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Summary. The attraction of using state space models (SSM) is their ability to efficiently
and dynamically predict in the presence of change. In this paper we formulate a Bayesian
SSM capable of predicting the outcomes of football matches and the associated states,
which are the attacking and defensive strengths of each side and the common home goal
advantage. Our filter achieves accuracy and efficiency by exploiting conjugacy in its update
step and using exact expressions to describe the evolution of the states. The presence of
conjugacy enables us to use a mean field approximation (MFA) to update the states given
fresh observations. The method is evaluated using the full history of the English Premier
League and shown to be competitive, or superior, to weighted likelihood or score-driven
time series based methods.

1. Introduction

Association football arguably has the largest following of any game in the world. Of

all the football leagues, the English Premier League (EPL) is probably the most well-

known. Furthermore, the EPL has kept the structure of the competition intact and

fixed for over two decades. All of the data used in this paper is taken from the URL

https://football-data.co.uk/data.php. The same site has a large number of na-

tional and international leagues recorded for each season in a standard uniform format.

The structure of the relevant columns of the data for a single season is illustrated in

Table 1. The methods and code that we develop in this paper will work (with minor

adjustments) with any of the data-sets describing the history of leagues found on this

site.

In the literature there appears to be two broad classes of models for forecasting the

outcomes of football games. Firstly, there are models that describe the outcome directly

looking on the data as ordinal or multinomial. Secondly there are score based models,
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Table 1. An excerpt from a csv file of data taken from the football-data.co.uk web-
site. The columns show the Dates, the home and away teams (HomeTeam and
AwayTeam), the home and away full-time goals scored (FTHG and HTAG) and the
full-time result (FTR) where H, A and D stand for a home win, an away win and a
draw respectively.

Date HomeTeam AwayTeam FTHG FTAG FTR

1 12/9/2020 Fulham Arsenal 0 3 A

2 12/9/2020 Crystal Palace Southampton 1 0 H

3 12/9/2020 Liverpool Leeds 4 3 H

4 12/9/2020 West Ham Newcastle 0 2 A

5 13/09/2020 West Brom Leicester 0 3 A

6 13/09/2020 Tottenham Everton 0 1 A
...

...
...

...
...

...
...

376 23/05/2021 Liverpool Crystal Palace 2 0 H

377 23/05/2021 Man City Everton 5 0 H

378 23/05/2021 Sheff. United Burnley 1 0 H

379 23/05/2021 West Ham Southampton 3 0 H

380 23/05/2021 Wolves Man United 1 2 A

where the outcome of the match is predicted indirectly through the predicted scores.

See Egidi & Torelli (2020) for a discussion of the relative merits of these two approaches.

Modelling the outcome directly can be achieved by using a generalisation of the Bradley

Terry model: (Bradley & Terry, 1952). Examples include those of Rao & Kupper (1967)

and Davidson (1970). This approach has been extended to the dynamic modelling of

football by Cattelan et al. (2013).

Score based models that describe teams’ scores typically use a Poisson distribution

which is expressed in terms of an attacking strength, defensive strength, and home-

ground advantages as in Maher (1982). An example of these models using a common

home ground advantage is Dixon & Coles (1997) who use a bivariate Poisson model. In

this model the scores in only low scoring games are correlated but this can be positively or

negatively. They accommodate the possibility of dynamic prediction by implementing

a simple method which discounts past observations through use of an exponentially

weighted likelihood. Let T be the current time in days and t the day that the observation

was made then the weights, given by ωt = exp(−k(T − t)), are used to down-weight the

log-likelihood contributions of observations from the past.

Karlis & Ntzoufras (2003) describe an alternative static bivariate Poisson model with

fixed attacking and defensive strengths and with a common home ground advantage, by

assuming the presence of an unobserved number of common goals for each game assumed

to be driven by external factors not related to form. This approach can be looked on as

the sharing of an additive random effect and is able to explain only positive correlations

between scores.

Likelihood and weighted likelihood approaches have the problem that re-estimation



Bayesian dynamic football models 3

of the whole model using all observations must be carried out using an optimiser each

time new data arrives. Dynamic or state space models should not need to do this.

The Kalman filter (Kalman, 1960), for instance, is able to recursively modify sufficient

statistics which summarise the data collected up to the present time. There have been

several examples in the literature of attempts to employ SSMs to model and predict

football outcomes, see Koopman & Lit (2019) for a more comprehensive review. For

example, Crowder et al. (2002) construct a state space model with time varying abilities

by applying a Bayesian approach. Initially they used the traditional Bayesian method of

estimation using Markov Chain Monte Carlo (MCMC) but because of the computational

demands imposed they suggest using an approximation. Rue & Salvesen (2000) construct

a dynamic Poisson model where the uncertainty in the state process is explained using

Brownian motion. Koopman & Lit (2015) use the same bivariate distribution as Karlis

& Ntzoufras (2003) but employ a state-space model to describe the evolution of the

form parameters using additive Gaussian uncertainty in the state process. They model

the changing attacking and defensive strengths of each team with fixed auto-regressive

parameters and the use of Monte-Carlo methods for estimating the likelihood.

Koopman & Lit (2019) introduced a computationally simpler approach by expressing

the attacking and defensive strengths of each time as a score-driven time series/generalised

auto-regressive score model (Creal et al. , 2013). Following each round of matches, the

likelihood score (first derivative of the log-likelihood of the match result is calculated

with respect to the attacking and defensive strengths of each featured team) evaluated

at their current values, is computed and used to update the parameters. The way in

which the likelihood score affects the evolution is controlled by parameters which are es-

timated by maximizing the likelihood using the parameter values at time t−1 to predict

outcomes at time t over a training set. Koopman & Lit (2019) show that the quality of

predictions from this method were comparable to those using the method in Koopman

& Lit (2015), but at a fraction of the computational cost.

In this paper, we use an alternative parameterisation and are able to devise sequen-

tial updates expressed using closed form expressions. Following previous approaches,

we assume the number of goals scored by a team depends on their attacking strength

(ability to score goals), their opponent’s defensive strength (ability to restrict goals) and

a common home goal advantage, where we allow all of these parameters to be dynamic.

Like Karlis & Ntzoufras (2003) we can explain positive correlations between the scores of

the home and away teams, but do so by employing a multiplicative random effect rather

than an additive one. We use a state space model to update the dynamic parameters.

The state space model employs a similar measurement equation to Karlis & Ntzoufras

(2003) and Dixon & Coles (1997) and conjugate Gamma distributions for the evolving

distributions of states for the attacking, the defensive strengths and the home ground

advantage.

The main strength of our model is its tractability which is achieved by expressing

both the state and measurement equations as the products of conjugate distributions
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and by using closed form expressions for the evolution of the state process. The depen-

dence between the state variables is resolved using a mean field approximation (Jordan

et al., 1999), a type of variational Bayes (VB), where each of the states maintain Gamma

distributions. Evolution of these Gamma dynamic variables is induced through the ap-

plication of multiplicative noise through scaled beta distributions which result in simple

expressions dependent on “forgetting’ parameters. The forgetting parameters are opti-

mized over a training set and then assumed static over the test set. This results in a

highly efficient algorithm with relatively good predictive properties.

The remainder of the paper is organised as follows. In Section 2 we present a static

version of the proposed Bayesian football model. In Section 3 we describe the ingredients

of a state space model and formulate our Bayesian dynamic football model which is

illustrated through application to dynamic prediction of the last fourteen seasons of the

EPL. In Section 4 we illustrate the ability of the SSM to filter and smooth the evolving

state variables. Finally, in Section 5 we present our conclusions and suggest extensions

and further work.

2. Static models for modelling football scores.

The initial three seasons of the EPL involved 22 teams with 462 Games. Whereas, since

the 1995/1996 season it has consisted of 20 teams which play each other twice, once at

home and once away in a season consisting of 380 games or 38 rounds. A round consists

of 10 games and involves all 20 teams. After each season three teams are relegated and

three teams are promoted from the next league down, except after 1994/95 where four

were relegated and two promoted. In general let NT be the number of teams, NG be

the number of games in a season, and NR be the number of rounds of a season. Let the

games within a season, in chronological order, be labeled as t = 1, . . . ,NG.

We let i ∈ {1, 2, . . . ,NT} denote the home team at game t and j ∈ {1, 2, . . . ,NT}
denote the away team at the same game. Let xt denote the number of home goals scored

in game t and yt be the number of away goals scored in the same game.

2.1. A univariate Poisson model
The univariate Poisson model is one of the simplest of all score based models and is

described for example in Davison (2003). Despite its simplicity, we find that this model

makes surprisingly good predictions. Many of the other models including ours are gen-

eralisations of this idea. Let λH
t be the expected home side score and λA

t be the expected

away side score. Let αi be the attacking strength of the home team for game t and βj
be the defensive strength of the away team. Note that a strong defensive team has a

low value of β so we use its reciprocal, ϕ = β−1, in some of our plots to depict defensive

strength but retain β in our expressions to help simplify the notation. Note also that γ

is used to represent the common home ground advantage. The home and away scores,

Xt and Yt are modelled as conditionally independent Poisson given by
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Xt | λH
t ∼ Poisson

(
λH
t

)
, λH

t = αiβjγ,

Yt | λA
t ∼ Poisson

(
λA
t

)
, λA

t = αjβi, (2.1)

where β1 = 1 is the identifiability constraint.

2.2. Bivariate Poisson models
Potentially, the assumption of independent Poisson goals may be overly restrictive and

more general bivariate models that account for the possibility of dependence may be

necessary.

We point to two examples of bivariate models from the football literature. Dixon

& Coles (1997), assume that a non-zero correlation between goals only exists for low

scoring games where both teams score fewer than 2 goals. Karlis & Ntzoufras (2003)

describe the bivariate Poisson model which explains positive correlation by assuming the

existence of a common latent variable (not related to form) with a Poisson distribution

truncated by the minimum of the two scores.

In this section we also present a third bivariate model, theoretically capable of mod-

elling both positive correlation and over-dispersion. This bivariate model assumes the

existence of a shared Gamma multiplicative random effect, ϵt, of prior expectation one.

This can be contrasted with Karlis & Ntzoufras (2003) who use an additive random

effect. The multiplicative random effect idea was used by Arbous & Kerrich (1951) who

proposed this model in the context of modelling accidents. Our bivariate model for

football just involves a minor modification of Equations (2.1),

ϵt ∼ Gamma (κ, κ), κ > 0, t = 1, 2, . . . , NG,

Xt | λH
t , ϵt ∼ Poisson

(
ϵtλ

H
t

)
, λH

t = αiβjγ,

Yt | λt, ϵ
A
t ∼ Poisson

(
ϵtλ

A
t

)
, λA

t = αjβi, (2.2)

where β1 = 1 is the identifiability constraint. The likelihood marginalised over the

random effect from the joint is

f(xt, yt | α,β, γ, κ) =

∫
f(xt, yt, ϵt | α,β, γ, κ)p(ϵt | κ)dϵt

=
Γ(κ+ xt + yt)

Γ(κ)Γ(xt + 1)Γ(yt + 1)
P xt

t Qyt

t (1− Pt −Qt)
κ (2.3)

where Pt =
λH
t

κ+λH
t +λA

t
and Qt =

λA
t

κ+λH
t +λA

t
. This is a bivariate, negative binomial model

which is able to accommodate to some extent over-dispersion and positive correlation.

Univariate negative Binomial distributions are common for football data (Baxter &

Stevenson, 1988) or more generally count data to treat for overdispersion. The marginal

variance, covariance and correlations of the bivariate distribution can be derived by using
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standard identities.

Var(Xt) = λH
t +

(λH
t )2

κ
, Cov(Xt, Yt) =

λH
t λA

t

κ
, ρt =

λH
t λA

t√
(κλH

t + (λH
t )2)(κλA

t + (λA
t )

2)
.

(2.4)

See Appendix A for a proof.

2.3. The Bayesian sequential static model

In this subsection, we introduce a Bayesian sequential static model. We model the

attacking and defensive strengths and the home ground advantages using conjugate

Gamma priors. After each game we update each relevant dynamic parameters only once

using a close approximation to the full conditional posterior distributions. Inference can

then be carried out by manipulating the hyper-parameters. For identifiability reasons,

we set β1 = 1, so that all defensive strengths are measured relative to that of Arsenal.

The observation model for the goals scored over a particular season are for games t =

1, 2, . . . , NG is kept as Equation 2.2 and the following priors are added.

α1:NT
, γ ∼ Gamma (δ, δ),

β1 = 1, β2:NT
∼ Gamma (δ, δ), (2.5)

where δ = 10.

2.4. Sequential updating

In our static sequential Bayesian model we denote our estimates for game t = 1, 2, . . . , NG

of the attacking strengths of each club by αt = {α1,t, α2,t, . . . , αNT ,t}, the defensive

strengths by βt = {β1,t, β2,t, . . . , βNT ,t} and the common home ground advantage by

γt. We denote our estimates of the parameters at game t as θt = {αt,βt, γt}, For the

purpose of this section, we assume that these parameters are static and that it is only

our estimates of the parameters which change with time as more games are played.

After a game is completed five parameters need to be updated and some of these

parameters have strong dependencies (see Figure 1). The aim of this section is to show

how single updates to the state hyper-parameters can be used to closely approximate

the posterior distribution of each of these parameters taking advantage of the fact that

the attacking strength or defensive strengths of each team do not change dramatically

from game to game.

Let the prior and posterior distributions for the attacking strength (AS), the defensive

strength (DS), and the home goal advantage (HGA) for game t = 1, 2, . . . , NG be defined
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sequentially as

αa,t ∼ Gamma
(
p̃αa,t, q̃

α
a,t

)
, βd,t ∼ Gamma

(
p̃βd,t, q̃

β
d,t

)
, γt ∼ Gamma (p̃γt , q̃

γ
t ).

(Priors)

αa,t ∼ Gamma
(
pαa,t, q

α
a,t

)
, βd,t ∼ Gamma

(
pβd,t, q

β
d,t

)
, γt ∼ Gamma (pγt , q

γ
t ).

(Posteriors)

where a = 1, 2, . . . , NT and d = 2, . . . , NT . In the static sequential model, the priors for

each of the parameters are just the posteriors derived from the previous observation.

p̃αa,t ← pαa,t−1, q̃αa,t ← qαa,t−1,

p̃βd,t ← pβd,t−1, q̃βd,t ← qβd,t−1,

p̃γt ← pγt−1, q̃γt ← qγt−1,

pγ0 , p
α
a,0, p

β
d,0 ← δ, qγ0 , q

α
a,0, q

β
d,0 ← δ.

We let i denote the home side and j the away side. The posterior distribution of the

parameters describing a single game is given by

π(θt | x1:t,y1:t) ∝ exp− [ϵt(αi,tβj,tγt + αj,tβi,t)] × [ϵtαi,tβj,tγt]
xt × [ϵtαj,tβi,t]

yt︸ ︷︷ ︸
Sampling distribution

× α
p̃α
i,t−1

i,t exp(−q̃αi,tαi,t) α
p̃α
j,t−1

j,t exp(−q̃αj,tαj,t)︸ ︷︷ ︸
Prior Attacking Strengths

× β
p̃β
i,t−1

i,t exp(−q̃βi,tβi,t) β
p̃β
j,t−1

j,t exp(−q̃βj,tβj,t)︸ ︷︷ ︸
Prior Defensive Strengths

× γ
p̃γ
t −1

t exp(−q̃γt γt)︸ ︷︷ ︸
Prior HGA

× ϵκ−1
t exp(−κϵt),︸ ︷︷ ︸
Random effect

(2.6)

where x1:t and y1:t denote the home and away goals that have been scored up to this point

in time. The updates to the five dynamic parameters can be formulated by examining

the full conditional posterior distributions of each parameter. Because of the strong

dependencies shown in Figure 1, single closed form updates for single parameters do

not exist. However, an approximation, can be made by using the expectation of the

parameter from the last time this parameter was updated.
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The updates to the hyper-parameters are then:

pϵt ← κ+ xt + yt, qϵt ← κ+ α̂i,tβ̂j,tγ̂t + α̂j,tβ̂i,t, ϵ̂t = pϵ
t/qϵt , (R.E.)

pαi,t ← p̃αi,t + xt, qαi,t ← q̃αi,t + γ̂tβ̂j,tϵ̂t, (AS home)

pαj,t ← p̃αj,t + yt, qαj,t ← q̃αj,t + β̂i,tϵ̂t, (AS away)

pβi,t ← p̃βi,t + yt, qβi,t ← q̃βi,t + α̂j,tϵ̂t, (DS home)

pβj,t ← p̃βj,t + xt, qβj,t ← q̃βj,t + γ̂tα̂i,tϵ̂t (DS away)

pγt ← p̃γt + xt, qγt ← q̃γt + α̂i,tβ̂j,tϵ̂t. (HGA)

(2.7)

It is important that the above update for the random effect must be calculated first

and updates of the other parameters condition on this estimate: ϵt = pϵ
t/qϵt . The reason

for updating this parameter first is that this is the only hyper-parameter that changes

abruptly from observation to observation. When making the rest of updates shown in

Equations(2.7) we assume that the expectations of the others are fixed and unchanged

from the previous game. For example: α̂i,t =
pα
i,t−1

qαi,t−1
, β̂i,t =

pβ
i,t−1

qβi,t−1

and γ̂t =
pγ
t−1

qγt−1
.

This approximation is equivalent to performing the first iteration of the coordinate

ascent algorithm necessary to find the mean field approximation, a type of variational

approximation (Jordan et al., 1999). The full variational approximation is outlined in

Appendix C.

Section S1 of the Supplementary Materials gives an overview of existing static mod-

els for football, and in Section S2 the performance of the proposed Bayesian model is

compared to those methods for 20 seasons of the EPL. The univariate Poisson Bayes

model is shown to give better within-season predictions compared to the other models

when estimated using maximum likelihood. Moreover, the single step method of up-

dating given in (2.7) produces very similar estimates to those using the full variational

method. To further validate our approach in Section S3 of the Supplementary Materials

the estimates for the single step method are compared to full Gibbs sampling.
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Fig. 1. Directed acyclic graphs (DAGs) showing the dependence structure of the variables in
our football model. The top panel is a DAG showing the model before the update step and the
lower panel shows the posterior distribution after the update step, Equations (2.7), have been
carried out.
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3. Dynamic modelling of the football data.

In this section we formulate a fully dynamic model where a team’s form is allowed to

vary between and within seasons. The updates to each of the hyper-parameters are the

same as those for the static model and are given by Equations (2.7). We formulate

the problem as a state space model and introduce uncertainty to the state processes

through the introduction of forgetting factors common to all sides. We first give a

general introduction to state space models before using the state space formulation to

adapt the update steps of the static model.

3.1. State space models

State space models provide an intuitive approach toward predicting unknown and chang-

ing quantities of interest (called states) which are only indirectly observed. With our

football application the states are the changing form of each the sides and the common

home goal advantage. Bayesian state space models (SSMs) are an important tool for

a forecaster because they allow us to predict and sequentially update our beliefs about

an unknown state in real time. SSMs have two essential components: Firstly, a state

or transition equation which describes the evolution of the parameter of interest within

a Markov chain: θt ∼ π(· | θt−1, y1:t−1). Secondly, there is an observation or measure-

ment equation which expresses the observations as conditionally independent given the

current states: Yt | θt ∼ f(· | θt). The dependence structure of the SSM is illustrated in

Figure 2.

Fig. 2. Dependence structure of a SSM. The transition equation for the parameter or state
is denoted by θt ∼ π(· | θt−1, y1:t−1), and the downward vertical arrows show the conditional
sampling distribution of the observations, or the measurement equation f(yt | θt). These two
components can be used in a Bayesian filter to recursively update the evolving posterior distri-
bution of states, θt ∼ π(· | y1:t).
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3.2. The filter and smoother

A Bayesian filter is a two step recursive algorithm which updates the posterior distribu-

tion of states, as a new observation arrives, given all the data collected so far. The first

step is known as a “predict”, “evolution” or “extension” step where the next state is

predicted in the form of a prior for the next update. This is done by combining the pos-

terior distribution from the last observation with the state transition equation in what

is known as a convolution. The ability, to sequentially update the parameters using only

the last observation and then predict the ahead are important improvements that the

SSM offers over weighted likelihood models such as the model used by Dixon & Coles

(1997).

In weighted likelihood methods, the result of a match between team A and team

B can indirectly affect the estimate of a third team C. This is because the likelihood

implicitly assumes the same parameter values held through time hence team A beating

team B will alter the impact of all encounters team C had with either A and B in the

past. This is in stark contrast to the SSM where only team A and B’s abilities can be

impacted by a game between A and B.

In the extend step there is a loss of information or memory which we refer to as

“forgetting”, and we use a parameter ω ∈ (0, 1] to describe it where ω = 1 indicates that

no information is lost. The second step of the filter is the update step where the prior

distribution generated from the extend step is updated using the current observation

through an application of Bayes theorem.

Perhaps the most widely used of all filters is the Kalman filter (Kalman, 1960), which

is used for prediction and control and where both the state and observation equation

are assumed to be linear with additive Gaussian innovations. Its advantage of speed is

made possible by the derivation of tractable closed form expressions for both steps. A

Bayesian interpretation of the Kalman filter is described in Meinhold & Singpurwalla.

(1983) and extended by West et al. (1985) to a class of models known as the dynamic

generalised linear model (DGLM) or exponential family dynamic models. Uncertainty

to the posterior is induced by the addition of Gaussian noise to the state process with a

log link leading to an extension or prediction step which is an approximation.

Instead of using additive Gaussian uncertainty in the state process, we express state

uncertainty by the product of Gamma distributions with multiplicative noise provided

by the scaled beta distribution. Unlike West et al. (1985), our extension equation step is

tractable and exact. Our update step exploits conjugacy and to deal with the problem

of updating several dependent states we apply one step of the mean field approximation.

3.2.1. A simple one parameter Poisson-Gamma SSM

First we illustrate how the Poisson-Gamma SSM works with a one-dynamic parameter

example. Our football model is just a generalisation of the simple model described here.
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The extension and measurement equations are given by

Yt | θt ∼ Poisson (θt) (Measurement equation)

θt | y1:t−1, ω ∼ Gamma (ωpt−1, ωqt−1), (Extension of previous posterior)

where pt−1 and yt−1 are the hyper-parameters of the previous posterior and ω ∈ (0, 1] is

a forgetting factor which adds uncertainty to the state process. In the next section we

outline how the extension and the Bayesian update steps are implemented within our

filter through single changes to the hyper-parameters of the dynamic Gamma states.

3.2.2. The extend or predict step of the filter

The extend step involves applying a convolution of transition equation to the previous

posterior, described using the Chapman-Kolmogorov equation (Ross , 2014, Section 4.2)

given by:

π(θt | y1:t−1, ω)︸ ︷︷ ︸
New prior

=

∫
π(θt | θt−1, y1:t−1, ω)︸ ︷︷ ︸

Transition equation

π(θt−1 | y1:t−1, ω)︸ ︷︷ ︸
Old Posterior

dθt−1. (3.1)

Thus in the case of a Gamma state equation the extension is derived from the previous

posterior by multiplying each hyper-parameter by ω conserving its mean of the dynamic

parameter but increasing its variance.

θt−1 | y1:t−1 ∼ Gamma (pt−1, qt−1)︸ ︷︷ ︸
Old Posterior

−→ θt | y1:t−1 ∼ Gamma (p̃t, q̃t)︸ ︷︷ ︸
New prior

(3.2)

The updates to the hyper-parameters in the extend step are

p̃t ← ωpt−1, q̃t ← ωqt−1, (Extend step)

where the forgetting parameter lies in the range ω ∈ (0, 1].

We can prove using moment generating functions (see Appendix B) that to achieve

the desired evolution (or extension), the transition equation must involve repeated mul-

tiplication by a draw from a scaled beta distribution of mean one. This can be formally

stated as follows:

Theorem 1

Given the extensions given by Equations (3.2) there exists Zt > 0, a scaled beta distri-

bution, independent of θt, such that θt undergoes a multiplicative stochastic transition
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given by

Wt ∼ Beta (pt−1ω, pt−1(1− ω)).

Zt =
Wt

ω
,

θt = θt−1 × Zt , (Transition Equation)

(3.3)

where Wt > 0 is a random draw from the Beta distribution. The use of a scaled beta

distribution for Zt was also suggested by Gamerman et al. (2013).

3.2.3. The update step of the filter

In this step the extended prior is updated using the current observation. For the gamma

prior and the Poisson probability of the next observation the posterior becomes

π(θt | y1:t, ω) ∝ π(θt | y1:t−1, ω) f(yt | θt)

∝ θ
p̃t−1+yt−1
t exp(−θt(q̃t−1 + 1)),

θt | y1:t, ω ∼ Gamma (p̃t−1 + yt, q̃t−1 + 1).

Thus updates to the hyper-parameters are then:

=⇒ pt = p̃t−1 + yt, qt = q̃t−1 + 1. (Update step)

In this way conjugacy enables us to express the posterior distribution of the states

given the current observations through manipulation of the hyper-priors. The predictive

distribution can also be derived as

Yt | y1:t−1, ω ∼ Negative-Binomial
(
p̃t,

1
q̃t+1

)
. (3.4)

Once the observation has been made the cumulative evidence for ω is updated as

Zt(ω) = f(y2:t | y1, ω) =
t∏

t∗=2

f(yt∗ | y1:t∗−1, ω). (3.5)

The evidence can be used to evaluate the predictions and carry out model selection.

3.2.4. The backward smoothing recursion

We have shown that filter can be expressed using the forward recursion for t = 1, 2, . . . , T

θt | y1:t, ω ∼ Gamma (pt, qt),

pt = ωpt−1 + yt,

qt = ωqt−1 + 1.
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The posterior distribution, π(θt | y1:T , ω) can expressed using the following factorisation:

p (θ | yT , ω) = p (θT | yT , ω)
T−1∏
t=1

p (θt | θt+1, . . . , θt, yt, ω)

= p (θT | yT )
T−1∏
t=1

p (θt | θt+1, yt, ω) .

Gamerman et al. (2013) show that how this factorisation can be used to sample from

the posterior distribution using the filtered hyper-priors p = {p1, p2, . . . , pT } and q =

{q1, q2, . . . , qT } in the backward recursion:

θt | p,q, ω ∼ Gamma (pt, qt), t = T

∼ Gamma ((1− ω)pt, qt) + ωθt+1, t = T − 1, . . . , 1.

In section 4 we illustrate how this recursion can be used to to plot the change in the

posterior distribution of the HGA over the history of the EPL.

3.3. Evolution of the states in the Bayesian sequential football model
We now generalise the one parameter model of the previous section to create a filter for

a multi-parameter model needed to describe changes to the state variable that describe

the history of scores in a football league. In Section 2.4 we have shown how the update

component of the filter can be carried out for such a model. The evolution step of

our Bayesian SSM resembles that of the previous section but now we need to use several

forgetting factors differentiating between the type of state and between the within season

and between season forgetting.

3.3.1. Variation within seasons

In this section we modify the model of Section 2.3 to incorporate forgetting or the

evolution of the states.

(
Xt

Yt

)
∼ Poisson

(
ϵtαi,tβj,tγt,

ϵtαj,tβi,t

)
, (Observation Equation)

αs
R ∼

1

ω
αs

R−1Beta
(
ωpα

R−1, (1− ω)pα
R−1

)
, (Transition equation AS)

βs
R ∼

1

ω
βs
R−1Beta

(
ωpβ

R−1, (1− ω)pβ
R−1

)
, (Transition equation DS)

γt ∼
1

ωh
γt−1Beta

(
ωhp

γ
t−1, (1− ωh)p

γ
t−1

)
, (Transition equation HGA)

ϵt ∼ Gamma (κ, κ), (Random Effect)

(3.6)
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where t = 1, 2, . . . , NG is the game number and R is the round. The attacking strengths,

αs
1 and defensive strengths βs

1 for season, s, for the surviving sides are related to the

last round of the previous season. From the above prior state equations we can derive

an extend step in the same manner as in Section 3.2.2 in order to add uncertainty to

the previous posterior. In this way, the extended posterior becomes the prior for the

new observation. This is achieved by manipulating the hyper-priors of the dynamic

parameters:

αR ∼ Gamma (p̃α
R, q̃

α
R), p̃α

R = ωpα
R−1, q̃α

R = ωqα
R−1, (AS)

βR ∼ Gamma
(
p̃β
R, q̃

β
R

)
, p̃β

R = ωpβ
R−1, q̃β

R = ωqβ
R−1, (DS)

γt ∼ Gamma (p̃γt , q̃
γ
t ), p̃γt = ωhp

γ
t−1, q̃γt = ωhq

γ
t−1. (Home advantage)

(3.7)

We construct an online model on the fourteen most recent seasons using the estimates

obtained from the first 18 seasons of the EPL. These parameters are estimated in Section

3.3.3. In exploratory analysis we find that the within-season forgetting parameter varies

between seasons leading us to believe that some seasons are more volatile than others. In

addition there is also a possibility that the forgetting factor which expresses the volatility

of the season also changes within the season.

3.3.2. Variation between seasons

To explain the dependence on the previous season we need to introduce several new

(nuisance) parameters. Each season, for the surviving teams, we use a between season

forgetting factor ωb to describe the increase in uncertainty caused by the break between

the seasons. We also assume that there is forgetting, both within the season and between

the season in the influence of the HGA. For each of the three newly promoted sides we

need four hyper-parameters, two to describe their initial attacking strengths (pα and qα)

and two to describe their initial defensive strengths (pβ) and qβ). Exploratory analysis

has indicated that the performance of a newly promoted side does not have a strong

dependence on the promoted side’s history in the lower EFL Championship league.

αs
1 ∼ Gamma

(
p̃α,s
1 , q̃α,s−1

1

)
, p̃α,s

1 = ωbp
α,s−1
NR

, p̃α,s
0 = ωbp

α,s
NR

, (Surviving teams)

= pα, = qα, (Promoted sides)

βs
R ∼ Gamma

(
p̃β,s
R , q̃β,s

R

)
, p̃β,s

1 = ωbp
β,s−1
NR

, q̃β,s
1 = ωbq

β,s−1
NR

, (Surviving teams)

= pβ, = qβ, (Promoted teams)

γs1 ∼ Gamma (p̃γ,st , q̃γ,s1 ), p̃γ,s1 = ωhbp
γ,s−1
NG

, q̃γ,s1 = ωhbq
γ,s−1.
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3.3.3. Offline estimation of nuisance parameters for the standard model

We use the first 18 seasons to estimate the following nuisance parameters so that online

inference is possible for the seasons:

(a) The within season forgetting factor, assumed fixed over all seasons: ω.

(b) The common between season forgetting factor for the surviving teams: ωb.

(c) The within season forgetting factor for the home ground advantage: ωh.

(d) The between season forgetting factor for the home ground advantage: ωhb.

(e) The correlation and over-dispersion parameter: κ.

(f) The hyper-priors for the initial attacking and defensive strengths over the three

newly promoted sides pα, qα, pβ, qβ where the initial attacking strength is given

by α ∼ Gamma (pα, qα) and the initial defensive strength is described by β ∼
Gamma

(
pβ, qβ

)
.

We find the value of plausible values for these parameters by maximising the out-of-

sample multinomial log-likelihood discussed in Section 3.4 for the first 18 seasons of

the EPL. This calculation of the nuisance parameter on the training set took about 20

minutes on a desktop PC. The values of these parameters in Table 2 were used to test

the accuracy of our predictions. We found that it was not necessary to re-impose the

identifiability constraint of β1 = 1 after the first season, and dropping the constraint

produced better predictions.

3.4. Evaluation of out-of-sample predictive performance
Scoring methods are an established way of evaluating probabilistic predictions. The

theory has its origin in meteorology (Brier, 1950). We use them to quantify the ability

of our model to make out-of-sample predictions of the outcome of the next game. If we

wished to predict the match score rather than the outcome we would have used a score

of − log(f(xt, yt | α,β, γ, κ)) given by Equation (2.3). We now outline three scoring

methods for measuring the accuracy of predictions of outcomes within the seasons using

data only from that season. Let Pt = [P1,t, P2,t, P3,t]
T denote the estimated probability

of the three possible outcomes which are denoted by a row of the matrix below

Zt ∈

(1, 0, 0), HW

(0, 1, 0), DR

(0, 0, 1), AW

 .

We compute the Brier Score (BS), (Brier, 1950), the out-of-sample multinomial log-

likelihood or log-score (LS) and the ranked probability score (RPS), (Murphy, 1970).

The only score that takes into account the ordering of the outcomes is the RPS and the

only one that is local (in the sense that it takes the probability of an event into account)
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is the log score (LS). A low score from any of these statistics indicates a model that

predicts the outcome well. Our experience is that in the case of football these scoring

methods show a high degree of agreement for this application.

BS =
1

n

n∑
t=1

3∑
j=1

(zj,t − Pj,t)
2

LS = − 1

n

n∑
t=1

3∑
j=1

zj,t log(Pj,t) (3.8)

RPS =
1

2n

n∑
t=1

2∑
k=1

 k∑
j=1

(zj,t − Pj,t)

2

(3.9)

In this section we compare the predictions of the proposed state space models, the

dynamic score-driven time series model of Koopman & Lit (2019) and different models

using weighted likelihood.. For the weighted likelihood models we estimate the decay

parameter of the weights by finding the value that minimizes the RPS of predictions

for the univariate Poisson model over the seasons 1996/97 to 2009/10, inclusive. This

resulted in a decay constant of k = .001824 corresponding to a half-life of 380 days.

Details of our implementation of Koopman & Lit (2019) are given in Section S4 of

the Supplementary Materials.

With the Bayesian models we did not retain the data from the relegated sides to be

used again when they are promoted again whereas in the weighted likelihood models

we did. The offline estimates of the nuisance parameters for the bivariate Bayesian

sequential model are given in Table 2.

We compare six weighted likelihood methods (where the predictions are recalculated

for every round for every season apart from the first 5 rounds) with a score driven model,

and three versions of our Bayesian state space models. We calculate the cumulative RPS

(relative to the predictions implied by the bookmakers’ average odds) which are given

the following abbreviations as

UP : Weighted univariate Poisson model (Section 2.1).

BNB : Weighted bivariate negative binomial model (Section 2.2).

DC : Weighted model of Dixon & Coles (1997).

BP : Weighted bivariate Poisson (Karlis & Ntzoufras, 2003).

DAV.HGA : Weighted Davidson model including HGA (Davidson, 1970).

RK.HGA : Weighted Rao Kupper model including HGA (Rao & Kupper, 1967).

KL : The Koopman and Lit dynamic model (Koopman & Lit, 2019).
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Table 2. The maximum likelihood estimates (MLE) of the nuisance parame-
ters of the three Bayesian models displayed at the end of Section 3.4 made
by maximising the log-score of Equation (3.8) using the training set of the first
18 seasons of the EPL. To speed up the training of the bivariate models we
reused the estimates of the last 4 parameters obtained from the univariate
model and treated these as fixed.

ωh ω ωb ωhb κ pα qα pβ qβ

Bayes.UV.VB SSM .999 .988 .770 .865 19.3 23.9 30.0 26.4

Bayes.BV.Ax SSM .999 .985 .795 .860 6.783 19.3 23.9 30.0 26.4

Bayes.BV.VB SSM .999 .987 .737 .911 6.323 19.3 23.9 30.0 26.4

Bayes.BV.VB : The dynamic bivariate variational Bayes model.

Bayes.UV.VB : The dynamic univariate variational Bayes model.

Bayes.BV.Ax : Approximation using one step of the dynamic bivariate variational Bayes model.

Fig. 3. A comparison of the cumulative RPS measure of the prediction accuracy (relative to
those obtained using the the odds offered by the bookmakers) of three dynamic models, a
score driven model and six others that use a weighted likelihood (where the predictions are
recalculated for every round for every season apart from the first 5 rounds.) The training set
were the 1992/93 to 2009/10 seasons and the test set 2010/11 to 2023/24.
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Table 3. The cumulative RPS
scores of the models displayed at
the end of Section 3.4 relative to the
bookmakers odds over the test set;
2010/11 to 2023/24. The dashed
horizontal lines separate the meth-
ods into groups of similar accuracy
of predictions. In the third group,
the weighted likelihood score based
models, gave barely distinguishable
differences.

Method Cumulative RPS

Bayes.BV.VB 17.55

Bayes.UV.VB 18.64

Bayes.BV.Ax 19.16

KL 20.71

UP 22.06

BNB 22.12

DC 22.22

BP 22.24

RK.HGA 28.96

DAV.HGA 29.23

Figure 3 shows a comparison of the online predictions measured by RPS over multiple

seasons. Over the 14 year test set none of the models outperformed the predictions made

by using the bookmakers odds so all of our RPS scores were calculated relative to the

match probabilities implied by the bookmakers’ average odds. The final cumulative RPS

scores over the test set are shown in Table 3. The raw RPS scores to 5 decimal places for

the each season from the test set are shown in Table S1 of the Supplementary Materials.

The scores fall into roughly four groups of similar strength of predictions The three

Bayesian SSMs appear to be the best predictors followed by the score-driven time series

method of Koopman & Lit (2019) which gave the next best predictions. We note that

this model did particularly poorly in the 2020/21 season, which appears to be due to

the method’s assumption of a fixed HGA. Restrictions due to Covid-19 led to matches

being played without fans in attendance which led to HGA falling dramatically (See

Figure 6). The third group are the four weighted likelihood methods based on the

scores of the matches and gave almost identical predictions. The last group are the

weighted likelihood outcome based models which gave the least favourable predictions

of all, These consisted of the models of Davidson (1970), generalised to include a HGA,

and the similar model based on Rao & Kupper (1967), Each of the weighted models

took a substantial amount of computational time to train because each time a round of

games was observed the numerical optimiser had to be run to convergence at each round
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on an expanded data-set. None of the Bayesian methods nor the model of Koopman &

Lit (2019) need to do this and are consequently a lot more efficient.

A further approach used the assess the predictive ability of a football model is to

consider long term predictions of the final league positions. In Section S6 of the Sup-

plementary Materials this is implemented for the one step approximation method using

the 2016-17 season.

3.4.1. Calibration of model

We examine the ratio of predicted and observed outcomes over the games that have been

played over the history of the EPL. Table 4 shows that the model slightly under-predicts

the number of home wins in the test set (≈-3%) and over-predicts the number of draws

(≈8%). In the training set there is also some mis-calibration, but to a much smaller

degree.

Table 4. Ratio of predicted outcomes by season (home
losses, draws and home wins) divided by the total of the actual
outcomes of the games of the same season.

Season Outcome.ploss Outcome.pdr Outcome.pwin

Mean.train 1.0426 1.0195 0.9748

Mean.test 0.9716 1.0832 0.9931
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3.5. Residual diagnostics of the standard Bayesian models
Two components of the diagnostics: prediction and calibration, have been discussed in

Sections 3.4. We now carry out diagnostic tests to identify any possible deficiencies in

the proposed model in Section 3.3. The first problem is the existence of extra-Poisson-

variation evident in the occurrence of matches where a team scores a large number of

goals. Over-dispersion can be brought on by games where there is a mismatch of abilities.

Lopsided scores can occur, for instance, when one of the sides has been reduced to 10

men after a red card has been issued (Titman et al., 2015). The second problem is that

of dependence between the scores which can be explored by examining the correlations

between the residuals on the univariate model. In order to resolve these problems we

define various types of residuals for both the univariate and bivariate sequential models.

The only difference between these SSMs is in the measurement equations which are

Equations (2.1) for the univariate model and Equations (2.2) for the bivariate model.

3.5.1. Residuals from the univariate model

The standardised Pearson residuals for this model needed for checking the model can be

expressed as

RU
t =

(
xt − λH

t√
λH
t

,
yt − λA

t√
λA
t

)T

. (3.10)

A residual designed to identify runaway or lopsided scores can be made by using the

concept of a predictive p-value (ppv)(Gelman, 2013). We do this by calculating the

probability that the absolute difference in scores would exceed the actual difference,

using the Skellam distribution (Skellam, 1946), which are constructed from conditionally

independent Poisson distributions given the predicted scores for the home and away side:

ppvt = P{|Xt − Yt| > |xt − yt| | λH
t , λA

t }.

Because the ppvs are often very small we re-express the them in terms of surprise in the

difference of scores which we define as

RS
t = − log(ppvt). (3.11)

3.5.2. Residuals from the bivariate model

The residuals for the bivariate model can be expressed as

RB
t =

 xt − λH
t√

λH
t + (λH

t )2

κ

,
yt − λA

t√
λA
t + (λA

t )2

κ

T

. (3.12)
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Yet another residual of the bivariate model, suitable for ordering the outliers can be

defined as

RC
t =

[
xt − λH

t

yt − λA
t

]T [
λH
t + (λH

t )2

κ
λH
t λA

t

κ
λH
t λA

t

κ λA
t + (λA

t )2

κ

]−1 [
xt − λH

t

yt − λA
t

]
, (3.13)

where the RC
t should have an approximate χ2

2 distribution if the model is correctly

specified.

3.5.3. Comparisons between the univariate and bivariate models

In this section we illustrate improvements in the problem of overdispersion can be made

when using the bivariate model (Equation 3.12) rather than the univariate model (Equa-

tion 3.10). These improvements in the residuals for the 2024 season are displayed as

arrows in Figure 5 and are ordered by their combined residual of Equation (3.13). The

same ordering of the 20 most outlying scores and the corresponding details of the teams,

dates and scores are shown in Table 4. This table compares the out of sample residu-

als from the sequential univariate model relative to those from the sequential bivariate

model. The order of size of the residuals using Equation (3.13) are also shown in table

5 together with the residuals formulated in Section 2.2.

3.5.4. Variation of correlation and overdispersion season by season

The residual plots in Figure 5 illustrate the two problems with the univariate Poisson

model. The lower panel shows that the correlation of the standardised residuals with an

average of about ρ ≈ .05. These correlations are almost always positive. The 2019/20

season stands out because in that case there was a substantial negative correlation. The

upper panel illustrates the problem of over-dispersion. It depicts counts of the number

of outlying scores where the standardised residuals were greater than 3. We refer to

these scores as outliers which potentially have too much influence on the estimates for

the model. There are an average of around 5 outlying observations per season. (If the

standardised residuals did have the standard normal we would expect only two games

from 380 games to have over dispersed observations.)
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Table 5. The table compares the out of sample residuals after running the sequential univariate
and bivariate models RU

t are the home and away univariate residuals calculated using Equations
(3.10). RS

t , an indicator of lopsided or runaway scores, is the surprise at the difference of scores
given the teams abilities calculated using Equation (3.11). The columns headed RB

t are the home
and away bivariate residuals calculated using Equation (3.12). The observations are ordered by a
bivariate combined residual, RC

t , which is calculated using Equation (3.13).
Date Home Away HG AG RU

t RB
t RC

t RS
t

1 2023-09-24 Sheffield Utd Newcastle 0 8 -1.013 5.366 -.866 4.196 29.445 9.646

2 2023-09-30 Aston Villa Brighton 6 1 3.577 -.238 3.243 -.283 18.748 6.263

3 2023-11-12 Chelsea Manchester City 4 4 2.969 1.810 2.827 1.380 17.381 1.470

4 2024-02-03 Newcastle Luton 4 4 1.136 3.122 .818 3.038 17.073 1.117

5 2024-04-15 Chelsea Everton 6 0 2.927 -.931 2.709 -.890 15.555 6.247

6 2023-12-27 Brentford Wolves 1 4 -.461 3.363 -.443 3.070 15.537 4.116

7 2024-02-11 West Ham Arsenal 0 6 -1.146 3.269 -1.030 2.644 15.333 5.792

8 2024-02-04 Chelsea Wolves 2 4 .189 3.443 .163 2.902 14.791 2.895

9 2024-05-19 Crystal Palace Aston Villa 5 0 3.021 -1.179 2.607 -1.064 14.156 6.828

10 2024-02-01 Wolves Manchester Utd 3 4 1.779 2.477 1.455 2.225 13.995 .940

11 2023-12-02 Burnley Sheffield Utd 5 0 2.718 -1.083 2.599 -.961 13.990 6.082

12 2024-04-21 Crystal Palace West Ham 5 2 2.968 .674 2.560 .564 13.980 3.759

13 2024-04-20 Luton Brentford 1 5 -.440 2.670 -.362 2.432 12.473 3.617

14 2023-12-10 Fulham West Ham 5 0 2.639 -1.143 2.300 -1.034 12.271 6.038

15 2023-12-03 Liverpool Fulham 4 3 .900 2.573 .719 2.376 12.266 .789

16 2023-08-12 Newcastle Aston Villa 5 1 2.812 -.042 2.379 -.040 12.214 4.714

17 2023-12-05 Luton Arsenal 3 4 2.183 1.358 2.159 1.010 11.986 1.015

18 2023-11-06 Tottenham Chelsea 1 4 -.544 2.694 -.543 2.481 11.866 3.516

19 2023-12-06 Fulham Nott’ham Forest 5 0 2.480 -.990 2.208 -.916 11.619 5.487

20 2024-01-30 Luton Brighton 4 0 2.428 -1.283 2.302 -1.152 11.364 5.961
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Fig. 4. The diagram shows the improvement in standardised residuals of the sequential bivariate
model relative to those of the sequential univariate model. The dots represent the univariate
residuals calculated using Equation (3.10) and the tips of the arrows show the bivariate residuals
calculated using Equations (3.12). The numbers (next to the point) shows the ordering of the
size of the residuals calculated using Equation (3.13).

Our bivariate model allows for both for a degree of overdispersion and positive cor-

relation between the home and away scores. The magnitude of these effects is governed

by the parameter, κ, which we assume as constant over all seasons and estimated over

the training set using variational Bayes as κ̂ = 6.232. Figure 5 sheds some light on

that assumption. A rule of thumb that can be deduced from this the overdispersion of

the univariate model where PVCS < .05 when the variance of the univariate residuals

V ARU > 1.1. For these season the variance of the bivariate model V ARB ≈ 1 and the

overdispersion problem is reduced appropriately.

The table displays some of the diagnostics from bivariate SSM model using the MLE

parameters obtained from the variational Bayes method from Table 2. The columns

NOUTU andNOUTB shows the number of outlying scores in the univariate and bivariate

models where the standardised residuals (calculated using Equations (3.10) and (3.12))
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Fig. 5. Panels A, C and E show the problems of overdispersion in the univariate model. Panel F
shows the correlation between the univariate residuals. Panels B and D show that the problem of
overdispersion has been reduced in the bivariate model. The correlation between the residuals
of the bivariate model is unchanged from Panel F. The horizontal dashed lines in panels A, B
and F are averages taken over all seasons. The horizontal line in Panel E is the level above
which the Chi-squared statistic for extra-Poisson dispersion is significant at the 0.05 level.
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were greater than 3. The variance of the standardised residuals of the univariate model

is shown under the column name V ARU and the p-values of a Chi-squared statistic for

extra-Poisson dispersion is shown as PVCS . The column V ARB shows the variance of

the bivariate residuals derived from Equation (3.12) and CORU shows the correlation

of the home and away univariate residuals.

4. The evolution of the teams abilities and HGA

A strength of a Bayesian SSM is its ability to efficiently filter and smooth the states of the

model. In our case the states are the defensive and attacking strength of each side and

the home goal advantage (with measures of their uncertainty) both within and between

seasons. See Figures 7 and Figure 8 for examples. A backward recursion can then be

applied to these filtered states and the posterior distribution of the states can be sampled

from using the method of Gamerman et al. (2013) and summarised in Section 3.2.4. The

bottom panel of Figure 6 illustrates how this backward smoothing recursion can be used

to trace the changing posterior distribution of the HGA. The data based estimates of the

HGA and the filtered HGAs are shown in the top two panels for comparison. The data

based estimate is just the ratio of the average number of goals scored at home over the

average number of goals scored away. In particular, notice the drop in home advantage

over the 2020/21 season which was a season mostly played without crowds. From Figure

3 it can be observed that the rate of increase in cumulative RPS in 2021 and 2022 was

smaller for the methods that accommodated a changing HGA compared to the method

of Koopman & Lit (2019).
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Fig. 6. The top panel shows data-based estimate of the HGA (top panel) by calculating the
difference between the home and away goal average for each season. The middle panel show
the 75 % quantiles of the filtered model-based home ground advantage. The last panel shows
a smoothed 75% credible interval to represent the posterior distribution of the HGA using the
method of Gamerman et al. (2013) explained in Section 3.2.4.
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Fig. 7. 75% credible intervals showing the the filtered attacking strengths (solid line) and defen-
sive strengths(dashed lines) of all teams in the 2023-4 season of the EPL.

Fig. 8. 75% credible intervals showing the the filtered attacking strengths (Solid line) and the
defensive strengths(Dashed lines) of the top clubs over the last 22 years of the EPL.
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5. Conclusion

In this paper, we model the outcome of a football game using a Bayesian SSM and

update and predict using a Bayesian filter. The choice of a SSM and prediction from it

using a filter should be an attractive one for a sports modeller particularly because their

primary purpose is usually to predict ahead in the presence of the inevitable changes that

occur within and between seasons. Every time the result of a game has been observed,

the relevant dynamic parameters for the model are updated using only that observation.

Unlike the likelihood or a weighted likelihood approach the rest of the data does not need

to be reprocessed each time the dataset is enlarged. If these steps can be accurately and

economically carried out then a SSM should always out-perform a weighted likelihood

model in terms of accuracy and economy of prediction.

The Kalman filter (Kalman, 1960) is a method of predicting and controlling for a

particular type of SSM model when the measurement and state models are both linear

and use Gaussian distributions for state and measurement noise, each with known and

unchanging variances. The two steps of the Kalman filter can be expressed using closed

formed expressions and their calculation is almost immediate. Glickman & Stern (1998)

adapt the Kalman filter to create a Bayesian SSM to predict outcomes in the American

National Football League and use Gibbs’ sampling (Gelfand & Smith, 1990) to sample

from the parameters of their expanded model.

Adopting a bivariate negative binomial, rather than independent Poisson, model gave

slightly better predictions on the basis of RPS. Interestingly, for the weighted likelihood

methods there was virtually no difference between the two models and the maximum

weighted likelihood estimate of κ was much higher than that estimated for the Bayesian

SSM. One possible explanation for this discrepancy is that in the former case, κ was

directly chosen to minimize RPS. Whereas in the latter, only k (the parameter to deter-

mine the exponential weights) was optimized with respect to out-of-sample RPS, while

the model parameters including κ were fitted using the likelihood of the exact match

scores. Choosing a lower κ may improve RPS by shrinking the estimated probabilities

of home or away wins away from 1 in cases where the match is expected to be one-sided.

This may indirectly account for the uncertainty in the estimated model parameters.

Our method has similarities to that of Koopman & Lit (2019) in being a dynamic

model with computationally tractable updates. In the EPL example, our method out-

performs theirs but this appears to be mainly due to their assumption of a static home

ground advantage, and it would be relatively straightforward to relax that assumption

within their framework. Nevertheless, our approach differs in retaining the structure

of a full state-space model which means that, in addition to forecasting future match

outcomes, credible intervals can also be calculated for dynamic parameters such as a

team’s ability at a given point in time t, either based only on data up to time t (the

filter) or using all data to some end time T > t (the smooth).

A problem with sequential football models that use the attacking and defensive

strengths to model the score is the high degree of dependence between these quanti-
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ties. Given a score, the attacking strengths of the home side cannot be updated without

first considering the defensive strengths of the opposing sides and the magnitude of the

HGA. Furthermore, the joint update for these dependent parameters does not have a

closed form expression. A traditional Bayesian approach to updating is to use MCMC

simulations from the full conditional posteriors of each variable until convergence is

reached. However, this would also induce a significant and an unacceptable computa-

tional load to our algorithm. Instead we use the mean field approximation (Jordan et al.,

1999) which avoids the need for simulation. Moreover, we make a further approximation

which avoids the need for convergence by making just one step single updates of the MFA

by exploiting the fact the dynamic variables, form and HGA, are not going to change

radically from previous games. Effectively this means when updating one variable we

use the prior expectations of the other variables to condition on.

A computationally-efficient state-space model is achieved by representing the states

via multiplicative Gamma distributions exploiting conjugacy, by assuming an extend step

that produces a simple ‘forgetting’ structure and by assuming a mean field approximation

for the form of the posterior distribution. Each of these steps potentially limits the

general applicability of our approach to some degree.

The use of multiplicative Gamma distributions on the mean response is not qualita-

tively different from the more standard approach of using additive normal distributions

with respect to the log-mean response as adopted by Koopman & Lit (2015), partic-

ularly once the parameters are reasonably large. However, while binary or categorical

covariates, such as home ground advantage, can be included in the model the approach

is not readily extendable to continuous covariates.

In order to achieve the simple ‘forgetting’ extend step, it is necessary for the multi-

plicative error in the transition process to be partially dependent on the observed data

rather than independent. Specifically, the scaled beta distribution used in Appendix A

depends on the current shape parameter, pt, of the respective Gamma distribution, which

depends on the number of previous goals observed. Effectively, this means the variability

in the transition process decreases with more data. However, since pt = ωpt−1 + Xt,

where ω is the forgetting parameter and Xt is the relevant goal variable, then assuming

the Xt are generated from a stationary process such that limt−>∞ t−1
∑t

i=1Xi = µ∗,

pt → µ∗/(1− ω) as t→∞. Hence the transition process is approximately independent

of the data observed once a reasonable amount of data has been collected.

The mean field approximation was shown to match the marginal distributions of the

parameters obtained through full Gibbs sampling, and the method gave good predictions

of match outcomes. However, inference on the joint posterior distribution of parameters

will not tend to be accurate since the assumption of posterior independence will not

necessarily hold.
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Appendix A. The bivariate negative binomial model.

Conditional on the shared random effect, ϵt, the teams’ scores Xt and Yt are indepen-

dent Poisson with rates ϵtλ
H
t and ϵtλ

A
t . As a consequence, the (marginal) match outcome

probabilities can be computed by numerically integrating the conditional match proba-

bilities (implied by the Skellam distribution) over the Gamma distribution of ϵt.

The marginal variance, covariance and correlations of the bivariate negative binomial

distribution are given by

Var(Xt) = E
[
Var

[
Xt | λH

t , ϵt
]]

+Var
[
E
[
Xt | λH

t , ϵt
]]

= E
[
ϵtλ

H
t

]
+Var

[
ϵtλ

H
t

]
= λH

t +
(λH

t )2

κ
.

Cov(Xt, Yt) = E
[
Cov[Xt, Yt | λH

t , λA
t , ϵt]

]
+Cov

[
E [Xt, Yt | λH

t , λA
t ϵt]

]
= E

[
Cov[Xt, Yt | λH

t , λA
t , ϵt]

]
+Cov

[
E [Xt | λH

t , ϵt], E[Yt | λA
t , ϵt]

]
= 0 + Cov[ϵtλ

H
t , ϵtλ

A
t ]

= λH
t λA

t Var ϵt

=
λH
t λA

t

κ
.

Cor(Xt, Yt) =
Cov(Xt, Yt)√
Var(Yt)Var(Xt)

=
λH
t λA

t√
(κλH

t + (λH
t )2)(κλA

t + (λA
t )

2))
.
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Appendix B. Derivation of the transition equation

THEOREM 1

If the posterior of the previous observation and its extended posterior are defined by

λt−1 ∼ Gamma (p, q) (Previous posterior)

λt ∼ Gamma (pω, qω) (Extension)

for p, q > 0 and 0 < ω ≤ 1. Then ∃ Zt > 0 independent of λt such that λ undergoes a

multiplicative stochastic transition process given by

λt = λt−1 × Zt, Zt > 0, (5.1)

where Zt =
Wt

ω and Wt ∼ Beta (pω, p(1− ω)).

PROOF

From Equation (5.1)

log(λt) = log(λt−1) + log(Zt)

=⇒ M log λt
(u) = M log λt−1

(u) M logZt
(u),

where M V (u) = E [eV u] denotes the moment generating function of V. We now derive

the moment generating function of the distribution of log(λt−1). Let x ∼ Gamma (p, q)

then

M log x(u) = E(eu log x) = E(xu)

=
Γ(p+ u)

Γ(p)qu

M logZt
(u) =

M log λt
(u)

M log λt−1
(u)

=
Γ(pω + u) Γ(p)

Γ(pω) Γ(p+ u) ωu
.

Next we show that this is the MGF of a scaled beta distribution. We let W ∼ Beta (α, β)

and let V = logW

E (eu logW ) = E (W u)

=
B(a+ u, b)

B(a, b)
.

Setting T = V + k for some constant k, gives

M T (u) = M v(u)e
ku

=
B(a+ u, b)eku

B(a, b)
.
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Setting a = pω, a+ b = p, and k = log(ω) gives

M T (u) =
B(pω + u, p(1− ω))

B(pω, p(1− ω))B(a, b)ωu

=
Γ(pω + u)Γ(p)

Γ(p+ u)Γ(pω)ωu

= M logZt
(u).

Hence eT = W
ω where W ∼ Beta (pω, p(1− ω)), as required.

Appendix C. Variational Bayes approximation

In this section we show that the proposed updates in Section 2.4 is approximately the

same as making a mean-field variational approximation to the joint distribution at each

update.

Let Xt and Yt represent the home and away goals scored in a given match. In

addition, let θt = (αH
t , αA

t , β
H
t , βA

t , γt, ϵt) represent the relevant parameters governing

(Xt, Yt). We can further note that R1 = {1, 4, 5, 6} and R2 = {2, 3, 6} give the set of

indices of parameters relevant to the conditional distributions of Xt and Yt, respectively.

A mean field variational approximation assumes that the joint distribution of the

parameters and the observed data can be approximated by the product of individual

densities. We wish to obtain an approximation of f(θt, Xt, Yt) of the form Q(θt) =∏6
j=1Qj(θtj) whereQj(.) is the pdf of a Gamma distribution and θtj is the jth component

of θt. Gamma parameters are therefore sought which minimize the Kullback-Leibler

divergence between f(θt, Xt, Yt) and Q(θt). In general the optimal functions satisfy the

relationship

logQj(θtj) = Ei ̸=j [log f(θt, Xt, Yt)] + const. (5.2)

where Ei ̸=j denotes expectation with respect to all the components of θt except θtj
(Bishop , 2006, p465–466). Finding the expectations in (5.2) typically requires an itera-

tive algorithm because of the dependency of the jth function on the expectations of the

other distributions i ̸= j.

Since Xt and Yt are independent conditional on θt6 = ϵt, and that each component

of θt has θtj ∼ Gamma(pj , qj) for j = 1, . . . , 6, then

log f(θt, Xt, Yt) =Xt

∑
k∈R1

log θtk −
∏
k∈R1

θtk + Yt
∑
k∈R2

log θtj −
∏
k∈R2

θtk

+

6∏
j=1

{(pj − 1) log θtj − qjθtj}+ const.
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and hence

logQj(θtj) =



{Xt + (pj − 1)} log θtj
{
qj +

∏
k∈R1\j E(θtk)

}
θtj + const. j = 1, 4, 5

{Yt + (pj − 1)} log θtj −
{
qj +

∏
k∈R2\j E(θtk)

}
θtj + const. j = 2, 3

{Xt + Yt + (pj − 1)} log θtj
−
{
qj +

∏
k∈R1\j E(θtk) +

∏
k∈R2\j E(θtk)

}
θtj + const j = 6.

Let p̄j and q̄j represent the updated Gamma parameters associated with θtj such that

Qj(θtj) is the density of a Gamma(p̄j , q̄j) random variable. Then the updated parameters

satisfy p̄j = pj + I(j ∈ R1)Xt + I(j ∈ R2)Yt and

q̄j = qj +


∏

k∈R1\j p̄k/q̄k j = 1, 4, 5∏
k∈R2\j p̄k/q̄k j = 2, 3∏
k∈R1\j p̄k/q̄k +

∏
k∈R2\j p̄k/q̄k, j = 6

where the q̄j can be found via iteration.

Hence in comparison to (2.7), our proposed approximate updates for pj coincide with

the variational approximation, while for qj our proposed updates can be thought of as

representing a first iteration of the variational update where q6 is updated using the

prior expectations of the other θtj and then the others are updated using the updated

expectation of ϵt and the prior expectations of the other θtj ’s. Provided the amount of

past data is relatively large in relation to the degree of forgetting, there will be little

difference in the updates.



Bayesian dynamic football models 35

References

Arbous, A. G. and Kerrich, J. E. (1951). Accidental Statistics and the concept of

Accident-Proneness. Biometrics. 7 (4). 414.

Baxter, M. and Stevenson, R. (1988). Discriminating between the Poisson and negative

binomial distributions: An application to goal scoring in association football. Journal

of Applied Statistics. 15(3), 347–354.

Bradley, R. A. and Terry, M. E. (1952). The Method of Paired Comparisons. Biometrika

39 (3), 324-345.

Bishop, C.M. (2006). Pattern Recognition and Machine Learning. Springer, New York.

Brier, G.W.(1950). Verification of Forecasts Expressed in Terms of Probability. Mon.

Wea. Rev. 78 (1), 1-–3.

Cattelan, M., Varin, C. and Firth, D. (2013). Dynamic Bradley–Terry modelling of

sports tournaments J R Stat Soc Ser C Appl Stat, 62, 135–15.

Creal, D., Koopman S.J. and Lucas, A. (2013). Generalized autoregressive score models

with applications. Journal of Applied Econometrics, 28 (5), 777–795.

Crowder, M, Dixon, M., Ledford, A. and Robinson, M. (2002). Dynamic modeling and

prediction of English Football League matches for betting. J. R. Stat. Soc. D Stat. 51,

157–168.

Davidson, R. R. (1970). On Extending the Bradley-Terry Model to Accommodate Ties

in Paired Comparison Experiments. J Am Stat Assoc 65 (329), 317-328.

Davison, A. C. (2003). Statistical modelling. Cambridge University Press 498–499.

Dixon, M. and Coles, S. (1997). Modelling Association Football Scores and Inefficiencies

in the Football Betting Market. J R Stat Soc Ser C Appl Stat, 46, 265–28.

Egidi, L. and Torelli, N. (2020). Comparing Goal-Based and Result-Based Approaches

in Modelling Football Social Indicators Research, 156, 801-813.

Gamerman. D., dos Santos, T.R. and Franco, C.F. (2013). A non-Gaussian family of

state space models with exact marginal likelihood. J. Time Ser. Anal., 34 , 625–645.

Gelman, A.(2013). Understanding posterior p-values. Electron. J. Stat. 4 2595-2602.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-Based Approaches to Calculating

Marginal Densities. J Am Stat Assoc 85, 972–985.

Glickman, M. E. and Stern, H. L.(1998). A State-Space Model for National Football

League Scores. J Am Stat Assoc 93, 441. 25–35



36 Ridall et al.

Jordan, M. I., Ghahramani, Z. Jaakkola, T. and Saul, L. (1999). Introduction to varia-

tional methods for graphical models. Mach. Learn., 37, 183–233.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.

J. Basic Eng.. 82: (35).

Karlis, M. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson

models. J. R. Stat. Soc. D Stat., 52, 381–393.

Meinhold, R. J. & Singpurwalla, N. D. (1983). Understanding the Kalman Filter, The

American Statistician. 37 (2), 123:127.

Koopman, S.J. and Lit, R. (2015). A dynamic bivariate Poisson model for analysing and

forecasting match results in the English Premier League. J R Stat Soc Ser A Stat Soc.,

178 (1), 167–186.

Koopman, S. J. and Lit, R. (2019). Forecasting football match results in national league

competitions using score-driven time series models. Int. J. Forecast., 35 (2), 979–809.

Maher, M. J.(1982). Modelling association football scores. Stat Neerl, 36(3), 109–118.

Murphy, A. H.(1970). The Ranked Probability Score and the Probability Score: A Com-

parison. Mon. Wea. Rev., 98 (12), 917-–924.

Rao, P. V., and Kupper, L. L. (1967). Ties in Paired-Comparison Experiments: A

Generalization of the Bradley-Terry Model. J Am Stat Assoc 62 (317), 194–204.

Rue, H and Salvesen, O. (2000), Prediction and retrospective analysis of soccer matches

in a league. The Statistician 49 (3), 399-418.

Ross, S. M.(2014). Introduction to Probability Models (11th ed.). Academic Press, Am-

sterdam, Netherlands.

Skellam, J. G. (1946). The frequency distribution of the difference between two Poisson

variates belonging to different populations. J R Stat Soc Ser A Stat Soc. 109 (3), 26.

Titman, A. C., Costain, D. A., Ridall, P. G. and Gregory, K. (2015) Joint modelling

of goals and bookings in association football. J R Stat Soc Ser A Stat Soc. 178 (3)

659-683.

Weigel, A. P., Liniger, M A., and Appenzeller, C. (2007) The Discrete Brier and Ranked

Probability Skill Scores. Mon. Wea. Rev. 135 (1), 118—124.

West, M, Harrison, P. J. and Migon H.S. (1985). Dynamic Generalized linear models for

Bayesian forecasting. J Am Stat Assoc, 80 (389), 67–86.



Bayesian dynamic football models 37

Figure Legends

Figure 1: Directed acyclic graphs (DAGs) showing the dependence structure of the

variables in our football model. The top panel is a DAG showing the model before

the update step and the lower panel shows the posterior distribution after the

update step, Equations (2.7), have been carried out..

Figure 2: Dependence structure of a SSM. The transition equation for the parameter

or state is denoted by θt ∼ π(· | θt−1, y1:t−1), and the downward vertical arrows

show the conditional sampling distribution of the observations, or the measurement

equation f(yt | θt). These two components can be used in a Bayesian filter to

recursively update the evolving posterior distribution of states, θt ∼ π(· | y1:t).

Figure 3: A comparison of the cumulative RPS measure of the prediction accuracy

(relative to those obtained using the the odds offered by the bookmakers) of three

dynamic models, a score driven model and six others that use a weighted likelihood

(where the predictions are recalculated for every round for every season apart from

the first 5 rounds.) The training set were the 1992/93 to 2009/10 seasons and the

test set 2010/11 to 2023/24.

Figure 4: The diagram shows the improvement in standardised residuals of the se-

quential bivariate model relative to those of the sequential univariate model. The

dots represent the univariate residuals calculated using Equation (3.10) and the

tips of the arrows show the bivariate residuals calculated using Equations (3.12).

The numbers (next to the point) shows the ordering of the size of the residuals

calculated using Equation (3.13).

Figure 5: Panels A, C and E show the problems of overdispersion in the univariate

model. Panel F shows the correlation between the univariate residuals. Panels B

and D show that the problem of overdispersion has been reduced in the bivariate

model. The correlation between the residuals of the bivariate model is unchanged

from Panel F. The horizontal dashed lines in panels A, B and F are averages taken

over all seasons. The horizontal line in Panel E is the level above which the Chi-

squared statistic for extra-Poisson dispersion is significant at the 0.05 level.

Figure 6: The top panel shows data-based estimate of the HGA (top panel) by cal-

culating the difference between the home and away goal average for each season.

The middle panel show the 75 % quantiles of the filtered model-based home ground

advantage. The last panel shows a smoothed 75% credible interval to represent the

posterior distribution of the HGA using the method of Gamerman et al. (2013)

explained in Section 3.2.4.

Figure 7: 75% credible intervals showing the the filtered attacking strengths (solid line)

and defensive strengths(dashed lines) of all teams in the 2023-4 season of the EPL.
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Figure 8: 75% credible intervals showing the the filtered attacking strengths (Solid line)

and the defensive strengths(Dashed lines) of the top clubs over the last 22 years of

the EPL.


