechanism design

One of the main features of the architecture is the
functionality to analyse the data and predict whether
there is a possibility of failure occurrence in the factory.
To achieve that, the prediction mechanism is designed
considering things such as the presence of data from
multiple companies or different types of machines expos-
ing various behaviour that may indicate possible fault.
The Prediction service uses real-time data to predict
whether an accident will happen within the window of
n following machine cycles. It is assumed that physical
assets connected to the system operate in cycles equally



spaced in time. A cycle is a point in time when a machine
submits the values of the sensors to the architecture for
analysis. The cycle duration is used to determine the time
frame during which the failure may happen and schedule
the maintenance accordingly.

The Prediction service is designed to support in-
cremental machine learning techniques for predictive
maintenance, as it enables adaptation to varying patterns
of data that continuously arrive at runtime. The service
maintains an expandable set of machine learning models
that are organised so that there is one machine learning
model responsible for predictions related to one type of
device within the organisation. Such structure supports
the fact that different types of devices submit various
data and may have unique trends that indicate fault.
Incremental machine learning comes with the ability
to have an ongoing learning process without the need
to have the dataset upfront and train the model before
the deployment. Therefore, the service supports the con-
stant learning process by consuming the training data
once it is submitted to the system and adjusting the
appropriate model. All models are serialised and stored
in the database and the service fetches the required
one if needed effectively saving the memory resources.
IoT sensor data often suffers from the fact that it
is unlabelled which makes the training data gathering
process really costly and time-consuming. Thanks to
incremental learning, the model can be deployed with
minimal training and trained further when the new data
is available without starting the learning process from
scratch. It helps save resources and omit the requirement
to load significant amounts of data into the service
memory which can result in reduced availability.

Another crucial aspect of the machine learning process
is preprocessing. Raw data often contains many details
that do not contribute to the final predictions, or the
range of the specific values is broader than other mea-
surements. MARTIN supports simple data preprocessing,
where every prediction model is trained together with a
simple scalar that transforms the data for mean and unit
variance equal to zero. Although it helps to increase the
accuracy, it is known that preprocessing techniques have
to be adjusted accordingly to the nature of processed
data, and it is hard to generalise the methods used. Apart
from consuming the training and actual, real-time data
from the system, the Prediction service also generates
the prediction objects that are to be used by other
parts of the architecture. The trained models are able to
classify submitted readings into two classes: NORMAL
which indicates that the machine is functioning correctly,
and ALARM which signalises possible fault within the
following ten machine cycles. Each organisation has a
general rule for ALARM prediction defined in the rule
set loaded into the Event Processing service. Once the
prediction object is published to the topic within the

message broker, the Event Processing service attempts
to match the defined condition against it and executes
the action related to the rule (e.g. send an email to the
specified user). With the prediction object being con-
sumed, the whole process of the predictive mechanism is
complete. Furthermore, generated predictions are stored
in the appropriate database and can be later queried using
the Data Retrieval service for analysis or statistics.

IV. IMPLEMENTATION

This section describes the implementation of the
MARTIN architecture.

A. Technology stack

In this work, The services of the architecture are
implemented using the Kotlin programming language
[22], a statically typed language designed to be concise,
expressive, and safe. MongoDB, a document-oriented
NoSQL database, was selected to be used in the arch-
itecture. The use of a NoSQL database that does not
require any constraints, it is simple to store unstructured
data and operates with multiple data domains.

B. Implementation details

1) Data Entry Service: This Service encompasses
three elements: SensorDataController, TrainDataCon-
troller, and SchemaManager. SchemaManager encapsu-
lates a reactive WebClient used to make a GET request
to the Schema service and fetch the appropriate schema.
TrainDataController exposes the REST endpoint used
to stream training data to the system, and SensorData-
Controller handles a stream of real-time data submitted
by machines for the analysis. The service exposes two
REST endpoints accessible on the following routes:
POST organisationld/readings - for real-time data, and
POST organisationld/train - for the training data.

2) Schema Service: This service contains two main
classes: SchemaController which handles the exposed
REST endpoints, and SchemaRepository - the compo-
nent responsible for connection with the MongoDB
instance. The schemes are fetched from the database
using SchemaRepository. The database is organised such
that each organisation has its own collection with or-
ganisationld as its name, and every schema is a new
document inside this collection. Listing 1 shows an
example schema stored in the database.

3) Data Service: This service consumes the data
published by the message broker. It has three main
elements: DataController, SensorReadingListener, and
DataRepository. DataController allows external entities
to access data stored in the database, DataRepository
handles the communication with MongoDB, and Sen-
sorReadingListener consumes the data points published
in the message broker.

SensorReadingListener intercepts messages published
to the readings topic and calls DataRepository to store
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"title":"Example schema",
"description":"Example description”,
"properties":{

"valueOne": {

"type":"float"
1,
"valueTwo": {
"type":"float"
}

P

"required":[ "valueOne" ]

Listing 1: An example schema

them in the database. Later, the endpoint managed by the
DataController can be called to get the raw data stored
for specified organisationld, schemald, and deviceld.
The database structure looks as follows: there is a
separate document collection for each combination of
organisationld and schemald values, and every docu-
ment in such collection contains the deviceld field. The
presented implementation is simple; however, it can be
extended with functionalities such as filtering by specific
value or timeframe.

4) Event Processing Service: This service contains
a set of crucial components. RulesController manages
the endpoints responsible for adding and fetching user-
defined conditions, ReadingListener that consumes the
real-time data, DroolsRuleTranslator responsible for
translating conditions from JSON to format understand-
able by the CEP engine. It contains also two repositories:
DecisionRepository that manages the connection with
decisions storage, and RuleRepository which handles
communication with the rule storage.

The service uses Drools, an open-source rule en-
gine that supports conditions written using Drools Rule
Language (DRL). All user-defined rules are retrieved
and submitted in JSON format; therefore, they need to
be translated into the DRL. DroolsRuleTranslator can
transform simple JSON rules into the *.drl file loaded
later to the engine. Rules are organised so that each
organisation has a single .drl file with all conditions
defined. Additionally, there is a default rule to match the
prediction objects published by the Prediction Service.
The service fires all loaded files over the incoming data,
and if any is matched, the appropriate decision object is
produced. It is later published to the decisions topic and
stored in the decision storage for future usage.

5) Prediction Service: This is the most crucial com-
ponent of the system, implemented with Python. There
are two Kafka consumers: the first one consumes the

training data, and the second consumes the real-time
data and makes predictions. Furthermore, there is a pro-
ducer publishing the predictions to the message broker.
The current implementation uses four machine learning
models, namely, Logistic Regression (LR), k-Nearest
Neighbours Classifier (kNN), Passive-Aggressive Classi-
fier (PA), and Hoeffding Adaptive Tree Classifier (HAT),
which are implemented using the API provided by the
River ML package. The models provide learn one(x,
y) and predict one(x) APIs. The first one updates
the model with a single set of features and the target,
and the second one is used to make the prediction. When
training data arrives, the service loads a serialised model
from the database, uses the data point to train it and saves
the updated model in the database. In case of the real-
time data arriving in the system, the required model is
loaded from the database and used to predict whether
the failure is possible. The model uses two labels for
the prediction - NORMAL and ALARM. If the predicted
label is equal to ALARM, the service publishes the result
with organisationld and deviceld to the predictions topic.

6) Notification Service: This service has only one
main component - DecisionListener, a Kafka consumer
that subscribes to the decisions topic. It maintains a fixed
thread pool used to send emails if the decision contains
the send_email action.

V. DEMONSTRATION

This section shows scenarios of the system processes
that can be initiated by a client.

A. Predictive Model Training

A popular scenario that would be executed by the
architecture is the learning process of the incremental
machine learning model. Figure 2(a) shows the flow that
is executed upon the arrival of a data point as a training
sample. The process consists of the following steps:

1) Training data is streamed to the Data Entry Service.

2) Data Entry Service calls Schema Service for the
appropriate schema.

3) The request is validated and published to the message
broker.

4) Data Service fetches the data and stores them in the
database.

5) Prediction Service pulls the message for the learning
purposes.

6) Appropriate model is fetched, updated with the data
and stored back in the model storage.

B. Sensor Readings Analysis

Another important scenario is initiated by the ma-
chines connected to the architecture and involves execu-
tion of the previously trained model. Figure 2(b) presents
the flow of actions from the readings submission to the
alarm generation and decisions taken by the system. The
steps taken are as follows:
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Figure 2: Predictive model training flow

1) Data are streamed to the Data Entry Service, validated
and published to the message broker similarly to the
previous scenario.

2) Prediction Service pulls the message, fetches the
appropriate model and generates the prediction.

3) For alarm predictions, an alarm message is generated
and published to the message broker.

4) Event Processing Service fetches raw data and alarm
messages, attempts to match them against the event
rules loaded to the CEP engine, and generates the
appropriate decision to the message broker.

5) Notification Service intercepts the decision and exe-
cutes the action encapsulated inside.

VI. EVALUATION

Our evaluation aims at examining the feasibility of in-
cremental machine learning for predictive maintenance,
and the performance under different workload patterns.

A. Experimental setup

The architecture implementation has been container-
ised and deployed using Docker, with each component
packaged as a separate container. The experiments were
conducted on a PC with Intel Core i7-10750H CPU and
16GB of RAM. Although all components are technically
running on the same machine, they are not able to
access each other directly. They communicate using
the internal network created within the Docker Engine
instance through the RESTful interface.

1) Datasets: Two different datasets describing ma-
chine operations were used in the experiment, namely,
the turbofan engine degradation simulation dataset (re-
ferred to as NASA dataset) [23] and the predictive
maintenance modelling experiment dataset (referred to
as Microsoft dataset) [24]. The datasets contain time
series data as required for the functionality of the arch-
itecture. NASA dataset contains time series data that
represent simulations of jet engines run-to-failure sce-
nario. Each entry contains a set of sensor measurements

and labelled as ALARM or NORMAL. Similarly, the
Microsoft dataset contains maintenance measurements
that include volt, pressure and vibration, among others,
and a metric that indicates the amount of cycles before
failure. Similarly to the previous dataset, entries were
labelled as NORMAL or ALARM. Further details about
the datasets can be found in the cited articles.

2) Procedure: The experiment is divided into two
parts: (1) to measure the performance of the incremental
learning applied within the architecture, and (2) to assess
the system performance under different workloads. At
the beginning, the system does not store any historical
data or trained models. The only information present in
the system is the appropriate schema to match the dataset
and a set of basic event rules populated before the start
of the experiment within the Event Processing Service.

In order to measure the machine learning metrics,
training and test parts are created for both datasets.
Furthermore, the training dataset is divided into 10
smaller sets used for the learning process. Each small
set is streamed to the architecture to train the data,
and between the training sets architecture is evaluated
with the test set and multiple machine learning metrics
are recorded. This procedure simulates the scenario in
which the entire training dataset is not available at the
start of the learning process, but becomes accessible
incrementally over time. Measuring metrics after training
with each part of the set helps to monitor changes in
model’s performance and the way of responding to the
data. The experiment is repeated twice, each time with
a different dataset to assess the ability of the adaptation
to various data domains.

In the second part of the experiment, the architecture
is tested against the workload. The data is constantly
streamed to the system for 60 seconds and services
record the information related to the processed data
points. The experiment is repeated 5 times with 10, 100
and 1000 concurrent users submitting sensor readings
to the system. In order to simulate different amounts of



concurrent clients, Apache JMeter has been used, which
is an open source solution for testing web services and
measuring their performance.

B. Performance criteria

Throughout the experiment, a set of measures were
collected and later processed to determine the feasibility
of incremental machine learning for predictive mainte-
nance, and assess the behaviour under various workloads.

1) Machine learning metrics: The Prediction service
was administered to gather the machine learning metrics
during the first part of the experiment by storing them
in the text file at the end of each evaluation with the test
set. We report on the classification accuracy, which can
be defined as a fraction of right predictions within the
total number of predictions.

2) Performance measures: In order to gather the
performance measures, the logging system is added to all
services that are monitored during the evaluation. Logs
are stored in a text file and contain important details that
can be later used to process and draw conclusions. Each
request incoming to the architecture is marked with a
unique requestld and services notes it together with the
time when request enters the service and leaves. Thanks
to this identifier, it is possible to track the request through
the architecture and calculate the desired performance
metrics. The performance was evaluated using the fol-
lowing metrics: average time required to process a single
request, the number of requests processed per second,
total number of requests processed, and total time needed
to finish processing.

VII. RESULTS

This section presents the results of the experiments
described above.

A. Incremental Machine Learning

As previously explained, the implemented architecture
is supposed to predict if there will be a failure within
the next ten machine cycles. Four different models were
trained for two datasets to fulfil the task and the architec-
ture was able to produce models with the performance
scores presented below.

Figure 3 shows the change in accuracy during the
training with the NASA (Figure 3a) and Microsoft
(Figure 3b) datasets for the four classification algorithms.
In the case of the NASA data set, we observe that all
models have high accuracy (= 0.9) after processing only
one-tenth of the data. The results are somewhat different
with the Microsoft dataset: model accuracy attains a
relatively high value (> 0.8) after processing one-tenth
of the data and is stabilised during the learning process,
with only minor changes for three algorithms; however,
the PA algorithm struggles to reach high accuracy and
varies between 0.4 and 0.8 throughout the training.

NASA dataset - accuracy
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Number of training subsets processed
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Figure 3: Accuracy measured during training dataset

B. Scalability Evaluation

This section evaluates the scalability of the architec-
ture with various workloads. The experiment stressed
the system with different number of users submitting
requests, and measured the rate of processing requests
and the average processing time.

Figure 4 plots the number of processed requests for
different number of users. During the 60 seconds of
streaming data to the system, the system was able to
process a total of 67397, 82106 and 80663 requests when
the number of users is 10, 100 and 1000 respectively.
Furthermore, looking at the requests processed per sec-
ond, one can see that the service starts to ramp up and
after about 30 seconds gets stabilised with the ability to
process approximately 1500 requests per second.

With respect to processing time, Figure 5 plots the
request processing times for the three cases of number
of users. For the 10-users case, the architecture needed
on average 25.08ms to process a single request, with
a minimum of 8ms and a maximum of 1466ms. The
measured processing times change when 100 concurrent
users are working. Although there are 10 times more
users, the architecture could process only 82,106 re-
quests with an average of 98.73ms, minimum of 22ms,
and maximum of 1891ms per request (roughly a 4-
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Figure 4: Number of requests processed per second

fold increase). Even though most of the requests are
processed within 100ms, there is a growing number
of those that take between 200 and 250ms as seen
in the figure. In the case of 1000 concurrent users,
the results are significantly different: the system needs
710ms on average to process a single request (minimum
255ms, maximum 4,079ms). The histogram shows that
only a small number of requests is processed quicker
than 500ms, and most take between 500 and 600ms.
Furthermore, there are significant numbers of calls that
take 1 second or longer.

VIII. DISCUSSION

This section comments on the observations from our
evaluation.

A. Incremental Machine Learning.

Although models trained with both datasets scored rel-
atively high accuracy, they exhibit different behaviours.
Models trained with the NASA dataset perform better
than the one based on the Microsoft dataset. For the
NASA dataset case, it can be observed that the perfor-
mance of the four classification algorithms is somewhat
similar. It can also be observed that the PA and Logistic
Regression have the best fit for the NASA dataset. In
regards to the Microsoft dataset, it can be observed that
the models have lower accuracy than the case of the
NASA dataset. In addition, the PA algorithm struggles
to stabilise their accuracy which may lead to unexpected
performance drops in the future, making it inappropriate
algorithm for this dataset.

There could be several reasons behind the difference
between the two datasets. First, most of the Microsoft
dataset is labelled as regular readings with only a little
part being the ALARM data. Second, the obtained results
show that the pre-processing and classification algo-
rithms must be carefully selected to match the specific
data. Both models used the same pipeline with incremen-
tal standard scalar and various classification algorithms.
Although some algorithms fit the NASA dataset; it may
not be the case with the Microsoft dataset.

B. System Performance.

Intuitively, one can observe that the system perfor-
mance in the cases of 10 and 100 users is less than
the case of 1000 users. One of the reasons behind those
results is a lack of horizontal scaling of the implemented
system. With multiple instances of the Data Entry ser-
vice running and appropriate load balancing, the overall
performance can be increased.

The other value that must be interpreted is the maxi-
mum time taken to process the request. In the scenario
with 1000 users the reason behind it can be the limited
capabilities of the Data Entry service; however, with 10
and 100 users, the value is multiple times higher than the
average. Even though it looks like a performance issue,
most of it is the time required to complete the TCP hand-
shake between the Data Entry service and the Schema
service as those two communicate synchronously using
REST protocol over HTTP. After the initial connection
is made, it is reused later and the exchange time between
Data Entry service and Schema service is significantly
lower. Thanks to the stateless design and microservice
pattern, the implementation can be deployed with tools
such as Kubernetes to enable horizontal scaling.

C. Threats to validity

Although the evaluation process provided meaningful
results, there are some aspects that could be changed to
improve the gathered data and provide more information
about the solution. First, the experiment was performed
using a local machine without any calls going over the
Internet; therefore, the obtained results do not include the
latency and failures introduced by network operations.
To extend the evaluation, the implemented architecture
could be deployed in an actual cloud environment where
calls would be issued over the Internet. Second, the
incremental learning evaluation provided results that are
sufficient to assess whether this technique is feasible
for predictive maintenance mechanisms. The experiment
showed that the designed architecture can be used as a
maintenance tool; however, it requires further evaluation
in terms of the reliability of predictions and the learning
pipelines implemented within the system.
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Figure 5: Histogram of number of requests vs processing time

IX. CONCLUSION

We propose an end-to-end architecture for predictive
maintenance that supports online incremental learning,
which enables timely proactive decision making in the
context of Industry 4.0 applications. The architecture
facilitates real-time predictions using incoming data in
order to inform users about potential equipment failure.
The architecture operates as a set of microservices,
providing scalability and reliability for various and vary-
ing deployment sizes. Using two real-world data sets,
we demonstrated the architecture’s ability to provide
high accuracy at an acceptable processing overhead. For
our future work, we plan to expand the evaluation by
applying the architecture on an operating real-world case
study for a broader evaluation of the solution.
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