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ABSTRACT
As concerns over privacy protection grow and relevant laws come
into effect, machine unlearning (MU) has emerged as a pivotal
research area. Due to the complexity of the forgetting data distribu-
tion, the sample-wise MU is still open challenges. Gradient ascent,
as the inverse of gradient descent, is naturally applied to machine
unlearning, which is also the inverse process of machine learning.
However, the straightforward gradient ascent MU method suffers
from the trade-off between effectiveness, fidelity, and efficiency. In
this work, we analyze the gradient ascent MU process from a multi-
task learning (MTL) view. This perspective reveals two problems
that cause the trade-off, i.e., the gradient direction problem and the
gradient dominant problem. To address these problems, we propose
a novel MU method, namely GDR-GMA, consisting of Gradient
Direction Rectification (GDR) and Gradient Magnitude Adjustment
(GMA). For the gradient direction problem, GDR rectifies the direc-
tion between the conflicting gradients by projecting a gradient onto
the orthonormal plane of the conflicting gradient. For the gradient
dominant problem, GMA dynamically adjusts the magnitude of
the update gradients by assigning the dynamic magnitude weight
parameter to the update gradients. Furthermore, we evaluate GDR-
GMA against several baseline methods in three sample-wise MU
scenarios: random data forgetting, sub-class forgetting, and class
forgetting. Extensive experimental results demonstrate the superior
performance of GDR-GMA in effectiveness, fidelity, and efficiency.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Deep learning, Machine unlearning, Gradient

1 INTRODUCTION
With the widespread use of artificial intelligence (AI) techniques
[2, 12, 13, 16], concerns about privacy protection have escalated. To
address these concerns, an increasing number of regulations and
laws have been introduced on privacy protection, such as the Euro-
pean Union’s GDPR (General Data Protection Regulation) [34]. The
GDPR has been promulgated to give people the right-to-be-forgotten,
which requires information service providers to delete personal
data on request from the data owner. Furthermore, this regulation
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stipulates that providers must also erase the corresponding influ-
ence of the requested data. Numerous studies [15, 17, 18, 28, 30, 31]
have demonstrated that machine learning models possess the abil-
ity to memorize data samples. For example, membership inference
attacks [15, 30, 31] can infer whether a data sample is in the training
set or not. Consequently, AI service providers must remove the
requested data samples and their associated memorized knowledge
from the models. However, the naive approach of Retraining the
model from Scratch after removing the forgetting data samples
from the training set is prohibitively expensive in practice. There-
fore, a new research direction for privacy protection emerged to
efficiently remove the knowledge of requested data samples, called
machine unlearning (MU).

The sample-wise unlearning methods focus on unlearning a
subset of data samples in the training set, which can be random
data samples, a sub-class of data samples, and a class of data samples.
Therefore, it is challenging for the sample-wise MU methods to
handle the complex distribution of forgetting data samples. Many
works [1, 3, 5, 9–11, 22, 23, 32, 35] attempted to address the sample-
wise MU challenges. For example, Bourtoule et al. [1] proposed
an exact unlearning method, SISA, to unlearn data samples by
retraining the sub-models. However, SISA needs to retrain plenty
of sub-models when the requested target data samples are widely
distributed across the different shards. To further improve efficiency,
many approximate unlearning methods [1, 5, 7, 9–11, 14, 22, 24, 33]
were proposed. They estimate the contribution of the forgetting
data samples and unlearn them by updating model parameters.
Specially, gradient plays an important role in these cutting-edge
works. For example, Graves et al. [10] updated the model with the
relevant stored gradients. Fan et al. [7] used the ascent gradient to
generate the weight salience map.

As one of the basic methods, the straightforward gradient ascent
MU method still inspires state-of-the-art works [10, 14, 22, 30, 33],
namely the negative gradient (NegGrad). It can be seen as a multi-
task learning process: unlearning the forgetting dataset and main-
taining the remaining dataset. For image classification, it calculates
the ascent gradient of the forgetting data samples and the descent
gradient of the remaining data samples to perform a joint model
update. Although NegGrad can misclassify the forgetting data sam-
ples with few epochs, it will also misclassify most of the remaining
samples, leading to a sharp decline in the classification perfor-
mance (low fidelity). In contrast, the forgetting samples are barely
unlearned if NegGrad maintains the classification performance, re-
sulting in MU’s low effectiveness and efficiency. Therefore, it suffers
from the trade-off between effectiveness, fidelity, and efficiency.

In this work, we identify two key factors for this trade-off prob-
lem, i.e., gradient direction problem and gradient domination
problem, as shown in Sec. 3.3 and Sec. 3.4. For the gradient direc-
tion problem, we identify two pairs of direction conflicts: 1) the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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ascent gradient of the forgetting data samples and the descent gra-
dient of the remaining data samples; 2) the descent gradient of the
remaining data samples and the ascent gradient of the other forget-
ting data samples (from the difference set of the current forgetting
samples and the forgetting set). For the gradient domination prob-
lem, we find that a single gradient always dominates the update
process, so the MU process solely tends to one task.

To address the above problems and to better apply the gradient
ascent to the sample-wise machine unlearning task, we propose a
novel unlearning method consisting of Gradient Direction Rectifi-
cation (GDR) and Gradient Magnitude Adjustment (GMA), dubbed
GDR-GMA. For the gradient direction problem, GDR rectifies the
direction of gradients to be orthogonal to the conflict gradients. For
the gradient domination problem, GMA dynamically adjusts the
magnitude of update gradients to balance the two tasks in model
updating. We summarize our contributions to this paper as follows:

• We analyze the problems in the straightforward gradient
ascent MU method that causes the trade-off among effec-
tiveness, fidelity, and efficiency from a multi-task learning
view. This perspective reveals two problems: the gradient
direction problem and the gradient domination problem.
• We propose the GDR-GMA unlearning method. For the gra-
dient direction problem to address these two problems, GDR-
GMA rectifies the direction between the conflicting gradients
by projecting a gradient onto the orthonormal plane of the
conflicting gradient. For the gradient domination problem,
GDR-GMA dynamically adjusts the magnitude of the up-
date gradients by assigning the dynamic magnitude weight
parameter to the update gradients.
• We conduct extensive experiments in three sample-wise MU
scenarios: random data forgetting, sub-class forgetting, and
class forgetting. Compared to 11 baseline MUmethods, GDR-
GMA achieves a superior performance in effectiveness, effi-
ciency, and fidelity. Furthermore, we also show the scalability
to the existing methods and other computer vision tasks.

2 RELATEDWORK
Multi-task learning.Multi-task learning (MTL) aims to help im-
prove the model performance by leveraging the commonalities
and differences across multiple tasks. Instead of training on a sin-
gle task, the model is trained simultaneously on multiple related
tasks. In MTL, reducing the direction conflict and domination by
a single task is an important topic. For example, Chen et al. [4]
normalized the gradient to adaptive balance the loss among tasks.
Yu et al. [36] pointed out that the gradient direction conflict and
single task domination may damage the model performance. Liu
et al. [25] proposed a Multi-Task Attention Network to improve
performance. Although MU is not a traditional MTL task, we can
utilize the philosophy behind MTL to mitigate the direction and
gradient dominant problems of the update gradients in MU.
Class-wise machine unlearning. As a particular case of the
sample-wise MU, the class-wise machine unlearning only focuses
on forgetting the entire class of data samples. For example, Lin et al.
[23] added an entanglement-reduced structure into the model and
then transferred the knowledge of the remaining data classes to

the unlearned model. Chen et al. [3] shifted the decision boundary
of the trained model to forget specific classes.
Sample-wisemachine unlearning. The existing sample-wiseMU
works can be divided into two groups, i.e., exact machine unlearning
and approximate unlearning. Bourtoule et al. [1] proposed SISA
to unlearn a subset of the forgetting data samples by retraining
the submodels. Even though SISA improves efficiency compared
to Retrain, plenty of sub-models still need to be retrained if the
forgetting data samples are scattered. To improve the efficiency of
exact MU methods, many state-of-the-art works [5, 9, 10, 22, 26,
27, 35] focus on approximate machine unlearning methods. For
example, Golatkar et al. [9] and Mehta et al. [27] used the Fisher
Information [26] to estimate the contributions. Foster et al. [8] used
the Fisher information matrix to select and dampen the important
parameter for the forgetting set. Moreover, Chundawat et al. [5]
constructed a teacher-student model for MU. Graves et al. [10]
stored the gradients related to the target unlearning data during
the training process and then subtracted the gradients to update
the model’s parameters. Liu et al. [24] demonstrated that model
sparsity can improve unlearning performance. Fan et al. [7] used
the ascent gradients to construct a weight salience map to update
only the specific weights rather than the entire model.

Different from the existing methods, we further analyze prob-
lems in the straightforward gradient ascentMUmethod.We identify
two key reasons: gradient direction and gradient domination. Fur-
thermore, we propose Gradient Direction Rectification (GDR) and
Gradient Magnitude Adjustment (GMA) to address these problems,
leading to an effective, fidelity, and efficient MU method.

3 PRELIMINARIES & PROBLEM ANALYSIS
In this section, we will first give a formulation of the sample-wise
machine unlearning in Sec. 3.1 and describe the negative gradient
method in Sec. 3.2. Then, we will analyze the gradient direction and
gradient domination problems in Sec. 3.3 and Sec. 3.4, respectively.

3.1 Sample-wise Machine Unlearning
We first assume a sample space X ⊆ R𝑑 , the corresponding ground
truth labels Y = {1, 2, . . . ,𝐶} (𝐶 is the number of data classes),
and a training set D = {(𝒙,𝒚)}, in which 𝒙 ⊆ X and 𝒚 ⊆ Y. We
further define a forgetting dataset D𝑓 ⊆ D, a remaining dataset
D𝑟 = D\D𝑓 , and an original model with trainable parameters 𝝎0,
which trained on D.
Definition 1.We define a machine learning algorithm, A : D →
𝝎0 and a machine unlearning method,U : 𝝎0 × D𝑟 × D𝑓 → 𝝎𝑢 .
We denote the model that performed the unlearning operation as
𝝎𝑢 and themodel trainedwith the remaining setD𝑟 as𝝎𝑟 . The goal
of MU is to attain an unlearned model 𝝎𝑢 , wherein the knowledge
of the forgetting data samples D𝑓 equals to that of the retrained
model 𝝎𝑟 . We can formulate it as:

K(D𝑓 ;𝝎𝑢 ) = K(D𝑓 ;𝝎𝑟 ), (1)

in which K(·) is the knowledge measuring function. Note that in
the sample-wise machine unlearning task, the forgetting dataset
can be a random subset of the training set, a subclass of data samples
in a super-class, or a class of data samples.
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3.2 Straightforward Gradient Ascent
Here, we will introduce the straightforward gradient ascent MU
method, namely NegGrad. First, we perform forward propaga-
tion with a forgetting data sample (𝒙 𝑓 ,𝒚𝑓 ) ⊆ D𝑓 , resulting in
a prediction vector 𝒚̃. We calculate the cross entropy (CE) loss
between the prediction vector 𝒚̃𝑓 and the ground truth label 𝒚𝑓 .
Then, we perform a backward propagation to calculate the gradient
𝒈 𝑓 = ▽𝝎LCE (𝝎; 𝒙 𝑓 ,𝒚𝑓 ). Again, we can obtain the gradient 𝒈𝑟 of
a remaining data sample (𝒙𝑟 ,𝒚𝑟 ) ⊆ D𝑟 . Finally, NegGrad updates
the original model parameters as follows:

𝝎𝑢 ← 𝝎0 + 𝜂 (𝒈 𝑓 − 𝒈𝑟 ), (2)

inwhich𝜂 is the learning rate. This process can be seen asmulti-task
learning. NegGrad has two main tasks: unlearning the forgetting
datasetD𝑓 and maintaining the remaining datasetD𝑟 . Specifically,
the ascending gradient𝒈 𝑓 is for the unlearning task, and the descent
gradient 𝒈𝑟 is for the maintaining task.

3.3 Gradient Direction Problem
Here, we will analyze the gradient direction problem. First, we
introduce an additional ascent gradient 𝒈𝐹 = ▽𝝎LCE (𝝎; 𝒙𝐹 ,𝒚𝐹 )
of the other forgetting data samples 𝒙𝐹 ⊆ D𝑓 \𝒙 𝑓 . Then, we define
the gradient direction conflict as follows:
Definition 2. Given 𝜑𝑖 𝑗 is the angle of two gradients 𝒈𝑖 and 𝒈 𝑗 .
The two gradients have direction conflicts if cos𝜑𝑖 𝑗 < 0.
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Figure 1: Measurement of the percentage conflicting samples
on CIFAR-10 using ResNet-18. The percentage maintains
high for 𝒈 𝑓 –𝒈𝑟 (blue) and 𝒈𝑟–𝒈𝐹 (red). The percentage tends
to be low for 𝒈 𝑓 –𝒈𝐹 (green).

During the NegGrad unlearning process, we have three pairs of
gradients as follows:
• 𝒈 𝑓 –𝒈𝑟 : the ascent gradient 𝒈 𝑓 of the forgetting samples and
the descent gradient 𝒈𝑟 of the remaining samples;
• 𝒈𝑟–𝒈𝐹 : the descent gradient 𝒈𝑟 of the remaining samples
and the ascent gradient 𝒈𝐹 of the other forgetting samples.
• 𝒈 𝑓 –𝒈𝐹 : the ascent gradient 𝒈 𝑓 of the forgetting samples and
the ascent gradient 𝒈𝐹 of the other forgetting samples.

It should be noted that 𝒈𝐹 is not actually involved in the model
update process. Moreover, there are a single pair 𝒈 𝑓 –𝒈𝑟 and a set of

pairs {𝒈𝑟–𝒈𝐹𝑘 }
|D𝐹 |
𝑘=1 and {𝒈 𝑓 –𝒈𝐹𝑘 }

|D𝐹 |
𝑘=1 in an update step because

we need to consider the gradient of each sample in D𝐹 .
Based on Definition 2, we empirically measure the percentage

of data samples having these three direction conflicts during the
update of the NegGrad method. As shown in Fig. 1, these observa-
tions indicate low conflict for the 𝒈 𝑓 –𝒈𝐹 pair but evident conflict
for both 𝒈𝑟–𝒈𝐹 and 𝒈 𝑓 –𝒈𝐹 pairs.

(a) 𝒈𝑓 –𝒈𝑟 direction conflict (b) 𝒈𝑟 –𝒈𝐹 direction conflict

Figure 2: Illustrations of the gradient direction problems. 𝒈𝛼

denotes the orthogonal gradient component of 𝒈.

When these direction conflicts occur, wewill explain the negative
impact on performance with two specific illustrations.
Direction conflict of 𝒈 𝑓 –𝒈𝑟 . As shown in Fig. 2(a), direction of
the gradient component 𝒈𝛼

𝑓
is opposite to 𝒈𝑟 . As a result, updat-

ing the model with 𝒈 𝑓 will maximize LCE (𝝎; 𝒙𝑟 ,𝒚𝑟 ) so that the
model tends to unlearn the remaining sample (𝒙𝑟 ,𝒚𝑟 ). Similarly,
updating the model with 𝒈𝑟 tends to maintain the forgetting data
sample (𝒙 𝑓 ,𝒚𝑓 ). These direction conflicts will also cause conflicts
between the unlearning task and the maintaining task to decline
the performance.
Direction conflict of 𝒈𝑟–𝒈𝐹 . As shown in Fig. 2(b), 𝒈𝑟 and 𝒈𝐹
have direction conflict so that updating the model with 𝒈𝑟 will
also minimize LCE (𝝎; 𝒙𝐹 ,𝒚𝐹 ), i.e., the model tends to maintain the
forgetting data sample (𝒙𝐹 ,𝒚𝐹 ) rather than unlearn it.
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(a) Dominated by 𝒈𝑓

0 1 2 3 4 5 6 7 8 9 10
epoch

0.001

0.002

0.003

0.004

0.005

L
os

s 
va

lu
e

  

(b) Dominated by 𝒈𝑟

Figure 3: Measurement of the loss values on CIFAR-10 using
ResNet-18 when the gradient dominant problem occurs. Both
of the forgetting loss LCE (𝝎;D𝑓 ) and the remaining loss
LCE (𝝎;D𝑟 ) increase when dominated by 𝒈 𝑓 . Both loss values
are maintained almost unchanged when dominated by 𝒈𝑟 .

3.4 Gradient Domination Problem
The MU process can be seen as multi-task learning, and there are
two tasks in theMU process: the forgetting task and themaintaining
task. The forgetting task aims to forget the forgetting set, while the
maintaining task aims to maintain the remaining set. Ideally, the
related gradients of each task jointly update the model to learn the
specific knowledge of each task. However, the gradient domination
problem is a common challenge that the model’s updates during
training are biased towards optimizing for one task over others, i.e.,
a single gradient dominates the model update.

We empirically evaluate this problem through the values of the
loss function. As shown in Fig. 3 (a), increasing the remaining loss
will decline the model classification performance. On the contrary,
the barely changed forgetting loss will lead to invalid forgetting,
as shown in Fig. 3 (b). Inspired by the previous work, Yu et al.
[36] pointed out that the magnitude of gradients will affect the
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gradient domination inMTL. Therefore, we try to evaluate the effect
of magnitude on this dominant problem by assigning a constant
magnitude parameter to the gradients. As shown in Table 1, the
results show that the gradient dominant problem always occurs
during the NegGrad unlearning process.

Table 1: Effect of the magnitude on the gradient dominant
problem by assigning different weight parameters. “ − ” de-
notes that the loss values are almost unchanged, and “↑ ”
denotes that both the loss values are increased. We see that
the model update process is dominated by either 𝒈𝑟 or 𝒈 𝑓 ,
resulting in unchanged or increased loss values.

Magnitude Weight Dominant Loss values
𝒈𝑓 𝒈𝑟

0.1 0.9 𝒈𝑟 −
0.2 0.8 𝒈𝑟 −
0.3 0.7 𝒈𝑟 −
0.4 0.6 𝒈𝑓 ↑
0.5 0.5 𝒈𝑓 ↑
0.6 0.4 𝒈𝑓 ↑
0.7 0.3 𝒈𝑓 ↑
0.8 0.2 𝒈𝑓 ↑
0.9 0.1 𝒈𝑓 ↑

4 PROPOSED METHOD
In Sec. 4.1, we propose the Gradient Direction Rectification (GDR)
method for the gradient direction problem. In Sec. 4.2, we propose
the Gradient Magnitude Adjustment (GMA) method for the domi-
nation problem. Finally, we will describe the combined GDR-GMA
for the sample-wise MU task in Sec. 4.3.

4.1 Gradient Direction Rectification (GDR)
In Sec. 3.3, we define three gradients that affect the NegGrad MU
process, i.e., 𝒈 𝑓 , 𝒈𝑟 , and 𝒈𝐹 . However, it is very time-consuming to

calculate the set of gradients {𝒈𝐹𝑘 }
|D𝐹 |
𝑘=1 . To address this problem,

we empirically measure the cosine similarity between gradients of
the same sample in adjacent epochs.
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Figure 4: The cosine similarity between gradients in adjacent
epochs remains high during the MU process on CIFAR-10
using ResNet-18.

As shown in Fig. 4, this observation indicates that the gradients of
the same sample in the adjacent epoch are highly similar during the
MU process. Based on this observation, we use a gradient bank to
replace the repeated calculation process with storing the gradients
in the previous epoch. We formulate this replacement process as:

{𝒈𝑒𝐵𝑘
} |𝐵𝑎𝑛𝑘 |
𝑘=1 := {𝒈𝑒−1𝐹𝑘

} |D𝐹 |
𝑘=1 , (3)

(a) Direction conflict (b) Gradient projection

Figure 5: When the direction conflict occurs (a), the GDR
method will project the gradient onto the orthonormal plane
of the conflicting gradient (b).

where 𝑒 denotes the current epoch, 𝑒−1 denotes the previous epoch,
and |𝐵𝑎𝑛𝑘 | is the size of gradient bank, which equals to |D𝐹 |.

We propose the Gradient Direction Rectification (GDR) method
to alleviate these direction conflicts by rectifying the direction be-
tween the two conflicting gradients 𝒈𝑖 and 𝒈 𝑗 if cos𝜑𝑖 𝑗 < 0. After
rectification of the direction, the gradient 𝑖 is projected onto the or-
thonormal plane of the conflicting gradient 𝑗 to remove destructive
conflicts, as shown in Fig. 5. Formally, GDR projects the gradient 𝑖
onto the orthonormal plane of the gradient 𝑗 as:

𝒈̂𝑖 := 𝒈𝑖 −
𝒈𝑖 · 𝒈 𝑗

| |𝒈 𝑗 | |2
𝒈 𝑗 . (4)

As described in Sec. 3.3, we analyze the direction conflict prob-
lem only exists between the pairs of 𝒈 𝑓 –𝒈𝑟 and 𝒈 𝑓 –𝒈𝐹 . However,
multiple projections will be needed to alleviate direction conflicts.
To avoid the excessive direction deviation caused by the multiple
projections, we define the joint conflict gradients in the gradient
bank as:

𝒈 𝑗𝑜𝑖𝑛𝑡 =

∑ |𝐵𝑎𝑛𝑘 |
𝑘=1 1(cos𝜑 (𝒈𝑟 ,𝒈𝑒𝐵𝑘

) < 0) · 𝒈𝑒
𝐵𝑘∑ |𝐵𝑎𝑛𝑘 |

𝑘=1 1(cos𝜑 (𝒈𝑟 ,𝒈𝑒𝐵𝑘
) < 0)

, (5)

where 1(𝒈𝑖 < 0) is an indicator function which yields a value of 1
if 𝒈𝑖 < 0 and 0 otherwise. Then, GDR can once project 𝒈𝑟 onto the
plane of the joint gradient instead of the multiple projections.

Algorithm 1: Gradient Direction Rectification (GDR)
1 for e in epochs do
2 𝒈 𝑓 ← ▽𝝎𝒕LCE (𝝎𝑡 ; 𝒙 𝑓 ,𝒚𝑓 )
3 𝒈𝑟 ← ▽𝝎𝒕LCE (𝝎𝑡 ; 𝒙𝑟 ,𝒚𝑟 )

4 𝒈 𝑗𝑜𝑖𝑛𝑡 ←
∑|𝐵𝑎𝑛𝑘 |

𝑘=1 1(cos𝜑 (𝒈𝑟 ,𝒈
𝑒
𝐵𝑘
)<0) ·𝒈𝑡

𝐵𝑘∑|𝐵𝑎𝑛𝑘 |
𝑘=1 1(cos𝜑 (𝒈𝑟 ,𝒈𝑒

𝐵𝑘
)<0)

5 if cos𝜑 (𝒈 𝑓 ,𝒈𝑟 ) < 0) then
6 𝒈̂ 𝑓 ← 𝒈 𝑓 −

𝒈𝑓 ·𝒈𝑟
| |𝒈𝑟 | |2

𝒈𝑟

7 𝒈̂𝑟 ← 𝒈𝑟 −
𝒈𝑟 ·𝒈𝑓

| |𝒈𝑓 | |2
𝒈 𝑓

8 end
9 if cos𝜑 (𝒈̂𝑟 ,𝒈 𝑗𝑜𝑖𝑛𝑡 ) < 0) then
10 𝒈̂𝑟 ← 𝒈̂𝑟 −

𝒈̂𝑟 ·𝒈 𝑗𝑜𝑖𝑛𝑡

| |𝒈 𝑗𝑜𝑖𝑛𝑡 | |2
𝒈 𝑗𝑜𝑖𝑛𝑡

11 end
12 end

We present the GDR method in Algorithm 1. The proposed al-
gorithm utilize three types of gradients 𝒈 𝑓 , 𝒈𝑟 , and 𝒈𝐹 . We use an



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GDR-GMA: Machine Unlearning via Direction-Rectified and Magnitude-Adjusted Gradients ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

approximate joint gradient 𝒈 𝑗𝑜𝑖𝑛𝑡 from the gradient bank to reduce
computational overhead and avoid multiple projections. If conflicts
are detected, we project the gradient based on Eq. 4 to alleviate
direction conflicts.

4.2 Gradient Magnitude Adjustment (GMA)
In Sec. 3.4, we empirically observe that the magnitude will affect
the gradient domination. However, simply adjusting the magnitude
cannot balance the two gradients and instead results in domination
by a single gradient, as shown in Table 1. Therefore, we propose
a Gradient Magnitude Adjustment (GMA) method to dynamically
adjust the magnitude. Specifically, GMA can dynamically adjust
the magnitude of update gradients according to the three states of
the MU process as follows:
• State I (Maintaining Dominance): In this state, the re-
maining loss value maintains nearly the same as that in the
original model, which shows that the remaining gradient
𝒈𝑟 dominates the MU process. Hence, GMA will assign a
large magnitude to the forgetting gradient 𝒈 𝑓 to balance the
forgetting and maintaining tasks.
• State II (Balance): In this state, none of the dominance
occurs. Hence, GMA needs to flexibly adjust the magnitude
of the update gradients to maintain this balance.
• State III (Forgetting Dominance):When the remaining loss
dramatically deviates from the original loss value, GMA will
assign a large magnitude to the remaining gradient 𝒈𝑟 to
force the model to maintain the remaining samples.

Formally, we define the dynamic magnitude weight (DMW) as:

𝜆𝑡 =
1

1 + exp(𝛾 · (Δℓ𝑡 − 𝜖))
, (6)

where 𝑡 denotes the 𝑡-th unlearning step, 𝜖 is a constant small
value, 𝛾 denotes the steepness parameter, and the loss deviation
Δℓ𝑡 = |L𝐶𝐸 (𝝎𝑡

𝑢 ; 𝒙𝑡𝑟 ) − L𝐶𝐸 (𝝎0;D𝑟 ) | denotes the difference be-
tween the loss values of the remaining samples in the 𝑡-th step
and the remaining dataset in the original model. The steepness
parameter 𝛾 controls how sharply the weight parameter transitions
from its minimum to maximum value. A large 𝜖 will tolerate a
larger increase in the loss values of the remaining samples. With
the DMW parameter 𝜆𝑡 , GMA assigns it to gradients in the 𝑡-th
update step as:

𝝎𝑡+1
𝑢 ← 𝝎𝑡

𝑢 + 𝜂 [𝜆𝑡𝒈𝑡𝑓 − (1 − 𝜆𝑡 )𝒈
𝑡
𝑟 ] . (7)

Furthermore, we will describe why the above proposed DMW
parameter can suit these three states. As shown in Fig. 6, we il-
lustrate the relationship between the DMW parameter 𝜆𝑡 and the
loss deviation Δℓ𝑡 in the three states. In State I, GMA adjusts 𝜆𝑡
to be close to 1 so that the forgetting loss will rapidly ascend to
the balance state. A low decay rate is used in this state to make 𝜆𝑡
insensitive to the loss deviation and close to 1. In State II, when the
loss deviation Δℓ𝑡 is around the small value 𝜖 , GMA flexibly adjusts
the magnitude of 𝒈 𝑓 and 𝒈𝑟 with a high change rate of 𝜆𝑡 to keep
the balance between forgetting and maintaining tasks. In State III,
when the loss deviation Δℓ𝑡 is greater than the small value 𝜖 , GMA
adjusts the magnitude of 𝒈𝑟 to close to 1 with a low change rate of
𝜆𝑡 . With a large magnitude of 𝒈𝑟 , GMA can make the model tend to

maintain the remaining samples and get back to the balance state
as soon as possible.

𝝐

Δℓ𝑡

𝜆
𝑡

State I State II State III

Figure 6: Illustration of the relationship between the dynamic
weight parameter 𝜆𝑡 and the loss deviation Δℓ𝑡 in the three
states. State I : Δℓ𝑡 is close to 0 and 𝜆𝑡 tends to be 1 with a low
decay rate; State II : Δℓ𝑡 is around the preset small value 𝜖 and
𝜆𝑡 is sensitive to Δℓ𝑡 a high decay rate; State III : Δℓ𝑡 is much
higher than 𝜖 and 𝜆𝑡 will be close to 0 with a low decay rate.

Implementing GMA is simple and barely brings additional com-
putational overhead because it only requires numerical loss values.
Through the crafted DMW parameter, GMA can dynamically adjust
the update gradients’ magnitude to balance these two tasks.

4.3 Machine Unlearning via GDR-GMA
In Sec. 4.1, we propose the GDR method to rectify the direction
of two pairs of conflicting gradients. Despite alleviating the direc-
tion conflicts, GDR cannot address the gradient dominant problem.
Therefore, in Sec. 4.2, we propose the GMA method to dynami-
cally adjust the magnitude of the update gradients to balance the
forgetting task and the remaining task.

Algorithm 2: GDR-GMA Unlearning Process
1 for e in epochs do
2 for t in steps do

// Get the rectified gradients by GDR

3 𝒈̂ 𝑓 , 𝒈̂𝑟 ← GDR
// Get the dynamic weight by GMA

4 𝜆𝑡 ← GMA
// Update the model

5 𝝎𝑡+1
𝑢 ← 𝝎𝑡

𝑢 + 𝜂 [𝜆𝑡 𝒈̂𝑡𝑓 − (1 − 𝜆𝑡 )𝒈̂
𝑡
𝑟 ] .

6 end
7 end

We present the combined GDR-GMA method in Algorithm 2.
First, GDR-GMA rectifies the direction of the conflicting gradi-
ents by the GDR method. Then, GDR-GMA calculates the dynamic
weight parameter using the GMA method. Finally, GDR-GMA up-
dates the model with the rectified gradients and dynamic magnitude
weight parameters.
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Table 2: Performance comparison with several baselines in 20% random data forgetting and 50% random data forgetting. The
performance gap against Retrain is provided in (Δ). The optimal Avg. Gap is marked in red.

Dataset & Model Approach Random Data Forgetting (20%) Random Data Forgetting (50%)
𝐴𝑐𝑐D𝑓

(Δ ↓) 𝐴𝑐𝑐D𝑟
(Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓ 𝐴𝑐𝑐D𝑓

(Δ ↓) 𝐴𝑐𝑐D𝑟
(Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓

Retrain 94.00±0.54 (0.00) 100.00±0.00 (0.00) 94.00±0.12 (0.00) 76.76±0.04 (0.00) 0.00 28.53 91.73±0.15 (0.00) 100.00±0.00 (0.00) 91.99±0.12 (0.00) 70.79±0.03 (0.00) 0.00 19.71
Fine-tune 85.82±1.12 (8.18) 88.07±0.24 (11.93) 86.98±0.87 (7.02) 32.09±0.14(44.67) 17.95 1.48 87.48±1.52 (4.25) 88.98±0.44 (11.02) 86.78±0.26 (5.21) 66.81±0.31(3.98) 6.12 1.04

Random Labels 81.58±1.12 (12.42) 85.67±1.06 (14.33) 83.60±0.21 (10.40) 59.69±0.25(17.07) 13.56 1.21 81.45±0.66 (10.28) 84.51±0.56 (15.49) 82.44±0.12 (9.55) 45.35±0.29 (25.44) 15.19 2.19
NegGrad 72.81±0.89 (21.19) 76.58±1.61 (23.42) 71.48±1.64 (22.52) 76.25±0.89 (0.51) 16.91 1.33 72.69±1.57 (19.04) 75.70±1.49 (24.30) 70.50±1.12 (21.49) 76.54±1.23 (5.75) 17.64 2.07
Fisher [9] 23.28±2.56(70.72) 23.96±3.41(76.04) 23.10±3.27(70.90) 62.23±0.28(14.53) 58.05 117.82 22.39±1.45(69.34) 22.63±2.15(77.37) 22.47±2.31(69.52) 62.64±0.53(8.15) 61.10 76.01

CIFAR-10 Unrolling [33] 92.97±0.55(1.03) 93.72±0.38(6.28) 87.58±0.11(6.42) 44.30±0.24(32.46) 11.55 0.27 85.14±0.36(6.59) 89.73±0.23(10.27) 85.34±0.21(6.65) 43.66 ±0.14(27.13) 12.66 0.44
ResNet-18 BadT [5] 87.12±0.15(6.88) 91.74±0.39(8.26) 87.83±0.16(6.17) 47.81±0.14(28.95) 12.57 1.12 85.93±0.28(5.80) 89.48±0.32(10.52) 85.78±0.20(6.21) 27.35±0.29(43.44) 16.50 1.14

SSD [8] 97.72±0.72 (3.72) 97.51±0.04 (2.49) 91.73±0.46 (2.27) 88.04±0.46 (11.28) 4.94 3.04 99.99±0.01 (8.26) 100.00±0.00 (0.00) 94.98±0.25 (2.99) 92.04±0.88 (21.25) 8.12 3.17
𝐿1-Sparse [24] 92.72±0.62(1.28) 96.81±0.30(3.19) 91.62±0.58(2.38) 71.28±0.04(5.48) 3.08 2.25 90.81±0.81(0.92) 94.11±0.26(5.89) 88.37±0.73(3.62) 65.75±0.22(5.04) 3.87 1.39

SalUn [7] 93.87±0.66 (0.13) 99.17±0.21 (0.83) 92.53±0.54 (1.47) 68.47±0.98 (8.29) 2.68 2.77 92.46±0.59 (0.73) 98.06±0.51 (1.94) 89.93±0.06 (2.06) 62.88±0.81 (7.91) 3.16 1.67
GDR-GMA (ours) 93.84±0.04 (0.16) 99.22±0.11 (0.78) 92.40±1.47 (1.60) 82.36±0.06 (5.60) 2.04 1.40 92.10±0.08 (0.63) 99.07±0.45 (0.93) 90.37±1.10 (1.62) 76.27±0.18 (5.48) 2.17 2.12

Retrain 52.87±0.62 (0.00) 90.29±0.71 (0.00) 54.18 ±0.70 (0.00) 47.27±0.08 (0.00) 0.00 846.71 47.75±0.43 (0.00) 92.46±0.52 (0.00) 48.54 ±0.37 (0.00) 44.83±0.22 (0.00) 0.00 602.18
Fine-tune 70.85±0.93 (17.98) 88.30±0.85 (1.99) 52.71±0.99 (1.47) 53.81±0.39 (6.54) 7.00 27.04 70.75±0.98 (23.00) 92.33±0.50 (0.13) 51.76±0.91 (3.22) 51.70±0.49 (6.87) 8.30 17.74

Random Labels 75.76±0.76 (22.89) 82.71±0.31 (7.58) 52.83±0.75 (1.35) 27.87±0.28 (19.40) 12.81 16.86 79.99±0.88 (32.24) 82.33±0.53 (10.13) 52.83±0.76 (4.29) 34.35±0.65 (10.48) 14.28 41.66
NegGrad 84.58±1.19 (31.71) 85.56±0.58 (4.73) 51.52±1.26 (2.66) 63.91±0.34 (16.64) 13.93 13.17 51.19±0.66 (3.44) 51.79±1.47 (40.67) 36.34±1.28 (12.20) 53.62±1.21 (8.79) 16.27 23.57

Tiny-ImageNet Unrolling [33] 92.66±0.68 (39.79) 92.79±0.39 (2.50) 54.47±0.71 (0.29) 68.37±0.54 (21.10) 15.92 7.83 89.06±0.64 (41.31) 89.18±0.46 (3.28) 52.60±0.71 (4.06) 66.07±0.52 (21.24) 17.47 19.52
ViT BadT [5] 48.20±0.49 (4.67) 57.73±0.30 (32.56) 43.24±0.47 (10.94) 29.45±0.25 (17.82) 16.50 10.32 45.78±0.51 (1.97) 54.35±0.27 (38.11) 41.91±0.56 (6.63) 26.30±0.34 (18.53) 16.31 10.43

SSD [8] 92.97±0.77 (40.10) 92.75±0.24 (2.46) 54.35±0.68 (0.17) 68.50±0.26 (21.23) 15.99 25.64 92.80±0.85 (45.05) 92.83±0.28 (0.37) 54.35±0.79 (5.81) 68.25±0.21 (23.42) 18.66 27.70
𝐿1-Sparse [24] 68.71±0.57 (15.84) 85.13±0.21 (5.16) 50.25±0.50 (3.93) 44.26±0.32 (3.01) 6.99 32.15 69.04±1.47 (21.29) 87.55±0.78 (4.91) 49.78±1.06 (1.24) 43.32±0.70 (1.51) 7.24 20.17

SalUn [7] 54.99±0.43 (2.12) 89.27±0.29 (1.02) 52.35±0.40 (1.83) 40.27±0.24 (7.00) 2.99 34.83 52.21±0.47 (4.46) 89.65±0.40 (2.81) 50.45±0.48 (1.91) 38.21±0.60 (6.62) 3.95 24.38
GDR-GMA (ours) 51.69±0.48 (1.18) 91.49±0.02 (1.20) 51.78±0.06 (2.40) 52.91±0.16 (5.64) 2.61 13.67 46.25±0.28 (1.50) 90.45±0.23 (2.01) 45.06±0.60 (3.48) 50.92±0.22 (6.09) 3.27 25.60

5 EXPERIMENTS
In this Section, we conduct extensive experiments to empirically
evaluate the proposed GDR-GMA method. We compare its perfor-
mance with several baseline MU methods in three MU scenarios:
random data forgetting, subclass forgetting, and class forget-
ting. Furthermore, we also conduct ablation experiments to prove
the effectiveness of GDR-GMA.

5.1 Experiment Setups
Datasets and models. In this paper, we evaluate GDR-GMA on
three datasets, CIFAR-10, CIFAR-20 [20], and Tiny-ImageNet [21],
using two model architectures, ResNet-18 [13] and Vision Trans-
former (ViT) [6]. More details of the datasets can be found in the
supplementary materials.
Baseline methods. In random data forgetting and subclass forget-
ting, we compare GDR-GMAwith the following baselines:Retrain,
Fine-tune, Random Labels [9], NegGrad, Fisher [9], Unrolling
[33], BadT [5], 𝐿1-Sparse [24], SalUn [7], SSD [32]. Furthermore,
we add two new baselines in class forgetting, i.e., ERM-KTP [23]
and Boundary [3]. More setups of implementation are presented
in supplementary materials.
Metrics. Following previous works [5, 7, 32], we use𝐴𝑐𝑐D𝑓

,𝐴𝑐𝑐D𝑟
,

and𝐴𝑐𝑐𝑣𝑎𝑙 to represent the classification accuracy on the forgetting
set, the remaining set, and the validation set, respectively. Besides,
we leverage the membership inference attack (MIA) on the forget-
ting set to measure whether the forgetting data samples are in the
training set. We use RTE to measure the time overhead in min-
utes of the unlearning process. We use 𝐴𝑐𝑐D𝑓

and MIA to measure
the effectiveness of MU methods, 𝐴𝑐𝑐D𝑟

and 𝐴𝑐𝑐𝑣𝑎𝑙 to evaluate
fidelity, and RTE to measure efficiency. To present a summary per-
formance gap against the ideal baseline Retrain, we introduce the
Avg. Gap by calculating the average performance gaps in 𝐴𝑐𝑐D𝑓

,
𝐴𝑐𝑐D𝑟

, 𝐴𝑐𝑐𝑣𝑎𝑙 and MIA. Note that the better performance of an
MU method corresponds to the smaller performance gap with
Retrain. The results are given by a format 𝑎±𝑏 with mean 𝑎 and
standard deviation 𝑏 over ten independent experiments.
Hyper-parameters. The original models are trained for 200 epochs
using the SGD optimizer with a momentum of 0.9, weight decay of
5e-4, and an initial learning rate of 0.1, divided by 10 after 100 and

150 epochs, respectively. For our proposed GDR-GMA, we set the
steepness parameter 𝛾 to 100 and the constant small value 𝜖 to 0.02.

5.2 Evaluation of the GDR-GMA Method
Comparison experiments in random data forgetting. We con-
duct extensive comparison experiments with several baselines. First,
we evaluate the performance of forgetting a random subset of data
samples. Following previous works [5, 7, 32], we consider two un-
learning scenarios, i.e., 20% random data forgetting and 50% random
data forgetting. More results can be found in the supplementary
materials. Based on the results presented in Table 2, we draw the
following three key observations:

First, following the previous work [7], Avg. Gap is a more com-
prehensive metric to evaluate the performance of the MU methods.
Some methods may be the strongest when considering only a single
metric, but this comes at the cost of sacrificing the other metrics.
However, GDR-GMA still achieves the smallest average perfor-
mance gap against Retrain on these two (data-model) setups in both
scenarios, demonstrating its superior effectiveness and fidelity.

Second, GDR-GMA inherits the efficiency of the gradient ascent
methods while maintaining the model classification performance.
GDR-GMA significantly improves the performance of NegGrad
with negligible additional computation overhead. Furthermore,
GDR-GMA has a competitive computation efficiency with these
baselines, as evidenced by the RTE metric.

Third, randomly forgetting 50% data samples is a more complex
scenario, resulting in a higher average performance gap than that
in 20% random data forgetting scenario. Besides, the MU methods
on Tiny-ImageNet using ViT are more demanding due to the larger
scale of data samples and model parameters. Nevertheless, GDR-
GMA still has the smallest average performance gap and achieves
superior performance on both effectiveness and fidelity.
Comparison experiments in subclass forgetting.We then ex-
plore the performance of forgetting a subclass of data samples, fol-
lowing previous works [5, 8]. Sub-class forgetting is a simpler MU
scenario than random data forgetting because sub-class samples are
more similar. This simple data distribution makes the model more
easily unlearn the forgetting data samples while maintaining the
remaining data samples. As shown in Table 3, GDR-GMA achieves
a superior performance in sub-class forgetting than random data



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GDR-GMA: Machine Unlearning via Direction-Rectified and Magnitude-Adjusted Gradients ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

forgetting. Moreover, GDR-GMA has the smallest performance gap
and significantly outperforms the state-of-the-art works regarding
time overhead.
Table 3: Performance comparison with several baselines on
CIFAR-20 using ResNet-18 in subclass forgetting.

Approach 𝐴𝑐𝑐D𝑓
(Δ ↓) 𝐴𝑐𝑐D𝑟

(Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓
Retrain 2.52 ±0.62 (0.00) 100.00 ±0.00 (0.00) 68.94 ±0.62 (0.00) 0.00±0.00(0.00) 0.00 35.74
Fine-tune 3.33±0.14 (0.81) 90.64±0.21 (9.36) 68.22±0.19 (0.72) 0.00±0.00 (0.00) 2.72 1.79

Random Labels 4.80±0.17 (2.28) 69.97±0.38 (30.03) 62.13±0.23 (6.81) 0.00±0.00 (0.00) 9.78 1.13
NegGrad 31.30±0.15 (28.78) 97.57±0.37 (2.43) 80.04±0.02 (11.10) 0.09±0.01 (0.09) 10.60 0.52

Unrolling [33] 15.07±0.04 (12.55) 97.30±0.13 (2.70) 83.15±0.52 (14.21) 0.31±0.02 (0.31) 7.44 0.43
BadT [5] 7.77±0.20 (5.25) 94.81±0.74 (5.19) 72.15±0.07 (3.21) 0.10±0.01 (0.10) 3.44 1.85
SSD [8] 0.10±0.00 (2.42) 70.45±0.48 (29.55) 59.78±0.18 (9.16) 32.31±0.28 (32.31) 18.36 3.25

𝐿1-Sparse [24] 3.70±0.11 (1.18) 86.58±0.25 (13.42) 67.99±0.23 (0.95) 0.00±0.00 (0.00) 3.89 1.94
SalUn [7] 2.68±0.96 (0.16) 96.21±0.60 (3.79) 66.89±0.06 (2.05) 0.00±0.00 (0.00) 1.50 2.16

GDR-GMA (ours) 2.01±0.09 (0.51) 99.76±0.02 (0.24) 67.99±0.36 (0.95) 0.00±0.00 (0.00) 0.42 0.60

Comparison experiments in class forgetting. We also conduct
experiments in class forgetting, following the previous works [3,
23, 32]. Except for the baseline methods in random data forgetting
and sub-class forgetting, we add two class-wise MU methods as
baselines, ERM-KTP [23] and Boundary [3]. As shown in Table 4,
GDR-GMA still has the smallest average performance gap and has
less time overhead than the SOTA works.

Table 4: Performance comparison with several baselines on
CIFAR-10 using ResNet-18 in class forgetting.

Approach 𝐴𝑐𝑐D𝑓
(Δ ↓) 𝐴𝑐𝑐D𝑟

(Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓
Retrain 0.00 ±0.00 (0.00) 100.00 ±0.00 (0.00) 79.64 ±0.62 (0.00) 7.30±0.00(0.00) 0.00 33.20
Fine-tune 0.00±0.00 (0.00) 96.47±0.54 (3.53) 78.43±0.61 (1.21) 24.22±0.45 (16.92) 5.41 1.81

Random Labels 0.00±0.00 (0.00) 86.97±0.78 (13.03) 84.70±0.53 (5.06) 0.28±0.04 (7.02) 6.28 0.87
NegGrad 19.36±0.60 (19.36) 97.66±0.96 (2.34) 84.29±0.84 (4.65) 22.14±0.98 (14.84) 10.30 0.71

Unrolling [33] 1.56±0.21 (1.56) 84.10±0.86 (15.90) 78.69±0.43 (0.95) 16.28±0.09 (8.98) 6.85 0.31
BadT [5] 0.00±0.00 (0.00) 94.94±0.54 (5.06) 80.79±0.91 (1.15) 0.00±0.00 (7.30) 3.38 1.41
SSD [8] 0.00±0.00 (0.00) 94.65±0.14 (5.35) 92.55±0.80 (12.91) 0.00±0.00 (7.30) 6.39 3.10

𝐿1-Sparse [24] 0.00±0.00 (0.00) 90.07±0.14 (9.93) 79.70±0.88 (0.06) 13.92±0.23 (6.62) 4.15 1.65
SalUn [7] 0.00±0.00 (0.00) 95.89±0.19 (4.11) 82.76±0.28 (3.12) 0.67±0.27 (6.63) 3.47 2.84

ERM-KTP [23] 0.00±0.00 (0.00) 96.62±0.66 (3.38) 78.10±0.82 (1.54) 34.27±0.45 (26.97) 7.97 2.02
Boudary [3] 4.67±0.11 (4.67) 98.84±0.97 (1.16) 78.23±0.69 (1.41) 0.00±0.00 (7.30) 3.63 1.83

GDR-GMA (ours) 0.00±0.00 (0.00) 96.26±0.75 (3.74) 81.76±0.46 (2.12) 4.00±0.27 (3.30) 2.29 0.75

The experimental results in these three scenarios demonstrate
the superior effectiveness, fidelity, and efficiency of GDR-GMA.
Furthermore, the simple implementation and adaptability across
scenarios also show the scalability of GDR-GMA.
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(b) Direction conflict of 𝒈𝑟 –𝒈𝐹

Figure 7: Evaluation of the effectiveness of the GDR method
on CIFAR-10 using ResNet-18. After GDR rectifies the di-
rection of the conflicting gradients, the rate of conflicting
samples is decreased to 0%.

Effectiveness of GDR. We evaluate the effectiveness of the GDR
method in handling the problem of direction conflict. As shown in
Fig.7, GDR can significantly alleviate the direction conflict problem.
However, Fig. 7(b) shows that the rate of conflict samples is not
0% in the first few epochs due to the approximation error using
the gradient bank. Specifically, the approximation error is caused
because the cosine similarity between adjacent epochs is around
0.6-0.8, as shown in Fig. 4. Nevertheless, the rate reaches 0% after

a few epochs because the error will be negligible when the cosine
similarity increases during the unlearning process.
Effectiveness of GMA. Then, we evaluate the effectiveness of the
GDRmethod in handling the gradient dominant problem. As shown
in Fig. 8, these two tasks can achieve a balance where each gradient
fulfills its duty instead of solely tending to one of them after the
GMA method dynamically adjusts the magnitude of the update
gradients. Furthermore, it demonstrates that GMA can achieve a
balance between the updated gradients.
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Figure 8: Evaluation of the effectiveness of the GMA method
on CIFAR-10 using ResNet-18. After GMA adjusts the mag-
nitude of the update gradients, the forgetting loss value in-
creases with maintaining the remaining loss.

5.3 Ablation Experiments
In this section, we conduct ablation experiments to further analyze
the effectiveness of GDR-GMA, and more ablation experiments can
be found in supplementary materials.
Table 5: Ablation experiments of the each pair of gradients
on CIFAR-10 using ResNet-18.
𝒈𝑓 − 𝒈𝑟 𝒈𝑟 − 𝒈𝐹 𝒈𝑓 − 𝒈𝐹 𝐴𝑐𝑐D𝑓

(Δ ↓) 𝐴𝑐𝑐D𝑟 (Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓

✗ ✗ ✗ 90.21±0.06 (3.79) 96.21±0.13 (3.77) 90.65±1.67 (3.35) 85.79±0.07 (9.03) 4.89
✓ ✗ ✗ 93.68±0.05 (0.32) 98.55±0.11 (1.45) 91.88±1.50 (2.12) 83.11±0.06 (6.35) 2.56
✗ ✓ ✗ 93.29±0.07 (0.71) 98.30±0.12 (1.70) 91.62±1.66 (2.38) 83.49±0.08 (6.73) 2.88
✗ ✗ ✓ 90.18±0.06 (3.82) 96.12±0.13 (3.98) 90.61±1.67 (3.39) 85.74±0.07 (8.98) 5.04
✓ ✗ ✓ 93.64±0.05 (0.36) 98.54±0.11 (1.46) 91.86±1.50 (2.14) 83.08±0.06 (6.32) 2.57
✗ ✓ ✓ 93.31±0.07 (0.69) 98.24±0.12 (1.76) 91.60±1.66 (2.36) 83.52±0.08 (6.76) 2.89
✓ ✓ ✓ 93.83±0.04 (0.17) 99.18±0.11 (0.82) 92.35±1.47 (1.65) 82.40±0.06 (5.64) 2.07
✓ ✓ ✗ 93.84±0.04 (0.16) 99.22±0.11 (0.78) 92.40±1.47 (1.60) 82.36±0.06 (5.60) 2.04

Impact of the each pair of gradients. In Sec. 3.3, we define three
pairs of gradients and empirically find two conflicting pairs 𝒈 𝑓 −𝒈𝑟
and 𝒈𝑟 − 𝒈𝐹 . As shown in Table 5, the average performance gap is
improved by handling the direction conflicts of 𝒈 𝑓 −𝒈𝑟 and 𝒈𝑟 −𝒈𝐹 .
Besides, handling the direction conflict of 𝒈 𝑓 −𝒈𝐹 does not achieve
a smaller performance gap due to the low rate of conflict samples,
as our observations in Fig. 1.
Table 6: Ablation experiments of the proposed gradient bank
on CIFAR-10 using ResNet-18.

Random Data Forgetting (20%)
𝐴𝑐𝑐D𝑓

(Δ ↓) 𝐴𝑐𝑐D𝑟 (Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓

w/o Bank 93.86±0.05 (0.14) 99.23±0.11 (0.77) 92.43±1.50 (1.57) 82.32±0.05 (5.56) 2.01 102.32
w/ Bank 93.84±0.04 (0.16) 99.22±0.11 (0.78) 92.40±1.47 (1.60) 82.36±0.06 (5.60) 2.04 1.40

Random Data Forgetting (50%)
𝐴𝑐𝑐D𝑓

(Δ ↓) 𝐴𝑐𝑐D𝑟 (Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓
w/o Bank 92.06±0.11 (0.67) 99.24±0.40 (0.76) 90.40±1.32 (1.59) 77.02±0.12 (6.23) 2.31 122.42
w/ Bank 92.10±0.08 (0.63) 99.07±0.45 (0.93) 90.37±1.10 (1.62) 76.27±0.18 (5.48) 2.17 2.12

Impact of the gradient bank. In Sec. 4.1, we propose the gradient
bank to approximate the set of gradients {𝒈𝐹𝑘 }

|D𝐹 |
𝑘=1 with 𝒈 𝑗𝑜𝑖𝑛𝑡 .

Fig. 7(b) demonstrates the effectiveness of this approximation using
the gradient bank to alleviate the direction conflict. Furthermore,
the gradient bank can significantly reduce time overhead without
sacrificing performance, as shown in Table 6.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Impact of 𝛾 and 𝜖. We propose the dynamic magnitude weight
parameter in Eq. 6 to adjust the magnitude of the update gradi-
ents, resulting in a balance between the forgetting and remaining
tasks. Specifically, we use the steepness parameter 𝛾 to control how
sharply the weight parameter transitions from its minimum value
to its maximum value and the constant small value 𝜖 to control
the deviation of the loss value of the remaining dataset. As shown
in Fig. 7, the results show that the value of 𝛾 does not affect the
average performance gap but affects the time overhead. The higher
value of 𝜖 will reduce the time overhead with an increasing average
performance gap.
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Figure 9: Ablation experiments of the steepness parameter 𝛾
(a) and the constant small value 𝜖 (b) in Eq. 6.

Evaluation of GDR and GMA. The GDR-GMA MU process con-
sists of two methods, i,e, GDR to rectify the direction and GMA
to adjust the magnitude. These two methods mainly focus on the
gradient direction problem and gradient dominant problem, respec-
tively. Here, we want to explore the relationship between problems
and performance. In Sec. 3, we have observed that the occurrences
of problems indeed significantly decline the performance. As shown
in Table 7, we evaluate the performance when only considering a
single problem. The results demonstrate that GDR-GMA achieves
the best performance by handling both problems.

Table 7: Ablation experiments to evaluate the performance
of GDR and GMA on CIFAR-10 using ResNet-18.

Method 𝐴𝑐𝑐D𝑓
(Δ ↓) 𝐴𝑐𝑐D𝑟 (Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓

GDR 91.34±0.05 (2.66) 90.10±0.12 (9.89) 88.26±1.76 (5.74) 81.05±0.04 (4.29) 5.65 1.40
GMA 90.21±0.06 (3.79) 96.21±0.13 (3.77) 90.65±1.67 (3.35) 85.79±0.07 (9.03) 4.89 1.38

GDR-GMA 93.84±0.04 (0.16) 99.22±0.11 (0.78) 92.40±1.47 (1.60) 82.36±0.06 (5.60) 2.04 1.40

6 DISCUSSIONS
In this section, we want to propose some insights of GDR-GMA.
Specifically, we will discuss that GDR-GMA can easily combine
with the existing methods to further improve the performance. In
addition, we will discuss the possibility of applying GDR-GMA to
other computer vision tasks.
Combining with the Existing Methods. Our method only modi-
fies the direction and magnitude of update gradients rather than
changing the model architecture and the pipeline of the gradient
ascent. Therefore, our proposed GDR-GMA can be easily combined
with the existing methods as long as they do not conflict with the
basic gradient ascent process. For example, Liu et al. [24] proposed
that the model sparsity can improve the MU performance. Hence,
the 𝐿1-Sparse method can be easily combined with our proposed
GDR-GMA. We modify the model update formulation by adding

the gradient of the 𝐿1 norm penalty term as:

𝝎𝑡+1
𝑢 ← 𝝎𝑡

𝑢 + 𝜂 [𝜆𝑡𝒈𝑡𝑓 − (1 − 𝜆𝑡 )𝒈
𝑡
𝑟 − 𝜇𝒈𝑡𝐿1 ], (8)

where 𝒈𝐿1 = ▽𝝎 | |𝝎 | |1 and 𝜇 is a regularization parameter. Then, we
conduct experiments to evaluate the performance of the combined
method. As shown in Table 8, we can observe that the combined
𝐿1-Sparse + GDR-GMA achieves a smaller performance gap than
GDR-GMA with a higher time overhead. We analyze the reasons
and find that the sparsity forces the model only to update the
filtered important parameters, which slows down the increase of
the forgetting loss value. As a result, the loss value can be closer
to Retrain but brings more additional time overhead. More results
can be found in the supplementary materials.
Table 8: Evaluation of combining GDR-GMA with 𝐿1-Sparse
on CIFAR-10 using ResNet-18.

Random Data Forgetting (20%)
Method 𝐴𝑐𝑐D𝑓

(Δ ↓) 𝐴𝑐𝑐D𝑟 (Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓

𝐿1-Sparse [24] 92.72±0.62(1.28) 96.81±0.30(3.19) 91.62±0.58(2.38) 71.28±0.04(5.48) 3.08 2.25
GDR-GMA 93.84±0.04 (0.16) 99.22±0.11 (0.78) 92.40±1.47 (1.60) 82.36±0.06 (5.60) 2.04 1.40

𝐿1-Sparse + GDR-GMA 93.26±0.08 (0.74) 99.68±0.25 (0.32) 92.62±2.09 (1.38) 81.23±0.18 (4.47) 1.73 2.96
Random Data Forgetting (50%)

Method 𝐴𝑐𝑐D𝑓
(Δ ↓) 𝐴𝑐𝑐D𝑟 (Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓

𝐿1-Sparse [24] 90.81±0.81(0.92) 94.11±0.26(5.89) 88.37±0.73(2.06) 65.75±0.22(5.04) 3.48 1.39
GDR-GMA 92.10±0.08 (0.63) 99.07±0.45 (0.93) 90.37±1.10 (1.62) 76.27±0.18 (5.48) 2.17 2.12

𝐿1-Sparse + GDR-GMA 92.23±0.19 (0.50) 99.54±1.12 (0.46) 89.22±1.97 (2.77) 74.56±0.45 (3.77) 1.89 4.06

GDR-GMA for the semantic segmentation task. We design
the GDR-GMA method based on the gradient ascent, which can
theoretically be applied to other computer vision tasks. Therefore,
we attempt to apply the GDR-GMA for the semantic segmentation
task with a toy example on the OxfordPet dataset [29] using FPN
architecture [19]. To implement GDR-GMA for the semantic seg-
mentation task, we only need to replace gradients calculated on CE
loss with gradients on dice loss. As shown in Table 9, GDR-GMA
achieves a small performance gap against Retrain, demonstrating
the high scalability potential of GDR-GMA. For other machine
learning tasks, we will leave them for future work. The details of
setups and more results can be found in the supplement materials.
Table 9: Performance of GDR-GMA for semantic segmenta-
tion on OxfordPet using FPN in 20% random data forgetting.

Random Data Forgetting (20%)
Method 𝐴𝑐𝑐D𝑓

(Δ ↓) 𝐴𝑐𝑐D𝑟 (Δ ↓) 𝐴𝑐𝑐𝑣𝑎𝑙 (Δ ↓) MIA (Δ ↓) Avg. Gap ↓ RTE ↓

Retrain 90.28±0.57 (0.00) 94.59±0.14 (0.00) 89.95±0.48 (0.00) 49.61±0.85 (0.00) 0.00 1.63
Fine-tune 92.50±0.12 (2.22) 93.66±0.41 (0.93) 90.13±0.52 (0.18) 52.54±0.47 (2.93) 1.56 0.29

Random Labels 90.13±0.08 (0.15) 92.42±0.07 (2.17) 88.83±0.91 (1.12) 42.90±0.84 (6.71) 2.54 0.19
NegGrad 89.22±0.99 (1.06) 91.45±0.25 (3.14) 87.82±0.40 (2.13) 59.29±0.43 (9.68) 4.00 0.19

Unrolling [33] 92.58±0.20 (2.30) 92.96±0.19 (1.63) 89.51±0.20 (0.44) 50.73±0.69 (1.12) 1.37 0.19
BadT [5] 89.53±0.37 (0.75) 90.03±0.36 (4.56) 87.13±0.44 (2.82) 51.91±0.88 (2.30) 2.61 0.63

𝐿1-Sparse [24] 91.65±0.76 (1.37) 92.33±0.40 (2.26) 89.67±0.32 (0.28) 58.50±0.20 (8.89) 3.20 0.39
SalUn [7] 93.33±0.42 (3.05) 93.66±0.63 (0.93) 90.30±0.70 (0.35) 55.41±0.41 (5.80) 2.53 0.20
GDR-GMA 89.77±0.39 (0.51) 92.86±0.82 (1.73) 89.43±0.57 (0.52) 50.88±0.43 (1.27) 1.01 0.20

7 CONCLUSION
In this paper, we first analyze the problems of the basic gradient
ascent MU method in a multi-task learning view. We identify two
key problems: the gradient direction problem and the gradient
dominant problem. To address these problems, we propose the GDR-
GMA MU method. For the gradient direction problem, GDR-GMA
rectifies the direction of the conflicting gradients. For the gradient
dominant problem, GDR-GMA dynamically adjusts the magnitude
of the update gradients. Then, we conducted extensive experiments
to demonstrate the effectiveness, fidelity, and efficiency of GDR-
GMA. Furthermore, we also show the scalability of GDR-GMA by
exploring the possibility of combining the existing methods and
applying GDR-GMA to the semantic segmentation task.
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