
Stochastic Neighbourhood Components Analysis

Graham Laidler1, Lucy E. Morgan1, Barry L. Nelson2, and Nicos G. Pavlidis1

1STOR-i Centre for Doctoral Training, Lancaster University, Lancaster, LA1 4YW, UK
2Department of Industrial Engineering & Management Sciences, Northwestern University,

Evanston, IL 60208-3119

Abstract

Distance metric learning is a fundamental task in data mining, and is known to enhance the
performance of various distance-based algorithms. In this paper, we consider stochastic training
data in which repeated feature vectors can belong to different classes, a scenario in which
existing methods of metric learning are known to struggle. This type of data is common in
stochastic simulations, where multi-dimensional, recurrent system states are subject to inherent
randomness. Classification models on such high-resolution simulation-generated data play a
critical role in real-time decision-making across diverse applications. This paper presents and
implements a stochastic version of the popular Neighbourhood Components Analysis. We
demonstrate its behaviour on stochastic data using simulation models, and reveal its advan-
tages when used for nearest neighbour classification. Meanwhile, the assumptions of stochastic
labelling and repeated feature vectors extend to data from various domains, suggesting that
the method can attain broad impact. For example, beyond its applications to system control
and decision-making with digital twin simulation, it may enhance the analysis of data from
sensor networks, recommender systems, and crowdsourced platforms, where stochasticity and
recurring feature patterns are typical.

Keywords: distance metric learning, stochastic data, discrete-event simulation, simulation
analytics, nearest neighbours

1 Introduction

Stochastic, discrete-event simulation is a valuable tool for the design of systems that evolve through
time and must perform well in the face of uncertainty. By “design”, we refer to one-time decisions,
such as the layout of work centres in a factory, the number of beds allocated to post-surgery
patients in a hospital, the securities to include in a portfolio, or the capacities of warehouses in a
supply chain. Simulation is less well-suited for real-time control decisions due to long execution
times, but is being pushed in that direction by the need for high-resolution, but timely, decisions
in applications such as digital twins (dos Santos et al. 2022). A digital twin is a simulation that
shadows a real-world system to support control or recovery decision as needed. This tension between
simulation execution time and real-world decision time is the genesis of offline simulation for online
application: extensive simulations are executed in advance and the results processed to be exploited
for real-time decisions (Hong and Jiang 2019). This involves the careful mining of simulation state
information; we refer to the time-dynamic trajectory of simulation state variables as the simulation
sample path. Recent applications of sample path mining include financial risk assessment (Jiang
et al. 2020), personalized medicine (Shen et al. 2021) and assortment optimization (Keslin et al.
2024). This work aims to more fully exploit the properties of simulation sample paths to enable
higher-resolution predictions than previous methods.

We consider the task of classifying a future system state. Section 4.1 presents an analysis
of a queueing system looking at the probability of the system becoming blocked, a commonly
encountered issue across many industries. Section 4.2 describes a manufacturing context in which
product completion times are classified as early or late at the start of a product cycle, based on
simulation-generated completion times from the nearest neighbours of the current system state. At
its highest level of detail, the system state is completely descriptive of the system at any moment in
time, and so identifying nearest neighbours on system state provides a logical basis for predictions
(Laidler et al. 2020). For this reason, we propose in this paper a method of distance metric learning
(DML) tailored to the characteristics of sample path data.

1

Extensive research efforts in the field of DML have resulted in a wealth of notable formulations
(Kulis 2013). However, existing algorithms are typically built with an implicit assumption of
having unique feature vectors for training, an assumption which conflicts with the nature of sample
path data. The typically discrete representation and recurrent nature of the system state in a
discrete-event simulation model provides repeated feature vector observations, and calculating
objective functions as a sum over individual points becomes inefficient. More significantly, inherent
simulation randomness results in stochastic classifications. Repeated feature vectors belonging
to different classes will often introduce conflicting constraints when existing DML methods are
applied, and can lead to k-nearest neighbours (kNN) committing “substantial errors” (Suárez et al.
2021). In the current work, we address this shortcoming by proposing a method which we refer to
as Stochastic Neighbourhood Components Analysis (SNCA). This is based on the Neighbourhood
Components Analysis (NCA) of Goldberger et al. (2005), which builds a probabilistic model of class
assignment. We modify NCA to the context of repeated data points and stochastic classifications.

Although providing a large family of problems, the simulation domain is not the beginning
and the end of our application. Simulation sample paths identify a characteristic type of data
which arises in numerous contexts. Crowdsourced datasets, for example, often result in multiple
annotators providing various responses to the same labelling task (Vaughan 2017). Tasks such
as sentiment analysis or media ratings are subjective in nature and certainly result in stochastic
labelling. Beyond this, however, many real-life situations experience naturally stochastic behaviour.
Medical prognoses (Suo et al. 2018), financial forecasts (Cao and Tay 2001), and sporting events
(Horvat and Job 2020), for example, are often modelled with discrete features and encounter natural
variability in their observed outcomes. In summary, repeated feature vectors and stochastic labelling
characterise a large body of classification problems, and so we see a DML formulation tailored to
this context as a useful contribution.

The remainder of the paper is organised as follows. Section 2 establishes a relevant background
in simulation analytics and DML. In Section 3, we give a characterisation of the data and the
proposed methodology for SNCA, including attention to the theoretical convergence of the optimal
solution. We present experimental results to assess the performance of SNCA on sample path data
in Section 4, before the paper concludes with a brief summary in Section 5.

2 Related Work

Numerous texts provide a comprehensive study on the subject of stochastic simulation (Nelson
and Pei 2021, Law and Kelton 2007). In this section, we focus attention on the emerging topic
of simulation analytics (Nelson 2016), which provides a motivation for the current work. We also
introduce the task of DML, and present a focused review of the existing literature.

2.1 Simulation Analytics

Discrete-event simulation (DES) represents the operation of a real system as a sequence of events
occurring at discrete points in time. Each event, such as a customer arrival or a machine failure,
triggers a change in a set of variables describing the system state, including for instance a queue
size or a machine status. The trajectory of state variables, or sample path, from a DES model
hides a wealth of insight into the system behaviour. Nelson (2016) recognised modern capacity for
the storage of sample path data as paving the way for machine learning solutions, and coined the
term simulation analytics. Essentially, analysis of simulation has traditionally centred around static
summaries of long-run performance, with average performance over time being prioritised above
dynamic performance through time. However, simulation analytics aims to prioritise the latter,
recognising that a far more complete picture of system behaviour can be unlocked by directing
machine learning efforts to the simulation sample path. The current work adds to this endeavour.

We summarise some existing publications on the theme of simulation analytics. A number
of papers have emerged in which sample path data are used to build metamodels for dynamic
predictions. In the context of a queueing network, Ouyang and Nelson (2017) proposed a two-stage
logistic regression modelling approach in which the state and time aspects of the sample path are
treated separately, while Jiang et al. (2020) also use a logistic regression model to dynamically predict
the risk of financial portfolios. Morgan and Barton (2022), meanwhile, show that Fourier analysis
can successfully detect changes in the trajectories of individual state variables to discriminate
between congested and uncongested systems. Moving to distance-based methods, Lin et al. (2019)
suggest a kNN approach to provide performance predictions based on simulation time. A first
investigation of the potential for DML in simulation analytics was provided in Laidler et al. (2020),

2

with the independent variable being extended to a multidimensional description of the system state.
However, a tailored DML approach was not offered, and this is instead the main contribution of
the current work.

As an accessible source of measurement-error-free data, sample paths provide a rich environment
for machine learning. The attempts described above have applied off-the-shelf algorithms. However,
to achieve the full potential of learning in this context, it is necessary to account for the distinctive
properties of simulation sample path data. This presents an opportunity for machine learning
research, and this work takes a step in that direction.

It is encouraging to note that beyond the sphere of research, applications and opportuni-
ties for machine learning in simulation are also filtering through to practitioners. Commercial
providers of simulation software, including for example Simul8 (https://www.simul8.com), Simio
(https://www.simio.com), and AnyLogic (https://www.anylogic.com), have recognised its benefits
and provide easy integration with machine learning models, including with runtime execution.
Crucially, the support is already in place for research advances in simulation analytics to quickly
deliver impact to simulation users.

2.2 Distance Metric Learning

Distance calculations among data points comprise a fundamental aspect of many machine learn-
ing tasks. DML has been shown to improve the performance of nearest neighbour predictions
(Weinberger and Saul 2009), clustering (Xing et al. 2002), and information retrieval (McFee and
Lanckriet 2010), and it is therefore treated as an important objective in its own right (Kulis 2013).
In a fully supervised setting, real-valued, multivariate feature vectors, xi ∈ Rd, are supplied with a
class label, yi, and the goal is to adapt a pairwise distance function over the feature vectors, such
that nearby points are more likely to belong to the same class. A common approach to DML is to
learn a generalised Mahalanobis distance. Our work in this paper conforms to this framework, and
this becomes the focus of our review.

Defining the squared distance between xi and xj as d2M (xi,xj) = (xi − xj)
⊤M(xi − xj), the

Mahalanobis distance (Mahalanobis 1936) is defined by setting M = Σ−1, where Σ is the covariance
matrix of the data. In the metric learning literature, a broader family of Mahalanobis metrics
is parameterised by restricting M to the set of d × d positive semidefinite matrices, which we
will denote by Sd+. The task of learning a Mahalanobis metric is then generally expressed as an
optimisation problem of the following form:

min
M∈Sd+

ℓ(M,Dn) + λr(M).

Here, ℓ is a loss function relating the suitability of M to the supervision brought by the data, Dn =
{(xi, yi)}ni=1, and r(M) describes some regularisation on the values of M , with the regularisation
parameter, λ ≥ 0. Many formulations have been proposed, with differences arising in their choice
of loss functions and regularisation. For a comprehensive review of established methods, refer to
surveys provided by Kulis (2013), Bellet et al. (2013), and, more recently, Li and Tian (2018). Here,
we limit our discussion to the main directions of the research, and establish a relevant background
for the current work.

A common approach converts supervision into the form of similarity judgments among tuples of
training points. For instance, sets S and D are often used to contain pairs of training points deemed
to be similar and dissimilar, respectively. Under this framework, the loss function, ℓ(M,Dn), is
used to encode violations of the desired relationships under the metric induced by M . Construction
of a linear loss function leads to convex formulations and allows the problem to be treated as a
semidefinite program. The earliest example of this is Xing et al. (2002), with the following intuitive
formulation:

min
M∈Sd+

∑
(xi,xj)∈S

d2M (xi,xj) s.t.
∑

(xi,xj)∈D

dM (xi,xj) ≥ γ.

A succession of notable semidefinite programming formulations have since emerged, including the
widely used Large Margin Nearest Neighbors (LMNN, Weinberger and Saul (2009)). Motivated by
kNN, LMNN seeks local neighbourhoods of each instance to be populated with other instances of
the same class, while those of different class are repelled by a ‘large’ margin. LMNN has been the
subject of a number of extensions. Torresani and Lee (2007) combine LMNN with dimensionality
reduction of the feature space, and explore non-linear kernel methods, while Kedem et al. (2012)
suggest alternative extensions to a non-linear metric. Further notable works, also making use of
supervision sets, S and D , and offering an information-theoretic perspective, include Bar-Hillel
et al. (2003) and Davis et al. (2007).

3

The approach of populating supervision sets with pairwise relationships is less natural in our
context of repeated feature vectors and stochastic classifications. In particular, we might expect the
same pair to appear a number of times in both S and D , leading to either inefficient or infeasible
formulations. Instead, the stochastic nature of the class labels leads us to prefer a probabilistic
formulation, and we hence turn our attention to existing probabilistic methods.

An influential formulation known as Neighbourhood Components Analysis (NCA, Goldberger
et al. (2005)) proceeds to model the nearest neighbour probabilities with a softmax normalisation
over distances. A point, xi, identifies its nearest neighbour as xj with probability pij :

pij =
exp{−∥Axi −Axj∥22}∑
k ̸=i exp{−∥Axi −Axk∥22}

, pii = 0. (1)

This imposed distribution provides a continuous relaxation to the deterministic point mass distribu-
tion on the nearest neighbour. With xi inheriting its classification from a neighbour selected from
this distribution, the quantity, pi =

∑
j : yj=yi

pij , represents the probability of xi having the class
assignment of yi. The suggested objectives are to maximise the expected leave-one-out accuracy of
the nearest neighbour classifier under this distribution, or the log-likelihood function:

max
A

n∑
i=1

pi, or max
A

n∑
i=1

log (pi) .

The optimisation of NCA is performed over an unconstrained matrix, A, which reveals a Mahalanobis
matrix, M , via the relation A⊤A = M . Any M ∈ Sd+ permits this decomposition, such that a
Mahalanobis metric can equivalently be viewed as a projection of Euclidean space under a linear
transformation, x→ Ax. With this perspective, optimising the transformation matrix, A, provides
an alternative perspective to the task of Mahalanobis metric learning. Dimensionality reduction
can be directly sought by restricting the number of rows in A, whilst costly projections onto Sd+ are
avoided. However, an optimisation of A often comes at the expense of convexity: a loss function
which is convex in M is typically non-convex in A. This is no concern in the case of NCA, since
the objective function is non-convex in either parameterisation.

Underneath NCA lies a predictive model of class distributions: pi can be seen as a kernel
density estimator for the conditional probability of yi given xi (Devroye and Wagner 1980). The
form of the softmax transformation (1) disguises a Gaussian kernel function, with the common
bandwidth parameter being absorbed into the scale of A. Weinberger and Tesauro (2007) more
explicitly present a metric learning method in this context, albeit for a continuous target variable.
In particular, kernel regression estimates for the target variable are constructed in the same form
as above, and a metric is sought to minimise the mean squared error.

A similar probabilistic model was proposed by Peltonen and Kaski (2005), in which an expression
of the data log-likelihood is maximised by evaluating conditional class probability estimators of
a similar form as those of NCA. Indeed, the estimates introduced by NCA establish a popular
framework which has been adopted by a number of other authors, and also provides inspiration
for our own approach. Globerson and Roweis (2005) obtain a convex objective function, while
Tarlow et al. (2013) explicitly extend the NCA objective to reflect the expected kNN accuracy for
any choice of k. Further related extensions of NCA include Wang and Tan (2014), who consider
the context of noisy labels arising from measurement error. Our own context involves true noise
arising from a probabilistic labelling mechanism, and in this direction, Yang (2020) adapts NCA to
the context of probabilistic labels, in which a full probabilistic class distribution is assumed to be
known for each instance. Our own approach assumes no such knowledge.

The NCA framework provides a useful foundation for probabilistic metric learning, although it is
not designed to apply when input observations are characterised by repeating features and stochastic
outcomes. In this context, the objective function is heavily influenced by points’ identical self-
neighbours which impede learning by remaining unchanged under any metric, while the pointwise
formulation amounts to inefficient optimisation. We proceed in the next section to introduce
a multinomial framework for our data setting, and propose an NCA-inspired metric learning
formulation to serve it.

3 Methodology

We begin by describing a data framework in which repeated feature vectors and stochastic labelling
characterise a set of classification problems. To establish a mechanism generating observation pairs,
we assume a distribution, qX,Y , over a pair of discrete random variables, X and Y . The input

4

variable, X, takes values from a set, X = {b1, b2, . . . , bm}, containing a finite number of vectors in
Rd, which we refer to as states, whilst Y represents a class label drawn from a set, Y , containing at
least two unordered values. Our task is to find a pairwise distance function acting on the states in
X , which in some way reflects similarity of the conditional class distributions of Y |X. We receive
supervision from a finite training sample, Dn = {(xi, yi)}ni=1, drawn independently from qX,Y .

In many applications, the training sample will not represent the entirety of X . Whilst we
expect repeats of some states, many others may be observed only once or not at all. Therefore, in
classifying a new input, x⋆, we are not expecting to rely solely on observed training repetitions
of x⋆ and an empirical class distribution. Instead, we require a distance metric to point us to
neighbouring states which, through a similarity of class distributions, will make good predictors.
As the basis for this, we seek a model which can learn from the more frequently attended states to
extend a conditional structure for Y |X across the whole set of X .

The discrete nature of X × Y allows us to view Dn as a multinomial sample. We introduce
a random variable, Cy

l (n) = |{i ∈ {1, 2, . . . , n} : Xi = bl, Yi = y}|, to represent the observed

frequency of the pair (bl, y) in a data sample of size n. The random vector, {Cy
l (n)}

y∈Y
l=1,...,m,

follows a multinomial distribution with parameters n and {q(bl, y)}y∈Y
l=1,...,m, and we can represent

Dn = {cyl }
y∈Y
l=1,...,m as a realisation of this random vector. Conditional on Dn, the maximum

likelihood estimates of the multinomial parameters are provided by q̂(bl, y) = cyl /n. Using cl to
represent

∑
y∈Y cyl , we also introduce marginal and conditional data distributions with q̂(bl) = cl/n

and q̂(y | bl) = cyl /cl provided cl > 0, respectively. Although these distributions depend on Dn, we
omit this to simplify the notation.

The remainder of this section is organised as follows. Section 3.1 introduces a probabilistic
framework and objective function for SNCA. This establishes a model for the conditional distribution
of Y |X. The relationship of SNCA to NCA is described in Section 3.2, before Section 3.3 presents
a convergence result relating to the asymptotic behaviour of the optimal SNCA solution. Section 3.4
contains details of the optimisation algorithm applied in this paper.

3.1 A Probabilistic Framework

In the style of NCA, we impose a probability distribution for neighbour assignment based on a
softmax function over distances. In contrast to NCA, however, this is applied over multinomial cells
as opposed to over individual xi. Under a transformation matrix, A, a cell with X = bl identifies
the cell (bh, y) as its nearest neighbour with probability pA((bh, y) | bl):

pA((bh, y) | bl) =
cyh exp{−∥Abl −Abh∥22}∑
k ̸=l ck exp{−∥Abl −Abk∥22}

, pA((bl, y) | bl) = 0.

Again, we omit the conditioning on Dn from the notation. Assuming classifications to be inherited
from a cell selected by this distribution, the probability of classifying X = bl as class y is given by

pA(y | bl) =
m∑

h=1

pA((bh, y) | bl).

Under any matrix, A, this specifies a complete conditional distribution, pAY |X , which is constructed
as a weighted average over observed class distributions, q̂Y |X . That is, we can write

pA(y | bl) =
m∑

h=1

plhq̂(y | bh),

where the weight, plh =
∑

y∈Y pA((bh, y) | bl), given to the observed class distribution of the
neighbour bh decreases exponentially with the distance under A of bh from bl. With this perspective,
we treat our task as an optimisation problem to find a transformation, A, to align the model
distribution, pAY |X , with the data distribution, q̂Y |X .

Obtaining the modelled joint distribution as pA(bl, y) = q̂(bl)p
A(y | bl), the multinomial

likelihood, L(A;Dn), and log-likelihood, logL(A;Dn), of Dn can be expressed as the following
functions of A:

L(A;Dn) =
n!∏

l

∏
y c

y
l !

m∏
l=1

∏
y∈Y

pA(bl, y)
cyl ,

logL(A;Dn) = log(n!)−
m∑
l=1

∑
y∈Y

log(cyl !) +

m∑
l=1

∑
y∈Y

cyl log(p
A(bl, y)).

5

Recalling that q̂(bl, y) = cyl /n, we see that a maximisation of the log likelihood corresponds to the
maximisation of a function, gn(A), and observe a connection to a Kullback-Leibler (KL) divergence:

max
A

logL(A;Dn) = max
A

gn(A),

where gn(A) =

m∑
l=1

∑
y∈Y

q̂(bl, y) log(p
A(bl, y))

=

m∑
l=1

∑
y∈Y

q̂(bl, y) log

(
pA(bl, y)

q̂(bl, y)

)
+

m∑
l=1

∑
y∈Y

q̂(bl, y) log(q̂(bl, y))

= −DKL(q̂X,Y ∥pAX,Y)−H(q̂X,Y).

Here, H represents the Shannon entropy (Shannon 1948). Since H(q̂X,Y) is independent of A, the
maximisation of gn(A) corresponds to a minimisation of the KL divergence of pAX,Y from q̂X,Y . We
receive a similar interpretation in relation to the conditional distributions:

gn(A) =

m∑
l=1

∑
y∈Y

q̂(bl)q̂(y | bl) log(q̂(bl)pA(y | bl))

=

m∑
l=1

q̂(bl)
∑
y∈Y

q̂(y | bl) log pA(y | bl) +
m∑
l=1

q̂(bl) log q̂(bl)

= −Eq̂X [DKL(q̂Y |X∥pAY |X)]− Eq̂X [H(q̂Y |X)]−H(q̂X).

Therefore, maximisation of gn(A) minimises the expected KL divergence of the class conditional
distributions of the model from the data, under q̂X . This perspective perhaps most convincingly
aligns with our intuition for a desirable metric, whilst making use of a common probability-based
divergence measure.

3.2 Relationship to NCA

The formulations of NCA and SNCA exactly coincide when applied to training data without
repeated observations, i.e., training data for which

∑
y∈Y cyl ≤ 1 holds for all l = 1, 2, . . . ,m. When

this condition does not hold, a difference arises. Expressing both formulations as

max
A

∑
l

∑
y

q̂(bl, y) log p
A(y | bl),

the difference occurs in the model estimates of the conditional probabilities, pA(y | bl). Whenever
q̂(bl, y) > 0, these estimates are as follows:

NCA: pA(N)(y | bl) =
cyl − 1 +

∑
h̸=l c

y
h exp{−∥Abl −Abh∥22}

cl − 1 +
∑

h ̸=l ch exp{−∥Abl −Abh∥22}
, (2)

SNCA: pA(S)(y | bl) =
∑

h̸=l c
y
h exp{−∥Abl −Abh∥22}∑

h̸=l ch exp{−∥Abl −Abh∥22}
. (3)

The difference between (2) and (3) stems from the inclusion and exclusion, respectively, of a point’s
repeats in the softmax construction of its neighbour distribution. Since identical points will always
have a distance of zero, the terms cyl − 1 and cl− 1 appear regardless of A and effectively act as bias
to pA(N)(y | bl). As a result, the influence of A on the objective function of NCA is reduced. The
adjustment made by SNCA is to exclude identical neighbours from consideration in the softmax
functions, which allows the SNCA objective to solely reflect the quality of distance relationships
among non-identical points.

We also recognise inconsistencies arising in the NCA estimates. Specifically, we may not have∑
y∈Y pA(N)(y | bl) = 1. As n increases, the discrepancy reduces, and we can in fact identify an

asymptotically optimal solution. In particular, a solution, A, with infinite column norms, such that
non-identical points are infinitely far apart, will yield pA(N)(y | bl) = (cyl − 1)/(cl − 1)→ q̂(y | bl) as
n→∞. This identifies a non-informative solution to which NCA becomes susceptible, under its
log-likelihood objective function, as the data size increases. This essentially represents the situation
of fully overfitting to the data, a hazard which SNCA avoids by introducing implicit leave-one-out
validation during learning.

6

3.3 Convergence of Optimal Solutions

In Section 3.1, we understood gn(A) in relation to the observed distribution, q̂X,Y , of a finite
sample. In this section, we seek to establish convergence guarantees with respect to the underlying
true distribution, qX,Y .

The strong law of large numbers (Kolmogorov and Širjaev 1992) ensures consistency of q̂X,Y
a.s.→

qX,Y as n→∞, and by the continuous mapping theorem we obtain the pointwise limits of gn(A)
over fixed A ∈ Rd×d as n→∞:

gn(A)
a.s.→

m∑
l=1

∑
y∈Y

q(bl, y) log

(
q(bl)

∑
h ̸=l q(bh, y) exp{−∥Abl −Abh∥22}∑
k ̸=l q(bk) exp{−∥Abl −Abk∥22}

)
.

We use g(A) to denote the limit of gn(A) given above, and consider the (set of) maximisers of
g(A), denoted A⋆

g, to be the true system-optimal solutions. To address the asymptotic behaviour

of a finite sample solution, Âg, we refer to a result relating to the consistency of Sample Average
Approximation (SAA) estimators (Theorem 5.3, Shapiro et al. (2021)). Adopting the notation
introduced here, the result is as follows:

Theorem 1 Suppose there exists a compact subset C ⊂ Rd×d such that:

(i) A⋆
g is nonempty and contained in C,

(ii) for sufficiently large n, with probability 1, Âg is nonempty and contained in C,

(iii) g(A) is finite-valued and continuous on C, and

(iv) gn(A)
a.s.→ g(A) as n→∞, uniformly on C.

Then gn(Âg)
a.s.→ g(A⋆

g) and D(Âg, A
⋆
g)

a.s.→ 0 as n→∞.

Here, D(B,C) describes the deviation of the set B from the set C, defined as D(B,C) =
supx∈B{infx′∈C∥x − x′∥}. Central to this theorem is the assumption of a compact subset C
in which A⋆

g is contained. This excludes the possibility of infinite-valued solutions, which, although
theoretically possible, we do not encounter in practice. For simplicity, we solve an optimisation
problem in which the search space is not bounded, and assume that (i) and (ii) can be satisfied.

To address condition (iii), we consider the argument of the logarithms to ensure that g(A) is
finite-valued. These arguments represent the limits of pA(bl, y) as n→∞ for all bl and y. Whilst
these naturally reside in [0, 1], we require them in the slightly stricter domain of [a, 1], where a > 0.
That is, we seek to exclude the possibility of pA(bl, y) converging to zero when q(bl, y) > 0. This
can be ensured with the following mild condition on qX,Y :∑

h ̸=l

q(bh, y) > 0 ∀bl ∈ X , y ∈ Y with q(bl, y) > 0. (4)

In other words, each class, y ∈ Y, must be observable in conjunction with at least two states in
X . Alongside the assumption that A ⊂ C, condition (4) ensures that g(A) is finite-valued on C,
and since also continuous, condition (iii) is satisfied. A justification of the uniform convergence
required by condition (iv) can be found in Appendix A.1.

Whilst we understand Âg as minimising an expected KL divergence of the class distributions
of the model from the data, we consider A⋆

g as relating to this expectation under the true data-
generating distribution. Theorem 1 provides a helpful assurance that as the training sample
increases and the empirical distribution, q̂X,Y , approaches its truth, our metric solutions should
also approach their truth.

3.4 Optimisation

To implement SNCA, the differentiability of gn(A) allows us to apply a gradient-based optimiser.
Recalling that plh =

∑
y∈Y pA((bh, y) | bl), and denoting blh = bl − bh, we have the following

gradient:

∂gn(A)

∂A
= 2A

m∑
l=1

∑
y∈Y

q̂(bl, y)
∑
h̸=l

blhb
⊤
lhplh

(
1− q̂(y | bh)

pA(y | bl)

)
.

Details for deriving this expression can be found in Appendix A.2.

7

In the metric learning literature, imposing some regularisation on the parameters of the metric
is a common and accepted practice (Kulis 2013). In this work, we choose to impose orthogonality
among the rows of A. Encouraging orthogonality has recently been recognised as an effective
regularisation for metric learning (Dutta et al. 2020), and besides leading to a smaller set of
projection vectors which bear less redundancy, benefits in mitigating the effects of class imbalance
and avoiding overfitting have also been recognised (Xie et al. 2018). We choose not to require unit
length vectors, since a flexible scaling allows the predictive relevance of the various orthogonal
directions to be reflected. Our optimisation problem is thus expressed as follows:

max
A∈Rr×d

gn(A)

s.t. AA⊤ diagonal

r ≤ d

Optimisation over the full space of feasible matrices described in this formulation can be
computationally challenging, and scale poorly with the problem dimension, d. Therefore, we
propose a tailored optimisation scheme in two stages. In the first stage, an orthogonal row-wise
optimisation approach is used to identify a good solution with rank r ≤ d, which is used in the
second stage as the initial solution to a constrained optimisation problem over the full matrix. This
establishes a computationally efficient procedure leading to a good locally optimal solution. This
approach is summarised in Algorithm 1.

In the first stage of the optimisation procedure (Algorithm 1, lines 1–18), the row-wise con-
struction of an initial solution is made by optimising each row in the null space of the previously
determined rows. Performing this null space projection is a computationally inexpensive step, and
leads to orthogonal rows without the need for optimisation constraints. This row-by-row approach

Algorithm 1 SNCA

Input: Dn = {(xi, yi)}ni=1

Stage 1 – Row-wise construction of initial solution

1: j ← 1
2: A0 ← [] ▷ initialise empty solution matrix
3: P ← Id ▷ initialise null space projection matrix
4: old← −∞ ▷ initialise old objective value
5: new← gn(P) ▷ initialise new objective value
6: obj values← () ▷ initialise empty objective value vector
7: while new > old & j ≤ d do

8: a⋆
j ← argmaxa∈R1×d gn

([
A0

aP

])
▷ optimise row j in null space of previous rows

9: old← new ▷ update old objective value

10: new← gn

([
A0

a⋆
j

])
▷ update new objective value

11: obj values← (obj values,new) ▷ track objective value improvements
12: if new > old then ▷ check if row j improves objective value

13: A0 ←
[
A0

a⋆
j

]
∈ Rj×d ▷ add row j to solution matrix

14: â⋆
j ← a⋆

j/∥a⋆
j∥2

15: P ← (Id − â⋆⊤
j â⋆

j)P ▷ update projection matrix with null space of row j
16: j ← j + 1 ▷ move to next row
17: end if
18: end while ▷ stop when row j does not improve objective value

Stage 2 – Orthogonal optimisation

19: r ← j − 1 ▷ default rank is the number of rows in solution A0. Alternatively, select

r < j − 1 based on the objective value improvements in obj values. Then A0 ←

a
⋆
1
...
a⋆
r

 ∈ Rr×d.

20: A⋆ ← argmaxA∈Rr×d gn(A) s.t. AA⊤ diagonal ▷ optimisation with initial solution A0

Return: A⋆

8

ensures that the most informative directions are learned first, and we thus observe diminishing row
norms as incrementally less improvement is found with each added dimension. Correspondingly,
the diminishing improvements to the objective value allow a natural stopping rule when further
improvement cannot be made, giving an appropriate r ≤ d and bringing explicit dimensionality
reduction to the solution. In high dimensional applications, the diminishing marginal gains to the
objective value may not justify the computational cost of further row-wise optimisation, and a
stricter stopping rule, requiring objective improvements to exceed a percentage threshold, may be
applied at the user’s discretion.

The optimised orthogonal directions from the first stage generate a good solution, albeit one
which may not be locally optimal. Therefore, this solution is used to initialise a constrained
optimisation task in the second stage (Algorithm 1, lines 19–20), leading to a final solution with
local optimality guarantee. Despite its good initial solution, however, the complexity of this second-
stage optimisation can be significant, depending on parameters such as the problem dimension, d,
and the matrix rank, r. For applications with high dimension, obtaining a lower-rank solution may
be more advantageous than the diminishing improvements from the first stage, given the added
complexity which an increased rank passes to the second stage, as well as to subsequent tasks such
as nearest neighbour searches. Thus, choosing a lower rank, r, can be beneficial, and the objective
values from the first stage optimisation may be used to produce a diminishing returns curve to guide
this decision. In the experiments presented in Section 4, the problem dimension is low enough that
the time complexity of the second-stage optimisation is not prohibitive, and manual rank-reduction
is not required. In general, the orthogonal row-wise construction in the first stage naturally yields
a low-rank solution, making further reduction of the rank unnecessary unless time constraints are a
concern.

While the second-stage optimisation offers a theoretical guarantee, we have observed in practice
that it tends to provide only minor refinement to the first-stage solution (for example, see Figure 2
and Figure 8 (top right)). Although this may not always be the case, its theoretical benefits might
therefore be weighed against time constraints in practical application.

Since we are optimising a non-convex objective function, falling into ‘bad’ local optima remains
a concern in the first stage of row-wise optimisation. Therefore, in the experiments presented in
Section 4, we make multiple restarts for each row’s optimisation. We choose a Latin Hypercube space-
filling design using software provided by Urquhart et al. (2020) to generate a set of initialisations,
and use the L-BFGS algorithm for the optimisation with a convergence limit of ϵ = 10−6 on the
gradient. The orthogonality constraint in the second-stage optimisation is imposed using Riemannian
optimisation. All implementation code is made available via the accompanying CodeOcean capsule.

4 Experiments on Simulated Data

In this section, we explore the performance of SNCA using data generated by stochastic simulation.
We introduce a simple queueing model with a small and comprehensible state space, before presenting
a more realistic application in the simulation of a semiconductor fabrication plant.

4.1 A Tandem Queueing System

Consider the simple queueing system represented in Figure 1. Two stations are arranged in tandem,
with Station I ∈ {A,B} containing sI identical servers and cI total capacity. Customers of type
k ∈ {1, 2} arrive to Station A according to a Poisson process with rate λk, and experience service
times at Station I which are exponentially distributed with rate µIk. The parameter q is used to
denote the probability of rework.

This two-station, two-type set-up suggests a four-dimensional system state,X = (XA1, XA2, XB1, XB2),
where XIk represents the number of type k customers at Station I. The memoryless property of the
exponential distribution makes elapsed service times irrelevant, while setting sI = cI for I ∈ {A,B}

Station A
sA = 2
cA = 2

Station B
sB = 2
cB = 2

λ1

λ2

1− q

q

Figure 1. A tandem queueing system with feedback.

9

removes queueing space from both stations and ensures that X fully characterises the observable
system state. We set sI = cI = 2 for I ∈ {A,B}, which allows X to take 36 distinct states.

We refer to Station I ∈ {A,B} as being blocked whenever XI1 +XI2 = cI , since no customers
can enter the station in this state. In the logic of the system, customers completing their service in
Station A will occupy space there while Station B is blocked. More significantly, customers arriving
to a blocked Station A (including those returning from Station B) are immediately lost from the
system. As such, blocking in Station A represents a critical state for the system, and our interest
in this example is in predicting the future probability of this event based on the currently observed
state. In particular, we observe the system state, X(t), at time t, and predict whether Station A
will be blocked at time t+ T . Let

Y (t) =

{
1 if XA1(t+ T) +XA2(t+ T) = cA,

0 otherwise.

Simulating the system provides the data, Dn = {(X(ti), Y (ti))}ni=1, and we choose the recording
times such that ti+1 = ti + T in order to obtain non-overlapping observations. To provide a roughly
even distribution for Y , we simulated the system with the parameters λ1 = λ2 = 2, µA1 = 2, µA2 =
3, µB1 = 1, µB2 = 2, and q = 0.2, and we set the prediction horizon to T = 0.25. Choosing a
smaller value of T would move towards a more deterministic problem, while a longer horizon would
reduce the influence of X(t) and converge each state’s conditional probability of Y = 1 towards the
system’s long-run blocking probability for Station A. With the specified system parameters, setting
T = 0.25 provides a suitable middle ground in which the set of system states exhibit a wide range
of class probabilities.

4.1.1 Metric Embeddings.

On a dataset of size n = 100,000, we obtained the following SNCA solution:

A =

 7.53 6.92 3.17 1.85
0.31 −0.71 0.25 1.01
−0.15 0.03 0.31 −0.01

 .

The transformation matrix consists of orthogonal rows representing data directions which are
informative with respect to the class distributions. Following the optimisation scheme detailed in
Section 3.4, rows are appended to the (first-stage) solution sequentially, and as such their relevance
decreases and their magnitudes shrink, pointing us to an appropriate lower-dimensional solution.
The trajectory of the objective function value throughout the optimisation process is shown in
Figure 2. In this example, a dominant first dimension provides most of the projection variation,
with a second and third dimension making smaller contributions. A fourth dimension was not
found to provide any further improvements to the objective value.

We consider the first row of the solution as the most informative, and we can derive interpretation
from the magnitudes in this row acting on the original data dimensions. XA1 is deemed slightly
more relevant than XA2, which we can understand since the system was simulated with µA1 < µA2.
This means that customers represented by XA1 tend to have longer service times and so are more
likely to still occupy Station A when Y is observed. Customers in Station B can indirectly increase
the risk of Station A becoming blocked, and in the same way, µB1 < µB2 leads to a first dimension
to which XB1 makes a greater contribution than XB2.

To visualise the effect of SNCA, we plot the 36 unique states projected into the solution space,
showing the first two dimensions which capture the majority of the variation (Figure 3, top). Recall

Figure 2. The objective value improvement throughout the SNCA algorithm.

10

Figure 3. Top: the 36 unique states projected in the first two dimensions of the SNCA solution matrix.
The colour of the points relates to their empirical class distribution, and the size is proportional to their
observed frequency. Bottom: the KL divergence from the class distribution of the state (0, 0, 0, 0) to that of
its kth nearest neighbour.

that our distance metric is represented by Euclidean distance in this transformed space. The
projection plot shows the SNCA metric arranging the states with regards to the similarity of their
stochastic class distributions, which are depicted by the colour scale. The state X = (0, 0, 0, 0)
represents the empty system and is leftmost in the projection plot. The lower plot explicitly lays
out the states in the order of their distance from (0, 0, 0, 0), and shows that the KL divergence of a
neighbouring state’s class distribution from that of (0, 0, 0, 0) tends to increase as the neighbour
moves further away.

To allow an appropriate comparison for plotting, we obtain the following two-dimensional NCA
solution on the same dataset:

A =

[
341.23 234.95 317.98 −78.4
−15.27 −10.11 −14.54 3.8

]
.

The projection and KL divergence plots corresponding to Figure 3 for this NCA solution are shown
in Figure 4. The comparison between Figure 3 and Figure 4 highlights the deficiency of NCA when
applied to discrete stochastic data, and the suitable corrections made by SNCA. Notably, the main
direction of the NCA solution is less effective at discriminating the class distributions than the
main direction of SNCA (see the top panels of Figures 2 and 3, x direction). This highlights the
effectiveness of the SNCA adjustment to exclude a point’s repeats from its probabilistic neighbour
distribution. Additionally, the usefulness of the orthogonality constraints introduced in the SNCA
implementation is apparent, as the two rows of the NCA solution are seen to each represent a very
similar direction. In the lower plots of Figures 3 and 4, the 35 remaining states are displayed along
the x-axis in the order of their distance from the state (0, 0, 0, 0), with the KL divergence of their
class distribution from that of (0, 0, 0, 0) shown on the y-axis. Thus, we are looking for a positive
correlation between the two axes; SNCA noticeably achieves this pattern more successfully than
NCA. These figures demonstrate that the adjustment made by SNCA to exclude self-neighbours
is effective; it forces the algorithm to find good quality, non-identical neighbours. NCA does not
have this incentive, since identical X observations dominate its neighbour distributions and the
influence of non-identical neighbours on its objective function is diminished.

The reference state of (0, 0, 0, 0) used for the lower plots of Figure 3 and Figure 4 was not specially
selected. Figure 5 shows this relationship between the distance ordering and the KL divergence
averaged with respect to q̂X over all 36 states. Across the whole input space, SNCA has consistently

11

Figure 4. The equivalent plots from Figure 3 for a two-dimensional NCA solution. Top: the 36 unique
states projected by the solution matrix. Bottom: the KL divergence from the class distribution of the state
(0, 0, 0, 0) to that of its kth nearest neighbour.

arranged states’ neighbours with broadly increasing divergence of their class distributions, whilst
NCA is less reliable in this regard. For the purpose of nearest neighbour predictions, the closer
neighbourhoods are the most relevant, and we see SNCA bringing a desirable structure in terms of
the similarity of class distributions within the closer neighbourhoods.

4.1.2 kNN Classification.

As a further verification of metric performance, we display results of kNN classification under the
learned distance metrics. To have a clearer interpretation of k in our data context, we consider k as

Figure 5. The average KL divergence from a point’s class distribution to the class distribution of its
kth nearest neighbour, under the SNCA and NCA embeddings. This is equivalent to the lower plots of
Figures 3 and 4 averaged with respect to q̂X over all states.

12

the number of distinct neighbours, and include all of their repeats. In other words, we classify an
individual point, xi, by the majority class of its k nearest neighbour states, and additionally include
any states which are tied in distance with the kth. Further, we exclude the other observations of
xi’s own state from the neighbour search. This would be the nearest neighbour state under any
metric, so its inclusion does not help a comparison across metrics. Further details of the kNN
procedures used in this section, and the generation of the figures, are found in Appendix A.3.

Since this example carries only a small number of distinct X values, we only show results for
k = 1. Figure 6 concerns metrics trained on datasets of size n, and shows on the left the leave-one-out
correct classification rates on a large (n = 100,000) test dataset. This is to approximate the expected
classification accuracy on data drawn randomly from qX,Y . As benchmarks for comparison, we
include the 1NN classification rate achieved using a Euclidean distance metric, and a 1NN classifier
which omnisciently selects the optimal neighbour, defined as the state whose class distribution
has minimum KL divergence from that of the query point. We are encouraged to see SNCA still
performing well with small training datasets, and achieving classification rates close to optimal
given the level of stochasticity in the system.

In practical problems with large input spaces, we do not expect to exhaust X in our training
sample. For this reason, we are particularly interested in classification performance on states which
are unrepresented in the metric training. Figure 6 (right) uses 6-fold cross-validation (CV) on
the 36 unique states, through which the metrics were trained on data covering 30 states, and
the classification accuracy recorded on the remaining 6. We are encouraged to see strong 1NN
classification performance by SNCA on unseen states. For each n marked in the plots in Figure 6,
the metric training was repeated with 10 independent datasets of size n, with the ribbons showing
pointwise ±1.96 standard errors around the average classification rate. We see much greater
variability in the NCA solutions as compared with SNCA.

The kNN performance of SNCA does not noticeably benefit by increasing the training set
beyond a size of n = 3000. We can be confident that this is enough training data and the metric
solution is not overfitted. In practice, we advise increasing the training set size for SNCA until the
classification accuracy on test data, and the interpretations of the learned metric, appear consistent.

4.1.3 Execution Time.

To demonstrate the computational benefit of SNCA with discrete stochastic data, Figure 7 shows
the mean execution time using a 1.6 GHz Intel Core i5 processor, for the metric training of SNCA
and NCA across the 10 training sets of size n used in Figure 6 (left), ±1.96 standard errors. The
reported times include 10 initialisations for each optimisation. With the small state space in this
example, all states are sampled in the smallest dataset size of n = 1000; after this, increasing the
value of n only refines the empirical class distributions and does not increase the burden on SNCA.
In contrast, a pointwise metric learning method such as NCA, which involves summation over n
individual points, understandably suffers as n increases. It should be noted that when training NCA
on the dataset of size n = 100, 000 to illustrate the metric embedding in Section 4.1.1, the pointwise
formulation was not feasible. Instead, we employed a modified algorithm in which identical points
were grouped together in the calculations of the objective function and the gradient.

Figure 6. Left : the leave-one-out 1NN correct classification rate on a dataset of size 100,000, under metrics
learnt from a training set of size n. Right : the 1NN classification performance on test states which were
withheld from the metric training following 6-fold cross-validation. The shaded regions indicate ±1.96
standard errors around the average classification accuracy.

13

Figure 7. Metric learning execution time on a training set of size n. The shaded regions indicate ±1.96
standard errors following 10 independent trials for each n.

4.2 A Wafer Fab Model

As a more realistic example for discrete stochastic data, we explore the simulation model of a
wafer fabrication facility (fab) described by Kayton et al. (1996). Wafers are released into this
system at fixed intervals and follow a sequence involving several processing steps at a number
of stations. Aspects of re-entrant flow, and machines offering different processing capacities and
unpredictable breakdown patterns complicate the management of product flow through wafer fabs,
and a simulation model becomes an indispensable tool. For this example, we have used Simul8
software to imitate the model described by Kayton et al. (1996).

To create a classification problem, we consider the practical task of predicting an early or late
completion based on the system state on a wafer’s release. To restrict the feasible state space
and encourage repeated observations, we take an incomplete view of the system state, with X
containing simply the queue sizes at each of the facility’s 11 stations. The size of X is further
limited by a total capacity constraint on the system, whereby new wafers cannot be released if the
total work-in-process exceeds a threshold. The classification, Y , is observed as the wafer leaves the
facility either before or after its due date, where the due date is pre-assigned by a constant inflation
factor on its pure processing time. In this problem, we use a classification of Y = 0 to indicate an
early or on-time wafer completion, while Y = 1 implies a late completion. Running the simulation
provides an observation, (X, Y), for every wafer which passes through the system. A classification
model from this simulated data can be applied on the actual wafer fab to alert planners to possible
late deliveries.

The system design yields around 21,000 feasible combinations of the 11 queue sizes, although the
distribution over this state space is highly imbalanced. Figure 8 (left) shows a dataset projected in
the first two dimensions of an SNCA solution, where size is proportional to the observed frequency
of the states. There is a small number of commonly visited states, while many more are observed
very few times, and overall only a small percentage of the feasible space has been represented in
the sample. To aid understanding of this plot, consider the point lying on the origin, labelled as
state 1. In the original context, this represents the system state in which all queues are empty.
This is a commonly observed state for the system. It is also a difficult state to classify; its colour
indicates the Y = 1 class to have an observed proportion of around 0.55. In other words, a wafer
released while the system has empty queues is marginally more likely to be completed late than on
time. Although counter-intuitive, this is because the first station is a batch station which requires
at least two wafers to be processed simultaneously. Therefore, a wafer released when the first queue
is empty must invariably wait at least until the following wafer is released. Other states shown by
the colour scale to have lower proportions of late completions represent states in which the first
queue is non-empty.

The labelled state 2 in Figure 8 (left) represents the state in which six wafers occupy the queue
at station 3 and all other queues are empty. In the system logic, the machine at station 3 is prone
to breakdowns, which leads to the occasional build up of this station queue. This represents a rare
yet critical system condition and accounts for the branch of lesser-observed states extending away
from the main cluster. The class distributions of these states are heavily skewed in favour of Y = 1,
as wafers entering a blocked system are highly likely to finish late. SNCA rightly identifies this
third queue size as an effective indicator of the system performance and lets this variable dominate
the first projection dimension.

Of primary interest is to understand metric performance with regards to states which are

14

Figure 8. Left : using a dataset of size n = 18,402 from the wafer fab model, the states are projected by the
first two rows of an SNCA solution. The colour of the points relates to their observed class proportions, and
the size is proportional to their observed frequency. Top right : the objective value improvement throughout
the SNCA algorithm. Bottom right : the kNN correct classification rate on rarely seen states, with the
shaded regions indicating ±1.96 standard errors.

underrepresented in the training sample, since these are the states for which we are more reliant
on neighbours to make a prediction. Therefore, as a more targeted approach, we show the kNN
accuracy on the rarely seen states. In particular, we consider states observed in the dataset with
fewer than 25 repetitions. Figure 8 (bottom right) shows the average kNN accuracy on these states
±1.96 standard errors, after repeating the experiment with 10 simulated datasets. Additional
details on the generation of this plot are provided in Appendix A.3.

To provide context to the kNN accuracy results, the system was simulated to give roughly equal
proportions of early and late wafers. Employing kNN on the simplified state description used in
this example provides additional predictive power, and the benefit of a trained distance metric is
evident from the comparison with Euclidean distance. Reaching around 68% accuracy following
metric learning represents a marked and useful achievement considering the stochasticity of the
system. This example is broadly representative of the type of data we aim to cater to with SNCA,
and the further performance improvement brought over NCA is encouraging.

4.3 Discussion

The proposed SNCA constitutes a metric learning method designed under the assumption that data
contain repeating input features with stochastic classifications, a scenario which is characteristic
of discrete-event simulations, our intended application. The probabilistic formulation uses a
multinomial framework to accommodate observations from a discrete and finite data space. We
recognise that SNCA represents a linear and global metric learning method, in that it learns a
single linear projection to apply to all data points. It is not designed to accommodate non-linear
or value-dependant relationships among the predictors and the response; the suitability of this
limitation should be considered with each application.

Nonetheless, the assumptions of SNCA are broadly characteristic of classification problems
within stochastic simulation, and this section presented examples from this domain to explore its
performance on such data. Initially, a simple simulation model was chosen to provide an example
with a small state space and intuitive system behaviour against which to interpret the SNCA metric.
Figures showed the desirable property of the SNCA solution in arranging states in the projected
space according to the similarity of their various class distributions.

We note that applications in the simulation domain often have very low sampling cost, and addi-
tional trials on this initial example indicate the computational advantage of the SNCA formulation
with increasing dataset size. However, the advantages seen in typical applications with larger state
spaces will be less pronounced, since the small state space in this example was comprehensively
sampled such that incremental sampling provided no additional contributions to the objective
function summation. Further, the scaling of SNCA with dimensionality has not been explicitly
explored, although we recognise that the suggested optimisation approach (Section 3.4) scales well
owing to the row-wise construction of a good initial solution in the first stage, and the scalability of
the second-stage matrix optimisation relies upon the gradient descent procedure. While we thus
find practical advantages through the suggested optimisation scheme, our main interest in this
paper is towards the behaviour of the SNCA projection when applied to simulation-generated data.

A second simulation example was presented to provide a more realistic dataset with greater

15

dimension and state space. This example also showed good projection behaviour from SNCA and
improved performance compared to NCA when using the distance metric for kNN classification.
Compared with NCA across all examples we have looked at offering discrete stochastic data, SNCA
was found to give equivalent or improved kNN performance.

5 Conclusion

In this work, we proposed a method of distance metric learning which we refer to as Stochastic
Neighbourhood Components Analysis (SNCA). The aim of SNCA is to extend the reach of metric
learning to scenarios involving repeated feature vectors with stochastic labelling. This is a type of
data which is characteristic of classification problems arising from the sample paths of stochastic
simulation. Interest in probing the dynamic behaviour of simulation is growing, and to this purpose
we demonstrated SNCA for nearest neighbour classification on sample path data. This is a useful
application for SNCA; the ability to anticipate stochastic behaviour provides valuable assistance
to real-time planning and control in a live system and is well supported by the emergence of
digital twin simulation, whilst an SNCA solution matrix can reveal the influential drivers of a
system’s stochastic behaviour. Experimental results show SNCA to be effective, and to bring
further improvement to kNN performance over NCA when applied to this type of data.

We recognise numerous contexts to which the model of discrete stochastic data extends itself.
For example, crowdsourcing represents an increasingly attractive solution to data generation, and
will often result in an instance being assigned to various classes. Although we have focused our
motivation on simulation analytics, the scope of SNCA stretches further and we see possibility for
a wider impact.

Acknowledgments

The authors thank the editors and anonymous reviewers for their insightful comments and con-
structive feedback, which have improved the quality and clarity of this manuscript.

Funding

This work was supported by the EPSRC funded STOR-i Centre for Doctoral Training at Lancaster
University under Grant number EP/L015692/1. In addition, Barry L. Nelson’s work was supported
by the National Science Foundation of the United States under Grant number DMS-1854562.

Data Ethics & Reproducibility Note

The code capsule is available on Code Ocean at https://codeocean.com/capsule/3348428/tree/v5.
No data ethics considerations are foreseen related to this paper.

References

Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. (2003). Learning distance functions using equivalence
relations. In Proceedings of the 20th International Conference on Machine Learning, pages 11–18.

Bellet, A., Habrard, A., and Sebban, M. (2013). A survey on metric learning for feature vectors and
structured data. arXiv preprint arXiv:1306.6709.

Cao, L. and Tay, F. E. (2001). Financial forecasting using support vector machines. Neural Computing &
Applications, 10(2):184–192.

Davis, J. V., Kulis, B., Jain, P., Sra, S., and Dhillon, I. S. (2007). Information-theoretic metric learning. In
Proceedings of the 24th International Conference on Machine Learning, pages 209–216.

Devroye, L. P. and Wagner, T. (1980). Distribution-free consistency results in nonparametric discrimination
and regression function estimation. The Annals of Statistics, pages 231–239.

dos Santos, C. H., Montevechi, J. A. B., de Queiroz, J. A., de Carvalho Miranda, R., and Leal, F. (2022).
Decision support in productive processes through des and abs in the digital twin era: a systematic
literature review. International Journal of Production Research, 60(8):2662–2681.

Dutta, U. K., Harandi, M., and Sekhar, C. C. (2020). Unsupervised deep metric learning via orthogonality
based probabilistic loss. IEEE Transactions on Artificial Intelligence, 1(1):74–84.

Globerson, A. and Roweis, S. (2005). Metric learning by collapsing classes. Advances in Neural Information
Processing Systems, 18:451–458.

16

Goldberger, J., Roweis, S. T., Hinton, G. E., and Salakhutdinov, R. R. (2005). Neighbourhood components
analysis. In Advances in Neural Information Processing Systems, pages 513–520.

Hong, L. J. and Jiang, G. (2019). Offline simulation online application: A new framework of simulation-based
decision making. Asia-Pacific Journal of Operational Research, 36(06):1–22.

Horvat, T. and Job, J. (2020). The use of machine learning in sport outcome prediction: A review. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(5):e1380.

Jiang, G., Hong, L. J., and Nelson, B. L. (2020). Online risk monitoring using offline simulation. INFORMS
Journal on Computing, 32(2):356–375.

Kayton, D., Teyner, T., Schwartz, C., and Uzsoy, R. (1996). Effects of dispatching and down time on
the performance of wafer fabs operating under theory of constraints. In Nineteenth IEEE/CPMT
International Electronics Manufacturing Technology Symposium, pages 49–56. IEEE.

Kedem, D., Tyree, S., Sha, F., Lanckriet, G. R., and Weinberger, K. Q. (2012). Non-linear metric learning.
In Advances in Neural Information Processing Systems, pages 2582–2590.

Keslin, G., Nelson, B. L., Pagnoncelli, B. K., Plumlee, M., and Rahimian, H. (2024). Ranking and contextual
selection. Operations Research, 0(0).

Kolmogorov, A. N. and Širjaev, A. N. (1992). Selected works of AN Kolmogorov. Vol. 2, Probability theory
and mathematical statistics. Kluwer.

Kulis, B. (2013). Metric learning: A survey. Foundations and Trends in Machine Learning, 5(4):287–364.

Laidler, G., Morgan, L. E., Nelson, B. L., and Pavlidis, N. G. (2020). Metric learning for simulation
analytics. In Proceedings of the 2020 Winter Simulation Conference, pages 349–360. IEEE.

Law, A. M. and Kelton, W. D. (2007). Simulation Modeling and Analysis, 3rd edition. Mcgraw-Hill New
York.

Li, D. and Tian, Y. (2018). Survey and experimental study on metric learning methods. Neural Networks,
105:447–462.

Lin, Y., Nelson, B. L., and Pei, L. (2019). Virtual statistics in simulation via k nearest neighbors. INFORMS
Journal on Computing, 31(3):576–592.

Mahalanobis, P. (1936). On the generalised distance in statistics. In Proceedings of the National Institute
of Science of India, volume 2, pages 49–55.

McFee, B. and Lanckriet, G. R. (2010). Metric learning to rank. In International Conference on Machine
Learning.

Morgan, L. E. and Barton, R. R. (2022). Fourier trajectory analysis for system discrimination. European
Journal of Operational Research, 296(1):203–217.

Nelson, B. L. (2016). ‘Some tactical problems in digital simulation’ for the next 10 years. Journal of
Simulation, 10(1):2–11.

Nelson, B. L. and Pei, L. (2021). Foundations and Methods of Stochastic Simulation: A First Course, 2nd
edition. Springer Nature.

Ouyang, H. and Nelson, B. L. (2017). Simulation-based predictive analytics for dynamic queueing systems.
In Proceedings of the 2017 Winter Simulation Conference, pages 1716–1727. IEEE.

Peltonen, J. and Kaski, S. (2005). Discriminative components of data. IEEE Transactions on Neural
Networks, 16(1):68–83.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal,
27(3):379–423.

Shapiro, A., Dentcheva, D., and Ruszczyński, A. (2021). Lectures on Stochastic Programming: Modeling
and Theory. SIAM.

Shen, H., Hong, L. J., and Zhang, X. (2021). Ranking and selection with covariates for personalized decision
making. INFORMS Journal on Computing, 33(4):1500–1519.

Suárez, J. L., Garćıa, S., and Herrera, F. (2021). A tutorial on distance metric learning: Mathematical
foundations, algorithms, experimental analysis, prospects and challenges. Neurocomputing, 425:300–
322.

Suo, Q., Ma, F., Yuan, Y., Huai, M., Zhong, W., Gao, J., and Zhang, A. (2018). Deep patient similarity
learning for personalized healthcare. IEEE Transactions on NanoBioscience, 17(3):219–227.

Tarlow, D., Swersky, K., Charlin, L., Sutskever, I., and Zemel, R. (2013). Stochastic k-neighborhood
selection for supervised and unsupervised learning. In International Conference on Machine Learning,
pages 199–207. PMLR.

Torresani, L. and Lee, K. (2007). Large margin component analysis. Advances in Neural Information
Processing Systems, 19:1385.

Urquhart, M., Ljungskog, E., and Sebben, S. (2020). Surrogate-based optimisation using adaptively scaled
radial basis functions. Applied Soft Computing, 88:106050.

Vaughan, J. W. (2017). Making better use of the crowd: How crowdsourcing can advance machine learning
research. Journal of Machine Learning Research, 18(1):7026–7071.

17

Wang, D. and Tan, X. (2014). Robust distance metric learning in the presence of label noise. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 28.

Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor
classification. Journal of Machine Learning Research, 10(2).

Weinberger, K. Q. and Tesauro, G. (2007). Metric learning for kernel regression. In Artificial Intelligence
and Statistics, pages 612–619. PMLR.

Xie, P., Wu, W., Zhu, Y., and Xing, E. (2018). Orthogonality-promoting distance metric learning: Convex
relaxation and theoretical analysis. In International Conference on Machine Learning, pages 5403–5412.
PMLR.

Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. (2002). Distance metric learning, with application to
clustering with side-information. Advances in Neural Information Processing Systems, 15:521–528.

Yang, X. (2020). Essays on Distance Metric Learning. PhD thesis, UCL (University College London).

Appendix A.1. Proof of Uniform Convergence in Theorem 1

Theorem 1 Suppose there exists a compact subset C ⊂ Rd×d such that:

(i) A⋆
g is nonempty and contained in C,

(ii) for sufficiently large n, with probability 1, Âg is nonempty and contained in C,

(iii) g(A) is finite-valued and continuous on C, and

(iv) gn(A)
a.s.→ g(A) as n→∞, uniformly on C.

Then gn(Âg)
a.s.→ g(A⋆

g) and D(Âg, A
⋆
g)

a.s.→ 0 as n→∞.

Letting blh denote bl − bh, we establish the uniform convergence of

gn(A)
a.s.→

m∑
l=1

∑
y∈Y

q(bl, y) log

(
q(bl)

∑
h̸=l q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

)
, (5)

as required by condition (iv) of Theorem 1. Recall that

gn(A) =

m∑
l=1

∑
y∈Y

q̂(bl, y) log p
A(bl, y)

=

m∑
l=1

∑
y∈Y

q̂(bl, y) log

(
q̂(bl)

∑
h̸=l q̂(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q̂(bk) exp{−∥Ablk∥22}

)
.

We begin by establishing the convergence of

pA((bh, y)|bl) =
q̂(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q̂(bk) exp{−∥Ablk∥22}

→ q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

. (6)

We assume that the following condition holds for some δ > 0:

q(bl) > δ ∀l = 1, 2, . . . ,m. (7)

We have that q̂(bh, y)
a.s.→ q(bh, y) and q̂(bh)

a.s.→ q(bh) ∀h, y as n→∞. This can be expressed
in the following way:

Let ϵ > 0. Then ∃ N s.t. ∀h ∈ {1, 2, . . . ,m} and ∀y ∈ {0, 1}, with probability 1 ∀n > N ,

|q̂(bh, y)− q(bh, y)| <
ϵδ2

m+ ϵδ
, (note that

ϵδ2

m+ ϵδ
<

ϵδ2

m
< ϵ)

|q̂(bh)− q(bh)| <
ϵδ2

m+ ϵδ
.

To target the convergence of (6), consider the absolute difference when n > N :

18

∣∣∣∣∣ q̂(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q̂(bk) exp{−∥Ablk∥22}

− q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

∣∣∣∣∣
=

∣∣∣∣∣∣
exp{−∥Ablh∥22}

[∑
k ̸=l exp{−∥Ablk∥22}(q̂(bh, y)q(bk)− q(bh, y)q̂(bk))

]
(∑

k ̸=l q(bk) exp{−∥Ablk∥22}
)(∑

k ̸=l q̂(bk) exp{−∥Ablk∥22}
)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

exp
{
−∥Ablh∥22 + ∥Ablrl∥22

}
·[∑

k ̸=l exp
{
−∥Ablk∥22 + ∥Ablrl∥22

}
(q̂(bh, y)q(bk)− q(bh, y)q̂(bk))

]
(∑

k ̸=l q(bk) exp {−∥Ablk∥22 + ∥Ablrl∥22}
)(∑

k ̸=l q̂(bk) exp {−∥Ablk∥22 + ∥Ablrl∥22}
)
∣∣∣∣∣∣∣∣∣∣∣

where rl = argmin
k ̸=l
∥Ablk∥22

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

exp
{
−∥Ablh∥22 + ∥Ablrl∥22

}
·[∑

k ̸=l exp
{
−∥Ablk∥22 + ∥Ablrl∥22

}
(q̂(bh, y)q(bk)− q(bh, y)q̂(bk))

]
(
q(brl) +

∑
k ̸=l,rl

q(bk) exp
{
−∥Ablk∥22 + ∥Ablrl∥22

})
·(

q̂(brl) +
∑

k ̸=l,rl
q̂(bk) exp

{
−∥Ablk∥22 + ∥Ablrl∥22

})

∣∣∣∣∣∣∣∣∣∣∣∣∣
Every exponential term is ≤ 0. The summations in the denominator are > 0.
Therefore,

≤
∣∣∣∣1 ·

∑
k ̸=l 1 · (q̂(bh, y)q(bk)− q(bh, y)q̂(bk))

q(brl)q̂(brl)

∣∣∣∣
≤
∑

k ̸=l |q̂(bh, y)q(bk)− q(bh, y)q̂(bk)|
q(brl)q̂(brl)

=

∑
k ̸=l |(q̂(bh, y)− q(bh, y))q(bk) + q(bh, y)(q(bk)− q̂(bk))|

q(brl)q̂(brl)

≤
∑

k ̸=l q(bk)|q̂(bh, y)− q(bh, y)|+ q(bh, y)|q(bk)− q̂(bk)|
q(brl)q̂(brl)

≤

(
ϵδ2

m+ϵδ

)∑
k ̸=l(q(bk) + q(bh, y))

q(brl)q̂(brl)

≤

(
ϵδ2

m+ϵδ

)
m

δ
(
δ − ϵδ2

m+ϵδ

) (
note that

ϵδ2

m+ ϵδ
< δ

)
(8)

=
ϵδ2m

δ2(m+ ϵδ)− ϵδ3

=ϵ

This shows that the convergence (6) holds uniformly over A. (Note that rl depends on A, but the
condition (7) ensures that the bound (8) holds for all rl, i.e. for all A.)

To establish the uniform convergence of (5), we need to give attention to the logarithm function.
Following the uniform convergence of (6), simple results regarding the sums and products of
convergent sequences ensure that the argument of the logarithms in gn(A) converge uniformly.
We also note that the logarithm is a uniformly continuous function on [a,∞), a > 0 (a bounded
derivative implies uniform continuity). Combining these two facts provides uniform convergence of
the logarithms:

Let ϵ > 0. Then ∃ ξ > 0 s.t. for every x, y ∈ [a,∞) with |x − y| < ξ, we have that | log(x) −
log(y)| < ϵ (uniform continuity of the logarithm on [a,∞), a > 0). Using this ξ,∃ N s.t.

∣∣pA(bl, y)−
q(bl)

∑
h̸=l q(bh,y) exp{−∥Ablh∥2

2}∑
k ̸=l q(bk) exp{−∥Ablk∥2

2}

∣∣ < ξ ∀n > N,∀A (uniform convergence of the argument of the

logarithms in gn(A)). Provided that pA(bl, y) ∈ [a,∞) and q(bl)
∑

h̸=l q(bh,y) exp{−∥Ablh∥2
2}∑

k ̸=l q(bk) exp{−∥Ablk∥2
2}
∈ [a,∞),

19

this gives ∣∣∣∣∣log(pA(bl, y))− log

(
q(bl)

∑
h̸=l q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

)∣∣∣∣∣ < ϵ ∀n > N,∀A

=⇒ log(pA(bl, y))→ log

(
q(bl)

∑
h̸=l q(bh, y) exp{−∥Ablh∥22}∑
k ̸=l q(bk) exp{−∥Ablk∥22}

)
uniformly over A.

Therefore, the logarithms in gn(A) will preserve uniform convergence as long as their arguments
∈ [a,∞). The condition given by (4) in Section 3.3 ensures that this holds. With this, we establish
the uniform convergence of (5).

Appendix A.2. Gradient Derivation

We derive the gradient expression for ∂gn(A)/∂A given in Section 3.4. We let blh denote bl − bh.
Recalling

pA((bh, y)|bl) =
cyh exp{−∥Ablh∥22}∑
k ̸=l ck exp{−∥Ablk∥22}

, pA((bl, y)|bl) = 0,

plh =
∑
y∈Y

pA((bh, y)|bl),

and using that d∥Ax∥22/dA = 2Axx⊤, we have

∂pA((bh, y)|bl)
∂A

=

−2Ablhb
⊤
lhc

y
h exp{−∥Ablh∥22}

∑
k ̸=l ck exp{−∥Ablk∥22}

− cyh exp{−∥Ablh∥22}
∑

k ̸=l−2Ablkb⊤lkck exp{−∥Ablk∥22}(∑
k ̸=l ck exp{−∥Ablk∥22}

)2
= 2A

−blhb⊤lhpA((bh, y)|bl) + pA((bh, y)|bl)
∑
k ̸=l

blkb
⊤
lkplk

= 2A

pA((bh, y)|bl)

∑
k ̸=l

blkb
⊤
lkplk

− blhb
⊤
lh

 .

Therefore, making use of the identity, pA((bh, y)|bl) = plhq̂(y|bh),

∂
∑

h p
A((bh, y)|bl)
∂A

= 2A
∑
h̸=l

pA((bh, y)|bl)

∑
k ̸=l

blkb
⊤
lkplk

− blhb
⊤
lh

= 2A

pA(y|bl)
∑
k ̸=l

blkb
⊤
lkplk −

∑
h ̸=l

blhb
⊤
lhplhq̂(y|bh)

= 2A

∑
h̸=l

blhb
⊤
lhplh(p

A(y|bl)− q̂(y|bh)).

Now the gradient expression can be reached as follows:

gn(A) =

m∑
l=1

∑
y∈Y

q̂(bl, y) log

(
q̂(bl)

∑
h

pA((bh, y)|bl)

)
,

∂gn(A)

∂A
= 2A

m∑
l=1

∑
y∈Y

q̂(bl, y)
q̂(bl)

∑
h̸=l blhb

⊤
lhplh(p

A(y|bl)− q̂(y|bh))
q̂(bl)

∑
h p

A((bh, y)|bl)

= 2A

m∑
l=1

∑
y∈Y

q̂(bl, y)

∑
h ̸=l blhb

⊤
lhplh(p

A(y|bl)− q̂(y|bh))
pA(y|bl)

= 2A

m∑
l=1

∑
y∈Y

q̂(bl, y)
∑
h ̸=l

blhb
⊤
lhplh

(
1− q̂(y|bh)

pA(y|bl)

)
.

20

Appendix A.3. kNN Procedures

To assess the practical performance of the distance metrics considered in the paper, we performed
kNN classification in which k refers to the number of unique, non-identical neighbours and includes
all of their repeats. Algorithm 2 outlines the procedure that was followed. We use Dtest to denote
the set of query points which cover the subset of states, Xtest. For the state bl ∈ Xtest, we use
cyl (test) to denote the frequency of the pair (bl, y) in Dtest. Similarly, Dtrain, Xtrain, and cyl (train)
relate to the set of training points. The following figures in the paper are specifically constructed
from Algorithm 2 as follows:

1. Figure 6 (left): The metrics are trained on a dataset, Dn, where n is shown on the x-axis.
For each metric, the leave-one-out 1NN accuracy is calculated on a fixed dataset, D100,000.
That is, Algorithm 2 is applied with Xtest = Xtrain = X and Dtest = Dtrain = D100,000. For
each n marked on the x-axis, we repeat the process for 10 independent datasets of Dn, with
the average classification accuracy and ±1.96 standard errors plotted.

2. Figure 6 (right): We begin with a dataset, Dn, where n is shown on the x-axis, and perform
6-fold CV on the 36 states in X . For each fold, |Xtest| = 6 and |Xtrain| = 30, and the metrics are
trained on the dataset constructed as {cyl ∈ Dn | bl ∈ Xtrain}. The 1NN accuracy results are
again obtained from a fixed dataset D100,000. We construct Dtest = {cyl ∈ D100,000 | bl ∈ Xtest},
and Dtrain = {cyl ∈ D100,000 | bl ∈ Xtrain}. We plot the average 1NN accuracy and ±1.96
standard errors over the 6 folds and after repeating the metric training over 10 independent
datasets of Dn. The specific partitioning of the CV folds remained consistent throughout to
create a fair comparison over n.

3. Figure 8 (bottom right): 10 datasets of D18,402 = {cyl }
y∈Y
l : bl∈X were used. For each dataset,

the metric and kNN training states were taken to be those with at least 25 observations,
and those with fewer than 25 observations made up the test states. Specifically, Xtrain =
{bl ∈ X | cl ≥ 25}, Xtest = {bl ∈ X | cl < 25}, Dtrain = {cyl ∈ D18,402 | cl ≥ 25}, and
Dtest = {cyl ∈ D18,402 | cl < 25}. From the 10 repetitions, the plot shows the average kNN
accuracy and ±1.96 standard errors over a range of k.

Algorithm 2 kNN

Input: Xtest,Xtrain ⊆ X ,
Dtest = {cyl (test)}

y∈Y
l : bl∈Xtest

,

Dtrain = {cyl (train)}
y∈Y
l : bl∈Xtrain

,
A,
k < |Xtrain|

count← 0
for bl ∈ Xtest do
N k

l ← argminbh∈Xtrain\{bl}∥Abl −Abh∥2
while |N k

l | < k do
N k

l ← N k
l ∪ {argminbh∈Xtrain\({bl}∪Nk

l)∥Abl −Abh∥2}
end while
ŷ ← argmaxy∈Y{

∑
bh∈Nk

l
cyh(train)}

count← count + cŷl (test)
end for
Return: Accuracy← count/

∑
bl∈Xtest

∑
y∈Y cyl (test)

21

	Introduction
	Related Work
	Simulation Analytics
	Distance Metric Learning

	Methodology
	A Probabilistic Framework
	Relationship to NCA
	Convergence of Optimal Solutions
	Optimisation

	Experiments on Simulated Data
	A Tandem Queueing System
	Metric Embeddings.
	kNN Classification.
	Execution Time.

	A Wafer Fab Model
	Discussion

	Conclusion

