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Abstract—As a key technique for future networks, the per-
formance of emerging multi-edge caching is often limited by
inefficient collaboration among edge nodes and improper re-
source configuration. Meanwhile, achieving optimal cache hit
rates poses substantive challenges without effectively capturing
the potential relations between discrete user features and diverse
content libraries. These challenges become further sophisticated
when caching schemes are exposed to adversarial attacks that
seriously impair cache performance. To address these challenges,
we introduce RoCoCache, a resilient collaborative caching frame-
work that uniquely integrates robust federated deep learning
with proactive caching strategies, enhancing performance under
adversarial conditions. First, we design a novel partitioning
mechanism for multi-dimensional cache space, enabling pre-
cise content recommendations in user classification intervals.
Next, we develop a new Discrete-Categorical Variational Auto-
Encoder (DC-VAE) to accurately predict content popularity by
overcoming posterior collapse. Finally, we create an original
training mode and proactive cache replacement strategy based
on robust federated deep learning. Notably, the residual-based
detection for adversarial model updates and similarity-based
federated aggregation are integrated to avoid the model destruc-
tion caused by adversarial updates, which enables the proactive
cache replacement adapting to optimized cache resources and
thus enhances cache performance. Using the real-world testbed
and datasets, extensive experiments verify that the RoCoCache
achieves higher cache hit rates and efficiency than state-of-the-art
methods while ensuring better robustness. Moreover, we validate
the effectiveness of the components designed in RoCoCache for
improving cache performance via ablation studies.

Index Terms—multi-edge collaborative caching, robust feder-
ated deep learning, cache space partitioning, content popularity
prediction, proactive cache replacement.
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W Ith the significant development of 5G techniques,
increasingly sophisticated applications are being de-

ployed across industrial manufacturing, digital economy, ve-
hicle networking, and smart cities [1]. In the case of cloud
computing, the tasks and data generated by the applications are
uploaded to the remote cloud for processing, causing serious
network congestion and service delay [2]. To alleviate this
problem, Mobile Edge Computing (MEC), as an essential
technique for future networks, deploys computing and storage
resources at the network edge in closer proximity to end
devices [3], provisioning more reliable real-time computing
and data storage for end-device applications. Thus, edge nodes
can perform various management operations such as signal
processing, distributed caching, and wireless resource collab-
oration. Among these operations, distributed caching enables
caching user-centric content within edge nodes, which reduces
access delay and data duplication storage, thus enhancing user
experience and cutting system costs. Whereas, cache perfor-
mance is commonly limited by the size of edge cache space
and overheads. Therefore, how to efficiently utilize the cache
space and improve cache performance has garnered extensive
attention from both academia and industry [4]. Generally, the
cache performance is constrained by many factors such as
cache size, content relevance, cache partitioning, and cache
replacement. Previous studies commonly considered proactive
content caching based on user preferences in constrained
cache space [5], [6]. To optimize the configuration of cache
resources, the cache space needs to be further partitioned
according to user features, activities, and request patterns,
enabling more precise content recommendations for similar
users across multiple edges. Therefore, exploring the potential
relationships between users and content characteristics in
multi-dimensional space will enhance the hit rate of user-
accessed resources, but it remains an open challenge.

Multi-edge collaborative caching has emerged as a feasible
manner that optimizes cache resource configuration and re-
duces service delay [7]. Users can determine their requested
contents from other edge nodes that perform collaborative
caching if their connected edge nodes do not match their
requests. Most of the existing studies [5], [6], [8]–[11] em-
ployed Deep Reinforcement Learning (DRL) or game theory.
However, with the increasing number of end devices and
heightened sensitivity of user privacy, the existing solutions
cannot effectively handle the security issues and cache re-
source configuration. As a distributed training framework,
Federated Learning (FL) is regarded as a promising solution to
handle the above issues [12]. Following its core principle, edge
nodes collaborate to train a global model by uploading model
parameters without revealing raw data [13]–[17]. FL tends to
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meet the heterogeneous user demands across multiple edges by
the well-trained global model while ensuring privacy security
and the scalability of large-scale networks [18]. However, in
complex MEC environments, unintentional model corruption
or adversarial model interference with malicious intention may
cause the inability to perform model training and the degraded
quality of model updates [19]. For example, unintentional
model corruption may occur due to noisy training labels,
insufficient data samples, and uploaded models with low
quality. Moreover, malicious edge nodes may deliberately
launch adversarial attacks to tamper models such as Byzantine
[20] and Backdoor attacks [21]. However, the detection of
adversarial attacks is commonly computation-intensive since
it requires substantial data collection and analysis to iden-
tify misbehaviors [22]. These issues seriously impact cache
performance and increase system overheads. Specifically, the
key challenges when dealing with the problem of multi-edge
collaborative caching are summarized below.

• Discrete user features and diverse content requests.
Different users may have various content preferences due
to their discrete features. Therefore, it is challenging to
find the potential relationships between the discrete user
feature distribution and diverse content requests.

• Model scalability. With an increasing number of end
devices, there will be more data that exhibit discrete
distributions, resulting in higher computation and com-
munication overheads for the caching scenario with a
single edge node. However, classic centralized training
frameworks encounter limited model scalability.

• Model robustness. Edge nodes might unintentionally
upload low-quality models or be subjected to adversarial
attacks by malicious nodes, leading to seriously degraded
robustness during model updates.

To address these important challenges, we propose RoCo-
Cache, a novel resilient collaborative caching framework for
multi-edge systems with robust federated deep learning. The
main contributions of this paper are summarized as follows.

• We propose a new partitioning mechanism for multi-
dimensional edge cache space, consisting of multi-
dimensional user partitioning and cache space partition-
ing. This mechanism considers user features, activities,
and the divergence of memory access interval to per-
ceptually optimize cache resources, promising that users
receive accurate content recommendations in their classi-
fication interval.

• We investigate the potential posterior collapse in the
classic Variational Auto-Encoder (VAE). To this end, we
develop a Discrete-Categorical Variational Auto-Encoder
(DC-VAE) for more precise adaptation to discrete distri-
butions in the user request matrix. Specifically, the DC-
VAE first learns the implicit category space consisting of
discrete vectors. Next, it employs the nearest neighbor
to find discrete implicit vectors, assisting the decoder
in generating the user request matrix. Thus, we solve
the posterior collapsing issue and enhance the prediction
accuracy of content popularity.

• We design a novel training mode based on robust fed-

erated deep learning (RFDL). By training with the user
request data stored on each edge node, local models are
aggregated to generate a globally-shared model. Specif-
ically, a residual-based detection method is proposed to
accurately capture adversarial model updates. Meanwhile,
a similarity-based FL aggregation method is designed to
avoid the destruction of the globally-shared model caused
by adversarial updates. Notably, we theoretically verify
the effectiveness of both methods in detail.

• Using the real-world testbed and datasets, we conduct
extensive experiments to validate the superiority of the
proposed RoCoCache. The results show that the Ro-
CoCache achieves higher cache hit rates and improved
efficiency than state-of-the-art methods while guarantee-
ing better robustness. Moreover, the effectiveness of the
components designed in RoCoCache is also demonstrated
via ablation studies.

The rest of this paper is organized as follows. Section II re-
views the related work. Section III describes the system model
and formulates the optimization problem. Section IV presents
the proposed RoCoCache in detail. Section V evaluates the
RoCoCache. Finally, Section VI concludes this paper.

II. RELATED WORK

Classic caching strategies, such as First In First Out (FIFO),
Least Frequently Used (LFU), and Least Recently Used (LRU)
[23], follow static rules to update cached contents. However,
they are not adapted to complex multi-edge environments since
they cannot analyze changing content popularity. This issue
has been significantly improved by recent advancements in
learning-based methods [24]. In multi-edge caching, several
key factors should be also considered including user features,
user privacy, model scalability, and model robustness [25].
This section analyzes the related studies from the perspectives
of collaborative caching and FL-based edge caching.

A. Collaborative Caching

Zhou et al. [5] developed a Multi-Agent Reinforcement
Learning (MARL) enabled cooperative caching strategy, which
formulated the joint cooperative caching and recommendation
problem as a Multi-Agent Multi-Armed Bandit (MAMAB)
problem with the aim of minimizing the average download
latency. Lin et al. [6] proposed a preference-aware content
caching and migration scheme for video content delivery, with
the consideration of users’ request preferences and long-term
content migration costs. Zong et al. [8] designed an ensemble
learning-based edge caching strategy, which equipped clas-
sic LFU/LRU with LSTM-based time-series analysis, aim-
ing to optimize the cache configurations for heterogeneous
edge nodes. Chen et al. [9] formulated the collaborative
caching as a Partially Observable Markov Decision Process
(POMDP) and designed a multi-agent reinforcement learning
based method to optimize the overheads of multi-edge cache
systems. Hui et al. [10] proposed a collaborative caching
scheme based on a double-auction game, which motivated
cellular base stations to cooperate with roadside units for
multicast-assisted content delivery. Lin et al. [11] investigated
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a collaborative service caching scheme among multiple Ser-
vice Providers (SPs) by using game theory, where SPs were
modeled as profit-oriented players that formed coalitions to
share edge resources and costs. Zhang et al. [26] designed a
two-step approach, which consisted of a content popularity
prediction model with temporal convolution networks and
a dynamic programming algorithm to address the problem
of cooperative content caching. Jin et al. [27] developed a
cooperative caching strategy with optimization theory, aiming
to deal with the dynamic changes in vehicular edge networks
and minimize average transmission delay. Peng et al. [28]
designed a cooperative caching system that adopted Automatic
Content Congregating (ACC) to improve cache hit rate and
Mutual Assistance Group (MAG) to balance workloads by
guiding requests, prefetching content, and redistributing re-
quests among edge nodes.

In general, the existing studies on collaborative caching
have exhibited good performance in simple and static caching
scenarios. However, they cannot effectively manage discrete
user features and diverse content requests. This inadequacy
undermines their ability to provide precise content recom-
mendations based on user features, activities, and request
patterns, seriously affecting cache hit rate and increasing
system overheads. Furthermore, due to inefficient multi-edge
collaboration and irrational cache resource configuration, they
struggled to cope with the complex multi-edge caching sce-
narios characterized by the dramatically increasing number
of end devices and high privacy sensitivity. Therefore, it is
challenging for them to learn the optimal caching strategy and
achieve high efficiency of collaborative caching.

B. FL-based Edge Caching

Qiao et al. [13] optimized edge caching based on Federated
Reinforcement Learning (FRL) that can adjust FL participants
automatically, solving the problems of high resource overheads
and low training efficiency. Krishnendu et al. [14] proposed
an FL-based caching strategy that considered the decision
span and neighbor correlation, providing high-probability gen-
eralization guarantees for improving cache performance. Yu
et al. [15] designed an FL-based hierarchical cooperative
caching method, which employed VAE to capture different
content popularity and then combined horizontal and verti-
cal cooperation to implement content caching with different
content popularity. Li et al. [16] developed an FL-based
caching scheme among heterogeneous edge nodes, where an
information aggregation protocol was designed to reduce the
disparity in content popularity between local user feedback
and the central server. Wu et al. [17] proposed a cooper-
ative caching scheme in vehicular edge networks based on
asynchronous federated deep reinforcement learning, aiming to
predict popular contents and then obtain the proper cooperative
caching locations for the predicted popular contents. However,
in complex edge environments, security concerns exacerbate
the challenges of maintaining high cache performance. The
classic FL-based caching strategies are vulnerable to un-
intended model corruption or intentional adversarial model
interference [20], [21], resulting in the degraded quality of

the global model. This degradation adversely impacts content
popularity prediction and cache performance.

Recently, there have been some studies on the security
and robustness of edge caching. Cui et al. [29] proposed a
blockchain-based FL edge cache system with model com-
pression, which adopted smart contracts for decentralized
entities to record and verify the transactions, improving cache
performance while ensuring system security. Feng et al. [30]
designed a proactive caching method with FL-based predic-
tion, incorporating a privacy-preserving framework with local
differential privacy and an attention mechanism for adversarial
attack detection. Xie et al. [31] proposed a cache replacement
scheme that can perceived and adapted to the attack levels,
which evaluated a suite of representative replacement policies
within the Time To Live (TTL) approximation framework to
assess their effectiveness in preserving hit ratios for legitimate
users. Manzoor et al. [32] proposed a robust FL-based content
caching approach that utilized a generative adversarial network
to differentiate noisy and actual federated weights, thereby
mitigating the interference from adversarial model updates.

Generally, the existing studies on FL-based edge caching
have proved its promising capability in enhancing privacy pro-
tection, model scalability, and robustness. They also performed
well in model training speed and solving the issue of data
island. The blockchain-based solutions are not lightweight,
and they might cause excessive overheads. The other solutions
may fail to accurately identify and mitigate malicious attacks,
which cannot promise good model security and cache per-
formance. There remains an ongoing challenge in optimizing
cache performance while considering both model scalability
and model robustness.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The proposed multi-edge collaborative caching system, de-
picted in Fig. 1, consists of M edge nodes, each contain-
ing a MEC server and a base station, denoted by the set
E = {e1, e2, ..., em, ..., eM}, and N users, denoted by the set
U = {u1, u2, ..., un, ..., uN}. The caching space of edge nodes
is defined as the set C = {C1, C2, ..., Cm, ..., CM}. Each
user is connected to an edge node and communicates through
the wireless link provided by the associated base station.
Furthermore, the communications among edge nodes, as well
as between edge nodes and the cloud data center are conducted
via the backhaul link. The caching space status of each edge
node is periodically updated according to the proactive caching
replacement strategy and then broadcast to other edge nodes
within the proposed system. The content library of the cloud
data center is denoted as F = {f1, f2, ..., fi, ..., fI}, where I
indicates the number of accessible contents. Moreover, users
are discretely distributed in the service zone of each edge node.
When the user un sends a request for the content fi to its
connected edge node, the workflow is given as follows.

Step 1: The current edge node checks whether it has cached
fi. If fi is cached, the edge node will send it to un directly.
Otherwise, it goes to Step 2.

Step 2: The current edge node searches for whether there
exists a collaborative edge node that caches fi. If there exists,
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Fig. 1. The proposed multi-edge collaborative caching system.

the collaborative edge node will forward fi to the current edge
node via the backhaul link, and then fi will be sent to un.
Otherwise, it goes to Step 3.

Step 3: If no collaborative edge node caches fi, the content
library in the cloud data center will provide fi and forward it
to the current edge node through the backhaul link, and then
fi will be sent to un.

In the scenario of multi-edge collaborative caching, the
content requests from users are dynamic, revealing spatio-
temporal dependencies. Therefore, enhancing the cache hit
rate heavily relies on precise content popularity prediction,
followed by caching the user-interest contents into the cache
space of edge nodes. Specifically, the popularity of fi on the
edge node em is defined as

Pi,m =
reqi,m
reqm

, (1)

where reqi,m is the number of requests for fi received by em,
and reqm is the total number of requests received by em.

The proposed RoCoCache (details are given in Section IV)
enables precise prediction of content popularity. To evaluate
the prediction accuracy, the global loss function is defined as

J(w(r)) =

M∑
m=1

reqm
req

MSEm(w(r)
m ), (2)

where r indicates the FL communication round, w(r) is the
parameter of the global prediction model, req is the total
number of requests received by all edge nodes, w

(r)
m is the

parameter of a local prediction model, and Mean-Square Error
(MSE) is defined as

MSEm(w(r)
m ) =

1

I

I∑
i=1

(yi,m(w(r)
m )− Pi,m(r))

2
, (3)

where yi,m(w
(r)
m ) is the predicted popularity value of fi on

em and Pi,m(r) is the actual value.
Moreover, the cache hit rate is defined as

H =

∑M
m=1

∑N
i=1 θm(fi)∑M

m=1 reqm
× 100%, (4)

where θm(fi) indicates whether em caches the content re-
quested by users or not, and it is defined as

θm(fi) =

{
1, if fi is in Cm

0, otherwise
. (5)

The cache performance is affected by various factors includ-
ing cache resource configuration, content popularity, model ro-
bustness, and cache replacement strategy. By comprehensively
considering these factors, the proposed RoCoCache is able to
effectively improve the cache performance within a multi-edge
collaborative caching system.

IV. THE PROPOSED ROCOCACHE

Based on the proposed system model and problem formu-
lation, we propose RoCoCache, a novel resilient collaborative
caching framework for multi-edge systems with RFDL. First,
we optimize the cache space of edge nodes via a new multi-
dimensional cache space partitioning and determine the proper
size of cache space for interval users. Next, we design a
new DC-VAE to learn the implicit category space comprising
discrete vectors. In DC-VAE, the decoder employs the nearest
neighbor to find discrete hidden vectors and then generates
the calibrated user request matrix, thereby improving the
accuracy of content popularity prediction. Then, we design
a novel training mode based on RFDL to improve model
scalability and robustness. This involves a residual-based de-
tection method to capture adversarial model updates, coupled
with a similarity-based FL aggregation method to avoid the
damage of the globally-shared model caused by adversarial
updating. Finally, we design a proactive cache replacement
strategy based on RFDL to better fit the optimized cache
resource configuration and improve the performance of multi-
edge collaborative caching.

A. Multi-dimensional Cache Space Partitioning

The main steps of the proposed multi-dimensional cache
space partitioning are outlined in Algorithm 1, comprising
two key components: multi-dimensional user partitioning
and cache space partitioning. In multi-dimensional user par-
titioning, we classify and segment feature groups with various
numbers of users, where user-interest contents are cached
individually for different groups. In cache space partitioning,
leveraging the established classification, the cache space is
perceptually optimized based on user features, user activities,
and the divergence of memory access interval.

(1) Multi-Dimensional User Partitioning
To a certain extent, user features reflect their preferences for

cache contents [33]. As shown in Fig. 2, to accurately predict
user preferences, we propose a user partitioning method based
on their multi-dimensional features including gender, age,
and occupation, which are consecutively coded as coordinate
axes, denoted by the set Γ = {γ1, γ2, ..., γt, ..., γT }. Thus,
this enables the construction of a feature hypercube, where
users are grouped to form user intervals. As the partitioning
progresses, the user intervals are denoted as the set H =
{h1, h2, ..., hs, ..., hS}, where S is the number of user intervals
and Grade(hs) indicates the user partitioning grade of user
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Algorithm 1: The proposed multi-dimensional cache
space partitioning

1 # Multi-dimensional user partitioning.
2 Initialize: the user intervals H = {h0}, user features

Θ, and hyper-parameter α.
3 while |hs| > ζ(Grade(hs)) do
4 for lts ∈ Θ(hs) do
5 lts = lts/2;
6 end
7 Generate 2T new user intervals;
8 Update H;
9 end

10 # Cache space partitioning.
11 Initialize: the number of requests reqm received by

em, number of accessible contents I , and size of
cache space cachem on em.

12 Input: H after partitioning.
13 for hs ∈ H do
14 Calculate the user activity active(hs) and the

divergence of memory access interval
diverge(hs) by Eq. (6);

15 Realign the cache space of hs by Eq. (7);
16 end

interval hs. Moreover, the side length of each hypercube is
denoted as the set Θ(hs) = {l1s , l2s , ..., lts, ..., lTs }.

Fig. 2. The proposed multi-dimensional user partitioning.

At the initial stage (Grade(h0) = 0), all users with diverse
features are placed within the same user interval h0. If the
number of users in h0, represented by |h0|, exceeds the
threshold ζ(Grade(h0)), it will be equally divided into 2T

user intervals along each dimension, where the length of each
divided dimension will be halved (lts = lts/2). ζ(Grade(hs))
determines the number of users in a user interval. When
ζ(Grade(hs)) is larger, it results in higher user density
within each interval, compromising the ability to accurately
capture diverse user preferences. Conversely, smaller values

of ζ(Grade(hs)) correspond to reduced user density, risking
inaccurate cache predictions. To achieve adaptive partition-
ing of user intervals and capture the potential relationships
between interval users and their preferred contents, we set
ζ(Grade(hs)) = α2Grade(hs) [34], where α is a hyper-
parameter. The partitioning in each user interval may continue
and go to the following stages (e.g., Grade = 1, 2, ...)
according to performance requirements.

(2) Cache Space Partitioning
Allocating proper cache space for user intervals is important

to improve cache performance. Various factors need to be
considered during the allocation of cache space, including the
number of users, user activities, and the divergence of memory
access interval. For example, younger users prefer richer types
of contents and show higher activities, while older users may
focus on limited contents and exhibit lower activities.

Specifically, in the partitioned user interval hs, the number
of users is denoted as |hs|. The user activity and the divergence
of memory access interval are defined as

active(hs) =
reqs
reqm

, diverge(hs) =
|C(hs)|

I
, (6)

where reqs is the number of user requests and C(hs) is the
memory access interval of hs.

Considering the above factors, the size of cache space
allocated to hs is defined as

caches =
φ(|hs|, active(hs), diverge(hs))× cachem∑S

s=1 φ(|hs|, active(hs), diverge(hs))
, (7)

where φ(·) indicates the cumulative product function and
cachem indicates the size of cache space on the edge node
connected to hs.

B. DC-VAE-based Content Popularity Prediction

In real-world scenarios, the content popularity usually fol-
lows Zipf’s law (i.e., a typical power law), which has been con-
firmed by analyzing video popularity on mainstream platforms
(e.g., MovieLens, iQIYI, Youku, YouTube, and Netflix) [35].
According to Zipf’s law, the frequency of content occurrence
is inversely proportional to its rank in the frequency table,
which indicates that a small fraction of content dominates
in popularity while the majority of the content receives less
attention. Meanwhile, the less popular content may tend to
have similar popularity compared to the more popular ones,
making it difficult to distinguish them. Although classic Re-
current Neural Networks (RNN) and its improved variants are
good at analyzing sequential data, they struggle to differen-
tiate the content with similar popularity patterns and levels.
This limitation complicates the caching strategies based on
user preferences, making it hard to establish clear caching
boundaries [36].

As a prominent learning algorithm in unsupervised learn-
ing, the Variational Auto-Encoder (VAE) employs continu-
ous variables in its hidden layers to efficiently reconstruct
compressed input data, facilitating data clustering within the
latent space [37]. Specifically, the VAE consists of three
main components: encoder, latent space, and decoder. With
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an input data x, the encoder outputs the parameters µ and
log(σ2) of the Gaussian distribution qϕ(z | x) = N

(
µ, σ2

)
,

where z is the latent representation. Next, the VAE samples
z from qϕ(z | x) = N

(
µ, σ2

)
though the reparameterization,

where z = µ+ σ · ϵ. The decoder is denoted as pθ(x | z) that
reconstructs the compressed input data x. During this process,
the Evidence Lower Bound (ELBO) is employed to minimize
the reconstruction error and regularize the distribution of the
latent space, which is defined as

ELBO = Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)||p(z)), (8)

where the first term is for reconstruction, and KL(·) indicates
the Kullback-Leibler (KL) divergence that is for regularization.
These two terms are used to achieve a balance when fitting a
posterior and maintaining the distribution of the latent space.

However, when dealing with the continuous variables in
hidden layers, the VAE is susceptible to strong noises or
weak signals, leading to the posterior collapse [38]. This
issue seriously affects the learning and reconstruction of the
original data distribution, thereby causing inaccurate popular-
ity prediction. Specifically, given the substantial influence of
significant noises on the latent space representations in VAE,
the estimated values for µ and log(σ2) may become unstable,
thereby rendering an elusive latent variable z. Under this
situation, the regularization term in Eq. (8) loses its efficacy,
as it fails to enforce adherence to the prior distribution.
Therefore, the decoder abandons utilizing the latent space,
leading to a universal output x, which is commonly deemed
as a characteristic manifestation of posterior collapse.

When confronted with weak signals, the approximated
posterior distribution qϕ(z | x) tends to approach the prior
distribution qϕ(z), denoted by qϕ(z | x) ≃ qϕ(z), caus-
ing the ineffectiveness of KL divergence. As it happens,
ELBO ≈ Eqϕ(z|x)[log pθ(x|z)], resembling a conventional
Auto-Encoder (AE) that exhibits limited robustness in re-
constructing the data with complex distribution. Due to the
constrained prior distribution of the latent variable z, it fails
to fully capture the intricate complexities in the posterior
distribution, thereby causing posterior collapse.

To address this issue and prevent the VAE from getting
trapped in the solution space of the local optimum, we design
a new Discrete-Categorical Variational Auto-Encoder (DC-
VAE), which adopts learnable discrete vectors to form the
implicit category space, replacing the hidden layers in the
classic VAE. When predicting the content popularity, the DC-
VAE aims to find the vector in the implicit category space
with the closest distance to the output encoding of the encoder
network, and then it reconstructs the mapped vector via the
decoder network. Fig. 3 illustrates the DC-VAE based content
popularity prediction. Specifically, the DC-VAE learns the
implicit distribution in the user request matrix X , aiming to
obtain future user requests in the reconstructed matrix output
by the decoder. The user request matrix X contains historical
information of user-requested contents on edge nodes, which
is defined as

X = [x1, ..., xn, ..., xN ]T ∈ RN×I , (9)

where 1 ≤ n ≤ N , and n indicates the number of users con-
nected to an edge node. xn = [x1

n, ..., x
i
n, ..., x

I
n]

T indicates
the content request record of the user n, where 1 ≤ i ≤ I ,
and i is the index of the content library. xi

n = 1 indicates the
successful content request. xi

n = 0 indicates either a failed
content request or the content that is not of interest, but these
two cases are hard to be distinguished, leading to inaccurate
prediction. To solve this issue, we supplement and calibrate
the matrix X .

Fig. 3. The proposed DC-VAE based content popularity prediction.

In DC-VAE, the implicit category space is defined as v ∈
RK×D, where K is the space size and D is the dimension
of the category vector. Thus, there are K category vectors
vk ∈ RD (k ∈ 1, 2, ...,K). As shown in Fig. 3, the DC-VAE
inputs xn and outputs tv(xn) via the encoder network. Next,
discrete hidden variable t is calculated by the nearest neighbor
algorithm, and the posterior probability distribution q(t|xn) is
one-hot encoding, which is defined as

q(t = k|xn) =

{
1, for k = argminj∥tv(xn)− vj∥ 2
0, otherwise

.

(10)
The input of the decoder is defined as

tq(xn) = vk, (11)

where k is the index of the decoder input, and it is defined as

k = argminj∥tv(xn)− vj∥ 2. (12)

To address the problem of gradient collapse caused by intro-
ducing the implicit category space, we replicate the gradient
∇zL from the decoder network to the encoder network during
the back-propagation. When training the DC-VAE, the loss
function is defined as

L = log p(xn|tq(xn)) + ∥sg[tv(xn)]− v∥22
+ λ ∥tv(xn)− sg[v]∥22 ,

(13)

where log p(xn|tq(xn)) is the reconstruction loss, aiming
to optimize the encoder and decoder networks. Since the
back-propagation gradient is directly replicated to the en-
coder network, the loss log p(t|tq(xn)) is not considered.
In ∥sg[tv(xn)]− v∥22, L2 error is used to drive vk towards
tv(xn), aiming to optimize the implicit category space.
λ ∥tv(xn)− sg[v]∥22 is to prevent the encoder output from
exceeding the scope of the implicit category space, where λ
depends on the reconstruction loss, and sg is the stop-gradient
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operator that is constant with the partial derivative of 0 during
the forward propagation.

Next, the log-likelihood function is defined as

log p(xn) ≈ log p(xn|tq(xn))p(tq(xn)). (14)

According to Jensen’s Inequality, Eq. (13) is rewritten as

log p(xn) ≥ log p(xn|tq(xn))p(tq(xn)). (15)

C. Robust Federated Deep Learning (RFDL)

There are two key components in the proposed RFDL:
residual-based detection and similarity-based federated ag-
gregation. The residual-based detection is to detect adversarial
model updates by parameter ranking. The similarity-based fed-
erated aggregation is to avoid the destruction of the globally-
shared model by adversarial updating and generates a robust
and accurate content popularity prediction model in complex
multi-edge environments.

(1) Residual-based Detection
For classic FL training, some adversarial model updates

may happen, severely affecting model robustness. To address
this issue, we design a parameter ranking matrix R̃ to detect
the adversarial updating. Typically, adversarial updates reveal
some distinctive features in the ranking domain such as
unusual mean and variance [39]. As shown in Fig. 4, we first
combine the model parameters from all edge nodes into a
matrix R ∈ Rθ×M , which is defined as

R:,m =
∂L(w(∗); dm)

∂w(∗) , (16)

where the globally-shared mode is parameterized by w(∗), and
dm indicates the local training data.

Fig. 4. The proposed residual-based detection for adversarial model updates.

Next, we arrange the elements of each column in R in
descending order, retain their sorted positions, and trans-
form them into R̃. For example, R(5.3, 6.7, 0.7, 0.4) →
R̃(2, 1, 3, 4). Specifically, the mean and variance (var) of R̃
are defined as

meanm =
1

θ

θ∑
ϑ=1

R̃ϑ,m, (17)

varm =
1

θ

∑θ

ϑ=1
(R̃ϑ,m −meanm)

2
. (18)

Following the mean and var, we can divide the normal and
adversarial model updates into two clusters through the K-
means, where the adversarial model updates can be easily
identified by the proposed residual-based detection.

Lemma 1: (Detect adversarial attacks with residual-based
detection). The residual-based detection can effectively detect
adversarial attacks by leveraging meanm and varm when the
majority of nodes are normal.

For common Byzantine attacks such as Gaussian Noise
Attack (GNA) and Sign Flipping Attack (SFA), we assume that
the parameter ranks of normal and adversarial nodes comply
with the following distributions.

B ∼ N (µ̄b, s̄
2
b), G ∼ N (µ̄a, s̄

2
a), (19)

where both B and G are θ-dimensional.
In the case of GNA, there are

µ̄b = µ̄a =
M + 1

2
, (20)

s̄2b = lim
θ→∞

1

θ

θ∑
ϑ=1

Zbϑ, s̄2a = lim
θ→∞

1

θ

θ∑
ϑ=1

Zaϑ, (21)

where Zbϑ and Zaϑ are the functions that count normal and
adversarial nodes, respectively.

When it comes to SFA, there are

µ̄b = ρ · |Eb|+ 1

2
+ (1− ρ) · M + |Eb|+ 1

2
, (22)

µ̄a = ρ · M + |Eb|+ 1

2
+ (1− ρ) · |Ea|+ 1

2
, (23)

s̄2b = ρ ·O2
[1,|Eb|] + (1− ρ) ·O2

[|Ea|+1,M ] − µ̄2
b), (24)

s̄2a = ρ ·O2
[1,|Ea|] + (1− ρ) ·O2

[|Eb|+1,M ] − µ̄2
a), (25)

where Eb and Ea indicate the sets of normal and
adversarial nodes, respectively. |Eb| and |Ea| indicate
their counts, respectively. ρ = lim

θ→∞

∑θ
ϑ=1 M(µϑ>0)/θ and

O2
[o,o′] = (1/(o′ − o+ 1))

∑o′

x=o x
2.

Proof: Details are given in Appendix A.
Therefore, by using the proposed residual-based detection

method, the edge nodes that offer normal model updates can
be filtered, denoted by Eb = {eb,1, eb,2, ..., eb,M ′}.

(2) Similarity-based Federated Aggregation
By the aforementioned residual-based detection, we can

effectively identify adversarial model updates and proactively
mitigate their impact before the FL aggregation. It is noted
that a limited number of adversarial nodes may go undetected
due to the inadequate sample size available for analysis.

To further avoid the model destruction caused by adver-
sarial model updates, we design a similarity-based federated
aggregation method. Specifically, we adopt the Canonical
Correlation Analysis (CCA) to measure the similarity between
the model updates of each edge node and the average one [40],
which determines the weights of different model updates when
performing federated aggregation. This process is described as

wr+1 =

M ′∑
m=1

|dm|
|d|
∗ κm∑

κm
∗ wr

m, (26)

where κm indicates the similarity score.
Lemma 2: (Mitigate negative impact with CCA-based fed-

erated aggregation). The CCA-based federated aggregation
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can effectively mitigate the negative impact of updates from
malicious nodes by leveraging the CCA similarity.

For each filtered node, the CCA similarity to the average
one is defined as

κm =
QTCov(V,A)W√

QTCov(V, V )Q
√
WTCov(A,A)W

, (27)

κm =

{
κm, κm ≥ 0
0, κm < 0

, (28){
CV AW − λ1CV V Q = 0,
CAV Q− λ2CAAW = 0,

(29)

where V is the parameter matrix of the globally-shared model
and A is the model parameter matrix of em. Q and W are the
eigenvectors derived from complex functions that involve the
variances between V and A.

When facing SFA, there is a negative value of κm. As for
GNA, there is a reduction in the value of κm.

Proof: Details are given in Appendix B.
By integrating the residual-based detection with similarity-

based federated aggregation, we propose a novel RFDL, whose
key steps are given in Algorithm 2.

Algorithm 2: The proposed RFDL

1 # Update in cloud data center.
2 Initialize: the FL communication round rmax and

global prediction model of content popularity w(r).
3 for round r = 1, 2, ..., rmax do
4 for em ∈ E in parallel do
5 wm

(r+1) ←edge node updates(w(r),m);
6 end
7 Construct R by Eq. (16) and convert it to R̃;
8 Calculate mean and var of R̃ by Eqs. (17) and

(18);
9 Classify model updates by the K-means;

10 Obtain Eb that provides normal model updates;
11 Generate the globally-shared model by Eq. (26)

and distribute it to edge nodes;
12 end
13 # Update in each edge node.
14 Initialize: the training epoch cmax, mini-batch B, and

learning rate η.
15 Input: the globally-shared model w(r).
16 for epoch c = 1, 2, ..., cmax do
17 for batch b ∈ B do
18 Update DC-VAE parameters:

w
(r+1)
m ← w(r) − η∇L(w(r); b);

19 end
20 end
21 Upload w

(r+1)
m to the cloud data center.

• Update in cloud data center. First, we set the total number
of FL communication round rmax and initialize the global
content popularity prediction model w(r) (Line 2). For
every FL communication round, edge nodes update their
local models in parallel (Lines 4∼6). Next, the residual-
based detection is to identify adversarial model updates

and obtain the edge nodes Eb that provide normal model
updates (Lines 7∼10). Finally, the globally-shared model
is generated by the similarity-based federated aggregation
and distributed to edge nodes (Line 11).

• Update in each edge node. First, we initialize the training
epoch cmax, mini-batch B, and learning rate η (Line 14).
With the input of the globally-shared model w(r), each
edge node starts its local training (Line 15). For every
epoch, the DC-VAE adopts the mini-batch to train and
update the local model with the Adam optimizer (Lines
17∼19). After local training, each edge node uploads its
latest local model to the cloud data center (Line 21).

D. Proactive Cache Replacement with RFDL

Based on the proposed RFDL, we design a proactive cache
replacement strategy with multi-edge collaboration. The key
steps are given in Algorithm 3. For each edge node, we
initialize the cache space cachetemp and set of user intervals H
through the multi-dimensional cache space partitioning (Line
2). While cachetemp ≥ 0, Algorithm 2 is called to predict and
sort the content popularity, and the user-interest contents will
be placed into the temporary cache library Ctemp (Line 4).
To avoid the cache redundancy caused by overlapping user-
interest contents in different intervals, we replace Ctemp by
Cs that selects cacheh most popular contents in the current
user interval hs from Ctemp (Lines 5∼7). Next, we remove
the duplicates in the cache library Cm on each edge node and
update the available cache space (Lines 8∼9). The above steps
will be repeated until the cache space is fully occupied.

Algorithm 3: The proposed RFDL-based proactive
cache replacement

1 for em ∈ E in parallel do
2 Initialize: the cache space cachetemp = cacheall

and set of user interval H .
3 while cachetemp ≥ 0 do
4 Ctemp ← Call Algorithm 2 to predict and sort

the content popularity;
5 for h = 1, 2, ..., S do
6 Cs ← Select cacheh most popular contents

in the current user interval hs from Ctemp;
7 end
8 Remove duplicates: Cm ← unique(

∑S
h=1 Cs);

9 Update the available cache space:
cachetemp = cachetemp − cacheh;

10 end
11 end

V. PERFORMANCE EVALUATION

In this section, we introduce the real-world experiment
setup and evaluate the proposed RoCoCache through extensive
comparative experiments.
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A. Experiment Setup

Real-world Testbed. We construct a real-world testbed
comprising a workstation and 20 Jetson TX2s, as shown in
Fig. 5. The workstation acts as the cloud data center, equipped
with two NVIDIA GeForce GTX 3090 GPUs, one Intel (R)
Xeon (R) CPU Silver 4208 @ 2.10GHz, and 32GB of RAM.
The Jetson TX2s act as edge nodes, each equipped with an
NVIDIA Pascal GPU with 256 CUDA capable cores, and
a CPU processor consisting of a 2-core Denver2 and a 4-
core ARM CortexA57. The workstation and Jetson TX2s are
deployed on the same network. Based on the FLASK web
framework, we built a backend to serve the communication
among the workstation and Jetson TX2s. Moreover, the above
testbed devices adopt Ubuntu 18.04 OS with CUDA v10.0 and
cuDNN v7.5.0.

Fig. 5. Real-world testbed for RoCoCache.

Datasets. As shown in Table I, three real-world datasets
are used including MovieLens 100K and 1M [41] and iQIYI
[42], which approximately consist of 100,000, 1,000,000,
and 10,000,000 request records, respectively. Specifically, the
datasets of MovieLens 100K and 1M were collected by Grou-
pLens Research. MovieLens 100K contains approximately
10,000 ratings from 943 anonymous users for 1,682 movie
items, and MovieLens 1M contains around 1,000,000 ratings
from 6,040 anonymous users for 3,883 movie items. Moreover,
the iQIYI dataset [42], published by the iQIYI website,
contains about 10,000,000 requests from 100,000 users for
1,900,000 video items. These datasets provide user serial
numbers, item indexes, timestamp labels, and user context
information. Specifically, we select the user gender, age, and
occupation as user features, and the ratings are considered as
user requests. The datasets are split into the training (70%),
validation (10%), and testing (20%) sets, respectively.

TABLE I
DESCRIPTION OF DATASET DETAILS

Dataset Quantity Users Movies/Videos
MovieLens 100K [41] 100,000 943 1,682

MovieLens 1M [41] 1,000,000 6,040 3,883

iQIYI [42] 10,000,000 100,000 1,900,000

Parameter Settings. Based on the above real-world testbed
and datasets, we simulate the scenario of multi-edge collab-
orative caching that consists of one cloud data center, 5∼20
edge nodes, and 943∼100,000 users. The cloud data center

stores the complete real-world datasets, each edge node is
equipped with a fixed size of cache space, and users are
randomly distributed in the service zone of each edge node.
We implement the RoCoCache based on Python 3.8 and
Tensorflow 2.4.0. Specifically, the hyper-parameter α in the
multi-dimensional cache space partitioning is 512 [34], the
size of the DC-VAE hidden category space K is 128, the
dimension D of the category vector vc is 16, the number of
FL communication rounds rmax is 30, the batch size in DC-
VAE is 32, the number of training epochs cmax is 300, and
the learning rate η is 0.001. According to experimental tests,
the delays of content requests by accessing local edge nodes,
collaborative edge nodes, and the cloud data center are around
[2, 4] ms, [15, 20] ms, and [18, 23] ms, respectively.

Comparison Approaches. We compare the RoCoCache
with the optimum and the following state-of-the-art methods.

• Oracle [43] foreknows all prior information of future user
requests, and thus it can obtain the optimal cache hit rate
with the limited cache space.

• Random [44] randomly selects the requested contents of
users to conduct proactive caching.

• Least Recently Used (LRU) [23] ranks the least recently
used contents according to the request time.

• Learning-based Cooperative Strategy (LECS) [26] com-
bines Temporal Convolution Network (TCN) based con-
tent popularity prediction with dynamic programming for
cooperative caching.

• Edge Cooperative Caching (ECC) [45] integrates a neural
collaborative filter for content popularity prediction and
a greedy algorithm for content delivery.

• Auto-Encoder (AE) [46] first reconstructs the input data
by using the encoder to compress hidden layers, and then
the predicted distribution of content popularity is obtained
from the output matrix.

• Variational Auto-Encoder (VAE) [15] improves the AE
and uses continuous variables in hidden layers to recon-
struct the compressed input data.

Attack Models. We evaluate the robustness of the RoCo-
Cache by using the following two attack models.

• Sign Flipping Attack (SFA) [47] generates adversarial
model updates by reversing the normal model updates,
denoted by w

(r+1)
m = −µw(r)

m , where µ > 0.
• Gaussian Noise Attack (GNA) [48] generates adversarial

model updates by adding the Gaussian random noise to
the normal model updates.

B. Experiment Results and Analysis

Comparison with State-of-the-Arts. We conduct compar-
ison experiments in terms of cache hit rate on various datasets
with different sizes of edge cache space. As shown in Fig. 6, as
the increasing size of edge cache space, the cache hit rate of all
methods shows a growing trend. Since the Oracle foreknows
the prior information of future user requests, it achieves the
theoretically-optimal results. The Random reveals the worst
performance because its caching strategy is blind. The AE and
VAE exhibit good cache hit rates since they compress high-
dimensional user requests to low-dimensional representations
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(a) Cache hit rate on MovieLens 100K.
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(b) Cache hit rate on MovieLens 1M.
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(c) Cache hit rate on iQIYI.

Fig. 6. Comparison between the RoCoCache and state-of-the-art methods on various datasets with different sizes of edge cache space.
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Fig. 7. Ablation studies for the RoCoCache.
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Fig. 8. Convergence of the RoCoCache.
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Fig. 9. Training efficiency of the RoCoCache.

and learn the potential relationships between user features and
requested contents. However, the AE suffers from the issue
of posterior collapse on iQIYI datasets due to the disparity
between the large data volumes and the assumption of a single
distribution. Consequently, the AE exhibits an extremely low
cache hit rate. By using clustering in the continuous hidden
space, the VAE owns a better ability to reconstruct input
distribution than the AE, and thus the VAE can obtain a more
accurate prediction of content popularity and higher cache
hit rate. Moreover, the growth of the ECC on cache hit rate
exhibits a diminishing trend as the edge cache space increases,
consistently performing worse than the RoCoCache. This is
because the collaborative filter employed by the ECC cannot
precisely capture the content popularity, thereby resulting in
inefficient utilization of edge cache space. The LECS employs
TCN-based content popularity prediction, exhibiting a growth
rate comparable to other popularity-driven methods. However,
when facing content popularity with similar patterns but dif-
ferent changing magnitudes, the TCN struggles to establish
clear boundaries for content caching, seriously affecting the
cache hit rate. The LRU can well react to burst and sparse
content requests but struggles to handle the changeable trend
of content popularity. Therefore, the cache performance of the
LRU is inferior to the AE, VAE, ECC, and LECS. Compared
to other methods, the RoCoCache shows higher cache hit rates
that approximate the optimum. This is because the RoCoCache

realizes the perceptual optimization of edge cache space by
multi-dimensional cache space partitioning, and meanwhile
solves the posterior collapse problem in VAE, leading to more
accurate content popularity prediction.

Ablation Studies. We conduct ablation studies on the
datasets of MovieLens 1M to evaluate the effectiveness of each
component designed in RoCoCache. As shown in Fig. 7, the
cache hit rates of all methods incline as the size of edge cache
space increases. In the case of the RoCoCache w/o DC-VAE,
the DC-VAE-based content popularity prediction is replaced
with the classic collaborative filtering. The absence of the
DC-VAE significantly hampers the ability of the RoCoCache
to capture time-series patterns, leading to the lowest cache
hit rate in all cases. For the RoCoCache w/o RFDL, the
cache hit rate is constrained by the cache performance of
a single edge node and cannot benefit from the aggregated
global model in FL. For the RoCoCache w/o collaborative
caching, although the global model is applied, the lack of
content sharing between edge nodes forces each edge node to
retrieve missing content from the cloud data center, resulting
in a lower cache hit rate. For the RoCoCache w/o space
partitioning, there is an obvious increase in cache hit rate due
to unrestricted access to neighboring edge nodes’ cache space.
Therefore, the ablation studies demonstrate the effectiveness
of the components designed in RoCoCache.

Convergence Analysis. Fig. 8 analyze the convergence of
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the RoCoCache with an increasing number of FL communica-
tion rounds on the datasets of MovieLens 1M. The experiments
are conducted with the consideration of various sizes of edge
cache space to ensure comprehensive testing. At the initial
stage, the contents are randomly selected to store in the cache
space of edge nodes, resulting in low cache hit rates. After
one round of FL communication, the RoCoCache generates
a preliminary prediction model of content popularity, and
thus the cache hit rate is rapidly enhanced. At this time, the
RoCoCache can achieve more than 80% of its optimal cache
performance under the scenarios with different sizes of edge
cache space, where the size of edge cache space determines
the growth range of cache hit rates. It is worth noting that
the RoCoCache tends to converge after only six FL commu-
nication rounds under different scenarios, demonstrating the
excellent convergence of the RoCoCache.

Training Efficiency. We evaluate the training efficiency of
the RoCoCache on the datasets of MovieLens 1M under the
scenarios with varying numbers of edge nodes. As illustrated
in Fig. 9, the per-round time of FL training decreases with
an increasing number of edge nodes. When the amount of
user content requests remains constant, more edge nodes
for collaborative caching can effectively enhance the training
efficiency of the RoCoCache. Moreover, with the increasing
number of edge nodes, the RoCoCache can better capture
diverse user preferences and improve the cache hit rate by
using multi-edge collaboration. The results verify that the
RoCoCache can adapt to various multi-edge scenarios while
achieving excellent training efficiency and cache hit rate.

Caching Efficiency. We test the caching efficiency of
different methods under the scenario with 10 edge nodes in
terms of the delay of content requests. The Uncollaborative
represents the RoCoCache without collaborative caching, and
the Distributed only caches one copy of contents on each
edge node according to the content popularity. As shown in
Table II, the delay of content requests declines as the size
of edge cache space increases. The RoCoCache exhibits the
best caching efficiency because it can handle content requests
by using different ways and accurately predicting the content
popularity. The Uncollaborative does not use collaborative
caching, and thus it needs to forward the requests of missing
contents to the remote cloud, leading to low caching efficiency.
Moreover, due to the low cache hit rate, the Distributed needs
to constantly send content requests to other edge nodes and
the remote cloud. Therefore, compared to the RoCoCache, the
other two methods result in excessive delay.

Robustness Analysis. We evaluate the robustness of the
RoCoCache from two aspects. We first test the ability of
the RoCoCache to detect adversarial model updates. Fig. 10
illustrates the performance of the residual-based detection
model when exposed to 30% and 40% of model updates
are adversarial. The separation between the adversarial model
updates (red) and the normal model updates (blue) indicates
the difference between the two update types in terms of gra-
dient mean and variance. For detecting the SFA, the growing
proportion of adversarial model updates increases the difficulty
of using residual-based detection. In this case, the RoCoCache
can still distinguish adversarial model updates. For detecting

TABLE II
DELAY (MS) COMPARISON OF CONTENT REQUESTS BETWEEN THE

RoCoCache AND OTHER METHODS

Datasets Cache size
Metohds

RoCoCache Uncollaborative Distributed

MovieLens 100K

50 19.0816 19.3212 19.7387
100 16.5272 16.7929 18.584
150 14.4693 14.8043 18.1529
200 12.7358 13.0538 18.0789

MovieLens 1M

100 19.0244 19.1439 21.7948
200 16.5192 16.7222 20.5736
300 14.581 14.7805 19.2618
400 13.002 13.2009 18.1803

iQIYI

1400 20.2359 20.3439 21.4851
1600 20.0793 20.1831 21.4117
1800 19.9279 20.0292 21.3482
2000 19.767 19.8906 21.2917

the GNA, the larger proportion of Gaussian noise seriously
affects the variance of the parameter ranking matrix, and the
separation becomes more pronounced.
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Fig. 10. Performance of residual-based detection for various attacks.

Secondly, Fig. 11 describes the robust performance of the
RoCoCache under different attacks and defenses when the
proportion of adversarial model updates is 30%. When there
is no attack, the RoCoCache achieves the ideal cache hit rate.
Under the attacks of the SFA and GNA, the RoCoCache can
still converge after around 20 FL communication rounds and
approximate the ideal result. When there is no defense, the
cache performance is severely impacted by the SFA and GNA.
Under this situation, it is evident that the adjustment of cache
policy is unlikely to significantly impove the cache hit rate.
The SFA leads to the issue of sign reversion, severely com-
promising federated aggregation and rendering the globally-
shared model invalid. Meanwhile, the cache performance is
seriously affected by the GNA under the no-defense situation.
This is because the Gaussian noise changes the weighted
mean and geometric median of the globally-shared model,
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(a) Robust performance on MovieLens 100K.
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(b) Robust performance on MovieLens 1M.
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(c) Robust performance on iQIYI.

Fig. 11. Robust performance of the RoCoCache under different attacks and defenses.

increasing the difficulty of model training. The results verify
the strong robustness of the RoCoCache, providing accurate
identification of adversarial model updates within complex
network environments and ensuring rapid model convergence.

VI. CONCLUSION

In this paper, we propose RoCoCache, a resilient collab-
orative caching framework that uniquely integrates RFDL
with proactive caching strategies. First, we design a multi-
dimensional cache space partitioning mechanism to optimize
edge cache space, providing accurate content recommenda-
tions within user interval classification. Next, we develop
a DC-VAE based content popularity prediction algorithm,
solving the posterior collapse and enhancing the prediction
accuracy. Finally, we create a training mode and proactive
cache replacement strategy with RFDL for better adaptability
and robustness in complex multi-edge environments. Using
the real-world testbed and datasets, we demonstrate that the
RoCoCache achieves a higher cache hit rate than state-of-
the-art methods and approximates the optimum. Through
ablation studies, we verify the effectiveness of the components
designed in RoCoCache for improving cache performance.
Moreover, the RoCoCache exhibits excellent training and
caching efficiency under various scenarios. Besides, the RoCo-
Cache is able to identify adversarial model updates in complex
network environments, validating its good robustness.

Regarding the contributions of the RoCoCache, it introduces
an innovative robust FL-based collaborative caching frame-
work for multi-edge systems. In RoCoCache, the FL is used
to unite multiple edge nodes to collaboratively train the pop-
ularity prediction model without uploading the content to the
remote cloud, protecting user privacy. However, a secure FL
framework still needs to be further explored since the existing
solutions exhibit non-intuitive susceptibility against malicious
attacks [22]. To this end, we design a robust and efficient FL
framework for protecting privacy and security, which opens
up the research directions of optimizing collaborative caching
with high robustness in complex multi-edge systems.

In higher security-constrained and user-centered multi-edge
scenarios, the RFDL-based cooperative caching faces some
challenges that are worth further research: (1) Privacy and
security issues in multi-edge collaborative caching are criti-
cal since the popularity-based prediction might inadvertently
expose user-sensitive information. Although FL alleviates
privacy-leakage risks to a certain extent, it still reveals the vul-
nerability in model gradients. (2) The common assumption that
edge nodes are reliable is flawed because there exist various
malicious attacks in real-world scenarios. (3) User mobility
brings huge challenges since the content might be outdated as
users move to other edge nodes, necessitating the development
of mobility-aware caching schemes. (4) Green caching has
become increasingly important, and thus it is necessary to
design energy-efficient caching strategies to reduce the carbon
footprint and operational costs in communication networks.

APPENDIX

A. Proof of Lemma 1

According to Kolmogorov’s strong law of large numbers,
the mean and variance of R̃ are formulated as

lim
M→∞

lim
θ→∞

meanm = µ̄b ·M(m ∈ Eb) + µ̄a ·M(m ∈ Ea),

(30)
lim

M→∞
lim
θ→∞

varm = s̄2b ·M(m ∈ Eb)+ s̄2a ·M(m ∈ Ea). (31)

(i) We denote Bϑ(x) and Gϑ(x) as the cumulative distri-
butions of B(·) and G(·), where bϑ(x) and gϑ(x) are their
density functions, respectively. Moreover, the expected rank of
x among all participants in the ϑth row of the model parameter
matrix R̃ is defined as

rankϑ(x) = |Eb|(1−Bϑ(x)) + |Ea|(1−Gϑ(x)) + 1. (32)

For the ϑth row, there is

µ̄b = lim
θ→∞

1

θ

θ∑
ϑ=1

Ybϑ, µ̄a = lim
θ→∞

1

θ

θ∑
ϑ=1

Yaϑ, (33)
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s̄2b = lim
θ→∞

1

θ

θ∑
ϑ=1

Zbϑ, s̄
2
a = lim

θ→∞

1

θ

θ∑
ϑ=1

Zaϑ, (34)

in which
Ybϑ =

∫ ∞

−∞
rankϑ(x)bϑ(x)dx, (35)

Yaϑ =

∫ ∞

−∞
rankϑ(x)gϑ(x)dx, (36)

Zbϑ =

∫ ∞

−∞
(rankϑ(x)− Ybϑ)

2
bϑ(x)dx, (37)

Zaϑ =

∫ ∞

−∞
(rankϑ(x)− Yaϑ)

2
gϑ(x)dx. (38)

Next, we proceed to analyze the differences in the ranking
distribution of R̃ between normal nodes and adversarial nodes
based on the derived Eqs. (33) and (34).

(ii) For GNA, it can be observed from the symmetry of the
Gaussian distribution that

lim
M→∞

Ybϑ = lim
M→∞

Yaϑ = lim
M→∞

E(R̃ϑ,m) =
M + 1

2
,

1 ≤ m ≤M, 1 ≤ ϑ ≤ θ.
(39)

Therefore, the mean of the parameter ranks according to
Eqs. (35) and (36) can be represented as

µ̄b = lim
θ→∞

1

θ

θ∑
ϑ=1

Ybϑ =
M + 1

2
, (40)

µ̄a = lim
θ→∞

1

θ

θ∑
ϑ=1

Yaϑ =
M + 1

2
. (41)

When the number of nodes M →∞, the variance of B and
G becomes clear as follows

lim
M→∞

Zbϑ = s2b,ϑ, lim
M→∞

Zaϑ = s2a,ϑ, (42)

s̄2b = lim
θ→∞

1

θ

θ∑
ϑ=1

Zbϑ, s̄
2
a = lim

θ→∞

1

θ

θ∑
ϑ=1

Zaϑ, (43)

where s̄2b and s̄2a are complex functions. s̄2b = s̄2a only if B
and G own the same distribution. In this case, the attacks of
malicious nodes become invalid. Hence, the efficacy of the
attack by SFA malicious nodes manifests solely when they
manipulate s̄2, thereby falling into the trap set by our devised
detection method.

(iii) For SFA, the values of µ̄b and µ̄a differ depending on
whether the mean ranking of ϑth row of R̃, denoted as µϑ, is
positive or negative. Specifically, when µϑ>0, there are

lim
M→∞

Ybϑ = lim
M→∞

E(R̃m,ϑ) =
|Eb|+ 1

2
, (44)

lim
M→∞

Yaϑ = lim
M→∞

E(R̃m,ϑ) =
M + |Eb|+ 1

2
. (45)

Conversely, when µϑ<0, there are

lim
M→∞

Ybϑ = lim
M→∞

E(R̃m,ϑ) =
M + |Ea|+ 1

2
, (46)

lim
M→∞

Yaϑ = lim
M→∞

E(R̃m,ϑ) =
|Ea|+ 1

2
. (47)

According to Eq. (33), there are

µ̄b = lim
M→∞

lim
θ→∞

1

θ

θ∑
ϑ=1

Ybϑ

= ρ · |Eb|+ 1

2
+ (1− ρ) · M + |Ea|+ 1

2
,

(48)

µ̄a = lim
M→∞

lim
θ→∞

1

θ

θ∑
ϑ=1

Yaϑ

= ρ · M + |Eb|+ 1

2
+ (1− ρ) · |Ea|+ 1

2
,

(49)

where ρ = lim
θ→∞

∑θ
ϑ=1 M(µϑ>0)/θ.

Moreover, the variance of B and G can be derived from

s̄2m = lim
M→∞

lim
θ→∞

1

θ

θ∑
ϑ=1

Zm,ϑ

= lim
M→∞

lim
θ→∞

1

θ

θ∑
ϑ=1

E(R̃m,ϑ − µ̄m)2

= lim
M→∞

lim
θ→∞

1

θ

θ∑
ϑ=1

(E(R̃2
m,ϑ)− 2µ̄mE(R̃m,ϑ) + µ̄2

m),

(50)
in which

lim
M→∞

E(R̃2
m,ϑ) = O2

[1,|Eb|] ·M(m ∈ Eb)

+O2
[|Eb|+1,M ] ·M(m ∈ Ea), if µϑ>0,

(51)

lim
M→∞

E(R̃2
m,ϑ) = O2

[1,|Ea|] ·M(m ∈ Ea)

+O2
[|Ea|+1,M ] ·M(m ∈ Eb), if µϑ<0,

(52)

where O2
[o,o′] =

1
o′−o+1

∑o′

x=o x
2.

µ̄2
m in Eq. (50) can be calculated by

µ̄m = E(R̃m,ϑ), (53)

µ̄m = µ̄b ·M(m ∈ Eb) + µ̄a ·M(m ∈ Ea), (54)

µ̄2
m = µ̄2

b ·M(m ∈ Eb) + µ̄2
a ·M(m ∈ Ea). (55)

Thus, Eq. (50) can be converted to

lim
M→∞

lim
θ→∞

1

θ

θ∑
ϑ=1

(E(R̃2
m,ϑ)− µ̄2

m)

= [ρ ·O2
[1,|Eb|] + (1− ρ) ·O2

[|Ea|+1,M ] − µ̄2
b)] ·M(m ∈ Eb)

+ [ρ ·O2
[1,|Ea|] + (1− ρ) ·O2

[|Eb|+1,M ] − µ̄2
a)] ·M(m ∈ Ea).

(56)
Furthermore, the variance of B and G can be extracted as

s̄2b = ρ ·O2
[1,|Eb|] + (1− ρ) ·O2

[|Ea|+1,M ] − µ̄2
b), (57)

s̄2a = ρ ·O2
[1,|Ea|] + (1− ρ) ·O2

[|Eb|+1,M ] − µ̄2
a). (58)

It can be stated that B = G and (ūb, s̄
2
b) = (ūa, s̄

2
a) only

if ρ = 1
2 and |Ea| = |Eb|. This condition implies that failed

detection occurs. Therefore, the proposed residual-based de-
tection method can promise effective detection of adversarial
attacks when the majority of nodes are normal.
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B. Proof of Lemma 2

The globally-shared model is defined as w(∗) with the
parameter matrix V and it is updated by

w(∗) =

M ′∑
m=1

|dm|
|d|

wr
m. (59)

Specifically, the parameter matrix obtained from em is
denoted as A. The CCA is used to calculate the similarity be-
tween the local models filtered by the residual-based detection
and the average one, aiming to identify linear combinations of
variables in V and A that exhibit maximum correlation. Hence,
the above similarity is defined as

κm =
Cov(V ′, A′)√

V ar(V ′)
√
V ar(A′)

, (60)

where V ′ = V Q and A′ = AW are the linear combinations
of V and A, respectively.

To make simplification, we redefine

Cov(V, V ) = CV V , Cov(V,A) = CV A,

Cov(A, V ) = CAV , Cov(A,A) = CAA.
(61)

Furthermore, according to

Cov(V ′, A′) =
1

j − 1

θ∑
j=1

(V ′
j −E(V ′

j ))
T (A′

j −E(A′
j)), (62)

where E(V ′
j ) = E(A′

j) = 0 since V ′ and A′ are centralized V
and A, Eq. (60) can be converted to

κm =
E(V ′TA′)√

E(V ′TV ′)
√
E(A′TA′)

=
V

′TA′
√
V ′TV ′

√
A′TA′

=
QTV TAW√

QTV TV Q
√
WTATAW

=
QTCV AW√

QTCV V Q
√
WTCAAW

.

(63)

Therefore, κm can be maximized by optimizing QTCV AW ,
as the terms QTCV V Q and WTCAAW can be scaled to 1.

According to the Lagrange multiplier method, there are

f(Q,W ) = QTCV AW−
λ1

2
(QTCV V Q−1)−

λ2

2
(WTCAAW−1),

(64)
∂f

∂Q
= CV AW − λ1CV V Q, (65)

∂f

∂Q
= CAV Q− λ2CAAW, (66){

CV AW − λ1CV V Q = 0,
CAV Q− λ2CAAW = 0,

(67)

{
QTCV AW − λ1Q

TCV V Q = 0,
WTCAV Q− λwW

TCAAW = 0,
(68)

λ1 = λ2 = λ. (69)

Next, Eqs. (67) and (68) can be converted to

CV AW = λCV V Q, (70)

Q =
1

λ
C−1

V V CV AW, (71)

1

λ
CAV C

−1
V V CV AW = λCAAW, (72)

C−1
AACAV C

−1
V V CV AW = λ2W, (73)

C−1
V V CV AC

−1
AACAV Q = λ2Q. (74)

It is evident that W and Q are the eigenvector sets of
C−1

AACAV C
−1
V V CV A and C−1

V V CV AC
−1
AACAV , where λ2 is the

common eigenvalue. The CCA contributes to finding the
eigenvectors with the maximum eigenvalue for calculating the
similarity in Eq. (63).

When confronted with SFA, V can be linearly transformed
into the matrix A, and there exists a non-singular matrix Ō
that satisfies A = V Ō. Hence, there is

CAA = E[(A− E(A))(A− E(A))T ],

= E[(V Ō − E(V Ō))(V Ō − E(V Ō))T ],

= E[(V − E(V )Ō((V − E(V ))Ō)T ],

= E[(V − E(V ))ŌŌT (V − E(V ))T ],

(75)

where ŌŌT = I , and thus there is

CAA = CV V . (76)

According to the property of the covariance,

CV A = CAV , (77)

and it follows

C−1
AACAV C

−1
V V CV A = C−1

V V CV AC
−1
AACAV , (78)

which leads to the same eigenvalues (λ2) and eigenvectors.
By selecting the maximum eigenvalue and the corresponding
eigenvectors (Q,W ), the maximum object in Eq. (63) becomes
CV A, which is negative when A is opposite of V , denoted by

CSFA
V A < 0. (79)

Therefore, the negative CV A leads to the negative κm.
When facing GNA, the CCA similarity is analyzed by

κm =
Cov(V,A)√

V ar(V )
√

V ar(A)
. (80)

Suppose the parameter matrix V that is tampered by GNA
is denoted as V +G, where G is the Gaussian noise matrix,
the CCA similarity can be converted to

κ′
m =

Cov(V +G,A)√
V ar(V +G)

√
V ar(A)

. (81)

Since the GNA occurs, there tends to be a larger variance,
and thus

V ar(V +G) > V ar(V ). (82)

Due to the independence of G from V , Cov(V +G,A) and
Cov(V,A) do not differ significantly, and there is

Cov(V +G,A) ≈ Cov(V,A). (83)
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Thus, the GNA induces the decrease of κm, indicated by

κm > κ′
m. (84)

Based on the above analysis, we demonstrate that the SFA
leads to the negative value of κm and the GNA causes the
reduced value of κm. Therefore, the CCA similarity can fa-
cilitate recalibrating the aggregated weights, thereby reaching
the goal of robust federated aggregation.
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