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Abstract—Autonomous navigation of unmanned aerial 

vehicles (UAVs) in an urban area is a challenging research area 

these days. Planning of safe, optimized and collision free path 

are the basic challenges encountered in UAV mission. The major 

issue faced while planning a feasible path is to detect and avoid 

the obstacles encountered during a mission. This study uses a 

firefly algorithm for planning the shortest, optimal and collision 

free path in an urban environment. The key concept behind the 

working of firefly algorithm is the attraction of one firefly 

towards the other regardless of their gender. The proposed 

approach explores the environment and finds the shortest and 

safe path in the minimum time possible. The Firefly algorithm 

efficiently avoids obstacles and can also be implemented in a 

complex environment. 
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I. INTRODUCTION

Recent advances in technology have made it possible to 
use unmanned aerial vehicles (UAVs), commonly known as 
drones across the number of applications in daily life among 
civil and military organizations. These autonomous aerial 
vehicles operate without direct human intervention and find 
diverse applications ranging from package delivery to 
enhancing communication networks. In hazardous or 
congested areas, UAVs play a crucial role in safeguarding 
human lives and have historically contributed to military 
operations and rescue missions. The evolving landscape of 
internet and technology has propelled notable advancements 
in UAV capabilities, expanding their utility across industrial 
and commercial domains. From mobile edge computing to 
precision agriculture, UAVs are deployed in a number of 
applications, each posing unique challenges, especially in 
dynamic urban environments [1-6].  

Path planning, which is to provide a feasible path between 
two points with an optimal or near-optimal performance 
satisfying constraint requirements, is one of the most critical 
challenges in the autonomous navigation of UAVs. Despite 
substantial research efforts, accuracy in localizing and 
identifying targets remains a challenge, compounded by 
UAVs' high mobility. Effective path planning is critical for 
maximizing the utility of UAVs across various applications 
[7]. Researchers have developed optimization algorithms 
optimized for civil applications, reflecting the extensive use of 
UAVs in a variety of sectors. Studies have focused on 
analyzing collision-free path planning approaches under 

various obstacle scenarios while balancing computational 
efficiency and optimality.  

Meta-heuristic algorithms have emerged as promising 
tools for real-time aerial path planning, providing near-
optimal solutions, which is especially useful in cases where 
deterministic methods produce unsatisfactory results [8]. 
While the meta-heuristic algorithm cannot guarantee ideal 
results, it can provide reasonable and acceptable solutions by 
tweaking its parameters suitably. The Firefly algorithm (FA) 
is a meta-heuristic algorithm in which fireflies move based on 
their attraction to other fireflies. Recent research indicate that 
FA achieves promising performance on several benchmark 
functions and real-world issues [9].  Efforts to reduce path 
planning expenses, including fuel expenditure and mobility 
risks, have resulted in various ways. The authors of [10] 
provide a solution for the problem of minimum mission time 
to cover a set of target points in the surveillance area with 
multiple UAVs and propose an improved ant colony 
optimization (ACO) combining ACO with greedy strategy 
while the path planning problem is addressed in [10] using 
Particle Swarm Optimization (PSO). Furthermore, an 
improved Grey Wolf Optimization (IGWO) algorithm is 
proposed for path planning in UAVs in [12]. Adaptive signal 
processing methods present a viable way to improve UAV 
route planning in dynamic urban settings. Through the use of 
adaptive algorithms and real-time sensor data processing, 
UAVs are able to safely and efficiently alter their course when 
urban landscapes change. The application of the Firefly 
Algorithm in urban settings show the continued search for 
better path planning strategies tailored to dynamic urban 
situations.  

The subsequent sections of the paper are structured as 
follows: Section II elaborates on the system model and the 
problem statement. Section III discusses the objective 
function, the algorithmic framework employed to address the 
stated problem using the mathematical modeling. Simulation 
outcomes are discussed and depicted in Section VI. Finally, 
the conclusion of the study is presented in Section V. 

II. SYSTEM MODEL 

Fig. 1, highlights the operational dynamics within an urban 
environment where multiple UAVs (m) are deployed and 
serves as a system Model for this study. These UAVs 
undertake the mission of navigating from a predefined starting 
point to a designated endpoint while circumventing obstacles 
and accommodating the dynamic movement of other UAVs. 



The primary objective is to devise an optimized pathway to 
swiftly transport essential goods and provisions, particularly 
during adverse conditions like floods or earthquakes. 
Throughout the navigation process, UAVs encounter 
challenges such as obstacle detection, avoidance, and the 
unpredictable nature of their surroundings. The core focus of 
this study is to develop a path that ensures safety, efficiency, 
and obstacle-free traversal. 

 

Figure 1:  System Model for an urban environment 

Figure 2: Navigation of UAV: No Oobstacles 

Figure 3: Navigation of UAV: Random Oobstacles 

 

The model illustrates the utilization of UAVs for delivering 

goods and food items within an urban setting. Equipped with 

sensors, these UAVs possess the capability to perceive the 

size, shape, and spatial positioning of imminent obstacles, 

enabling informed path planning. During navigation, UAVs 

may encounter three potential scenarios:  

• No obstacle 

• Static obstacles. 

• Both static and dynamic obstacles  

 

The first two scenarios are specifically considered in this 

study. In circumstances with no barriers (Scenario-1), UAVs 

fly directly to the target point without using any cognitive 

algorithms, as seen in Fig. 2. In contrast, in cases including 

obstacles (Scenario-2), when there are random obstacles, the 

UAV activates the firefly method to identify its way to the 

target, as shown in Fig. 3. 

A. Problem Statement 

The aim of this study is to develop an optimized pathway 
within an urban environment utilizing the Firefly Algorithm, 
taking into account the dynamic nature of obstacles. In this 
context, environmental uncertainty stems from obstacles 
transitioning between static and dynamic states, although the 
research focuses solely on static obstacles. The primary 
objective is to devise the shortest, obstacle-free pathway for 
the efficient delivery of goods and essential items within a 
designated timeframe. The selected algorithm adeptly 
explores the environment and streamlines the search process 
within a reduced number of iterations. Notably, the Firefly 
Algorithm is chosen for its ability to generate an optimal 
pathway while effectively mitigating collisions. Two 
variables Z1 and Z2 act as decision variables for path safety 
and path length optimization, respectively. These are 
optimized together with the distance between the firefly and 
the objective and the intensity of light. 

III. MATHEMATICAL DESCRIPTION 

 The objective function of the path planning optimization 
problem in this study is formulated as given in (1) 

 �� �  �� 1min ��  ∈  �� ‖���‖ � ������� (1) 

where, ��= r number of obstacles ��� , ���= Corresponding coordinate positions of Obstacles ��= Number of obstacles detected by the sensors  �� , ��=  Decision variables 

The function min ��  ∈  �� ‖���‖  depends on the 

distance of fireflies from the obstacle. Its value increases with 
increase in distance and decreases with decrease in distance.  
The achievement of the desired value of the objective function 
depends on the selection of control parameters. To achieve the 

desired value of ��, the value of ����� will be less. The UAV 

can safely avoid obstacles with a maximum value of �� , but 
the odds of colliding with obstacles rise as Z1 decreases. 
Similarly, the smallest value of �� increases the path length, 
while the path length decreases with higher value of ��.  

A. Firefly Algorithm 

The Firefly Algorithm, draws inspiration from the 
behavior of fireflies, which emit light from their lower 
abdomen to attract other insects, a phenomenon known as 

 

 



bioluminescence. This natural behavior serves as the 
foundation for the development of the Firefly Algorithm, a 
nature-inspired meta-heuristic algorithm. The flowchart 
depicting the operational framework of the Firefly Algorithm 
is presented in Fig. 4. The algorithm operates based on three 
fundamental rules: 

1. There is no gender discrimination because all 
fireflies are unisex, which means that one firefly will 
be attracted to another regardless of gender. 

2. The Fireflies' attractiveness grows with brightness 
and decreases with distance. In a pair of flashing 
fireflies, the less luminous one gravitates towards the 
brighter one. If there are no brighter fireflies, a single 
firefly will go randomly over the space.  

3. The objective function depends upon the brightness. 

 

Figure 4: Flow Chart of Firefly Algorithm 

 
Distance between two fireflies and attractiveness of the 
fireflies is given by (2) and (3), respectively: 

 ��� �  ��� � ��� �      !"��# � ��#$�%
#&�   (2) 

 
 '"($ �  '� exp"��(,$ ; . / 1 (3) 

 

The movement of the firefly depending on brightness is given 
as (4): 

 
��#"0 � 1$ � ��#"0$ �'�exp "��(���$""���� "0$ � ��#"0$ � 1"( � ��$  

(4) 

where, '"($= Attractiveness of firefly '�= Attractiveness of firefly at r=0  2, 3 =Representing two fireflies �� , ��= Relative position of  fireflies 4 =  dimension 1 = randomization parameter, for random number r 

 

The Firefly Algorithm offers several advantages for solving 

optimization problems. Firstly, it can solve linear, nonlinear, 

and multi-model optimization problems, making it versatile 

across various domains. Additionally, the computational cost 

associated with the Firefly Algorithm is low, enabling 

efficient optimization even with complex problem spaces. 

One notable feature of the FA is that its iteration process does 

not necessitate a precise initial start, enhancing its usability 

and robustness. Moreover, the FA demonstrates high 

convergence speed, facilitating quick attainment of optimal 

solutions. Furthermore, the FA can easily integrate with other 

optimization techniques to form hybrid approaches, 

enhancing its adaptability and effectiveness in addressing 

diverse optimization challenges. Overall, these advantages 

position the Firefly Algorithm as a powerful tool for tackling 

optimization problems across different applications and 

domains. 

B.  Mathematical Modeling 

The operation and navigation of a UAV in an urban 
environment is not an easy task. Due to the number of 
obstacles in an urban environment, UAV may encounter both 
static and dynamic obstacles. For safe navigation, the UAV 
needs to maintain a safe distance from all obstacles. The group 
of points along the path that connects a source to a destination 
is called a way point collection. These are dispersed around a 
region at various locations. Firefly is an algorithm used to 
connect these waypoints and plan an optimal safe path. A 
random number of fireflies are produced close to the 

 



obstruction by the firefly algorithm, and one firefly is chosen 
at random from the group based on brightness.  

The nearest barrier should be as far away from the chosen 
brighter firefly as is safe. The brighter firefly is displaced by 
the UAV, and the process of looking for it begins anew until 
the UAV finds the best and safest route. The euclidean 
distance between the firefly and the nearest obstacle provides 
the information for the brightness of the firefly, and it is 
computed using (5). 

 �56 � 7"��  � ���  $�    � "��   � ���$�   (5) 

where, �56= distance of the firefly from obstacle �� , �� =  coordinates of the obstacle �� , ��= coordinates of the firefly position 

For safe navigation it is necessary to adopt the optimal 
path with the information of the nearest obstacles in crowded 
urban environment. The distance between the UAV and 
nearest obstacles "�86 $ is calculated by (6): 

 �86 � 7"��  � �9 $�    � "��   � �9$�   (6) 

where, �� , �� , �9 , �9 are the corresponding  coordinates of 
the nearest obstacle and UAV position respectively.  

The choice of the brighter firefly is determined by the 
distance from the obstacle and the goal. Specifically, the 
maximum and lowest distances from the obstacle and target 
point, respectively. This is an iterative process that will 
continue until the firefly reaches the target. The distance 
between the firefly and target is determined by (7). 

 ��� � C"��  � ���  $�    � "��   � ���$�   (7) 

where,  ���= distance between the firefly and the target �� , ��= coordinates of the target 

IV.  PERFORMANCE EVALUATION  

The proposed algorithm is implemented and evaluated in 
an urban environment using MATLAB with the following 
parameters given in Table 1. 

Table I: Simulation Parameters  
Parameters Range 

γ 0.1-1 

α 0.1-1 

β 0.1-1 

Z1 0.1-1 

Z2 0.01-0.0001 

 

Developing an efficient FA controller involves meticulously 
selecting parameters tailored to address specific issues. Key 
parameters, ranging from 0 to 1, include the randomization 
parameter (α), attraction (β), and light absorption coefficient 
(γ). Additionally, specifying the quantity of firefly and 
maximum generation helps reduce computational effort. The 
number of fireflies typically ranges from 10 to 100, while 
iterations can vary between 50 and 100, determining the 
algorithm's convergence and efficiency. The FA operates 
based on the attraction of fireflies, driven by differences in 
brightness intensity. When the attraction parameter β is set to 

zero, fireflies exhibit random movement. Simulation 
experiments are conducted in a 2D space measuring 150cm by 
150cm, populated with static obstacles. Through varied values 
of the randomization constant α, the optimal and safe path for 
the UAV is determined, with α = 0.75 yielding favorable 
results. 

Fig. 5 provides a comprehensive pictorial representation of the 
distribution of 200 users, depicted as blue dots, and the 
deployment of UAVs, shown as red blocks. This figure 
encompasses three distinct scenarios, each highlighting 
different deployment outcomes. In the first scenario, a total of 
16 UAVs have been deployed in the field, out of which only 
6 UAVs are successful in providing connections to users. In 
the second scenario, 9 UAVs have been deployed, with 4 
UAVs effectively establishing connections with the users. The 
third scenario mirrors the first in terms of UAV deployment, 
with 16 UAVs placed in the field, but here, only 4 UAVs 
manage to establish user connections. Once the UAVs have 
been successfully placed and have established connections 
with users, the subsequent phase involves meticulous path 
planning for the UAVs. This step is essential to determine the 
most effective trajectories for the UAVs to follow. Effective 
path planning is crucial as it helps the UAVs to navigate the 
medium efficiently and assess any environmental or 
circumstantial factors they might encounter. This planning 
ensures that the UAVs can maintain stable connections and 
optimize their performance in providing reliable service to the 
users. 

Fig. 6 provides a detailed visualization of the outcomes, 
showcasing the effectiveness of the Firefly Algorithm in 
planning an optimal and feasible path. This figure includes 
multiple sub-figures that illustrate how the fireflies’ 
movements and behaviors change with different α values, 
thereby demonstrating the algorithm's dynamic adaptability. 
In Fig. 6(a), observed at α = 0.45, the fireflies exhibit random 
movement patterns. At this stage, less bright fireflies are 
attracted to their brighter counterparts, but their overall motion 
remains largely unpredictable and disordered. This 
randomness indicates that the algorithm is still in an early 
phase of processing, where the fireflies are exploring space 
without a clear direction toward the destination. In Fig. 6(b), 
with α set at 0.55, and in Fig. 6(c), with α at 0.65, the fireflies 
continue to display random movements. These movements are 
characterized by a lack of clear alignment towards the 
destination, suggesting that while there is some degree of 
attraction between fireflies, it is insufficient to guide them 
effectively towards an optimal path. However, a significant 
shift is observed in Fig. 6(d) at α = 0.75. Here, the fireflies 
begin to align more consistently towards the destination, 
marking the emergence of a more structured and optimal path. 
This alignment indicates that the algorithm is reaching a 
critical threshold where the fireflies’ movements become 
more coherent and directed. As the value of α increases 
further, this trend continues. Fig. 6(e) and 6(f), corresponding 
to α = 0.85 and α = 0.95 respectively, show a pronounced 
alignment of fireflies towards the destination. Despite the 
increased randomness observed at these higher α values, the 
effectiveness of the Firefly Algorithm in planning an optimal 
and feasible path is clearly reaffirmed. The fireflies' alignment 
at α = 0.75 and above underscores the algorithm's ability to 
adapt to changing conditions and effectively navigate UAVs 
in dynamic urban environments.  These results collectively 
support the adaptability and reliability of the Firefly 
Algorithm for UAV navigation. The algorithm's performance, 



particularly at higher α values, demonstrates its robustness in 
guiding UAVs through complex and dynamic urban 
landscapes, ensuring efficient path planning and optimal 
trajectory alignment. 

V. CONCLUSIONS 

This study addressed the aadaptive signal pprocessing for 
UAV Path Planning in dynamic urban environment using 
Firefly Algorithm. The mathematical description for this 
meta-heuristic approach is described.  This approach 
simplifies the finding of an optimal, collision-free, and 
shortest path for UAVs using Firefly Algorithm , resulting in 
minimal time consumption and computational expense. The 

algorithm adeptly explores the environment and streamlines 
the search process within a reduced number of iterations 

The study has limitations as the algorithm solely targets static 
obstacles within two-dimensional predetermined settings. 
However, the proposed approach exhibits potential for UAV 
navigation amid urban settings with random obstacles. This 
underscores the adaptability and agility of the Firefly 
Algorithm in addressing UAV path planning challenges 
across diverse and challenging urban environments. Future 
work aims to mitigate algorithmic time complexity by 
addressing sorting frequency, considering both distance and 
brightness weights using both static and dynamic barriers.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Placement of UAV, Distribution of Users and Users-UAV Connectivity 

 

 

Figure 6: Visualization of Firefly Algorithm's Effectiveness in UAV Path Planning 
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