Charge Exchange-Driven Soft X-Ray Emission from Outer Planetary Magnetosheaths

Dan Naylor¹ (d.naylor@lancaster.ac.uk), L.C. Ray¹, W. Dunn², H.T. Smith³

1: Space and Planetary Physics Group, Department of Physics, Lancaster University, 2: UCL Department of Physics and Astronomy, 3: John Hopkins University Applied Physics Laboratory

Can X-Ray Emission be Detected from Planetary Magnetosheaths?

When magnetospheres are filled with neutral particles from moons and other sources, they can undergo charge exchange with heavily stripped solar wind ions within the magnetosheath. This leads to soft x-ray emission. Imaging the soft x-rays can give a global view of the magnetopause, bow shock and cusps. We apply a simple model to simulate charge exchange rates within the sheath, exploring volumetric emission and testing the viability of a SMILE-like SXI in imaging both the Saturnian and Uranian systems. We then explore how solar wind variations drive changes in emission structure and rate.

$$\begin{array}{c} \text{Volumetric Emission Rate (VER), } \rho \\ \rho = \sum_{n} n_{n} n_{q} v_{\text{rel}} \sigma_{sqn} b_{sqj} \\ \hline v_{\text{rel}} \sim \left(v_{\text{bulk}}^{2} + v_{\text{therm}}^{2} \right)^{1/2} \\ \hline \sigma_{sqn} = \text{Cross Section} \quad b_{sqj} = \text{Branching Ratio} \quad n_{n} = \text{Neutral Density} \\ n_{q} = \text{Ion Density} \quad v_{\text{rel}} = \text{Collision Velocity} \end{array}$$

Solar Wind Variations

- Saturn model: magnetosheath density fixed at 0.1 cm⁻³ (Sergis et al., 2013)
- 400 km s⁻¹ and 800 km s⁻¹ solar wind speed with dynamic pressure given by $p_{\rm dyn} = n_p m_p v_{\rm SW}^2$
- Uranus model: Tóth et al. (2004) Voyager 2 measurements of solar wind data, also scales ACE data to test how high speed and density affect emission. Both use O⁷⁺ abundances from Whittaker and Sembay (2016).

Saturn model assumes H-like cross sections for all species (Bodewits et al., 2007). Uranus model uses H-like and H₂O-like cross sections (Schwadron & Cravens, 2000)

SATURN MODEL

Magnetopause Location

Use Kanani at al. (2010) magnetopause model based on Cassini data:

URANUS MODEL

Magnetopause and Bow Shock Locations

- Impose Shue et al. (1997) magnetopause

	K	R_{SS} (R_U)
MP	0.6	16
BS	0.88	20

Configuration	Slow (h)	Fast (h)
~303 R _S	55.3	35.2
~178 R _S	16.3	10.9
Double FOV	5.21	3.62

Conclusions

- At both planets, significant emission region likely exists VER higher for fast solar wind - comparable at Saturn, one order greater at Uranus
- Modifications to current generation of SXIs required for giant-planet suitability
- At Saturn, VER likely underestimate due to non-Enceladus neutrals not included
 - Uranus model is highly simplified much more development to take place

Where Next?

- Uranus model is currently being developed into 3D (R
- After, a more complicated magnetopause surface, including cusps, will be developed
- Upcoming work: developing the neutral tori - scale heights, non-constant densities etc.

