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Abstract16

In order to study potential impacts arising from climate change, future projec-17

tions of numerical model output often must be calibrated to be comparable to18

observations. Rather than calibrating the data values themselves, we propose a19

novel statistical calibration method for extremes that assumes there exists a linear20

relationship between parameters associated with model output and parameters21

associated with observations. This approach allows us to capture uncertainty22

in both parameter estimates and the linear calibration, which we achieve via23

bootstrap. To focus on extreme behavior, we assume both model output and24

observations have distributions composed of a mixture model combining aWeibull25

distribution with a generalized Pareto distribution for the tail. A simulation study26

shows good coverage rates. We apply the method to project future daily-averaged27

river runoff at the Purgatoire River in southeastern Colorado.28

Keywords: climate projections, downscaling, flooding, extremes, calibration29
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1 Introduction30

Numerical models are widely used in the Earth sciences to study atmospheric and31

ocean dynamics, hydrology, atmospheric chemistry, and other processes. Because they32

are driven by the known physics of the studied system, numerical models are the33

best tools available to produce projections under possible climate scenarios. However,34

numerical model output can have notable discrepancies from observations, which can35

have implications for quantifying potential climate change impacts. These discrepan-36

cies (or ‘model bias’ in the climate literature) can occur because the model’s spatial37

support (often a grid cell) differs from that of point-referenced observations and/or38

because the model’s physics are necessarily a simplification and cannot capture the39

full complexity of the Earth system. To better understand the behavior of quanti-40

ties of interest in relation to observations, there is a need to calibrate (or downscale)41

model output. Various statistical calibration and bias correction methods have been42

developed to address these issues. We provide an overview of widely applied methods43

in Section 2.2. As part of their review, Teutschbein and Seibert (2012) compare dif-44

ferent correction methods specifically for regional climate model (RCM) simulations45

in hydrological impact studies.46

The calibration problem can be visualized as in Figure 1. The boxes with green47

checkmarks have data (either model output or observations) available. The red ‘X’48

indicates there are no observations under the projected climate. Quantities of interest49

related to projected observations must be estimated based on a modeled relationship50

between model output and observations learned from the historical period, which is51

then applied to the projected period.52

Model Output Observations

Projected
Climate

Historical
Climate

Fig. 1: Illustration of the calibration method applied to projected observations under
the projected climate. Boxes with green checkmarks have data available and quantities
of interest can be estimated directly. The red ‘X’ indicates there are no observations
under the projected climate, and quantities of interest must be estimated based on
the relationship between model output and observations, and the relationship between
historical and projected climate.

Our particular calibration study is motivated by a project which aims to estimate53

potential flood risk from the Purgatoire River to infrastructure at a military base54
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in southeastern Colorado, USA. For this river, flows are often greatest in the spring55

due to runoff from melting snow, and it is of interest to know how climate-induced56

changes to the timing and duration of snow cover could affect flood risk. Notably,57

discrepancies between model output and local observations are amplified when focus-58

ing on extremes, as shown in Figure 2. With the growing attention on climate change59

impacts, numerous studies have contributed to the development of calibration meth-60

ods for extremes to better assess their effects on local extremes (e.g., Schubert and61

Henderson-Sellers, 1997; Vrac and Naveau, 2007; Benestad, 2010). In a comparison62

of advanced downscaling methods, Bürger et al. (2012) evaluated approaches for63

extremes, including automated regression-based statistical downscaling (ASD) (Hes-64

sami et al., 2008), bias correction spatial disaggregation (BCSD) (Wood et al., 2002),65

and quantile regression neural networks (QRNN) (Taylor, 2000). In the context of66

machine learning techniques, Campozano et al. (2016) compared statistical downscal-67

ing methods with two machine learning methods, specifically artificial neural network68

(ANN) and least squares support vector machines (LA-SVM), to evaluate downscaled69

general circulation model (GCM) estimates of monthly precipitation.70

In this study, given the limited and relatively short data records, and without the71

inclusion of additional predictor variables, our calibration method is classified as a72

transfer function approach, as opposed to stochastic weather generators and weather73

typing methods (Vrac and Naveau, 2007). Accordingly, in Section 4.3, we focus on74

comparing calibration methods that emphasize the direct relationships between large-75

scale model output and local observations. We propose a novel univariate calibration76

method for extremes, with the development of a multivariate version left for future77

work.78

Our primary aim is to provide estimates of high quantiles of projected Purgatoire79

River observations. In particular, we wish to provide estimates (with uncertainty) of80

quantiles roughly corresponding to the 1-in-10 and 1-in-100 year events, the latter81

of which will require extrapolation into the tail as the data records we employ are82

much shorter. The need for extrapolation leads us to employ a parametric model.83

Our model, which will be fit to the entire distribution, will rely on an extreme value84

model to capture the behavior in the upper tail. Unlike the advanced downscaling85

methods referenced in Bürger et al. (2012), where data outside the range of the fitted86

quantiles are extrapolated using specific distributions such as Weibull or exponential87

distributions, we fit a generalized Pareto distribution to the tail, allowing for more88

flexibility in capturing different tail behaviors.89

Our calibration method assumes there exists a linear transfer function governing90

the relationship between the parameters of the distributions describing model output91

and the observations. The historical period will be used to estimate this linear relation-92

ship, and then it is applied to the parameters of the projected model output to obtain93

an estimate of the distribution of projected observations. In addition to accounting for94

the uncertainty associated with parameter estimates, a bootstrap method will allow95

us to also account for uncertainty associated with estimating the transfer function.96

In contrast to dynamical downscaling using RCMs, statistical calibration requires97

thorough validation, especially for extremes, to verify the methods as noted by (Bürger98

et al., 2012). We perform validation using the historical period, given that observations99
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for projected climates are not available. To evaluate the performance of calibration100

methods for extremes, we use quantile-quantile plots (QQ-plots), a standard tool in101

extreme value analysis, and summary statistics derived from large values exceeding a102

high threshold.103

Section 2 describes the data and reviews common statistical calibration and bias104

correction methods. In Section 3.1, we motivate and describe our model for both105

observed and modeled river flows. Section 3.2 describes the process of our calibration106

method. In Section 3.3, we describe how we obtain uncertainty estimates for the model107

parameters, transfer function, and estimated quantiles. We then present simulation108

results, case study, and method comparisons in Section 4. Finally, we conclude with a109

summary and discussion.110

2 Data and other calibration methods111

2.1 Data description112

Throughout the study, we analyze daily-averaged river flow observations and river flow113

model output for the Purgatoire River in Colorado covering the period from 2002 to114

2013. Projected river flow model output is also produced for this period under a pro-115

jected climate (not shown in Figure 2). Complete measurements are taken across three116

datasets, resulting in a sample size of n = 1, 836. The superimposed timeseries plot117

of the observations and model output for the historical period is shown in Figure 2a.118

Flows are only shown for the period between April and August as this is the period119

when the river is at risk for flooding, and river flow measurements outside these months120

are considered unreliable.121
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Fig. 2: (a) Timeseries plot of daily-averaged river discharges (black solid line) and
modeled river discharges (blue dashed line) for the Purgatoire River in Colorado for
2002-2013. (b) QQ-plot comparing empirical quantiles of observations to empirical
quantiles of model output for the same historical period.
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The process to produce modeled river flows is quite involved. Two simulations122

were forced with a high-resolution (4km grid) dataset obtained from the Weather123

Research and Forecasting (WRF) model. The current climate simulation was forced124

with ERA-Interim reanalysis data (Dee et al., 2011) for the period from October125

2000 to September 2013. The projected pseudo-global warming simulation (PGW) (a126

perturbation experiment) for the same period is forced with ERA-Interim reanalysis127

and a climate perturbation (Rasmussen et al., 2011). This perturbation reflects the128

95-year mean change signal from the Coupled Model Intercomparison Project Phase129

5 (CMIP5) multi-model ensemble under the high-emissions RCP8.5 scenario. The130

ensemble-mean monthly climate change was derived from 19 CMIP5 models selected131

based on their performance, as detailed in Section 2.2. of Liu et al. (2017).132

This high-resolution modeled weather output was used as input for SnowModel133

(Liston and Elder, 2006; Liston et al., 2020), a numerical model for the accumulation,134

evaporation, and melting of snow over a study area. Finally, modeled snow runoff was135

combined with WRF-produced meteorology and input into HydroFlow (Liston and136

Mernild, 2012), a numerical hydrological model which produces simulated streamflow137

measurements.138

The modeled stream runoff is useful for understanding changes in timing and rela-139

tive runoff amounts between the historical and projected periods, but there is a clear140

mismatch between the distributions of the modeled river flows and the observations.141

In particular, the extremes of the observations are not represented by the modeled142

runoff. Calibration is needed to use the modeled river flow output for assessment of143

projected flood risk.144

2.1.1 Model evaluation145

To assess the goodness of fit for numerical models such as SnowModel, several summary146

statistics can be used. We consider the determinant coefficient, R2 ∈ [0, 1], where147

values close to 1 indicate a better fit; root mean squared error, RMSE ≥ 0, with148

lower values implying a better fit; and Nash-Sutcliffe efficiency coefficient (Nash and149

Sutcliffe, 1970), NSE ∈ (−∞, 1], which reflects the proportion of the variance in the150

observations that is accounted for by the model relative to the total variance of the151

observations152

NSE = 1−
∑n

t=1 (xMod(t)− xObs(t))
2∑n

i=1(xObs(t)− x̄Obs)2
,

where xMod(t) and xObs(t) are the model output and observations at time t = 1, . . . , n,153

respectively, and x̄Obs denotes the sample mean of the observations. An NSE of 1 indi-154

cates a perfect match between model output and observations. While these measures155

are typically useful for evaluating mean behavior, our focus is on high-quantiles. To156

make these statistics more relevant for extremes, we also consider large values exceed-157

ing a high threshold. Setting the high threshold at the 0.95 quantile for each dataset158

of observations and model output for the historical period, the obtained statistics are159

summarized in Table 1. As a graphical diagnostic, we create a QQ-plot of observa-160

tions versus modeled river flows in Figure 2b, showing a clear mismatch in the higher161

quantiles.162
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R2 RMSE NSE

SnowModel 0.14 / 0.10 4.64 / 13.85 -0.014 / -0.524

Table 1: Summary statistics for SnowModel under
the historical climate. Values before the slash are
derived from all data points, while values after the
slash are derived from data exceeding a high thresh-
old.

2.2 Statistical calibration and bias corrections163

We review commonly applied statistical calibration and bias correction methods. Let164

xh
Mod(t) denote the variables from model output for the historical period at time t,165

let xh
Obs(t) be the observations of variable of interest from the historical period, and166

let xp
Mod(t) represent the model output for the projected period. Statistical calibra-167

tion methods take these available data to attempt to describe xp
Obs(t), the unavailable168

observations for the projected period. The model output used does not have to rep-169

resent the projected variable of interest; xp
Mod(t) might be larger-scale predictors,170

for example principal components of geopotential heights (e.g., Hanssen-Bauer et al.,171

2005). Huang et al. (2019) say that most proposed statistical calibration methods fall172

into three general categories: regression, a shift/scale (or delta method) approach, or173

quantile mapping. We note that the choice of bias correction method often depends174

on the specific motivations, data characteristics, and underlying assumptions of the175

study.176

2.2.1 Regression-based method177

A generic form of regression is assumed as178

xh
Obs(t) = f(xh

Mod(t),β) + ϵ(t).

Often the function f is standard linear regression. Calibration via regression makes179

the most sense when the observations and model output are synchronous; that is, the180

modeled weather at time t represents the actual weather at t. Climate reanalysis data181

is synchronous, but output from general circulation models is typically not. When the182

data is asynchronous, then the distribution of the model output needs to be related183

to the distribution of the observations. A notable study that uses the regression-based184

downscaling method includes (Wilby et al., 1999).185

2.2.2 A shift/scale method (delta method)186

A simple shift/scale approach is moment based. Letting Xh
· (t) and Xp

· (t) be the
random variables representing the variable of interest in the historical period and
projected period respectively and · can be either model output or observations, the
shift/scale approach assumes

Xp
· (t) = s(Xh

· (t) +m).
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Thus, the projected distribution function is shifted by m and scaled by s:187

FXp
· (t)

(x) = FXh
· (t)((x−m)/s).

The parameters m and s are learned from the historical period and applied to the188

projected period. As an example, a univariate version of linear bias correction for189

climate model output by Bürger et al. (2012) is190

x̂p
Obs(t) =

(
xp
Mod(t)− x̄p

Mod

σh
Mod

)
σh
Obs + (x̄p

Mod − x̄h
Mod) + x̄h

Obs, (1)

where x̄p
Mod, x̄

h
Mod, and x̄h

Obs represent the sample means of the model output for the191

project period, the model output for the historical period, and the observations for192

the historical period, respectively, and σh
Obs and σh

Mod are the standard deviations of193

observations and model output for the historical period. A study by Teutschbein and194

Seibert (2012) compares various shift and scale corrections, including linear scaling,195

variance scaling, power transformation, and the delta-change method.196

This shift/scale method is simple and m and s are easily estimated, but is best197

suited for understanding changes in the center or bulk of the distribution and is of198

limited value for detecting changes in extremes.199

2.2.3 Quantile mapping (QM)200

Quantile mapping (QM) defines the transfer function that connects cumulative201

distribution functions (CDFs) of Fh
Obs and Fh

Mod202

x̂p
Obs(t) = F̂h−1

Obs {F̂h
Mod[x

p
Mod(t)]}, (2)

where x̂p
Obs(t) corresponds to the projected observations at time t within the projected203

period, F̂h
Obs and F̂h

Mod are estimated CDFs of observations and model output under204

historical climate. As the qunatile mapping transfer function uses only the information205

from the historical period, it can fail for extreme values if xp
Mod(t) falls outside the206

range of values used to estimate F̂h
Mod. Hence, extrapolation is required for extremes.207

2.2.4 Quantile delta mapping (QDM)208

Instead of using the direct extrapolation, there have been methods such as equidistant209

and equiratio quantile mapping (Li et al., 2010; Wang and Chen, 2014), which use the210

information from the CDF of the projected model output, denoted by F p
Mod, for the211

projected period. Cannon et al. (2015) verified that those quantile mapping approaches212

are equivalent to the quantile mapping of the ‘delta change method’ (Olsson et al.,213

2009) and termed this approach ‘quantile delta mapping’ (QDM).214

QDM preserves relative changes (or deltas) in all quantiles between the projected215

model output xp
Mod(t) and historical model output xh

Mod(t). The first step involves216

detrending the projected model output by quantile, followed by bias correction of the217

projected model output to historical observations via quantile mapping. After that,218
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the relative changes, denoted by ∆Mod,Rel(t), in the quantiles of the projected model219

output are applied to the bias-corrected historical values to capture the projected220

climate change signal (or relative changes in modeled quantiles)221

x̂p
Obs(t) = F̂h−1

Obs {F̂
p
Mod[x

p
Mod(t)]} ×∆Mod,Rel(t)

= F̂h−1

Obs {F̂
p
Mod[x

p
Mod(t)]} ×

xp
Mod(t)

F̂h−1

Mod{F̂
p
Mod[x

p
Mod(t)]}

(3)

To preserve absolute changes, denoted by ∆Mod,Abs(t), in quantiles (e.g., temperatures222

in Celsius, see Cannon et al., 2015), additive deltas are applied to historical bias-223

corrected values. Specifically, the adjusted quantile is given by F̂h−1

Obs {F̂
p
Mod[x

p
Mod(t)]}224

x̂p
Obs(t) = F̂h−1

Obs {F̂
p
Mod[x

p
Mod(t)]}+∆Mod,Abs(t)

= F̂h−1

Obs {F̂
p
Mod[x

p
Mod(t)]}+ xp

Mod(t)− F̂h−1

Mod{F̂
p
Mod[x

p
Mod(t)]}

(4)

For more details, refer to Cannon et al. (2015).225

Compared to the methods described above, our calibration method in Section 3.2226

employs a parametric approach for extrapolation. We compare these methods and227

evaluate their performance in Section 4.3.2.228

3 Methodology229

3.1 A mixture model for modeling the distribution’s bulk and230

tail231

We create a model for the the entire distribution of projected observations, and rely on232

extreme value models to characterize the upper tail. To motivate our eventual model,233

we briefly describe modeling and calibrating only the extremes.234

An aim of an extreme value analysis is to not let data in the bulk of the distri-235

bution influence estimates of tail behavior. Thus, classical extremes methods analyze236

only an extreme subset of the data: either block (e.g., annual) maxima or threshold237

exceedances. Here, our data record is insufficient to model only annual maxima, and238

seasonal effects would make fitting sub-annual maxima (e.g., monthly) dubious. Con-239

sider a standard peaks-over-threshold approach, in which the generalized Pareto (GP)240

distribution (Balkema and De Haan, 1974) is fit to data which exceed a high threshold241

u. The GP distribution is defined as242

G(x;u, ξ, σ) = P(X < x | X > u) =

1−
[
1 + ξ

σ (x− u)
]−1/ξ

+
, ξ ̸= 0,

1− exp
[
−
(
x−u
σ

)]
+
, ξ = 0,

(5)
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where z+ = max(z, 0). The GP density is243

g(x;u, ξ, σ) = σ−1

{
1 +

ξ

σ
(x− u)

}−1/ξ−1

, (6)

on the support {x : x > u, 1+ ξ
σ (x−u) > 0} with a scale parameter σ > 0 and a shape244

parameter ξ ∈ (−∞,∞). The shape parameter ξ determines the fundamental nature245

of the tail. If ξ < 0, the distribution of threshold excesses has a bounded tail with an246

upper end point u < x < u − σ/ξ. The zero shape parameter ξ = 0 corresponds to a247

light tail (where g becomes the exponential distribution in the limit), and the positive248

shape parameter ξ > 0 corresponds to a heavy tail.249

The threshold is selected (not estimated), typically using diagnostic plots. In order250

to perform calibration, the threshold for the observations and model output would251

need to have a known relationship, and one approach would be to employ thresholds252

defined by a common exceedance probability.253

Although our primary interest is in estimating very high quantiles, we desire to254

perform calibration of the entire distribution so that any quantity of interest can be255

projected. We consider a model which flexibly fits the distribution’s tail, which behaves256

like a generalized Pareto in the upper tail, and which restricts data in the bulk from257

influencing parameter estimates in the tail. Our mixture model assumes that for a258

threshold u > 0, the probability density function of the random variable X is259

h(x;θ) = d(θ)−1
[
(1− π(x;u, δ))

f(x;β, λ)

F (u;β, λ)
(1− κu) + π(x;u, δ)g(x;u, ξ, σ)κu

]
, (7)

where θ = (β, λ, ξ, σ) is the parameter vector, f(x;β, λ) =260

(β/λ)(x/λ)β−1 exp(−(x/λ)β) for x > 0 represents the Weibull density with scale261

parameter λ > 0 and shape parameter β > 0, F (u;β, λ) is the Weibull CDF evaluated262

at u, κu = P(X > u), and g(x;u, ξ, σ) is the generalized Pareto density in (6). The263

weight function264

π(x;u, δ) =

{
0, if x < u
1
δ , if u ≤ x ≤ u+ δ
1, if x > u+ δ

, (8)

for δ > 0 provides a continuous transition between the models for the bulk and tail.265

The normalizing constant d(θ) =
∫∞
0

h(x;θ)dx is needed only because of the weight266

function; if δ = 0, then π(x;u, 0) is defined as 0 for x < u and 1 otherwise, implying267

d(θ) = 1 for any parameter values.268

Given independent and identically distributed (i.i.d.) observations x1, . . . , xn, infer-269

ence begins by choosing an appropriate threshold u and transition range parameter270

δ. The threshold u can be chosen via visual diagnostics such as the mean resid-271

ual life plot (Davison and Smith, 1990) and δ can be chosen qualitatively so that272

the transition between the bulk and the tail is satisfactory. With u and δ selected,273

κ̂u = n−1
∑n

i=1 1(xi > u), and numerical maximum likelihood (ML) can then be274

performed to find estimates for β, λ, ξ, and σ, where d(θ) is calculated by numerical275

integration.276

9



There have been models proposed which fit the entire distribution, but which also277

have an upper tail which behaves asymptotically like a generalized Pareto. Often278

the aim of these models is to avoid the issues associated with selecting a threshold.279

One method, proposed by Papastathopoulos and Tawn (2013) and extended by both280

Naveau et al. (2016) and Stein (2021) constructs a model via a composition of the281

generalized Pareto distribution G(x;u, ξ, σ) in (5) and another ‘carrier’ CDF, Q(v)282

for v ∈ [0, 1]. Specifically, the key motivation in the Naveau et al. (2016) model is as283

follows: we can simulate from the GP distribution by applying a uniformly distributed284

random sample U into the GP quantile function G−1(U). By replacing U with a more285

flexible random variable V = Q−1(U), where Q is a continuous CDF on [0, 1], the286

resulting random variable Y = G−1[Q−1(U)] forms a more flexible distribution family.287

They propose a class of CDFs, Q(v), such that the upper tail retains the behavior of288

the GP distribution, and the CDF of Y near zero behaves like a power function yκ.289

Four parametric families satisfying these conditions are introduced, and for simplicity,290

we focus on the first two for model comparison.291

1. Q(v) = vκ, κ > 0, v ∈ [0, 1]292

2. Q(v) = pvκ1 + (1− p)vκ2 , κ1, κ2 > 0, v, p ∈ [0, 1].293

Another approach, termed a ‘mixture’ by Scarrott and MacDonald (2012), com-294

bines a density model for the bulk with a generalized Pareto density for the tail, often295

smoothing the transition between them. A particular mixture model was proposed by296

Frigessi et al. (2002) which used a Weibull model for the bulk and a GPD for the tail.297

In contrast to our weight function (8), their model uses a Cauchy CDF as a weight298

function to transition between the bulk and the tail over the entire data range. The299

GP shape parameter in the Frigessi et al. (2002) model tends to be either overesti-300

mated or underestimated, as noted by Naveau et al. (2016), and the scale parameter301

of the Cauchy CDF, which controls the transition speed, is challenging to estimate.302

We investigate the tail behavior of these parametric models without using thresh-303

old selection and assess the goodness of fit in Section 4.3, comparing it to our fixed304

threshold approach.305

3.2 Calibration method via linear mapping of distribution306

parameters307

Our calibration method assumes the linear relationship between parameters associated308

with model output and parameters associated with observations. Specifically, we will309

assume310

θ·
Obs = Aθ·

Mod + b, (9)

where θ·
Obs and θ·

Mod denote the parameter vectors of the distributions for the obser-311

vations and the model output respectively, and ‘·’ is a placeholder for both h denoting312

the historical and p denoting the projected climate. The historical period will be313

used to estimate this linear relationship, and then it is applied to the parameters of314

the projected model output to obtain an estimate of the distribution of projected315

observations.316

With the available observations and model output, one can obtain ML estimates for317

θh
Obs = (βh

Obs, λ
h
Obs, ξ

h
Obs, σ

h
Obs),θ

h
Mod, and θp

Mod, the parameter vectors for the extreme318
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mixture model applied to observations in historical climate, model output under his-319

torical climate, and model output under projected climate, respectively. Furthermore,320

asymptotic estimates for the respective covariance matrices Σh
Obs, Σ

h
Mod, and Σp

Mod321

can be obtained using the inverse of the observed Fisher information matrix. The cal-322

ibration method uses these estimates to produce an estimate of θp
Obs, the parameter323

vector for projected observations, for which there are no observations to analyze.324

Let A be a 4 × 4 matrix and b be a 4 × 1 vector. Both A and b are assumed325

time-invariant; that is, this same linear relationship holds both under historical and326

projected climate. Essentially, this assumption says that the model ‘biases’ which lead327

to the discrepancy between the modeled river flow output and the observations do328

not depend on the climate state; without some similar assumption, the calibration329

problem is impossible.330

One can use parameter estimates for both the observations and model output in331

the historical climate to estimate A and b. Based on (9), we consider the second-order332

moment form, motivated by the asymptotic normality of ML estimators333

Σh
Obs = AΣh

ModA
⊤. (10)

Solving (10) with estimates plugged in yields Â = Σ̂h1/2

Obs Σ̂
h−1/2

Mod and plugging into (9)334

yields b̂ = θ̂h
Obs−Σ̂h1/2

Obs Σ̂
h−1/2

Mod θ̂h
Mod. We obtain square root matrices by spectral decom-335

position so that generically Σ1/2 = PΛ1/2P⊤, where P is the square orthogonal matrix336

of Σ’s eigenvectors and Λ is the diagonal matrix of eigenvalues. If the covariance matrix337

is not positive definite due to closely corrected ML estimates or numerical issues, it338

is necessary to obtain the nearest positive definite covariance matrix before perform-339

ing the spectral decomposition (e.g., using the nearPD function from the Matrix R340

package).341

With estimates Â and b̂, the parameter estimate for the projected observations is342

θ̂p
Obs = Âθ̂p

Mod + b̂. (11)

3.3 Uncertainty quantification for projected parameter343

estimates344

The quantity of primary interest is θ̂p
Obs and we devise a bootstrap procedure to quan-345

tify its uncertainty which arises from the uncertainty of parameter estimators as well346

as that of the estimated linear projection in (11). Let xh
Obs(t), x

h
Mod(t), x

p
Mod(t), t =347

1, . . . , n, be observations in historical climate, model output under historical climate,348

and model output under projected climate, respectively. For each dataset, resample349

with replacement to obtain bootstrap ML estimates, θ̂
h (b)
Obs , θ̂

h (b)
Mod, θ̂

p (b)
Mod, Σ̂

h (b)
Obs , Σ̂

h (b)
Mod,350

and Σ̂
p (b)
Mod, where b = 1, . . . , B, the number of bootstrap iterations. One can obtain351

Â(b) and b̂(b) as in Section 3.2 to obtain θ̂
p (b)
Obs . Bootstrap confidence intervals can then352

be constructed.353

To account for serial dependence in real data applications such as the river flow354

data for the Purgatoire River, we apply the block bootstrap method. The approach355

involves spliting the data into non-overlapping blocks and resamples these blocks to356

11



preserve the temporal dependence in each block. To determine the block length, we357

use both the blockboot function from the OBL R package, which selects the optimal358

block length in terms of the minimum root mean squared error, and the autocovariance359

function (ACF).360

4 Results361

4.1 Simulation study362

We assess coverage rates via a simulation study. Values for θh
Obs, θ

h
Mod, θ

p
Mod are set to363

the ML estimates for our application (given in the first three rows of Table 3 below).364

Assuming (9) and using covariance estimates from the real data, we solve for A, b, and365

obtain θp
Obs.366

For each simulation iteration, n = 5, 000 i.i.d. realizations are drawn by accept-367

reject algorithm from the extreme mixture models for historical observations, historical368

model output, and projected model output. For each sample, we draw B = 1, 000369

bootstrap samples and obtain bootstrap ML estimates for these three distributions.370

Â(b), b̂(b), and θ̂
p (b)
Obs are obtained as described in Section 3.2.371

Bootstrap based 95% confidence intervals are produced for all parameter estimates.372

Parallel computing is used to repeat the simulation 100 times, and Table 2 reports373

coverage rates. Coverage rates for the quantity of interest θp
Obs appear reasonable,374

especially given the coverage rates for the other parameters which do not require375

calibration.376

Coverage Rates

(β̂, λ̂, ξ̂, σ̂)hMod (0.97, 0.98, 0.97, 0.95)

(β̂, λ̂, ξ̂, σ̂)hObs (0.92, 0.93, 0.93, 0.95)

(β̂, λ̂, ξ̂, σ̂)pMod (0.97, 0.94, 0.85, 0.93)

(β̂, λ̂, ξ̂, σ̂)pObs (0.99,0.99,0.95,0.97)

Table 2: Coverage rates for 95% boot-
strap based confidence intervals for 100
simulations.

4.2 Case study: application to river discharges377

We apply the calibration method to daily-averaged runoff model output and river378

discharges from the Purgatoire River in southeastern Colorado. We use complete mea-379

surements from three data sets: historical model output, projected model output, and380

historical river discharges for the period from April to August between 2002 and 2013,381

as described in Section 2.1.382

To assess the tail behavior of the historical observations, we first fit a GP dis-383

tribution to the observations exceeding the 0.95 quantile (q0.95 = 10.27), obtaining384

the shape parameter estimate of ξ̂hObs = 0.05. The 95% confidence interval for ξ is385

(−0.21, 0.32), suggesting the possibility of either a light tail or a slightly heavy tail.386
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We then fit a mixture model h(x;θ) in (7) to each data set, obtaining the ML387

estimates reported in the first three rows of Table 3. The threshold u is set to q0.95,

ML estimates Standard Errors

(β̂, λ̂, ξ̂, σ̂)hMod (1.31, 2.76, -0.13, 2.18) (0.03, 0.07, 0.10, 0.39)

(β̂, λ̂, ξ̂, σ̂)hObs (0.57, 0.91, 0.05, 8.99) (0.01, 0.05, 0.11, 1.78)

(β̂, λ̂, ξ̂, σ̂)pMod (1.27, 2.42, 0.01, 3.10) (0.03, 0.05, 0.12, 0.58)

(β̂, λ̂, ξ̂, σ̂)pObs (0.53,0.57,0.19,9.92) (0.03,0.11,0.45,6.30)

Table 3: ML estimates for parameters and their correspond-
ing bootstrap-based standard errors.

388

the empirical 0.95 quantile of each data set and δ = q0.96−u. Figure 3 shows QQ-plots389

for the mixture model fit to river discharges in historical climate, model output under390

historical climate, and model output under projected climate. Of particular interest is391

the upper tail, and the QQ-plots show a reasonable fit accounting for the usual model392

uncertainty associated with estimating extreme behavior.393

The estimate ξ̂hObs = 0.05 agrees with our preliminary generalized Pareto fit show-394

ing that the bulk data do not influence the tail estimate. The estimate of ξ̂hMod = −0.13395

from the historical model output, with a 95% confidence interval of (−0.37, 0.07), may396

suggest a bounded tail. This is because the confidence interval contains more nega-397

tive plausible values when accounting for sampling uncertainty. The bounded tail for398

model output may illustrate the challenges that the sequence of numerical models face399

in replicating extreme behavior. The GP shape parameter estimate from the projected400

model output is ξ̂pMod = 0.01, and eight instances of modeled river flows under the401

projected climate exceed the maximum modeled river flow under the historical climate402

as shown in the center and right panels of Figure 3. To test whether the tail behav-403

ior of the model output under the projected climate is significantly greater than that404

under historical climate, a one-sided Wald test was conducted. The resulting p-value of405

0.21 indicates that the data do not provide sufficient evidence to support a significant406

difference in the tail behavior of the model output between the two climates.407

We next find the linear relationship between river discharges and model output408

in historical climate through Â and b̂ and then apply the linear relationship under409

projected climate to obtain θ̂p
Obs, reported in the fourth row of Table 3. Differences410

between θ̂p
Obs and θ̂h

Obs reflect the differences between θ̂p
Mod and θ̂h

Mod, as both the411

GP shape and scale parameters have increased. The estimate ξ̂pObs = 0.19 seems large,412

but its standard error of 0.45 reflects the uncertainty in estimating tail indices with413

short data records, and the uncertainty in projecting observations. Figure 4 shows the414

densities associated with the fitted models for both model output and observations415

under both historical and projected climate, and shows kernel density estimates for416

the three combinations with data.417

We report 95% block-bootstrap confidence intervals for parameters of θh
Obs and418

θp
Obs, respectively in the first four columns of Table 4. Using the blockboot tool and419
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Fig. 3: (a) QQ-plot of river discharges under historical climate; (b) QQ-plot of model
output under historical climate; and (c) QQ-plot of model output under projected
climate.

ACF together, we set the block lengths to 48, 30, and 30 days for historical obser-420

vations, historical model output, and projected model output, respectively. The 95%421

block-bootstrap confidence intervals for (ξ, σ) in a GP distribution are of primary422

interest. Not surprisingly, we observe wider bootstrap confidence intervals for (ξ, σ)p423

than ones for (ξ, σ)h due to the additional uncertainty of linear projection. Estimates424

of high quantiles are of more practical interest than the parameter estimates. We pro-425

vide 95% block-bootstrap confidence intervals for the 0.9993 and 0.99993 quantiles426

of the historical and projected observations. These correspond to the 1-in-1500 and427

1-in-15000 day event; as there are 152 observations in the April to August period,428

these are roughly 1-in-10 and 1-in-100 year events. The width of the confidence inter-429

vals under the historical period is wide due to the short data record we employ, and430

this uncertainty becomes amplified when projected. Nevertheless, despite the limited431

information in the data and model runs for this risk study, it seems there is potential432

for higher river flows and thus increased flood risk under the projected climate.433

β λ ξ σ q0.9993 q0.99993

θh
Obs (0.55, 0.60) (0.83, 1.00) (-0.13, 0.29) (5.64, 12.31) (40.36, 60.37) (57.27, 1768.95)

θp
Obs (0.51, 0.60) (0.53, 0.85) (-0.70, 0.90) (6.70, 29.73) (44.33, 344.51) (49.37, 4357.51)

Table 4: 95% block-bootstrap based confidence intervals for parameters associated
with local observations as well as for the 0.9993 and 0.99993 quantiles under historical
climate and projected climate, respectively.
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Fig. 4: Dashed line shows the fitted mixture model density (a) for model output under
historical climate, (b) for observed river discharges under historical climate, (c) for
model output under projected climate, and (d) for river discharges under projected
climate. Kernel density estimates are shown with solid lines in (a), (b), and (c).

4.3 Method validation and comparative assessment with other434

approaches435

4.3.1 Goodness of fit for other parametric models without436

threshold selection437

We explore the tail behavior of other parametric extremes models described in Section438

3.1, starting by fitting each model to the entire historical river discharges. We used the439

fit.extgp tool in the mev R package to fit the Naveau et al. (2016) model considering440

two carrier functions: Q(v) = vκ and Q(v) = pvκ1 + (1 − p)vκ2 , κ1, κ2 > 0, v, p ∈441
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[0, 1]. We also fit the Frigessi et al. (2002) model by numerical maximum likelihood442

estimation. Both models produced heavy tail ML estimates with ξ̂hObs = 0.56 for the443

Frigessi et al. (2002) model and ξ̂hObs = 0.99 for both carrier functions in the Naveau444

et al. (2016) model.445

For goodness of fit, QQ-plots of the empirical qunatiles against the fitted model446

quantiles for the two carrier functions showed a clear mismatch between the modeled447

upper tail and the largest observations in Figure 5b and 5c. While the QQ-plot for448

the Frigessi et al. (2002) model in Figure 5a performed better, it still showed more449

discrepancies in the higher quantiles compared to our model with the fixed threshold450

approach in Figure 3a. A similar issue arises for the historical model output (not451

shown).452
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Fig. 5: QQ-plot of empirical quantiles of historical observations versus fitted model
quantiles (a) for the Frigessi et al. (2002) model, (b) for the Naveau et al. (2016) model
with a carrier Q(v) = vκ, v ∈ [0, 1], and (c) for the Naveau et al. (2016) model with a
carrier Q(v) = pvκ1 + (1− p)vκ2 , κ1, κ2 > 0, v, p ∈ [0, 1].

While the asymptotic tail behavior of these models follows the GP distribution in453

the limit, this case study indicates either the estimation is challenging, or that both454

models do not sufficiently separate the tail behavior from the bulk, resulting in data455

from the bulk unduly influencing the shape parameter estimate. Therefore, we opt to456

use a fixed threshold approach for the tail to ensure the proper calibration of extremes.457

4.3.2 Validation for different calibration methods458

Focusing on extremes, we perform validation for different statistical calibration meth-459

ods outlined in Section 2.2, using only the historical period, as projected observations460

are unavailable. Ideally, both historical and projected datasets with sufficiently long461

records would be used for a more reliable evaluation. However, in the absence of such462

data, we split both the historical observations and model output into a calibration set463

(60%, a sample size ncal = 1, 101) and a validation set (40%, a sample size nval = 735),464

assuming that these datasets still preserve distinct climate characteristics. The cal-465

ibration set is used as the historical period to estimate parameters for the mixture466
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model in (7) and the transfer functions in Section 2.2, and the validation set serves as467

the out-of-sample data to assess goodness of fit and evaluate the performance of the468

calibration methods.469

We compare projected observations (bias-corrected values) derived from different470

statistical calibration methods to actual observations (assumed to be observed) in471

the validation set. We consider six calibration methods: linear parameter mapping,472

QDM preserving absolute changes in quantiles (4), QDM preserving relative changes473

in quantiles (3), QM (2), the linear scaling approach (1), and a simple regression474

approach.475

To properly evaluate these calibration methods for extremes, we use both QQ-476

plots and summary statistics that take datasets where both observations and projected477

observations exceed the 0.95 quantile, respectively. Similarly in Section 2.1.1, we report478

the summary statistics in Table 5. The values before the slash represent summary479

statistics calculated using all data points, while the values after the slash are derived480

from data exceeding the high threshold.481

R2 RMSE NSE

Linear mapping 0.97 / 0.98 0.86 / 3.58 -1e-3 / -0.02
QDM-abs 0.38 / 0.70 4.20 / 10.85 -0.02 / 0.12
QDM-rel 0.39 / 0.71 3.79 / 9.68 -0.03 / -0.01
QM 0.38 / 0.68 3.38 / 10.55 -2e-3 / -0.14
Linear scaling 0.31 / 0.67 4.32 / 10.17 -0.03 / -0.01
Simple regression 0.29 / 0.68 3.57 / 13.15 -0.04 / -0.81

Table 5: Summary statistics of R2, RMSE, and NSE
for six different calibration methods. QDM-abs indicates
QDM preserving absolute changes in quantiles, and
QDM-rel stands for QDM preserving relative changes in
quantiles.

For the linear mapping of parameters approach, we obtain GP shape parameter482

estimates of ξ̂hObs = 0.09 for the historical climate in the training set and ξ̂pObs =483

0.12 for the projected climate in the validation set. As the projected observations in484

the validation set are quantile-matched to the corresponding actual observations for485

the projected period, the correlation coefficient, or R2, between projected and actual486

observations is effectively close to 1.487

To visualize the performance of the six approaches for extremes, QQ-plots are488

shown in Figure 6. The high quantile values from the linear mapping approach align489

closely with the diagonal, indicating a satisfactory fit for extreme values. The QDM490

results also appear reasonable, indicating potential for further improvement through491

parametric estimation of the CDFs. It is important to note that this method com-492

parison does not definitely conclude that any one method is superior in all cases.493

The performance of each method may vary depending on the characteristics of the494

real data and the available predictor variables, where different transformations and495

parameterizations could lead to different results.496
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Fig. 6: (a) QQ-plot of empirical quantiles of observations versus fitted model quan-
tiles in the validation set for a linear mapping of parameters. QQ-plots of empirical
quantiles of actual versus projected observations in the validation set (b) for a QDM
preserving absolute changes in quantiles, (c) for a QDM preserving relative changes in
quantiles, (d) for QM, (e) for a linear scaling approach, and (f) for a simple regression
approach, respectively.

5 Summary and Discussion497

We develop a novel statistical calibration method focusing on extreme values by498

applying a linear parameter mapping approach rather than directly calibrating the499

model output. This method has a fundamental assumption of a linear relationship500

between parameters associated with model output and those with local observations.501

Once estimated under historical climate conditions, this linear relationship is applied502

to parameter estimates under projected climates. This stationarity assumption is503

standard to most statistical calibration methods. However, given that both model504

output and observations exhibit temporal dependence, the dependence could affect505

uncertainty estimates. Given a long data record, a possible extension to this work is506

to incorporate temporal dependence in the calibration method by considering non-507

stationarity in this linear relationship, that is, incorporating temporal dependence or508

possible covariates to the scale or shape parameters of the GP distribution.509
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To flexibly fit the tail of the distribution, we employ a mixture distribution with510

an extreme value model for the tail; however, the proposed calibration method itself511

does not require any particular distribution. We opt for a fixed threshold approach for512

tail approximation due to a better performance for extremes compared to automatic513

threshold selection methods. But, this fixed threshold approach introduces some sub-514

jectivity. Some other approach that can reduce the subjectivity of a threshold selection515

would be useful for improving the calibration method for extremes. Our method is516

currently applied in a univariate case, focusing on changes in the marginal distribu-517

tion. Extending this approach to a multivariate calibration using a multivariate GP518

distribution could be an interesting future work.519

Importantly, to account for uncertainty in both parameter estimates and linear520

projection, a bootstrap approach is employed. Accounting for uncertainty is at least521

as important as the projected quantity estimates themselves. Of course, the projec-522

tions we produce are based on only one possible climate scenario, and the uncertainty523

of human behavior and its affect on the climate likely outweighs the estimation uncer-524

tainty we capture here. As the climate changes, there is increased need to produce525

projections to inform planning for potential future outcomes. Numerical models are526

powerful, but imperfect tools, and calibration methods such as ours can help to account527

for when model output does not accurately reflect the quantities needed by decision528

makers.529
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