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Homological and combinatorial properties of discrete cluster categories

Sofia Franchini

Abstract

In this thesis we work with combinatorial and homological aspects of Igusa—Todorov dis-
crete cluster categories Cp,. Fix a positive integer m. The category C,, is an infinite
discrete version of the classical cluster category of type A,. This is a 2-Calabi—Yau trian-
gulated category with cluster-tilting subcategories. The category C,, has a nice geometric
model in terms of an co-gon, Z,,, having m two-sided accumulation points, in which the

indecomposable objects of C,,, are in bijection with the arcs of Z,,.

The Paquette-Yildirim completion, C,,, of C,, has a geometric model where the indecom-
posable objects can be regarded as “limits of arcs” of Z,,. The arc combinatorics of C,,
allows us to classify the torsion pairs, t-structures, co-t-structures, and recollements of
Cm. We observe that the categories C,, and C,,, despite having similar combinatorics,

have some relevant homological differences.

We also work on defining different Calabi—Yau versions of C,,. We provide a candidate
w-Calabi-Yau version for w > 2, Cy, ,,,, by taking the subcategory of w-admissible objects
and morphisms of C,,. We expect that, by restricting the triangulated structure of C,,, we
obtain a triangulated structure for C ,,. Under the assumption that C,, , is triangulated,

we classify its w-cluster tilting subcategories and torsion pairs.

We also define the category C_i ,,, the (—1)-Calabi-Yau version of Cy,. To do so, we de-
fine an infinite discrete version of symmetric Nakayama representations using techniques
from persistence theory. We obtain an abelian category which is Frobenius, uniserial,
and symmetric. After stabilising, we obtain our desired (—1)-Calabi—Yau triangulated
category. The category C_11 is additive equivalent to the Holm—Jgrgensen category hav-
ing (—1)-Calabi—Yau dimension, and we conjecture that the two categories are triangle

equivalent.
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Chapter 1

Introduction

The classical cluster category of type A,, C(A,) was defined by Buan, Marsh, Reineke,
Reiten, and Todorov in [7] as the orbit category D?(KA,,)/S7~!. The geometric model of
C(A,,) was described by Caldero, Chapoton, and Schiffler in [9], in terms of a (n + 3)-gon:
the isoclasses of indecomposable objects of C(A,) are in bijection with the diagonals of
the (n+ 3)-gon. Keller proved in [34] that C(A,,) is a 2-Calabi—Yau triangulated category,
meaning that its Hom-spaces are somehow “symmetric”. More precisely, for each pair of

objects a,b € C(A,,), there is a natural isomorphism
Homc(An) (a, b) =D Homc(An) (b, EQG)

where ¥ is the shift functor on C(4,,) and D = Homg(—, K) is the usual vector space dual-
ity. Another important property of C(A,,) is that it has cluster-tilting subcategories, which
can be viewed as “projective-minded generating sets” and correspond to triangulations of

the (n + 3)-gon in the geometric model.

By considering the orbit categories of the infinite quivers Ao, and A%, Liu and Paquette
obtained in [39] infinite versions of the category C(A,). The orbit category of A, coincides
with the Holm-Jgrgensen category T2, which first appeared in [26] and [32] as the finite
derived category of K[T] viewed as a differential graded algebra with 7' in degree one.
Equivalently, in [3] the category T3 was obtained by stabilising a certain subcategory of a
Grassmannian category of infinite rank. By [35], the category Tz is also the unique alge-
braic triangulated category generated by a 2-spherical object, up to triangle equivalence.
The Holm—Jgrgensen and Liu—Paquette categories have geometric models which generalise
the (n+3)-gon of C(A,): the indecomposable objects of the Holm-Jgrgensen category are
in bijection with certain pairs of integers, while for the Liu—Paquette category they are in

bijection with certain pairs of elements of an infinite strip, see [26] and [39] respectively.

Igusa—Todorov discrete cluster categories. Given a positive integer m, Igusa and
Todorov defined the category C,, in [30]. This category is a generalisation of the Holm—
Jorgensen and Liu—Paquette categories. The category C,, has a geometric model in terms

of an oco-gon Z,,, which consists of an infinite discrete set of marked points on the circle
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S1. The marked points on S accumulate to a finite number, m, of two-sided accumulation
points. When m = 1 and m = 2, the oco-gon Z,, coincides, respectively, with the set of

integers and with the infinite strip mentioned above.

The category C,, is a Hom-finite, K-linear, Krull-Schmidt, 2-Calabi-Yau triangulated
category. Moreover, C,, has a nice geometric model. The indecomposable objects of Cp,
can be regarded as the arcs of Z,,, while the Hom-spaces are at most one-dimensional and
can be understood in terms of crossings of arcs. The geometric model of C,, allows us to
use combinatorics for classifying some important classes of subcategories. For instance, the
cluster-tilting subcategories of C,, were classified in [21] in terms of certain triangulations
of the co-gon Z,,. This classification generalises the results in [26] and [39] for the cases

m=1and m = 2.

The torsion pairs of C,, were classified in [21] in terms of sets of arcs satisfying certain com-
binatorial conditions about arc crossings, the Ptolemy condition, and converging sequences
of arcs, the precovering conditions. This classification generalises the results in [41] and
[11] for the cases m = 1 and m = 2 respectively. Particular kinds of torsion pairs are
the t-structures, which were classified in [22] with combinatorial objects called decorated
non-crossing partitions. These consist of a non-crossing partition of the set {1,...,m} dec-
orated by elements of the closure of Z,,,. Similar combinatorial objects, the non-exhaustive

non-crossing partitions, were used in [22] to describe the thick subcategories of Cy,.

The Paquette—Yildirim completion. The completion of Cy, can be viewed as closing
Cr, under “limits” of arcs of Z,,,. By completing C,,, we obtain a new triangulated category
which maintains some of the main features of Cy,. In [19] Fisher introduced the completion
of the Holm—Jgrgensen category T2 by taking the homotopy colimit closure of 73. In [17]
Cummings and Gratz studied Neeman’s completion of C,, using metrics coming from the
t-structures in C,,. In Chapter 4 we work with the Paquette-Yildirim completion, C,,, of
Cmn, introduced in [43]. The category C,, was obtained by first considering the category Coy,
obtained by doubling the accumulation points of Z,,, and then localising Cs,, with respect
to a specific thick subcategory. In [3] the authors proved that C; is triangle equivalent to

Fisher’s completion of 75, and we expect that this holds in general for any m > 1.

The Paquette-Yildirim completion C,, is a Hom-finite, K-linear, Krull-Schmidt triangu-
lated category and has a geometric model similar to the one for C,,. The indecomposable
objects of C,, are in bijection with arcs, or limits of arcs, of Z,,. The category C,, inherits
many properties from C,,. For instance, C,, also has cluster tilting subcategories which
correspond to certain triangulations of the closure, Z,,, of Z,,. In [I0] the category C,,
was endowed with a specific extriangulated structure and its cluster-tilting subcategories,
with respect to the new extriangulated structure, were classified in terms of a larger class

of triangulations of Z,,.

Despite C,,, and C,, having many similarities, they also have relevant differences. One
remarkable difference is that C,, is not 2-Calabi—Yau, although it is weakly 2-Calabi—Yau

with respect to the extriangulated structure of [10]. Moreover, by a result in [49], C,, has
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only trivial co-t-structures because it is 2-Calabi—Yau, but both non-trivial t-structures
and co-t-structures exist in C,,. In Chapter {4 we classify t-structures and co-t-structures

in C,,, using combinatorial objects similar to the decorated non-crossing partitions of [22].

Theorem A (Theorem {4.7.4). There is a bijection between the aisles of t-structures in

Cm and the half-decorated non-crossing partitions of {1,...,2m}.

Theorem B (Theorem 4.8.2). There is a bijection between the aisles of the co-t-structures
in Cp, and the half-decorated half-non-crossing partitions of {1,...,2m}.

In addition we prove that there exists a bijection between the functorially finite co-t-
structures in C,, and the t-structures in C,,. Another important difference between C,,
and C,, is about recollements. These are the analogues of short exact sequences of trian-
gulated categories. The thick subcategories of C,, and C,,, were classified in [22] and in [40]
respectively. Recollements are in bijection with torsion torsion-free triples, as explained
in [42], or equivalently with functorially finite thick subcategories. The only functorially

finite thick subcatgories of C,, are 0 and C,, itself, but this is no longer true for C,,.

Theorem C (Theorem [4.8.25)). There is a bijection between the functorially finite thick

subcategories of Cn, and certain half-decorated half-non-crossing partitions of {1,...,2m}.

Different Calabi—Yau versions. There exist analogues of the classical cluster category
C(A,) and of the Holm—Jgrgensen category having different Calabi—Yau parameters. It is
therefore natural to search for different Calabi—Yau versions of the category C,,. For an
integer w > 2, in Chapter [5| we define the category Cy n as a (not full) subcategory of Cp,.
In [27] the authors introduced the definition of w-admissible object (or arc), where being
w-admissible is determined combinatorially. We extend this concept to the category Cp,
and we give the notion of w-admissible morphism in C,,. The category C ., consists of
the w-admissible objects and morphisms of C,,. We then consider the restriction of the
triangulated structure of C,, to the subcategory C, ., and we conjecture that this forms a
triangulated structure for C,,,,. We prove that this is true for some cases, and we expect
that this holds in general, but the combinatorial nature of C, ,, does not allow us to

provide a “natural” explanation for this fact.

Based on the assumption that C, ,, is triangulated, we prove that it has w-Calabi-Yau
dimension. In [27] Holm and Jgrgensen classified the w-cluster tilting subcategories of Ty,
in terms of certain w-admissibile (w+1)-angulations of Z,,, which are maximal collections
of non-crossing w-admissible arcs. In addition, in [14] Coelho Simoes and Pauksztello
classified the torsion pairs in T, (for all values w € Z) as certain sets of arcs closed under

taking w-admissible Ptolemy arcs. We extend these results to the category Cy .

Proposition D (Proposition [5.6.2)). The w-cluster tilting subcategories of Cym are in

bijection with certain w-admissible (w + 1)-angulations of Z,,.

Theorem E (Theorem [5.7.3)). The torsion pairs in Cy m are in bijection with certain sets

of arcs of Z,, closed under taking w-admissible Ptolemy arcs.

13



The natural counterpart of higher-Calabi—Yau triangulated categories are negative Calabi—
Yau triangulated categories. The negative Calabi—Yau versions of the Holm—Jgrgensen
category were studied, for instance, in [12], [13], and [I4], where the simple-minded systems
and torsion pairs were classified. Moreover, in [28] the authors observed that for positive
Calabi—Yau Holm—-Jgrgensen categories there exist non-trivial t-structures and only trivial
co-t-structures, while for the negative Calabi—Yau cases the opposite holds. Later, in [49]
Zhou and Zhu proved this fact for the more general setting of Calabi—Yau triangulated
categories. Therefore, it is interesting to define also lower-Calabi—Yau versions of C,,. To

this end, we introduce the category C_j ,,, which is (—1)-Calabi-Yau version of C,,.

Infinite Nakayama representations. With the aim of defining C_; ;,,, in Chapter |§|
we introduce infinite discrete versions of symmetric Nakayama representations. Given
the finite oriented cycle C),, with n vertices, the projective and injective modules over
the bound path algebra KC,,/ rad™*! satisfy some important properties. Indeed, the
category of finitely generated modules over KC,,/ rad"*! is Frobenius and symmetric, i.e.
at each vertex n of C, the indecomposable projective and injective modules P, and I,
coincide. By a well known result due to Happel, see for instance [24], such a category
becomes triangulated after stabilising. Moreover, it also becomes (—1)-Calabi-Yau. We
want to define the infinite discrete version of the bound path algebra KC),/ rad”*!, which
we can intuitively interpret as “KZ,,/ rad®*1” and then stabilise the category of its

representations.

To construct the category C_i,, we use techniques from persistence theory. In [16]
Crawley-Boevey provided a decomposition theorem for the pointwise finite dimensional
representations of the real line R in terms of intervals. The pointwise finite dimensional
representations of the circle S were studied by Hanson and Rock in [23]. Rock and Zhu
defined the category rep(S!, ) in [46], which is a continuous version of the category of
representations over a Nakayama algebra. They considered the string representations of
St defined in [23] by “rolling up” bounded intervals of R around S!, and introduced &, the
Kupisch function, whose role is to bound the length of the strings. The Kupisch function
assigns at each point x of S' the length of the indecomposable projective representation

P, starting at x.

We introduce a Kupisch function, xz,,, which is specific to the co-gon Z,,,. Our category
rep(Z,, Kz, ) of infinite discrete versions of the representations of symmetric Nakayama al-
gebras, is an intermediate step between the categories rep(KC,,/ rad” ™) and rep(S', s z,, ).
The objects of rep(Z,, kz,,) are the representations of rep(S*, k2,,) which are “constant”

in between any two consecutive marked points of Z,,,. We obtain the following results in
Chapter [0}

Theorem F (Theorem [6.3.1). The category rep(Z,,, kz,,) is abelian and Krull-Schmidt.

The isoclasses of its indecomposable objects are in bijection with certain intervals of R.

Theorem G (Theorem [6.5.1] Theorem [6.7.2). The category rep(Zm,kz,,) is Frobenius,

and symmetric, i.e. P, = I, for each z € Z,,. Moreover, rep(Z,,, kz,, ) is uniserial, i.e.
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its indecomposable objects have a unique (possibly infinite) composition series.

We find that the triangulated category obtained by stabilising rep(Z,,,kz,,) is (—1)-
Calabi-Yau. Thus, we define C_j ,,, the (—1)-Calabi-Yau version of Cy,, in this way. We
expect that C_1; and the Holm-Jgrgensen category 7_; are triangle equivalent because

they are equivalent as additive categories.

Thesis outline. This thesis is organised as follows. In Chapter [2] we give some back-
ground about classical or well-known results. We discuss additive, abelian, Frobenius, and
triangulated categories. In particular, we describe how the stable category of a Frobenius
category becomes triangulated. We also discuss Serre functors, torsion pairs, and clus-
ter tilting subcategories in a triangulated category. Finally, we describe localisation of

triangulated categories.

Chapter [3| is mostly based on already known results of [21] and [22], except for part of
Section [3.:4 We introduce the geometric model and main properties of C,,. Then we

present the classifications of the torsion pairs and t-structures in C,,.

Chapter [4|is mostly based on [20]. We discuss the geometric model and main properties
of the Paquette-Yildirim completion of C,, C,,. We prove the factorization properties
of the morphisms of C,, and describe its quiver. We classify the precovering and the
extension-closed subcategories of C,,. Then, we classify the torsion pairs, t-structures,
co-t-structures, and recollements in C,,. Finally, we prove that there exists a bijection

between the functorially finite co-t-structures in C,, and the t-structures in C,y,.

In Chapter 5| we define the candidate w-Calabi-Yau version of C,, Cym, for w > 2.
We observe that the restriction of the triangulated structure of C,, to Cy ., is a good
candidate for being a triangulated structure for C, ,,. Under the assumption that Cy, p, is
triangulated, we prove that it is w-Calabi—Yau and we describe its AR quiver. We then

classify the w-cluster tilting subcategories and the torsion pairs in Cy .

In Chapter |§| we define the category rep(Z,,,kz,, ) of the infinite discrete symmetric
Nakayama representations. We prove that rep(Z,,,kz,,) is abelian and Krull-Schmidt,
and we describe its indecomposable objects. We find the projective-injective objects and
simple objects of rep(Z,,, kz,,) and we prove that each indecomposable object has a unique
composition series. We describe the AR quiver of rep(Z,,, kz,, ). Finally, we discuss the
main properties of the stable category of rep(Z,,,kz,,), we give its AR quiver and geo-

metric model, and we prove that it is (—1)-Calabi-Yau.
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Chapter 2
Background

We collect some relevant notions which will be used throughout the other chapters. We
introduce abelian, Frobenius, and triangulated categories. We see how to obtain a tri-
angulated category by stabilising a Frobenius category, and we describe how almost split
sequeneces in a Frobenius category become almost split triangles after stabilising. We in-
troduce torsion pairs, (co-)t-structures, and cluster-tilting subcategories for triangulated
categories. Finally, we see how to obtain a new triangulated category from a given one,

via the Verdier quotient.

2.1 Additive categories and Serre duality

In this section, based on [45, Section I.1], we introduce Serre functors. These functors
are related to the existence of almost split sequences and the Calabi—Yau property in a
triangulated category, see Section but can be already defined in an additive setting.

We start by recalling some definitions about additive categories.

An additive subcategory of an additive category C is a full subcategory of C containing
the zero object, and being closed under isomorphisms, direct sums and direct summands.
Given an additive category C and an object ¢ € C, we denote by add(c) the smallest
additive subcategory of C containing c¢. The following are particular kinds of additive

categories, whose objects and Hom-sets can be understood via “building blocks”.
Definition 2.1.1. Let C be an additive category and K be a field.

e We say that C is K-linear if its Hom-sets are K-vector spaces. If the Hom-spaces are

finite-dimensional over K, we say that C is Hom-finite.

e We say that C is Krull-Schmidt if for each non-zero object ¢ € C there exist
Cly...,¢p € C such that ¢ = ¢ @ -+ @ ¢, and End¢(¢;) is a local ring for each
ie{l,...,n}.

Given a Krull-Schmidt category C, we denote by indC the class of its indecomposable

objects.
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Remark 2.1.2. In a Krull-Schmidt category, the decomposition of an object into inde-
composable direct summands is unique, up to isomorphism and reordering the summands,
see [37, Theorem 4.2]. Moreover, an object is indecomposable if and only if its endomor-

phism ring is local.
We now introduce Serre functors.

Definition 2.1.3 ([45] Section I.1]). Let C be an additive, Hom-finite, K-linear category.
A right Serre functor of C is a pair (S,o) consisting of an additive functor S: C — C

and a collection of isomorphisms ¢ = (0,5: Home(a,b) — D Home (b, Sa)) which are

a,beC
natural in a and b, where D(—) = Homg(—,K). A Serre functor is a right Serre functor

which is essentially surjective. A left Serre functor is the dual of a right Serre functor.

Remark 2.1.4 ([45, Corollary 1.1.2, Lemma I.1.3, Lemma I.1.5]). The following state-

ments, and their dual versions, hold.
e A right Serre functor is full and faithful.
e A right Serre functor is unique up to natural equivalence.
e A Serre functor is a right Serre functor which is also a left Serre functor.

Serre functors are related to certain bilinear maps. We recall that, given K-vector spaces U
and V, a non-degenerate pairing is a bilinear map ®: U x V' — K such that if ®(u,v) =0
for all uw € U then v =0, and if ®(u,v) =0 for all v € V' then u = 0.

Theorem 2.1.5 ([45, Proposition 1.1.4]). Let C be an additive, Hom-finite, K-linear cat-
egory, S: C — C be an additive functor, and (04: Home(a,Sa) — K), .. be a collection of

K-linear maps such that for each a,b € C the composition
Home (a,b) x Home (b, Sa) — Home(a, Sa) 2% K
(fr9)—  gf — 0a(gf)

is a non-degenerate pairing. Then (S,0) is a right Serre functor for some collection of

isomorphisms o = (04: Home(a,b) — D Home(b,Sa)), oo which are natural in a and b.

2.2 Abelian, exact, and Frobenius categories

An exact category consists of an additive category together with a collection of exact
sequences, which play the role of short exact sequences in an abelian category. In the next
chapters, our exact categories live inside an ambient abelian category. Before discussing
exact categories, we recall the main features of abelian categories. We start with the

following definition.
Definition 2.2.1. Let f: a — b be a morphism in an additive category.

e We say that f is a monomorphism if whenever fg; = fgo for some g1,92: ¢ — a,
we have that g1 = go. Dually, f is a epimorphism if whenever g1 f = gof for some

g1,92: b — ¢, we have that g1 = go.
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e The kernel of f, if it exists, is a morphism g: ¢ — a such that fg = 0, and for each
such ¢': ¢ — a there exists a unique h: ¢ — ¢ such that gh = ¢’. We denote the
object ¢ by Ker f.

e The cokernel of f, if it exists, is a morphism ¢: b — ¢ such that gf = 0, and for
each such ¢': b — ¢ there exists a unique h: ¢ — ¢ such that hg = ¢’. We denote
the object ¢ by Coker f.

e The image of f, if it exists, is the kernel of the cokernel of f, and is denoted by Imf.

Definition 2.2.2 (See for instance [50), Definition 3.3.4]). Let A be an additive category.
We say that A is abelian if each morphism has kernel and cokernel, each monomorphism

is the kernel of its cokernel, and each epimorphism is the cokernel of its kernel.

Examples of abelian categories are: the category of abelian groups, the category of modules

over a ring, the category of finitely generated modules over a finite-dimensional algebra.

Remark 2.2.3. Let A be an abelian category and f: a — b be a morphism. It is
straightforward to check that the following statements hold.

e The morphism f is a monomorphism if and only if Ker f = 0. Dually, f is an

epimorphism if and only if Coker f = 0.

e The morphism f is an isomorphism if and only if f is a both a monomorphism and

an epimorphism.

One of the main features of abelian categories, is that they have (short) exact sequences.

Definition 2.2.4. Let A be an abelian category. A sequence -+ — a,_1 fn—fg an A

Gn41 — - -+ of objects and morphisms of A is called exact if Imf,,_; = Ker f,, for each n.

An exact sequence of the form 0 — a — e — b — 0 is called a short exact sequence.
Now we can define some important additive subcategories of an abelian category.
Definition 2.2.5. Let £ be an additive subcategory of A.

e We say that £ is extension-closed if for each short exact sequence 0 — a — e —
b — 0 with a,b € £ we have that e € £.

e Assume that £ is extension-closed. We say that £, together with the class of short

exact sequences of A having terms in &, is an ezxact subcategory of A.

e We say that £ is a wide subcategory of A if £ is closed under kernels, cokernels, and

extensions.

Abelian categories and wide subcategories are examples of exact categories. Moreover, it

is straightforward to check that a wide subcategory is abelian.

Remark 2.2.6. Exact categories can also be defined without an ambient abelian category,

see for instance [8, Definition 2.1].
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In an exact category &£, a short exact sequence 0 — a — ¢ — b — 0 in the ambient
abelian category A which restricts to £, i.e. such that a,e, b € £, is called an exact sequence

in £. The collection of exact sequences form an exact structure in &.
Definition 2.2.7. Let £ be an exact category.

e A morphism f:a — e in £ is a proper monomorphism if there exists an exact

sequence in & of the form 0 — a L e—b—0.

e A morphism g: e — b in £ is a proper epimorphism if there exists an exact sequence
in € of the form 0 — a — e —2» b — 0.

Some exact sequences are central for studying the Auslander—Reiten theory of an exact

category. Before introducing them, we give the following definition.

Definition 2.2.8. Let f: a — b be a morphism in an additive category. We say that f is
e a split monomorphism if there exists f’: b — a such that f'f = 1,,
e a split epimorphism if there exists f': b — a such that ff' = 1,,

o left almost split if f is not a split monomorphism and each g: a — ¢ which is not a

split monomorphism factors through f,

e is right almost split if f is not a split epimorphism and each ¢g: ¢ — b which is not

a split epimorphism factors through f.

Definition 2.2.9. An exact sequence 0 — a i> e 25 b — 0 in an exact category is

split if f is a split monomorphism, or equivalently g is a split epimorphism.
Definition 2.2.10 (See for instance [2, Definition 1.11, Theorem 1.13]). An exact sequence
0—a i> e 25 b — 0 in an exact category is almost split, or an Auslander—Reiten

(AR) sequence, if a and b are indecomposable and f is left almost split.

It is straightforward to check that, given a € ind&, there exists at most one, up to
equivalence, almost split sequence of the form 0 — a — e — b — 0. We write a = 7b
and call it the Auslander—Reiten (AR) translate of a.

Among exact categories, Frobenius categories are important because they become trian-
gulated after stabilising, see Section [2.3.2]

Definition 2.2.11. Let £ be an exact category.

e An object & € £ is projective if each short exact sequence in & of the form 0 —
e — ea — x —> 0 with ej,eq € & splits. We denote by Proj& the class of

projective objects of &£.

e An object x € &£ is injective if each short exact sequence in £ of the form 0 —

x — e1 —> ea — 0 splits. We denote by Inj £ the class of injective objects of £.

e We say that £ has enough projectives if for each e € £ there exists a proper epimor-

phismmorphism = — e with z € Proj £.
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e We say that £ has enough injectives if for each e € £ there exists a proper monomor-

phism e — x with z € Inj €.

e We say that £ is Frobenius if £ has enough projectives, enough injectives, and
Proj& =1Injé&.

2.3 Triangulated categories

In this section we introduce triangulated categories, as most of our work will be carried in a
triangulated setting. After defining (algebraic) triangulated categories, we discuss certain
important classes of subcategories (namely extension-closed subcategories, precovering
and preenveloping subcategories), torsion pairs, cluster-tilting subcategories, and Verdier

quotients.

2.3.1 Definition

Triangulated categories, introduced in [4§], are analogues of exact categories: they are
additive categories having triangles, playing the role of exact sequences for exact categories,

which can be “rotated”.

Consider an additive category T equipped with an automorphism »: 7 — 7T called a
shift functor. A sextuple in T consists of a sequence of objects and morphisms of T
of the form a i> e %5 b % Sa. Given two sextuples a L e 25 b 5S4 and
z — y % 2 5 Y, a morphism of sextuples consists of a triple (c, 8,7) of morphisms

a:a—x, f:e—y, and v: b — z, such that the diagram below commutes.

afegbhEa

N

u v w
z Y z Yx

If o, B and ~ are isomorphisms, then (a, §,7) is called an isomorphism of sextuples. We

recall the following definition, see for instance [25], Definition 3.1].

Definition 2.3.1. An additive category T is called pre-triangulated if T has a shift functor

> and a class of sextuples, called triangles, satisfying the following axioms.
(TR1) 1. The class of triangles is closed under isomorphism.
2. IfaeT thena - a—0— Yaisa triangle.
3. Each morphism h: b — Xa can be extended to a trianglea — e — b My s,

(TR2) The sextuple a L e Lp M saisa triangle if and only if e —2» b LN P 5

is a triangle.

(TR3) Let a e by saand ¢ % y — z —» Yz be triangles, and let a: a — x,

B: e = y be morphisms such that Sf = ua. Then there exists a morphism vy: b — z
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such that the following diagram commutes.

If additionally 7 satisfies the following equivalent axioms, then we say that T is triangu-

lated.

(TR4) (Octahedral axiom) Let a T L v s S e Y se, 0 e L

¥ 5 $a be triangles. Then there exists a triangle 2 — b — b’ —— Sz such that

the following diagram commutes.

a
vf g’
a

~
@
~

-9 )
(TR4’) LetaLeiﬂ)ﬁEa, r e e 5 Y, ande(igb@e’(li))b'ﬁﬂe
be triangles. Then there exist triangles a f% e L/> Ya and x Ll> b L/>

b s Sz such that the following diagram commutes and o = V'S f = (Zu)w'.

(TR4”) Let a e 2y saand a < 2 - y —> Ya be triangles, and let a: b — y
be such that wa = h. Then there exists a morphism 8: e — x such that the following

diagram commutes

a—Lse—2yp -ty
k |8 la ll
a4y y —2— Ya

B
() (va) (EHw

ande —% r @b —5 Y Ye is a triangle.
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Remark 2.3.2. We refer to [29, Appendix A] for the equivalence between (TR4), (TR4’),
and (TR4”).

Classical examples of triangulated categories include: the homotopy category and the
derived category of an abelian category, and the classical cluster category of a finite-

dimensional hereditary algebra.
The following are the triangulated analogues of Definition and Definition [2.2.10

Definition 2.3.3. A triangle a i> e Lb M vais split if f is a split monomorphism,

or equivalently g is a split epimorphism, or equivalently h = 0.

Definition 2.3.4 ([24, Chapter I Section 4.1]). A triangle a L Lp M S a
triangulated category is almost split, or an Auslander—Reiten (AR) triangle, if a and b are

indecomposable and f is left almost split.

As for the exact setting, given a € ind 7T, there exists at most one, up to equivalence,
almost split triangle of the form a — ¢ — b — Xa. We write a = 7b and we call it the
Auslander—Reiten (AR) translate of b.

Definition 2.3.5. Let 7 be a K-linear, Hom-finite, Krull-Schmidt triangulated category.
We say that T has almost split triangles if for each ¢t € indT there exist almost split
triangles 7t — & —t — N7t and t — y — 7't — Xt.

In a triangulated category, Serre duality is closely related to the existence of almost split

triangles.

Proposition 2.3.6 ([45, Proposition 1.2.4]). Let T be a K-linear, Hom-finite, Krull-
Schmidt triangulated category. Then T has almost split triangles if and only if T has a

Serre functor S.

By Proposition [45, Proposition 1.2.3], if 7 has a Serre functor S, then S acts as 37 on

objects, up to isomorphism.

In the next chapters we will often work on triangulated categories whose Hom-spaces are

somehow “symmetric”.

Definition 2.3.7. Let w € Z. A Hom-finite, K-linear triangulated category T is w-
Calabi—Yau, w-CY for short, if 3 is a Serre functor, i.e. there is a natural isomorphism
Homy(z,y) = D Homy(y, X%z) for each z,y € T.

2.3.2 Algebraic triangulated categories

Given a Frobenius category £, we can obtain a triangulated category by stabilising £.
We describe this process by following [50, Chapter 5]. For each a,b € £, we denote by
Proj(a,b) the set of morphism f: a — b of £ such that f = hg for some g: a — p and
h:p — b with p € Proj€. Then, we define the stable category £ of £ as the category
having as objects the same objects of £, and Homg (a, b) = Homg(a, b)/ Proj(a, b) for each
a,b € £. Note that e € £ is such that e = 0 in £ if and only if e € Proj&. Given a
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morphism f: a — b, we often denote by [f] the equivalence class f + Proj(a,b), which is
a morphism [f]: a — bin £.

The exact structure on £ induces a triangulated structure on £. We describe the shift
functor. Consider an object a € £. Since £ has enough injectives, there exists a proper
monomorphism ¢: a — p with p € Inj€ = Proj&. Thus, ¢ can be extended to an exact
sequence 0 — a — p —= Ya — 0, where Ya = Coker.. By [50, Section 5.1.2], ¥

induces an autoequivalence on £, and is independent of the choice of p.

Now we describe the triangles in £. Consider an exact sequence 0 — a i) e 25
b — 0, since p is injective, there exists ¢: e — p such that ¢of = 1. Moreover, by the

universal property of the cokernels, there exists h: b — ¥a such that the following diagram

commutes.
0 va—Tse 2 4p 0
oo,k
0 ya —— p —— Ya 0

Finally, the sextuple a ﬂ e ﬂ b ﬂ> Ya is called a standard triangle.

Proposition 2.3.8 ([50, Proposition 5.1.10]). Let £ be a Frobenius category. Then the
autoequivalence Y together with the sextuples of £ which are equivalent to the standard

triangles, form a triangulated structure on .

We recall that an equivalence between two triangulated categories is a triangle equivalence

if it sends triangles to triangles and commutes with the shift functors.

Definition 2.3.9. A triangulated category T is called algebraic if there exists a Frobenius
category & such that 7 is triangulated equivalent to &£.

Given a Frobenius category £, we want to see if the property of being Krull-Schmidt is
preserved after stabilising. We cannot find references for this, thus we provide an argument

for the convenience of the reader.

First note that an object a in a Krull-Schmidt Frobenius category £ is indecomposable in
Eifand only if a 2 a' @ p in &, for some a’ € ind £ \ Proj € and p € Proj £.

Lemma 2.3.10. Let £ be a Frobenius category. If € is K-linear, Hom-finite and Krull-
Schmidt, then so is &.

Proof. 1t is straightforward to check that £ is K-linear and Hom-finite, we show that &£
is Krull-Schmidt. For each object a € £ there exist ai,...,a, € &€ such that Endg(a;)
is local for each i € {1,...,n}, and a = a1 ® --- ® a,, in €. Consider all the non-
projective-injective objects among a1, ..., a,, and reindex them as aj,...,a;. We have
that Endg(a;) = Endg(a;)/ Proj(a;,a;) # 0 is local for each ¢ € {1,...,k} because the
quotient of a local ring is again local, and a = a1 @ --- @ ax in £. This proves that £ is
Krull-Schmidt. 0

Given a Frobenius category &£, each almost split triangle in £ is obtained by stabilising an
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almost split sequence in £. Moreover, each irreducible morphism between indecomposable
objects in £ is obtained by stabilising an irreducible morphism between indecomposable
objects in &, see Definition for the notion of irreducible morphism. We believe that
these facts are well known, but, since we cannot find references, we provide arguments in

Proposition [2.3.13| and Corollary We start with the following lemma.

Lemma 2.3.11. Let £ be a Hom-finite, K-linear, Krull-Schmidt Frobenius category and
f:a— b be amorphism of £. The following statments hold.

1. If f is a split monomorphism in £, then [f] is a split monomorphism in E.
2. If f is a split epimorphism in E, then [f] is a split epimorphism in E.

3. Ifa € ind E\Proj &€ and [f] is a split monomorphism in &, then f is a split monomor-
phism in E.

4. Ifb € ind E\Proj & and [f] is a split epimorphism in &, then f is a split epimorphism
in €.

Proof. Statement (1) is straightforward, and statements (2) and (4) are the duals of state-
ments (1) and (3) respectively. We prove statement (3). If [f]: a — b is a split monomor-
phism in £, then there exists [f']: b — a such that [f'][f] = [14], i.e. f'f — 14 = p for
some p € Proj(a,a). Since a is indecomposable, Endg(a) is local and then either f'f is
an isomorphism or f'f — 1, = p is an isomorphism. In the first case we obtain that f is
a split monomorphism. Now assume that p is an isomorphism, we write p = pop; where
pP1:a—q, p2: g — a, and g € Proj£. We have that p; is a split monomorphism, and as a
consequence a is projective. This contradicts the assumption that a is not projective and

concludes the argument. O

Definition 2.3.12. Let f: a — b be a morphism in an additive category. We say that
f is irreducible if f is not a split monomorphism nor a split epimorphism, and whenever
f = hg for some g: a — c and h: ¢ — b, we have that ¢ is a split monomorphism or h is

a split epimorphism.

Proposition 2.3.13. Let £ be a Hom-finite, K-linear, Krull-Schmidt Frobenius category
and f: a— b be a morphism in €. The following statements hold.

1. Ifa,b € ind €\ Proj&, then f is irreducible in & if and only if [f] is irreducible in £.

2. If f is a monomorphism and a € ind £\ Proj &, then f is left almost split if and only
if [f] is left almost split.

3. If f is an epimorphism and b € ind £\ Proj &, then f is right almost split if and only
if [f] is right almost split.

Proof. First we prove (1). Assume that f: a — b is irreducible in €. Since f is not a split
monomorphism nor a split epimorphism, by Lemma|2.3.11}, [f] is not a split monomorphism
nor a split epimorphism. Assume that [f] = [h][g] = [hg] for some g: a — cand h: ¢ — bin
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E. We have that f —hg = pop; for some p;: a — g and ps: ¢ — b where ¢ € Proj £ = Inj &.
Since f is irreducible, f is either a monomorphism or an epimorphism. Assume that f
is a monomorphism, the other case is dual. Since ¢ € Inj &, there exists a: b — ¢ such
that af = p1. As a consequence, hg = (paa + 1) f. Since Endg(b) is local, poar + 15 is an
isomorphism because po« is not an isomorphism. Indeed, if poa is an isomorphism then «
is a split monomorphism and b € Proj &, giving a contradiction. Thus, f = (paa+1;) " thg
and, from the fact that f is irreducible, g is a split monomorphism or (paa + 1) "'h is a
split epimorphism. We obtain that [g] is a split mono or [h] is a split epimorphism. This

proves that [f] is irreducible.

Now assume that a,b € ind € \ Proj€ and that [f]: a — b is irreducible in £. We have
that f is not a split monomorphism nor a split epimorphism. If f = hg for some g: a — ¢
and h: ¢ — b, then [f] = [h][g]. Therefore, [g] is a split monomorphism or [h] is a split
epimorphism, and then ¢ is a split monomorphism or h is a split epimorphism. We can

conclude that f is irreducible in &.

Now we prove (2), the proof of (3) is dual. If f is left almost split, then f is not a split
monomorphism and therefore, by Lemma [f] is not a split monomorphism in £.
Consider [g]: @ — ¢ in £ which is not a split monomorphism, and then g: a — ¢ is not
a split monomorphism in £. Since f is left almost split, there exists h: b — ¢ such that

hf = g, and as a consequence [h][f] = [g]. This proves that [f] is left almost split.

Now assume that [f] is left almost split. We show that f is left almost split. Since [f] is not
a split monomorphism, f is not a split monomorphism. Now consider a morphism g: a — ¢
which is not a split monomorphism in £. Then [g]: @ — ¢ is not a split monomorphism,
and then there exists [h]: b — ¢ such that [h]|[f] = [g], i.e. hf = g+ pop1 for some
p1:a— qand pa: g — ¢ with ¢ € Proj € = Inj . Since f is a monomorphism, there exists
a: b — ¢ such that af = p1, and then (h — poar)f = g. We can conclude that f is left
almost split. ]

The following is immediate from the proposition above.

Corollary 2.3.14. Let £ be a Hom-finite, K-linear, Krull-Schmidt Frobenius category. If

0—a i> e L5 b —> 0 is an almost split sequence in &, then a ﬂ e ﬂ b— XYa is

an almost split triangle in £.

2.3.3 Extension-closed subcategories

In this section we introduce extension-closed subcategories of triangulated categories. The

following setup will be used in the next sections of this chapter.

Setup 2.3.15. The category T will be Hom-finite, K-linear, Krull-Schmidt, and triangu-
lated.

We start with some notation. Given additive subcategories X and ) of T, we write

X xY={teT | there exists + — t — y — Xz for some x € X and y € V}.
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Moreover, we write Homy (X', )) = 0 if Homy(z,y) = 0 for each x € X and y € Y. The

following is a condition that ensures that X * ) is still additive.

Proposition 2.3.16 ([31, Proposition 2.1]). Let X', be additive subcategories of T. If
Homy(X,)) = 0 then X x) is closed under direct summands, and is therefore an additive

subcategory of T .

Remark 2.3.17. Let X,), Z be additive subcategories of 7. By the Octahedral Axiom
we obtain that (X *Y) * Z = X % () x Z), so we write: X x ) % Z, see for instance [I8]

Lemma 2.1].

Now we give some definitions, which will be useful when discussing torsion pairs, cluster-

tilting subcategories, and thick subcategories.

Definition 2.3.18. An additive subcategory X of T is called
o extension-closed if X x X = X,
e suspended if X is extension-closed and XX C X,
e co-suspended if X is extension-closed and ¥ 1X C X,

e thick if X is suspended, and co-suspended.

2.3.4 Precovering and preenveloping subcategories

In this section we keep Setup [2.3.15] We discuss the properties of certain subcategories
of T which are “approximating”. Torsion classes and cluster-tilting subcategories are

examples of subcategories with this property, see Section [2.3.5] and Section [2.3.6
Definition 2.3.19. Let X be an additive subcategory of 7.

e We say that f: a — b is right minimal if for each g: a — a such that fg = f we

have that ¢ is an isomorphism.

e We say that f: a — b is left minimal if for each g: b — b such that gf = f we have

that g is an isomorphism.

e A morphism f: x — t with z € X is an X-precover, or right X -approzimation of t if
any f’: x’ — t factors through f. An X-cover is a right minimal X-precover. The
subcategory X is precovering, or contravariantly finite, if each object of 7 has an

X-precover.

e A morphism g: t = x with x € X is an X -preenvelope, or left X -approximation, if
any ¢': t — ' factors through g. An X-envelope is a left minimal X-preenvelope.
The subcategory X is preenveloping, or covariantly finite, if each object of 7 has an

X-preenvelope.
e The subcategory X is functorially finite if it is both precovering and preenveloping.

Remark 2.3.20. Being precovering can be checked at the level of the indecomposable

objects. More precisely, X is a precovering subcategory of T if and only if for any ¢ € ind T
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there exist z € X and f: xz — t such that any g: ' — t with 2/ € ind X factors through
f, cf. [4 p. 81].

Lemma 2.3.21 ([33, Lemma 4.1]). Let X be an additive subcategory of T and lett € T.
If there exists an X -precover f: x — t, then there exists ¥’ € X such that v = 2’ ® x” for
some 2" € X, and the composition

1
x/@}x/@x//g f

s an X-cover of t.

In [33] it is further assumed that X’ is extension-closed, but if we remove this assumption

the same argument can be applied.

The following lemma will be useful in Section It consists of [47, Lemma 5.3] for
preenveloping subcategories, and its dual for precovering subcategories. The statement in
the given reference has a different level of generality, therefore we give part of the proof

for the convenience of the reader.

Lemma 2.3.22. Let X and Y be additive subcategories of T such that Homy(X,)) = 0.
The following statements hold.

1. If X and Y are preenveloping in T, then X %) is preenveloping.

2. If X and Y are precovering in T, then X %) is precovering.

Proof. We prove (1), the proof of (2) is dual. First note that, since Homy(X,)) = 0,

by Proposition [2.3.16] X * ) is an additive subcategory of 7. Let ¢ € 7 and consider a

YV-preenvelope of t, denoted h: t — y. We extend h to a triangle 1y L PRCARILN Y.

Now consider an X-preenvelope of s, denoted v: s — x, and extend it to a triangle
P s — x — Nr.

g
We extend the morphism (;qv) : s — t P x to a triangle s Yiteq (a—6>) z — 2s. By

(TR4’) of Definition [2.3.1] there exist triangles ¥~ 1y — = NS yand r — t —

z — ¥r such that the following diagram commutes.

r——7r
u
_ ! g M
x 1y s > Y
il v e’ ll
yly x b e Y
w

Yr—1 o

Now, by [47, Lemma 5.3], we obtain that a: t — z is an X x Y-preenvelope of ¢. Thus,
X x ) is preenveloping. O
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2.3.5 Torsion pairs

The notion of torsion pair in a triangulated setting is due to [31]. T-structures, introduced
in [5], and co-t-structures, introduced in [44] and [6] where they are called weight structures,

are particular kinds of torsion pairs. In this section we keep Setup

Definition 2.3.23. Let X and ) be additive subcategories of 7. The pair (X', )) is called
e a torsion pair if Homp(X,Y)=0and 7 = X % ),
e a t-structure if (X,)) is a torsion pair and XX C X,
e a co-t-structure if (X,)) is a torsion pair and ¥~tX C X.

If (X,)) is a torsion pair, then X is called a torsion class and Y is called a torsion-free
class. If (X,)) is a t-structure or a co-t-structure, X is called the aisle and )Y is called
the co-aisle. The heart of a t-structure (X,Y) is X NXY. The co-heart of a co-t-structure
(X,))is XNy,

Definition 2.3.24. Let (X, )) be a t-structure or a co-t-structure, we say that (X,)) is
o left bounded, or right bounded, if T =, c; "X or T = ,,cz X", respectively,
e bounded if (X,)) is left bounded and right bounded,

e left non-degenerate, or right non-degenerate, if (), X"X = 0 or (), E"Y = 0,

respectively, and
e non-degenerate if (X,)) is left non-degenerate and right non-degenerate.

Remark 2.3.25. It is straightforward to check that if (X)) is left bounded then it is

right non-degenerate, and if it is right bounded then it is left non-degenerate.

Given X and Y additive subcategories of T, we denote

Xt ={teT|Homp(X,t) =0} and X ={teT |Homs(t,X)=0}.

The following lemma is known as the triangulated version of Wakamatsu’s Lemma, and is
useful to prove Proposition [2.3.27] which characterises torsion pairs.

Lemma 2.3.26 (Triangulated Wakamtsu’s Lemma, see for instance [33, Lemma 2.1]).
Let X be an extension-closed subcategory of T and t € T. Assume that there exists an

X-cover f: x —t, and extend it to a triangle x i> t —y — Y. Theny € X+,

Proposition 2.3.27 ([31, Proposition 2.3]). Let X and ) be additive subcategories of T .

The following statements are equivalent.
e (X,)) is a torsion pair.
o The subcategory X is extension-closed, precovering, and Y = X+.
o The subcategory Y is extension-closed, preenveloping, and X = Y.

We recall the following notion from [6].
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Definition 2.3.28. Let (X,)) be a co-t-structure in 7.
e If X is functorially finite, then (+X, X) is called its left adjacent t-structure.
e If ) is functorially finite, then (Y, Y1) is called its right adjacent t-structure.

e If X and Y are functorially finite, then we say that (X,Y) is a functorially finite

co-t-structure.

A triple (X,), Z) of subcategories of T is called torsion torsion-free triple (TTF triple
for short) if (X, ) and (Y, Z) are t-structures in 7. By Proposition [2.3.27, (X, Y, Z) is a
TTF triple if and only if ) is a functorially finite thick subcategory of 7. TTF triples, and
hence functorially finite thick subcategories, are in bijection with equivalence classes of
recollements, see for instance [42, Section 2.2], which can be regarded as “exact sequences

of triangulated categories”. We refer to [42] for more details about recollements.

2.3.6 Cluster-tilting subcategories

Cluster-tilting subcategories are “projective-minded generating sets” for a triangulated
category. Inspired by the work in [I5] for simple-minded systems, we define left cluster-
tilting and right cluster-tilting subcategories and give a characterization of cluster tilting
subcategories. Throughout this section we keep Setup and we fix an integer w > 2.
We start with the follwing definition.

Definition 2.3.29. An additive subcategory X of T is called
o weakly left w-cluster tilting if X = {t € T | Hom7 (X, %) =0 for all 1 <i <w—1},

o weakly right w-cluster tilting if X = {t € T | Hom7(¢t,X'X) = 0 forall 1 < i <
w—1},

o weakly w-cluster tilting if it is both left and right weakly w-cluster tilting,
e w-cluster tilting if it is weakly w-cluster tilting and functorially finite.

Remark 2.3.30. If 7 is w-CY, then an additive subcategory of T is (weak) left w-cluster
tilting if and only if it is (weak) right w-cluster tilting.

The following theorem connects cluster-tilting subcategories with torsion pairs.

Theorem 2.3.31 ([31, Theorem 3.1]). Let X' be a w-cluster-tilting subcategory of T. The

following statements hold.
o T=X*NX%---x XV 1X.
o (Xx-- x XX YFIY «... x XWLX) is a torsion pair for each 0 < k < w — 2.

We want to prove the proposition below, which is the w-cluster tilting version of [15]

Proposition 2.13].

Proposition 2.3.32. Let X be an additive subcategory of T. The following statements

are equivalent.
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1. The category X is w-cluster tilting.

2. The category X is such that T = X * XX #-- - XY"1X and Hom7 (X, X'X) = 0 for
each 1 <3< w-—1.

3. The category X is weakly left w-cluster tilting and precovering.
4. The category X is weakly right w-cluster tilting and preenveloping.

Before proceeding with an argument, we need some lemmas. The following is analogous
to [I5, Lemma 2.7].

Lemma 2.3.33. Let X be an additive subcategory of T such that Homy (X, X'X) = 0 for
each1 <i<w—1. Then SFX « X C X « XFX for each 1 < k < w — 2.

Proof. Let t € YFX % X, then there exists a triangle of the form Yhp, — t — 19 —>
YE+lg) with 21, 29 € X. Note that this is a split triangle beacuse Hom (X, SF1X) = 0.
Thus, t = x; @ LFz9 and there exists a triangle of the form zo — t — Yk L a9,
e t€XxXhX, O

Lemma 2.3.34. Let X be an additive subcategory of T such that Hom7 (X, X!X) = 0 for
all 1 <i<w—1. The following statements hold.

1. If X is precovering then X « XX % --- x XW72X is an extension-closed precovering

subcategory of T .

2. If X is preenveloping then X * XX x---x XY "2X is an extension-closed preenveloping

subcategory of T .

Proof. By Proposition [2.3.16| we have that X« XX - - -« ¥ 2X is an additive subcategory
of T and, by Lemma [2.3.22] it is precovering or preenveloping, if (1) or (2), respectively,
holds. Since Hom7(X,XX) = 0, X is extension-closed. Moreover, by Lemma [2.3.33] we
have that

(X DX 5 +D2X) % (X« DX %% XV 2X) C
(s X) s D(X*xX) %+« D 2( X5 X) CX*DX %% DV 2X.

Thus, we conclude that X * XX - - % 272X is extension-closed. O

Proof of Proposition [2.3.39 From Definition [2.3.29|it follows that (1) implies (3) and (4).
Moreover, by Theorem [2.3.31} (1) implies (2).

We prove that (2) implies (3) and (4). Since Hom7 (X, %'X) = 0 for each 1 <i < w — 1,
by Proposition we have that X * - X1 and X -+ ¥ 72X are additive
subcategories of 7. Moreover, Hom7(X, XX * --- x X¥71X) = 0 and Hom7 (X * --- x
YU2x YWl Y) = 0. Since T = X* XX - - -+ X~ LX | it follows that (X, T *- - -+ XV 1Y)
and (X *--- % XY 72X, ¥*~LX) are torsion pairs. By Proposition X is precovering

and Y¥~1X is preenveloping, i.e. X is functorially finite. Moreover, ¥ ~1X = (X % --- %
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Y 2X)L and X = L(BX x -+ % X¥TIX). Then X is weakly left w-cluster tilting and
weakly right w-cluster tilting. This proves that (2) implies (3) and (4). Moreover, (2)
implies (1) because (2) and (3) together imply (1).

Now we prove that (3) implies (2). By Lemma YU (X% XV T2X) = DT p
.- % 271X is precovering and closed under extensions. Since X is weakly left w-cluster
tilting, we also have that X = (Z7*H X % ...« 371X)L. Then (S H X - x 71X, X)
is a torsion pair and 7 = LV H(Z Y lx % x 7+ X) = X x -+ DV 2« X0 1x.
We conclude that (3) implies (2). The proof that (4) implies (2) is analogous. O

2.3.7 Verdier quotients

Given a triangulated category, we obtain a new triangulated category by localising with
respect to a thick subcategory. This process is called Verdier localisation and was first
defined in [48]. We describe this process following [36]. In this section we keep Setup
and we fix a thick subcategory D of T.

Let us denote by S the class of morphisms f: t; — to of 7 which extend to triangles of
the form ¢ i) to — d — Xt1 with d € D. The class S forms a multiplicative system

which is compatible with the triangulation, see [36, Section 3.1, Section 4.3].

Let f: t; = cand o: t2 — ¢ be morphisms of T with o € S. We call a left fraction a pair of
morphisms (f,0) and we denote it by t; A to. Two left fractions t; LN c1 <ty
and t; £> ey <&ty are equivalent if there exists a left fraction t; £> c3 <ty and

morphisms a: ¢; — ¢3 and B: co — c3 such that the following diagram commutes.

C1
V } g1
}CM
b Ll By,
N
C2

It is straightforward to check that this is indeed an equivalence relation, and we denote the
equivalence class of (f,o) by [f,o]. Given two equivalence classes of left fractions [t; EEN
o <& to] and [to £> ey 2 t3], we define their composition as [fa2, 02][f1, 01] = [9f1, To2],

where ¢; L5 ¢35 <~ ¢y is a left fraction such that the following diagram commutes.

.
¢ e
LN 2N
1 to t3

The existence of the left fraction (g, 7) is guaranteed by the Octahedral Axiom. Moreover,
the composition is well defined, i.e. does not depend on the choice of representatives of

the equivalence classes of left fractions.
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Definition 2.3.35. We define the Verdier quotient as the category 7 /D having as ob-
jects the same objects of 7 and as morphisms the equivalence classes of left fractions of

morphisms of 7.

Remark 2.3.36. For any f:t; — c and 0: to — ¢ with ¢ € § it is straightforward to
check that [(f,0)] = [(f,1)][(1,0)], and that [(1,0)] and [(o,1)] are isomorphisms in 7 /D.

We define the functor @Q: 7 — T /D acting as the identity on objects, and sending mor-
phisms f: t; — t2 to [t i> to & to]. Then @ makes the morphisms in S invertible, and

is universal with this property, i.e. @ is a quotient functor, see [306, Section 2.2].
The Verdier quotient 7 /D has a triangulated structure, which consists of

e a shift functor ¥: 7/D — T /D acting on objects as ¥: 7 — T, and on morphisms

as X[f, 0] = [Xf, X0] for each equivalence class of left fractions [f, o],
e triangles in 7 /D given by the image of the triangles in 7 under @, up to isomorphism.
Proposition 2.3.37 ([36, Proposition 4.6.2]). The following statements hold.

e There exists a unique triangulated structure on T /D such that Q: T — T/D is a
triangulated functor, i.e. Q is an additive functor sending triangles to triangles and

commuting with X.

e A morphism f:t; — to in T is such that Q(f) = 0 in T /D if and only if f = hg
for some g: t1 — d and h: d — to with d € D.

e An objectt € T is such that Q(t) =0 in T /D if and only if t € D.

With Proposition we prove that there exists a bijection between certain extension-
closed subcategories of 7 and extension-closed subcategories of 7 /D. This is a generali-
sation of [48, Proposition 2.3.1] for thick subcategories. We introduce some terminology.
Let Y C T and X C T/D. The essential image of U under @), and the preimage of X

under @, are respectively

QU)={xzeT/D|x=Q(u)in T /D for some u € U} and
QY X)={teT| Q) =zin T/D for some z € X}.

Proposition 2.3.38. Let T be a triangulated category and D be a thick subcategory. The

following is a bijection.

Extension-closed subcategories R Extension-closed
U CT such that D CU subcategories of T /D

U— Q)
QX)) +— X

The argument in [48] is in part not applicable with our assumptions when checking that the

maps are well defined. Therefore, we provide an argument for this statement. Before doing
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so, we have the following lemma, which is included in the argument of [48, Proposition
2.3.1]. Our assumptions are more general than those of [48], therefore we give an argument

for convenience of the reader.

Lemma 2.3.39. Let D be a thick subcategory of T and U be an extension-closed subcat-
egory of T containing D. Ift € T and u € U are such that Q(t) = Q(u) in T /D, then
tel.

Proof. Consider u € U and ¢t € T such that Q(u) = Q(t) in 7 /D. This means that there
is an isomorphism ¢ = [t NP u] in 7 /D, with o € S. Since ¢ is an isomorphism,
then f € S, see Remark We extend o and f to triangles u — ¢ — d — Yu
and 10 — t Ls ¢ — &' in T with d,d’ € D. Since U is extension-closed, and
Y Ip=DC U, we obtain that ¢ € U and then t € U. O

Proof of Proposition [2.3.38 We recall that extension-closed subcategories are assumed to
be additive, see Definition We check that the maps are well defined. To show that
the two maps are mutually inverse we can proceed as in the argument of [48, Proposition
2.3.1]. Let U be an extension-closed subcategory of 7 containing D. It is straightforward
to see that Q(U) is closed under isomorphism, 0 € Q(U), and that Q(Uf) is closed under
direct sums. Moreover, by Lemma it is straightforward to check that Q(U) is closed

under direct summands.

Now we show that Q (i) is extension-closed. Consider a triangle in 7 /D
Tl — Y — Xy — 2y (T)

with x1, ze € Q(U). Then there is a triangle a — ¢ — b — Ya in T whose image under
@ is isomorphic to the triangle (T) in 7/D. Thus, in 7/D we have the isomorphisms
Qa) = x1, Q(b) = z9 and Q(e) = y. Since x1,z2 € Q(U), we have that there exist
ur,up € U such that 1 = Q(u1) and zo = Q(u2). Then, by Lemma we have
that a,b € U. Since U is extension-closed, we obtain that e € U/ and as a consequence

y = Q(e) € QU). Thus, the map U — Q(U) is well defined.

Let X be an extension-closed subcategory of 7/D. We check that Q~1(X) is an additive
subcategory of T. It is straightforward to see that 0 € Q~1(X), Q1(X) is closed under
isomorphisms, direct sums, direct summands, and that D C Q~!(X). Now we show
that Q~1(X) is extension-closed. Consider a triangle a — ¢ — b — Ya in T with
a,b € Q71(X). Then its image under @ is a triangle Q(a) — Q(e) — Q(b) — £Q(a) in
T /D with Q(a),Q(b) € X. Since X is extension-closed, then Q)(e) € X. As a consequence
e € Q7Y(X). Hence, the map X +— Q~!(X) is well defined. O
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Chapter 3
Discrete cluster categories

Given a positive integer m and a field K, in [30] Igusa and Todorov defined a cluster
category C,, which generalises the classical cluster category C(A,) of type A, introduced
in [7] for finite-dimensional hereditary algebras. When m = 1 or m = 2, the category
Cm is equivalent to the Holm—Jgrgensen category defined in [26], or to the Liu—Paquette
category defined in [39], respectively. In this chapter we introduce the category C,,, its
properties, geometric model, and AR quiver. We also discuss the classifications of the
torsion pairs from [2I] and [22]. These results will be useful in Chapter |4 Chapter
and Chapter [6] The material presented in this chapter consists of already existing results,
except for part of Section

3.1 The oco-gon Z,,

We consider the unit circle S with anticlockwise orientation endowed with the usual
topology. Given a positive integer m, the co-gon Z,, is an infinite discrete subset of
S1 consisting of m copies of Z embedded in S! with m two-sided accumulation points,
see Figure We denote the accumulation points of Z,, by {1,...,m} = [m]. Given
p € [m] we denote by Z® all the elements of Z,, which belong to the p-th copy of Z. The
accumulation points are in cyclic order 1 < --- < m < 1. If p € [m] is an accumulation
point, we denote the successor and the predecessor of p with respect to the cyclic order
by pT and p~. We also regard [m] as a totally ordered set 1 < --- < m. This total order
induces a total order < on Z,,, U[m]. We can define intervals in Z,,. Given z,y € Z,,,U[m]

we denote
{z€eZy |z <z<y} it z <y, and
[z,y) = :
{z€Z,|z<zorz>y} otherwise.
Similarly, we can define the intervals (x,y], (z,y), and [z, y]. Since the set Z,, is discrete,

for each z € Z,, there exists a predecessor z — 1 and a successor z + 1.

When we write 2 — y for some z € Z®) | y € Z9 and p, q € [m], we mean the difference
of z and y regarded as integers, and forgetting about what copy of Z, namely Z® or Z(®

they belong to. More precisely, if we write = (z1,p) and y = (22, q) with 21, 29 € Z, then
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T — Yy = 2] — 29 is an integer.

Definition 3.1.1. A pair z = (21, x2) of elements of Z,, is called an arc if x9 > x1 + 2,
and in that case xz1 and x9 are called endpoints or coordinates of x. Given two arcs
x = (x1,22) and y = (y1,y2) of Z,,, we say that x and y cross if x1 < y1 < x2 < y2 or
y1 < x1 < ya < x2. Given p, q € [m] with p < g, we define

79 — {(:pl,xg) is an arc of Z,, | 71 € Z® and x5 € Z(q)} )

We introduce some notation which will be useful later. Given z and y both elements of
Zp with z9 > 1 + 2 or 1 > 19 + 2, we define

|;17 - | (:Ul,l'Q) if r1 < x9,
1,42 =
($2,$1) if o < 1.

2

Figure 3.1: The oco-gon Z5. The white circles denote the accumulation points.

3.2 The geometric model and AR quiver

Given the oo-gon Z,, and a field K, the category C,, was defined in [30]. This is a K-
linear, Hom-finite, Krull-Schmidt triangulated category. We denote its shift functor by
Y: Cp — Cp. Moreover, Cp, is 2-Calabi-Yau, i.e. £2 is a Serre functor. We recall some

properties of Cy,.

e There is a bijection between the isoclasses of indecomposable objects of C,;, and the
arcs of Z,,. We regard the indecomposable objects of C,, as arcs of Z,,, see [30,
Section 2.4.1].

e Given z = (z1,22) € indC,, we have that ¥z = (z1 —1, 22— 1) by [30, Lemma 2.4.3].

e Given z,y € ind Cy,, by [30, Lemma 2.4.4] we have that

 JK ifxand YLy cross,

0 otherwise.

Remark 3.2.1. We identify the indecomposable objects of C,, with the arcs of Z,,, and

the additive subcategories of C,, with sets of arcs.
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From now on all the subcategories of C,,, we refer to are assumed to be additive.
The following result describes the AR quiver of C,,, and Figure[3.2] provides an illustration.
Theorem 3.2.2 ([30, Theorem 2.4.13]). The AR quiver of Cy, consists of

o m components of type ZAoo, corresponding to the arcs of Z®P) for p € [m],

o0

. (g‘) components of type ZAY, corresponding to the arcs of 729 forp,q € [m] with
p<4q.

7(1.2)

711 \\\ /// 7(2:2)

Figure 3.2: The AR quiver of Cs.

We extend the definition of Hom-hammocks of C,,, see [20, Definition 2.1], from m =1 to

the general case m > 1. We refer to Figure for an illustration.

Definition 3.2.3. Let a = (a1, a2) € indC,,. We define

H™(a) (x1,22) € indCp, | a1 <1 < ay —2 and x2 > as} and
-

=
(a) = {(z1,22) € iIndCp, | 1 < a1 and a3 + 2 < x9 < az}.
Remark 3.2.4. For a,b € indCy,, by [30, Lemma 2.4.2] it follows that Home,, (a,b) = K

if and only if b € HT(a) U H~(X2a), or equivalently, a € HT(X72b) U H~(b).

N
s 524 a N
A
4N S A
, N L
/H™ (52a) \ L HT (@)
N
, R 7 S
4 N , N
s N R

Figure 3.3: The hammocks H*(a) and H~(X2a) for some a € ind Cs.

The following are the factorization properties of the morphisms in C,,.

Lemma 3.2.5 ([30, Lemma 2.4.2]). Let a,b,c € indCy,, f:a — b, and g: b — ¢ be

non-zero morphisms. Assume that one of the following statements holds.
1. be H"(a) and c € H*(a) N H* (D).
2. b€ H(a) and c € H—(X%a) N H~(X%b).
3. be H (X2%a) and c € H=(X%a) N HT(b).

Then gf # 0.
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Remark 3.2.6. We recall that, from [30, Lemma 2.4.11], for an object (ai,az) € ind Cop,
the irreducible morphisms of C,, are exactly the non-zero morphisms of the form (a1, ag) —

(a1,a2+1) or (a1,a2) — (a1+1, az), provided that (a1 +1, ag) is still an arc, i.e. ag > a;+3.

The lemma below will be useful in Section for defining Cy, ,, the higher-Calabi-Yau

version of C,,.

Lemma 3.2.7. Let a = (aj,a2),b = (b1,b2),c = (c1,¢c2) € indCp, be pairwise non-
isomorphic objects, and let f: a — b,g: b — ¢ be non-zero morphisms. Assume that

one of the following statements hold.
1. b€ H-(X%a) and c € H~(X%).
2. b€ H (a) and c € H"(a) N H~(X?b).
3. be H (X2%a) and c € H (a) N H*(b).

Then gf = 0.

Proof. Assume that (1) holds. If gf # 0, then ¢ € H" (a) U H~(%2a). Since H~(22b) N
H*(a) = @, we have that ¢ € H~(X?%a) N H~(X?b). Thus, H (X%a) N H~(X%b) # 2,
and as a consequence %20 € H~(X2a). Then, X%a € H*(¥?b), i.e. a € H(b). Since
a € H"(b) and c € H~ (X?%a) N H~(X?b), by Lemma g = Ba for some a: b — a and
B:a — c. We obtain that gf = Baf # 0, and then af: a — a is non-zero. Therefore, o

is a split epimorphism and a = b, giving a contradiction. We can conclude that gf = 0.

Now assume that (2) holds, when (3) holds the proof is similar. If gf # 0, then H*(a) N
H~(2%b) # @ because ¢ belongs to both. As a consequence, ¥2b € H*(a), i.e. a €
H~(%?b). Since a € H~(X%b) and ¢ € H~(¥?b) N H*(a), by Lemma g = Pa
for some a: b — a and B: a — ¢. We obtain a contradiction similarly as above. This

concludes the proof. O

3.3 Precovering subcategories

The precovering subcategories of C,,, were classified in [21], and in [4I] for the case m = 1,
in terms of converging sequences of arcs of Z,,. The following definition corresponds to
[21], Definition 0.7], but we use a different formulation which is more convenient for our
purposes. For the notation |z, x2| we refer to Section We recall that the accumulation
points of Z,, are in cyclic order, i.e. 1 <2 < -+ < m < 1, and, for each p € [m], p*

denotes the next accumulation point of p with respect to the cyclic order.

Definition 3.3.1. Let U be a subcategory of C,,. We say that U satisfies the precovering

conditions, PC for short, if it satisfies the following combinatorial conditions.

(PC1) If there exists a sequence { (7, 2%)}, € UNZPD for some p, q € [m] such that p # ¢
and the sequences {z},, and {24}, are strictly increasing, then there exist strictly
decreasing sequences {y}}, C Z¥") and {y5}, € Z@") such that {|y?,y5|}n C U.
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(PC2) If there exists a sequence {(z7,25)}, € U N ZP9 for some p,q € [m] such that
p # q" and the sequences {z7},, and {z3},, are respectively strictly decreasing and

strictly increasing, then there exist strictly decreasing sequences {y}}, € Z® and
{y5n C Z(") such that {ly? v5 e CU.

(PC?2') If there exists a sequence {(z7, 23)},, € UNZPD for some p, g € [m] such that ¢ # p™,
p # ¢, and the sequences {z'},, and {24}, are respectively strictly increasing and

strictly decreasing, then there exist strictly decreasing sequences {y}'}, C Z®") and
{95} € 29 such that {(y7,45)}n CU.

(PC3) If there exists a sequence {(z1,2%)}, C U NZPD for some p, g € [m] such that the
sequence {z4 }, is strictly increasing, then there exists a strictly decreasing sequence
{y5}n C 20" such that {|zy, y5|}n S U.

(PC3') If there exists a sequence {(27,x2)}, € UNZPD for some p, q € [m] such that p # ¢
and the sequence {z}, is strictly increasing, then there exists a strictly decreasing
sequence {y7}, C Z®") such that {(y},22)}n C U.

The conditions (PC1), (PC3), and (PC3’) correspond to condition (PC1) in [2I], Defi-
nition 0.7], and conditions (PC2), (PC2), (PC3), (PC3') correspond to (PC2) in [21],
Definition 0.7]. Figure provides an illustration of the PC conditions.

Theorem 3.3.2 ([2I, Theorem 3.1]). A subcategory of Cy, is precovering if and only if it
satisfies the PC conditions.

Figure 3.4: On the left (PC1), in the middle (PC2), on the right (PC 3).

The PC conditions were used in [2I] for classifying torsion pairs, see Section and
cluster-tilting subcategories in C,,. These correspond to some triangulations of Z,, satis-
fying certain conditions about convergence to the accumulation points. The classification
of cluster-tilting subcategories in [21] generalises those in [26] and [39] for the cases m =1

and m = 2.

3.4 Extension-closed subcategories

Extension-closed subcategories of C,,, were classified in [14, Theorem 7.2] for the case
m = 1. The precovering extension-closed subcategories of C,,, i.e. the torsion classes,
were classified in [21I, Theorem 4.7]. Here we classify the subcategories of C,, which are

just extension-closed for all m > 1.
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Recall that we identify the indecomposable objects of C,, with the arcs of Z,,.

Definition 3.4.1. Let a,b € indC,, be crossing arcs. The arcs of indC,, \ {a, b} which
connect the endpoints of @ and b are called Ptolemy arcs. We say that a subcategory U
of C,, satisfies the Ptolemy condition, PT condition for short, if it is closed under taking

Ptolemy arcs.

Figure [3.5] provides an illustration of Ptolemy arcs.

\O

Figure 3.5: The dotted arcs are the Ptolemy arcs of a and b.

Consider a non-split triangle of the form a — ¢ — b — Ya with a,b € ind(C,, and
b % Ya. The middle term e is determined by the Ptolemy arcs of a and b. More precisely

e if a; < by < ay < by then e = e1 @ ey with e = (a1,b2) and ey = (b1, a2), and
e if by < ay < by <aythen e>=e| @ el with ¢ = (b1,a1) and €, = (ba, az).

In the first case, if ag = by + 1 we interpret (b1, az) as the zero object. In the second case,
if a; = b1+ 1 we interpret (b1, a1) as the zero object, and if ag = by + 1 we interpret (b, ag)

as the zero object.

Now consider a triangle of the form a — e — b Iy S with a,bi,...,b, € indC,,
such that the objects b1, ...,b, are pairwise Hom-orthogonal, i.e. Homeg,, (b;,b;) = 0 for
each i # j, and h = (h1 ... hn ) has all non-zero entries, cf. [22, Lemma 3.2]. The middle
term e of such a triangle was computed in [22] Lemma 4.16]. Their result generalises [14],
Proposition 4.12] for the case m = 1. Now we show that computing the middle term
of a triangle of that form is enough to obtain the middle term of a triangle of the form

a— e —» b—> Ya with a € indC,,.

Lemma 3.4.2. Leta —s ¢ —3 b — Ya be a triangle in Cp, with a,by,...,b, € indC,,,
b= b, and h = (h1 ... hn ). Then there exists b’ = @
such that the objects V),..., b, € indCp, are pairwise Hom-orthogonal, b, 2 Ya for each

i1 b, a direct summand of b

i, all the entries of h' = (h} .. b},): ¥ — Xa are non-zero, and there is the following

isomorphism of triangles.

a > e > b h s Ya
Pl i |
a

Y yopp! 94 (n' 0) Ya

Proof. Without loss of generality, we can assume that hj,...,h, # 0, see [I14, Lemma

3.1]. Since the Hom-spaces are at most one dimensional, it is straightforward to check that
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h: b — Yais an add{b}-precover of Xa. Thus, by Lemma[2.3.21|there exists &', 0" € add{b}
and an isomorphism «: ' @ b’ — b such that the composition
/ ((1)) / /o« h
b —=bdb" —b—2a
is an add{b}-cover of Xa, which we denote by h': b’ — Ya. We denote hao = (n 1) : b/ @
b" — Xa. Since h': b — Xa is an add{b}-cover of Xa, there exists §: b” — b’ such that

W3 = h", and then
(h’ 0) ((1) f ) - (h' h") — ha.

As a consequence, we obtain the isomorphism of triangles in the claim. Now we show that

the object b’ and the morphism A’ satisfy the conditions of the claim.

We denote b’ = @F_, b} with ¥,,..., b, € indC,, and I’ = (B, . b, ). Since B': b — a is
a cover, it is right-miminal, and then we have that &/, ..., h} # 0. Moreover, for each ¢ # j
we have that h/ is not of the form hgﬂ for some 3: b;- — b,. Indeed, assume that there
exists B: b; — b; such that hj = h’;3. Then we define the morphism v = (7)s: @le b, —
@f:l b; as

1 ifs=1t+#1,

0 ifs=t=1,

(Vs = ) )
B ifs=jandt =1,

\ 0 otherwise.

We have that h/y = h’. Since v is not an isomorphism, we obtain a contradiction with the
fact that A’ is right minimal. Thus, in particular b, % Xa for each i. Now we can apply the
same argument of [I4, Lemma 4.6] and we obtain that Homc,, (b},b;) = 0 for each i # j.
This concludes the argument. O

From [I4, Theorem 4.1] we know that the middle terms of arbitrary triangles of C,, can
be computed iteratively when m = 1. It is straightforward to check that the same holds
for m > 2.

Let U be a subcategory of C,,, and consider a triangle « — ¢ — b — Ya in C,, with
a,b € U. From [22 Lemma 3.4] the coordinates of the indecomposable summands of e
belong to the set of coordinates of the indecomposable summands of a and b. Note that
in general this does not imply that e € Y. Now we discuss a necessary and sufficient

condition for U to be extension-closed.

Lemma 3.4.3. Let U be a subcategory of Cn,. If U is closed under extensions of the form
a— e —b— Ya with a,b € indC,,, then U is extension-closed.

Proof. We divide the proof into claims.

Claim 1. The subcategory U is closed under extensions of the form a — e — b — Ya
with a € indU and b € U.

41



Consider an extension a —3 e —3 b —+ Ya where b = D bi, a,by,...,b, € indCp,
and h = (h1 ... hn). We show by induction on n that e € Y. If n = 1 the claim follows by
assumption. If n > 2, by Lemma [3.4.2] we can further assume that by, ..., b, are pairwise
Hom-orthogonal, and that b; 2 Ya and h; # 0 for each i.

For each i € {1,...,n} we have that Homg,, (b;, ¥a) = K. Since ¥? is a Serre functor for
Cm and Y2 2 Y7, see Section and Proposition by Serre duality we have that
Home,, (77 'a, b;) = D Home,, (b;, ¥a) = K. This is equivalent to: b; € H (77 'a)UH ~ (Za)
for each i. We have the following possibilities: b; € H~(3a) for each 7, or there exists i
such that b; € H*(771a). In the first case, we rename by,...,b, in such a way that the
first coordinate of b,, is the minimum of the first coordinates of by, ...,b,. In the second
case, we rename by, ..., b, in such a way that the first coordinate of b,, is the maximum
of the first coordinates of by,...,b,. We refer to Figure for an illustration.

Figure 3.6: On the left when b; € H™ (Xa) for each i € {1,...,n}, on the right when there
exists i € {1,...,n} such that b; € H (7~ !a).

Consider the following Octahedral Axiom diagram.

e ) h Ya > De
|

1 i IJ
hd 1 g v

e —— P b Y > Ye
|
|
0 i
hd g

Note that x € U since it is the middle term of the triangle « — © — b, — ¥a and
a,b, € indU. The object x is either indecomposable or has two indecomposable direct
summands. If z is indecomposable, then e € U follows by hypothesis. Now we assume
that  has two indecomposable direct summands « = 1 @ x2. We denote b, = (by, 1, bn2).
If b, € H (Xa) then zo = (bn2,a2), and if b, € HT(771a) then x9 = (by,1,a2). In both
cases xo does not cross any arc by, ...,b,_1, see Figure We define the object b/ as
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b = @?:_11 b;. We have the following isomorphism of triangles.

g
x > e > b » Y

N P

21 Pxyg —> € Dy —— b L> Y1 B X

Consider the triangle ;1 — ¢/ — Ly Y2q. Since 77 € indU and b € U, by induction
hypothesis we obtain that ¢ € U. Moreover, since xo € indU, we have that e = ¢/®xs € U.

This concludes the argument of Claim 1.
Claim 2. The subcategory U is closed under extensions.

Consider a non-split extension a — ¢ — b — Ya in C,, with a = Eszl ai, b=@Dj_, b;
and a;,b; € indY for all ¢ € {1,...,k} and j € {1,...,n}. We proceed by induction on
k. If kK =1 then we have the statement by Claim 1. Assume that k& > 2, and consider the

following Octahedral Axiom diagram.

1
ag > Qf
|
|
<
Y 1p > s e > b
|
1l i {
|
> 1p — @f;ll a; x > b
|
|
0 |
g g

1
Eak E— Eak

Consider the triangle @2:11 a; — T — b — @;:11 Ya;. By induction hypothesis we

obtain that z € U, and then e € X from Claim 1. This concludes the argument. O

Proposition 3.4.4. Let U be a subcategory of Cn,. Then the following statements are

equivalent.
1. The subcategory U satisfies the PT condition.

2. The subcategory U is closed under extensions of the form a — e — b — Xa
where a,b € ind C,, .

3. The subcategory U is closed under extensions.

Proof. The equivalence of statements (1) and (2) follows from the computation of the
middle term of an extension having indecomposable outer terms, and the equivalence
between (2) and (3) is given by Lemma O
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3.5 Non-crossing partitions

Non-crossing partitions, introduced in [3§], are combinatorial objects used in [22] for classi-
fying t-structures in C,,,. We will also use them in Section [.7|and Section [£.8]for classifying

(co-)t-structures in the Paquette Yildirim completion of Cp,.

Let k be a positive integer. Consider the unit circle S' with anticlockwise orientation,
and a finite set of elements of S', which we label as {1,...,k} = [k], with the cyclic order
1<2<---<k<l.

Definition 3.5.1. A non-crossing partition of [k] is a partition P of [k] such that for any
i1,12, j1, j2 € [k] which are in cyclic order i1 < j1 < i2 < jo < i1, if i1,i2 € B and j1,j2 € C
for some B,C € P, then B = (. If P is a non-crossing partition, its elements are called
blocks.

The Kreweras complement, P¢, of a non-crossing partition P of [k] is obtained as follows,
see Figure for an illustration.

1. Double the elements of [k] to get the set [k¢] U [k°] = {1¢,1°,...,k®, k°} with cyclic
order 1¢ < 1° < --- <k <k < 1°

2. Define P€ as the non-crossing partition of [k¢] which consists of P.

3. Complete P¢ to a serrée (dense) non-crossing partition P¢ U P of [k¢] U [k°], see
38, p. 338].

4. Define P¢ as P° and relabel the elements of [k°] as 1,..., k.

Figure 3.7: On the left P = {{1,3,4},{2},{5,7,8},{6}} is a non-crossing partition of [8],
and P°¢ = {{1,2},{3},{4,8},{5,6},{7}} on the right is its Kreweras complement.

Now we introduce some notation which will be useful in Section Given i € [k], by
it and i~ we denote respectively the successor and predecessor element of [k] with respect
to the cyclic order. Now consider a non-crossing partition P of [k] and a block B € P.
We denote BT = {it € [k] | i € B} and B~ = {i~ € [k] | i € B}. Then we define the
non-crossing partitions Pt = {BT | B € P} and P~ = {B~ | B € P} of [k]. Note that
PT consists of an anticlockwise rotation of P, and P~ of a clockwise rotation of P. It is
straightforward to check that (P€)¢, which from now on we denote by P, coincides with
Pt. We define “P = (P°)T, so that we have ¢(P¢) =P = (“P)°.
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3.6 Torsion pairs and t-structures

The torsion pairs in C,, were classified in [21I], but also [41] and [11] for the cases m =1

and m = 2 respectively.

Theorem 3.6.1 ([2I, Theorem 4.7]). Let (U, V) be a pair of subcategories in Cy,. Then
(U, V) is a torsion pair in Cp, if and only if U satisfies the PC conditions, the PT condition,
and V = U+,

The t-structures in C,, were classified in [22], and in [41] and [11] for the cases m =1 and
m = 2 respectively. Now we introduce the combinatorial objects used in [22, Section 4]
for classifying the aisles of the t-structures in C,,,. Let k be a positive integer and consider

the oo-gon Zj whose set of accumulation points is [k].

Definition 3.6.2 ([22, Definition 4.5]). A decorated non-crossing partition of [k] is a pair
(P, X) given by a non-crossing partition P of [k] and an k-tuple X = (z,),c[) of elements
of Zi U [k], where for each p € [k]

p.p™) if {p} € P,
zp € § (p,pT] if p,pT € B for some block B € P,

(p,pT) otherwise.

The above definition will be applied to the cases k = m and k = 2m. Figure provides

an example of decorated non-crossing partition.

1

Ty —O— 1:
(P, X)

Figure 3.8: The decorated non-crossing partition (P, X) of [8], where P is as in Figure
B.7

From a decorated non-crossing partition we can obtain the aisle of a t-structure, and
conversely; we refer to Figure for an illustration. Let (P, X) be a decorated non-

crossing partition of [m], we define
Up, x) = add |_| (u1,uz) € indCpy|ug, ug € U (p, xp)
BeP peEB

The subcategory U(p x) is the aisle of a t-structure, see [22, Proposition 4.8]. Now let U
be the aisle of a t-structure in C,,. The relation ~ on the set [m] is defined as follows:

for any p, ¢ € [m] we have that p ~y; ¢ if and only if p = ¢ or there exists an arc of U with
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an endpoint in Z® and the other in Z(@. We define Py to be the partition of [m] given

by the equivalence classes of ~;. For each p € [m] we define
x, = sup{z € Z® | there exists an arc of & with an endpoint equal to z}.

We denote by Xy, the m-tuple Xy = (x)pefm)- Then (Py, Xy) is a decorated non-crossing

partition of [m], see [22] Lemma 4.12]. These assignments determine a bijection.

Theorem 3.6.3 ([22], Theorem 4.6]). The following is a bijection.

{ Decorated non-crossing partitions of [m| } <— { Aisles of t-structures in C,, }
(P, X) — Up x)
(Pz,{, Xu) —U

Given the aisle of a t-structure, we can compute its co-aisle via the Kreweras complement
of the associated decorated non-crossing partition, see Figure [3.9] for an example. We now
introduce some notation. Let (P, X) be a decorated non-crossing partition of [m] with
X = (%p)pem)- By (P, X)¢ we denote the pair (Q,Y) where Q@ = P¢ is the Kreweras

complement of P, and Y is the m-tuple Y = (2, — 1),¢n)- Now we define

V(Q’y) = add I_I (v1,v2) € ind Cp, |v1,v9 € U [yp,p+)
BeQ pEB

Corollary 3.6.4 ([22, Corollary 4.14]). Let (U,V) be a t-structure in Cp,, (P, X) be the
decorated non-crossing partition of [m| associated to U with X = (zp)peim), and (Q,Y) =
(P, X)°. ThenV =V gy)-

Figure 3.9: The t-structure (U, V) in Cg associated to the decorated non-crossing partition
(P, X), where P is as in Figure

In [22] Section 4], the authors classified important classes of t-structures in Cp,.

Proposition 3.6.5 ([22, Corollary 4.15, Corollary 4.19, Proposition 4.12, Corollary 4.22]).
Let (U, V) be a t-structure in Cp, and consider its associated decorated non-crossing parti-
tion (P, X) of [m] with X = (xp)pem]- The following statements hold.

e The heart of (U,V) is given by U N XV = add{(zp — 2,2p) | zp € Z}.
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e The t-structure (U, V) is left-bounded, or right-bounded, if and only if P = {1,...,m},
or P ={{1},...,{m}} respectively.

o If m > 2, there are no bounded t-structures in Cy,.

e The t-structure (U, V) is left non-degenerate, or right non-degenerate, if and only if

xp #pt, or xy # p respectively, for each p € [m].
e The t-structure (U, V) is non-degenerate if and only if x, € Z,, for each p € [m].

The thick subcategories of C,, were classified in [22] Section 3] via combinatorial objects
similar to decorated non-crossing partitions, namely the non-exhaustive non-crossing par-
titions, see [22], Definition 3.5].

Remark 3.6.6. From [49, Proposition 4.6] we know that in the category C,, the only co-
t-structures are (C,,,0) and (0,C,,). As a consequence, there exist only trivial precovering
or preenveloping, and thus functorially finite, thick subcategories of C,,. Since functorially
finite thick subcategories are in bijection with TTF triples and with recollements, see
Section we observe that Cy, is triangulated simple (this term is inspired by the term
derived simple of [1]).
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Chapter 4

Completion of discrete cluster

categories

The Paquette-Yildirnm completion C,, of C,, was defined in [43] by taking the Verdier
quotient of Co,, with respect to a specific thick subcategory. The completion was first
defined by Fisher in [19] for the case m = 1, by closing the category C; under homotopy
colimits. In [3] the authors proved that the category C; is also equivalent to a stable
Grassmannian category of infinite rank. In [I7] was defined another completion of C,,,
namely the Neeman completion. In this chapter we introduce the definition and basic
properties of C,,,. After discussing its quiver and factorization properties of its morphisms,
we classify the precovering, preenveloping, and extension-closed subcategories. Then we
give a classification of torsion pairs, t-structures, co-t-structures, and recollements of C,,.
To do so, we use combinatorial objects analogous to decorated non-crossing partitions,
used in [22] for classifying t-structures in C,,. Finally, we prove that there are bijections

between the functorially finite co-t-structures in C,, and the t-structures in C,,.

4.1 The oco-gons 2, and Z,,

We recall that in Section [3.1] we defined the co-gon Z,,,. From Z,, we define another co-gon
Z.m, which will be useful to describe the geometric model of C,,,. We start by taking an
intermediate step and considering the co-gon Z,,,. We re-label the accumulation points
of Z9,, as 1',1,...,m/, m, see Figure The set of accumulation points [m/] U [m] has
cyclicorder 1’ <1 < ---<m/ <m <1 and a total order 1’ < 1 < --- < m/ < m, which
induces a total order on Zs,,. The notions of interval, successor, predecessor, arc, are the
same as for the set Z,,. On Z,,, we define an equivalence relation ~ as follows. For each

x,y € Zopy we have that
&~y if and only if 2 = y or x,y € ZP) for some p € [m'].

Consider z € Z,,, we sometimes denote the equivalence class of z by z. If z € Z®

for some p € [m/], we identify T = p with an abuse of notation. We define the set
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Zm = Zom/ ~ and we observe that Z,, can be regarded as the set Z,,, U [m/]. The total
order on Zs,, induces a total order on Z,,. Given a point z € Z,, = Z,, U [m/], we define

the successor z + 1 of z as

the successor of z in Z,, if z € Z,,,
z+1=
z if z € [m/].

We can define z — 1 analogously. The notions of arc of Z,, and of crossing arcs are the
same of those for Z,,, see Definition Given p,q € [m'] U [m] we define the following

sets

Z®) if p € [m],

{p} ifpem]

1 v v
( ) 1 { } 2 { )
2 2 9
Figure 4.1: On the left the co-gon Z, in the centre Z4, and on the right Z5. The black
circles denote the accumulation points of Zs.

c® = and CP0) = {(ml,xg) arc of Zy, | 21 € CP 2y € C(Q)}.

4.2 The geometric model

The completion C,,, of C,,, was defined in [43], we recall its definition and basic properties.
Consider the co-gon Zs,, defined in Section and the associated category Con,. We
define the subcategory D of Co,, as

D=addq (] zo?

pE[m’]

We recall that Z®P) denotes the set of arcs of Cam having both endpoints in Z®), see
Section It is straightforward to check that D is a thick subcategory of Cop,.

The Paquette—Yildirim completion, Cy,, of Cp, is defined as the Verdier quotient Ca, /D,
and is a K-linear, Hom-finite, Krull-Schmidt triangulated category, see [43] Section 3] for
more details. We denote the quotient functor as m: Cop, — Com/D = Cp, and the shift
functor by ¥: C,,, — Cn, as for the shift functor of C,,. We refer to Section for some

background about Verdier quotients.

We recall the following properties of C,,.
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e The isoclasses of indecomposable objects of C,, are in bijection with the arcs of Z,,,
see [43, Corollary 3.11].

e For any x = (21, 22) € ind Cay, \ ind D the object mx € C,, is indecomposable by [43)],

Proposition 3.10] and can be regarded as the arc (Z1,T2) of Z,,.

e Let € indC,,, then there exists 2/ € indCs,, such that w2’ = z. Indeed, if
x = (x1,22) with z1,29 € Z,,, we can take z,25 € Zoy, such that T} = z; and

Th = 9, we define 2’ = (2, 24) € ind Cop,.
e Given z = (71, 22) € indC,, we have that Yo = (z1 — 1,22 — 1).

e The Hom-spaces of C,,, between indecomposable objects are at most one-dimensional.

More precisely, we have the following proposition.

Proposition 4.2.1 ([43, Proposition 3.14]). Let x,y € indC,,. Then Homg (z,%y) 2K
if and only if one of the following statements holds.

o The arcs x and y cross.

e The arcs x and y share exactly one endpoint z € [m'], and we can reach y by rotating

x in the anticlockwise direction about z.
e The arcs x and y share both endpoints z1, zo € [m/].
Otherwise Homg (z,¥y) = 0.

Remark 4.2.2. We identify the indecomposable objects of C,, with the arcs of Z,,, and

the additive subcategories of C,, with sets of arcs.

From now on any subcategory of C,, we refer to is assumed to be additive.

4.3 The quiver of C,,

In this section we describe the quiver of C,, having as vertices the isoclasses of indecom-
posable objects of C,, and as arrows the irreducible morphisms between them. We start by
arranging the indecomposable objects of C,, into a coordinate system, then we introduce
the Hom-hammocks and we prove the factorization properties for the morphisms. Finally,
we describe the irreducible morphisms and we prove that the coordinate system precisely

determines the quiver of C,,.

4.3.1 The coordinate system

We can arrange the isoclasses of the indecomposable objects of C,, into a coordinate system

having
e m components of type ZAs, corresponding to the arcs of C®P) for p € [m],

. (T;L) components of type ZAZ, corresponding to the arcs of C®:9) for p,q € [m] with
p<g,
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e (") components of type Aj, corresponding to the arcs of Cc®9) for p,q € [m/] with
p <gq,

e m? components of type A, corresponding to the arcs of C®% for p,q € [m/] U [m]

such that either p € [m/], ¢ € [m], and p < q, or p € [m], ¢ € [m/], and p < q.

Figure illustrates the coordinate system. With Proposition 4.3.8] we describe the

irreducible morphisms of C,,, and thus show that the above describes the AR quiver of C,,.

Figure 4.2: The AR quiver of Cs, cf. Figure

4.3.2 Hom-hammocks

We define the Hom-hammocks for the category C,, analogously to C,,, cf. Definition
Figure [£.4] provides an illustration.

Definition 4.3.1. Let a = (a3, a3) € indCp,, and let p, ¢ € [m'] U [m] such that a € C®9),
We define the Hom-hammocks H (a) and H (a) as follows.

FJF( ) {(z1,22) €indCp | a1 <21 < ag—2 and 29 > ag}  if g € [m)],
a =
{(x1,72) €indCppy | a1 < 71 < ag and z2 > as} if g € [m/].

/

{

(1,22) €indCpp | I/ <21 <ay and a1 +2 < 23 < az}  ifp,q € [m],

_ {(w1,22) €indCpy | I/ <21 <ayand a1 +2 < 23 < az} if p € [m] and q € [n],
( )
( )

{
{

71,m2) €indCppy | 1/ < 21 < a1 and a1 < 23 < as} if p € [m/] and ¢ € [m],

x1,m2) €indCppy | 1 < 21 < a1 and a1 < w3 < as} if p,q € [m/].

The following fact follows from Proposition

Proposition 4.3.2. Let a,b € indC,,. Then Homg (a,b) =K if and only if b € FJF(CL) U
H (X2a).

Since C,, is not 2-Calabi-Yau, for a,b € indC,, in general b € ﬁ+(a) UH (X%a) is not
equivalent to a € F+(E*2b) UH (b). Therefore, we also define the reverse Hom-hammocks
T and T, for which b€ H (a)UH (£%a) if and only if a € 7 (S726) UT (b).

Definition 4.3.3. Let a € indC,,, and let p, g € [m/]U[m] such that a € C»9. We define
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the reverse Hom-hammocks T+(a) and I (a) as follows.

,

{(x1,72) €indCp, | a1 < 21 < az —2 and 2 > as} if p,q € [m],
€indCp, | a1 < 21 < ag and x9 > as} if p € [m] and ¢ € [m/],

€indCp | a1 <1 <ag—2and 29 > ay} if p € [m/] and q € [m],

(
7+ (CL) _ (
(
(

)
)
)
r1,22) € indCppy | a1 < 21 < ag and x9 > as} if p,q € [m].

T (a) = {(x1,72) €indCpp, | 1" <21 <ajand a; +2 < a9 < ap} if p € [m],
{(z1,22) €indCppy | " <21 < ay and a1 < 22 < ag} if p € [m/].

Note that in general H (a) # I (a) and H (a) # I (a). The following fact follows from

Proposition [£.2.7]

Proposition 4.3.4. Let a,b € indC,,. Then Homgm(a, b) = K if and only if a €
T (="20)uT (b).

4.3.3 Factorization properties

Here we study the factorization properties of the morphisms of C,,. We say that a mor-
phism f:a — b in C,, factors through an object ¢ € ind Cy, if there exist g: a — ¢ and
h: d — ¢ such that f = hg. We say that a morphism f: a — b in Cp, factors through D if
it factors through some d € ind D.

Lemma 4.3.5. Let a,b € indC,, be such that Homg (a,b) = K, and let a’ € indC,y, be

such that ma' = a. The following statements hold.

1. Ifb e FJr(a), then there exists V' € ind Cayy, such that b/ = b, b’ € H* (d), and any

non-zero morphism a’ — b in Cay,, does not factor through D.

2. Ifb € H (X%a), then there exists b € ind Cay, such that 7t/ = b,V € H-(X2%d'), and

any non-zero morphism f': a’ — b in Cay, does not factor through D.

Proof. We show statement (1), statement (2) is analogous. Assume that a = (a1,a2) €
CP9) with p € [m] and q € [m/], the other cases are similar. We write a/ = (a}, ab) € ZP9),
Since b = (b1, be) € ﬁ+(a), we have that a1 < by < ag and by > as, see Figure

It is straightforward to check that there exists b} such that b, = b; and a) <V <gq, and
there exists b, such that by = by and b}, > ab. Therefore, b € H*(a’) and, since b, ¢ Z(9,
any non-zero morphism a’ — o’ does not factor through D, see Figure O

The following lemma is dual to the lemma above, and will be useful for proving Lemma
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Lemma 4.3.6. Let a,b € indC,, be such that Homg (b,a) = K, and let a’ € indCy, be

such that ma' = a. The following statements hold.
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1/

c()

§'m Z2m

Figure 4.3: The element b; belongs to the blue interval of Z,,, and the element by belongs
— =/

to the red interval of Z,,. We can find b} such that b; = b; belonging to the blue interval

of Zo,. The same holds for b/, in the red interval of Zg,,.

1. If b€ I (a), then there exists b’ € ind Cay, such that wb' = b, b’ € H™ ('), and any

non-zero morphism b — a’ in Cop, does not factor through D.

2. Ifb e T+(Z_2a), then there exists ' € ind Cay, such that w0’ = b, b’ € HY (X 2d'),

and any non-zero morphism f': b — a’ in Cop, does not factor through D.
Now we have the factorization properties of C,,, cf. Lemma

Proposition 4.3.7. Let a,b,c € indC,,. Assume that one of the following statements
holds.

1. be F+(a) and c € F+(a) ﬂﬁ+(b).
2. be F+(a) andc€ H (X%a)NH (%2b).
3. beH (X2a) and c€ H (X2a)NH (b).

Then any morphism a — ¢ in C,y, factors through b.

Proof. We prove statement (1), statements (2) and (3) are analogous. Fix o’ € indCay,
such that ma’ = a. Since b € F+(a), by Lemma m there exists & € indCayy, such
that 7t/ = b, ¥’ € H"(a'), and any non-zero morphism a’ — b does not factor through
D. Fix such ¥, since ¢ € F+(b), then there exists ¢ € indCy,, such that ¢ = ¢,
¢ € H (), and any non-zero morphism & — ¢ does not factor through D. We show
that ¢ € HY(a') N HT (V).

We denote a = (a1,a2), a = (a},d)), ¢ = (c1,¢2), and ¢ = (c},c,). Assume that
d ¢ H"(d), then ¢| > af — 1. Tt is straightforward to check that as a consequence
¢1 > as—1. Thenc & H (a) and we have a contradiction. Therefore ¢ € H*(a/)NH™* ().
Now, if there exists a non-zero morphism f’: ' — ¢ which factors through D, then
dy, ¢ € Z\9 | see Figure This implies that ¢; = ¢ = ay, and then ¢ ¢ H ' (a) giving a

contradiction. Then any non-zero morphism f’: a’ — ¢’ does not factor through D.
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Figure 4.4: Illustration of Lemma m The darker area in H*(a') or in H*(X2d'), if
present, denotes the objects ¥’ € HT(a') U H~(X2a’) such that any non-zero morphism
a’ — b factors through D. Whenever the darker area is not present there are no such
objects in H*(a') U H™ (X%d").

Since v/ € H*(d') and ¢ € H"(a') N HT(¥), by Lemma there exist h': a’ — ¥
and ¢': b — ¢ such that f' = ¢/, and then ©f' = 7w(¢')w(h'). Since f' does not
factor through D, we have that mf’ # 0. Now consider a non-zero morphism f: a — ¢
in C,,. Since Homg (a,c) = K, we have that f = Arf for some A € K, and then
f=Xrf" = Xr(¢g")m(h'). This concludes the argument. O

4.3.4 Irreducible morphisms

In this section we describe the irreducible morphisms of C,,. From Section we already
know that the isoclasses of indecomposable objects of C,, are in bijection with the arcs of

Z,, and that they can be arranged in a coordinate system.

Proposition 4.3.8. Let a = (a1,az),b = (b1, bs) € indC,,. Assume that a,b € CP9 for
some p,q € [m'| U [m| and that one of the following conditions holds.

1. pe[m'], g € [m] and (b1,b2) = (a1,a2 + 1).
2. pe[m], g €[m'] and (by,b2) = (a1 + 1, az).
3. p.q € [m] and (b1,b2) = (a1, a2 + 1) or (b1,b2) = (a1 + 1,a2).

Then any non-zero morphism a — b is irreducible. Moreover, there are no other irreducible

morphisms in Cp, between indecomposable objects.
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Proof. First we show that if any of the conditions (1), (2) and (3) holds, then any non-zero
morphism f: a — b is irreducible. Assume that condition (1) holds, for the other cases
we can proceed analogously. Consider a non-zero morphism f: a — b and note that, since
(a1,a2 + 1) 2 (a1,a2), f is not a split mono nor a split epi. Assume that f = hg with
g: a — cand h: ¢ — b for some object ¢ € C,,. Since the Hom-spaces are one dimensional,
we can assume that ¢ € indC,,,. We show that g is a split mono or h is a split epi. Note
that
ce (F* (a) uﬁ‘(z%)) N (T‘(b) uTt (z—%)) .

Assume that ¢ % a and ¢ 2 b, then ¢g: a — ¢ factors as g = [f with [: b — ¢, see Figure
From the fact that 0 # f = hg = hlf, it follows that hl: b — b is non-zero and

hl = A1y for some A € K*. This implies that b = ¢, which gives a contradiction with our

assumption. We conclude that ¢ 2 a or ¢ 2 b, i.e. f: a — b is irreducible.

1 1 2/ 2 3 3 4’ 4

Figure 4.5: The object ¢ is isomorphic to a or b, or belongs to the grey area.

Now, consider a = (a1,as),b = (by,bs) € indC,, and a non-zero morphism f: a — b.
We show that if f is irreducible then it has to be of the form listed in the statement.
Let p,q € [m'] U [m] be such that a € CP9. Assume that p € [m/] and ¢ € [m], the
other cases are analogous. Note that if bs # as then, from Proposition f factors
through the irreducible morphism a — (a1,a2 + 1), and then f is not irreducible unless
(b1,b2) = (a1,a2+1). If by = a9, then consider the object ¢ = (be — 1, az) and the non-zero
morphisms g: a — ¢ and h: ¢ — b. From Proposition [4.3.7] we have that f = hg, and then
f is not irreducible. We can conclude that if f is irreducible then (b1, b2) = (a1, a2+1). O

4.4 Precovering and preenveloping subcategories

In this section we classify the precovering and preenveloping subcategories of C,, using
arc combinatorics. We also relate the precovering or preenveloping subcategories in C,, to
their preimages in Co,, under the localisation functor m: Cop, — Cpn. In [43] the authors
classified the functorially finite weak cluster-tilting subcategories of C,,, i.e. the cluster-
tilting subcategories, generalising [19] for the case m = 1. After endowing C,, with a
specific extriangulated structure, the cluster-tilting subcategories were also classified in
[10] in terms of a larger class of triangulations of Z,,. Here we classify subcategories of

C,, which are just precovering or preenveloping.
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4.4.1 Precovering subcategories of C,,

Now we classify the precovering subcategories of C,,. Our approach is to relate the precov-

ering subcategories of C,, to some subcategories of Csy,,, which are “almost precovering”.

To do so, we need to introduce an auxiliary subcategory of Co,,. Fix 2° € Z. For each

p € [m/] we denote by zg € Zom the copy of z° belonging to Z®).

Definition 4.4.1. We define the subcategory A of Co,, as

A = add < (a1,a2) € indCopp|ay, az € U (p, zg+]

pelm]
Figure [4.6] illustrates the subcategory A.
4 N
4! s N
ZU/ 7/ ° ’
3 < /\/ N
NN
2 z/\ \/\/ N o \>
210 /\/ \// \/ >/ \)‘/ A
1 2, N N e \\// h :
o s\ 7N /\\ ’ R 2 S0 s //\
0 . > .0 0 .0
1 2/ 3/ 4/
vy 2y 3 ¥y

Figure 4.6: The category \A.

Now we define the completed versions of the PC conditions, cf. Definition [3.3.T

Definition 4.4.2. Let X’ be a subcategory of C,,. We say that X satisfies the completed

precovering conditions, PC for short, if it satisfies the following combinatorial conditions.

(PC)

(PC2)

(PC2)

If there exists a sequence {(z7,25)}, € & N C®9 for some p,q € [m] such that
p # q and the sequences {2}, and {23}, are strictly increasing, then [p*,¢"| € X.

If there exists a sequence {(z7,25)}, € X N CP9 for some p,q € [m] and the se-
quences {z7}, and {24}, are respectively strictly decreasing and strictly increasing,
then there exists a strictly decreasing sequence {y}}, € C (P) such that {ly}, gt} C
X.

If there exists a sequence {(z7,z%)}, € X N C®P9 for some p,q € [m] such that
p # ¢, and the sequences {z7}, and {z}},, are respectively strictly increasing and
strictly decreasing, then there exists a strictly decreasing sequence {y5}, C c@
such that {(p*,y5)}n C X.

If there exists a sequence {(z1,})}n € XNCPD for some p € [m/]U[m] and q € [m]
such that p # ¢* and the sequence {z%},, is strictly increasing, then |z1,¢"| € X.

If there exists a sequence {(z7,z2)}n, € XNCPD for some p € [m] and ¢ € [m']U[m]
such that p # q, ¢ # p*, and the sequence {7 },, is strictly increasing, then (p™, z3) €
X.

o7



Figure illustrates some PC conditions.

Figure 4.7: On the left (PC1), in the middle (PC2), and on the right (PC3).

The main result of this section is the following.
Theorem 4.4.3. Let X be a subcategory of Cr,. The following statements are equivalent.
1. X is precovering in C,.
2. 11X N A is precovering in Cop,.
3. X satisfies the PC conditions.
The following lemmas will be useful to prove the theorem above.
Lemma 4.4.4. The following statements hold.
1. The category A is the aisle of a t-structure in Cop,.

2. For each x € ind Co,, there exists an A-cover a — x of x such that ma = 7x and a

1s indecomposable.

Proof. Statement (1) follows from Theorem As an alternative, from Proposition
it is enough to check that A is suspended and precovering. It is straightforward to
check that A satisfies the PC conditions, therefore, by Theorem [3.3.2] A is precovering. For
showing that A C A, consider a = (a1, az) € ind A, then by Definition a1—1,a0—1 €
Upe[m] (p, zg+ -1] C Upe[m] (p, zg+]. As a consequence, Ya = (a1 — 1,a3 — 1) € ind A. Now
we prove that A is extension-closed. Let a —» e — b — Ya be a triangle of Cy,, with
a,b € A. Then all the endpoints of the indecomposable summands of a and b belong to the
set (Uepm (Ps zg+]. Therefore, by [22 Lemma 3.4], all the endpoints of the indecomposable

summands of e belong to the same set, and it follows that e € A.

Now we prove statement (2). Let x = (x1,22) € indCay, by Lemma x has an
A-cover a — x. We show that a € ind A and that ma = wx. Let p,q € [m/] U [m] such
that € ZP9 and assume that p € [m/] and ¢ € [m], the other cases are analogous. If
x1 € (p, zg] then 2 € ind A and 1,: x — = is an A-cover of z. If z1 ¢ (p, zg] then let
a = 2 ,x2) € ind Cyy,. We have that @’ € ind A. There exists a non-zero morphism a’ — z
and it is straightforward to check that it is an A-precover, see Figure Moreover a’ — x

is right-mimimal and therefore an A-cover. Since covers are unique up to isomorphism, we
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Figure 4.8: Illustration of the argument of statement (2) of Lemma [4.4.4]

have that a 2 a’. We also have that ma = 7a’ = (29,

the argument. 0

To) = (T1,T2) = wz. This concludes

Consider a, b € ind C,, such that Homg (b,a) = K. We recall, from Lemma that we
can fix @’ € ind Cayy, such that 7(a’) = a, and then there exists b’ € ind Cay, (which depends
on the choice of a’) such that (b') = b, Homg,, (V/,a’) 2 K, and any non-zero morphism

b — a’ does not factor through D.

Lemma 4.4.5. Let a,b € indC,, be such that Homgm(b, a) 2K, and let @’ € ind Copy, be
such that m(a') = a. Let b € ind Coy, be such that w(V') =2 b, Homg (V,a’) 2 K, and any
non-zero morphism V' — a' does not factor through D. Let " — V' be the A-cover of V.

Then Homg,,, (b",a") = K and any non-zero morphism b — o’ does not factor through D.

Proof. By Lemma such b exists. If b’ € A then b = b’ and we have the statement.
Assume that V' ¢ A and let p,q € [m/] U [m] be such that v/ = (¥, }) € ZP9). Consider
the case p € [m/] and ¢ € [m], the other cases are analogous. Since V' ¢ A we have that
Vi & (p, 2], ie. by € [z) +1,pt). From the argument of Lemma b = (2),bh). We
have that ' € HT(b') U H~(X2b'), we show that o’ € H(b") U H~(X?").

If o € HY (V) then b) < af < by —2 and ab > bh. Since bj > 2], then o’ € HT(V").
Now, if a’ € H™(X?V) then a} < V) —2 and V] < ah < by — 2. Assume that a] £ z) — 2,
then b} — 2 < af < 29 — 1. In particular, a} € Z® and any non-zero morphism b — a’
factors through D giving a contradiction, see Figure Therefore a) < zg — 2. Moreover,
since b} > 20, from b} < ah < by — 2 we also have that z) < a5 < b — 2 and obtain that
a' € H-(X%b"). We can conclude that Home, (b, a’) = K.

We show that any non-zero morphism b’ — o’ does not factor through D. If this is not
the case, then o’ € H~(X20") and @} € Z(®). As a consequence, Homg (b,a) = 0 giving
a contradiction. We obtain that any non-zero morphism b’ — a’ does not factor through

D, and this concludes the argument. O

Lemma 4.4.6. Let X be a subcategory of Cp,. The subcategory X satisfies the PC condi-
tions if and only if 71X N A satisfies the PC conditions.

Proof. We show that X satisfies (PC1) if and only if 71X N A satisfies (PC 1), we refer
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to Figure for an illustration. Assume that X satisfies (PC1) and that there exists a
sequence {(z7,2%)}, € ZP9 N (771X N A) for some p,q € [m']U[m] such that p # ¢ with
{21}, and {x}}, strictly increasing sequences. Note that p,q ¢ [m/'], otherwise for n big
enough we have {(z,2%5)}, € A. For each n we define mz" = y" = (y}',y4), note that
{y7 }n and {y} },, are still strictly increasing sequences, and consider the sequence {y"},, C
X NCP9, Since X satisfies (PC1), then |pT,¢*| € X and 7~ X contains any arc of Cap,
having one endpoint in Z®") and the other in Z@"). In particular, there exist strictly
decreasing sequences {27}, C Z®") and {23}, C Z") such that {|27, 25|}, C 71X N A.
This proves that 7—1X N A satisfies (PC1).

Now assume that 71X’ N A satisfies (PC 1) and that there exists a sequence {(x7, 25)}, C
X NCP9 for some p,q € [m] such that p # ¢, and {27}, and {x}},, are strictly increasing
sequences. For each n there exists y" = (y7,y%) € ind7m1X N A such that my" = 2.
Thus, there exists a sequence {|y},y5[}n € (771X N A) NC®9) such that {y}}, and {y5},
are stricly increasing sequences. Since 71X N A satisfies (PC 1), then there exist strictly
decreasing sequences {27}, C Z®") and {z5},, C Z") such that {|22, 25|}, C 771X N A.

As a consequence we have that [p*, ¢*| € X. This proves that X satisfies (PC1).

It is straightforward to check that X satisfies (PC3) and (PC3’) if and only if 771X N A
satisfies (PC3) and (PC3'). Moreover, if X satisfies (PC2), (PC2'), (PC3), and (PC3)
then 71 XNA satisfies (PC2) and (PC2'). Finally, if 7~ !XNA satisfies (PC2) and (PC2')
then X satisfies (PC2) and (PC2’). We conclude that X satisfies the PC conditions if and
only if 771X N A satisfies the PC conditions. O

3

Figure 4.9: Tllustration of the argument of Lemma

Proposition 4.4.7. Let X be a subcategory of Cp,. If 771X N A is a precovering subcat-

egory of Com then X is a precovering subcategory of Cpp,.
Proof. From Remark [2.3.20]it is enough to check that X’ is precovering at the level of the

60



indecomposable objects. Consider a € indC,,, then there exists a’ € ind Ca,, such that
ma’ = a, and there exists f: x — o’ a 771X N A-precover of a’. Consider 7f: 1z — a, we
show that 7 f satisfies the condition of Remark [2.3.20] First assume that f does not factor
through D. Consider b € ind X and ¢g: b — a in C,,. Without loss of generality we can
assume that g # 0. From Lemma and Lemma there exists b’ € ind7~!AXNA
such that w0’ = b and there exists a non-zero morphism ¢': o — a’ in Cs,, which does not
factor through D. Since the Hom-spaces in C,, are at most one dimensional, we have that
g = Mg’ for some \ € K*. Moreover, since f: x — a’ is a 7' X N A-precover of a’, there
exists h: b — x in Cyyy, such that fh = g’. We obtain that Ar(f)n(h) = n(fh) = g in Cp,.

This proves that wf: mx — a is an X-precover of a.

Now we consider the case when f factors through D. We show that Homgm(b7 a) =0 for
all b € ind X. Assume that there exists a non-zero morphism g: b — a in C,, for some
b € ind X, then as above there exists b’ € ind7'X N A such that 70’ = b and there
exists a non-zero morphism ¢': o — a’ in Cy,, which does not factor through D. Since
f:x — a' is a 7 X N A-precover of a/, there exists h: b’ — x in Co,, such that fh = ¢'.
Since f factors through D, we have that ¢’ factors through D, giving a contradiction. We
can conclude that if f factors through D then Homg (b,a) = 0 for all b € indX. As a

consequence, 7 f = 0 is an A'-precover of a. O

The following proposition is the analogue of [21, Proposition 3.7] in C,, and its proof is

similar.

Proposition 4.4.8. Let X be a subcategory of Cp,. If X is a precovering subcategory then
it satisfies the PC conditions.

Proof. Assume that X is a precovering subcategory of C,,, we show that it satisfies (PC1).
Assume that there is a sequence {2" = (z7,2%)}, C indX N CP9 for some p,q € [m]
with p # ¢ such that {z7}, and {z}}, are strictly increasing sequences. We show that
a = |pt,q"| € indX. Consider (fi = fi):y1 D - ® yp — a an X-precover of a with
Y1,---, Yk € ind X. Note that Homg (z",a) =2 K for each n. Fix n, and consider a non-
zero morphism ¢": " — a. Then there exists h" = (b ~ h2)T 2" — y; @ -+ @ yp, such
that fh™ = ¢g". Then, for each n there exists | € {1,...,k} such that ¢g" factors through
Ji.

There exists [ € {1,...,k} such that ¢g" factors through f; for infinitely many n € Z.
Indeed, if for each [ only finitely many of the ¢” factor through f;, then there are only
finitely many ¢"’s and this contradicts the fact that the sequence {z"},, is infinite. Now fix
an [ such that ¢g" factors through f; for infinitely many n € Z. Without loss of generality
we can assume that for each n € Z the morphism ¢" factors through f;. Indeed, if this
is not the case, we can extract an infinite subsequence of {z"},, such that all ¢": 2™ — a
satisfy that property. From now on we denote the object y; as y, the morphism f;: y; — a
as f:y — a, and we denote by h"™: ™ — y the morphism such that fh" = g".
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Since Homg (y,a) & K and Homg (2",y) =K for all n € Z, we have that

y € (ﬂ T (2™ UH(E%H)> N (T(a) uT*(z*za)) .

nel

We refer to Figure for an illustration.

Iy 1 2/ 2 3 3 4’ 4 1 1 2/

Figure 4.10: On the left the argument for (PC1), on the right for (PC2). The grey areas
represent where the object y belongs.

We show that y = a. Assume that y 2 a, from Proposition there exists a non-zero
morphism f’: a — y such that A" = f’¢g" for each n € Z. Since fh" = g™ # 0, then
ff'g" #0and ff': a — ais non-zero. Thus, ff' = A1, for some X\ € K* and a = y, which

contradicts our assumption. We obtain that a 2 y € X, and we conclude that X’ satisfies

(PC1).

Now we show that X satisfies (PC2). Assume that there is a sequence {(x7,2%)} C
ind X N C®9 for some p,q € [m] such that {z7}, is strictly decreasing and {z}}, is
strictly increasing. We show that there is a strictly decreasing sequence {y?'}, € C®)
such that {|y}, ¢*|}n C X.

Consider an object a = |ay, q*| with a1 € 7Z®) such that r1 < a1 <z — 2. Then for each
n there exists a non-zero morphism ¢": " — a. Consider an X-precover ( f1 - fu ) : y1 B
<+ @ yr — a of a. With the same argument as above there exists | € {1,...,k} such
that ¢": 2™ — a factors through f;: y; — a for all n (up to taking subsequences). Let
y = y;, proceeding similarly as above we obtain that y € {]z, qt] ‘x% <z< a%}, see Figure
4.100 We define z!' = g, which is the first element of our desired sequence. Now we
consider a’ = |a},q"| with 21 < a} < 23. By repeating the same argument there exists
22 € {|z,q"||d} < 2z < a1} which is an object of X. With this procedure we obtain our
desired sequence {z"},. This proves that X satisfies (PC2).

The argument of (PC2’) is similar to the argument of (PC2), the arguments of (PC3) and
(PC3') are similar to the argument of (PC1). We can conclude that X satisfies the PC

conditions. O
We now have our classification of the precovering subcategories of C,,.

Proof of Theorem[[.4.3 The claim follows directly from Theorem Lemma,
Proposition 4.4.7], and Proposition [4.4.8 O
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4.4.2 Preenveloping subcategories of C,,

Here we discuss a characterization of the preenveloping subcategories of C,, dual to The-
orem First we define an auxiliary category B, which is the dual version of A. We
recall that in Section we fixed an integer 2 € Z, now we define w® = 2° — 1. For
each p € [m’] we denote by wg € Zom the copy of w® belonging to Z®).

Definition 4.4.9. We define the subcategory B of Cy), as

B =add{ (by,bg) € indCom |b1,ba € | ) [w),p™)
pE[m’]
Figure [£.17] illustrates the subcategory B.

Y

wy,

Figure 4.11: The category B.

For convenience of the reader, we record the duals of Definition and Theorem [4.4.3

Definition 4.4.10. Let X be a subcategory of C,,,. We say that X satisfies the completed

preenveloping conditions, PE for short, if it satisfies the following combinatorial conditions.

(PE1) If there exists a sequence {(z7, 25)}, € XNC®9) for some p,q € [m] such that p # ¢

and the sequences {27}, and {23}, are strictly decreasing, then (p~,¢~) € X.

(PE2) If there exists a sequence { (27, z3)}n, € XNCP9 for some p, g € [m] such that p # ¢
and the sequences {2}, and {3}, are respectively strictly increasing and strictly

decreasing, then there exists a strictly increasing sequence {y'}, € C®) such that
{(lha )t X

(PE2') If there exists a sequence {(z7,2%)}, € X N C®9 for some p,q € [m] such that
the sequences {z7}, and {24}, are respectively strictly decreasing and strictly in-

creasing, then there exists a strictly increasing sequence {y4}, C C@ such that

(PE3) If there exists a sequence {(z1,2%)}, € X N C®P9 for some p € [m'] U [m] and
q € [m] such that p # ¢, p # ¢~ and the sequence {z}},, is strictly decreasing, then
(r1,47) € X.

(PE3') If there exists a sequence { (27}, 29)}, € XNCP for some p € [m] and g € [m']U[m]
such that the sequence {z]}, is strictly decreasing, then (p—,x2) € X.
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Theorem 4.4.11. Let X be a subcategory of C,,. The following statements are equivalent.
1. X is preenveloping in C,y,.
2. 7YX N B is preenveloping in Copm.
3. X satisfies PE conditions.
The following lemma will be useful in Section[£.7.2]for computing the heart of a t-structure.
Lemma 4.4.12. The following statements hold.
1. The category B is the co-aisle of a t-structure in Cop,.

2. For each x € ind C,, there exists 2’ € ind ANY "B C ind ANXB such that ma’ = x.

Proof. Statement (1) is the dual of statement (1) of Lemma [4.4.4] For statement (2),
consider the A-cover #' — z of z as in statement (2) of Lemma m We have that
m(2') = x, and it is straightforward to check that 2’ € ¥ ~1B. Moreover, since ¥~ !B C
B C ¥B, we have that 2’ € ¥B. This concludes the proof. O

4.5 Extension-closed subcategories

In this section we classify the extension-closed subcategories of C,,. To do so, we use
the fact that the extension-closed subcategories of C,, are precisely those closed under
extensions having indecomposable outer terms, see Proposition First we introduce
the completed version of the PT condition, c¢f. Definition We refer to Proposition
for the computation of the Hom-spaces of C,,.

Recall that we identify the indecomposable objects of C,, with the arcs of Z,,.

Definition 4.5.1. Let z,y € indC,, be such that Homg (x,%y) = K. The arcs of
indC,, \ {z,y} which connect the endpoints of x and y are called Ptolemy arcs of  and
y. We say that a subcategory X of C,, satisfies the completed Ptolemy condition, PT

condition for short, if it is closed under taking Ptolemy arcs.

Figure provides an illustration of the Ptolemy arcs in C,,.

Figure 4.12: The dotted arcs are the Ptolemy arcs of x and y. On the left z and y cross,
on the right they share one endpoint which is an accumulation point.
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Now we prove the characterization of the extension-closed subcategories of C,,. The middle
term of a non-split extension in C,, having indecomposable outer terms was computed in
[43, Section 3.

Proposition 4.5.2. Let X be a subcategory of C,,. The following statements are equiva-

lent.
1. The subcategory X satisfies the PT condition.

2. The subcategory X is closed under extensions of the form r1 — ¢ — xo — Xxq
with 1, x9 € ind Cpp,.

3. The subcategory X is closed under extensions.

Proof. The proof of the equivalence of (1) and (2) is straightforward and follows from [43],
Section 3]. The fact that (3) implies (2) is trivial. We prove that (2) implies (3). To this
end, first we show that 7~ X is closed under extensions, and then that X is closed under

extensions.

Assume that X is closed under extensions with indecomposable outer terms. Consider the
preimage 71X in Cop,. It is straightforward to check that 7~ X is an additive subcategory
of Com. We show that 771X is closed under extensions having indecomposable outer
terms. Consider a triangle a — ¢ — b — Ya in Cyy, with a,b € ind7~'X. Then
ma — me — b — 7Xa is a triangle in C,,, see Section Moreover, from [43],
Proposition 3.10] it follows that ma and 7b are either indecomposable objects or zero, and
then 7a,7b € ind X. From (2) we obtain that me € X, i.e. e € 7~'X. This proves that

71X is closed under extensions.

Now we show that X is closed under extensions. Consider a triangle 1 — ¢ — x9 —>
Y1 in C,, with 21,29 € X. Then there exists a triangle a — ¢ — b — Ya in Cap,
whose image after 7 is isomorhic in C,, to 1y — ¢ — x93 — Xx;. Thus 7a,7b € X,
ie. a,b € 7 'X. Since 71X is closed under extensions, we have e € 7'AX and then

c = me € X. This completes the proof. O

4.6 Torsion pairs

We classify the torsion pairs in C,,. We recall from Proposition [2.3.27| that a torsion pair
(X,)) is uniquely determined by its torsion class X', and therefore it is enough to classify

the torsion classes.

Theorem 4.6.1. Let X be a subcategory of Cp,. Then X is a torsion class in Cy, if and

only if X satisfies the PC conditions and the PT condition. Moreover, there is a bijection.

Ezxtension-closed subcategories U C Cop, }
such that D CU and U N A is precovering
Xr— 71 tx

{ Torsion-classes in C,, } <— {

T +— U
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Proof. The first statement follows directly from Proposition Theorem and
Proposition The bijection follows from Proposition [2.3.38 and Theorem O

We have the following corollaries which follow directly from Theorem and will be
useful in Section [£.7] and Section [£.§] to classify t-structures and co-t-structures.

Corollary 4.6.2. Let X be a subcategory of Cp,. Then X is the aisle of a t-structure in
Cm if and only if X satisfies the PC conditions, the PT condition, and X is closed under

clockwise rotations. Moreover, there is a bijection.

Suspended subcategories U C Cop, Such }
that D CU and U N A is precovering
X— X

T <— U

{ Aisles of t-structures in C,, } — {

Corollary 4.6.3. Let X be a subcategory of C,,. Then X is the aisle of a co-t-structure in
Cy, if and only if X satisfies the PC conditions, the PT condition, and X is closed under

anticlockwise rotations. Moreover, there is a bijection.

Co-suspended subcategories U C Copy such }

Aisl ~t-struct n Cpy }
U Aisles of co-t-structures in Cm } { that D CU and U N A is precovering

X— X

U +— U

4.7 T-structures

We classify the t-structures in C,,. We start by classifying the aisles of the t-structures,
then we compute the co-aisles and the hearts. Finally, we classify the bounded and non-

degenerate t-structures.

4.7.1 Aisles of t-structures

In Section [3.6] we discussed the classification of the aisles of t-structures of C, in terms of
decorated non-crossing partitions, see Definition Here we introduce similar combi-

natorial objects which classify the aisles of t-structures in C,,.

Definition 4.7.1. A half-decorated non-crossing partition of [m'] U [m] is a pair (P, X)
given by a non-crossing partition P of [m/] U [m] and a 2m-tuple X = (})pec(m/ujm] Such

that for each p € [m/] we have that z, = p™, and for each p € [m]

p.p™) if {p} € P,
zp € § (p,pt] if p,p™ € B for some block B € P,

(p,pT) otherwise.
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Example 4.7.2. Figure[f.13]gives an example of non-crossing partition and half-decorated

non-crossing partition.

(P, X) (P,Y)

Figure 4.13: On the left (P, X) is a half-decorated non-crossing partition of [4'] U [4],
and on the right (P,Y) is a decorated non-crossing partition of [4'] U [4], with P =

({1,1,2,3'}, {2}, {3, 4/, 4} }.

Remark 4.7.3. Half-decorated non-crossing partitions and non-crossing partitions are
closely related but distinct combinatorial objects. A decorated non-crossing partition of
[m/] U [m] may not be a half-decorated non-crossing partition of [m'] U [m], and vice versa.
For example, (P, X) of Figure is not a decorated non-crossing partition, and (P,Y)

is not a half-decorated non-crossing partition.

The main result of this section is the following analogue of Theorem [3.6.3] The notation
employed in the statement will be defined in Definition and Definition [4.7.9

Theorem 4.7.4. The following is a bijection.

Half-decorated non-crossing { Aisl e
— ) - )
partitions of [m'] U [m] isles of t-structures in Cp,
(P, X) — 7Up x)

(,Pﬂ'*le X7r*1?() — X

To prove this result, we take an intermediate step through Cs,,. From Corollary the
aisles of t-structures in C,, are in bijection with the suspended subcategories U of Copp,
such that D C U/ and U N A is precovering. These can be regarded as “almost aisles” of
t-structures in Cyy, and are classified in terms of half-decorated non-crossing partitions of
[m/] U [m], see in Proposition The aisles of the t-structures in C,,, are then obtained
by localising the “almost aisles” in Co,,. Figure illustrates this process.

The following proposition classifies the “almost aisles” of t-structures in Cop,.
Proposition 4.7.5. The following is a bijection.

{ Half-decorated non-crossing } { Suspended subcategories U C Cop, such that }

partitions of [m'] U [m] D CU and U N A is precovering

(0K (P,X) l—)U('p’X)
(Pu,Xz,{) —iU: ,3
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O
3/

(P, X) u X _
half-decorated non-crossing suspended subcategory of Cg aisle of t-structure in Cy
partition of [4'] U [4] such that ¢ N A is precovering

Figure 4.14: Illustration of how to obtain the aisle of a t-structure of C,, from a half-
decorated non-crossing partition of [m/] U [m].

The rest of this section is devoted to prove Proposition We start by defining the

assignments of the maps a and (3.

Definition 4.7.6. Let (P, X) be a half-decorated non-crossing partition of [m/]U[m]. We
define

Up,x) = add |_| (u1,u2) € ind Copp |ur, ug € U (p,zp] ¢
BeP peEB
where we use the following convention: if x, = p then (p,x,] = 0, and if z, = p* then
(p, ) = ZP),

We check that the map « is well defined.

Proposition 4.7.7. Let (P, X) be a half-decorated non-crossing partition of [m'| U [m].
Then Up x) is a suspended subcategory of Cam such that D C Up xy and Up xy N A is

precovering.

Proof. We show that D C Y. Consider d = (dy,d2) € ind D, then dy,ds € Z®) for some
p € [m/]. Since p € B for some block B € P, then Z"?) C indi{, and then d € Up x)-
Morevoer, it is straightforward to check that XUp xy C Up x). For showing that Up x)

is extension-closed, we can proceed as in the argument of [22, Proposition 4.8].

Now we show that Up x) N A is precovering. Let X be the vector X = (Tp) pem/1ufm]
where for each p € [m/] U [m]

0 ; /
zy if p € [m/],

~ p
Tp =

z, ifpe[m].

Then (P, X) is a decorated non-crossing partition of [m’] U [m] and we can associate to it

the aisle of a t-structure Z/l( see Theorem We recall that

P,X)

Up 5y = add |_| (ur,uz2) € ind Cop|u,ug € U (p, Tp)
BeP peB
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It is straightforward to check that U(P,)?) =Up,x)NA. Then Up xy N A is the aisle of a

t-structure in Co,, and in particular it is precovering. This concludes the argument. [

Now we define the assignment of the map . To this end, given an “almost aisle” in Copy,,
we define an equivalence relation ~z; on the set [m/] U [m] in the same way as in Section

The same argument of [22, Lemma 4.10] shows that ~, is an equivalence relation.

Definition 4.7.8. Let U be a suspended subcategory of Coy, such that D CU and U N A
is precovering. The relation ~;; on the set [m/] U [m] is defined as follows: for any p,q €
[m/] U [m] we have that p ~y ¢ if and only if p = ¢ or there exists an arc of Y with an
endpoint in Z® and the other in Z@.

Definition 4.7.9. Keeping the assumptions and notation of Definition [£.7.8] we define
Py to be the partition of [m’] U [m] given by the equivalence classes of ~. For each

p € [m'] U [m] we define
, = sup{z € ZP | there exists an arc of U with an endpoint equal to z}.

We denote by Xy the 2m-tuple Xiy = (2p)pem/|upm]-

With Proposition 4.7.13| we will show that (P, Xi¢) is a half-decorated non-crossing par-

tition of [m'] U [m]. The following remark and lemmas are useful for that purpose.

Remark 4.7.10. Consider a suspended subcategory U of Co,, such that D CU and UNA
is precovering. We observe that U N A is the aisle of a t-structure in Cy,,. We denote by
(Puna, Xuna) the decorated non-crossing partition associated to U N A. We recall that
Puna is defined as the set of equivalence classes of [m/]U[m] under the equivalence relation
~uUnA, See Section The following lemmas relate (P, Xyy) and (Pyna, Xuna)-

Lemma 4.7.11. Let U be a suspended subcategory of Cop, such that D CU and U N A is
precovering. Let (Pyna, Xuna) be the decorated non-crossing partition associated to UN.A.
Then Py = Pyna-

Proof. We show that for any p, ¢ € [m’] U[m] we have that p ~ ¢ if and only if p ~y~4 q.
It is straightforward to check that if p ~y~4 ¢ then p ~y ¢. Assume that p ~y q. lf p=¢
then the claim is straightforward. If p # ¢ then there exists v € ind i/ having one endpoint
in Z® and the other endpoint in Z(@. Note that there exists n > 0 such that ¥"u € A
and then, since X"U C U, we obtain that u € U N A. Then we have that p ~yna ¢. This

concludes the argument. O

Lemma 4.7.12. Let U be a subcategory of Coy as in Lemmal|4.7.11, Xy = (Tp)peim/)uim];
and Xuna = (Tp)pepmium)- Then for each p € [m'] U [m]

- 5 ifpem],

xp ifp € [m].
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Proof. Let p € [m/] U [m]. We recall that by construction, see Section we have that
z, =sup{z € ZP) | there exists an arc of U N A with an endpoint equal to z}.

If p € [m’], there exists an arc of & N A with an endpoint equal to 20. Moreover, for

v
any z € Z® such that z > zg there is no arc of A, and then no arc of U/ N A, with an
endpoint in z. Thus, 7, = zg. Now consider p € [m], we show that z, = x,. We divide

the argument into claims.

Claim 1. Let z € Z®)_ If there exists an arc of ¢ with an endpoint equal to z, then there

exists an arc of U N A with an endpoint equal to z.

Assume that there exists u € indYf having an endpoint equal to z. If u € U N A, then we
have the claim. Now assume that v € U and u ¢ A. We denote u = (uy,uz). We assume
that u; = z, the other case is analogous. Since u ¢ A, we have that us € Z9 for some

q € [m'] and uy > z5. Then we are in the situation of Figure

Figure 4.15: Illustration of the argument of Claim 1.

Consider d = (di,dp) € Z@9 with di < 2 < up < dp. Since d € D C U, u and d
are crossing, and U is extension-closed, we obtain that (z,d;) = (u1,dy) € U. Moreover,

(z,d1) € A. This concludes the argument of Claim 1.
Claim 2. If ), = p then z, = p.

Assume that z, = p, i.e. there is no z € Z®) such that there is an arc of Y N A with an
endpoint equal to z. By Claim 1 there is no z € Z® such that there is an arc of ¢ with

an endpoint equal to z, i.e. x, = p. This concludes the argument of Claim 2.
Claim 3. If T, = p* then z, = p™.

The proof is straightforward.

Claim 4. T, = x,.

If 7, = p or T, = p" then the claim follows from Claim 2 and Claim 3. Assume that
there exists z € Z®) such that Zp, = z. As a consequence, there is an arc of Y N A with an
endpoint equal to z, and then there is an arc of & with an endpoint equal to z. Moreover,
for any 2’ € Z®) such that 2’ > z there is no arc of & N A with an endpoint equal to z’.

Then, by Claim 1, for any 2z’ € Z®) such that 2’ > z there is no arc of I with an endpoint
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equal to z’. Thus, z, = z. This concludes the argument of Claim 4.

We can conclude that z, = zg for each p € [m]’, and 7, = z,, for each p € [m]. O

Now we can prove that the map 5 of Proposition [4.7.5]is well defined.

Proposition 4.7.13. Let U be a suspended subcategory of Cop, such that D CU andUNA

is precovering. Then (Py, Xy) is a half-decorated non-crossing partition.

Proof. We check that (P, Xys) satisfies the conditions of Definition Consider UN A,
which is the aisle of a t-structure, and its associated decorated non-crossing partition
(Puna, Xuna). We recall that Py is a partition of [m/] U [m] and that, from Lemma
Puna = Pu. As a consequence, Py is a non-crossing partition of [m/] U [m]. Now,
for the decorations we denote Xy = (7p)pefmupm] and Xuna = (Tp)pefmum]- From
Lemma we have that z, = 7, for each p € [m]. Moreover, for each p € [m/],
since Z®?) C ind D C indU, we have that z, = pT. We can conclude that (P, Xy) is a

half-decorated non-crossing partition of [m/] U [m)]. O

Given U a suspended subcategory of Coy, such that D C U and U N A is precovering, the
following lemma shows that any shift of &/ has the same properties of ¢/. This fact will be
useful in the proof of Proposition

Lemma 4.7.14. Let U be a suspended subcategory of Cop, such that D CU and U N A is
precovering. Consider the associated half-decorated non-crossing partition (P, Xy) with

Xy = (7p)pemnuim]- The following statements hold.

1. For any n € Z the subcategory XU of Cop, is suspended, D C X"U, and X"UN A is

precovering.

2. Consider (Pgny, Xsiny). Then Psny = Py and Xsny = (2p — 1) pelm/|Ufm] -

Proof. First we prove statement (1), statement (2) follows by construction, see Definition
It is straightforward to check that XU is extension-closed and contains D, we show
that ¥"U N A is precovering. By Proposition we have that 7~ '7l/ = U, and, since
7 lnd N A = U N A is precovering, by Theorem we have that 7lf is precovering
in C,,. Now fix n € Z. Since 7l{ is precovering, then X"7l{ is precovering in C,,. As a
consequence, from Theorem we have that S"UNA = 7~ 7S UNA = n7 187U N A

is precovering. This concludes the proof. O

Finally, we can prove Proposition 4.7.5

Proof of Proposition[4.7.5 From Proposition and Proposition |4.7.13[the maps a and
5 are well defined. We divide the proof into steps.

Step 1. The map [ is injective.

Let U and U’ be suspended subcategories of Co,, such that D C U, D C U’, and such
that U N A and U’ N A are precovering. Assume that (Py, Xy) = (Pyr, Xyr), we show
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that U = U'. First we show that X"U N A = X"U' N A for each n € Z. By Lemma

4.7.11) Lemma [4.7.12] and Lemma [4.7.14] (Psryna, Xsruna) = (Psnwrna, Xsnwna). By
Theorem [8.6.3 we obtain that X"/ N A = £’ N A.

Now we show that U C U’, the other inclusion can be obtained in the same way. Consider
u € indU, we have that ¥"u € A for some n > 0. Then X"u € X"U N A. Since
Y"UNA=X"U'NA, we have that X"u € XU’ N A and then u € i’. This concludes the
argument of Step 1.

Step 2. We show that Sa = id.

Let (P, X) be a half-decorated non-crossing partition of [m/] U [m]. Let Up x) be the
associated subcategory of Co,,, which we denoted by U. Let (P, Xyy) be the half-decorated
non-crossing partition associated to U. We show that (P, X) = (Py, Xu).

Showing the equality P = Py is equivalent to show that for any p,q € [m/] U [m] we
have that p ~y ¢ if and only if p,q € B for some block B € P. This follows directly
from Definition and Definition Now we show that X = Xi;. We denote

X = (zp)peimuim] and Xy = (Yp)pepm/uim]: By construction, see Definition and
Definition we have the following equalities.

yp = sup{z € yAQ | there exists an arc of U = U(p x) with an endpoint equal to z} = =,

Therefore we have that (P, X) = (Py, Xy). This concludes the argument of Step 2. We

can conclude that o and 8 are mutually inverse. O

4.7.2 Co-aisles of t-structures

From Theorem we have a classification of the aisles of the t-structures in C,,, now
we compute the corresponding co-aisles in terms of non-crossing partitions. As before,
we take an intermediate step through Cop,. Given a half-decorated non-crossing partition
(P, X) of [m'] U [m], we consider its complement (P, X)¢ = (Q,Y), where Q = P¢ is the
Kreweras complement of P, see Section With a computation similar to Section [3.6
(Q,Y) corresponds to a subcategory V of Cay,. This is a co-suspended subcategory of Cop,
such that D C V and V N B is preenveloping, therefore V can be thought as an “almost
co-aisle” in Cay,. From such V we obtain the corresponding co-aisle in C,, after localising.
Figure [4.16] illustrates this process.

Definition 4.7.15. Let (P, X) be a half-decorated non-crossing partition of [m/]U[m] with
X = (7p)peim/ujm]- We define the complement, (P, X)¢, of (P, X) to be the pair (Q,Y)
where Q = P¢ is the Kreweras complement of P, and Y is the 2m-tuple Y = (yp)pe(m/|ujm]
with

p if p € [m'],

Yp =
zp,—1 ifpeml.

We describe how to obtain an “almost co-aisle” of t-structure in Csj, from the complement

of a half-decorated non-crossing partition of [m'] U [m].
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Y1 = of

— /
Yo = 4=y 2

Y3

3 =yz
(QY)Z(,P,X)F v y _
Kreweras complement co-suspended subcategory of Cg co-aisle of t-structure in Cy

such that V N B is preenveloping

Figure 4.16: Tllustration of how to obtain the co-aisle of the aisle of Figure

Definition 4.7.16. Let (P, X) be a half-decorated non-crossing partition of [m'] U [m]
and let (Q,Y) = (P, X)¢. We define

Vioy) = add |_| (v1,v2) € ind Cop |v1, V2 € U [Yp, )
BeQ peEB

Consider the complement (Q,Y") of a half-decorated non-crossing partition of [m/] U [m)].
The following lemmas and remark establish some properties of the subcategory Vg y of
Com. The first is analogous to Proposition [£.7.7]

Lemma 4.7.17. Let (P, X) be a half-decorated non-crossing partition of [m'] U [m] and
let (Q,Y) = (P, X)°. Then V gy is co-suspended and contains D.

Proof. The proof is analogous to the argument of Proposition O

Lemma 4.7.18. Let (P, X) be a half-decorated non-crossing partition of [m’] U [m] and
let (Q,Y) = (P, X). Then Vigy)NB = Up.x)NA)".

Proof. For each p € [m/] U [m] we define

- Yp ifpe [m]a
Yp =

wy if p € [m/]

"o

where we recall from Section that wg = zg — 1. It is straightforward to check that

V(Q,y) N B =add |_| (v1,v2) € ind Cop, |v1,v2 € U [%,p+)
BeQ peEB

Moreover, by Corollary [3.6.4] the left hand side is equal to (L{(p x)N A)l. O

Remark 4.7.19. Let Up x) and V(gy) be as in Lemma Since Up x) N A is
precovering and suspended, by Proposition [2.3.27| (Z/{(’p, x)NA Vi y)N B) is a t-structure.
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The following lemma and proposition show that an “almost co-aisle” in Cay, is, after

localising, the co-aisle of a t-structure in C,,.

Lemma 4.7.20. Let X be the aisle of a t-structure in Cp,, let (P, X) be the half decorated
non-crossing partition associated to X, and let (Q,Y) = (P, X)¢. Then mV(gy) C Xt

Proof. Assume that there exist x € ind X and y € ind Vg y) such that Homz (x,y) =
K. Note that there exists ¥’ € ind B such that 7(y') & y. Then ¢/ € W_lﬂV(ny) and
by Proposition and Lemma we have that ¢’ € ind Vio,y) N B. We define
U = 771X, we have that U = Up,x). Now, by Lemma and Lemma there
exists 2’ € ind A such that 7(2’) = z, and then 2’ € indU N A, and Home,,, (2/,y") = K.
Since x € indU N A and y' € ind V(g yyN B, this gives a contradiction with Lemma
Then we can conclude that Homg (X, 7V(gy)) = 0. O

Proposition 4.7.21. Let (X,)) be a t-structure in Cp,, U = 71X, (P, X) be its as-
sociated half-decorated non-crossing partition, and (Q,Y) = (P, X)¢. Then the following
equalities hold:

Y=mVioy)=7Vey) NB)=n ((U N A)L) ~

Proof. First we show that 7V gy) = 7 (V(Qy) OB). The inclusion 7 (V(Qy) OB) C
™ (Q,y) is straightforward. We show the other inclusion. Consider y € ind 7V g y), then
there exists y' € ind B such that n(y') = y. Since y € 7V gy), we have that y' €
7r*17rV(Q7y). By Proposition and Lemma we have that 7T717TV(Q7y) =Voy)-
Thus, 4 € indV(gyy N B and then y = 7(y') € 7 (Vg,y) N B). From Lemma we
also have the equality = (V(Q’y) NB) =m ((U N A)L). It remains to show the equality
Y =7Vy), to do so we check that (X, WV(gy)) is a torsion pair.

Note that by Lemma we have that 7V gy) C X+, we show that X x ™oy) =
Cm. Since X = n(U N A) and 7V gy) = 7 (U NA)L), it is equivalent to show that
TUNA) x7 (UNA)L) =Cp.

Let a € Cyp, there exists @’ € Cap such that 7(a’) = a. Since U N A) * UNA)" = Com,
there exists a triangle u — @/ — v — Sa in Copm withu e UN A and v € UN A) .
After localising we obtain the triangle 7(u) — a — 7(v) — X (u) in C,,. Note that
m(u) € T(UNA) and 7(v) € m (U N A)L), thus we have that a € 7w (U N A)*m (U NA)L).
We can conclude that (X, WV(Q’y)) is a torsion pair, and as a consequence J = Vg y). U

4.7.3 Hearts

With Theorem we classified the aisles of t-structures in C,,, and with Proposition
[4.727] we computed the corresponding co-aisle. Now we can compute the heart of a t-
structure (X,)) in C,,. We first consider the preimage of (X, )) under 7, which we denote
by (U,V). Note that (U4,V) is not a t-structure of Cop,, but (U N A,V N B) is. We can
compute the heart of (U N.A,V N B) as in Proposition and then obtain the heart of
(X,)) by localising. Figure illustrates this process.
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H=ANXY

Figure 4.17: The heart of the t-structure (X', ) of Figure and Figure [1.16]

Corollary 4.7.22. Let (X,Y) be a t-structure in C,,. Consider its associated decorated
non-crossing partition (P, X) of [m/] U [m], with X = (xp)peimiupm)- Then the heart
H=XNXY is given by

H =add{(zp, — 2,2p) | p € [m] and x, € Z,}.

Proof. Let U =77 'X, V=771V, U =UNA, and V' = VNB. By Lemma |4.7.18 the pair
(U', V') is a t-structure in Cay,. Consider the heart H' = U’ NV, we show that 7H' = H.
Then the claim follows directly from Proposition [3.6.5]

First we show the inclusion 7H’ C H. Consider A’ € indH'. Since h' € U' C U, we
have that wh’ € nl{ and from Proposition [2.3.38| we have that 7/ = X. Similarly, since
W e XV C XV, we obtain that 7h’ € 73XV = XaV = XY. Thus, th' € X NXY = H.

Now we show the inclusion H C nH'. Let h € indH, from Lemma there exists
h' € ind AN ¥B such that 7h’ = h. Since h € X, then h' € 7=!X = U. Moreover, since
h € XY, then b’ € 77'¥Y = ¥V. Thus, ¥ e U N A and b/ € ¥V N XB. We obtain that
el NV =4H, and then h = wh’ € 7H’. We can conclude that H = 7H'. O

4.7.4 Boundedness

We classify the bounded t-structures in C,,, and we obtain that for each m > 1 there are
no bounded t-structures in C,,. We refer to Proposition for the classification of the

bounded t-structures in C,,.

Proposition 4.7.23. Let (X,)) be a t-structure in Cp,, let (P, X) be its associated half-
decorated non-crossing partition of [m'|U [m], U = 771X and V = 7~ 'Y. The following

statements are equivalent.
1. The t-structure (X,)) is left bounded in C,y,.
2. The t-structure (U N A,V N B) is left bounded in Cop,.

3. The non-crossing partition P has as unique block {1’,1,...,m’',m}.

Proof. We prove the equivalence of statements (1) and (2), for the equivalence between
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(2) and (3) we refer to Proposition Assume that (1) holds, we check the inclusion
Com € Upez 2" (U N A), the other inclusion is trivial. Consider a € indCay,. Note that
there exists k € Z such that a € ¥ A. Moreover, since 7(a) € C,,, there exists | € Z such
that 7(a) € ¥'X, and then a € ¥ln~1X = Y. Thus, we have that a € XU N XFA. Let
n = min{k, [}, then a € ¥"(U N A).

Now we assume that (2) holds, we check the inclusion C,,, C |,z X", the other inclusion
is trivial. Consider a € ind C,,, then there exists a’ € ind Ca, such that 7(a’) = a. Then
there exists n € Z such that o’ € ¥"(U N A) C ¥"U, and then a = 7(a’) € 7X"U = X" X.
This concludes the proof. ]

Dually, we have the following proposition.

Proposition 4.7.24. Keeping the assumptions and notation of Proposition the

following statements are equivalent.
1. The t-structure (X,Y) is right bounded in Cp,.
2. The t-structure (U N A,V N B) is right bounded in Cop, .

3. The non-crossing partition P has as blocks {1'}, {1}, ..., {m'}, {m}.

We have the following corollary of Proposition and Proposition

Corollary 4.7.25. For each m > 1 there are no bounded t-structures in Cyy,.

4.7.5 Non-degeneracy

We classify the non-degenerate t-structures in C,,. We refer to Proposition for the

classification of the non-degenerate t-structures in Cp,.

Proposition 4.7.26. Let (X,)) be a t-structure in Cp,, let (P, X) be its associated half-
decorated non-crossing partition with X = (:Up)pe[m/]u[m], and U = 7= X. The following

statements are equivalent.
1. The t-structure (X,Y) is left non-degenerate in Cyy,.
2. We have that (,c, X"U = D.

3. For each p € [m] we have that x, # p™, and for each p,q € [m'] if p,q € B for some
block B € P, then p =q.

Proof. First we show the equivalence between the statements (1) and (2) beginning with
(1) implies (2). Assume that (X,)) is left non-degenerate, i.e. (1, oz X"X = 0. The
inclusion D C [,z XU is straightforward, we show the other inclusion. Consider u €
ind Cay, such that u € X" for all n € Z, then w(u) € 7¥"U = "X for all n € Z. As a

consequence, 7(u) = 0 and then u € D.

Now to show that (2) implies (1), assume that (), ., X"U = D, we show that [, X"X =
0. Assume that there exists = € ind C,, such that z € X"X for all n € Z. Then there exists
2" € ind Coyy, such that w(z') = z, and 2’ € 7~ 1(X"X) = "YU for all n € Z. Then 2/ € D
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and r = 7(2’) = 0, contradicting the fact that z € indC,,. This proves the equivalence
between (1) and (2).

Now we prove the equivalence between statements (2) and (3). Assume that (1, ., X"U =
D and that there exists p € [m] such that z, = p™, then 7PP) C indUY. Let u € Z@PP),
then z € XU for each n € Z. As a consequence x € D, and this contradicts the fact that
p € [m]. This proves that =, # p™. Now consider p,q € [m/] such that p,q € B for some
block B € P, then U contains all arcs having one endpoint in Z® and the other in Z(®.
Consider such u, then u € XU for each n € Z. As a consequence u € D, and then p = q.

This proves that (2) implies (3).

Now assume that statement (3) holds, we show that (1, ., X" = D. The inclusion
D C (),ez X"U is straightforward, we show the other inclusion. Let u € ind(),c, X"U,
we show that u € D. Assume that u has an endpoint z € ZP) for some p € [m]. Since
u € indU, then z € (p,xp]. Moreover, since z;, # pt, there exists n € Z such that
S"u ¢ U, and this contradicts the fact that u € (), c; Z"U. Thus, u € ZP9 for some
p,q € [m']. Then p,q € B for some B € P and as a consequence p = ¢, i.e. u € D. This

concludes the argument. ]

Dually, we have the following proposition.

Proposition 4.7.27. Keeping the assumptions and notation of Proposition let
(Q,Y) = (P, X)¢, and let V = m~'Y. The following statements are equivalent.

1. The t-structure (X,)) is right non-degenerate.
2. We have that (), o, X"V = D.

3. For each p € [m] we have that x, # p, and for each p,q € [m'] if p,q € C' for some
block C' € Q, then p =q.

Combining Proposition and Proposition we obtain the following corollary.

Corollary 4.7.28. Keeping the assumptions and notation of Proposition[{.7.26 and Propo-
sition [{.T.27, the following statements are equivalent.

1. The t-structure (X,)) is non-degenerate.
2. We have that (,c; X"U =D =,z 2"V.

3. For each p € [m] we have that x, € 2P, and for each p,q € [m] if p,q € B for
some block B € P, or p,q € C for some block C € Q, then p =gq.

With the following example we show that there exist half-decorated non-crossing partitions
of [m/] U [m] satisfying condition (3) of Corollary [4.7.28

Example 4.7.29. Consider P the non-crossing partition P = {{1’,1},{2/,2},...,{m/,m}}
of [m'|U[m], and X = (2p)pe[mupm) With z, € Z(?) for each p € [m]. Then (P, X) is a half-

decorated non-crossing partition of [m/|U[m], and P¢ = {{1'},{2'},...,{m'},{1,2,...,m}},
see Section Note that (P, X) satisfies condition (3) of Corollary [4.7.28

77



As a consequence, we have the following corollary.

Corollary 4.7.30. Non-degenerate t-structures in C,, exist for each m > 1.

4.8 Co-t-structures

We know that in the category C,, the only co-t-structures are (Cy,,0) and (0,C,,), see
Remark In C,, this is not the case, Figure gives an example of a non-trivial
co-t-structure in C,,. In this section we classify the aisles of the co-t-structures, we com-
pute the co-aisles and co-hearts. We also classify the bounded and non-degenerate co-t-
structures, and the co-t-structures having a left or right adjacent t-structure. Moreover,
from the classification of the co-t-structures, we can easily obtain the classification of the

recollements of C,,.

Figure 4.18: The subcategory add{x} of C4 is the aisle of a co-t-structure.

4.8.1 Aisles of co-t-structures

Here we classify the aisles of the co-t-structures in C,, similarly to the classification of
the aisles of the t-structures in Section .71l The definition below is similar to Definition

ATl

Definition 4.8.1. A half-decorated half-non-crossing partition of [m’|U[m] is a pair (P, X)
given by a non-crossing partition P of [m/] and a 2m-tuple X = (x,)pe}m) such that

zp € [p, pT] for each p € [m].

The main result of this section is the following analogue of Theorem [4.7.4l The notation
employed in the statement will be defined in Definition and Definition [4.8.6

Theorem 4.8.2. The following is a bijection.

{ Half-decorated half-non—cmssing} { Aisles of co-t-structures in }
Crm

partitions of [m'] U [m]
(P,X) — 7'('2/[(7)7)()
(,P7r*1X7 X7r*1X) — X

To prove this result, we proceed as in Section by taking an intermediate step through
Com- From Corollary the aisles of co-t-structures in C,, are in bijection with certain
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subcategories of Cop,, which can be regared as “almost aisles” of co-t-structures. These
are co-suspended subcategories U of Capy, such that D C U and U N A is precovering, and
are classified with half-decorated half-non-crossing parititions of [m’] U [m] in Proposition
4.8.3L The aisles of co-t-structures in C,, are then obtained after localising the “almost
aisles” of co-t-structures in Csyp,. Figure illustrates this process.

(P, X) u X B
half-decorated half-non-crossing co-suspended subcategory of Cg aisle of co-t-structure in Cy4
partition of [4'] U [4] such that U N A is precovering

Figure 4.19: Illustration of how to obtain the aisle of a co-t-structure in C,, from a half-
decorated half-non-crossing partition of [m/] U [m].

The rest of this section is devoted to prove the following proposition. The assignments of
the maps a and 3 will be defined in Definition and Definition

Proposition 4.8.3. The following is a bijection.

{ Half-decorated half-non-crossing } { Co-suspended subcategories U C D such that}

partitions of [m'] U [m] D CU and UN A is precovering

0N (P,X) r—)Z/I('p’X)
(Py,Xu) —iU: ,3

The following definition and lemma define the map « and show that it is well defined.

Definition 4.8.4. Let (P, X) be a half-decorated half-non-crossing partition of [m'|U[m).
We define

Up,xy = add |_| (u1,u2) € ind Cop, |1, ug € U [z,-,07) ¢,
BeP pEB

where we use the following convention: if z,- = p~ then [z,-,p") = Z®7) U Z®) | and if
z,- = p then [z,-,p*) = ZP).

Proposition 4.8.5. Let (P, X) be a half-decorated half-non-crossing partition of [m/|U[m].

ThenUp xy 1s a co-suspended subcategory of Cop such that D CU and UNA is precovering.

Proof. In order to show that Up x is extension-closed, contains D, and is closed under
Y71, we can proceed similarly to the argument of Propositionm We show that Up x)N
A is precovering. By Theorem we know that this is equivalent to showing that Up x)
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satisfies the PC conditions, see Definition [3.3.1

We check that Up x satisfies (PC1), the other conditions are analogous. Assume that
there exists a sequence {(27,2%)}n C Up x) N AN ZP9) for some p,q € [m'] U [m] such
that p # ¢ and the sequences {z},, and {23}, are strictly increasing. Then p,q € [m].
By Definition we have that p™,¢q" € B for some block B € P. As a consequence,
there exist strictly decreasing sequences {y7}, C Z®") and {y}}, C Z@") such that
Uyt y5tn € Upp x) N A. This proves that (PC1) holds, and concludes the argument. [

With the following definition and proposition we define the map 8 of Proposition [4.8.3]
and we check that it is well defined. Given a co-suspended subcategory U of Cap, such that

D CU and U N A is precovering, we define the equivalence relation ~;; on the set [m/] as
in Definition L.7.8

Definition 4.8.6. Let U be a co-suspended subcategory of Ca,, such that D C U and
U N A is precovering. We define Py, to be the partition of [m'] given by the equivalence

classes of ~. For each p € [m] we define
xp = inf{z € ZP) | there exists u € U with an endpoint equal to z}.

We denote by Xy the m-tuple Xy = (7)pefm)-

Proposition 4.8.7. Keeping the notation of Definition[4.8.6, the pair (Py, Xu) is a half-

decorated half-non-crossing partition of [m’] U [m].

Proof. We already know that P is a partition of [m/], we only need to check that Py

non-crossing. To this end we can apply the same argument of [22, Lemma 4.12]. O

The following lemma is useful for the argument of Proposition [4.8.3

Lemma 4.8.8. Let U be a co-suspended subcategory of Com, such that D CU and UN A is
precovering. Consider the half-decorated half-non-crossing partition (P, Xy) with Xy =
(Tp)pefmuim]- Let p,q € [m'] be such that p,q € B for some block B € Py. Then any arc

of Com, having one endpoint in [a:pf,pJ“) and the other in [xqf,qu) s an arc of U.

Proof. In order to simplify the notation, we assume that q # 1. If ¢ = 1’ we can proceed
analogously. We denote by [x,-,p") x [x,~,¢") the set of arcs a = (a1, a2) € ind Cayy, such
that a; € [z,-,p") and a3 € [z,~,¢"). We show that [z,—,p") x [z,-,¢") C indU. We
have the equality

@y p) X 24 gT) = ZPD L ([:Cpf p) X Z(q)) L] (Z(p) % [a:qf,q)) U ([2p-,p) X [24-,q)) -

We assume that z,- # p and x,- # ¢, the other cases are analogous. We divide the proof

into steps.
Step 1. We show that Z®9 C ind /.
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If p = g we have the claim from the fact that D C /. Now assume that p # ¢. Since
p,q € B for some block B € Py, there exists v € indY such that u € Z®9. We show
that X"u € indU for each n € Z, then, using the fact that i/ is extension-closed, it is
straightforward to check that U contains any arc of Z®9 . Since X711 C U, we already
know that X"u € U for each n < 0, it remains to check that X"u € U for each n > 1.
Consider the arcs a = (uy — 1,u; +1) € Z®P) and b = (ug — 1,uz + 1) € Z@9. The arcs u
and a cross, and then, since U satisfies the PT condition, u’ = (u; — 1, ug) € U. Moreover,
v’ and b cross and v’ = (u3 — 1,us — 1) = Xu € U. Using this argument we obtain that

>y € U for each n > 1. This concludes the argument of Step 1.
Step 2. We show that [x,-,p) x 79 C indU.

Let a = (a1, a2) € ind Cay, with a1 € [z,-,p) and az € 79 we show that a € Y. First we
show that there exists an arc of &/ with an endpoint equal to a;. If there is not such arc,
then there is no arc u € ind/ with an endpoint in [z,-,a1], otherwise ¥"u € U has an

endpoint equal to a; for some n < 0. Since

2, = inf{z € ZP") | there exists an arc of & with an endpoint equal to z}

p

this gives a contradiction, and therefore there exists an arc of I with an endpoint equal to
ay. Let v’ be such arc, then X" € U for each n < 0. Moreover, since U satisfies the PT
condition, we obtain that (ai,a; + 2), (a1,a1 + 3),--- € U. Note that these arcs are also
in A because they belong to Z(P~). Therefore we have a sequence {(a1,a; + 2 +n)}n>0 C
indU N A such that {az + 2+ n},>o is strictly increasing. Since U N A is precovering and
satisfies condition (PC 3), it follows that there exists an arc v = (a1, v2) € Z® ») N such
that va < ag. Consider an arc of the form z = (z1,a2) € 79 with p < z1 < vy. Since
the arcs v and z cross and ZP%9 C U, then a = (a1, az) € U. This proves Step 2.

Step 3. Analogously as in Step 2 we have that Z®) x [z4-,q) CindU.
Step 4. We show that [z,-,p) x [z,-,q) C indU.

Let a = (a1, a2) € [x,-,p) X [v,-,q), we show that a € U. If p = ¢, consider the sequence
{(a1,a1+2+n)}n>0 CUNA of Step 2. Since (a1, a2) = (a1,a1+2+n) € U for some n > 0,
we have that a € Y. Now assume that p # q. We consider the arc v = (a1, v9) € ZP P)
of Step 2, and an arc z = (z1,a2) € ZP47) with p < z; < vy. Since the arcs v and z cross
and z € Z®) x [,-,q) CU, by Step 3 a = (a1,a2) € U. This concludes the argument of
Step 4. We can conclude that [z,-,p*) x [z,~,¢") C indU. O

Finally, we can prove Proposition

Proof of Proposition[{.8.3. From Definition [£.8:4) and Proposition [£.8.5] we have that the
maps are well defined. We divide the proof into steps.

Step 1. The map « is injective.

Let (P, X) and (Q,Y) be two half-decorated half-non-crossing partitions of [m']U[m] such
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that Up x) = Uig,y), we show that (P, X) = (Q,Y). Assume that P # Q. Then there
exist p,q € [m/] with p # ¢ such that p and ¢ belong to the same block of P and to distinct
blocks of Q, or vice versa p and ¢ belong to the same block of Q and to distinct blocks of
P. In the first case, there exists an arc of Up x) with an endpoint in Z®) and the other
in Z(9), while there is no such arc in Ug,y)- As a consequence Up x) # Uy, giving a
contradiction. In the second case the role of P and Q exchange and we obtain the same
contradiction. Thus we have that P = Q.

Now we show that X =Y. We denote X = (zp)pcm)] and Y = (y)pejm], and we assume
that X # Y. Let p € [m] be such that x, # y,, then either z, < y, or z; < y,. Assume
that z;, < yp, the other case is analogous. Since p < z;, < y,, there is an arc of Ug y)
with an endpoint greater that x,, while there is no such arc in Up x). We obtain that

Up.x) # Uy), giving a contradiction. This concludes the argument of Step 1.
Step 2. We show that af = id.

Consider U a co-suspended subcategory of Ca,, such that D C U and U N A is precovering.
We show that U = Up,, x,,). First we show the inclusion Up,, x,,) € U. Consider u =
(u1,uz) € indUp, x,,), then there exist a block B € Py and p,q € B such that u; €
[2,-,p") and ug € [z,-,¢"), where Xy = (2p)pejm)- Then u € indU by Lemma

Now we show the inclusion U4 C Z/{(pu Xu)- Consider u = (u1,u2) € indU, then there exist

p,q € [m/] such that u; € [x,-,p") and ug € [z,~,¢") where

2, = inf{z € Z") | there exists an arc of & with an endpoint equal to z}

p

and z,- is defined similarly. We show that p,q € B for some block B € Py, i.e. that there
exists an arc of I with an endpoint in Z®) and the other in Z(?. Then we can conclude that
Uy, U2 € UpeB[xpf,pJ“), and then u € Up, x,,)- If p = g the claim is straightforward, we
assume that p # ¢. We can write [z,-,p") = [z,~,p) UZ® and [z a") = [x4-,q) Uz,
If uy € ZW and Uy € Z9 then the claim follows directly. We assume that u; ¢ Z®) or
uy & 79,

Assume that vy € [7,-,p) and uy € [z,-,q). We consider the sequence {¥"u = (u; +
n,uz + n)}n>0 C indY. This sequence is also in A because it is contained in 7w a),
Since U N A is precovering and satisfies condition (PC1), there exists an arc of i with an
endpoint in Z® and the other in Z(@. This gives the claim.

Now assume that u; € Z® and uy € [,-,q). We consider the sequence {¥7"u =
(u1+n,uz+n)}p>0 C indU. The sequence {(ug, ua+2+n)},>0 C 74747 is obtained from
the crossings of the sequence {¥ " u},>0. We have that {(ug,u2 +2+n)},>0 CindUNA
because this sequence is contained in Z@ ¢) and U satisfies the PT condition. Since
U N A is precovering and satisfies condition (PC 3), there exists an arc € ind/ with an
endpoint equal to us and the other in Z(@. The arcs ¥ *u and z cross, and from this
crossing we obtain an arc v/ € ind¥ with an endpoint in Z® and the other endpoint in

Z(9 . The case where u; € [a:pf ,p) and ug € 79 is analogous, therefore we have the claim.
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This concludes the argument of Step 2. We can conclude that the two maps of the claim

are mutually inverse. O

4.8.2 Co-aisles of co-t-structures

We compute the co-aisles of co-t-structures in C,, using a method similar to Section m
From a half-decorated half-non-crossing partition (P, X) of [m/] U [m], we consider its
complement (P, X )¢, obtained from the Kreweras complement P¢ of P, see Section
This corresponds to a subcategory V of Cyy,, which can be thought as an “almost co-aisle”
of a co-t-structure in Cs,,. This is a suspended subcategory V of Cs, such that D C V
and V N B is preenveloping. The subcategory V gives a co-aisle of a co-t-structure in C,,
after localising. Figure illustrates this process.

(Q.¥) = (P, X)° v Yot
Kreweras complement suspended subcategory of Cg co-aisle of a co-t-structure in C4
such that V N B is preenveloping

Figure 4.20: Illustration of how to obtain the co-aisle of the aisle of Figure [£.19]

Definition 4.8.9. Let (P, X) be a half-decorated half-non-crossing partition of [m/] U [m]
with X' = (2p)pemupm)- We define the complement, (P, X)¢, of (P, X) to be the pair
(Q,Y) where Q = P¢is the Kreweras complement of P, and Y is the m-tuple Y = (y,)

where y, = 2, — 1 for each p € [m].

p€[m]

From the complement of a half-decorated half-non-crossing partition of [m/] U [m] we

obtain an “almost co-aisle” of co-t-structure in Csy,,. The following definition is similar to

Definition .7.161

Definition 4.8.10. Let (P, X) be a half-decorated half-non-crossing partition of [m/]U[m]
and let (Q,Y) = (P, X)¢. We define

Vigy) =add | | { (v1,v2) € indCom |v1,02 € | (p, yp+]
BeQ peB

Lemma 4.8.11. Let (P, X) be a half-decorated half-non-crossing partition of [m’] U [m]
and let (Q,Y) = (P, X)°. Then V(gy) contains D and is extension-closed.

Proof. The proof is analogous to the argument of Proposition [4.8.5 O
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Consider the complement (Q,Y) of a half-decorated half-non-crossing partition of [m’] U

[m]. The following lemmas and remark describe some properties of the subcategory V(g y)-

Lemma 4.8.12. Let (P, X) be a half-decorated half-non-crossing partition of [m'] U [m]
and let (Q,Y) = (P, X)¢. Then Vg y)NB = Up x)N A>T

Proof. Tt is straightforward to check that

Vio,y) N B = add |_| (v1,v2) € ind Cop, V1,02 € U [wg,yp+]
BeQ pEB

where we recall from Section that w) = z5 — 1 for each p € [m/]. We denote the
right hand side of the equality by W. Proceeding analogously as in the argument of [22]
Corollary 4.14], it is straightforward to check that X1 consists precisely of all the arcs
of Can which do not cross U N A. As a consequence V(g y) N B = (UN A O

Remark 4.8.13. Let Up x) and V(gy) be as in Lemma {.8.12L Since Up x) N A is
precovering and extension-closed, by Proposition [2.3.27 (Z/l NAVo,y)N B) is a torsion

pair. It is not a t-structure nor a co-t-structure because in general & N A is not closed

under ¥ or £7!, ¢f. Remark [4.7.19

Let (Q,Y) be the complement of a half-decorated half-non-crossing partition of [m’]U[m].
With the following proposition we prove that by localising V(g y) we obtain the co-aisle
of a co-t-structure in C,,,. The argument is the same of Proposition |4.7.21

Proposition 4.8.14. Let (X,Y) be a co-t-structure in Cp, U = 71X, (P, X) be its
associated half-decorated half-non-crossing partition, and (Q,Y) = (P,X)°. Then the
following equalities hold.

Y=mVioy)=7Vey) NB)=r ((U n A)L>

4.8.3 Co-hearts

We classified the aisles of co-t-structures in C,, in Theorem and we computed the
co-aisle of a co-t-structure in Proposition Here we compute the co-heart of a

co-t-structure in C,,.

First we introduce some notation. Let (P, X) be a half-decorated half-non-crossing parti-

tion of [m/] U [m]. Consider p,q € [m/] U [m], we write ¢ = pT™B if
* p.q € [m], and
e p,q € B for some block B € P, and

e ¢ is the next element of [m/] N B we meet while moving from p along S! in the

anticlockwise direction.

If B = {p}, then by convention p*& = p.
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Now let (X,)) be a co-t-structure in C,,. We consider the preimage (7~'X,771)) of
(X,Y), which we denote by (U, V). The pair (U, V) is not a torsion pair, but (UN.A, VNB)
is. Moreover, (U N A,V N B) is not a co-t-structure, but we can still compute &' =
UNA) NS~ (VN B) similarly. The co-heart of (X,)) is obtained by localising S’. Figure
illustrates this process.

3 Zg,

UnA
21 (VN B)

H=XNXY

Figure 4.21: Illustration of how to obtain the co-heart of the co-t-structure of Figure
and Figure 4.20

In the proposition below we recall that ]zg, r4-| is equal to (zg ,Tq-) if p < ¢~ and is equal
to (:L‘q—,zg) if ¢~ < p, see Section

Proposition 4.8.15. Let (X,)) be a co-t-structure in Cp, (P, X) be its associated half-
decorated half-non-crossing partition of [m'] U [m] with X = (zp)pem), U = 7 'X, and
YV =x"1'Y. Then

UNA)NEH(VNB) = add {|Z2,xq7|

p,q € [m'], g=p"B for some B € Pz, € Z(Q‘)} ‘

Proof. First we show that arcs of the form a = \zg,atqf |, where ¢ = p™B for some block
B € P and z,- € Z), belong to (U NA) NS~ (VN B). By Definition and
Definition we have that a € indU N A, we check that a € ind~~1(V N B). From
Lemma [£.8.12] this is equivalent to check that a does not cross any arc u € ind/ N.A. Note
that zg € [zg, xp+] and r,- € [zg__,xqf]. Moreover, since ¢ = p™8 for some block B € P,
we have that p,q~~ € C for some block C' € P¢, see Section From Definition m
and Definition this implies that a = [2), z,-| € ind X~V N B.

Now we show that any arc a € ind(U N.A) N X1V N B), provided that it exists, is of
the form a = |zg,xq7| with p,q € [m'] such that ¢ = p*# for some block B € P, and
Ty € Z(47) . We divide the argument into steps.

Step 1. Let z be an endpoint of a. We show that z = z{ for some p € [m’], or z = x,- for

some p € [m'] such that x,~ € ZP ).

Since a € indU N A, then z € [xp_,zg] for some p € [m'], and since a € ind V N B, then
z € [2),4+] for some ¢ € [m/]. If z € (p,z)] then ¢ = p and z = 2). Therefore we have

the claim.

Step 2. Let p,q € [m/] be such that one endpoint of a is of the form z,- or zg, and the

p
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other endpoint is of the form z,- or zg. We show that a 2 ]zg, 20| and a ¥ |z, , 24|

q q

~ [,0 ,0
If a = |2, 2

this gives a contradiction. Similarly, if a = |z,-,z,-| then a is crossed by ¥~ 'a = |z, +

| then a and Xa are crossing and, since ¥a = \zg - l,zg — 1] € indU N A,

1,z,~ + 1| € indU N A and we obtain again a contradiction.

Step 3. We know that a 2 |20, z,-| for some p,q € [m’] such that p,q € B for some block
BePandz,- € 7). We show that ¢ = pT5.

Assume that g # p™8. Then B # {p}, otherwise p = q and ¢ = p*&. If p = ¢ consider
r € B\ {p}. Then there exists an arc in ind/ N.A with an endpoint in (p, z)] and the other
endpoint in (r, zj] which crosses a, and this gives a contradiction. Now assume that p # ¢,
then there exists € B\ {p, ¢} such that p,r,q are in cyclic order. The arc |z{, 2{| € UNA

crosses a, and this gives a contradiction. This concludes the argument. O

The following corollary can be proved with the same argument of Corollary

Corollary 4.8.16. Let (X,)) be a co-t-structure in Cy,. Consider (P, X) its half-decorated
half-non-crossing partition of [m'] U [m] with X = (xp)pepm). Then the co-heart S =
X NYLY is given by

S= add{\p,wq—|

p,q €< [m’], q :p+B for some B € P, and T € Z(’f)} )

4.8.4 Boundedness

We study the bounded co-t-structures in C,,. We find that for m > 2 there are no bounded

co-t-structures.

Proposition 4.8.17. Let (X,)) be a co-t-structure in Cp, (P, X) be its associated half-
decorated half-non-crossing partition with X = (zp)pem), and U = 77 X. The following

statements are equivalent.
1. The co-t-structure (X,)) is left bounded in C.y,.
2. We have that | J,,c; X"U = Cop,.

3. The half-non-crossing partition P has as unique block {1',...,m'} and for each p €
[m] we have that x, # p*.

Proof. The equivalence between the statements (1) and (2) is straightforward, we show
the equivalence between (2) and (3). Assume that P = {{1’,...,m'}} and z, # p* for
each p € [m]. Let a = (a1,a2) € ind Cay,, we check that a € X"U for some n € Z. There
exists n > 0 such that a; +n € [z,~,p") and az +n € [r,~,¢") for some p,q € [m/]. Since
p and g belong to the same block of P, we have that ¥ "a = (a1 + n,as + n) € U, and
then a € X"U.

Now assume that | J,,c;, X"U = Ca, we check that (3) holds. Let p,q € [m/], and consider
a € ind Cy,, with an endpoint in Z® and the other in Z(@. By assumption there exists
n € Z such that a € ¥"U, and then ¥ "a € U. Since the endpoints of >~"a still belong
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to Z® and Z(9, we have that p,q € B for some block B € P. This means that any two
elements of [m'] belong to the same block of P, i.e. P = {{l’,...,m'}}. Now, assume that
x, = p* for some p € [m]. Consider an arc a € ZPP), we observe that ¥"a ¢ U for each

n € Z, and this gives a contradiction. This concludes the argument. O

Dually, we have the following proposition.

Proposition 4.8.18. Let (X,)) be a co-t-structure in Cp,, let (P, X) be its associated half-
decorated half-non-crossing partition with X = (a?p)pe[m}, and V = 7' X. The following

statements are equivalent.
1. The co-t-structure (X,))) is right bounded in Cy,.
2. We have that | J,c; X"V = Com.

3. The half-non-crossing partition P has as blocks {1'}, ..., {m'}, and x, # p for each
p € [m].

Corollary 4.8.19. For each m > 2 there are no bounded co-t-structures in Con.

Proof. Assume that m > 2. If there exists a bounded co-t-structure in C,,, then, by
Proposition and Proposition its associated half-decorated half-non-crossing
partition (P, X) of [m/] U [m] is such that P = {1,...,m'} = {{U"},...,{m'}}, giving a

contradiction. Therefore, there are no bounded co-t-structures in C,, if m > 2. ]

4.8.5 Non-degeneracy

We classify the non-degenerate co-t-structures in Cn. We find that for m > 2 there are
no non-degenerate co-t-structures. In general it is straightforward to check that left or
right bounded co-t-structures are also right or left non-degenerate respectively. We will

see that also the converse holds in C,,.

Proposition 4.8.20. Let (X,)) be a co-t-structure in Cp, (P, X) be its associated half-
decorated half-non-crossing partition with X = (Tp)pe(m/ujm], and U = 7~ X. The follow-

ing statements are equivalent.
1. The co-t-structure (X,)) is left non-degenerate.
2. We have that (., X"U = D.

3. The half-non-crossing partition P has blocks {1'}, ..., {m'}, and x, # p for each
p € [m].

Proof. For the equivalence between the statements (1) and (2) we can use the same argu-
ment of Proposition We prove the equivalence between (2) and (3). Assume that
Npez E"U = D and that there exist p,q € [m’] such that p,q € B for some B € P. Then
U contains any arc having one endpoint in Z(® and the other endpoint in Z@. Consider
nez 2"U. Then u € D and p = q. Now

assume that there exists p € [m| such that x, = p, then U contains any arc u € yACSN

such arc u, then ¥"u € U for each n € Z, i.e. u €
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Thus, u € [,z X"U = D, and then u € 7.9:9) for some ¢ € [m'] and this contradicts the
fact that p € [m]. This proves that (3) holds.

Now we assume that statement (3) holds, we check that (), ., £¥"U C D, the other inclusion

is straightforward. Let u € ind (), X"U, then v € U and there exist p,q € [m/] such

that u has one endpoint in [:cpf, pt) and the other endpoint in [a:qf q"). Then p,q € B
for some block B € P, and as a consequence p = ¢ and v has both endpoints in [z, pt).
Assume that v has an endpoint in [arpf p), then, since x, # p, there exists n € Z such
that X"u ¢ U, ie. u & (),cz X"U. Then u € ZPP) and as a consequence u € D. This

concludes the argument. O

Dually, we have the following proposition.

Proposition 4.8.21. Let (X,)) be a co-t-structure of C,, (P, X) be its associated half-
decorated half-non-crossing partition with X = (Tp)pe(m/uim], and V = 71X, The follow-

ing statements are equivalent.
1. The co-t-structure (X,)) is right non-degenerate.
2. We have that (,c, X"V = D.

3. The half-non-crossing partition P has as unique block {1',...,m'} and for each p €
[m] we have that x, # p*.

Corollary 4.8.22. For each m > 2 there are no non-degenerate co-t-structures in Con.

We also have the following corollary, which combines these results with those in Section

184

Corollary 4.8.23. Let (X,)) be a co-t-structure in Cp,. Then (X,)) is left bounded if
and only if it is right non-degenerate, and (X,)) is right-bounded if and only if it is left

non-degenerate.
4.8.6 Adjacent triples

We classify the co-t-structures in C,,, having a left adjacent or right adjacent t-structure.

Theorem 4.8.24. Let (X,)) be a co-t-structure in Cy, and (P, X) be its associated half-

decorated half-non-crossing partition with X = (mp)pe[m]. The following statements hold.
1. The co-t-structure (X,Y) has a right adjacent t-structure if and only if for each
p € [m] if xp, = p* then {pT} € P.

2. The co-t-structure (X,Y) has a left adjacent t-structure if and only if for each p € [m]
if z, = p then p~,p™ € B for some block B € P.

Proof. We prove statement (1), statement (2) is dual. Let V = 7=!Y and (Q,Y) = (P, X)¢
with Y = (yp)pem)- If (X,Y) has a right adjacent t-structure, then ) is precovering and
V N A satisfies the PC conditions, see Theorem Let p € [m] be such that x, = p™,
then y, = p*. We show that p~,p™ € C for some block C' € Q. Since y, = p*, VN A
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contains all the arcs having one endpoints in (p~, zg,] and the other in Z®, see Definition
and Definition By (PC3) or (PC3’) there exists an arc of VV with an endpoint
in Z(*") and the other in Z®"). Thus, p~,p* € C for some block C € Q. Since Q = P¢,
this is equivalent to {p™} € P.

Now assume that (2) holds, i.e. if y, = p* then p~,p™ € C for some block C' € Q.
We show that ) is precovering, i.e. that V N A is precovering. We check that V N A
satisfies (PC1) the other conditions are analogous. Assume that there exists a sequence
{(w, v} € VNANZPD for some p, q € [m']U[m] such that p # ¢ with {v7}, and {v}},
strictly increasing. Then p, ¢ € [m] and, since there exist arcs of V in Z®9), p~, ¢~ € C for
some C € Q. Moreover, y, = p* and y, = ¢, and then by assumption p~,p*, ¢, ¢ € C.

+ .0

Then, ¥V N A contains any arc having one endpoint in (p ,zp+] and the other endpoint

in (q+,zg+]. In particular, there exist strictly decreasing sequences {w]}, C Z®") and

{wh}, C 2" such that {|w?, w¥|}, €V N A. This concludes the argument. O

4.8.7 Recollements

We recall that in a triangulated category recollements are in bijection with TTF triples
and functorially finite thick subcategories, see Section [2.3.5l Thick subcategories of C,,
and C,, were classified in [22] and [40] respectively. The category C,, has only trivial
functorially finite thick subcategories, see Remark This is no longer the case for C,,,

where there exist non-trivial precovering or preenveloping thick subcategories, see Figure

for an example.
The following theorem follows directly from Theorem [£.8.2]

Theorem 4.8.25. Let (X,)) be a co-t-structure of Cp, and (P, X) be its associated half-

decorated half-non-crossing partition. The following statements are equivalent.
1. X is a precovering thick subcategory.
2. Y is a preenveloping thick subcategory.
3. For each p € [m] either x, = p or z, = p*.

The following corollary combines Theorem [£.8.24] and Theorem [4.8:25]

Corollary 4.8.26. Let X be a subcategory of C,,,. The following statements are equivalent.
1. X is a functorially finite thick subcategory.

2. The half-decorated half-non-crossing partition of [m’] U [m] associated to the co-t-
structure (X, X1), which we denote by (P,X) with X = (Tp)pem), satisfies the
following condition: for each p € [m] either x, = p or x, = p*, and if x, = p then
p~,p" € B for some block B € P.

4.8.8 Functorially finite co-t-structures

We compare the co-t-structures in C,,, which we classified in terms of half-decorated

half-non-crossing partitions, with the t-structures in C,,, which are classified in terms of
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decorated non-crossing partitions. Indeed, the similarity of these combinatorial objects
suggests there may be a connection between them. We find the following result, which
we prove using combinatorial arguments, although we expect there may be an (at least

partial) homological argument.

We recall that a co-t-structure is functorially finite if both X and Y are functorially finite,
ie. (X,)) admits both a left adjacent t-structure and a right adjacent t-structure.

Theorem 4.8.27. There exist bijections between the following classes of torsion pairs.
1. The functorially finite co-t-structures in C,, and the t-structures in Cp,.
2. The left bounded co-t-structures in C,, and the right bounded t-structures in Cy,.
3. The right bounded co-t-structures in C,, and the left bounded t-structures in C,y,.

We start with the following observation about decorated non-crossing partitions. We refer
to Definition [3.6.2)

Observation 4.8.28. Let (P, X) be a decorated non-crossing partition of [m]. Then
(P, X) can be “embedded” in [m/]U[m], i.e. (P,X) can be regarded as a pair where P is

a non-crossing partition of [m], and X = (zp) is such that

pE[m]
e if 2, = p then {p} € P, and
e if , = p™ then {p,p™ "} € B for some block B € P.

We introduce the following terminology.

Definition 4.8.29. A half-decorated half-non-crossing partition of [m'] U [m] is called

functorially finite if it corresponds to a functorially finite co-t-structure.

We have the following characterization of functorially finite half-decorated half-non-crossing

partitions.

Remark 4.8.30. By Theorem [4.8.24] a half decorated half-non-crossing partition (P, X)
of [m'| U [m], with X = (z,)
have that

pelm)], is functorially finite if and only if, for each p € [m], we

e if x, = p then p~,p™ € B for some block B € P, and
e if 2, =p* then {p*} € P.

We recall that in Sectionwe defined the notation P¢, “P, P~, and P* for a non-crossing
partition P.
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Lemma 4.8.31. The following is a bijection.

Functorially finite half-decorated

Decorated non-crossing
half-non-crossing partitions of <—>
partitions of [m)
[m]U [m]
(P, X) — ( X)
((“P)~, X) +— ( ): B

Proof. We check that the map « is well defined, for § the proof is analogous. Since P, and
thus P¢, is a non-crossing partition of [m/], by Observation (P€)* is a non-crossing
partition of [m]. Now let p € [m]. If x, = p then p~,pt € B for some block B € P, i.e.
{p~} € P¢ and as a consequence {p} € (P°)*. Similarly, if z, = p* then {pT} € P, i.e.
p~,pT € C for some C € P¢, and then p,pt+ € C* which is a block of (P¢)*. This proves
that « is well defined. The fact that o and 8 are mutually inverse is straightforward to
check and follows from the fact that ¢(P¢) = (°P)¢, see Section O

Now we can prove our result.

Proof of Theorem[].8.27. We prove statement (1). The functorially finite co-t-structures
in C,, are classified in terms of functorially finite half-decorated half-non-crossing parti-
tions of [m'] U [m], which, by Lemma are in bijection with decorated non-crossing
partitions of [m]. Since these are in bijection with the t-structures in C,,, we obtain the

claim.

Now we prove (2), (3) is dual. By Proposition left bounded co-t-structures in Cy,
are in bijection with half-decorated half-non-crossing partitions (P, X) of [m’] U [m] of the
form: P = {1',...,m'} and X = (2p)pe|m) is such that x;, # p* for each p € [m]. Moroever,
by Proposition right bounded t-structures in C,,, are in bijection with decorated non-
crossing partitions (P, X) of [m] of the form P = {{1},...,{m}} and X = (zp)pg)m is
such that z, # p™ for each p € [m]. It is straightforward to check that the maps « and 3
of Lemma restrict to these subsets, and therefore we have a well-defined bijection

between them. This concludes the proof. O
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Chapter 5

Higher-CY discrete cluster

categories

We introduce the category C ,,, which is a candidate higher-CY version of C,,. When
m = 1, Cy,1 is equivalent as an additive category to the Holm-Jgrgensen category 7,
studied in [27]. We define Cy, ., as a subcategory of C,, which is not full: it consists of the
w-admissible objects and morphisms of C,, where being w-admissible is a property defined
combinatorially. Under the assumption that a certain conjecture holds, the restriction to
Cw,m of the triangles and shift functor of C,, form a triangulated structure for Cy .
Assuming this conjecture, we prove that Cy, ,,, is w-CY and we describe its AR quiver. We
also classify the precovering subcategories, the (weakly) w-cluster tilting subcategories,
and the torsion pairs in Cy ., generalising some existing results in [27] and [14] for the

case m = 1, and in [21] for w = 2.

5.1 The category C,

For the rest of this chapter we denote C,, by Cz,,. We fix an integer w > 2 and we

introduce the category Cy m. We start by defining w-admissible objects and morphisms.

Definition 5.1.1 (|27, Definition 2.3]). An indecomposable object a = (a1, a2) € ind Ca
is called w-admissible a; —a; =1 mod (w —1). An object of Ca,, is called w-admissible

if it is the zero object, or if all its indecomposable direct summands are w-admissible.
We check that the property of being w-admissible is preserved under isomorphism.
Lemma 5.1.2. Let a,b € Cay,. If a is w-admissible and a = b, then b is w-admissible.
Proof. Since Ca ,y, is Krull-Schmidt, we can further assume that a and b are indecompos-
able. The claim follows because, since a = b, a and b have the same coordinates. ]

We introduce the following concept before defining w-admissible morphisms.
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Definition 5.1.3. Let a = (a1, a2),b = (b1,b2) € indCa,, be w-admissible. We say that b
is w-compatible with a if b € H (a) U H~(X%a), and

e if b e H"(a), we have by —a; =0 mod (w — 1),
e if b€ H (X%a), we have a; — by =1 mod (w — 1).

Definition 5.1.4. Let a,b € indCy,, and let f € Homg,, (a,b). We say that f is w-

admissible if
e f =0 and the objects a and b are w-admissible;
e f #0, the objects a and b are w-admissible and b is w-compatible with a.

Let ai,...,an,b1,...,by € ind Cy . A morphism f: @?:1 a; — @, b of Co pp, is called

w-admissible if its entries f; ;: a; — b; are w-admissible for each 7 and j.
We prove that the class of w-admissible morphisms is closed under composition.

Proposition 5.1.5. The composition of two w-admissible morphisms is a w-admissible

morphism.

Proof. Let a,b,c € Ca,, be w-admissible, let f: a — b and g: b — ¢ be w-admissible. We
show that ¢gf: a — ¢ is w-admissible. We first assume that a = (a1, a2), b = (b1,b2), and

¢ = (c1, ¢2) are indecomposable.

If gf = 0 then it is w-admissible. Now assume that gf # 0. We prove that ¢ is w-
compatible with a. Since f # 0 and g # 0, b € H*(a) U H~(X%a) and ¢ € (HT(b) U
H=(¥%b)) N (H"(a) U H=(¥%a)). By Lemma we have the following possibilities: b €
H*(a)and c € HY(a)NH™*(b),b € H"(a) and c € H~(X%a)NH*(X2b), and b € H~ (X2a)
and ¢ € H~(X?%a) N H™*(b). In the first case we have that ¢c; —a; = (¢c1 —b1)+ (b1 —a1) =0
mod (w— 1), and then ¢ is w-compatible with a, the other cases are analogous. Therefore,

gf: a— cis w-admissible.

Now we remove the assumption that a, b, and ¢ are indecomposable and we consider
their decomposition into indecomposable w-admissible direct summands: a = @?:1 aj,
b= @i’:l bi, c = @2:1 cp. Consider an entry (gf)n;: aj — ¢ of gf and assume that
(9f)n; # 0. We show that ¢, is w-compatible with a;. Note that 0 # (gf)n; = 22:1 Gni fij
implies that gp;fi; # 0 for some 1 < ¢ < m. As a consequence, since 0 # gp; fij: aj — ¢,
is w-admissible, then ¢j, is w-compatible with a;. We obtain that (gf)n;: a; — cp is
w-admissible. We can conclude that gf is w-admissible beacuse all its entries are w-
admissible. O

We introduce the category C, m as a subcategory of Ca ,,, though not a full one. Indeed,
the Hom-sets of Cy, ,n, are vector subspaces of the Hom-spaces of Cs .

Definition 5.1.6. We define C,, as the subcategory of C5,, having as objects the w-

admissible objects of Cs ,, and as morphisms the w-admissible morphisms of Cs .

Proposition 5.1.7. Let a,b € Cy . Then Home, ,, (a,b) is a subspace of Homg, ,, (a,b).
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Proof. Let f,g € Home, ,,(a,b) and A € K. We have to show that f+\g € Home, ,, (a,b).
We consider the decompositions of a and b into w-admissible indecomposable direct sum-
mands: a = PJ_;a; and b = @211 b;. We show that all the entries (f 4+ Ag);; of
[ + Ag are w-admissible. We fix ¢ and j. If (f + Ag);; = 0 then it is w-admissible. If
fij+Xgij = (f+XAg)ij # 0, then f;; # 0 or g;; # 0. Since f;;,gi;: a; — b; are
w-admissible, it follows that b; is w-compatible with a;, and then (f + Ag);;: a; — b; is

w-admissible. O
Proposition 5.1.8. Let a,b € indCy . Then

K ifbe H"(a) UH (%2%a) and b is w-compatible with a,
Homa (a7 b) g
0  otherwise.

Proof. 1If b ¢ H"(a) UH ™ (X2a) then, since Home,,, (a,b) = 0, we obtain Home, ,, (a,b) =
0. Assume that b € H" (a)UH ~ (X%a), then Homg, , (a,b) 2 K. If b is w-compatible with a,

~

then any morphism of Homg, ,, (a, b) is w-admissible, i.e. Home,, ,, (a,b) = Home, ,, (a,b)

~—

K. If b is not w-compatible with a, then the only w-admissible morphism of Home, ,, (a,b

O

is zero, i.e. Home,, ,, (a,b) = 0.

5.2 Triangulated structure

We observe that the category Cy p, is K-linear, Hom-finite, and Krull-Schmidt, see Section
Now we want to prove that C,,, has a triangulated structure. To do so, we first
define the shift functor and the collection of triangles. The shift functor ¥: Cy m — Cuwm
is defined as the restriction of the shift functor ¥: Cy ,, — Cap, to Cym. We have to check
that this functor is well defined.

Lemma 5.2.1. Let ¥ be the restriction of the shift functor ¥: Ca p — Ca, to the subcat-
egory Cy.m-. Then ¥ sends objects of Cym to objects of Cym, and morphisms of Cym to

morphisms of Cyy -

Proof. By the additivity of ¥ it is enough to consider indecomposable objects and mor-
phisms between indecomposable objects. Consider a = (aj,a2) an indecomposable w-
admissible object, it is straightforward to check that (aa — 1) — (a1 — 1) = ag —a; =1
mod (w—1), i.e. Xa is still w-admissible. Now consider a, b € ind Cy,,, and a w-admissible
morphism f: a — b. If f = 0then X f = 0 is w-admissible. If f # 0 then b is w-compatible
with a and it is straightforward to check that ¥b is w-compatible with ¥a. As a conse-

quence, X f is a w-admissible morphism. O

Now we define a triangulated structure of C, ,, from the triangles of Co,, which are

w-admissible.

Definition 5.2.2. A triangle a i> e L5 b i> Ya of Ca,y is called w-admissible if a, b

and c are w-admissible objects and f and g are w-admissible morphisms.
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We want to prove the w-admissible triangles and the shift functor give a triangulated
structure of Cy , see Theorem [5.2.17] This result will rely on some conjectures, see
Section [£.2.2]

5.2.1 Making morphisms admissible

Before discussing Theorem [5.2.17] we need some technical lemmas about admissible mor-

phisms. We start with the following.

Lemma 5.2.3. Let a,b,c € indCym, f: a — b, and g: b — ¢ be morphisms such that gf

1s w-admissible and non-zero. Then f is w-admissible if and only if g is w-admissible.

Proof. We prove that if f is w-admissible then g is w-admissible, the other implication is
analogous. Since gf # 0, by Lemma we have the following possibilities: b € H*(a)
and ¢ € H(a) N H*(b), b € H'(a) and ¢ € H (X%b) N H~(¥%a), b € H (X2%a) and
c € HT(b) N H™(X%a). Assume that the first case holds, the other cases are analogous.
We have that ¢; — b = (¢; —a1) — (b1 —a1) = 0 mod (w — 1) because ¢; —a; = 0
mod (w — 1) and the same holds for by — a;. Thus, ¢ is w-compatible with b and then ¢

is w-admissible. O

From a morphism of Ca ,, between two w-admissible objects, we can obtain a w-admissible

morphism by taking its w-admissible part.

Definition 5.2.4. Let ai,...,apn,b1,...,b € indCypm and f = (fij)i;: Diqa; —
@le b;. We define f, the w-admissible part of f, as

_ fi,j if fij is w-admissible,
(Pig=1"" !

0 otherwise.

The following lemmas describe how the w-admissible part of a morphism behaves with
respect to composition. Note that in the lemma below the objects a, b and ¢ are not

necessarily indecomposable.

Lemma 5.2.5. Let a,b,c € Cym, f: a = b, and g: b — ¢ be morphisms in Ca,,. The

following statements hold.
1. If f is w-admissible and gf is w-admissible, then gf =3f.
2. If g is w-admissible and gf is w-admissible, then gf = gf.

Proof. We prove statement (1), statement (2) is analogous. We write the decomposition

n
=1

@le b;, and ¢ = @2:1 cy. We write the morphisms as: f = (f;;)i; and g = (gn,i)n,i- We

of a, b and c¢ into indecomposable w-admissible direct summands as: a = @ _; a;, b =
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fix h and j, we prove that (gf)n; = (9f)n,;. We define the following sets of indices:

I ={1 <i<k|gp; is w-admissible and gy ; f; ; # 0}, and
I ={1 <i<k]|gp,;is not w-admissible and gy ;fi; # 0}.

Note that we can write (gf)s,; and (gf)s,; as follows:

K
9Hns =D gnifii=>_ gnifii+ > gnifij, and

=1 i€l i€ls
k
G g = Z?h,ifi,j = Zgh,ifi,j-
i=1 i€l

We denote S1 = > ;cr gnifij and S2 = > . gnifij. We prove that So = 0. Assume
that Sy # 0. If (gf)n,; # 0 then ¢, is w-compatible with a;. Moreover, since Sy # 0, there
exists ¢ such that g ; is not w-admissible and gy ;f; ; # 0. Since ¢j, is w-compatible with
aj, gn,fij is w-admissible. By Lemma we have that g ; is w-admissible, giving a

contradiction.

Now, if (gf)n; = 0, we have that S; = —Sy # 0. As a consequence, since S; # 0, there
exists 4 such that g ; is w-admissible and g5, ;f;; # 0. Since both g;; and f;; are w-
admissible, ¢, is w-compatible with a;. This contradicts the fact that Sy # 0 as above.
Therefore, we can conclude that Sy = 0. This implies that (¢f)n; = (Gf)n,;- O

Lemma 5.2.6. Let a,b,c € Cym, f:a = b and g: b — ¢ be morphisms. The following
statements hold.

1. If f is w-admissible, then gf = gf.

2. If g is w-admissible, then gf = gf.

Proof. We prove statement (1), statement (2) is analogous. Keeping the same notation of
the argument of Lemma for each pair of indices h and j we have that

k
(9 =D gnifii=>_ gnifii+ > gnifiss
i=1

i€l ISP

K
9Hni =D gnifig = gnifii+ > gnifij, and
i=1

i€l i€ly
K
@ =D Tnifii =D gnilij-
=1 i€ly

Note that for each i € I; we have that both g;; and f;; are w-admissible, and then
m = gh,ifi,j- Moreover, for each 7 € I3, by Lemma we have that gy ;f; ; is not
w-admssible, and then gy ; fi ; = 0. Thus, we obtain that (gf)nj = (gf)n . Therefore, we
can conclude that gf = gf. O
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With the following lemmas we prove that the w-admissible part of an isomorphism between

w-admissible objects is still an isomorphism.

Lemma 5.2.7. Let ny and ng be positive integers, ai,as € ind Cy,m be such that a; 2 ao,

fra* = ay? and g: a3® — af' be morphisms. Then gf =0 and fg = 0.

Proof. We prove that gf = 0, the other claim is similar. We write f = (f;;):; and g =
(gh,j)n,;- For each h and j we have that (¢f)n; = > .2y gn,ifi,j- Note that gy fij: a1 — a;
is zero, otherwise f; j: a1 — ag is a split monomorphism, which contradicts the fact that

a1 # az. Thus, all the entries (gf)y ; are equal to zero. O
Lemma 5.2.8. Let a € Cym- If p: a — a is an isomorphism, then @ is an isomorphism.

Proof. After reordering the indecomposable direct summands of a, we can write a =

®;, afi, where a1, ...,a, € indCy,, are pairwise non-isomorphic. We write ¢ = (¢; ;)i ;
. kj k. . .

where ¢; ;: a;’ — a;". We proceed by induction on n.

If n =1, it is straightforward to check that ¢: alfl — a’fl is w-admissible, and then @ = ¢

is an isomorphism. If n > 2, we define o’ = @ a;

¥, and we write: a = a/ @ af» and

/ /

Q1P

© = <(p,1’1 @1’2 ), where ¢} 1: a — d', ¢ 51 akn — ', and @) ;: @' — akn. We prove that
2,1 Pn,n ) ) )

¢ 1 and ¢y, ,, are isomorphisms.

Vi Yo
¢,2’1 %m). Thus, by

Lemma we have that 1y = ¢} 1911 + ¢iots; = 1191 and 1y = ¥y ,97, +
/ ! _ / / / . . . . . .
VY1a¥s1 = Y1191, As a consequence ¢ 4 is an isomorphism, and similarly we obtain

Since ¢ is invertible, there exists ¢ ~!, which we denote by 1 = (

that ¢y, is an isomorphism.

By the induction hypothesis, we have that 5171 and ©,, , = pn, have inverses, which we

denote by aq,1 and ay,, respectively. Now, we define a2 = —041,151,20671,” and a1 =

—22¢'9 10 . Consider the morphism a = (a5} ans ). It is straightforward to check
1y O

that ap = ( 015, ) = pa. We can conclude that @ is an isomorphism. O

1

Lemma 5.2.9. Let ¢ be a w-admissible isomorphism, then ¢~ is w-admissible.

Proof. We denote 1) = ¢~ 1. Since 1) = 1 is w-admissible, then, by Lemma o =
o = 1. Similarly, we also obtain that )¢ = 1 and therefore ¢ = v, i.e. ¥ is w-
admissible. O

5.2.2 The conjecture

In Theorem|[5.2.17|we want to prove that the functor 3: Cy ;m — Cu,m and the w-admissible
triangles, from Definition form a triangulated structure for Cy, ;. We can prove this

result under the assumption that the following conjecture holds.

Conjecture 5.2.10. Any w-admissible morphism h: b — >a can be extended to a w-

admissible triangle.
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We prove Conjecture [5.2.10] for some cases. We first consider the case of a triangle having

indecomposable outer terms, then the triangles having only first term indecomposable.

5.2.3 Triangles having indecomposable outer terms

Lemma 5.2.11. Let a,b € indCy , be such that b 2 Xa, and h: b — Xa be a non-zero

w-admissible morphism. Then any triangle a — e — b — Xa is w-admissible.

Proof. Consider a triangle a i> e L5 b 1 Ya, we prove that e, f, and g are w-
admissible. We recall that the middle term e is either indecomposable or has two in-
decomposable summands, see Section [3.4] Assume that e has two indecomposable sum-
mands, for the other case we can proceed similarly. We write f = (;;) ta — e; Peg
and g = (9192): e ey — b. Since a = (a1,a2) and b = (b1,b2) cross, we have the
following possibilities: a; < by < ag < b, i.e. Ya € H™(X?b), or by < ay < by < ag, i.e.
Ya € HT(b), see Section Assume that the first case holds, the other case is analogous.
We have that e 2 e; @ ey with e; = (a1, b2) and ey = (b1, as).

Note that e; and ey are w-admissible, indeed by — a1 = (bg —b1) + (b1 — (a1 — 1)) —1 =1
mod (w—1) and ag —b; = (ag—a;)— (b1 — (a1 —1))+1 =1 mod (w—1). Moreover, since
e1,e9 € H(a) and b € H(e1) N H (e3), it is straightforward to check that e; and ey are
w-compatible with a, and b is w-compatible with e; and eo. We can conclude that fi, fo,
g1, and go are w-admissible, i.e. f and g are w-admissible. Thus, a i) e 2b s vais

a w-admissible triangle. d

Proposition 5.2.12. Let a,b € indCy,, and h: b — Ya be a w-admissible morphism.
Then there exists a w-admissible triangle a — e — b s Sa.

. . . ((1)) (01), o h
Proof. If h = 0 or h is an isomorphism, then a — a®b — b — Yaora — 0 — b —

Y.a are, respectively, w-admissible triangles. Now assume that h is not an isomorphism

and h # 0. Consider a triangle a e 2 p M sain Ca2,m, by Lemma [5.2.11) we have
that it is w-admissible. O

5.2.4 'Triangles having one indecomposable outer term

Lemma 5.2.13. Leta,by,...,b, € indCy n be such that the objects by, ..., b, are pairwise
Hom-orthogonal and b; % Ya for eachi. Letb= D, b and h = (k1 ... hn) : b — Xa be a
w-admissible morphism such that h; # 0 for each i. Then any triangle a — e — b N

Ya is w-admissible.

Proof. The proof is by induction on n. The case n = 1 is Lemma Assume that
n > 2. Consider a triangle a i> e L5 b I >a, we prove that it is w-admissible.
Since Ya € HT(b;) U H~(X?b;) for each i, we have that by,...,b, € HY (77 'a) U H (Za).
Assume that by,...,b, € HY(r71a), the other cases are analogous. After reordering the
objects by, . .., by, we can assume that their first coordinates are in increasing order, Figure

[3.6] provides an illustration.
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By [22] Lemma 4.16], the object e has either n indecomposable direct summands, when
the first coordinate of b, is equal to as — 1, or n + 1 indecomposable direct summands,
otherwise. Assume that e has n+ 1 indecomposable direct summands e = e; & -+ - B €11,

the other case is analogous.

It is straightforward to check that Home, ,,(a, e;) = K for each j, and Homg, ,, (e;,b;) = K
if and only if i = j or ¢« = j — 1. Thus, in order to show that the triangle a e Syt
Ya is w-admissible, it is enough to check that ey, ..., e 41 are w-admissible, ey, ..., e 11

are w-compatible with a, and b; is w-compatible with e; and e; 1 for each i.

Let b/ = (h1 = hn1) and B’ = (ha - hn ). Consider the triangles

n—1
hl
a—>e1@"~@en_1@e;—>@bi—>2a and
i=1

n
a—seyDesD - Dentt —>@bi h—)Ea.
i=2
By the induction hypothesis, e1,...,e,41 are w-admissible. We denote b; = (b; 1, b;2) for
each i. Thus, by [22, Lemma 4.16], we have that e; = (a1,b12), €; = (bj—1,1,b;2) for each
2 <i<mn,and eyr1 = (by_1,a2). Moreover, e; € Ht(a) for each 1 < i < n + 1 and
b; € H"(e;) N H (e;41) for each 1 < < n, see Figure

Figure 5.1: The middle term e = e; ®es PesgPey of the triangle a —» e — by Pbo B by —
Ya in 6272.

Therefore, by Definition €1,...,ent1 are w-compatible with a and b; is w-compatible
with e; and e;4; for each 1 < i < n. We can conclude that the triangle a i> e -2 b L)

Ya is w-admissible. O

Proposition 5.2.14. Let h: b — Xa be a w-admissible morphism such that a is indecom-

posable. Then there exists a w-admissible triangle a — e — b L

Proof. Consider a triangle a — e — b s Ya. We write b = D, by with by,...,b, €
ind Cym, and h = (b1 hn ) : @ | b — Xa. We divide the proof into steps.

Step 1. We show that, without loss of generality, we can assume that hy,..., h, # 0.
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Up to reordering the summands of b, we can write h = (h1 - hp 0 0): (@le b,‘) @
(D41 b)) — Sa. We denote V' = @F_, b, 0" = @)}, bi, and I’ = (h1 ~ k). Thus

h = (n o). Note that, if i’ extends to a w-admissible triangle, i.e. there exists a w-

admissible triangle a AN VAN Ya, then

@ / 11 (%/ O) / n h
a2 LV Va5 Y
is a w-admissible triangle, and we obtain the claim.

Step 2. We prove the statement assuming that hy, ..., hg # 0.

Now assume that all the entries of h are non-zero. We recall that, by Lemma [3.4.2] there
exist b = @F
that b},...b}, are pairwise Hom-orthogonal, b 2 Ya and h] # 0 for each i. Moreover,

i1 b, a direct summand of b and a morphism A’ = (4] ~ hj ) : b’ — Xa such

there is the following isomorphism of triangles.

a e b h Ya

5.1
by bogn I,k o
a ~2% oy Vot — Ya

Since the second row is a triangle in Cg,,, we have that a i) e i/> ¥ Y Sais a
triangle because it is a direct summand of a triangle, see [29, Lemma A.1]. Note that b’
is w-admissible because it is a direct summand of b, and A’ is w-admissible because h is
w-admissible and all its entries are non-zero. Since h’ is w-admissible and the assumptions

of Lemma [5.2.13| are satisfied, it follows that a e Ly Py va is a w-admissible

triangle, and as a consequence the second row of is a w-admissible triangle.

By Lemma Lemma and Lemma we have that: » and (p)~! are iso-
morphisms, (7)~! (%’ (1)) is w-admissible, and (n’ 0)® = h. We denote ¢” = ()~ (% (1))
Thus, the following diagram commutes.

f, 1
a*><0> e g b h Ya

}(f/) ll (49) F ll

0 —07y oy MO g (WO

f/ 1"
Since the second row of the diagram above is a triangle, we have that a L) dab L
b s Sa is a w-admissible triangle. We conclude that h extends to a w-admissible

triangle. O

Proposition 5.2.15. Let h: b — Xa be a w-admissible morphism and a — e — b LN

Ya be a triangle in Co . Then e € Cym.

Proof. We write a = @?:1 a; with a1,...,a, € indCy . We proceed by induction on n.
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If n = 1 then, by Proposition we have that h extends to a w-admissible triangle
a— ¢ — b Sa Thus, e = ¢’ and, by Lemma we have that e is w-admissible.

Now assume that n > 2. Let @’ = @?;11 a;, then a = d ® ap, h = <Z;) :b— Yd @ Xay,
and f = (fi f2). We consider the following Octahedral Axiom diagram

(5) h
> E g, L e — v
1 (01) u J,l
o R NN AN S
0 v lh
4 4 ((1))

Ya @ Ya,

where a, L> LG LN Y.a, is a w-admissible triangle, which exists, by Proposition
5.2.14] because hy is w-admissible and a, is indecomposable. Since (§) = hg' is w-
admissible, then v is w-admissible. Therefore, by induction hypothesis, e is w-admissible.

O

5.2.5 The axioms

We prove that if Conjecture holds then the functor X: Cy m — Cym and the w-

admissible triangles form a triangulated structure for Cy, p,.

Proposition 5.2.16. Assume that Conjecture |5.2.10 holds. Let a e Sp Py v be

a triangle in Ca m with a,e,b € Cym and g, h w-admissible morphisms. Then a i) e 2y

b Ya is a w-admissible triangle.

Proof. By Conjecture [5.2.10} there exists a w-admissible triangle a L) e L b v,

Then there exists an isomorphism ¢: e — e such that the diagram below commutes.

e Ty,

a e
|
J,l | © J(l ll
<
a e

f I sy,

~

By Lemma we have that gp = gp = ¢’. Moreover, since f’ is w-admissible, by
Lemma we have that Bf' = pf’ = f. Now, by Lemma m © is an isomorphism,
and the diagram below commutes.

@

U N NS BN 34

J bk

! Ya

\
g

€l

~

)
Q

(=
>

Therefore, a L e 25 b Saisa triangle in Cg ,,,. Since it is also w-admissible, then
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we conclude that it is a w-admissible triangle. O

Theorem 5.2.17. Assume that Conjecture holds. Then the w-admissible triangles

and the functor X: Cym — Cwm form a triangulated structure for Cy m.

Proof. We check the axioms of Definition [2.3.1] individually.

(TR1)

(TR2)

(TR3)

(TR4”)

It is straightforward to check that the class if w-admissible triangles is closed under
w-admissible isomorphism, and that a dey 4 50— Ya is a w-admissible triangle
for each a € Cy,m. Moreover, by Conjecture [5.2.10, each w-admissible morphism

extends to a w-admissible triangle.

It is straightforward to check that rotations of w-admissible triangles are still w-

admissible triangles.

Let a i> e 25 b " Yaand 2 % y — z — Yz be w-admissible triangles,
and a: a = x, 8: e = y be w-admissible morphisms such that g f = ua. We show

that there exists v: b — z a w-admissible morphism such that the following diagram

cominutes.
a ! e 25 by v
RN
T —2y GRS 3%

Since the first and second rows of the diagram above are also triangles in Cs ,,, we
know that there exists v: b — z making the diagram above commutative. If ~ is
w-admissible, then we have the claim. If v is not w-admissible, then we consider
instead its w-admissible part 7, see Definition [5.2.4] By Lemma [5.2.5] we obtain
that g = v¢ = vB and ry = ry = (Xa)h, since vg = vf and ry = (X«a)h are w-
admissible. Thus, there exists a w-admissible morphism making the diagram above

commutative.

Let a i> e L b Yaand a 5 2 % y — Ya be w-admissible triangles,

and let a: b — y be a w-admissible morphism such that ra = h. Since the two
w-admissible triangles are also triangles in Ca,,, there exists a morphism 3: e — x

such that the following diagram commutes

af I o p—r iy

e
J/la i B la J/IZLZ
r

U
a >

B
i b
and e <—g>> x @b (g) Y (—f)>r Ye is a triangle in Cy,,. As a consequence, by

Lemma if we replace 3 with 3, the diagram above still commutes. Moreover,
by Proposition [5.2.16]
(%)
-9

e — x@b(

19, B 5
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is a w-admissible triangle.

We conclude that Cy, , is triangulated. O

For the rest of this chapter we assume that Conjecture [5.2.10] holds.

5.3 Calabi-Yau dimension

We prove that ¥ is a Serre functor for Cy pm, i.e. Cym has w-CY dimension. We start

with the following lemmas.

Lemma 5.3.1. Let a € indCy . Then X%a € H™(X2a).

Proof. We denote a = (a1, a2). Note that, since w > 2, a1 —w < a3 —2 and ag—w < az —2.
In order to prove that X%a € H*(E2a), it remains to check that ag —w > ay. This follows
from the fact that ag —a; =1 mod (w—1),ie. ag =a;+1+k(w—1) for some k > 1. O

Lemma 5.3.2. Let a,b € indCy,, and assume that there exists 0 # f € Home,, ,,(a,b).
Then there exists 0 # g € Home, ,, (b, X"a) such that gf # 0.

Proof. Since f # 0, we have that b € H* (a)UH ~(X2a). Assume that b € H*(a), we show
that X%a € H~(3?b). As a = (a1, az) is w-admissible, we can write ag —a; = k(w—1) +1
for some k > 1, and as b = (b1, by) is w-compatible with a we can write by —a; = h(w —1)

for some h > 0.

We have that a1 —w < by — 2 and a2 — w < by — 2. Indeed, since b € H*(a), a1 < b <
by +w — 2 and also ag < by < by +w — 2. Thus, in order to prove that ¥%a € H~(X2b), it
remains to check that as — w > by. Since b € H*(a), then b <ags —2and 2 <ag — by =
az—ay+a;—b; = (k—h)(w—1)+1. As a consequence, we have that k—h > 1, otherwise,
if kK —h < 0 we obtain that 2 < 1 which is impossible. Then ag —b; > (w —1) +1 = w,
ie. ag —w > by. This shows that X¥a € H~(X?b). Moreover, by — (a; — w) = 1
mod (w — 1) and then X"a is w-compatible with b. Thus, there exists a w-admissible
non-zero morphism g: b — X"%a. By Lemma we have that ¥¥a € H~(X%a). Since
be H"(a) and X%a € H~(X%b) N H~(X?a), then, by Proposition gf #0.

If b € H~(X%a), then we can prove analogously that ¥%¥a € HT(b)NH ~(¥%a) and that ¥¥a
is w-compatible with . Thus, there exists a w-admissible non-zero morphism g: b — X%a
such that gf # 0. This concludes the proof. O

The following result follows from the lemmas above. Moreover, by Theorem [2.1.5] it

follows that X% is a Serre functor.

Proposition 5.3.3. Let a,b € Cy . The following is a non-degenerate bilinear form.
®,: Home, ,, (a,b) x Home, ,, (b, X"a) — K

(f.9) — Tr(gf)
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Proof. 1t is straightforward to check that ®, ; is bilinear, we prove that it is non-degenerate.
Let f: a — b be non-zero, we show that there exists g: b — X"a such that ®,;(f,g9) =
Tr(gf) # 0. Wedenote a = @;_, a; and b = @5:1 bswithay,...,an,b1,...,b; € indCy pm,
and f = (fst)st with fes: ap — bs. Since f # 0, there exist 1 < i <mnand1<j <k
such that f; ;: aj — b; is non-zero. By Lemma there exists v: b; — X"a; such that
vfi; # 0. Now, we define g = (gs¢)s¢: b — X%a as

v ifs=jandt =1,
gst =
0 otherwise.

Then, (gf)it =vfij #0ift = j, and (gf)++ = 0 otherwise. As a consequence, Tr(gf) # 0.
Similarly, we can prove that given a non-zero morphism g: b — ¥>"“a, there exists f: a — b
such that ®,(gf) = Tr(gf) # 0. We conclude that ®,; is non-degenerate. O

5.4 The AR quiver

We describe the AR quiver of Cy . We introduce the Hom-hammocks and we study
the factorization properties of the morphisms of Cy ;. Then we discuss the irreducible

morphisms and the almost split triangles.

5.4.1 The coordinate system

We introduce a coordinate system for Cy, ,,, and in Section we prove that it describes
the AR quiver of Cy . For each p,¢ € [m] and 0 < i < w — 2, we define the set of

w-admissible arcs

7Pt — {a = (a1,a3) € indCym | a € ZPD and a; =i mod (w — 1)} .

We can arrange the isoclasses of indecomposable objects of C,, ,, into a coordinate system

having

e (w — 1)m components of type ZA~, each corresponding to the sets of arcs AR
for pe [m] and 0 <i<w—2, and

o (w— 1)(75) components of type ZAZ, each corresponding to the sets of arcs VAR

for p,ge[m],p<q,and 0 <i <w— 2.

Figure illustrates the coordinate system of Cy, .

5.4.2 Hom-hammocks and factorization properties

We introduce the Hom-hammocks in Cy, . The following definition is the higher number

of accumulation points version of [26] Definition 2.5] or [I4] Section 2.2, p. 7].
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LN
N
p
7(1,1,2) o N 7,2:2.2)
N
, N N N
N

" 7,(1,2,0) e 7,(1.2.2) N 7,(1:2.1) N

e N 7 N 7z N N s

7,(1,1,0) \\\ /// 7,(2:2,0) \\\ /// 7,(1.1,1) \\\ e 7,(2:2.1)
Figure 5.2: The coordinate system of Cy 2.

Definition 5.4.1. Let a = (a1,a2) € indCy 1. We define

H/(a) ={b= (b1,by) €indCym | b€ H'(a) and by —a; =0 mod (w—1)} and
H,(a) ={b= (b1,b2) €indCym, | b€ H (a) and a; —by =0 mod (w —1)}.

Hl(a) ={b= (b1,b2) € indCypm | a1 < by <az —w and by > az} and
H;(a) = {b = (bl,bg) € indcmm | a1 +w < by <ay and by > al}.

Figure 5.3| provides an illustration of the Hom-hammocks of C,, ,,. With Proposition
we will prove that the Hom-hammocks describe the Hom-spaces of C, ;,,. First, we need the
following lemma. We recall that, by Lemma Y%a € H™(X%a) for each a € ind Cy .

Figure 5.3: The Hom-hammocks Hf (a) and H,, (X"a) for a € ind Cy 2.

Lemma 5.4.2. Let a,b € indCy . The following statements hold.
1. b€ H} (a) if and only if b € H* (a) and b is w-compatible with a.

2. b€ H,(X%a) if and only if b € H~(X%a) and b is w-compatible with a.

Proof. Statement (1) is straightforward, we prove statement (2). We write a = (a1, az)
and b = (b1, b2). Assume that b € H, (X%a), then b € H~(X¥a) by Definition We
show that b € H~(X2%a). Note that by < a3 —w < a; —2 and by < ag —w < ag — 2, it
remains to check that by > ay. Since b is w-admissible, by — by = 1 + k(w — 1) for some
k > 1. Moreover, since b € H,; (¥"a), we have that (a1 —w) —b; =0 mod (w — 1), i.e.
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(a1 —w) — by = I(w — 1) for some | > 0. Thus,
bg—al:(bg—bl)—(al—bl):(bg—bl)—((al—w)—bl)—w:(k+l—1)(w—1).

We have that k+1—1 > 0. Indeed, since b € H™ (X"%a), by —a; > —w+2, and this implies
that £k +1 —1 £ —1, otherwise we have the contradiction —w + 2 < by —a; < —w + 1.
As a consequence, by — a; > 0, and this proves that b € H~(X2a). Moreover, a; — by =

(a1 —w) —by+w=1 mod (w— 1), i.e. b is w-compatible with a.

Now assume that b € H~(¥?a) and b is w-compatible with a. We prove that b € H, (S%a).
Note that by > a3 > a3 —w+ 2 and, since b is w-compatible with a, a; —b; = 1+ 1(w—1)
for some [ > 1, and as a consequence a; — by > w. Therefore, it remains to check that
by < ag—w. Since a and b are w-admissible, ag—a; = 14+n(w—1) and by—b; = 1+h(w+1)
for some n,h > 1. Thus,

a2_b2:(a2—a1)+(a1_bl)_(bQ_bl):1+(n+l—h)(w—1).

Since by < ag — 2, we obtain that n+ 1 — h > 1 similarly as above. Then, as — by > w, i.e.
by < ag —w. This proves that b € H~(X"a). Moreover, (a; —w) —b; = (a1 —b1) —w =0
mod (w — 1). This concludes the argument. O

The following proposition follows directly from Definition and Lemma [5.4.2

Proposition 5.4.3. Let a,b € indCy . Then

K ifbe Hf(a) UH,(X%a), and
Homcw,m (a’? b) =
0 otherwise.

The factorization properties of the morphisms in C, , follow directly from Proposition
and Lemma We refer to [14, Proposition 2.3] for the case m = 1 and to
Lemma [3.2.5] for the case w = 2.

Proposition 5.4.4. Let a,b,c € indCym, f: a — b, and g: b — ¢ be non-zero w-

admissible morphisms. Assume that one of the following conditions hold.
1. be Hf (a) and c € H} (a) N H} (D).
2. b€ H}(a) and c € H, (X%a) N H, (X™b).
3. be H,(X%a) and c € H, (X%a) N H} (D).

Then gf # 0.

5.4.3 Irreducible morphisms and almost-split sequences

With the following proposition we describe the irreducible morphisms of C, ,, and we
prove that the coordinate system discussed in Section yields the AR quiver of Cy .

107



We recall that when we say that a morphism f: a — b factors through an object ¢, we
mean that there exist g: a — ¢ and h: ¢ — b such that f = hg.

Proposition 5.4.5. Let a = (a1,a2),b = (b1,b2) € indCy . If b = (a1,a2 +w — 1) or
b= (a1 +w — 1,a2), then any non-zero w-admissible morphism a — b is irreducible in
Cw,m. Moreover, there are no other w-admissible irreducible morphisms in Cym between

indecomposable w-admissible objects.

Proof. Assume that b = (aj,a2 + w — 1), and consider a non-zero morphism f: a — b.
Moreover, assume that f = hg for some w-admissible morphisms ¢g: a — c and h: ¢ — b.
We prove that g is a split monomorphism or g is a split epimorphism. Note that, by the
one-dimensionality of the Hom-spaces, we can assume that c¢ is indecomposable. We have
that

¢ € (H(a) U H (S"a)) 1 (Hy, () U H (S7)) = {a,b).

We refer to Figure for an illustration. Thus, either ¢ = a or ¢ = b, ie. g is a
split monomorphism or h is a split epimorphism. We conclude that f is irreducible. If

b= (a1 +w — 1,az) then we can proceed with an analogous argument.

Hf(a) UH, (S%a)

w

Hy (b) U H(S7)

Figure 5.4: Illustration of the argument of Proposition [5.4.5

Now consider an irreducible morphism f: a — bin Cy ;, with b € ind Cy . By Proposition
if by = ag then f factors through (a1,as + w — 1), and if by # ay then f factors
through (a1 +w—1, az). Assume that the first case holds. There exist non-zero morphisms
g:a— (aj,aa+w—1)and h: (a1,a2+w—1) — b such that f = hg. Since f is irreducible,
g is a split monomorphism or h is a split epimorphism. Therefore, we obtain that b =
(a1,a2 +w —1). If f factors through (aq, a2 +w — 1), we obtain that b = (a1 +w — 1, a2)

for the same reason. This concludes the argument. O
Since Cy,m has a Serre functor, see Proposition then, by Proposition it has
almost split triangles. We denote the AR translate of Cy ., by 7.

Theorem 5.4.6. Let a = (a1, a2) € indCy . The following statements hold.

1. If ay = a1 + w, then (a1 —w+ 1l,a2 —w+ 1) — (a1 —w + 1,a2) — (a1,a2) —

Y(a;1 —w+1,a2 —w+ 1) is an almost split triangle.

2. If as # a1 +w, then (g —w+1,a2—w+1) — (a1, a2 —w~+1)® (a1 —w+1,a2) —
(a1,a2) — X(a1 —w+1,a2 —w + 1) is an almost split triangle.
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Thus, we have that T,a = (a1 —w + 1,a2 — w + 1).

Proof. 1t is straightforward to check that the triangles in the statement are w-admissible,
we prove that they are almost split. Assume that ao # a1 +w, the other case is analogous.
We prove that the morphism f: (a1 —w+1,a2—w+1) = (a1,a2—w+1) P (a1 —w+1,a2)
is left almost-split. First, note that f is not a split monomorphism. Then, consider a w-
admissible morphism h: (a3 —w + 1,a2 —w + 1) — b which is not a split monomorphism.
Without loss of generality, we can further assume that b is indecomposable. By Proposition
h factors through (a1, a2 —w+ 1), if by = ag, or through (a; —w + 1, az), otherwise.
Thus, there exists g: (a1,a2 —w+1) @ (a1 — w + 1,a2) — b such that h = gf. O

5.5 Precovering subcategories

We classify the precovering subcategories of C,, ,, in terms of converging sequences of w-
admissible arcs. We refer to Section for the case w = 2, and to [14], Section 6] for the
case m = 1. The following is the w-CY version of Definition We recall that the
accumulation points of Z,, are in cyclic order, i.e. 1 <2 < --- < m < 1, and, for each
p € [m], pT denotes the next accumulation point of p with respect to the cyclic order.
Moreover, in the definition below, if ¢ = m then ZPa" ) means Z(Lpi=1 mod (w-1)) e

refer to Section for the notation |z, z2|.

Definition 5.5.1. Let X be a subcategory of Cy . We say that X satisfies the w-

precovering conditions, w-PC for short, if it satisfies the following combinatorial conditions.

(w-PC 1) If there exists a sequence { (27, 25)},, € XNZP% for some p, g € [m] such that p # ¢
and the sequences {z7}, and {23}, are strictly increasing, then there exist strictly
decreasing sequences {y"}, C Z®") and {y5}, C Z4") such that {|y?, 9%}, C
X Nzwhati),

(w-PC2) If there exists a sequence {(z7,25)}, € X NZP9) for some p,q € [m] such that
p # q" and the sequences {z7},, and {z3},, are respectively strictly decreasing and

strictly increasing, then there exist strictly decreasing sequences {y]}, C 7P and
{y5}, € 2 such that {|y}, y|}, CUNZPD,

. ! ' n_ an (p,9,9)
9 — )
(w-PC2') If there exists a sequence {(z},25)}, CUNZ for some p,q € [m] such that
q # pT, p # q, and the sequences {27 },, and {27 },, are respectively strictly increasing
and strictly decreasing, then there exist strictly decreasing sequences {y{'}, C VA

and {y2}, C Z@ such that {(y},y3)}n € X NZE 0D,

(w-PC 3) If there exists a sequence {(z1,25)}, € X NZP%) for some p,q € [m] such that the
sequence {z4},, is strictly increasing, then there exists a strictly decreasing sequence
{3}, C 297 such that {|zy, y5|}, C X NZEC),

(w-PC3') If there exists a sequence {(z},z2)}n, € UNZPPD) for some p, ¢ € [m] such that p # ¢
and the sequence {z]}, is strictly increasing, then there exists a strictly decreasing
sequence {y7'}, C Z®") such that {(y},x9)}, C X NZE D),

109



Figure illustrates the w-PC conditions. The following theorem is analogous to Theorem
3.3.2 and we use an argument similar to those of [2I, Theorem 3.1, Proposition 3.7].
Moreover, part of the argument of the theorem below is similar to Proposition We

write a full proof for the convenience of the reader.

O
T3 <~ 3=—".

=

Figure 5.5: The first row illustrates (w-PC 1), on the left, (w-PC2) in the middle, and (w-
PC3) on the right, when ¢ # m. The second row illustrates the same PC conditions when
g = m. The blue or red arcs are w-admissible. The blue arcs are of the form x = (z1, z2)
with 1 =4 mod (w —1) and the red arcs are such that 21 =i —1 mod (w — 1) for some
0<:1<w—-2

Theorem 5.5.2. A subcategory of Cym ts precovering if and only if it satisfies the w-PC

conditions.

Proof. We divide the proof into steps.

Step 1. Assuming that X is a precovering subcategory of Cy ,,, we prove that & satisfies
the w-PC conditions.

We prove that (w-PC1) holds. Consider a sequence {z" = (2}, 28)}, C X N ZP)
such that p # ¢ and the sequences {z7},, and {z}}, are strictly increasing. Then consider
a = (ai,az) € ind Cw,mﬂZ(phqti) such that Home,, ,, (2", a) = K for each n € Z, see Figure
and for each n consider a non-zero morphism g,: " — a. Since X is precovering,
there exists (f1 ... fr): y1®---Dyr — a, an X-precover of a, with y1,...,y, € ind X'. Note
that each g, factors through some of the morphisms fi,..., fr. Therefore, we can extract
a subsequence of {(z}, %)}, for which each g,: (21, 25) — a factors through f;: y; = a
for some [ € {1,...,k}. For the rest of the argument, we denote y; by y and f; by f. We
have that

y € (ﬂ H(x,) U H;(wan)> N (H,(a) UHS (S "a)).
nez
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Thus, y = (y1,42) € Z®4"0 41 < a1, and yp < ag. We refer to Figure for an
illustration. Now consider a’ = (d},aly) € Z®" 4" such that a/ < y, and ay < yo. Then
we repeat the same argument as above and we find ¢/ € X N Z® 4" such that Y < ay

and yh < al. Thus, we obtain the desired sequence of (w-PC1).

Now, we prove that (w-PC2) holds. Consider a sequence {z" = (27, x})}, € & N ZP4?)
such that p # ¢* and {27}, and {23}, are respectively strictly decreasing and strictly
increasing. Let a € Z(®4") be such that Home, ,, (2", a) = K for each n € Z. By using
the same argument as above, there exists y = (y1,y2) € X N Z¥"29) guch that Y1 < ap
and y2 < az. Then consider o' = (daf,d}) € ZPa"i) such that ay < yi1, ah < ya, and
Home, . (2", a) = K for each n > 2. Then we can find ¥ = (y1,95) € XN Z®"44) such
that ¥} < a} and y5 < a). Proceeding in this way we obtain the desired sequence of
(w-PC?2). The arguments for (w-PC2'), (w-PC3), and (w-PC3') are similar.

H,(a)UH} (X ¥a)
N, H (o) U H (500)

Figure 5.6: Illustration of the argument of Theorem for proving that if X’ is precov-
ering then it satisfies (w-PC1) and (w-PC2).

Step 2. Assume that X is a subcategory of C,, ,, which satisfies the w-PC conditions, we

prove that X' is precovering.

Let a = (aj,a2) € indCy m, we show that there exists an X-precover of a. Let At =
H} (X %a), A~ = H,(a) and A = AT U A~. Note that if AN X = &, then 0 — a is an
X-precover of a. Now assume that AN X # &. Then we construct a finite sequence of

indecomposable objects z!,...,2" € X as follows. Let

sup{s € Z,, | there exists (s,t) e A~ NX} A" NX#3, or
o =
sup{s € Z,, | there exists (t,s) € AT NX} otherwise.
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From the fact that X satisfies the w-PC conditions, it follows that a € Z,,. Indeed,
if « ¢ Z,,, then there exists a sequence {z" = (z7,2%)}, C X which belongs to A~
and is such that {z'}, is strictly increasing, or belongs to A" and is such that {z4},, is
strictly increasing. Assume that the first case holds, the other case is analogous. As a
consequence, up to extracting a subsequence of {z"},,, we have that =% is constant, strictly
increasing, or strictly decreasing. Thus, {z"},, satisfies one of the (w-PC) conditions. As
a consequence, there exists y = (y1,y2) € X N A~ such that y; > a = supz}, giving a

contradiction. Thus, a € Z,,. Now we define

g sup{s € Z,, | (o,s) € A=} A NX #2, or

sup{s € Z,, | (s,a) € AT}  otherwise.

Since X satisfies the w-PC conditions, we have that g € Z,, similarly as above. Then
we denote 2! = (o, 8) if A= NX # @, and 2! = (B,a) otherwise. We denote H; =
H, (zY)UH} (S7%zt), and we consider AT = A=\ Hy, Ay = A=\ Hy, and A; = A] UAT.
If Ay N A& = &, then each z € ind X such that Home,, ,,(z,a) = K belongs to AN H;.
Moreover, it is straightforward to check that any non-zero morphism x — a factors through

the non-zero morhism ' — a. This implies that  — a is an X-precover of a.

Now assume that A1NX # &, then we find 22 € A; as above and define Ay = A\ (H;UH>),
where Hy = H,, (%) UH T (X~%z?). By repeating this same procedure until we find k such
that Ay N X = &, we obtain a sequence {z" = (z,25)}, € AN X. We prove that this
sequence is finite. Assume that {z"}, is infinite, then infinitely many of the objects z™’s
belong to A~ or infinitely many of the objects 2™’s belong to A™. Assume that the first
case holds, the second case is analogous. Then, note that 7™ < 27 and 25! > 27 for

each n, see Figure Thus, by (w-PC2), there exists y = (y1,y2) € X N A such that,

since x{, 2%, ... are maximal, y; = 2} and yo > 2 for some n. This gives a contradiction
with the maximality of 23. Therefore, we have that the sequence {z"}, = {z!,... 2} is

finite. Figure [5.7]illustrates this sequence.

Ay Ay
HiNnA (HHUH2)NA

Figure 5.7: Illustration of the argument of Theorem for proving that if X' satisfies
the w-PC conditions then it is precovering.

Note that, by construction, if x € ind X is such Hom¢,, ,, (z,a) = K, then = ¢ A because
AyNX =@, Thus, z € A\ Ay = A\ (A\ (HLU---UHy)) = AN (H U---U Hy), see
Figure 5.7, and then = € H; for some 1 < i < k. By Proposition [5.4.4] any non-zero
morphism = — a factors through 2. Therefore, we conclude that @ﬁ:l " — a is an

X-precover. ]
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5.6 w-cluster tilting subcategories

In this section we classify the w-cluster tilting subcategories of Cy », in terms of certain
maximal collections of w-admissible arcs. We refer to [21] for the case w = 2 and to [27]
for m = 1. We recall that a subcategory of Cy , is w-cluster tilting if and only if it is
weakly left w-cluster tilting and precovering, see Proposition Moreover, since Cy m

is w-CY, being weakly left w-cluster tilting is equivalent to being weakly w-cluster tilting,

see Remark 2.3.301

In Section we classified the precovering subcategories of Cym, now we classify the
weakly w-cluster tilting subcategories of Cy . In [27] there is a classification of the weakly
w-cluster tilting subcategories for the case m = 1. This classification can be extended to
m > 2 in a straightforward way. The following proposition consists of the m accumulation
points version of [27, Proposition 1.8]. Here we add some details to the argument of [27]

for the convenience of the reader.

Proposition 5.6.1. Let x,y € indCy . Then x and y cross if and only if there exists
1 <i<w—1 such that Home, ,, (z,S'y) = K.

Proof. We denote x = (x1,22) and y = (y1,y2). Note that y crosses z if and only if
ye HY(t7lz),ie. 21+ 1<y <my—landyo > a9+ 1,0ry € H (Zz), ie. y3 < a1 —1
and z1 + 1 < yo < z9 — 1. We divide the proof into steps.

Step 1. We have that y € HT (7 'z) if and only if there exists 1 < i < w — 1 such that
Sty € Hf (z).

Assume that y € H*(771x). Since r and y are w-admissible, x5 — z1 = 1 + k(w — 1)
and yo —y1 = 1+ l(w — 1) for some k,l > 1. Moreover, y; — x1 = i + n(w — 1) for some
1<i<w-—1andn > 0. Note that y; —¢ = 1 + n(w — 1) > z1 and, since y2 > x9 + 1,we
have that y» —¢ > z9 +1 —¢ > x2. In order to prove that Ziy € H;j(ac), it remains to
check that y; — i < x9 — w. We have the following equality

yi—i=W—x1—1)—(ro—z1)+z2=22+ (n—k)(w—1)+ 1.
Since y1 > x9 + 1, then n — k # 0, otherwise o — 1 > y1 > 29+ 1+ 1 > 22 + 2, giving a
contradiction. Thus, n —k < —1 and y; — i < 29 — w. We obtain that %'y € H.} (z).

Now assume that there exists 1 < i < w — 1 such that X'y € HJ (x). Since 21 + 1 <
z1+i <y <ze—w—+i<wxy—1,and yo > xa+i > x9 + 1, it follows that y € H (77 z).

Step 2. We have that y € H™ (Xx) if and only if there exists 1 < i < w — 1 such that
Yy € Hf (X¥x).

We have that y € H~(Xz) if and only if ¥z € H*(y). By Step 1, this is equivalent to
YWty € Hf (y) for some 0 < j < w — 2. This is equivalent to X¥ 7=ty € H  (X¥z) for

some 1 <w—j—1<w—1 and concludes the proof. O

Given a subcategory & of Cym, X is weakly left w-cluster tilting if and only if it is
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a maximal collection of pairwise non-crossing w-admissible arcs. In other words, X is
weakly w-cluster tilting if and only if it consists of a (w + 1)-angulation of Z,, made of

w-admissile arcs.
The following result follows directly from Theorem [5.5.2] and Proposition [5.6.1

Proposition 5.6.2. Let X be a subcategory of Cyym. Then X is a w-cluster tilting subcat-
egory of Cym if and only if it is a mazimal collection of pairwise non crossing w-admissible

arcs, and satisfies the w-PC conditions.

Figure provides an example of w-cluster tilting subcategory.

1

3

Figure 5.8: On the left: a weakly 4-cluster tilting subcategory of C44 which is not 4-
cluster tilting. On the right: a 4-cluster tilting subcategory of C4 4. The coloured arcs are
4-admissible. The blue arcs are of the form (x1,x2) with 21 = 0 mod 3, the green arcs
are such that 1 =1 mod 3, and the red arcs are such that 1 =2 mod 3.

When w = 2, by |21, Theorem 5.7], a subcategory X' of Ca,y, is cluster-tilting if and only
if it is a triangulation of Z,, such that at each accumulation point there exists a fountain
or a leapfrog of X converging to it. We refer to [21, Definition 0.4] for the definitions of

fountain and leapfrog.

We define a sequence of parallel arcs as a sequence of non-crossing arcs of Z,,, which do not
share any endpoint. If w # 2, each leapfrog of w-admissible arcs contains a subsequence
of parallel w-admissible arcs, but there exist sequences of parallel w-admissible arcs which
are not contained in a leapfrog of w-admissible arcs. We have the following conjecture,
which is the w > 2 version of [2I, Theorem 5.7], or the m > 1 version of [27, Theorem EJ.

Conjecture 5.6.3. Let X be a subcategory of Cy . Then X is w-cluster tilting if and
only if X' is a (w+ 1)-angulation of Z,, such that each accumulation point of Z,, has either

a fountain, a leapfrog, or a proper sequence of parallel arcs converging to it.

5.7 'Torsion pairs

In this section we classify the torsion pairs in Cy . These were classified in [14] for the
case m = 1. We recall that, by Proposition [2.3.27, the torsion pairs in Cy, are in bijection
with the extension-closed precovering subcategories of Cy . In Section we classified

the precovering subcategories in terms of the w-PC conditions.
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In order to classify the extension-closed subcategories of Cy, ,, we introduce the w-Ptolemy
condition. It consists of the w-CY version of Definition [3.4.1] or as the m > 2 version of
[14, Definition 7.1]. We recall that, given two crossing arcs, their Ptolemy arcs are exactly

the arcs obtained by joining their endpoints.

Definition 5.7.1. Let X be a subcategory of Cy,,,. We say that X’ satisfies w-Ptolemy

condition, w-PT for short, if it is closed under taking w-admissible Ptolemy arcs.
We want to prove the following proposition.

Proposition 5.7.2. Let X be a subcategory of Cym. Then the following statements are

equivalent.
1. The subcategory X satisfies the w-PT condition.

2. The subcategory X is closed under w-admissible extensions of the form a — e —

b — Ya where a,b € ind Cy .
3. The subcategory X is closed under w-admissible extensions.
From the result above and Proposition we obtain the following.

Theorem 5.7.3. Let (X,)) be a pair of subcategories of Cy . Then (X,Y) is a torsion
pair in Cym if and only if X satisfies the w-PC conditions, the w-PT condition, and
Y= Xteum,

In order to prove Proposition [5.7.2] we have the following w-admissible versions of Lemma
and Lemma [3.4.3] which can be proved using the same arguments.

Lemma 5.7.4. Let a — e — b — Sa be w-admissible with a,by, ... by € indCym,
b= b, and h = (hi,...,hy). Then there exists b/ = @le ' a direct summand of b
such that the objects by, ..., b, € indCy m are pairwise Hom-orthogonal in Cym, b; % Sa
for each i, all the entries of b’ = (h},...,h}): b/ — Xa are non-zero, and there is the

following w-admissible isomorphism of w-admissible triangles.

a e s b h Ya
1{ zi zl llza
a —— e dbt —— Vv ab M Ya

Lemma 5.7.5. Let X be a subcategory of Cym. If X is closed under w-admissible exten-

sions of the form a — e — b — Xa with a,b € ind Cy p, then X is extension-closed in

Cw,m-
The following lemma will also be useful for proving Proposition [5.7.2

Lemma 5.7.6. Leta,b € indCy, p, be such thatb % Ya, h: b — Xa be a non-zero morphism
of Com, and a —» e — b NS triangle in Ca . Then the following statements

are equivalent.

1. The morphism h is w-admissible.
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2. The object e is w-admissible.

3. There exists a w-admissible indecomposable direct summand of e.

Proof. First we prove the equivalence between statements (2) and (3). If (2) holds then
(3) follows because all the indecomposable direct summands of e are w-admissible. Now
assume that (3) holds. Since h # 0 is not an isomorphism, e is either indecomposable
or has two indecomposable direct summands. In the first case, then the claim follows.
Assume that the second case holds. Since h # 0, we have the following possibilities:
be HY(t71a) or b € H=(Za). Assume that b € H(771a), then e = (ay,b2) @ (b1, az),
see Section the other case is analogous. If (a1,bs) is w-admissible, then ay — by =
(ag —a1) — (bg —ay) + (ba —b1) =1 mod (w — 1), i.e. (b1, az) is w-admissible. Similarly,
it is straightforward to check that if (b1, a2) is w-admissible, then (ay, b2) is w-admissible.

This proves the equivalence between (2) and (3).

If statement (1) holds, then, by Lemma a — e — b Sa is w-admissible
and in particular e is w-admissible, i.e. (2) holds. Now assume that (2) holds, we prove
(1). Since h # 0, we have that b € HT (77 'a) or b € H~(Xa). Assume that the first
case holds, the second case is analogous. Then either e = (a1, b2) is indecomposable, or
e = (a1,b2) ® (b1, a2). Since e is w-admissible, we have that (b1, ag) is w-admissible. Thus,
by —(ap —1) = —(bg —b1) + (bg —a1) + 1 =1 mod (w — 1), i.e. h is w-admissible. This

concludes the argument. O
Now we can prove Proposition

Proof of Proposition[5.7.2. The equivalence between statements (2) and (3) can be proved
with the same argument of Proposition We prove that (1) implies (2). Consider a
w-admissible triangle a — e — b Iy Sa with a,b€indX. If h =0 or b = Ya, then
e € X. Indeed, in the first case e = a @ b, and in the second case e = 0. If h # 0 and
b2 Ya, then Home, , (b,Xa) = K and, by Proposition a and b cross. Moreover, the
indecomposable direct summands of e are w-admissible Ptolemy arcs, see Section and

as a consequence e € X.

Now we prove that (2) implies (1). Let a,b € ind X be crossing arcs, we show that all
their indecomposable Ptolemy arcs belong to X. Since a and b cross, a 2 b and there
exist non-zero morphisms h: b — Xa and h': a — Xb in Cy,y,. Thus, there exist triangles
a— e —b i> Yaand b — ¢ — a Ll> ¥b in Cy,,. The Ptolemy arcs of a and
b are given by the indecomposable direct summands of e and ¢’. It is straightforward to
check that if i is w-admissible, then A’ is not w-admissible, and if A’ is w-admissible then
h is not w-admissible. Thus, we have the following possibilities: h and h’' are both not

w-admissible, h is w-admissible and A’ is not, h’ is w-admissible and h is not.

By Lemma in the first case e and ¢’ are not w-admissible, and as a consequence all the
Ptolemy arcs of a and b are not w-admissible. In the second case, since h is w-admissible,
e € X is w-admissible, see Proposition|5.2.15, and €’ is not w-admissible. Thus, X’ contains

116



all the w-admissible Ptolemy arcs of a and b. The case when h is not w-admissible and A’

is w-admissible is dual. Thus, we conclude that (1) and (2) are equivalent. O
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Chapter 6

(—1)-CY discrete cluster categories

We introduce a (—1)-CY version of Igusa—Todorov discrete cluster categories. To do so,
we employ the results in [46] on continuous Nakayama representations for defining an
infinite discrete version of symmetric Nakayama representations. We prove that these
representations form an Krull-Schmidt abelian category, which is Frobenius, symmetric,
and uniserial. After stabilising, we obtain a (—1)-CY triangulated category, we describe
its AR quiver, and we observe that for m = 1 its geometric model coincides with the one

for the Holm—Jgrgensen category T_1.

6.1 Continuous representations

In this section we discuss the representations of R, of S', and continuous Nakayama
representations. These will be used in Section for defining the infinite discrete version

of symmetric Nakayama representations.

6.1.1 Representations of R

We regard set of real numbers R as a category: the objects of R are the real numbers
and for any s,t € R, if s < ¢, there is a unique morphism fq: s — t. For each t € R the
morphism fy coincides with the identity 1;. For the rest of this chapter K will be a fixed
field. We denote by Vect K the category of vector spaces over K.

Definition 6.1.1. A representation of R over K is a covariant functor M : R — Vect K. A
morphism of representations is a natural transformation. We denote by Rep R the category
of representations of R. A representation M € RepR is pointwise finite if dim M (t) < oo
for each t € R. We denote by RepP" R the category of pointwise finite representations of
R.

We fix some notation and terminology. Given M, N € Rep R, by Homg (M, N) we indicate,
with an abuse of notation, the set of morphisms M — N in the category RepR. For an

119



interval U C R, the interval representation My is given by

K ifteU,
My (t) =
0 otherwise

with My (fst): My(s) — My(t) equal to 1k if s,¢ € U and s < ¢, and equal to 0 otherwise.
Now consider the intervals U,V C R, the left intersection of V and U is defined as

VNU ifv<uforany (v,u) e (V\U)xU)U((V x (U\V)),
VU=
%] otherwise.

We refer to Figure[6.1]for an illustration. It is straightforward to check that Homg (M, My ) =
K if V Ny U # @, and Homg (M, My) = 0 otherwise.

U U U

v o 1% i v

VLU ‘vau 3 VAU

Figure 6.1: Illustration of left intersections of the intervals U and V. On the left, VN U =
V NU # @. In the center and on the right, VNU # @ but VN U = 2.

Definition 6.1.2. Let U,V C R be bounded intervals. We define the standard morphism
w: My — My as p(z) = 1k for each x € VN U, and ¢(x) = 0 for each x € R\ (VN U).

Note that the composition of two standard morphisms is still a standard morphism. The

following theorem gives the decomposition of the representations of R.

Theorem 6.1.3 (|16, Theorem 1.1]). Any pointwise finite representation of R decomposes
uniquely, up to isomorphism and reordering the summands, as a direct sum of possibly

infinitely many interval representations.

6.1.2 Representations of S!

Similarly as for R, we also regard the circle S' as a category. Given z,y € S' with = # v,
there is a path g;,: * — y moving from z to y along S 1'in the anticlockwise direction. By
concatenating g, and gy., we obtain a path w; = gyz9zy: * — x which consists of moving
from x to x in the anticlockwise direction around S* exactly once. By convention, w? and
gzz are the lazy paths x — z, and we often denote them by 1,. The objects of S, as a
category, are the points of the circle, and for each pair of points z,y € S the morphisms

x — y are the paths of the form ggzywy = wy gzy with n € Z.

Analogously to Definition the representations of S' over K are the covariant func-
tors M: S' — Vect K. We denote by Rep S! the category of representations of S', and
by RepP*f $1 the category of pointwise finite representations. If M,N € RepS?!, by
Homg: (M, N) we denote, with an abuse of notation, the set of morphisms M — N in the
category Rep S'.
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We introduce some notation from [46]. Consider a bounded interval U C R and the
covering map v: R — S' ¢ — ¢ mod 27. Let x € S! and consider the set v~ !(x) N U,
we denote its cardinality by n, and its elements by by , < --- < by, . Note that n, =0
if and only if z ¢ v(U). Figure provides an illustration. We now introduce some
representations which are building blocks of pointwise finite representations.

0=2r

U

0 u bia o b2 ug + 27 Arx

Uy

T

7(U)

Figure 6.2: The bounded interval U = (uj,u2 + 27| € R and the cyclically ordered set
v(U) € S'. The empty blue circle indicates that the endpoints are excluded, while the
full blue circle that the enpoints are included.

Definition 6.1.4 ([46, Section 2.2]). Let U C R be a bounded interval. Keeping the

notation above, the representation My of S' defined as follows is called a string.
e For each x € S we have that My (z) = Kbiz @ - © Kby, .

e For each z,y € S' we have that

— b;, if there exists b;, such that 0 < b;, — b; , < 2,
My (gay)(biz) = 7Y 7Y > 05y = Vi
0 otherwise.

Remark 6.1.5. The representation My is pointwise finite. Moreover, MU(wm)(bm) =
bit1,e if @ # g, and My (we)(bn, ) = 0.

Theorem 6.1.6 ([23, Theorem 3.8], [46, Corollary 2.8, 2.9]). Let U,V C R be bounded

intervals. The following statements hold.
e We have that My = My if and only if U =V + 2n7 for some n € Z.
e The ring Endg: (My) is local, and therefore My is indecomposable.
e We have that Homgi (My, My) = D,,cz Homg (M7, My y2nr).

Note that, since the intervals U and V are bounded, the direct sum in the statement
above is finite. The following theorem provides a decomposition of the pointwise finite
representations of S'. We refer to [23, Definition 3.5] for the definition of band.

Theorem 6.1.7 ([23, Theorem 5.6]). Any pointwise finite representation of S* decomposes
uniquely, up to isomorphism and reordering the summands, as a direct sum of possibly

infinitely many strings and finitely many bands.
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Standard morphisms in Rep R induce morphisms between strings in Rep S'. We introduce

some notation which will be useful for Definition [6.1.91

Notation 6.1.8. Let U,V C R be bounded intervals, ¢: My — My be the standard
morphism, and x € S be such that My(z) # 0. We have that My (z) = @I, Kb,
where {b; ;}"*, = v~ }(x) NU. Note that if b; , € V N U for some 4, then there exists a

unique c¢;; € 7_1(m) NV such that b; , = ¢j,. With a light abuse of notation, we denote
©(biz) = ¢z if biy € VLU, and ¢(b; ) = 0 otherwise.

Definition 6.1.9 ([46] p. 44]). Keeping U, V, and ¢ as in Notation the morphism
?: My — My is defined as B(z)(b; ) = p(bi ) for each x € S* such that My (x) # 0.

The following lemma will be useful for Proposition and Proposition
Lemma 6.1.10. Let U, V,W C R be bounded intervals. The following statements hold.

1. Let ¢p: My — My be a standard morphism. Then @ = 0 if and only if o = 0, or
equivalently V Ny U = @.

2. If p: My — My and v: My — My, are standard morphisms, then Vo = ).

3. Let p: My — My and ¥: Myions — My ong be standard morphisms and n € Z.
Then @ = 1.

4. Assume that there exists a unique n € Z such that (V + 2nm) N U # &. Then any
non-zero morphism f: My — My is of the form f = \@, where ¢: My — My onx

s a standard morphism and A € K* .

Proof. We prove statement (1). If ¢ = 0 then $ = 0 by Definition If ¢ # 0 then
there exists t € V Ny U # @. Now consider z = y(t) € S*, the sets v} (z) N U # @ and
7~Y(x) NV are non-empty because ¢ belongs to both. Since t € v~ 1(z) NU = {b;,}1*,,
we have that ¢ = b; , for some i. Therefore, b;, € V N U, @(x)(biz) = ¢(biz) # 0, and

as a consequence @ # 0.

Now we prove (2). If ¢ = 0 or 1 = 0, then ¥ = 0 and 1 = 0. Moreover, g = 0 or
1 = 0 and then 9% = 0 = ¥p. Now assume that ¢ # 0 and ) # 0, i.e. VN, U # @ and
WLV # @. Let x € S! be such that My (x) # 0, and consider b;, € v 1(z)NU. We
have the following possibilities: W N U # @ or W Ny U = @. Assume that the first case
holds, the second case is similar. If b; , € U Ny W, then b; , € V Ny, U, and the following
equalities hold

P(@)P(2) (bie) = V() (p(big)) = V() (cja) = P(cja) = Yp(bie) = Yp()(big)
where ¢;, € 7~ 1(x) NV is such that ¢jz = big. Now assume that b;, ¢ U Ny W, then
W('r)(bl,w) = WO(bz,x) = 0. Moreover, if Sp(bi,a:) = 0 then E(x)((p(bl,x)) = 07 and if
©(b; ) # 0, ie. b, € UNgV, then @(m)(cp(bm)) = Yp(bi ) = 0 because b;, ¢ W N U.
In both cases ¥(z)p(z) = ¥ (x)(p(biz)) = 0 = o(z)(b;y). Therefore, we obtain that
VP = Y.
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Statement (3) is straightforward and follow from Definition We prove statement
(4). By Theorem Homg: (My, My) = K and, since (V + 2nm) Ny U # @, we have
that ¢ # 0 and then @ # 0. Thus, f = A\p for some A € K*. O

6.1.3 Continuous Nakayama representations

The continuous Nakayama representations of S* consist of pointwise finite representations
of S1 satisfying some conditions which are determined by a map called the Kupisch func-
tion. This map is the continuous analogue of the Kupisch series for Nakayama algebras

and determines the length of the projective representations.

Definition 6.1.11 ([46, Definition 3.9]). A Kupisch function r: R — R>? is a map such
that

e for each t € R we have that x(t + 27) = x(t), and
o for each t1,to € R if t; < to, then t; + H(tl) <ty + I{(tg).

Definition 6.1.12 ([46, Definition 3.9]). Let & be a Kupisch function and M € RepP*! S*.
We say that M is a continuous Nakayama representation of (S, k) if each indecomposable
direct summand of M is a string of the form My, where U C R is a bounded interval such
that U C [inf U, inf U + (inf U)]. We denote by RepP"(S', k) the category of continuous

Nakayama representations of (S, k).

Remark 6.1.13 ([46, Remark 3.10]). The category RepP*!(S', k) is an abelian subcat-
egory of Rep(St), and any M € Reppr(S ! k) decomposes uniquely, up to isomorphism

and reordering the summands, as the direct sum of possibly infinitely many strings.

6.2 Discrete symmetric Nakayama representations

We want to study the representations of the infinite discrete versions of the symmetric
Nakayama algebra K(C,,/ rad™ ™), where C,, is the oriented cycle with n vertices. We first
define a Kupisch function kz,, from the co-gon Z,,, and then we define the category of

representations of (Z,,, Kz, ) as an abelian subcategory of RepP"(S', ki z, ).

We refer to Section for the definition of the co-gon Z,, C S'. We often regard Z,, as
a subset of the interval (0,27) C R, where the accumulation point 1 € [m] and the real
number 0 € R are identified, see Figure In this chapter, unlike the previous chapters,
given z € Z,, we denote its successor in Z,, by 2z, and its predecessor by z~. By z + 1
we denote the the sum of the real numbers z and 1.

z

1+ 27

—Qo

2 3 1
Figure 6.3: The oco-gon Z4 regarded as a subset of R.
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Definition 6.2.1. Let s,t € R be such that ¢t = s mod 27 with s € [0,27). We define

2r 42t —s if s € [z,2T) for some 2z € Z,,,,

wen(t) = 27 if s € [m].

Note that the map rz, : R — R>Y is 2r-periodic.

Lemma 6.2.2. The map kz,, is a Kupisch function.

Proof. Since k is 2m-periodic by definition, we check that for any ¢1,to € R if t; < 5 then
t1 + Kz, (t1) < ta+ Kz, (t2). Since kz,, is 2w-periodic, without loss of generality we can
assume that ¢, € [0,27) and ty € [0,27) + 2h7 for some h € Z with h > 0.

If h = 0 then we can proceed with a case analysis where we distinguish when ¢; and to
are accumulation points of Z,, or not. We show the case where t; € [m] and t3 € [2,27)
for some z € Z,,. Since t; < to < z*, we have that t; + kz, (t1) =t; + 27 < 27 + 2+ =
to + Kz, (t2). The other cases are straightforward.

If h =1, let s =ty — 27 € [0,27) and note that either t; < s or t; > s. If t; < s then, from
the case h = 0 above, t1+kz,, (t1) < s+kz,,(s) < s+2r+kz, (s) =ta+rz, (t2). Ift1 > s,
then we can divide the proof into cases where ¢; and s are or are not proper accumulation
points of Z,,,. We show the case where ¢ € [z, 27) for some z € Z,, and that s € [m]. Since
2T <21 < s+2m, we have that t; +kz,, (t1) =27+ 27 < s+4n =to+ 27 = ta+ Kz, (t2).

The other cases are straightforward.

If h = 2, then to — 2w € [0,27) + 27. From the case h = 1, we have that t; + rz, (t1) <
to — 2T + Kz, (ta — 27) = to — 27 + Kz, (t2) < ta + Kz, (t2). If h > 3 we can proceed
analogously. We can conclude that t; + kz,, (t1) < t2a + Kz, (t2). O

We now define the category rep(Z,,, kz,, ) of infinite discrete versions of symmetric Nakayama

representations.

Definition 6.2.3. We define rep(Z,,, 1z, ) as the full subcategory of RepP"(S', kz,,) of

representations M satisfying the following conditions.

1. If z,y € St are such that z < z <y < 27 for some z € Z,,, then M(gyy): M(z) —

M (y) is an isomorphism.

2. For each p € [m] there exist a,b € Z,, such that a < p < b are in cyclic order, and
if ,y € S! are such that a < z <y < b are in cyclic order, then M(gy,): M(z) —

M (y) is an isomorphism.

We prove that rep(Zm,,kz, ) is a wide subcategory of RepP"(S',kz, ), see Definition

2.2.5, and is therefore an abelian category.

Theorem 6.2.4. The category rep(Z,, Kz, ) is a wide subcategory of RepP* (S', kz, ).
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Proof. We show that rep(Z,,, kz,,) is an additive subcategory of RepP*(S', kz, ) closed
under extensions, kernels and cokernels. It is straightforward to check that rep(Z,,,xz,,)
contains the zero object and that it is closed under isomorphisms and finite direct sums.
We show that rep(Z,,, kz,,) is closed under direct summands. Consider M € rep(Z,,,kz,,)
such that M = L @ N with L, N € RepP"(S',kz, ), we check that L, N € rep(Z,, kz,,).
Let z,y € S! be such that M(g,,) is an isomorphism, then so is L(gy) & N(gzy): L(z) &
N(z) = L(y) ® N(y), and as a consequence L(gy,) and N(gy,) are isomorphisms. There-
fore, L and N satisfy Definition [6.2.3

Now we show that rep(Z,,,kz,,) is closed under extensions. Consider a short exact se-
quence 0 — L o SN S 0in RepPV{(S', Kz, ) with L,N € rep(Zm,kz,,),
we show that M € rep(Zm,,rz,). Let 2,y € S be such that L(g,y) and N(gs,) are

isomorphisms, then the following is a commutative diagram with exact rows.

0 —— L(x) 2% M) €% N@) —— 0
L(gxy) M(QMJ) N(gwy )l
F(y) G(y)

0 —— L(y) — M(y) —— N(y) —— 0

Since L(gzy) and N(ggy) are isomorphisms, by the Five Lemma, M(g,,) is also an iso-

morphism. Therefore M satisfies the conditions of Definition [6.2.3

Now we show that rep(Z,,, kz,,) is closed under kernels. Consider L, M € rep(Z,,,kz,,),
a morphism F: L — M, and its kernel K = Ker F — L in Rep?" (S, kz ). Let z,y € S*
be such that L(g;y) and M (gy,) are isomorphisms. We have the following commutative
diagram with exact rows.
F(z)
0 — K(x) —— L(z) —> M(x)

)| Lla)| M)

0 —— K(y) — L(y) —2 M(y)

By the universal property of the kernel, K (g4, ) is an isomorphism. Thus, K satisfies the
conditions of Definition Dually, we can prove that rep(Z,,,kz,, ) is closed under
cokernels. We can conclude that rep(Z,, kz, ) is a wide subcategory of RepP"(S', kz, ).

O

6.3 Indecomposable objects

We prove that the category rep(Z,,, £z,,) is Krull-Schmidt and we describe its indecom-
posable objects. We arrange the indecomposable objects of rep(Z,,, kz,,) into a coordinate

system, which gives the AR quiver of rep(Z,,, kz,, ), as we will see in Section
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6.3.1 Krull-Schmidt property

This section is devoted to establish the following Krull-Schmidt decomposition theorem

for the objects of rep(Z,,, kz,,). First, we define the set of intervals
W = {(u1,ug + 2hmt] CR | uy,ug € Z,,h € Z, and uf < ug + 2hw < uf + 27},

Note that either h = 0 or h = 1. The condition uf < ug + 2hm < uf + 27 ensures that
the “shortest” intervals of W are of the form (uq, uf] Such intervals will correspond to
the simple objects of rep(Z,, kz,,), see Section The “longest” intervals in W are of

the form (ul,uf + 27|, which correspond to indecomposable projective-injective objects
of rep(Z,,, kz,,), see Section

Theorem 6.3.1. The category rep(Z,,, kz,,) is Krull-Schmidt. Moreover, the indecom-
posable objects of rep(Z,, kz,,) are exactly those of the form My with U € W, up to

isomorphism.

With Proposition we prove that conditions (1) and (2) of Definition imply that
the isoclasses of indecoposable objects of rep(Z,,, kz,,) are in bijection with the intervals

in W. We start with the following lemma.

Lemma 6.3.2. Let U € W, then My € rep(Zm, kz,,).

Proof. For each U = (uj,u2 + 2hnw] € W we have that U C [u1,u1 + Kz, (u1)], ie.
My € RepP™ (S, kz ). Now we prove that condition (1) of Definition holds. Let
z,y € S! be such that z < z < y < 2zt are in cyclic order for some z € Z,,. Since
U = (u1,us + 2h7] is bounded and wuj,us € Z,, the sets v~ 1(x) NU = {bi o}, and
Y Hy)NU = {bi,y}?:yl have the same finite cardinality, possibly equal to 0, which we denote
by n. Therefore, if n = 0, My () = My(y) = 0 and M (gsy) is an isomorphism. If n # 0,
then My (z) = @B, Kb;, and My (y) = @, Kb;,. Moreover, 0 < b;,, — b; , < 2, see
Figure Thus, MU(gwy)(bm) = b, for each ¢, and as a consequence MU(gxy) is an

isomorphism.

Now we prove that condition (2) holds. Let p € [m], then there exist a,b € S! such that
a < p < b are in cyclic order and, for each =,y € S' such that a < z < y < b, the sets
YU z)NU = {bix}1%, and v~ H(y) NU = {b;,}*, have have the same finite cardinality,
n, possibly equal to zero. Moreover, if n # 0, 0 < b; , — b; , < 27 for each 7. We refer to
Figure for an illustration. As above, we obtain that M /(gyy) is an isomorphism. [

Proposition 6.3.3. Let M € ind Rep?*(S', kz, ). Then M € indrep(Z,,rz, ) if and
only if M = My for some U € W.

Proof. By Lemma the strings My, with U € W, are indecomposable objects of
rep(Zm, kz,,). Now consider M € indrep(Zy,,kz,, ). By Definition [6.1.12f we know that
M = My for some bounded interval U C R such that U C [inf U,inf U + sz, (inf U)].

Now let u; = inf U and ue = sup U. We divide the proof into claims.
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2 1427 24+ 27 1+4n

uir  2r bla biy us + 27 A
1
Uy
2 1427 2+ 27 1+4n
—:O0 o—0
uir 2r bLe by ug + 27 A

Figure 6.4: Illustration of the argument of Lemma in Zo.

Claim 1. We have that ui,us ¢ [m] + 27Z.

Assume that u; = p + 2k7 for some p € [m]. By condition (2) of Definition there
exist a,b € Z,, such that a < p < b are in cyclic order and M (gyy) is an isomorphism for
all z,y € S* such that a < <y < b are in cyclic order. Since U C [uy,u; + rz,, (u1)] =
[p,p + 27| + 2k7, then ug < ug + 27. If ug < uy + 27 then there exist z,y € St such that
a <z <p<y<b are in cyclic order, My(xz) = 0, and My(y) = K. Then My/(guy)
is not an isomorphism, and this gives a contradiction. If us = u; + 27, then consider
x,y € S' such that a < x < p < y < b are in cyclic order. We have that My (z) = K and
My (y) 2 K, but My(gzy) = 0, see Definition and this again gives a contradiction.
Therefore, uy ¢ [m]+27Z. With an analogous argument we can prove that ug ¢ [m]+27Z.

Claim 2. We have that uy,us € 2, + 27Z.

Assume that u; ¢ 2, +27Z, then there exist z; € Z,, and k € Z such that z; +kr < u; <
zfr + 2kw. We have the following possibilites: us < ui + 27, uo = uy + 27, or ug > uy + 2.

If up < up + 27, then there exist 2,y € S! such that 23 < z < y(u1) < y < zf are

in cyclic order, My(z) = 0, and My(y) = K. If ug = uj + 27, consider x,y € S!
such that 23 < < y(u1) < y < z are in cyclic order. We have that My (z) = K
and My(y) & K, but My(gsy) = 0, see Definition If us > w1 + 27 then, since
U C [u1,u1 + Kz, (u1)], we have that ug < zf +2(k+1)7. Therefore, there exist =,y € S!
such that 21 < z < y(u1) < y < 27 arein cyclic order where M (x) = K and My (y) = K.
In each case we obtain that M (gzy) is not an isomorphism, which gives a contradiction

with statement (1) of Definition We conclude that u; € Z,, + 27nZ. Using an
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analogous argument, we obtain that us € 2, + 27Z.

Claim 3. By Claim 2, there exist 21,29 € Z,, and k,l € Z such that u; = 2z + 2km,
ug = 29 + 2lm. Moreover, since U C [uy,u; + kz,, (u1)] = [21, zf + 27| + 2k, we have that
2+ 2km <wp < zf +2(k + D

Claim 4. We have that U = (uy, ua).

Let 21,29 € Z,, and k,l € Z be as above. We prove that u; ¢ U and uy € U. Assume
that u; € U, and consider z € S! such that z; < x < z1 are in cyclic order. Since u; € U
and M/ (gy=,) is an isomorphism, we have that dim M (x) = dim M (z1) # 0. Moreover,
since U C [uy,u; + kz,, (u1)] = [21, zf + 27| 4 2k, either ug = 21 + 27 or ug = zf + 2,
otherwise we have that dim My (z) = 0. Therefore, dim My (x) = dim My (z;) = 1 and
then v 1(z) NU = {b1,} and v 1(21) "U = {b1,,}. Then, since z +2(k + 1)m € U
and u; = 21 + 2km € U, we obtain that by, = x 4+ 2(k + 1)7 and by ., = 21 + 2kn. We
have that M (gz.,) = 0 because by ; > by ,,, contradicting the fact that My (gsz,) is an
isomorphism. Thus, u; ¢ U.

Now assume that ug ¢ U, and consider z € S I such that 25 < x < 2o are in cyclic order.
Since u1 = z1 + 2km and then w1 < x + 2[, we have that x 4+ 2lr € U and as a consequence
dim My (z) # 0. We also have that My (22) # 0 because M (gazz,) is an isomorphism.
Moreover, u1 = 25, + 2(I — 1)m, otherwise dim My/(22) = 0, and then dim My (x) = 2,
while dim M (2z2) = 1. This contradicts the fact that My (gs.,) is an isomorphism. Thus,
up € U. Therefore U = (uy, ua]. O

We recall from Theorem that the objects of Rep(S',kz, ) decompose as possibly
infinite direct sums of indecomposable objects. With Proposition [6.3.4] we prove that
condition (3) of Definition implies that the objects of rep(Z,,, kz,,) have only finitely

many indecomposable direct summands.

Proposition 6.3.4. Let M € rep(Z,,,kz,,). Then M has only finitely many indecompos-

able direct summands.

Proof. By Theorem M decomposes uniquely, up to isomorphism and reordering the
summands, as a possibly infinite direct sum of strings. Since rep(Z,,, kz,,) is closed under
direct summands, see Theorem by Proposition the indecomposable direct
summands of M are of the form My with U = (uy,ug + 2hn] € W. Now consider an
indecomposable direct summand My of M. For each p € [m] we fix ap < p < by asin
condition (2) of Definition We divide the proof into claims.

Claim 1. Let p € [m] and x,y € S be such that a, < < y < b, are in cyclic order.
Then M/ (gyy) is an isomorphism.

We have that M = My @& M’ for some M’ € rep(Z,, kz,,). Since (MU(()QW) M,((; )) is an
zy

isomorphism, then M/ (gsy) is an isomorphism.

Now we denote Z7, = Zp, \ Upepm iz € S'| a, < x < by are in cyclic order}. Note that

Z! is a finite set.
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Claim 2. We have that us € Z],.

If uy ¢ Z/, then there exist p € [m] and z,y € S! such that a, < x < y < b, are in cyclic
order and M /(gsy) is not an isomorphism, giving a contradiction with Claim 1. Indeed,
let z = uy and consider y such that uy < y < b, are in cyclic order. Then M (gsy) is not

an isomorphism.
Claim 3. There are only finitely many indecomposable direct summands of M.

For each x € Z/, there are only finitely many direct summands of M of the form My with
U = (uy, uz + 2hw] and ug = z, otherwise dim M (z) = oo. Since Z, is a finite set, we can

conclude that M has only finitely many indecomposable direct summands. O

6.3.2 The coordinate system
For each p,q € [m] and h € {0,1} we introduce the set of intervals

I}(LP’Q) = {(UI,UQ +2hm] EW |u € ZP) and us € Z(Q)}.

We can arrange the intervals of W, or equivalently the isoclasses of indecomposable objects

of rep(Z,,, kz,, ), into a coordinate system having

e 2m components of type ZA., each corresponding to the sets [ }(Lp ?) for p € [m] and
h € {0,1}, and
. 2(7;) components of type ZAZ, each corresponding to the sets I ,Sp D for p,q € [m],

p#q,and h € {0,1}.

Figure illustrates the coordinate system of rep(Z,,, kz,,), in Section we will prove
that this gives the AR quiver of rep(Z,,, kz,,).

(uy , ug + 27 (up,uf +27]

(ug s uz) (uy,uf

Figure 6.5: Illustration of the coordinate system of rep(Z2,rz,).

We now introduce some more intervals which play an important role in rep(Z2,,, kz,,), see

Figure [6.5] for an illustration.

Definition 6.3.5. Let U = (u1,u2 + 2hn] € W, we define the following intervals.

Ur = (uy , uz + 2hm| YU = (ug,uf +2(1 — h)7]
Uy = (u1,uy + 2hm) YU = (ug ,u1 +2(1 — h)7]
U™ = (uy,uy + 2hn] U' = (uy ,uf +2(1— h)r7]
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With Proposition we will prove that the interval U’ determines the set of intervals
V' € W such that any non-zero morphism My — My, factors through a projective-injective
object of rep(Z,,, kz,, ).

The intervals Uy, Us, and U~ determine the almost split sequence starting at U. Indeed,
by Proposition the almost split sequences in rep(Z,,,kz,, ) are of the form 0 —
MU — MUl @MUQ — MU— — 0, thus T_1MU = MU—-

Moreover, by Remark and its dual version, we will obtain that X~'My = My, 1,
and XYMy = Myy, i.e., after stabilising rep(Z,, 5z, ), YU and ¥~ 'U determine the action

of the shift functor on objects.

Observation 6.3.6. Let U € W. From Figure [6.5] it is straightforward to see that the

following statements hold.

e U; € W if and only if uf < wug + 2hw < uy + 27, or equivalently U # (uq, uf + 27).

Us € W if and only if Uz # @, or equivalently U # (uy, u;].

Y~1U € W if and only if U # (uy,uj + 27]. The same holds for XU

U~ € W. Moreover, U~ = (u; ,us] if and only if U = (uy,u]], and U~ = (uy ,u2 +
2n] if and only if U = (u1,uj + 27).

U € W. Moreover, U' = (uj,us] if and only if U = (u1,uj + 27, and U’ =
(uy ,us + 27 if and only if U = (uy, u] + 27).

6.4 Morphisms

In this section we describe the Hom-spaces of rep(Z,,, £ z,,) and the factorization properties

of the morphisms.

6.4.1 Hom-hammocks

We define the Hom-hammocks and prove the following result.

Proposition 6.4.1. Let U = (uy,ug + 2hw|,V = (vi,v2 + 2kw| € W. Then
K? ifU =V = (u,u] + 27,

Homg (My, My) = { K if either VN U # @ or (V —2m)Np U # &,

0 otherwise.

We need the following lemma, which relates the Hom-spaces of rep(Z,,, kz,,) to the inter-

sections of intervals of W.

Lemma 6.4.2. Let U = (uy,uz + 2hn|,V = (vi,v2 +2knw] € W. The following statements
hold.
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1. If(V42nm)NLU # @ for somen € Z, thenn € {0, —1}. Therefore Homg: (My, My)

18 at most two dimensional.
2. We have that V N U # @ if and only if v1 < w1 and uf < vg + 2kw < ug + 2hw.
3. We have that (V —27) Ny U # @ if and only if k = 1 and uj < vy < ug + 2h.

4. We have that VLU # @ and (V—=27)NLU # @ if and only if U = V = (u1,u] +27].

Proof. We prove statement (1). Assume that (V+2nm)N U # @ for somen € Z. If n =1
then, since 0 < u; < 27 and 27 < v1+27 < 47, we have that (V+27)N U = @. Moreover,
if n>2orn < -2, then (V +2n7) NU = & and as a consequence (V + 2nm) N U = .
Thus, n € {—1,0}.

Statements (2) and (3) are straightforward, we prove statement (4). It is straightforward
to check that if U = V = (uy,uf + 27 then VN, U # @ and (V —27) Ny U # @. Now,
if VN, U # @ and (V —27) Ny U # @, then in particular k = 1, uj < vy < ug + 2hm,
and uf < vy 4 2w < ug + 2hm. Thus, h = 1 and then vy < us. Since us + 27 < uf + 2,
we have that uf <y <ug < u{r, ie. vy = uf Note that v1 > vy + 2km — 27 = wq
and, since V N V # &, also v1 < uy. Therefore, v1 = u;. Moreover, we have that
U+ 2hm = ug + 27 < uf+27r, ie. ug < u{r Since ug + 2w < uf—|—27r = vo+ 27 < ug + 27,
we obtain that us = uj". We can conclude that U =V = (uy,u] + 27]. O

Now we can prove Proposition [6.4.1]

Proof of Proposition[6.4.1 By Theorem we have that Homg: (M, My) = K" with
n={le€Z|(V+2nr)N,U # @}|. Then the claim follows from Lemma O

We define the Hom-hammocks in rep(Z,,,kz, ) and then we prove that they describe
exactly the Hom-spaces with Proposition Figure provides an illustration.

Definition 6.4.3. Let U = (uy,u2 + 2hnw] € W. We define the following sets.

H+(U)— {(m,vQ]EWMlSulandufgvggw} if h=0,
{(vi,v2+ 27| € W |ug < vy <wup and vy <wug} if h=1.
H(U) = {(v1,v2) €W | ug < vy < uy and va < ug} if h =0,
{(vi,v2+ 2] €W vy >uy and ug <wvp <wuy} ifh=1.
— 2kr < uy and v > us,
{(vl,vg—|—2k7r]€W UL~ 2k < u1 and vz 2 uy, or }ifh:(),
PWU) = v1 < wup and vg + 2kT > uo

{(vi,v2 + 27| € W | v; <wuy and vy > ug} if h=1.

We extend those definitions to U = @ by imposing H"(2) = H (9) = P(9) = @.

We want to prove the following result.
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Proposition 6.4.4. Let U,V € W, then Homgi1 (M, My) # 0 if and only if V € H(U)L
H=(S-'U)u PU").

With Proposition we will prove that P(U’) determines the set of intervals Ve W
such that Proj(My, My) # 0.

Observation 6.4.5. Let U = (u1,us + 2hn|,V = (vi1,v2 + 2kn] € W be such that
ug + 2hm # uj + 2m. The following statements hold, see Figure for an illustration.

e The sets HT(U), H-(X~'U), and P(U’) are pairwise disjoint.

V € HT(U) if and only if V ¢ P(U’) and k = h. Moreover, if V.€ HT(U) then
VU #@.

Ve H- (X 'U)ifand only if V ¢ P(U’) and k = 1—h. Moreover, if V € H=(X71U)
then (V —2km) Ny U # @.

o If U = (uy,uf], then P(U") = {(uy,ui + 27|}

o If U= (ur,uf + 27|, then H*(U) = H-(X7U) = 2.

~ U T . U
bty olU
N Us U
U = (uy,uz] U = (u1,up + 27)
HT(U) {Vew|vnoU+# o}
H~(Z71U) {Vewl|(V-2rnn,U+# o}
P(U")

Figure 6.6: The interval U € W and its Hom-hammocks when m = 2. In grey: H*(U),
H=(X7'U), and P(U"). In blue and red: how the intervals in W intersect U.

Now we can prove Proposition

Proof of[64.4. We denote U = (uy,ug + 2hw| and we assume that h = 0, if h = 1 the
proof is analogous. It is straightforward to check that the following equality holds.

HYU)YUH (Z7'U) U P(U') ={(v1,v2) € W | uf < vy <wg and vy < ug bl

{(vi,v2 4+ 27] EW | uf < vy <wugb

Let V € W. By Lemma and Proposition we know that Homgi (My, My) # 0
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if and only if VN U # @ or (V —2mw) Ny U # @. Thus, it is straightforward to check that

{(Vew] Homsl(MUaﬁv) # 2} ={(vi,v2] € W] v <up and uf < vg < ugtll
{(U17U2 + 27T] ew ’ uii_ < (5] < ’LLQ}.

We conclude that V € W is such that Homgi (M, My) # @ if and only if V € HY(U) U
H-(-'U)u PU). 0

6.4.2 Factorization properties

We now prove the factorization properties of the morphisms of rep(Z,,,kz, ). After sta-

bilising, the proposition below can be reformulated as in Proposition [6.9.3

Proposition 6.4.6. Let U, V,W € W be such that My, My, and My, are non-isomorphic.
Assume that there exist non-zero morphisms f: My — My and g: My — Myy. Assume
that one of the following conditions holds.

1. VU4, WnNL VA2, and WnNp U # @.
2.VnU#@, (W=2m)NL,V #3, and (W —2m) N U # @.
3 (V=2m)nU#a, WNLV #&, and (W —2r)N U # @.

Then gf # 0.

Proof. By assumption, we have that (V + 2nm) N U # @, (W +2i7) N (V + 2nm) # @,
and (W + 2ir) N, U # @ for some I,n € Z. Since U, V, and W are pairwise non-
isomorphic, by Proposition [6.4.1] we have that such [ and n are unique. Let ¢: My —
My ionr and ¥: My yonr — My o1 be standard morphisms, see Definition Since
(W —2im) N, U # @, ¥ # 0, and then 9@ = e # 0, see Lemma Moreover,
f = AP and g = pt) for some A\, € K*, and as a consequence gf = A\upp # 0. We
conclude that gf # 0. O

Proposition 6.4.7. Let U, V, W, f, g be as in Proposition[06.4.6 Assume that one of
the following conditions holds.

1. (V=2m)n,U#@ and (W —2m) NV # @.

2.VnU#@, (W=2m)NL,V #, and WN U # @.

3 (V=2r)nU#2a, WLV #3, and WNp U # @.
Then gf = 0.
Proof. We proceeding similarly as in the argument of Proposition [6.4.6, By assumption
we have that (V + 2nw) Np U # @ and (W + 2i7) Ng, (V + 2nw) # & for some I,n € Z.
Let ¢: My — Myonr and ¥: My ionr — My 1o be standard morphisms, we obtain

that gf = M)y for some A € K*. Note that (W — 2i7) N, U = @. Indeed, if condition (1)
holds, we have that [ = —2 and then (W + 2ir) N U = (W —4x) N U = @. If condition
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(2) or (3) holds, then [ = —1 and, since W Ny U # @, we have that (W — 2i7r) Ny U =
(W —=2m)N, U = @. Indeed, if (W — 27) N U # & then, since W Ny U # &, by
Lemma U=W = (u1,u] + 2n] and then My = My, giving a contradiction. As a

consequence, ¥ = 0 and we can conclude that gf = 0. ]

Lemma 6.4.8. Let U = (u1,uz + 2hn|,V = (vi,v2 +2kw|] € W. The following statements
hold.

1. Assume that U # (ul,u;r +27]. Then there exists a monomorphism My — My if
and only if there exists | € {0,—1} such that (V 4 2im) N U # & and ug + 2hm =
vg + 2(k + ).

2. Assume that V # (1)1,1)1+ + 2m|. Then there exists an epimorphism My — My if
and only if VN U # & and u; = vy.

Proof. We prove statement (1). Assume that (V + 2i7) N, U # & and ua + 2hm = va +
2(k+1)7 for a unique I € {0, —1}, then Homg: (M, My) 2 K. Let f: My — My be non-
zero, we prove that f is a monomorphism. Consider a non-zero morphism g: My — My
with W € W, we check that fg # 0. Since Hom(My, M) = K, we have that either
UngW # @or (U-2m)N, W #@. If (U—-2r)NLW # @ and [ = —1, then h = 1 and we
obtain that ug + 27 = ug + 2hm = vo + 2(k + )7 = vo + 2k — 27, i.e. ug + 4w = vy + 2k,
which is impossible because k € {0, 1}.

Thus, we have the following possibilities: UNy W # @and =0, UNy W # @ and |l = —1,
or (U—-2m)Np W # @ and [ = 0. Since ug + 2hm = va + 2(k + )7, in the first case we
obtain that V Ny W # &, and for the remaining cases (V —2w) Ny W # &, see Figure
By Proposition we obtain that fg # 0. This proves that f is a monomorphism.

w w w

|4 V —2r V—-2r

Figure 6.7: The intersection of intervals of the argument of Lemma [6.4.8

Now assume that there exists a monomorphism f: My — My . Since f # 0, there exists a
unique ! € {0, —1} such that (V +2lr) N, U # &, we prove that us + 2hm = vo +2(k+1)7.
g ] M. Indeed, it is straightforward to check
that (U — 2hn) Ng, (uy,u2] # @ and ug = ug + 2(h — h)w. Thus, fg: M

There exists a monomorphism g: H(
b uyua] My
g us)’ My) = K. This implies
that va = wug, see Lemma Moreover, since (V + 2iw) Ny U # &, we have that
uf < wg+2(k+ )7 < ug + 2hw. Thus, v + 2(k + )7 = ug + 2(k + )7 € v L(u2) N U.
Since U # (u1,u] + 27), y"1(u2) N U has only one element, namely uy + 2hw. Therefore,
vo + 2(k 4+ I)m = ug + 2hm. This concludes the argument of (1).

is a monomorphism, and as a consequence Homgi (M (

Now we prove statement (2). Similarly as above, we can prove that if V Ny U # @ and
v1 = up, then Homgi (My, My) = K and any non-zero morphism My — My is an

epimorphism. Now assume that there exists an epimorphism f: My — My, we prove
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that VN U # @ and v;1 = wuy. Since (Ul,vf] N V # &, there is an epimorphism
g: My — M(Uhvﬂ. Thus, gf: My — M(vl,vﬁ is an epimorphism, and in particular
gf # 0. As a consequence, either (vi,v{] N U # @ or ((v1,v]] — 27) N U # . Note
that the second case is impossible because (v1,v]"] C (0,27). We obtain that VN, U # @,
indeed, by Proposition m if (V—2m)Ng U # @& then gf = 0, giving a contradiction.
Moreover, since (vl,vf] Nr U # @, we have that v; < u; and vf > uf, i.e. v1 = uy. This

concludes the argument of (2). O

There is another formulation of statement (1) which is dual to (2). Indeed, if instead of
our convention we consider intervals of the form U = (u; — 2hw, ug] with uy,us € 2, + 27
and h € {0,1}, then (1) is equivalent to: there exists a monomorphism My — My if and
only if V Ny U # @ and uy = vs.

6.5 Projective-injective objects

The category rep(Z kz,,) is a Krull-Schmidt exact subcategory of Rep(S!, kz,,), see The-
orem and Theorem In this section we prove that rep(Z,,, kz,,) is a Frobenius
category and that for each z € S' we have that P, = I, where P, and I, are respectively
the indecomposable projective and indecomposable injective representation at z. Given
z € Z,,, we denote M(MJF 427 by P; or I,. We want to prove the following result, which
follows directly from Proposition and Proposition [6.5.3

Theorem 6.5.1. The category rep(Z,,, kz,,) is Frobenius and its indecomposable projective-

injective objects are exactly those isomorphic to P, = I, for some z € Z,,.
We start with the proposition below.
Proposition 6.5.2. For each z € Z,, the object P, = I, is projective and injective in

rep(Zm, Kz, ).

Proof. Let z € Z,,, we prove that P, is projective. The proof that I, is injective is dual.
Consider a short exact sequence 0 — L I VN P, — 0, we show that this sequence
splits, i.e. that G is a split epimorphism. We divide the proof into claims.

Claim 1. There exists a direct summand of M isomorphic to P,.

Consider the following commutative diagram of vector spaces.

s
0 — L(z+) 24

L(w,+) | [Pt

s

00— r(zH) 2

We recall that, by Definition P.(z%) = Kby .+ ® Kby .+, Po(w,+)(by+) = by,
and P,(w,+)(by,+) = 0. Assume that M(w,+) = 0. Then P,(w,+)G(z") = 0, and this

contradicts the fact that G(27) is a split epimorphism and that P,(w,+) # 0. Therefore

M (w,+) # 0. Now consider the decomposition of M into indecomposable direct summands
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M = @} | M;, we can write M (w,+) = ;| M;(w,+). Since M(w,+) # 0, there exists
i €{l,...,n} such that M;(w,+) # 0, i.e. M; = P,.

Now we introduce some notation. After reordering the summands of M, we can write
M= Mo @’ _r1 M; where M; = P, for each i € {1,...,k} and M; % P, for each
je{k+1,...,n}. Wealso write G: M — P, as G = (G1 ... Gy Gq1 .. Gn ). We show that
there exists i € {1,...,k} such that G;: M; — P, is an isomorphism.

Claim 2. For each i € {1,...,k} and j € {k+1,...,n}, we have that G;(z) = (%Z o?z)
and G(z*) = (075)" for some oy, 8;,7; € K.

We recall that for each i € {1,...,k} and j € {k+ 1,...,n} the following diagrams

commute.
(s (ot
M; + M PZ(Z+) M(z+) CLQ Pz(z+)
JM (w,+) le(wer) lM W +) lp( W +)

) S0 b (=*) “5) P

Then the linear map G; (z+) M;i(z") = Kby ,+ @ Kby ,+ = P.(27) = Kby ,+ ® Kby ,+ is of
the form G;(z7) = ( 3 o ) for some o, 3; € K. Moreover, since M; 2 P,, we have that
M;(z") =0 or M;(2") 2 K and in both cases M;(w,+) = 0. Therefore, G;(z7) = (0 T
for some v € K.

Claim 3. There exists i € {1,...,k} such that G;(27): M;(2%) — P,(z") is an isomor-
phism.

We show that «; # 0 for some i € {1,...,k}. Indeed, if a; =0 for all i € {1,...,k}, then

51 0o - ﬁk 0 Ve+1 0 Un

and this contradicts the fact that G(z7) is a split epimorphism. As a consequence, there

exists i € {1,...,k} such that o; # 0, and therefore G;(2") is an isomorphism.

Claim 4. Let i € {1,...,k} be such that G;(2") is an isomorphism. We have that
G;: M; — P, is an isomorphism.

We prove that G;(z): M;(z) — P,(z) is an isomorphism for each x € S'. Let z € S! and

consider the following commutative diagram.

Gi(x)

M;(x) —— P,(x)
lMi(gan) P:(g,.+) (6.1)
Gi(zt
Ml(z*') PZ(Z+)

If 2z <o < 2" are in cyclic order then, since M;(g,,+) and P,(g,,+) are isomorphisms by
Definition and since G;(z") is an isomorphism by Claim 2, we obtain that G;(x)

is an isomorphism. Now assume that zT < z < z are in cyclic order. We recall that
M;(xz) = Kby, = P.(x) and M;(g,,+)(b1,2) = b1+ = Pu(gy.+). Since diagram (6.1)
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commutes, we obtain that G;(z) # 0, and therefore G;(x) is an isomorphism. Thus, G;(x)

is an isomorphism for each x € S*.
Claim 5. The morphism G: M — P, is a split epimorphism.

From Claim 3 we know that G;: M; — P, is an isomorphism of representations. Then
we can conclude that G: M — P, is a split epimorphism, i.e. the short exact sequence

0— L2 Mm% P, — 0 splits. 0

The following are important properties for projective and injective objects of rep(Z,,, kz,, ).

Proposition 6.5.3. The category rep(Z,,, Kz, ) has enough projectives and enough in-
jectives. Moreover, each indecomposable projective or injective object of rep(Z,,,kz,,) is

isomorphic to P, = I, for some z € Z,,.

Proof. By Theorem each object of rep(Z,,, kz,,) decomposes as a finite direct sum
of indecomposable objects, thus it is enough to prove that each indecomposable object of

rep(Z,, £z, ) has a projective cover and an injective envelope. Let U = (u1, ug+2hz] € W,
by Lemma there exist an epimorphism P,, — My and a monomorphism Iu2_ — My.

Now we prove that the indecomposable projective or injective objects are all of the form
P, = I, for some z € Z,,. Let U = (uj,us + 2hw] € W and My be projective in
rep(Zm, kz,,), then there exists an epimorphism P,, — My — 0. Since My is projective,
this epimorphism splits and then My is a direct summand of P,,. Therefore, My & P,, .

If My is injective, we can proceed dually. O

Given U,V € W, we recall that Homg (M, My) = K if and only if V € HT(U) U
H=(S7'U)uU P(U"), see Proposition Now we characterise the intervals V' € W such
that PrOj(MU,Mv) 7§ 0.

Proposition 6.5.4. Let U,V € W. We have that Proj(My, My) # 0 if and only if
Ve PU).

Proof. We denote U = (u1,us + 2hn] and V = (vq,v + kx]. If My is projective, then
Proj(My, My) = Homg (My, My) # 0 if and only if V € P(U’), see Observation
Now assume that M is not projective. Let f: My — My be a non-zero morphism such
that f = Ba for some a: My — P and B: P — My, where P is a projective object of
rep(Zm, Kz, ). Since My is not projective, by Proposition Homg: (My, My) = K.
Therefore, there exists an indecomposable direct summand P, of P such that f = S« for

some non-zero morphisms a: My — P, and 3: P, — M.

If h = 0, since (z, 27 +27] € P(U’), we have that u] < 2T < wug and ((2, 27 + 27] — 2m) Ny,
U # @. We have that V N, (2,27 + 27] # @ and (V — 27) N, U # &, otherwise, by
Proposition Bo = 0. Thus, v1 <z <u, and vg > uf, ie. Ve P(U).

If h = 1, we have the following possibilites: either (V —27) N, U # @ or VN U # @.

In the first case, vy > uf and, since k = 1, v; — 2km = v; — 27 < uy . In the second
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case, VN (2,27 +27] # @ and V Ny U # &, otherwise Ba = 0 by Proposition m
Therefore, vy + 2kw > uf and v1 < z < uy, and then V € P(U"). This proves that if
Proj(My, My) # 0 then V € P(U").

Now we prove that if V € P(U’) then Proj(My, My) # 0. If My is projective, then
Proj(My, My) = Homgi (My, My) # 0. Otherwise, we have that Homg: (M, My) =
K and Proj(HU,Mv) is at most one dimensional. Let f: My — My be a non-zero
morphism, we show that f factors through a projective object. Assume that h = 0. Note
that (('LLQ_,UQ + 27 — 27r) NLU # @. Since V € P(U’), we have that v; < u; and vy > uf,
and then V' N (uy ,ug +27] and (V —27) Ny U # @. Thus, by Proposition f factors
through Pu;.

Now assume that h = 1. We have that (u; , ug+27|NU # @. Since V € P(U’), we have the
following possibilities: v1 < u; and v + 2km > uf, or v1 — 2km < uy and vy > uf Thus,
we have that VN, (uy, ug+27] # @ and VN U # @, or (V —2m) N (uy , ug+27| # & and
(V =2m)Np U # @. In both cases f factors through Pu;. We conclude that any non-zero
morphism of Homg: (M, My ) factors through a projective object, i.e. Proj(My, My ) =
K. O

6.6 Exact sequences

In this section we compute the middle terms of certain exact sequences in rep(Z,,,kz,, )
of the form 0 — My — M — My — 0. This computation will be useful in Section
for proving that rep(Z,,, kz,,) is uniserial, and in Section [6.8| for describing the almost
split sequences. Given U € W, we refer to Definition for the notation U~.

Setup 6.6.1. Let U = (u1,us +2hw],V = (v1,v2 + 2kw| € W be such that My is not pro-
jective, Homgi (M-, My) = K, and Proj(My -, My) = 0. Since Homgi (M-, My ) =
K, there exists a unique ! € {0,—1} such that (V + 2ir) N U~ # @. We denote
I = (vi,us +2(h —l)r] and J = (uy,ve + 2(k + I)7].

U

V +2r

I+20m

J

Figure 6.8: The intervals I and J of Setup [6.6.1]

The following lemmas will be useful to prove Proposition
Lemma 6.6.2. Keeping Setup the following statements hold.
1. We have that I = (U —2ir)UV and J =U N (V + 2Ix).

2. We have that I € W. Moreover, M is projective if and only if ug + 2(h — )7 =
vf + 2m.

3. We have that J € W if and only if J # &, or equivalently vo + 2(k + l)m # uy.
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4. We have that V.= X~YU™) if and only if J = @ and M is projective.

5. There exist a monomorphism My — My and an epimorphism M — My . More-
over, if J # @, there exist an epimorphism My — Mj and a monomorphism
MJ — Mv.

Proof. Statement (1) is straightforward from Figure We prove statement (2). Since
V C I, we have that I # @. We check that ug + 2(h — I)7 < v + 27. First we show
that h — 1 € {0,1}. Since h,—I > 0, we have that h — [ > 0. Moreover, if [ = 0 then
h—1l=h <1, and ifl = —1 then h = 0, otherwise Proj(U~, V') # 0, see Figure giving

a contradiction.

Now, if h — 1 = 0, then us + 2(h — )7 = uz < v +2m. If h — 1 = 1, we have the
following possibilities: h =0 and [ = —1, or h =1 and [ = 0. We prove that in both cases
up < wvj. If h =0and [ = —1, we also have k = 1, and, since (V + 2l7) Ny U~ # &,
this implies that vy = vo + 2(k + )7 > uy. If h =1 and [ = 0, we have that ve + 2k7 >
uy. Since Proj(U~,V) = 0, i.e. V ¢ P((U™)") where (U) = (uy ,u1 + 2(1 — h)n],
we have that v; £ u; ~, see Definition m Thus, v1 > u,, ie. up < vf and then
ug + 2(h — ) = ug + 27 < vf + 27. We obtain that I € W and M is projective if and
only if ug + 2(h — )7 = v + 2.

Now we prove statement (3). Since (V 4 2i7) N U~ # &, we have that vy + 2(k + )7 <
Uy + 2hm < up + 2hm < uf + 27, we have that vy + 2(k + )7 < uf + 27. Thus, either
J =g, ie vo+2(k+1)m =wuy, or J # & and then J € W.

We prove statement (4). Assume that V = (vy,va+2k7] = S YU ™) = (uy , u1 +2(1—h)7].
Then £k =1 —-h = —, uy = vy, i.e. ugy = vf, and vy = uy. Therefore, us + 2(h —
D = v + 27 and vy + 2(k + )7 = u;. By statements (2) and (3) we have that M/
is projective and J = &. Now assume that the converse holds, i.e. u; = vo + 2(k + )7
and us + 2(h — )7 = v{ +27. Then v1 = uy, va = uy, k+1 =0, and h — [ = 1.
As a consequence, vo + 2km = vy + 2(1 — h)m = ug + 2(1 — h)w. We can conclude that
V=x"YU").

Finally, we prove statement (5). We check that U, V, I and J satisfy the conditions
of Lemma By Figure it is straightforward to see that (I + 2im) N U # @
and (V +2im) N (I +2in) # @, ie. VNI # &, and, if J # @, JNL U # @ and
(V+2im)Ng J # @. Moreover, it is straightforward to check that the endpoints of U, V', I
and J satisfy the remaining conditions of Lemmal[6.4.8] Thus, there exist monomorphisms
My — My and M j — My, and epimorphisms My — My and M — My. ]

Lemma 6.6.3. Keeping Setup the following statements hold.
1. If J # @, then dim My (x) +dim My (z) = dim M () +dim M j(x) for each x € S*.

2. If J = @, then dim My (x) + dim My (z) = dim M(z) for each x € S*.
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Proof. We prove statement (1). Let z € S'. Since My and My are not projective, we
have that dim My (x),dim My (z) € {0,1}. We divide the argument into a case analysis.

Case 1. dim My(z) = 0 = dim My (z).

By Definition we have that v~ '(z) NU = @ = v~ 1(x) N V. Therefore, by Lemma

@) L =474 @) N (U —2m) UV) = (1) NU) = 20m) U (" () V) =
and v~ Hz)NJ =y~ Hx)NUN(V + 2I7) = @. Thus, dim M (z) = 0 = dim M ;(z).

Case 2. dim My(z) = 1 and dim My (z) = 0.

We have that v~ !(z) N U = {s} for some s € R, and v~ *(z) NV = @. Therefore,
v )T = ((v(=)N )—QZW)) (V@) NU) = {s =2} and v~ (x)NJ =UN
(v Y(z) V) + 2I7) = @. We obtain that dim M(z) = 1 and dim M j(z) = 0.

Case 3. dim My (z) = 0 and dim My (z) = 1.
The proof is similar to Case 2.
Case 4. dim My (z) = 1 = dim My ().

In this case, v 1(x)NU = {s} and v~ 1(z)NV = {t} for some s, € R. Thus, v }(z)NI =
(v ()T —20m)) V(3 (@) W) = {s—2im, £} and v~ (@) T = (v~ (&) )N (v~ (@)
V) +20n) = {s}n{t+2r}. If s =t+ 2x, then vy Y (z)NI = {t} and v }(z)NJ = {s},
i.e. dimM;(z) =1 = dim M ;(z). Moreover, if s # t + 2lm, then dim M(z) = 2 and
dim M j(x) = 0. This concludes the argument of statement (1).

Now we prove statement (2). We check that the claim holds when dim My(z) = 1 =
dim My (), the other cases are analogous to the above. Let s,¢ € R be such that v~!(x)N
U= {stand y 1(2)NV = {t}. f s=t+2Ir, then s € (v L (2)NnU)N(y 1N (V +2In)) =
Y INUN(V+2i7)) =y Hz)NJ. As aconsequence, J # &, and this gives a contradiction.
Thus, s # t + 2I7, and we obtain that dim M (x) = 2 similarly to the above. O

Now we can prove that certain sequences of objects and morphisms in rep(Z,,,kz,,) are

short exact sequences.

Proposition 6.6.4. Keeping Setup the following statements hold.
(fl) (91 92)
1. If J # @, the sequence 0 — My —> Mi®Mj; —' My — 0 with f1, f2, 91,92 #
0 such that g1 f1 + g2fa = 0, s short exact.

2. If ] = @, the sequence 0 — My 2% My 25 My — 0 with f1,91 # 0 such that
g1f1 =0, is short exact.

Proof. We prove statement (1), statement (2) is analogous. It is enough to show that

(fl(@)
fa(z) (g1(z) g2(x)) ==
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is a short exact sequence of vector spaces for each x € S'. Let x € S, since My and
My are not projective, My (z) and My (z) are either equal to 0 or isomorphic to K. We
assume that My (z) 2 K and My (z) = K, for the remaining cases the proof is analogous.
By Lemma we have that either M;(r) =2 K and M ;j(x) 2 K, or M(x) = K? and

M j(x) = 0, we proceed with a case analysis.

Case 1. M(z) 2K and M ;(z) 2 K.

By Lemma , f1, f2, g1 and go are either monomorphisms or epimorphisms. Thus,
fi(x), fa(z), g1(x), and ga(x) are either injective or surjective linear maps, in particular
they are non-zero. Then, is isomorphic to the short exact sequence

1
05K Urgox T WPr o

and is therefore is a short exact sequence.
Case 2. M(x) 2 K? and M j(x) = 0.

We denote fi(z) = (M r2)" and g1(z) = (m #2) for some i, Ag, pr, p2 € K. We recall
that, since M(x) = K2, M is projective and M (w;): M (x) — M(x) is of the form
Mi(z) = (99), see Definition Since M[(wz)fi1(z) = fi(x)My(w;) = 0, we obtain
that fi(z) = (0x2)?. Moreover, since fi(z) # 0 as in Case 1, we have that Ay # 0.
Similarly, we obtain that g;(z) = (11 0) with g3 # 0. Thus, is isomorphic to the short
exact sequence

(1)

O—>K—>K®K(ﬂ>)K—>O.

We obtain that for each z € S* is a short exact sequence. O

The following remark will be useful in Section [6.9] for computing the shift functor of the
stable category of rep(Z,,,kz,,).

Remark 6.6.5. Let U = (u,us + 2hn] € W be such that M is not injective. Since
U # (u1,u] + 27, we have that XU € W, see Observation m By Proposition m
there is a short exact sequence 0 — My — I uy — Msy — 0. Thus, XMy = Myy,
see Section

6.7 Simple objects and uniseriality

With the following proposition we describe the simple objects of rep(Z,,,rz,,). For each
z € Z,, we denote S, = M(mﬂ.

Proposition 6.7.1. The simple objects of rep(Z,,,kz,,) are exactly those isomorphic to

S, for some z € Z,,.

Proof. Let z € Z,,, we show that S, = M(z,zﬂ is simple. Let V = (v1,vy + 2knw] € W
be such that there exists a monomorphism My — S,. By Lemma we have that
((z,2%)+2lm) NV # @ and 27 = vy + 2(k + )7 for a unique | € {0,—1}. Since (z,27] C
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(0,27), then [ = 0 and as a consequence k = 0 and vy = 21, Since (z,27] N, V # 2, we
obtain that V' = (2, 2"]. This proves that S, is simple.

Now let U = (u1,us + 2h7w] € W and assume that My is simple. Note that, by Lemma
6.4.8) there exists a monomorphism S, — M. Thus, S,, = My, i.e. U = (u1,u]]. This

concludes the argument. ]

Now consider U = (uy,ug + 2hm] € W. We prove that My admits the following, possibly

infinite, series of inclusions

cCM

(ug yu2] = (ugy ™ uz] c---

0CM

IN
=
N
&
+
no
3
N
=
R
&
+
X
=
IN
=

(271, u2+2hn] C.-

(uf jug+2hn) - M(ul,u2+2h7r] =My

where z € Z,,U(Z,,+2h7) is such that u; < z < uy +2hm. We prove this is a composition
series of My, i.e. for each z the cokernel of the inclusion M(z+7u2+2hﬂ] - M(z,u2+2hﬂ is
a simple object. Moreover, we show that composition series of indecomposable objects of

rep(Zm,, kz,,) are unique up to isomorphism, i.e. rep(Z,,, Kz,,) is uniserial.

Theorem 6.7.2. For each M € indrep(Z,,,kz,,) there exists a unique monomorphism

f: L — M, up to isomorphism, such that Coker f is simple.

Proof. Assume that M is simple, then 0 — M is the only monomorphism whose cokernel
is simple. Now, assume that M is not simple, and let U = (uy,us + 2hw| € W be such
that M = My. Let V = (uf,u2 + 2h7], note that V € W and, by Lemma [6.4.8, there
exists a monomorphism f: My — M. Moreover, by Proposition w .0 — My i>

My — Sy, — 0 is a short exact sequence, i.e. Coker f is simple.

Now we prove the uniqueness. Assume that there exists V = (v1, vy + 2kn] € W and a
monomorphism f: My — My such that Coker f is simple. Assume that h = 0, the other
case is similar. By Lemma k = 0 and v2 = uy. Moreover, by Proposition [6.6.4] it
is straightforward to check that Coker f = M(uhvﬂ. Thus, v; = uf and V = (v1,v9] =
(ui,u2). This concludes the proof.

O

6.8 Irreducible morphisms and almost split sequences

In this section we describe the irreducible morphisms and the almost split sequences in
rep(Zm, kz,,). Given U € W, we refer to Definition for the notation Uy, Uz, and U~.

Proposition 6.8.1. Let U € W. If My is not projective, let fi: My — My, be a non-
zero morphism, and if My is not simple, let fo: My — My, be a non-zero morphism.

The following statements hold.
1. Let Ve W\{U} and f: My — My. Then f factors through f1 or fa.
2. If My is not simple, then fo is irreducible.

3. If My is not projective, then f1 is irreducible.

142



4. Let V€ W be such that that there exists an irreducible morphism My — My,. Then
MV = MUl or MV = MUQ'

Proof. We prove statement (1). Assume that M is not projective and not simple, for
the other cases the proof is analogous. By Observation [6.3.6, U;,Uz € W and it is
straightforward to check that Uy N\ U # @ and Us N U # @. Let V = (vy,v2 + 2kn] € W
and consider a morphism g: My — My. If g = 0 then clearly f factors through f; and fo,
thus we assume that g # 0. If v; = uy, then VN U # @, VN Us # @ and, by Proposition
h factors through fs. If v; # wy, then we have the following possibilities: either
VNpU # @, and then VN Uy # &, or (V—27)N U # &, and then (V —27) Ny Uy # 9.
In both cases we have that g factors through f;. Therefore, we conclude that g factors
through fi or fo.

Now we prove statement (2), the proof of statement (3) is analogous. Since My is not
simple we have that Uy € W. Assume that fo: My — My, factors as fo = Sa for some
a: My — M and B: M — My, where M € rep(Z,,,kz, ). We show that « is a split
monomorphism or 3 is a split epimorphism. Since Homg (M, My,) = K, without loss
of generality we can assume that M is indecomposable, i.e. M = My, for some V € W.
Since fa = fo and Uy N U # @, we have that V Ny U # @ and Uy N V # @. Indeed,
in all the other cases, by Proposition [6.4.7] we have that Sa = 0, giving a contradiction.
Thus, V =U or V = Us, i.e. « is a split monomorphism or S is a split epimorphism. We

conclude that fs is irreducible.

We prove statement (4). Consider an irreducible morphism f: My — My, by statement
(1) f factors through f; or fo. Assume that f factors through fi, the other case is
analogous. Thus, there exists g: My, — My such that f = gf;. Since f is irreducible and

f1 is not a split monomorphism, g is a split epimorphism and therefore My, = My. O

We want to prove the following proposition. We refer to Definition [2.2.10|for the definition

of almost split sequences.

Proposition 6.8.2. Let U € W be such that My is not projective. The following state-

ments hold.

(3) -

1. Assume that My is not simple. Then 0 — My ~=5 MUl @MUZ (glj) My- — 0,
where f1, fo, 91,92 # 0 are such that g1 f1 + gafo = 0, is an almost split sequence.

2. Assume that My is simple. Then 0 — My fﬂl MUI LN M- — 0, where

f1,91 # 0, is an almost split sequence.

Thus, we have that TMy- = My.

Proof. We prove statement (1), statement (2) is analogous. By Lemma[6.6.4] the sequence
in the statement is short exact. Since My and M- are indecomposable, it remains to
check that (jﬁ;) is left almost split. Consider a morphism a: My — M with M €
rep(Zm,, kz,,), and assume that « is not a split monomorphism, we show that h factors
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Proposition [6.8.1}, « factors through f; or fo. Assume that o = ay f; for some ay: My, —

through (}2 . Without loss of generality we can assume that M is indecomposable. By
M, the other case is analogous. Consider the morphism (a1 0): My, @ My, — M, we

obtain that (a1 0) (;%) = «a. Thus, we obtain that (g) is left almost split. O

6.9 The category C_;,,

We define the category C_1 p, as the stable category of rep(Z,,, kz,,). The objects of C_1 ,
are exactly those of rep(Z,,kz,,), and Home_, , (M, N) = Homg: (M, N)/Proj(M, N)
for each M, N € rep(Z,,kz,,). We refer to Section for some background on stable

Frobenius categories. Here we list some important properties of C_1 ;.

e Since rep(Z,,, kz,,) is Hom-finite, K-linear, and Krull-Schmidt, then so is C_j ,,, see
Lemma[2.3.10] The indecomposable objects of C_1 , are exactly, up to isomorphism,
the non-projective indecomposable objects of rep(Z,,,kz,, ), i.e. the objects of the
form My with U = (ui,us + 2hw] € W such that uf < ug + 2hm < uy + 2.
Moreover, the Hom-spaces of C_1 ,,, are at most one-dimensional because the Hom-

spaces of rep(Z,,, kz,,) between non-projective objects are.

e Since rep(Z,,, kz,,) is Frobenius, the category C_1 ,, is triangulated. Given an inde-
composable non-projective object My € rep(Z,, Kz, ), the shift functor ¥ acts as
YMy = Msy, see Remark The triangles of C_1 ,, are obtained by stabilising
the short exact sequences of rep(Z,,, kz, ), see Proposition

e The category C_1 ,, has almost split triangles, which are obtained by stabilising the
almost split sequences of rep(Z,,,kz,,), see Corollary [2.3.14] Therefore, C_1 ,, has

a Serre functor, see Proposition [2.3.6

For the rest of this section, we denote the objects of C_1 ;,, by lower case letters.

6.9.1 The geometric model

We describe the geometric model of C_1 ,, in terms of the co-gon Z,,,. We refer to Section
for the difference between elements of Z,,. The following is a negative version of the
definition of w-admissible arc, defined in [27), Definition 2.3] for w > 2.

Definition 6.9.1. Let a,a2 € Z,,. We say that (ay,a2) is a (—1)-admissible arc if

a1 > a9+ 1and a; —as =1 mod 2.

Now we prove that the (—1)-admissible arcs are in bijection with the intervals U € W

such that My is not projective.
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Proposition 6.9.2. The following is a bijection.

' { U = (u1,ug + 2hm] € W such that

ut <+ 2k < un + 21 } — { (—1)-admissible arcs of Z,, }

(2up — 1,2u1) ifh =0,

(u1,ug + 2hw] —
(2up,2uy — 1) ifh=1.

Proof. 1t is straightforward to check that ¢ is well defined and injective. We show that ¢ is
surjective. Let (21, 22) be a (—1)-admissible arc and let U = (%1, 22t 4 27] if 24 is even,
and U = (%, 35174'1] if z; is odd. Then U belongs to the domain of ¢ and p(U) = (z1, z2).

This proves that ¢ is a bijection. O

Note that, given a = (a1, a2) € indC_1 ,, by Proposition we have that Ya = (a1 —
l,as — 1) and ¥7'a = (a1 + 1,a2 + 1).

For each p,q € [m] and i € {0,1} we define the set of (—1)-admissible arcs

7P:ai) — {a = (a,a2) € indC_y,, |a € 79 and a; =i mod 2} .
We can arrange the isoclasses of indecomposable objects of C_1 ,, into a coordinate system
having

e 2m components of type ZAs, each corresponding to the sets of arcs Z®PP%) for
p € [m] and i € {0,1},
° 2("21) components of type ZAY, each corresponding to the sets of arcs ZP::1) for

p>gqandie{0,1}.

Figure provides an illustration of the coordinate system, with Proposition [6.9.4] we will
prove that this yields the AR quiver of C_1 ,.

N s /
4 N ’ N /
// N s N /
N s s
4 N Z(2$210) ’ N Z(leo) ’
/ N ’
s N s, N Z
7 N , N /
s N , N s
// N 4 \\ 7
“ 7/(2.1,1) N 7,(2,1,0) >’
7N / N 4
e N s N s
e N v N 7
4 N 7 N 4
// N\ / N 4
N ’ N ’
4 2(2,2,1) N s Z(l,l,l) N /
7 ’ s
’ N , N s
/ N N

Figure 6.9: The coordinate system of C_1 o.

6.9.2 Factorization properties

Now we discuss the factorization properties of the morphisms of C_1,,. We start by

discussing the Hom-hammocks and the Hom-spaces in C_1 .

By Proposition for an object a = (a1,a2) € indC_y,, we can re-write the Hom-
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hammocks of Definition [6.4.3] as
H"(a) = {(z1,20) € indC_1m | az +1 <21 <ap and 22 < a}, and
H™ (a) ={(x1,22) € indC_1,p, | 1 > a1 and az < zp < a1 — 1}

Given b = (b1,b2) € indC_1,y, it is straightforward to check that b € H*(a) if and only
if a € H(b). Figure provides an illustration of the Hom-hammocks. Moreover, by
Proposition we have that

K ifbe H (a)UH (X7 1a),
Home_, ,, (a,b) =
0 otherwise.

aN - s
7/ N s/ N s
4 N z N 4
s N Y N s
7/ N s’ N s
4 N v N ’
4 N , N s
s N , N s
s N Y N v
// N s \\ ,
N s _ s
A ae X X7 la ;
7N 7z AN /
4 N / N 7/
4 AN v AN 7/
4 N 7 AN /
4 N\ ’ N 7/
s N ¥ S 7
7 N s AN /
4 N\ s AN 7/
4 N s N /
4 N N

Figure 6.10: The Hom-hammocks H*(a) and H~ (¥ !a) for a € indC_1 5.

Now we prove the factorization properties of the morphisms in C_; ,,. These are obtained
from the factorization properties in rep(Z,,, kz,, ), see Proposition

Proposition 6.9.3. Let a,b,c € indC_1,,, f: a — b, and g: b — ¢ be non-zero mor-

phisms. Assume that one of the following conditions hold.
1. be H"(a) and c € H*(a) N H* (D).
2. b€ H (a) and c€ H- (X7 ta)n H-(Z71).
3. be H (X 7ta) and c€ H (X7 ta) N HH(b).
Then gf # 0.
Proof. Let U = (u1,us + 2hw],V = (v1,v2 + 2kn], W = (w1, wz + 27| € W be intervals
such that ¢(U) = a, ¢(V) = b, and o(W) = c. Assume that (1) holds, i.e. V € HT(U)

and W € HY(U)NHT(V), then VN U # @, WNLV # @, and W N, U # @, see
Observation [6.4.5] Thus, by Proposition gf #0.

Now assume that (2) holds, i.e. V € HY(U) and W € H-(X"'U)n H-(X~'V). By
Observation|6.4.5, if h =0thenk =h=0,l=1-k=1, VN, U # &, (W=2m)NLV # &,

146



and (W=2m)NpU # @. Thus, gf #0. fh=1,thenk=h=1,1=1-k=0,VN U # @,
WnLV # @, and WnNp U # @. As a consequence, gf # 0.

Finally, assume that (3) holds. If h =0, thenk=1-h=1,l=k =1, (V-27)N U # &,
WV #@,and (W-2m)NpU #@. Ifh=1,thenk=1-h=0,l=k=0,VN U # &,
WnNnpV #o,and WNg U # @. In both cases we have that gf # 0. O

6.9.3 Irreducible morphisms and almost split sequences

We describe the irreducible morphisms and the almost split sequences in C_1,,. The

following result follows directly from Proposition [2.3.13] and Proposition [6.8.1

Proposition 6.9.4. Let a = (a1,a2),b = (b1,b2) € indC_1,,. If b = (a1,a2 — 2) or
b = (a1 — 2,a2), then any non-zero morphism a — b of C_1 4, is irreducible. Moreover,

there are no other irreducible morphisms in E—l,m between indecomposable objects.
The following result follows directly from [2.3.14] and Proposition [6.8.2
Proposition 6.9.5. Let a = (a1,a2) € ind C_1,m- The following statements hold.

1. If a1 = ag+1, then (a1 +2,a2 +2) — (a1,a2+2) — (a1,a2) — X(a1 +2,a2+2)

is an almost split triangle.

2. If a1 # as + 1, then (a1 + 2,a2 + 2) — (a1,a2 +2) @ (a1 + 2,a2) — (a1,a2) —
Y(a1 + 2,a2 + 2) is an almost split triangle.

Thus, we have that Ta = (a1 + 2, as + 2).

6.9.4 The Calabi—Yau property

By Proposition C_1,m has almost split triangles, and as a consequence it has a Serre
functor, by Proposition m In Proposition we prove that ¥ 7! is a Serre functor,
ie. C_ym is (—1)-CY. We refer to Section for some background about Serre functors.

We start with the following lemma.

Lemma 6.9.6. Let a,b € indC_;,,, and f: a — b be non-zero. Then there exists g: b —
Y~ la such that gf # 0.

Proof. Since f #0,b€ H*(a)UH~ (X 'a). If b € H"(a) then a € H(b), i.e. ¥ ta €
H=(X7'), and if b € H=(X71a) then ¥~'a € HT(b). Thus, there exists a non-zero
morphism g: b — Y "la. We have the following possibilities: b € H*(a) and X 'a €
H- (X ta)nH-(X7'),orbe H-(X71a) and 7'a € H= (X7 ta)n HT(b). In both cases,
by Proposition [6.9.3] we obtain that gf # 0. O

By Theorem in order to prove that ¥~! is a Serre functor, it is enough to check the
existence of certain non-degenerate pairings. Thus, the following result implies that C_1 ,,
is (—1)-CY. We can use the same argument of Proposition m
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Proposition 6.9.7. Let a,b € C_1,,. The following is a non-degenerate pairing.

®,p: Home_, ,, (a,b) x Home_, (b, »la) — K

(f,9) — Tr(gf)

The category C_1,, and the Holm-Jgrgensen category 71 are both K-linear, Hom-finite,
Krull-Schmidt, algebraic triangulated, and (—1)-CY. We observe that C_; ; and 7_; have
the same geometric model, and therefore they are equivalent as additive categories. We
refer for instance to [14, Section 2, Section 5] for the description of the properties and

combinatorial model of 7_;. We expect that C_1; and 7_; are triangle equivalent.
Conjecture 6.9.8. The categories C_11 and 7_; are triangle equivalent.

The idea of the proof is as follows. First we need to prove that the object a = (a1,a1 —2) €
indC_1; is (—1)-spherical, see for instance [I4, Section 2, p. 5] for the definition of
spherical object. Then we should check that C_; 1 is generated by a, i.e. C_1; concides
with its smallest thick subcategory containing a. By [35, Theorem 2.1], the category 7_1
is the unique, up to triangle equivalence, algebraic triangulated category generated by a

(—1)-spherical object, and therefore C_1; and 7_; are triangle equivalent.
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