
Action Formalism for

Measurement Induced Dynamics:

Topological and Thermal Aspects

Dominic Shea, MMath

Department of Physics

Lancaster University

A thesis submitted for the degree of

Doctor of Philosophy

November, 2024



Abstract

Feynman’s path integral is a formulation of quantum mechanics akin to analogous

formulations developed for stochastic processes and statistical physics. One

process that combines quantum dynamics with stochastic features and constitutes a

prevailing area of research is quantum measurement. Beyond past attempts, recent

advancements, exemplified by the Chantasari-Dressel-Jordan (CDJ) method, ex-

plore measurement-induced dynamics in continuously monitored quantum systems.

This thesis utilises the CDJ path integral to explore new emerging features

associated with measurement-induced dynamics. Firstly, we develop the CDJ path

integral to analyse geometric phases. Focusing on self-closing trajectories from

continuous measurements, we incorporate geometric phase information directly in

the path integral for a single qubit and demonstrate that the geometric phase of the

most likely trajectories exhibits a topological transition as a function of measurement

strength. We further address the effect of Gaussian fluctuations.

Secondly, we exploit the formalism to study measurement-induced entanglement

dynamics, where we combine the stochastic effect of measurements and that of

local unitary noise. We identify the optimal entanglement dynamics and develop

diagrammatic methods that produce a closed-form approximation of the average

entanglement dynamics. The optimal trajectories and diagrammatic expansion

capture the oscillations of entanglement at short times. We find by numerical

investigation that long-time steady-state entanglement reveals a non-monotonic

relationship between concurrence and noise strength.

Finally, we lay the basis for applying path integrals to fluctuation theorems by

devising a suitable single qubit protocol to verify a recently proposed fluctuation

theorem that governs the statistical behaviour of quantum systems far from

equilibrium. The proposed protocol is suitable for existing quantum architectures.

Our results provide a basis for extending the use of fluctuation theorems to many-

body systems, where geometric phases and entanglement play crucial roles in

classifying quantum order.
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Chapter 1

Introduction: Measurement

Induced Dynamics on the Rise

The path integral formalism plays a significant role in contemporary theoretical

physics. Reinvented and applied to non-relativistic quantum mechanics (QM) by

Feynman in 1948 [3], it stands alongside Heisenberg’s matrix operator approach [4,

5] and Schrödinger’s wave mechanics [6] as an independent third formulation of QM.

Feynman’s formulation is most closely associated with quantum field theory and

statistical mechanics [7, 8]. However, the powerful methods developed for tackling

path integrals in physics proved advantageous when applied to stochastic systems

more generally [9, 10]. Stochastic path integrals (SPIs), which predate the Feynman

path integral, trace their origin to Wiener in 1921 [11, 12]. SPIs are utilised within

diverse disciplines, from finance [13, 8] to neuroscience [10, 14]. Although significant

challenges remain in adequately describing the formal mathematics of Feynman path

integrals, SPIs have proven to be more tractable since it is possible to define a well-

behaved measure on the space of stochastic curves in a real-valued parameter space.

An example of one widely used formulation of the SPI was developed by Martin-

Siggia-Rose (MSR) in 1973 [15] specifically for classical statistical dynamics.

One prominent type of stochastic process in modern physics is quantum

measurement [16, 17, 18, 19], it has extraordinary practical, mathematical and

1



Chapter 1. Introduction: Measurement Induced Dynamics on the Rise

metaphysical significance [20, 21, 22] [23]. While the mathematical foundations

of quantum measurement were established by Von Neumann in 1932 [24], modern

research continues to elucidate further aspects of quantum measurements [21, 19],

expanding the growing list of associated phenomena. Since quantum measurements

are stochastic they are a natural candidate for exploiting path integral techniques.

However, in contrast to quantum unitary evolution and (classical) statistical

mechanics processes, measurement-induced stochasticity is state-dependent, adding

further complexity. To address monitored systems, Mensky adapted Feynman’s

integral [25, 26, 27], constraining which trajectories are summed over in keeping with

the recorded measurements. A different approach is considered in contemporary

work by Chantasari-Dressel-Jordan (CDJ) [28], where they apply the MSR path

integral to a continuously monitored quantum system, treating the measurement-

induced dynamics analogous to a classical walk through the systems state space.

This has led to a spate of research that uses the CDJ action formalism to investigate

both finite and infinite dimensional systems [29, 30, 31, 32, 33].

The path-integral approach to quantum measurement has gained significance

with the advent of the experimental ability to track measurement-induced quantum

trajectories [34, 28, 35, 36] and the associated technological applications, including

quantum feedback [37, 38]. A new wave in the development of measurement-

induced quantum dynamics is ongoing, spanning from technological applications

to information processing via error correction codes [39], to the engineering of

exotic states of many-body systems via engineered dissipation protocols [40], to

fundamental questions about many-body quantum order and entanglement along

quantum trajectories [41, 42, 43, 44]. Much of the original research described in this

thesis is based on applying the CDJ path integral as a tool adapted to investigate

new phenomena that emerge from measurement-induced dynamics.

The first phenomenon of interest is the geometric phase, aka the Berry phase,

which is discussed in Chapter 3. Introduced by Michael Berry in 1984 [45], the

geometric phase is highly significant in both quantum information theory and

2



condensed matter physics. In quantum computation, geometric phases offer a

promising route for implementing quantum gates on qubits [46]. These gates have

the potential to be more resistant to errors, overcoming a major hurdle in the race

to unlock the benefits of quantum computation [47, 48, 46, 18]. In condensed matter

physics, the Berry phase and its concomitant quantities are critical to understanding

topological phases of matter [49, 50] and their classification by topological invariants.

Geometric phases can be generated by measurements, a concept first discussed

by J. Samuel and R. Bhandari in 1988 [51] and subsequently confirmed through

experimental observations [52, 53]. Recent findings reveal that measurement-

induced dynamics feature a topological phenomenon involving the post-selected

geometric phase [54]. The critical independent variable delineating two distinct

topological regimes is the strength of the quasi-continuous1 measurement process

(or some equivalent dynamics). This intriguing phenomenon has been explored in

subsequent work [55, 56, 57, 58, 59, 60] and has been corroborated by experimental

findings [61]. In Chapter 3, we examine the properties of these geometric phases

under continuous quantum measurements using the CDJ path integral. This

approach enables us to probe measurement-induced geometric phases at the level

of individual trajectories, allowing us to identify a subset of self-closing quantum

trajectories that exhibit a new type of topological transition within their geometric

phase.

In Chapter 4, we drastically expand the scope of our investigations to include

a system consisting of two monitored qubits, the most straightforward system for

which we can investigate entanglement properties. The phenomenon of quantum

entanglement distinguishes quantum systems from their classical counterparts: it

is a central resource in quantum information processing [18, 62] and is vital to

understanding some properties of many-body systems, such as thermalisation,

1The limiting process that defines this measurement protocol is described in Section 2.2.4. In

contrast to continuous Gaussian measurements, which produce a continuous stream of readouts,

the resulting measurement readouts are a countable infinity of 0’s and 1’s.
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Chapter 1. Introduction: Measurement Induced Dynamics on the Rise

information scrambling and many-body localization [63, 64, 65, 66, 67, 68, 69,

62]. Recently, entanglement has been exploited to identify out-of-equilibrium

many-body states resulting from the stochastic dynamics of many body systems

subject to random unitary evolution and quantum monitoring [70, 71, 72, 73,

74]. This has witnessed the emergence of entanglement scaling transitions from

a volume to an area law in a many-body Zeno effect along with a broader

set of textcolorblackmeasurement-induced phase transitions (MiPTs) [41]. These

transitions appear when tracking the entanglement along individual quantum

trajectories correlated with the measurement readout (as opposed to measurement-

averaged dynamics) and have been reported in recent pioneering experiments [42,

43, 44].

We investigate measurement-induced entanglement transitions, for this purpose

our monitored two-qubit system is the most simplified setting wherein an entangle-

ment transition effect may arise. An external environmental influence is modelled

by Gaussian noises which buffet each qubit. Individual quantum trajectories are

analysed by incorporating the additional noise terms into the associated CDJ path

integral. In particular, we examine the most likely entanglement dynamics and

utilise diagrammatic methods to derive a closed-form approximation for the average

entanglement. Our analysis is supported by numerical simulations that benchmark

the performance of our closed-form expressions. These numerical simulations also

reveal the existence of a non-monotonic dependence of the entanglement on the noise

strength.

Finally, in Chapter 5, we examine the thermal properties of a monitored

single qubit system and study possible implementation protocols of a fluctuation

theorem along measurement-induced trajectories. Fluctuation theorems (FTs) are

exact relations for the statistical properties of thermodynamic quantities such as

work or entropy production in nonequilibrium processes [75, 76, 77]. They can

be viewed as an extension of the second law of thermodynamics to microscopic

processes where stochastic fluctuations become relevant, defining the field of

4



stochastic thermodynamics [78, 79, 80]. Generalising thermodynamics to include

stochastic quantum fluctuations is a current extensive research effort, and fluctuation

theorems have been successfully extended to the quantum case utilising a two-

point measurement scheme [81, 82, 83] which enables meaningful definitions of

thermodynamic variables. Exploring the role of coherence [84, 85, 86], and

entanglement [87, 88] is at the frontier of this effort. Fluctuation theorems have

been further extended to nonequilibrium quantum jump trajectories [89, 90] and to

unitary dynamics that are interrupted by a sequence of unital quantum channels [91,

92, 93]. They have also been derived for quantum systems’ work, energy and entropy

under unital dynamics [94, 95]. Quantum tomography may be used to investigate

the statistics of individual quantum trajectories and validate the aforementioned

FTs [96, 97, 98], with some of these experimental tests having already been carried

out [99, 100].

We focus here on a new fluctuation theorem valid for a generalised thermody-

namic description of quantum systems, including small systems undergoing open

system dynamics such as measurement, decoherence and thermal relaxation, which

has been developed by Manzano et al. [101, 102]. We develop a direct test of

Manzano’s fluctuation theorem (MFT) for a single qubit system. This turns out

to be possible through a generalised measurement scheme. We propose a feasible

experimental protocol suitable for available quantum architectures. Our analysis

of fluctuation theorems and the definition of a protocol provide a necessary step

toward the formulation of out-of-equilibrium fluctuation theorems within the CDJ

path-integral.

5



Chapter 2

Background: Quantum

Measurements, Path Integrals,

Geometric Phases and Fluctuation

Theorems

Introducing key background material built upon throughout the rest of this thesis,

we provide a basic overview of the most salient aspects of quantum measurement,

geometric phases, functional integrals and fluctuation theorems. We are begin-

ning with a discussion of quantum measurements with a particular emphasis on

continuous quantum measurement before summarising quantum channels and the

Lindblad equation. We then describe various approaches to geometric phases before

narrowing the focus to phases arising from measurement dynamics. Path integrals

of multiple types are examined, an essential tool in our research. Additionally, three

modern, highly relevant results are introduced, upon which much of the work in

this thesis is built directly: A topological transition in the post-selected geometric

phase, the path integral formulation of quantum measurements with emphasis on the

CDJ formulation, and a nonequilibrium fluctuation theorem applicable to general

quantum trajectories. Preceding the discussion of the nonequilibrium fluctuation

6



2.1. Measurement Induced Dynamics

theorem, we review Crooks fluctuation theorem in its original formulation.

2.1 Measurement Induced Dynamics

Quantum systems evolve according to two distinct types of dynamics: unitary

evolutions and non-unitary measurement back action. The unitary part of the

dynamics is specified by a Hamiltonian operator, H, that drives the system

continuously according to Schrödinger’s equation,

H|ψ⟩ = iℏ
d

dt
|ψ⟩. (2.1)

Quantum measurements cause the non-unitary backaction and may be described

by a set of Kraus (or measurement) operators {Mi} that update the system state

vector, |ψ⟩ 7→ |ψ′⟩, according to the rule,

|ψ′⟩ = Mi|ψ⟩√
⟨ψ|M †

iMi|ψ⟩
. (2.2)

Each possible measurement readout has an associated Kraus operator. These

operators can be projection operators (satisfyingM2
i = Mi) representing familiar von

Neumann-type measurements [24]. However, Kraus operators belong to a broader

class of operators obeying the restriction,

∑
i

M †
iMi = I, (2.3)

which defines a generalized positive operator-valued measure (POVM) on a finite

dimensional space [17, 16, 18]. This accounts for the greater flexibility available

to experimenters who typically do not collapse system states onto an orthogonal

eigenstate of some target observable; the post-measurement state is usually a more

complex superposition. Generalized measurements were first delineated by Neumark

(1943) [23], who modelled them using an extended Hilbert space. Let HS be the

Hilbert space for the system and let HA be an ancillary space, we may then form

a combined state space HS ⊗ HA. The system and ancilla interact, producing an

7
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entangled state in HS ⊗ HA, a projective measurement of only the ancillary system

results in the backaction given by Eq. (2.2) on the system in HS where Mi may

belong to any POVM. We illustrate this with an example in Section 2.1.2.

2.1.1 Continuous Measurement

A measurement’s influence on a system’s state is typically treated as an instanta-

neous effect. However, sometimes this instantaneous treatment is inadequate [17].

Any experimental measurement collects information over a non-zero duration; in

cases where the system’s unitary evolution would produce a significant change in

the system state within the duration of measurement, a more detailed description of

the dynamics is required. Additionally, where a measurement continuously reports

results (e.g. a measurement of current strength), it is necessary to know the system’s

state during the measurement process. Such continuous quantum measurements are

crucial in feedback control, quantum information, metrology and computing [18, 19]

and are utilised heavily throughout this thesis.

In concordance with the regular principles of quantum mechanics, we describe

continuous measurement using measurement operators. For continuous measure-

ments, these Kraus operators do not, in general, collapse the post-measurement

state onto eigenstates |a⟩, with associated eigenvalues a, for some target observable

A on the system’s Hilbert space HS. A continuous measurement corresponds

to an experimental procedure that extracts information (concomitantly produces

backaction) in proportion to the measurement’s duration. Thus an ephemeral

measurement has a minuscule effect on the system’s state. To model this, we must

define a Kraus operator, M(δt), that depends on the duration of measurement δt

and satisfies the limit, lim
δt→0

M(δt) → I. For simplicity, we disregard the case where

M has an explicit time dependence t, assuming that the details of the measurement

process are time-independent. To continuously measure the target observable A, we

assume the ancillary system is large enough to support operators with a continuous

spectrum. The continuous measurement then consists of a family of Kraus operators

8



2.1. Measurement Induced Dynamics

that have a Gaussian form,

Mδt(r) = 4

√
4kδt
π

∑
a

e−2kδt(a−r)2 |a⟩⟨a|, (2.4)

believed to be the only kind of continuous measurement featuring a continuous

stream of measurement results 1 [16, 103]. The index r corresponds to the possible

measurement readout, which is an unbounded real number. Accordingly, we require

a continuous infinity of Kraus operators to represent the measurement, with the

normalisation in Eq. (2.1) converted to integral form,

∫
M †Mdr = I. (2.5)

The parameter k appearing in Eq. (2.4) controls the magnitude of the measurement

back action for some fixed δt. The complete process is defined by taking the limit

of a sequence of N such measurements with δt → 0 whilst imposing the condition

Nδt → T , where T is the period of the entire process. Considering the dynamics in

the δt → 0 limit calls for the toolkit of stochastic calculus, leading to the stochastic

Schrödinger equation. In the following Section, we sketch the explicit construction of

a continuous measurement characterised by the backaction of the form in Eq. (2.4).

2.1.2 Gaussian Qubit Measurement

An implementation of continuous Gaussian measurement has been achieved for qubit

systems in a double quantum dot setup [104, 105, 106]. Recapitulating the results of

Ref. [107] as adapted in Refs. [108, 28]: A charged qubit is capacitively coupled to a

Quantum Point Contact (QPC), a nanoscale semiconductor with a tunable quantised

conductance. The particle is subject to a double-well potential with localised ground
1For measurements with independent readout increments (Lèvy processes) the two recognized

types of continuous measurements are Gaussian and point processes. Point processes arise from a

series of discrete detector clicks occurring at random intervals, rather than producing a genuinely

continuous stream of readouts. Ref. [103] presents evidence that the only type of Lèvy process

that can realize a truly continuous measurement is of the Gaussian variety.
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states, |0⟩ and |1⟩. This gives rise to an effective qubit Hamiltonian with the form

H = ϵ
2σz + ∆

2 σx, where ϵ is the energy splitting and ∆ is the tunnelling rate.

The current flow through the QPC depends on the qubit’s position. Assume

the value of current, I, within the time interval, t and t + δt, for the particle at

site’s |0⟩ or |1⟩ will be Gaussian distributed according to the functions Pcurrent(I||0⟩)

and Pcurrent(I||1⟩) with means Ī0 and Ī1 and a common standard deviation σ. For

convenience, we rewrite these distributions, using the dimensionless measurement

readout r = (I−Ī)
∆Ī where Ī = (Ī0+Ī1)

2 and ∆Ī = (Ī0−Ī1)
2 . In this transformed variable,

the readout distributions for the charged particle in state’s |0⟩ and |1⟩ are given by,

P (r|0) = 1
2πτδt exp

{
−(r − 1)2

δt

1
2τ

}
, (2.6)

P (r|1) = 1
2πτδt exp

{
−(r + 1)2

δt

1
2τ

}
. (2.7)

In Eqs. (2.6) and (2.7), we characterised the distributions using, τ , instead of σ.

We introduce the parameter τ to represent the timescale necessary to differentiate

between the |0⟩ and |1⟩ qubit states. For n measurements of duration δt, the ⟨I⟩

standard deviation scales as σ/
√
n. We define τ := δtn0, where n0 is the value of n

for which twice the current standard deviation separates the states |0⟩ and |1⟩. So

2σ/√n0 = |I1 − I0|, hence,

τ = 4σ2δt

|I1 − I0|2
. (2.8)

From Eqs. (2.6) and (2.7) we reverse engineer the Kraus operators that model

this experimental set up using Bayes rule2,

P (A|B) = P (B|A)P (A)
P (B) , (2.9)

we construct Kraus operators for our r measurements. Let the particle’s state be

given by the generic density operator,

ρ =

ρ00 ρ01

ρ10 ρ11

 , (2.10)

2In Eq. (2.9), A and B are generic events, and P (A|B) is the conditional probability of A given

B.
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2.1. Measurement Induced Dynamics

expressed in the |0⟩, |1⟩ basis. This ensures that, ρ00 = P (0), and ρ11 = P (1). A

conditional post-measurement state ρr then has elements,

ρ00|r = P (0|r) = P (r|0)ρ00

P (r|0)ρ00 + P (r|1)ρ11
, (2.11)

ρ11|r = P (1|r) = P (r|1)ρ11

P (r|0)ρ00 + P (r|1)ρ11
. (2.12)

After a measurement, any pure state (Tr[ρ2] = 1) will remain pure if there is no

extra source of decoherence; this fact is used to determine the off-diagonal elements

ρ01|r and ρ10|r. From Eqs. (2.11) and (2.12) , and the action of a Kraus operator

on a density operator (ρr = MρM†

Tr[MρM†]), we can deduce the required measurement

operator,

Mδt(r) =
√
P (r|0)|0⟩⟨0| +

√
P (r|1)|1⟩⟨1| (2.13)

=
(

δt

2πτm

)1/4

exp
(

− δt

4τm
(r − σz)2

)
.

We highlight that Eq. (2.13) has the form specified in Eq. (2.4).

2.1.3 Quantum Channels

A description of open quantum systems necessitates using the density operator

formalism, mentioned in Section 2.1.2, wherein a probabilistic mixture of pure

quantum states is combined into a single positive-definite, hermitian, trace one

operator. The tensor product structure of the underlying Hilbert spaces, H =

HS ⊗ HE is inherited by the density state formalism, so for the bipartite product

state, ρ = ρS ⊗ρE, the matrix ρS is associated with degrees of freedom from HS and

the matrix ρE is likewise for subsystem E.

A density operator associated with one subsystem may always be recovered by

employing the partial trace operation 3. Independently, a unitary transformation
3This is the mapping, ρ 7→ ρ′, which is defined by, Tr[Aρ′] = Tr[(A ⊗ I)ρ]. Where I corresponds

to the degrees of freedom we discard (aka trace over) and the arbitrary operator A is an observable

on the system’s degrees of freedom. So TrE [ρ] := ρ′.
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U = e−iℏHt, directed by the Hamiltonian H, maps density operators as ρ → σ

through the relationship σ = UρU †. A mapping from the reduced state ρS to E(ρS)

for some initially uncorrelated system and environment product state is given by

E(ρS) = TrE[U(ρS ⊗ ρE)U †] where TrE is a partial trace over the environmental

degrees of freedom. The transformation E always has the following properties:

• Trace-preserving: Tr[E(ρS)] = Tr[ρS].

• Convex Linearity: E(∑i piρi) = ∑
i piE(ρi) where pi ∈ R and ∑i pi = 1.

• Completely Positivity: When the map is extended to act on some arbitrary

non-interacting ancillary system (E ⊗ I), the resulting state must be positive.

A map with these properties is a quantum channel or CPTP (completely positive

trace-preserving) map, and the Kraus operator sum representation theorem [18]

states that any CPTP map admits a (non-unique) Kraus operator representation

E(ρ) =
∑
i

MiρM
†
i . (2.14)

The set of Kraus operators {Mi} satisfies the completeness relation Eq. (2.15),

guaranteeing the map is trace-preserving,
∑
i

M †
iMi = I. (2.15)

The Kraus operator decomposition immediately suggests an interpretation. Each

term in Eq. (2.14) corresponds to the generalised measurement outcome realised with

probability pi = Tr[MiρMi]. Therefore, when applying E we may construe the result

as a convex combination of the outcomes from this measurement process weighted by

their probability. Thus, the dynamics of an open system can be framed in terms of

an affiliated generalised measurement. We make use of this property in Section 5.1.

2.1.4 The Lindblad Equation

Following the heuristic derivation in Ref. [109], we describe how to obtain and

understand the Lindblad Equation from infinitesimally short-duration quantum

12



2.1. Measurement Induced Dynamics

channels. The Schrodinger equation, generating a closed system’s unitary dynamics,

is specified for a density operator in the time infinitesimal form,

ρ(t+ δt) = ρ(t) − iδt[H, ρ(t)]. (2.16)

As discussed in Section 2.1.3, any Markovian evolution for an open system may

be specified by a quantum channel, in an infinitesimal interval δt this channel is

generically expressed as,

ρ(t+ δt) = Eδt(ρ(t)) = (I + δtL)ρ(t). (2.17)

Eq. (2.17) entails an unentangled system and environment at each step in the

evolution. The infinitesimal expansion of Eq. (2.17) implies ρ̇ = L(ρ). L, which

generates the open system evolution, is named the Lindbladian. Invariably, the

channel E admits a Kraus operator decomposition

Eδt(ρ(t)) =
∑
i

Miρ(t)M †
i = ρ(t) +O(δt). (2.18)

Keeping terms up to order δt, we assume M1 takes the form I+Zδt, and Mj is of

the form
√
δtLj for j > 1, where the operators Li are called Lindblad jump operators.

With these assumptions M1 in Eq. (2.18) describes the state evolution in the absence

of Lindblad jumps. The collection of operators {Mj} describes transformations that

probabilistically occur during the interval δt. A time-ordered list of transformations

realized during the average dynamics comprise a quantum trajectory. The operator,

Z, may be written as the sum of two hermitian operators Z = −(iH + K). The

completeness relation Eq. (2.15) then ensures that K = −1
2
∑
i>0 L

†
jLj. Using these

transformed form of the Kraus operators in Eq. (2.18) implies the Lindblad equation,

ρ̇ = L(ρ) = −i[H, ρ] +
∑
j>1

(
LjρL

†
j − 1

2L
†
jLjρ− 1

2ρL
†
jLj

)
. (2.19)

Here L is a linear mapping. Juxtaposing L with Eq. (2.16) we clearly see the

leading term in L(ρ) captures the unitary component of the dynamics. The

jump operations correspond to stochastic processes like dissipation or continuous
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measurement backaction. In the latter case, the Lindblad dynamics is the expected

dynamics of a measured system where the measurement record has been discarded

(i.e. the non-selective dynamics). Each LiρL
†
i term induces measurement back-

action, while the term −1
2L

†
jLjρ− 1

2ρL
†
jLj provides state normalization. These effects

combine in a dissipator notation defined as D[Lj](ρ) = LiρL
†
i − 1

2L
†
jLjρ − 1

2ρL
†
jLj.

A more comprehensive discussion is available in Ref. [110].

2.2 Geometric Phases

Anytime a pure state of a system undergoes a closed evolution, it may accumulate

an overall phase factor relative to its initial state. A measurable part of this acquired

phase, the geometric phase, results from parallel transport through the systems’s

curved state space. These geometric phases are ubiquitous across the various sub-

disciplines of theoretical physics [111]. Despite their pervasiveness, it was not until

S. Pancharatnam in 1956 that the influence of geometric phases was first reported;

materialising in classical optics [112]. It took the introduction of the Berry Phase

in 1984 for the notion of geometric phases to be appreciated in quantum mechanics.

This was soon followed by the introduction of the Hannay angle in 1985 for classical

dynamics [113]. Empirical investigations quickly access these geometric phases. In

1986 A. Tomita and R.Y. Chiao observed linearly polarised photons will change

polarisation angle when crossing a twisted optical fibre, this rotation corresponded

to an acquired geometric phase [114].

2.2.1 Berry-Simon Approach to the Geometric Phase

Berry’s original conceptualization of the QM geometric phase was devised for a

parameterised Hamiltonian system. This elementary formulation relies on only

the Schrödinger equation and the adiabatic approximation. B. Simon would later
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discover the essence of the Berry phase, identifying the presence of a vector bundle4

over the parameter space and pinpointing the geometric phase as an element of

this bundle’s holonomy group5 [115]. Geometric phases are crucial to identifying

topological phases of matter like quantum Hall phases, topological insulators and

superconductors [111, 49, 50, 116], and have been exploited in the design of high-

fidelity quantum gates that are more resilient to the effect or random noise than

dynamic gates [117, 46].

Consider a generic Hamiltonian H(X(t)), where X(t) are time-dependent

parameters. The instantaneous energy eigenbasis, is a solution to the energy

eigenvalue problem at a particular time t,

H(X(t))|n(X(t))⟩ = En(X(t))|n(X(t))⟩. (2.20)

A global gauge for the mapping X → |n(X)⟩ may not be available: so a smooth

one-to-one mapping from X to |n(X)⟩ may be unobtainable. This difficulty arises

when the continuity of the mapping forces the phase of at least one eigenstate to

be ambiguous. Nevertheless, local gauges still exist, so multiple gauges defined on

non-identical overlapping domains, specifies a relationship between the two spaces.

We now make use of the adiabatic approximation [118], provided that X(t) is

changing slowly enough, then the solution to the TDSE

i|ψ̇⟩ = H(X)|ψ⟩, (2.21)

is well approximated by a wave function that takes the form

|ψ⟩ ≈ eiβ|n(X)⟩, (2.22)
4A fibre bundle is formed of a continuous mapping between two topological spaces. A base space

and a total space. The total space locally resembles a product of the base space and an additional

typical fibre space. The defining property of a vector bundle is that its typical fibre is a vector

space.
5The holonomy group of a vector bundle are the group of linear transformations that result

from parallel transporting a vector along closed paths based in the bundle. Consult Ref. [111] or

an equivalent resource for the full exposition.
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where, arbitrarily, β(0) = 0. Now, substituting Eq. (2.22) into Eq. (2.21) we find

H(X)|ψ⟩ = −β̇|ψ⟩ + ieiβ|ṅ⟩. (2.23)

Multiplying from the left by ⟨ψ(t)|, and reorganising terms, results in the equation

⟨ψ|β̇|ψ⟩ = −⟨ψ|H|ψ⟩ + i⟨n|ṅ⟩. (2.24)

The state normalisation ⟨ψ(t)|ψ(t)⟩ = 1 simplifies the left hand side of Eq. (2.24),

then integrating over time from 0 to T we obtain

β(T ) = −
∫ T

0
⟨ψ|H(X)|ψ⟩dt+ i

∫ T

0
⟨n(X)| d

dt
|n(X)⟩dt. (2.25)

This accrued global phase of a system’s quantum state is an unmeasurable U(1)

gauge freedom (i.e. belongs to the space of phases eiα). When a system is driven

adiabatically in a closed cycle, the accumulated phase is given by Eq. (2.25) and

β(T ) is gauge invariant and, therefore, experimentally accessible [119, 120]. The

first term of Eq. (2.25) is the dynamical phase and depends on the duration of the

evolution. The second term is the Berry phase, which depends exclusively on the

path taken through the Hamiltonian’s parameter space. This integral over time

converts into an integral over the Hamiltonian parameters

i
∫ T

0
⟨n(X)| d

dt
|n(X)⟩dt = i

∮ X(T )

X(0)
⟨n(X|∇X|n(X⟩ · dX. (2.26)

The result of Eq. (2.26) is time independent. The quantity, A = i⟨n(X(t))|∇X|n(X(t))⟩,

is known as the Berry vector potential (or Berry connection). Using Stokes theorem,

we transform Eq. (2.26) into an integral over the surface enclosed by the loop,

i
∮ X(T )

X(0)
A · dX =

∫
Γ

∇X × A dS. (2.27)

Here Γ is the surface in parameters space enclosed by the cycle, and dS is a surface

element. We may then identify the integrand of the resulting expression, the gauge-

independent quantity ∇X × A, as the Berry curvature.
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2.2.2 Aharonov-Anandan Approach to the Geometric Phase

In 1987, Aharonov and Anandan generalised Berry’s phase to generic continuous

evolutions introducing a new flavour of geometric phase, the Aharonov-Anandan

phase. Similar to the Berry-Simon approach, the Aharnovo-Anandan phase is

defined as a holonomy element of a fibre bundle; however, the base space of the

bundle is built from the system’s state space [111, 121, 122]. This enables a general

treatment of geometric phases in quantum systems at the expense of being more

recondite. The approach dispenses with the need for a Hamiltonian parameter

space, and where the Hamiltonian is present, the need for an adiabatic evolution is

obviated. The assortment of dynamics subject to the Aharonov-Anandan approach

is so diverse a geometric phase can even be associated with continuous measurement

back-action [16, 17]. A compact discussion of this approach is presented here, with

further details available in Refs. [54, 111].

The Aharonov-Anandan approach proceeds as follows: A ray in Hilbert space is

an equivalence class of vectors that differ by, at most, a phase, |ψ⟩ ∼ eiα|ψ⟩. The

appropriate base space of the Aharonov-Anandan bundle is the system’s projective

Hilbert space, denoted P(h),6 it is equivalent to the space of rank one projections

|ψ⟩⟨ψ|). This is assembled by endowing the set of rays with the quotient topology

and metric inherited from the original Hilbert space7. One example of a projective

Hilbert space is the Bloch sphere, where a two-dimensional space of complex vectors

encodes a real two-dimensional sphere. A many-to-one map from each normalised

state vector into its associated ray serves as the canonical projection in a principal

U(1)-fibre bundle, where each typical fibre is diffeomorphic8 to the smooth (Lie)

group U(1) [111, 54]. A Hamiltonian and an initial state specifies a curve, γ(t),

through the projective space. An arbitrary choice of gauge, |n⟩, smoothly maps

6Here the Hilbert space h consists of only normalised vectors.
7The quotient topology is the topology on a quotient space where a subset is open if and only

if its preimage under the quotient map is open in the original space.
8Two manifolds are diffeomorphic if there exists a smooth, bijective map with a smooth inverse

between them.
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some open region of the projective space into its linked fibre elements, so the map

|n(q)⟩ : P(h) 7→ h (2.28)

can promote curves in projective space into a family of wavefunctions γ(t) 7→

|n(γ(t))⟩. An evolution which is closed in the projective space may be open in

the normalised Hilbert space [γ(T ) = γ(0) ≠⇒ |γ(T )⟩ = |γ(0)⟩]9. Since these

peripheral states are equivalent a gauge-invariant comparison may be made between

them.

This accumulated phase difference may be decomposed into a dynamical and

a geometric phase. The geometric phase shift is gained by parallel transporting

the arbitrary initial phase along the system’s path in the projective space; it is

a consequence of Berry curvature (see Eq. (2.36)) and depends exclusively on the

chosen path. The necessary condition for parallel transport of a normalised state

is [46],

⟨ψ(t)| ˙ψ(t)⟩ = 0. (2.29)

The dynamical phase is the remainder and depends on the average energy and

cycle duration. Take the example from Sjoqvist’s discussion of geometric phases

in Ref. [46]. An arbitrary superposition of two energy eigenstates |E1⟩ and |E2⟩

undergoes some unitary evolution,

|ψ(t)⟩ = α exp (−iE1t) |E1⟩ + β exp (−iE2t) |E2⟩. (2.30)

This state cycles with a period T = 2π
E2−E1

, and corresponds to the curve λ(t) in

P(h). After one cycle this system has accumulated a global phase,

|ψ(T )⟩ = exp
(

−i 2πE1

E2 − E1

)
|ψ(0)⟩. (2.31)

The accrued phase factor, exp
(
−i 2πE1

E2−E1

)
10, may be split into a geometric and

9Here |γ(0)⟩ is any vector such that |γ(0)⟩⟨γ(0)| corresponds to the point γ(0) and similarly for

|γ(T )⟩. We have that |γ(0)⟩ ∼ |γ(T )⟩.
10Which could equivalently be calculated as exp

(
−i 2πE2

E2−E1

)
. This choice leads to χgeom =

2π|α|2, which differs by exactly 2π from the equation derived in the text.
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dynamical component11 as

χgeom = 2π|β|2,

χdyn = − 2π
E2 − E1︸ ︷︷ ︸

T

|α|2E1 + |β|2E2︸ ︷︷ ︸
⟨E⟩

 . (2.32)

Similar to the Eq. (2.25) these two contributions can be calculated from the formula,

χglobal = −
∫ T

0
⟨ψ(t)|H|ψ(t)⟩dt+ i

∫ T

0
⟨n(λ(t))| d

dt
|n(λ(t))⟩dt. (2.33)

Where in place of a mapping from a Hamiltonian parameter space X, we use the

gauge defined by |n(λ(t))⟩ = e−iarg[⟨ψ(0)|ψ(t)⟩]|ψ(t)⟩. The derivation of Eq. (2.33)

proceeds in the same manner as demonstrated for Eq. (2.25). We may again identify

the integrand of Eq. (2.33)

A = i⟨n(γ(t))| d
dt

|n(γ(t))⟩dt, (2.34)

with the Berry potential, which is a gauge-dependent one-form. The geometric

component of the phase is again the contribution from the Berry potential

χgeom =
∫
γ
Adt. (2.35)

The exterior derivative12 of the Berry potential dA gives the related gauge-

independent Berry curvature. The geometric phase is then given, again employing

Stokes theorem, by

χgeom =
∫

Γ
dA, (2.36)

where Γ is the surface in projective space enclosed by γ. This component of the

global phase depends entirely on the path through projective space. We further

draw the reader’s attention to the fact that Eq. (2.35) can apply to open paths in

configuration space. In these cases, the resulting phase contributes towards the open
11We note that when calculated for E1 → E2 and E2 → E1 the period and average energy both

change value, and the equation for the geometric phase changes sign, χgeom = −2π|β|2.
12See e.g. Ref. [111].
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geometric phase. When the associated path is closed, we refer to the phase as the

closed geometric phase. We discuss the geometric significance of the open geometric

phase in Section 2.2.3. The two separate but interrelated approaches to describing

geometric phases are completely reconciled by a bundle-morphism structure [123].

2.2.3 Measurement Induced Geometric Phases

It is clear how the Aharonov-Anandan formalism applies to continuous dynamics

but its administration is more abstruse for a discontinuous time-ordered sequence

of pure states; such as those that would arise from a course of measurements. We

further observe that for measurement-induced effects, the dynamics (and, therefore,

the associated phases) acquire stochastic properties. This issue of how exactly to

treat geometric phases for discontinuous dynamics was elucidated by J. Samuel and

R. Bandhari [51] in 1988.

The strategy employed adapted the Pancharnatnam phase to quantum systems.

The relative phase between two non-orthogonal state vectors is defined as the phase

angle of their inner product,

χA,B = arg
[
⟨ψA|ψB⟩

]
. (2.37)

Consider a collection of points {qi} for i ∈ 1, ..., N in projective space, and an

arbitrary choice of gauge |ñ⟩ which maps that points into corresponding normalised

elements of the Hilbert space {qi} 7→ h. For the post-selected back action of a single

projective measurement

|ϕ⟩ = |ñ(q2)⟩⟨ñ(q2)|︸ ︷︷ ︸
measurement

ñ(q1)⟩ = ⟨ñ(q2)|ñ(q1)⟩︸ ︷︷ ︸
phase factor

|ñ(q2)⟩, (2.38)

the induced global phase is the relative phase arg
[
⟨ñ(q2)|ñ(q1)⟩

]
and is inherently

gauge dependent. For a chronological cycle of N states, with q1 = qN , generated

by a sequence of projective measurements, the global Pancharatnam phase χp is

accumulated by multiplying together successive relative phase factors,

|ψf⟩ = |ñ(qN)⟩⟨ñ(qN)|...|ñ(q2)⟩⟨ñ(q2)|ñ(q1)⟩, (2.39)
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χp = arg
[
⟨ñ(qN)|...|ñ(q2)⟩⟨ñ(q2)|ñ(q1)⟩

]
. (2.40)

Since the initial and final states belong to the same ray, |ψ̃i⟩ = |Ñ⟩ ∝ |ψf⟩, the phase

difference in Eq. (2.39) is therefore a gauge invariant quantity.

We now establish the geometric character of χp. We utilise the following essential

theorem13: There exists a certain gauge |n∗⟩ such that the relative phase between

|n∗(qi)⟩ and |n∗(qi+1)⟩ vanishes for all i. Suppose γi(t) specifies a length minimizing

geodesic between qi and qi+1, from t = ti to t = ti+1. The gauge |n∗⟩ is constructed

from the parallel transport of |ñ(q0)⟩ along γi. We track the phase difference between

the parallel transport gauge and our arbitrary gauge, so |n∗(γ(t))⟩ = eiβ(t)|ñ(γ(t))⟩

with β(0) = 0. The phase accumulated in Eq. (2.38), corresponding to one projective

measurement, is found from

⟨ñ(q2)|ñ(q1)⟩ = ⟨ñ(q2)|ñ(q1)⟩
|⟨ñ(q2)|ñ(q1)⟩|

(2.41)

= ⟨n∗(q2)|e−iβ(t2)|n∗(q1)⟩
|⟨ñ(q2)|ñ(q1)⟩|

= e−iβ(t2)

Where we have used the fact that successive |n∗(qi)⟩ are in phase. The gauge

invariant accumulated phase in Eq. (2.39) is given by the sum

χp = −
∑
i

(β(ti+1) − β(ti)) = −β(T ). (2.42)

Since β(T ) gives the phase difference between the parallel transport of |ñ(t1)⟩ along

γ, χp is similarly endowed with this geometric meaning. The phase accumulated

may be computed through the geometric component of Eq. (2.33),

χp = −i
∫ T

0
⟨ñ(γ(t))| d

dt
|ñ(γ(t))⟩dt. (2.43)

The Pancharatnam phase in Eq. (2.39) is equivalent to consecutive parallel

transports along a concatenated path of shortest geodesics. This phase has the

unmistakable character of a geometric phase, being determined by the enclosed
13Proved in Ref. [111]
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Berry curvature Eq. (2.36). For a qubit, the geometric phase for a closed loop on

the Bloch sphere is proportional to the solid angle enclosed by the loop. Hence, the

geometric phase for a cyclical discrete set of post-measurement states is proportional

to the solid angle enclosed by the length-minimising geodesics connecting the

states [111].

The above applies, mutatis mutandis, to generalised measurements. The caveat

is the potential for a dynamic phase contribution during the measurement protocol.

This potentiality arises because nonprojective measurements invariably involve

the influence of an interaction Hamiltonian between the system and detector.

Nevertheless, non-projective measurements without a dynamical phase are possible.

Any measurement back action, M , satisfying the parallel transport condition

⟨ψ|M †|ψ⟩ > 0, (2.44)

which demands ⟨ψ|M †|ψ⟩ is real and positive, cannot induce a dynamical phase.

Satisfying this condition allows the measurement-induced geometric phase to be

directly observed in an interferometer setup [54]. We further note that a similar

argument applies to the case of open geometric phases. The phase contribution from

the continuous but open trajectory, given by Eq. (2.35) may be added to the relative

phase arg[⟨ψ(0)|ψ(T )⟩], this sum then becomes a gauge invariant quantity. The value

of the induced, gauge invariant phase is then equal to the result of concatenating

the path |ψ(t)⟩⟨ψ(t)| with a self-closing shortest geodesic and feeding this modified

path into Eq. (2.35).

Research into measurement-induced geometric phases has often concentrated

on associating a version of the geometric phase to the averaged (mixed) state

described by a density matrix, either via the Uhlmann phase [124, 125, 126] or

through the interferometric geometric phase [127, 128, 129]. It is only recently

that the statistical properties of the geometric phase along individual stochastic

realisations (aka quantum trajectories) have begun to be investigated [54, 55, 130,

55, 56, 57]. One feature that emerges upon such a detailed investigation is a new

type of topological transition.
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2.2.4 Topological Features of Measurement Induced Geo-

metric Phases

Recently, it has been shown that geometric phases arising from a particular

measurement protocol and post-selection exhibit a topological transition as a

function of the measurement strength [54, 130, 72]. We will recapitulate the main

features of this transition here, basing the discussion on the model used in the

first prediction of this topological effect. This original model consists of a qubit

subject to a sequence of cyclically rotating measurements. Further work has shown

that the topological nature of the transition is a more generic feature of single

qubit measurement-induced dynamics, including different measurement procedures

and protocols, as well as Hamiltonian dynamics and dephasing [55, 56, 57]. The

phenomenon is robust against several perturbations, including additional adiabatic

dynamics and dephasing [131, 61]. This, in turn, has facilitated the experimental

observation in superconducting and optical architectures [61, 60]. We note that this

transition is distinct from the topological order transition induced by measurements

in many-body systems [132, 133, 134, 135, 136].

Gebhart et al. [54] consider the measurement-induced geometric phase subject

to a quasi-continuous sequence of weak measurements of the observable σz on a

qubit system. Take the Bloch sphere representation of the projective Hilbert space

in conventional spherical coordinates. The back action for each of the two possible

measurement outcomes, when the basis of the Hilbert space coincides with the weak

measurements target eigenstates, is specified by the Kraus operators14,

M1 =

1 0

0
√

1 − η

 , (2.45)

M0 =

0 0

0 √
η

 . (2.46)

14In Ref. [131] it is demonstrated that a range of binary Kraus operators may be chosen which

all go on to exhibit a topological transition within their post-selected geometric phases.
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The dimensionless parameter η characterises the strength of the measurement. This

measurement is applied along the measurement axis

nk = (sin(Θk) cos(Φk), sin(Θk) sin(Φk), cos(Θk), (2.47)

where Φk = 2πk
N

and N is the total number of measurements read off and Θk is

chosen to be some fixed value Θ0 for the entire sequence. This specifies some cyclical

measurement sequence at a fixed latitude on the qubit system’s Bloch sphere. The

qubit rotation matrix

R(Θk,Φk) = e− 1
2 iΦkexp

[1
2i(Θkσ2 + Φkσ3)

]
(2.48)

may be used to determine the exact form of the Kraus operators Eq. (2.45) and (2.46)

at each step in the process via the transformation E
1/0
k = RM1/0R. The entire

measurement protocol is defined by taking the limit N → ∞ and η → 0, where η is

chosen to depend on N to produce non-trivial dynamics via η = 4c
N

. The parameter c,

defined through the limiting procedure, serves as a measurement strength parameter

of the entire sequence of measurements since single measurements have a vanishing

measurement strength.

Post-selecting the ensuing dynamics for a sequence of readouts associated solely

with M1 results in a quantum trajectory that depends on both the measurement

latitude and measurement strength (Fig. 2.1). The quantum trajectory generally

remains open, except in the strong measurement limit where the state scrupulously

follows the measurement axis. An open geometric phase may be associated with

the post-selected trajectory. This phase can be directly generated using a final

von Neumann measurement that projects the system’s state back onto its original

position in projective space, following another post-selection that discards the

unwanted outcomes from the final projection.

This sequence of measurements (in addition to the final post-selection) may be

implemented along the equator of the Bloch sphere; in this case, a state with an

initialisation, (ϕ(0) = Φ(0), θ(0) = π
2 ), must remain on the equator of the Bloch

sphere simplifying the dynamics to be one-dimensional. A sharp transition in

24



2.2. Geometric Phases

Figure 2.1: (Reproduced directly from Ref. [54]) [Left] Measurement-induced

geometric phase against Θ (labeled as θ in the figure). Red lines are the phase

accrued by all M1 quantum trajectories plotted for two different measurement

strengths c. [Center & Right] The Θ-dependent family of M1 quantum trajectories

illustrated on the Bloch sphere for c = 2.1 (center) and c = 2.2 (right). The yellow

portion of each trajectory corresponds to the length-minimizing geodesic.

the value of the geometric phase then occurs. No phase is accrued in the weak

measurement regime with c ≤ 2.1. In the strong regime with c ≥ 2.2, a phase of

−π is produced. This may be understood as originating from the topology of the

Bloch sphere equator (which is just S1). When the state has not been driven more

than halfway around the equator, the final strong measurement returns the system

to its initial configuration via a length-minimising geodesic that doubles back along

the state’s trajectory, enclosing no area on the Bloch sphere. States driven more

than halfway around the Bloch sphere must be concatenated with a final length-

minimising geodesic that encircles the entire upper half of the Bloch sphere. This

effect will serve as a signature of a transition across the entire Bloch sphere.

Gebhart et al. investigated this procedure for state preparations, across the

Bloch sphere. The spaces topology enforces a sharp transition of geometric phase

as a function of measurement strength. Choosing a family of trajectories specified

by the initial conditions and measurement protocols with Θ(0) = θ(0) ∈ [0, π], and

ϕ(0) = Φ(0), establishes a mapping between the sphere spanned by the direction of

measurement operators, n(t), and the Bloch sphere through the Kraus operator M1.
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It is then demonstrated that this mapping undergoes a topological transition [54]

as a function of the measurement strength c from a phase in which the image of

the trajectories covers the Bloch sphere to one in which it fails to cover the entire

sphere. A Chern number,

C ≡ 1
2π

∫ π

0
dΘ

∫ 1

0
Bdt = 1

2π (χ(π) − χ(0)), (2.49)

with B(Θ, t) = Im{∂t⟨ψ|∂Θ|ψ⟩ − ∂Θ⟨ψ|∂t|ψ⟩}, distinguishes these two topological

regimes. The Chern number can take discrete values, C = −1 or C = 0, which

are directly related to the dependence of the geometric phase as shown in the last

step of Eq. (2.49). The topological transition of this mapping is then manifest in the

measurement-induced geometric phase as a function of measurement latitude, χ(Θ),

bifurcating the function into monotonic and non-monotonic regimes. The critical

value of c for which this transition occurs is determined at the Bloch sphere equator.

The mapping [0, π] ∋ Θ → χ ∈ [0, 2π] is in fact a mapping S1 → S1 with winding

number w = 0, 1.The latter is equivalently determined by w = [χ(π/2) − χ(0)]/π ∈

{0, 1}.

2.3 Action Formalism for Measurement Induced

Dynamics

Here, we concisely introduce the Feynman path integral, the type of functional

integral with which physicists are typically most familiar. We use the prototypical

example of a nonrelativistic one-dimensional single-particle to illustrate the main

idea. We also acquaint the reader with the earliest approach, due to M.B.

Mensky [26], to use path integral methods to treat quantum measurement. We

illustrate how Mensky’s approach operates for Gaussian monitoring and draw a

connection to non-Hermitian quantum mechanics.

Work by Chantasri-Dressel-Jordan [28, 29, 34] has led to the development of

a new approach to investigate continuous Gaussian quantum measurements using
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astochastic path integral (SPI). The version of SPI they develop calculates state

transition probabilities as a weighted summation of all possible quantum trajectories

that enact the transition. It shares in common with the Martin-Siggia-Rose (MSR)

approach to classical stochastic systems, the introduction of conjugate momenta

variables that enforce dynamical constraints that apply to the system. This enables

the assignment of a stochastic action, a generalisation of the usual probability

density, to each trajectory. The CDJ method’s predictions have been experimentally

validated in qubit systems [32, 33, 31] and have been applied to other systems,

including the harmonic oscillator [137]. We review the main features of both these

SPI formulations in Sections 2.3.2.1 and 2.3.2.2.

2.3.1 Path Integrals for Amplitudes

2.3.1.1 Feynman Path Integral

The original, approximately coeval formulations of quantum mechanics were

Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics. These ap-

proaches describe the evolution of a quantum system in terms of partial differential

equations describing the evolution of wave functions or via the application of unitary

matrices U = e−iHt applied to vectors in Hilbert space. Feynman introduced

a third equivalent formulation, based upon a functional integral, in the 1940s.

This approach has the virtue of explicitly connecting a system’s dynamics to some

associated classical trajectories, offering a more intuitive perspective.

The main idea of the Feynman path integral is to consider all possible paths that

a classical particle could take between two points in configuration space within a

specified time interval. Each path contributes to the overall probability amplitude

of the particle’s motion. The probability amplitude for a particle to move from an

initial state to a final state is obtained by summing the contributions of all possible

paths. This is accomplished by assigning a phase to each path and then summing

over all possible paths in state space. We emphasise these paths do not need to

satisfy the classical principle of least action: any path satisfying the necessary
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boundary conditions is sufficient.

The Feynman path integral is expressed mathematically as

K(xf , tf ;xi, ti) =
∫

D[x(t)]eiS[x(t)]. (2.50)

Here, K is interpreted as the probability amplitude for the particle to move from

(xi, ti) to (xf , tf ), D[x(t)] represents a path integral over all possible paths, and

S[x(t)] is the action of the classical system that has been quantised. To demonstrate,

we consider the quintessential example of a time-independent Hamiltonian H =
p2

2m + V (x) driving a system over time T divided into N time steps,

K(xf , tf ;xi, ti) = ⟨xf |
(
e−iH∆t

)N
|xi⟩ (2.51)

=
∫ N−1∏

j=1
dxj⟨xf |U(∆t)|xN−1⟩⟨xN−1|U(∆t)|xN−2⟩...⟨x1|U(∆t)|xi⟩.

In Eq. (2.51), ∆t = T
N

and U(∆t) = e−iH( T
N

). Inserting the resolution of the identity

for the momentum eigenstates I =
∫

|p⟩⟨p|dp and ⟨x|p⟩ = 1√
2πe

ipx and using eAB ≈(
e

A
N e

B
N

)N
for arbitrary operators15, we obtain

K(xf , tf ;xi, ti) = (2.52)

=
∫ N−1∏

j=1
dxj

∫ N−1∏
j=0

dpj
1√
2π
eipN−1xf ⟨PN−1|ei

p2
2m

∆teiV (x)∆t|xN−1⟩⟨xN−1|pN−2⟩ . . .

=
∫ N−1∏

j=1
dxj

∫ N−1∏
j=0

dpj
1√
2π
eipN−1(xf −xN−1)ei

p2
2m

∆teiV (x)∆t × · · · × .

Letting T = −iτ and ∆τ = τ
N

= i∆t then applying a sequence of algebraic

manipulations we find,

K(xf , tf ;xi, ti) ≈ (2.53)∫ N−1∏
j=1

dxj

∫ N−1∏
k=0

dpk

e− ∆t
2m

(pN−1− im
∆t

(xf −xN−1))2− m
2∆t

(xf −xN−1)2
eiV (x) T

N · · · × . . .


=
∫ N−1∏

j=1
dxj

∫ N−1∏
k=0

dpk

√ m

2π∆τ e
− m

2
(xf −xN−1)2

∆τ eiV (x) T
N · · · × . . .


=
∫ N−1∏

j=1
dxj

√
m

2π∆τ
N
e− m

2
(xf −xN−1)2

∆τ
+∆τV (xN−1) · · · × . . .


15The error of this approximation decreases for large N .
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The approximation becomes exact once the limit N → ∞ is taken so

K(xf , tf ;xi, ti) = lim
N→∞

√
m

2π∆τ
N ∫ N−1∏

j=1
e

−i∆t

((
xj+1−xj

∆t

)2

−V (xj)

)
dxj. (2.54)

This limit defines the Feynman path integral for the one-dimensional spinless

particle governed by a time-independent Hamiltonian. This is usually written in

the shortened form presented in Eq. (2.50). It is also typical to encounter path

integrals that are defined in phase space; in this case, the action functional takes the

form S[q, p] =
∫ T

0 (pq̇−H(p, q, t))dt and there is an additional functional integration

over the momentum variable with no specified boundary conditions. While path

integrals of this type deal exclusively with the unitary dynamics of a system, later

work [26, 27, 138] has succeeded in incorporating measurement-induced dynamics

into the path integral formulation.

2.3.1.2 Restricted Path Integral

In the usual formulations of quantum mechanics, the influence of measurements,

discrete or continuous, are straightforwardly described using Kraus operators, as

discussed in Section 2.1. Assimilating the effect of measurements in the path integral

formulation of quantum mechanics may be achieved by effectively restricting the

paths through phase space that are integrated over. This encodes the backaction

of the measurement on the system into the calculated probability amplitudes. This

leads to the restricted path integral (RPI), which was developed by M.B. Mensky [26]

and C.M. Caves [27] and foreseen by Feynman [3]. We follow the introduction to

RPIs given by Mensky in Ref. [138].

The ‘restriction’ in the restricted path integral is determined by the information

the measurement supplies about the system. Consider the Feynman path integral,

as described in 2.3.1.1, given by

⟨qf |U |qi⟩ =
∫

D[p]D[q]ei
∫ T

0 (pq̇−H(p,q,t))dt. (2.55)

In cases where a classical particle would be excluded from an entire portion of

its phase space, such as in the case of a particle in a box with impenetrable
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walls, the integration in Eq. (2.55) may proceed over phase space paths that are

compatible with this restriction- paths that wander outside the confines of the box

are extraneous to the calculation. In this sense, even regular Feynman path integrals

may have implicit restrictions on their functional domain.

If some generic quantum system is then subject to continuous measurement, a

combination of the Kraus operators from Section 2.1.1 and the usual unitary driving

combine to produce a new readout dependent propagator, Ur(t), where the readout

r(t) is a continuous stochastic function. The set of Ur is subject to the completeness

relation,
∫
dr(Ur)†Ur = 1, ensuring conservation of probability. A new path integral

may then be used to express these propagators,

⟨qf |Ur|qi⟩ =
∫

D[p]D[q]wr[p, q]ei
∫ T

0 (pq̇−H(p,q,t))dt. (2.56)

Eq. (2.56) is identical to Eq. (2.55) except for the addition of a supplementary

functional wr[p, q] that takes into account the information gleaned from the readout

r(t) by assigning a probability density wr[p, q] to every possible path. Heuristically,

this function expresses how likely a phase space path (p(t), q(t)) is expected to be

realised given that the readout r(t) is observed - imposing a penalty for classical

paths that would be unlikely to coincide with the readout r(t). The probability

density associated with r(t) during a measurement readout is given by

P (r ∈ A) =
∫
A
drTrUrρi(Ur)†. (2.57)

For example, consider continuously monitoring the observable A(t) with some

known classical form A(p, q, t). The measurement r(t) then characterises the values

of this observable at t. Take the square average deflection 1
T

∫ T
0 [A(t) − r(t)]2dt as a

measure of the deviation of A(p, q, t) from the value of the output r(t). In this case

wr[p, q] may be described by assigning a gaussian distribution,

wr[p, q] = e
− 1

T (∆rT )2
∫ T

0 [A(t)−r(t)]2 dt
. (2.58)

Here, ∆r specifies the measurement error, and T is the period of the monitoring

process overall. The correct choice of functional in Eq. (2.58) depends on the nature
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of the monitoring the system is subjected to. With Eq. (2.58) the path integral in

Eq. (2.56) becomes

Ur(qf , qi, T ) =
∫

D[p]D[q]ei
∫ T

0 (pq̇−H)dt− 1
T (∆aT )2

∫ T

0 [A(p,q,t)−r(t)]2 dt
, (2.59)

which may be evaluated or, if necessary, approximated using assorted methods.

The dynamics implied by Eq. (2.59) are driven by an effective non-Hermitian

Hamiltonian,

Hr(p, q, t) = H(p, q, t) − i

T (∆aT )2 [A(p, q, t) − r(t)]2. (2.60)

This links the RPI with an alternative strategy for a continuously monitored or open

system: non-Hermitian theory solves the Schrödinger equation with an effective non-

Hermitian Hamiltonian

∂

∂t
|ψ⟩ =

(
−iH − 1

T (∆rT )2 (A− r(t))2
)

|ψ⟩. (2.61)

Normalising the solution gives the post-measurement state; the unnormalised

magnitude of the state vectors corresponds to the probability of obtaining r(t). The

average density matrix associated with the resultant post-measurement ensemble is

specified by

ρ̇ = −i[H, ρ] −
(

1
T (∆rT )2

)2

[A, [A, ρ]]. (2.62)

2.3.2 Stochastic Path Integrals

Although physicists are most familiar with path integrals of the kind introduced by

Feynman, historically, the sum over trajectories approach was introduced by Wiener

in the early 20th century specifically to deal with classically stochastic systems [11,

12]. This approach involves expressing a transition probability as a summation of all

the stochastic trajectories that might facilitate the state transition weighted by their

respective likelihoods (depending on the context, the log of the path probability

is sometimes called the stochastic action, the Onsanger-Malchup functional, or

the MSR action [139, 140]). Stochastic systems may be modelled by stochastic
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differential equations (SDEs), which can rarely be solved in closed form. This then

necessitates the use of approximate methods. By expressing stochastic systems as

path integrals, approximations such as WKB expansions, variational approaches and

perturbative expansions [9, 8] may be applied systematically [141]. Onsager and

Machlup applied stochastic path integrals to analyse out-of-equilibrium stochastic

processes, providing insights into diffusion-like phenomena [142]. Advancing theory

and experimental techniques highlight the importance of SPI as an investigative tool.

They are being employed to investigate novel phenomena triggered by noise, such

as noise-induced phase transitions and stochastic resonance [143, 144, 145, 146].

2.3.2.1 Martin-Siggia-Rose Path Integral

An example of an advantageous variant of the stochastic path integral method is the

Martin-Siggia-Rose approach developed for classical statistical dynamics [147, 148].

Consider a simple stochastic system described by the SDE, q̇ = −q(t) + η(t), with

some gaussian white noise satisfying ⟨η(t)η(t′)⟩ = δ(t− t′). Any arbitrary functional

F [q] may be expressed in the form of a SPI

⟨F [q]⟩ =
〈 ∫

DqF [q]δ(q̇ + q − η)
〉
. (2.63)

The functional integration is over all paths in configuration space. However, the

Dirac-delta function enforces the constraints imposed by the SDE governing the

system dynamics -since not all paths in configuration space will be accessible during

the stochastic dynamics.

Making use of the defnition, Dp = limn→∞
∏
i dpi, and rewriting the delta

function using the formula

δ(t) ∝
∫ ∞

−∞
eipqdp (2.64)

which introduces the response field p. Eq. (2.65) becomes

⟨F [q]⟩ =
〈 ∫

DqDpF [q]e−i
∫
p(q̇+q−η)dt

〉
. (2.65)

Separating out the term that depends on η and performing the averaging over this

stochastic variable we find ⟨ei
∫

(pη)dt⟩ = e
∫
p2dt and so Eq. (2.65) is then expressed
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as a path integral directly16

⟨F [q]⟩ =
∫

DqDpF [q]e−i
∫
p(q̇+q)+p2dt. (2.66)

This exact procedure may be followed to construct a path integral for a system

governed by any SDE, including systems with coloured noise. In general the MSR

path integral takes the form

⟨F [x(t)]⟩ =
∫

DqDp] F [x(t)] e−S[x,x̃], (2.67)

where for an SDE with

q̇(t) = M(q) +H(q)ξ(t)

and the following noise correlator ⟨ξ(q, t)ξ(q′, t′)⟩ = H(q, t, q′, t′) the action

functional becomes

S[q, p] =
∫
ip[q̇ −M(q)] + σ

2H(q)2p2dt. (2.68)

Although the example chosen above admits a closed-form solution, for Eq. (2.67)

such a solution will not generically be available. Fortunately, various approximate

methods can be systematically employed to produce approximate solutions for the

original dynamics.

One such approach uses Generating functions, a mathematical tool that encodes

all moments of the stochastic process in its functional derivatives with respect

to some extra variables λ(ti), λ̃(tj). We may use Eq. (2.66) to produce a

moment-generating function, choosing F [q] = e
∫
λ(ti)q(ti)+λ̃(tJ )p(tj)dtidtj .This moment-

generating function may be approximated by separating the action into a solvable

Gaussian part dubbed the free action Sf and then Expanding the remaining part of

the integrand SI as

G(J, J̃) =
∫

Dx(t)Dx̃(t)e−Sf

∞∑
n=0

(−1)nS
n
I

n! . (2.69)

Provided there is some reason that the error introduced by terminating the expansion

at some finite order will be small, then Eq. (2.69) will be useful. The resulting
16Here we ignore the overall normalisation constant.
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functional ⟨F [q]⟩ = G(λ, λ̃) may then be used to generate approximations of

the moments and moment generating functions via the successive application of

variational derivatives i.e.

〈 i∏
m

j∏
n

q(ti)p(tj)
〉

= 1
G(0, 0)

i∏
m

j∏
n

δ

δJ(ti)
δ

δJ̃(tj)
G
∣∣∣∣∣
J=J̃=0

. (2.70)

Note that in addition to moments ⟨qn⟩, we may readily generate two-point

correlation functions ⟨q(t1)q(t2)⟩, which provide information about the statistical

correlations between different points in space and time, defined to be the average of

the product of two state parameters over all possible configurations of the system.

The two-point correlator of electron spin might indicate whether spins tend to align

or anti-align at different spatial positions. Furthermore, the decay of correlations

with distance or time can provide insights into a system’s characteristic length scales

or time scales.

The MSR path integral method is beneficial for studying nonequilibrium thermo-

dynamics systems, where traditional equilibrium statistical mechanics methods are

not directly applicable. The MSR path integral Eq. (2.67) makes it especially easy

to calculate linear response functions ⟨q(ti)p(tj)⟩, which describe the relationship

between a system’s response and an external stimulus or perturbation. Specifically,

it quantifies how the system reacts to minute disturbances which slightly perturb it

from thermodynamic equilibrium.

2.3.2.2 Chantasari-Dressel-Jordan Path Integral

As a central tool used in this thesis, we review the CDJ path integral more closely

than the preceding path integral formulations. The density operator of a quantum

state may be generically parameterised by real coordinates qi, using an orthogonal

operator basis {σ̂i},

ρ̂ =
D2−1∑
j=1

qjσ̂j, (2.71)

where D is the dimension of the Hilbert space associated with the system. Now,

suppose we subject our parameterised state to some unitary evolution and measure

34



2.3. Action Formalism for Measurement Induced Dynamics

the state at regular intervals δt; for each time interval, we have the general state

update equation,

ρ̂(t+ δt) = Uδtρ̂(t)U †
δt

Tr[Uδtρ̂(t)U †
δt]
, (2.72)

where Uδt = exp(− i
ℏĤδt)Mδt is the product of the unitary evolution operator and

a Kraus operator associated with some generalised measurement performed on the

system. The joint probability density function for the state parameters {q} (which

are vectors with dimension D2 − 1) and measurement readouts {r} at the end of

each time interval is

P [{q}, {r}] = F0,N

n−1∏
i=0

P (qi+1, ri−1|qi), (2.73)

given some generic initial and final conditions (qin,qf ) encoded in the Dirac-delta

functions F0,n = δ(q−1 − qin)δ(qn − qf ). Each factor in the product may itself

be written as the product of a Dirac-delta function and some readout probability

P (r|q). The delta function can then be written in exponential form at the cost of

introducing a new set of conjugate coordinates {p}, obtaining the equation

P [{q}, {r}] = F0,N

n−1∏
i=0

1
2πi

∫ i∞

−i∞
exp(−pi · (qi+1 − qi − δtL[qi, ri]))P (ri|qi)dpi.

(2.74)

Here these delta functions are integrated along contours with endpoints at ±i∞.

Following convention [147] we have applied a wick rotation (pk → −ipk) to the inte-

gral representation of the Dirac-delta function (Eq. (2.64))17.Taking this expression

into the continuum limit, with measurements whose strength is proportional to δt,

the joint probability function is expressible as a path integral

P (q(t), r(t),qf |qi) =
∫

Dp(t)eS[q,p,r], (2.75)

S =
∫

−p · q̇ +p · L[q, r] + F [q, r]︸ ︷︷ ︸
Stochastic Hamiltonian

−p · (q − qi)δ(t)−p · (q − qf )δ(t−T )dt. (2.76)

17This avoids the appearance of a mixture of real and imaginary terms in the exponent. This

is especially convenient since every CDJ stochastic action will evaluate to a real number when fed

an accessible quantum trajectory and readout pair.
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Here, the functional S is the stochastic action. The functional L[q, r] is the

derivative of the state parameters for a given (continuous) measurement readout. It

may be determined by finding the linear expansion in δt of the right-hand side of

Eq. (2.72) given the parameterisation in Eq. (2.71). The second functional F [q, r],

can be found in the linear expansion of

lnP (r|q) = ln(Tr[Uδtρ̂(t)U †
δt]). (2.77)

The nonphysical conjugate variable p, essentially a continuum version of a

Lagrangian multiplier, can give useful insights into the physics of continuously

measured systems. The sum of stochastic action for each of these nonphysical paths

around a single quantum trajectory will reproduce the probability density of that

path

P (q(t)|qi) =
∫

Dp(t)eS[q,p,r]. (2.78)

The probability density function for a final state given an initial state is given by

P (qf |qi) =
∫

Dp(t)Dq(t)Dr(t)eS[q,p,r]. (2.79)

Treating the conjugate momenta as real and the extremizing the stochastic action

produces a system of ordinary differential equations equivalent to the continuum

limit of a Lagrange multiplier optimisation of the function P (r|q). Hence, solutions

to the system of ordinary differential equations solved for some given boundary

conditions are significant because they give the paths most likely to be followed

between any two states. Specifying initial conditions instead gives optimum paths

for a series of post selections at different times.

An example of explicitly calculating a CDJ path integral is provided for the

trivial, one-dimensional, stochastic action pq̇. The CDJ SPI is then,

P (q(T )|q(0) =
∫

DpDqDre
∫ T

0 dtpq̇ =
∫

DpDqe
∫ T

0 dtpq̇. (2.80)

In principle, we may always transform back and forth between the continuous limit
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and discrete time; this transformation is encoded in the rules,
∫
dt → δt

n∑
j

, q(t) → pi, p(t) → pi, δ(p(0) − qin) → δ(q−1 − qin),

δ(p(T ) − qf ) → δ(qn − qf ),
∫

DpDq →
∫ ∫

lim
n→∞,δt→0
δtn=T

n∏
j=1

dqj
2π

dpj
2πi.

(2.81)

Eq. (2.80) then becomes,

P (q|q0) = F0,n

∫ ∫
lim
n→∞

n∏
j=1

dqj
2π

dpj
2πie

δtΣn
j pj(

qj+1−qj
δt

). (2.82)

We proceed to explicitly calculate this by first making he substitution pj = ikj, and

then cancelling the δt’s, so

P (qn|q0) = F0,n

∫ ∫
lim
n→∞

n∏
j=1

dqj
2π

dkj
2π e

δtΣn
j ikj(

qj+1−θj

δt
)

= F0,n

∫ ∫
lim
n→∞

n∏
j=1

dqj
2π

dkj
2π e

Σn
j ikj(qj+1−qj).

(2.83)

Changing from Fourier to Dirac-delta functions, we find,

P (qn|q0) =
∫

lim
n→∞

n∏
j=1

dqj
2π

n∏
j

δ(qj+1 − qj)qiδj,1qfδj,n = δ(qf − qi). (2.84)

As expected, the trivial stochastic action enforces the constraint q̇ = 0.

2.4 Fluctuation Theorems

The thermodynamic properties of systems in equilibrium, undergoing no macro-

scopic evolution, are well understood. The state in thermodynamic equilibrium π

is known to depend on the system’s Hamiltonian, H (with energy spectrum {Ei})

and the inverse temperature β as,

π = e−βH

Z
. (2.85)

The partition function Z = Tr[e−βH ] may be utilised to calculate and predict

macroscopic, experimentally accessible thermodynamic properties such as the
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specific heat capacity and average energy. However, understanding and quantifying

the behaviour of out-of-equilibrium systems is more challenging.

Near equilibrium, the deviation of the system’s properties from unperturbed

values can be calculated using linear response functions [149, 150]. Fluctuation

theorems (FTs), which relate forward and backward thermodynamic processes, are

incredibly general statements. They put stringent conditions on the distributions

of thermodynamic quantities, such as work and entropy production, even in the

far-from-equilibrium regime. Perhaps the most famous of these FTs is Crook’s

Fluctuation Theorem (CFT) developed by Gavin E. Crooks in 1998 [151], which

implies the celebrated Jarzynski equality [152, 153]. In its original formulation, CFT

applies to stochastic dynamics. Using the assumption that the system’s state may

be considered a classical probability distribution over energy eigenstates, the CFT

may be applied to quantum systems. However, this approach neglects the effects of

interference. Fully quantum mechanical FTs were developed in the decades following

Crooks and Jarzynski’s original work [154, 155, 156]. These quantum FTs employ a

two-point measurement scheme - which is a prerequisite for meaningfully discussing

observable properties of a system, such as the energy, which are indeterminate in

the absence of measurement [81]. One prominent example of a quantum mechanical

variant of an FT is due to Manzano [101, 102].

2.4.1 Crook’s Fluctuation Theorem

We follow the method described in the original research [151] to set out Crooks FT.

When applying work to a system as part of some thermodynamic process, we may

consider the Hamiltonian H(λ(t)) with the spectrum Ei(λ(t)). Here λ(t) specifies

how an experimenter may control the system’s Hamiltonian in a form-invariant18

manor during the time interval t ∈ [0, T ]. This produces a time-dependent energy

spectrum of the system. The system’s statistics may be approximated as a diagonal-

18Form-invariant in the sense that the form of the Hamiltonian’s dependence on the parameter

λ is unchanged irrespective of the value of λ.
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j

E

Figure 2.2: An illustration of the kind of stochastic dynamics covered by CFT. Two

distinct energy levels (indicated by blue and black lines) are plotted against the step-

index j. Vertical dashed lines delineate successive steps. The red dot represents the

system state. For half the steps the system may jump between distinct energy levels,

in the other half the state remains within a fixed energy level while the energy levels

vary.

density matrix written in the instantaneous energy basis. For this section, we employ

a somewhat idiosyncratic conceptualization of a quantum trajectory σ. Consider

N time steps occurring between t ∈ [0, T ], at each time step j ∈ (0, N) we let

the function x(j) specify which of the i energy levels the system occupies. Each

step in the dynamics then consists of first a stochastic jump between energy levels

from E(tj)x(j) to E(tj)x(j+1), and secondly a possible change in energy within a

level E(tj)x(j+1) to E(tj+1)x(j+1). We see that σ is an ordered list of all of these

values σ = (..., E(tj)x(j), E(tj)x(j+1), E(tj+1)x(j+1), ...). This behaviour is illustrated

in Fig. (2.2). For a given trajectory σ, we may identify heat exchange with the

random hops between energy levels,

Q[σ] =
∑
j

(E(tj)x(j+1) − E(tj)x(j)), (2.86)
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while the work may be readily identified with energy changes associated with changes

within the energy levels

W [σ] =
∑
j

(E(tj+1)x(j+1) − E(tj)x(j+1)). (2.87)

The overall stochastic dynamics is Markovian and may be specified by a series of

N transition matrices whose j-th member is specified by the elements, M(tj)p,q =

P (p; tj+1|q; tj), where P (p|q) specifies the probability of a jump between energy level

q and p at time tj. The stochastic dynamics is assumed to satisfy the condition,

M(tj)π(tj) = π(tj) = e−βH(tj)

Z
. (2.88)

Eq. (2.88) implies that the dynamics, if applied to an equilibrium probability

distribution, would leave it unchanged. If the protocol λ(t) is replaced with λ(T−t),

the stochastic dynamics may be specified by a series of reversed Kraus operators

M̃ = πMTπ−1, (2.89)

applied in the reverse order.

Eq. (2.89) establishes a relationship between the forward and reverse transition

probabilities. The ratio of the probability between the forward and reverse

probability in Eq. (2.90) may then be simplified since M̃ji = π−1
i Mjiπj, revealing

the distribution is controlled by the heat in σ

P (σ|x(0))
P̃ (σ̃|x̃(0))

= eβQ[σ]. (2.90)

When we have a system in a specific energy eigenstate that occurs with

probability ρ(x)19, the entropy of that state is, s(x) = − ln ρ(x), and represents

how much information is required to fully describe it. For some ensemble, the total

entropy is given by S(x) −∑
x ρ(x) ln ρ(x).

Consider an evolving process, with an initial probability distribution ρ(x(0)) and

a final distribution ρ(x(T )). The entropy production per trajectory is

ω = ln ρ (x(τ)) − ln ρ (x(0)) − βQ[x(t)]. (2.91)
19This corresponds to diagonal elements of the system’s density matrix in the energy eigenbasis,

so ρ(x) = ρ(t)x(t),x(t).
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This quantity ω combines two key elements: how the uncertainty of the system’s

state changes, plus entropy changes in the surrounding environment. We note that

ωF = −βQ[σ] corresponds to the change in entropy in the environment. We further

observe that the entropy produced along the corresponding trajectories σ and σ̃

will be ωf and −ωf respectively. Using these initial probabilities and performing a

summation over all trajectories σ gives an expression for the probability of producing

the entropy ω, P (ω) via any stochastic trajectory,

P (ω) =
∑
x(0)

∑
x(T )

∑
σ

ρ(x(0))P (σ|x(0))δ(ω,ωF (σ))

 (2.92)

(2.93)

We then insert Eq. (2.90) and the condition that x(T ) = x̃(0), we derive the following

equation

P (ω) =
∑
x̃(0)

∑
x̃(T )

∑
σ̃

ρ(x̃(0))P̃ (σ̃|x̃(0))eωF (σ̃)δ(ω,ωF (σ̃))


= eωP̃ (−ω). (2.94)

This results in the fluctuation theorem in terms of entropy production,

P (ω)
P̃ (−ω)

= eω, (2.95)

which is then found to hold for a variety of thermodynamic ensembles.

2.4.2 Nonequilibrium Potential for Quantum Channels

We continue exploring thermodynamic systems governed by H(λ(t)), discussing one

generalisation of fluctuation theorems which accounts for the effects of interference.

Although there are a variety of such generalisations, we are particularly interested

in a fluctuation theorem proposed by Manzano which applies to a wide range of

dynamics. The dynamics of a subsystem interacting with its environment can be

described by a CPTP map E . We show how Manzano’s theorem may be derived for

open systems subject to CPTP dynamics.
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In contrast to the previous case, where the dynamics are confined to diagonal

density matrices, we cannot directly equate work with Eq. (2.87) and heat

with Eq. (2.86). Instead, the total work done to the system is given by the

energy difference between the initial and final state of the combined system

and environment. For describing the thermodynamics of more general quantum

dynamics, Manzano introduces a new quantity, the nonequilibrium potential ϕi.

Every CPTP map E admits at least one fixed point (or invariant state) which satisfies

E(π) = π. (2.96)

Here, π is, in general, not an equilibrium density matrix. The nonequilibrium

potentials for a given CPTP map are defined to be

ϕi = − ln(πi), (2.97)

where πi is an eigenvalue of the map’s fixed state.

If the class of CPTP maps is restricted to those that admit a Kraus operator

representation of the form

Mk =
∑
ij

mk
ji|πj⟩⟨πi|, (2.98)

where mji = 0 if ϕi−ϕj ̸= ∆ϕk, then each Mk will be unambiguously associated with

some value ∆ϕk. These Kraus operators specify more general stochastic dynamics

than their counterparts in Eq. (2.88) since they allow for transition into coherent

superpositions of eigenstates of π. If multiple fixed states of E exist, the values

{∆ϕk} are independent of the particular choice of fixed state. Indeed, {∆ϕk} may

be considered a property of the channel as a whole, independent of a chosen Kraus

representation. Knowledge of a time-ordered sequence of values for the index ki

specifies a quantum trajectory.

There is a reduced system dynamics associated with the system-bath time-

reversed dynamics ΘH(λ(T − t))Θ†, provided we make a weak coupling approxi-

mation between the system and environment. These reduced dynamics are specified

by the dual map Ẽ . The Kraus representation of Ẽ , with the matrices {M̃}),
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determines the map. The Kraus operators of the dual map are related to the Kraus

representation of the original CPTP map by

M̃ = Aπ
1
2Mπ− 1

2 A†. (2.99)

We note that this is analogous to Eq. (2.89). Eq. (2.99) ensures the dual reverse

Kraus operators, for some arbitrary choice of unitary or anti-unitary operator A,

and an invariant state of E satisfy the property

Tr[Mk2Mk1πM
†
k1M

†
k2 ] = Tr[M̃k1M̃k2 π̃M̃

†
k2M̃

†
k1 ]. (2.100)

Where π̃ = AπA† is the invariant state for the dual dynamics. It may be shown that

for quantum channel E that admits a Kraus representation of the form Eq. (2.98)

the forward and dual Kraus operators satisfy the detailed balance relation

M̃ = e
∆ϕ

2 AM †A. (2.101)

We now specify a protocol to obtain specific quantum trajectories and their dual

trajectories. Consider a system with reduced dynamics E and let the system be

initially prepared in the state |ψn⟩. Each Kraus operator in the decomposition of

E can be associated with a specific physical process occurring during the dynamics.

Knowledge of which Mk induces back action on the state provides information about

the exact quantum trajectory taken by the system. Complete this procedure with

a final projective measurement onto the system state |ϕm⟩. The corresponding

quantum trajectory may then be specified by the sequence (n, k,m). This trajectory

has a corresponding dual trajectory. For the reverse dual dynamics initialise the

system’s state with A|ϕm⟩. The dual Kraus operator M̃k is then considered to act

on the system. Finally, a projective measurement of the state A|ψn⟩ completes the

construction of the corresponding dual trajectory.

We may calculate the probabilities of the forward trajectory (given by the

sequence γ = (m, k1, ..kj, ...kN)) using the formula

p(m, kN , . . . , k1|n) = |⟨ϕm|M (N)
kN

· · ·M (1)
k1 |ψn⟩|2.
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A similar formula applies for the dual trajectory γ̃ = (m̃, k̃R, . . . , k̃1, ñ) . For a

single-step trajectory we find the equation,

p(m, k|n)
p̃(ñ, k̃|m̃)

= |⟨ϕm|Mk|ψn⟩|2

|⟨ψn|A†MkA|ϕm⟩|2
= e−∆ϕ(k). (2.102)

This may easily be generalised to quantum trajectories that involve the application

of many more Kraus operators during the dynamics. This is especially important

for considering a time-dependent H(λ(t)), where more insight into the reduced

dynamics is achieved by a concatenation of potentially disparate CPTP maps. This

generalization is given by Eq. (2.103),

p(m, k1, ..kj, ...kN |n)
p̃(ñ, k̃N , ...k̃j, ..., k̃1|m̃)

= eα(n,m)−
∑

j
∆ϕ(kj). (2.103)

Here α(n,m) = − ln p̃im + ln pin is a boundary term that accounts for the possibility

that the initial state may be mixed, so the initial state of the forward dynamic takes

the form ρi = pi0|ϕ0⟩⟨ϕ0|+...+pin|ϕn⟩⟨ϕn|+...+piN |ϕN⟩⟨ϕN | and the initial state of the

reverse dynamics is ρ̃i = p̃i0|ϕ0⟩⟨ϕ0|+...+p̃im|ϕm⟩⟨ϕm|+...+p̃iN |ϕN⟩⟨ϕN |. This ensures

any probability ratio differences originating from the initial projective measurements

|n⟩⟨n| and |m⟩⟨m̃| and the choice of initial and final state are accounted for.

Eq. (2.103) takes the same form as Eq. (2.95) and establishes a relationship between

the distribution of forward and reverse trajectories governed by the accumulation of

nonequilibrium potential along those trajectories.
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Chapter 3

Features of Measurement-Induced

Open and Closed Geometric

Phases

In this chapter, we explore in detail the dynamics of qubit systems under the

kind of continuous measurement protocol described in Sections 2.1.1 and 2.1.2.

We are especially interested in examining the attributes of individual quantum

trajectories; we, therefore, need to interrogate the system more closely than the

stochastic Schrödinger equation would typically allow. We focus our investigation

on features analogous to the intriguing topological transition demonstrated by

Valentin and others described in Section 2.2.4; for binary projective measurements,

this topological transition arises only in the open geometric phase. Our research

reveals that for continuous measurement a phenomenologically identical topological

transition occurs again in the open geometric phase. Furthermore, we find that the

open geometric phase transition remains topological for a variety of post-selection

conditions of the readout record and state preparations.

Since the qubit system of interest exhibits a continuous stochastic evolution,

we find that the CDJ path integral formulation delineated in Section 2.3.2.2 is

an ideal tool to investigate individual quantum trajectories and, in particular,
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Chapter 3. Features of Measurement-Induced Open and Closed Geometric Phases

the measurement-induced closed geometric phases associated with the set of self-

closing quantum trajectories. By incorporating a phase variable in the CDJ action

for continuous Gaussian measurements we obtain a path-integral formulation for

open and closed geometric phases. Variational methods enable us to find and

systematically investigate these rare self-closing trajectories and their associated

phases. Our research reveals a noteworthy result: the geometric phase of the

most probable trajectories undergoes a qualitatively distinct type of topological

transition as a function of the measurement strength. We additionally calculate the

quantitative impact of including Gaussian corrections to the path integral formalism

to our result, where our calculations are shown to align with results obtained through

numerical simulations of the complete set of quantum trajectories.

3.1 Geometric Phases Induced by Gaussian Mea-

surements

3.1.1 Cyclically Rotating Gaussian measurements

First, we consider the measurement-induced time evolution of a qubit, with a generic

state given by the density matrix ρ = 1
2 (I + x · σ). The vector σ consists of

Pauli matrices (σX , σY , σZ) and x is a unit vector on the Bloch sphere of the

system parameterised by latitude θ and longitude ϕ. The qubit is subject to a

time-dependent sequence of weak measurements over a fixed time, T . We define a

continuous process by dividing T into N time steps of length δt, where tk = kδt

and k ∈ {n ∈ N ∪ {0} | n < N}. During each time interval, we measure

the operator A(k) = n(k) · σ, where n is a unit vector specified by spherical

coordinates (Θ,Φ) (see Eq. 2.47). Following Section 2.2.4, we specify Θ(k) = Θ

and Φ(k) = 2πtk/T , so that the target observables are constrained to closed loops

of constant latitude on the Bloch sphere (see Fig. 3.1a). At each time step, the

measurement of the observable A(k) is performed as a Gaussian measurement, with
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3.1. Geometric Phases Induced by Gaussian Measurements

(a)

(b)

Figure 3.1: Cyclically rotating qubit measurement protocol and

corresponding quantum trajectories. Panel a) A continuous sequence of

Gaussian measurements of operators σ · n(t) at constant latitude Θ, represented

by n(t) tracing out a path on the Bloch sphere (dotted lines). Panel b) Examples of

quantum Trajectories on the Bloch sphere generated by the measurement sequence

in panel (a) for self-closing (blue) and open (black) boundary conditions. Dotted

lines indicate the length-minimising geodesics closing the open path trajectories.

measurement outcomes distributed according to a Gaussian probability distribution

(see 2.1.1) [16, 17].

For a system in the state ρk, the Gaussian measurement of Ak entails a

measurement outcome rk drawn from the probability distribution

P (rk|ρk) = Tr[E(rk, k)†E(rk, k)ρk], (3.1)

and the corresponding state update ρk+1 is given by

ρk+1 = E(rk, k)ρkE(rk, k)†/P (rk). (3.2)

The entire process is controlled by the set of Kraus operators E(rk, k). For the

specific protocol at hand, with measurements constrained at a fixed latitude, we

have

E(rk, k) = R(n(k))−1Mδt(rk)R(n(k)), (3.3)
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where

Mδt(rk) = 4

√
δt

2πτ exp
(

− δt

4τ (rk − σz)2
)
, (3.4)

and R(n(k)) is a rotation operator R(n(k)) = e− 1
2 iϕkexp

[
1
2i(θkσ2 + ϕkσ3)

]
that

takes the Bloch sphere state (θ, ϕ) to |0⟩. Here, n(k) denotes the measurement axis

at time tk. We note that Eq. (3.4) is exactly the kind of continuous measurement

that could be implemented in a capacitively coupled double quantum dot system (see

Section 2.1.2) with a target observable σZ . The rotational component of E(rk, k)

ensures that the measured operator is σ·n. We refer to the parameter τ as the inverse

measurement strength, which has the same meaning as discussed in Section 2.1.2,

although here τ is not necessarily linked to any one experimental implementation

of the measurements. In the continuous limit δt → 0, N → ∞ with δtN = T

transforms the sequences of measurement readouts rk and the corresponding qubit

state variables ϕk and θk, which are parameterizations of the qubit state in the

spherical Bloch sphere, into continuous functions of time, r(t), ϕ(t), θ(t) defining a

continuous stochastic process which we study throughout this chapter (see Fig. 3.1b).

This measurement protocol is akin to the one presented in Ref. [54] and described

in detail in Section 2.2.4. We note again that this original protocol involves a

quasi-continuous sequence of measurements with binary outcomes r(t) = rj = j

for j ∈ {1, 0} and corresponding Kraus operators Ej defined via Eq. (3.3) with

Mδt(rk) replaced by Mj from Eq. (2.45)-(2.46). This choice of Kraus operators

replaces the continuous set of Kraus operators parametrized by r in Eq. (3.3).

We stress the key differences between the two protocols manifest in the ensuing

distribution of quantum trajectories. Firstly, in section 2.2.4 the resulting set

of trajectories included trajectories with discontinuous jumps even in the quasi-

continuous limit, whereas all trajectories stemming from Gaussian measurements

are continuous. Secondly, for Gaussian trajectories the set of accessible trajectories

is invariant after a change in measurement strength, here the measurement strengths

only modulates the trajectory likelihoods, whereas for binary measurement the set

of accessible trajectories exhibits a measurement strength dependence. We also note
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3.1. Geometric Phases Induced by Gaussian Measurements

that different measurement setups are required for the disparate measurements. In

the quasi-continuous scenario, trajectories exhibiting a topological transition had to

be distilled from post-selection ‘Null’ type readout (j = 1). We go on to show that

a variety of post-selection methods result in topological transitions for the Gaussian

case.

3.1.2 Geometric Phase of the Monitored Qubit

Here we recapitulate some key points from Section 2.2.3 and apply the results to

our Gaussian qubit measurements directly. All measurement readout sequences r(t)

have associated trajectories on the Bloch sphere |ψ(t)⟩. Each is associated with a

unique geometric phase via the functional

χg[ψ(t)] = arg⟨ψ(0)|ψ(T )⟩ + i
∫ T

0
⟨ψ(t)|ψ̇(t)⟩dt, (3.5)

where |ψ(t)⟩ is a lift of the curve in projective space into Hilbert space that satisfies

an initial condition |ψ(0)⟩ written in an arbitrary gauge. While geometric phases are

typically associated with closed paths in Hilbert space, we note that Eq. (3.5) is valid

for paths in projective space that do not close [46]. In these cases, the geometric

phase is equivalent to the geometric phase of the given curve in projective space

concatenated with a length-minimizing geodesic that closes the trajectory. Recall we

refer to the geometric phase as the open geometric phase, as opposed to the closed

geometric phase associated with self-closing trajectories. In practical terms, the

open geometric phase corresponds to the closed geometric phase of a post-selected

trajectory including an additional projective measurement onto |ψ(0)⟩⟨ψ(0)|.

An important feature of a Gaussian measurement is that it parallel transports the

state of the system so there is no dynamical phase contribution to subtract from the

global phase. Adopting a pure qubit state parameterisation in spherical coordinates

(q = (ϕ, θ, χ)) that includes a gauge-dependent global phase χ, the systems state is

|ψ(q(t))⟩ = eiχ(t)

 cos
(
θ(t)

2

)
eiϕ(t) sin

(
θ(t)

2

)
. (3.6)
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The parallel transport condition Eq. (2.44) holds across each time step, simplifying

the geometric phase from Eq. (3.5) to

χg = arg
e−i(ϕ(0)−χ(T ))

(
sin θ(0)

2 eiϕ(T ) sin θ(T )
2

+ eiϕ(0) cos θ(0)
2 cos θ(T )

2
), (3.7)

where we have used gauge freedom to choose χ(0) = 0. When ϕ(0) = ϕ(T ) and

θ(0) = θ(T ) then χg = χ(T ).

3.2 Path Integral: incorporating phase data

3.2.1 Chantasri-Dressel-Jordan Path Integral with Phase

Tracking

To study the geometric phases associated with quantum trajectories from Gaussian

measurements, we formulate a path integral for the probability distribution of the

induced quantum trajectories that explicitly incorporates the phase of the monitored

state. We do so by incorporating phase information in the CDJ path integral

formulation for a Gaussian-monitored qubit [28], using the state parameterisation

in Eq. (3.6). Since this phase is parallel transported, the global phase is directly

equivalent to the geometric phase on a closed path. The path integral is constructed

from the joint conditional probability of finding a state q(T ) and readout r(T ),

given some initialization qi, under the evolution in Eq. (3.2). This probability,

in the continuum limit, can be expressed as a product of sequential conditional

probabilities (see Eq. (2.74)) so

P(q(T ), r(T )|qi) = K(t0, tN)× (3.8)

lim
δt→0,N→∞

N−1∏
k=0

P (q(k + 1)|q(k), r(k))P (r(k)|q(k)),
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3.2. Path Integral: incorporating phase data

where K(t0, tN) = δ3(q(N) − qf )δ3(q(0) − qi) sets the initial and final states to be

qi and qf . The readout probability distribution function, P (r|q), can be obtained

directly from Eq. (3.2) and (3.3), so within each time step

P (r|q) ≈
√

δt

2πτ exp
(

− δt

2τ (r2 − 2ra+ 1)
)
, (3.9)

a(Θ,Φ, θ, ϕ) = cos(θ) cos(Θ) + sin(θ) sin(Θ) cos(ϕ− Φ). (3.10)

Here ⟨r⟩ =
∫
rP (r|q)dr = a is the mean measurement record function, which

corresponds to the most probable readout within a given time interval. The

remaining term in Eq. (3.8) is the state update, which is deterministic and can

be expressed as a delta function

P (q(t+ δt)|q(t), r(t)) = δd(q(t+ δt)|q(t), r(t)) (3.11)

=
( 1

2πi

)d ∫ i∞

−i∞
ddpe−p·(q(t+δt)),

where by expressing the Dirac-delta functions1 in Fourier form each q gains a

conjugate momentum pq, so p = (pϕ, pθ, pχ). The deterministic update associated

with δd(q(t+ δt)|q(t), r(t)) is expressed in the differential equations,

ϕ̇ = − r
τ
fΘ,Φ(θ, ϕ) (3.12)

θ̇ = r
τ
gΘ,Φ(θ, ϕ, ) (3.13)

χ̇ = r
2τ hΘ,Φ(θ, ϕ, ). (3.14)

with fΘ,Φ(θ, ϕ) = csc(θ) sin(Θ) sin(ϕ − Φ), gΘ,Φ(θ, ϕ) = (cos(θ) sin(Θ) cos(ϕ − Φ) −

sin(θ) cos(Θ)) and hΘ,Φ(θ, ϕ) = tan
(
θ
2

)
sin(Θ) sin(ϕ − Φ). Following the usual

procedure for constructing path integrals [8, 147, 28, 29, 30], we express P in terms

of an action principle,

P ∝
∫
DqDpDr exp

(
−
∫ T

0
S[q,p, r]dt

)
, (3.15)

S[q,p, r] = −pθ
(
θ̇ − r

τ
gΘ,Φ

)
− pϕ

(
r

τ
fΘ,Φ + ϕ̇

)
(3.16)

−pχ
(
χ̇− r

2τ hΘ,Φ

)
+ r(2a− r) − 1

2τ .

1Once again we use the conventional relabeling p → −ip.
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Chapter 3. Features of Measurement-Induced Open and Closed Geometric Phases

The action S[q,p, r], is a generalization of the probability density of a quantum

trajectory, encoding all the statistical details of the measurement process. Compared

to the CDJ action in Ref. [28], Eq. (3.16) now includes the variable χ and the

time dependence of the measurement operators. This formalism allows us to

identify the most probable trajectories (with a given initial and final state) by

variational methods. This results in a system of differential equations for quantum

trajectories that are either the most-likely path to traverse between the boundary

points or a minimum/saddle point solution, given by Eq. (3.12), (3.13) and (3.14)

in combination with the time derivatives of the momentum variables2, ṗχ = 0,

ṗϕ = r

τ
pϕ
∂fΘ,Φ

∂ϕ
− r

τ
pθ
∂gΘ,Φ

∂ϕ
− r

2τ pχ
∂hΘ,Φ

∂ϕ
− r

τ

∂a

∂ϕ
,

ṗθ = r

τ
pϕ
∂fΘ,Φ

∂θ
− r

τ
pθ
∂gΘ,Φ

∂θ
− r

2τ pχ
∂hΘ,Φ

∂θ
− r

τ

∂a

∂θ
, (3.17)

and a constraint on the measurement record function

r = 1
2pχh(θ,Θ, ϕ,Φ) − pϕf(θ,Θ, ϕ,Φ) (3.18)

+ pθg(θ,Θ, ϕ,Φ) + a(θ,Θ, ϕ,Φ).

We observe that by introducing the variable χ, the calculation of the optimal

geometric phase becomes more straightforward, as its value can be determined

concurrently with the optimal quantum trajectory.

3.2.2 Optimum Dynamics of Stationary Gaussian Measure-

ments

To illustrate the effectiveness of the variational method in the simplest possible case

we apply the CDJ action formalism to time-independent Gaussian measurements

aligned exactly along the z-axis of the Bloch sphere. This is readily achieved by

setting pγ, γ,Θ, ω equal to zero in the full stochastic action Eq. (3.16). Then using
2Here we treat the conjugate momenta as real, exactly reproducing the Lagrange multiplier

method of maximizing the functional
∫ r(2a−r)−1

2τ dt with constraints.
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Figure 3.2: The latitude state parameter against time (in units of τ) for Gaussian σz
measurements. Path colour indicates the initial momentum; red paths correspond

to pϕ(0) =10, green paths pϕ(0) = −10 and the blue trajectory corresponds to

pϕ(0) = 0. The type of path indicates the measurement strength: solid τ = 1,

dashed τ = 3, dotted τ = 7.

the definition of the stochastic Hamiltonian (Eq. (2.76)) we find

H =
(

sin2(θ)
2τ

)
p2
θ −

(
sin(θ)cos(θ)

τ

)
pθ − sin2(θ)

2τ . (3.19)

By extremizing the Hamiltonian we find the following equations of motion

ϕ̇ = 0,

ṗϕ = 0,
(3.20)

θ̇ = 1
τ

sin(θ)(pθ sin(θ) − cos(θ)),

ṗθ = 1
τ

(cos(θ) − pθ sin(θ)(pθ cos(θ) + sin(θ))) .
(3.21)

The optimum dynamics in the θ and ϕ directions are fully independent and ϕ(t) is

necessarily trivial due to the symmetry of our chosen measurement. These equations

of motion have no closed-form solutions; we proceed by finding and plotting a range

of solutions numerically in Fig. 3.2. We observe the expected optimum dynamics:

for states initialized on the Bloch sphere equator, any initially positive (negative)

conjugate momentum drives the quantum trajectory inexorably towards the state
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pθ

Figure 3.3: The flow in phase space for continuous Gaussian measurements directed

along the z-axis of the Bloch sphere. The measurement strength is tuned to τ = 1.

Equilibrium solutions appear as the dashed black line.

|0⟩ (|1⟩). Increasing the measurement strength hastens this process. A vanishing

initial momentum ensures a stationary optimum trajectory.

Further insight can be gained by plotting the CDJ phase space portrait of this

system (Fig. 3.3); this is the flow of Eq. (3.21) in the phase space. We observe

that the dynamics bifurcates into qualitatively distinct regions. Variation of the

measurement strength leaves the flow in phase space unchanged but does affect the

rate at which a path in the phase space is traversed. Eq. (3.21) has equilibrium

solutions whenever pθ = cot θ, these are plotted in Fig. (3.3) and are associated

with the ‘stochastic energy’3, − 1
2τ .

3.2.3 Co-rotating Coordinates

It will be useful to consider the action in Eq. (3.16) rewritten in a spherical

coordinate system that co-rotates with the measurement axis defined by new
3The value of the stochastic Hamiltonian evaluated at pθ = cot θ, as defined in Ref. [28].
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polar and azimuthal coordinates (θ̃, ϕ̃). Such a coordinate transformation is

implemented by the change-of-basis matrix B = exp(iΦσz/2). In this coordinate

system, the dynamics are described by the Kraus operator Ẽ and an effective

Hamiltonian H̃. Here Ẽ = R−1(ñ)MδtR(ñ), and is now time-independent since

ñ = (sin(Θ), 0, cos(Θ)) is fixed. While H̃ = iḂB† = −1
2Φ̇σz, and acts unitarily on

the system state. The state update is given by

ρ(t+ δt) = e−iH̃ẼρẼ†eiH̃

Tr[e−iH̃ẼρẼ†eiH̃ ]
. (3.22)

In terms of the action, this point transformation acts directly on the Bloch sphere

coordinates as,

ϕ̃ = Φ − ϕ(t), θ̃ = θ,

ϕ̇ = − ˙̃ϕ+ Φ̇, ˙̃θ = θ̇, (3.23)

and also induces a corresponding transformation on the conjugate momentum,

pϕ = −p̃ϕ, pθ = p̃θ. (3.24)

These coordinate transformations applied to Eq. (3.16) (omitting χ and pχ), lead to

the CDJ action in rotating coordinates,

S̃[θ̃, ϕ̃, pθ̃, pϕ̃] = 1
2τ

+ 2rã− r2 − 1

+ 2p̃θ
(
r cos(θ̃) sin(Θ) cos(ϕ̃) − r sin(θ̃) cos(Θ) − τ ˙̃θ

)

+ 2p̃ϕ
(
τ(Φ̇ − ˙̃ϕ) − r csc(θ̃) sin(Θ) sin(ϕ̃)

). (3.25)

with ã = sin(θ̃) sin(Θ) cos(ϕ̃) + cos(θ̃) cos(Θ). From this reformulation, it is evident

that the rotating measurement protocol equivalently captures the physics of the

Zeno effect, i.e. the competition between measurement and unitary evolution in a

qubit.
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3.2.4 Lagrangian Formulation

Since the path integral in Eq. (3.16) is Gaussian in r it is possible to integrate out the

measurement record. The ensuing action is quadratic in the momentum variables,

which can then also be integrated out to give a configuration space path integral,

P ∝
∫
DqDpDre(−S[q,p, r]) (3.26)

=
∫
Dqp[q] =

∫
Dqµ(θ, ϕ)e

∫ T

0 L[θ,ϕ].

This alternate formulation is characterized by a probability measure denoted as

p[θ, ϕ] which consists of two components: an everywhere singular4 Lagrangian

L(θ, ϕ) = −1
2τ sin2(θ) csc2(Θ)ϕ̇2 csc2(ϕ− Φ) − 1

2τ

− ϕ̇

2 sin(2θ) cot(Θ) csc(ϕ− Φ) − sin2(θ) cot(ϕ− Φ)ϕ̇, (3.27)

and a path-dependent functional measure, µ(θ, ϕ), given by

µ(θ, ϕ) = Det[csc2(θ) sin2(Θ) sin2(ϕ− Φ)
2τ ]− 1

2 . (3.28)

The path dependence of µ can be attributed to the multiplicative nature of

the underlying stochastic process which acts like a curvature effect in the time

axis [158]. The Lagrangian is characterised by a non-invertible Hessian matrix.

This particularity results from the imposition of semi-holonomic constraints within

the configuration space, as specified by the equations,

θ̇ = ϕ̇

2

(
(2 sin2(θ) cot(θ0) csc(ϕ− ϕ0) − sin(2θ) cot(ϕ− ϕ0)

)
, (3.29)

χ̇ = ϕ̇

2 (cos(θ) − 1). (3.30)

These constraints naturally appear during the process of functional integration,

wherein terms exhibiting, at most, linear dependence on momentum play the role

of Legendre multipliers. These multipliers, in turn, enforce Eq. (3.29) and (3.30).
4A singular Lagrangian is defined as one where the matrix of second derivatives with respect

to velocities is not invertible [157].
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We find that Eq. (3.27) may be derived via an alternative method which we

demonstrate for Θ = π
2 . Consider the probability density implied by Eq. (3.1),

temporarily suppressing the discrete time index, we find

P (r|ϕ) =
√

δt

2πτ e
−δt (r2+1)

2τ

(
cos (ϕ− ϕ0) sinh

(
δtr

τ

)
+ cosh

(
δtr

τ

))
. (3.31)

Then taking the small-time approximation and exponentiating both sides we get

eln(P (r|ϕ) = exp
[

1
2

(
ln
(
δt

2πτ

)
− (r2 − 2r cos(ϕ+ 1) δt

τ
+O

(
δt2
))]

. (3.32)

Next, we ignore the divergent part (in the path integral, this would be absorbed into

the functional measure); this may be justified since we will typically only calculate

the ratio of probabilities. Then solving Eq. (3.12) and switching to the rotating

coordinate frame we find the relationship

ri+1 = τ csc(ϕ̃i)
(
ω + ϕ̃i − ϕ̃i+1

δt

)
. (3.33)

Substituting this into the exponent in Eq. (3.32) we obtain to first order in time,

the discreet transition probability,

P (ϕi+1|ϕi) ∝ exp[τ(ϕ̃i − ϕ̃i+1)2 csc2(ϕ̃i)
δt

+ 2(ϕ̃i − ϕ̃i+1) csc(ϕ̃i)(τω csc(ϕ̃i) − cos(ϕ̃i))

+ δt(−2iϕ̃i + 2iϕ̃i+1 + τω2 csc2(ϕ̃i) + 1
τ

− 2ω cot(ϕ̃i))].

(3.34)

The probability density (omitting boundary terms) may be determined by multi-

plying together an infinite series in the appropriate limit,

P [ϕ(t)] ∝ lim
δt→0,N→∞
δtN=T

N∏
i

P (ϕi+1|ϕi), (3.35)

which explicitly evaluates to,

P [ϕ(t)] ∝ exp
− 1

2

∫ T

0

(
τ ˙̃ϕ2 csc2(ϕ̃) − 2 ˙̃ϕ csc(ϕ̃)(τω csc(ϕ̃) − cos(ϕ̃)) (3.36)

+ τω2 csc2(ϕ̃) − 2ω cot(ϕ̃) + 1
τ

)
dt

.
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Figure 3.4: The approximate unnormalised probability density given by Eq. (3.37)

with the parameters τ = 1, ω = 2π. We note that out of all the possible trajectories

that are stationary in the rotating coordinates we may identify one which occurs

with a maximum likelihood.

This exponent is equivalent to the stochastic Lagrangian Eq. (3.27) in rotating

coordinates. This equivalence is most clearly shown by evaluating Eq. (3.27) on a

trajectory characterised by ˙̃ϕ = 0. For T = 1 and ϕ̃st = ϕ̃(t) this expression is given

by

P [ϕst] ∝ exp
[
−1

2

∫ 1

0

(
τω2 csc2(ϕ̃st) − 2ω cot(ϕ̃st) + 1

τ

)
dt
]

(3.37)

∝ exp
[
−1

2

(
τω2 csc2(ϕ̃st) − 2ω cot(ϕ̃st) + 1

τ

)]
. (3.38)

This is equivalent to Eq. (3.27) evaluated with θ̇ = ω. We display the probability

density Eq. (3.37) for trajectories that perfectly synchronise with the motion of the

measurement axis in Fig. 3.4. Note that ϕ̃st = 0 =⇒ P (ϕ̃st) = 0 for all τ (except

τ ̸= 0). Across all ranges of measurement strengths, the probability density for

a quantum trajectory that closes aligned precisely with the measurement axis is

vanishingly small.
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3.3 Topological Features of the Open Geometric

Phase

The action (Eq. (3.16)) and its associated extremization in Eq. (3.17) allow us to

determine the properties of the most likely geometric phases induced by Gaussian

measurements for any given boundary conditions. However, before exploring new

subsets of geometric phases, like optimal self-closing ones, we first determine the

properties of the open geometric phases under Gaussian measurements, in particular,

their topological features.

Gaussian measurements have been involved in researching this type of topological

transition [34]. Dual readout Gaussian measurements on a qutrit were used to

reproduce the effect of the null-type measurements on a two-level sub-system. Here

we are concerned with Gaussian measurements in their own right, specifically in the

protocol outlined in Section 3.1.1. In this case, a continuous mapping between the

two spheres is no longer constrained to the null-type post-selection and more general

post-selections can be imposed on the measurement readout. Quite generally, we

expect that a rotating measurement protocol with (θi = Θ, ϕi = 0) features a

topological transition for post-selected record function r(t) > 0, this condition

ensures the system is driven towards the measurement axis at all times during

the measurement induced dynamics. For the special case when Θ = π
2 , the Bloch

sphere equator corresponds to an invariant subspace for every Kraus operator in

the measurement sequence: states initialized on the equator remain therein. This

feature of the system’s accessible trajectories manifest in the available geometric

phases {π2n|n ∈ Z} on the equator; each is associated with a definite winding

number characterizing the number of times a trajectory wraps around the Bloch

sphere equator. This applies irrespective of the state preparation used.

As a first example, it is possible to ascertain the topological transition for

the family of most likely trajectories spanned by initial states that coincide with

the measurement axis. These most-probable post-selected optimal trajectories are
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Figure 3.5: Global Optimal quantum trajectories and their geometric

phases. (a) Geometric phase χg(Θ) for a range of measurement strengths below

(blue) and above (black) the inverse critical measurement strength τc/T ≈ 0.1.

Quantum trajectories on the Bloch sphere with closing geodesics (dotted) for

τ/T = 0.05 (c) and τ/T = 0.2 (b). The family of trajectories covers the Bloch

sphere for measurements stronger than the critical value (b) and does not otherwise

(c). 60



3.3. Topological Features of the Open Geometric Phase

obtained from the observation that at each time-step, the most probable outcome

is given by ⟨r⟩ = a(Θ, t) (cf. Eq. (3.9)). Hence, substituting the time continuous

version, r(t) = a(t) from Eq. (3.10) into Eq. (3.12)- (3.14), with the initial conditions

θ(0) = Θ and ϕ(0) = Φ(0), produces the required optimum quantum trajectory.

A topological transition is observed in this case, as illustrated in Fig. 3.5, where

the family of quantum trajectories — including the closing geodesic— for strong

measurements (small τ/T ) wrap the Bloch sphere (Fig. 3.7b), while for weak

measurements (large τ/T ) they do not (Fig. 3.7c). The transition measurement

strength is determined numerically from the dependence χg(Θ), which is reported

in Fig 3.5a. For τ < τc the geometric phase evolve continuously from 0 to −π, while

for τ > τc, χ(π/2) = χ(0). We estimate that the transition occurs for τc/T ≈ 0.1,

The transition is further confirmed by a direct numerical evaluation of the Chern

number using Eq. (2.49).

A second kind of variation of the protocol concerns the state preparation. So

far we have only considered state initializations with the form θ(0) = Θ and ϕ(0) =

Φ(0), however, it is possible to relax this assumption. From numerical simulation

of a range of cases, it appears that the initialization of the system does not affect

the topological nature of the transition and the associated phenomenology of the

geometric phase provided the state initialization θi(Θ(0)) spans the entire range of

the polar angle, is monotonic, and satisfies θi(0) = 0, θi(π2 ) = π
2 , and θ(π) = π

with limτ→0 ϕi = Φ(0). Note we are explicitly allowing for the possibility of a

measurement strength-dependent state preparation so θ(0) = θi(τ) and ϕ(0) =

ϕi(τ). We are particularly interested in using this freedom to choose a new state

preparation that, similar to the choice θi = Θ ϕi = Φ(0), will also continuously

recover the projective measurement limit - where states are initialized along the

measurement axis and meticulously follow the axis for their entire evolution. This

then requires a state initialization that gives θi → Θ(0) and ϕi → Φ(0) in the strong

measurement limit.

A natural case, which will be relevant later on for closed geometric phases, has
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Figure 3.6: Equilibrium state. Flow of Hamilton’s equations in the CDJ Phase

Space at θ = π/2 (Eq. (3.17)) in the co-rotating coordinate system for τ = 0.1,

Θ = π
2 (panel a) and τ = 0.3, Θ = π

2 (panel b). The black dot indicates the

equilibrium point. Panel c): Dependence of the equilibrium points (θe, ϕe) on Θ

and τ . For each value of Θ (π6 (blue),2π
7 (green),2π

5 (orange),π2 (red), 3π
5 (orange),5π

7

(green)) darker shades corresponding to weaker measurements from τ/T = 0.1 to

τ/T = 10.
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the initial state chosen to coincide with a fixed point (so θi = θe and ϕi = ϕe) of the

optimal trajectory dynamics in the co-rotating coordinate frame. This equilibrium

point in the co-rotating dynamics (θe, ϕe) is defined by ˙̃ϕ = 0, ˙̃θ = 0, ˙̃pϕ = 0,
˙̃pθ = 0. Hamilton’s equations for the action (Eq. (3.25)) can be solved to determine

a closed-form expression,

θe = arctan
(

tan(Θ)√
4π2τ 2 + 1

)
, (3.39)

ϕe = − arctan(2πτ). (3.40)

Fig. 3.6 reports the phase space flow diagram from Hamilton’s equations for the

action in Eq. (3.25) for different values of the measurement strength [panels (a)

and (b)] at θ = Θ0 = π/2. For increasingly strong measurements, ϕe tends toward

the measurement axis. The position of equilibrium points for generic latitudes on

the Bloch sphere is reported in Fig. 3.6c, showing that this same limiting behaviour

continues across the entire Bloch sphere. The quantum trajectories for this modified

protocol (with a generic choice of post-selection r(t) = 1) are reported in Fig.( 3.7[b-

c]), where small τ/T (panel b) leads to trajectories wrapping the Bloch sphere and

large τ/T (panel c) does not. Similarly to the case reported in Fig. 3.5, we can

identify a topological transition from the behaviour of χ as a function of Θ [cf.

Fig. 3.7a], which gives a critical measurement strength τc/T ≈ 0.22. From these

examples, it emerges that, despite variations in the exact value of τc, the fundamental

characteristics of the transition are unchanged for a wide range of state preparation

protocols.

3.4 Topological Transition in the Optimal Closed

Geometric Phase

We now use the developed action formalism to investigate the topological fea-

tures of the closed geometric phase. This involves considering the set of self-

closing trajectories generated solely by continuous monitoring, without a projective
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Figure 3.7: Quantum trajectories and geometric phases with equilibrium

state initialization. Panel a) Geometric phase χ(Θ) for a range of measurement

strengths below (blue) and above (black) the inverse critical measurement strength

τc ≈ 0.22. Quantum trajectories on the Bloch sphere with closing geodesics (dotted)

for τ = 0.15 (b) τ = 0.3 (c). The family of trajectories covers the Bloch sphere for

measurements stronger than the critical value (b) and does not otherwise (c).
64



3.4. Topological Transition in the Optimal Closed Geometric Phase

measurement step. Since self-closing trajectories are not generally achievable by

conditioning on any single measurement record function, we post-selected the most

likely self-closing trajectory, corresponding to the most probable closed geometric

phase attained during measurement. We denote the optimum phase as χopt. On the

Bloch sphere equator, where quantum trajectories are restricted to S1, the behaviour

of χopt is fundamentally tied to the topology of S1. Attaining only two possible

values corresponding to the winding number of the associated equitorial quantum

trajectory, either −π or 0.

Care must be taken to find a state preparation that will produce χopt that

recovers the projective measurement limit,

lim
τ→0

χopt ≈ −2π sin2
(1

2Θ
)
, lim
τ→∞

χopt ≈ 0. (3.41)

The state preparation θ(0) = Θ and ϕ(0) = Φ, applied to Eq. (3.17), with self-closing

boundary conditions produce a variety of candidate optimal geometric phases that

satisfy Eq. (3.41). In the regime of strong measurements, one might anticipate

an increased likelihood of candidate solutions with limτ→0 χ
opt ≈ −2π sin2

(
1
2Θ
)
.

However, numerical assessment of the stochastic action reveals that these solutions

remain vanishing improbable even in the strong measurement limit. This is

demonstrated in Fig. 3.8 where the stationary phase approximation for Eq. (2.79)

is used to produce an estimate

P (ϕ̃f |ϕ̃i) ≈ P (ϕ̃op) ≈ exp(S[ϕ, pϕ, r]), (3.42)

based on the probability density of the optimum trajectories. Numerical solutions

for ϕop(t) are used to examine a series of probability density functions each with

a different measurement strength. It is evident from every plot in Fig. 3.8 that

winding self-closing (θ̃f = 0) trajectories occur with an vanishing probability.

This phenomenon can be understood upon examining the characteristics of these

candidate optima: spending the majority of their lifetime (approximately T )

following the equilibrium trajectory (Eq. (3.39)), punctuated with rapid transitions

to and from the measurement axis at the beginning and end of the protocol. It
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Figure 3.8: Given an initial state aligned with the measurement axis we plot the

probability density as a function of the final state after the measurement axis has

completed one full loop around the Bloch sphere. Red: 1
τ

= 1. Blue: 1
τ

= 8. Green:
1
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= 16

is these rapid transitions that suppress the likelihood of the winding solution.

Consequently, the solutions associated with a vanishing winding number dominate.

This scenario leads to a χopt that does not satisfy Eq. (3.41). Instead, a suitable

state preparation is provided by the equilibrium point introduced in Eq. (3.39).

The equilibrium points span the entire range of latitudes, with θ ∈ [0, π]. As we

shall later demonstrate, with this particular initialization, the value of χopt adheres

to the required limits given in Eq. (3.41). This establishes the mapping between

measurement parameters (Θ, τ) and the optimal self-closing quantum trajectory and

its associated closed geometric phase χopt that we use to establish a new topological

transition.

3.4.1 Topological Transition

As discussed for the case of the open geometric phase, the topological properties

of the mapping n(t) → q(t) are dictated by the fixed points at Θ = 0 and Θ =
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π. When Θ = π
2 , the simplest topological features can be investigated since here

the accessible trajectories are each associated with a definite winding number n

indexing the available closed geometric phases {π2n | n ∈ Z}. Hamilton’s equations

for the stochastic action, Eq. (3.17), restricted to the Bloch sphere equator, have

multiple solutions after imposing boundary conditions ϕ(0) = ϕe and ϕ(T ) = ϕe +

2πn, generating a set of candidate most-likely self-closing quantum trajectories and

phases. A single candidate solution is generated for each value of n corresponding to

a local minimum of the action (or equivalently a local maximum of the probability

density p over the set of quantum trajectories).

To determine which candidate solution occurs with a higher probability, we

evaluate and compare their actions. The solution corresponding to n = 1,

equivalent to the equilibrium quantum trajectory in co-rotating coordinates, is

ϕ(t)n=1
Θ= π

2
= 2πt − arctan 2πτ . By substituting this solution into Eq. (3.16), we find

the associated probability density is given by pn=1
Θ= π

2
= e−2π2τ . For n = 0, a numerical

solution to Eq. (3.17) is used to find ϕ(t)n=0
Θ= π

2
, which is then substituted directly

into the stochastic action to evaluate pn=0
Θ= π

2
. Both of these probability densities

are plotted in Fig. 3.9a. Solutions for other values of n are found to have strictly

lower probabilities. We, therefore, focus our analysis on the competition between

the candidate optimum trajectories indexed by n = 0 and n = 1. The value of

χopt is determined by the competition between the two most prominent candidate

optimums. As evidenced by Fig. 3.9a, there is a measurement strength, τc/T ≈ 0.11,

at which the optimum geometric phase jumps discontinuously from 0 to −π.

We now investigate if a transition of topological number in the optimal geometric

phase occurs across the whole Bloch sphere. To address this question, we study

the subset of solutions for Eq. (3.17) that generate optimal self-closing quantum

trajectories (with θ(0) = θe, ϕ(0) = ϕe and χ(0) = 0) for all measurement latitudes.

We identify one family of solutions (ϕeq) smoothly connected to ϕ(t)n=1
Θ= π

2
, specified

by ϕeq = ϕe + 2πt and θ(t) = θe. This closed-form solution may be substituted back
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Figure 3.9: Stochastic properties of winding and non-winding quantum

trajectories on the Bloch sphere equator. Panel a) Probability measure’s

pn=1(solid black) and pn=0 (black triangles) as functions of τ . Normalised self-closing

conditional probability P (state initialization (θi = θe, ϕi = ϕe)) for non-winding

trajectories (red triangles) and winding trajectories (red). P is obtained from

numerical simulation of Eq. (3.2) and (3.3) with 100 time-steps and 500 quantum

trajectories with bin size ∆ϕ = 0.1. Panel b) The τ dependence of the ratios R and

R (c.f. Section 3.5) calculated using numerical data in panel a and the results of

Gaussian corrections of Section 3.5.

68



3.4. Topological Transition in the Optimal Closed Geometric Phase

into Eq. (3.17) to find the corresponding geometric phase

χn=1 = −2π sin2
(

1
2 tan−1

(
tan(Θ)√
4π2τ 2 + 1

))
, (3.43)

which is proportional to the solid angle of the spherical cap defined at the latitude θe.

We note that limτ→0 χ
n=1 = −2π sin2

(
1
2Θ
)
, and that χn=1 decreases monotonically

from 0 to −π with increasing Θ. Similarly, we evaluate S[θ, ϕ, pθ, pϕ] on this n = 1

family of solutions, finding the probability density of each single trajectory is given

by

pn=1 = exp
(

− 2π2τ sin2(Θ)
2π2τ 2 cos(2Θ) + 2π2τ 2 + 1

)
. (3.44)

Note that pn=1 → 1 for τ → 0. These sets of solutions for different Θ form a sub-

manifold of the Bloch sphere with C = 1, independent of the measurement strength

(see Fig. 3.10a). We may identify a second family of quantum trajectories: the most

likely solutions excluding ϕeq
5 (see Fig. 3.10b). This set of solutions, ϕ(t)n=0, is

determined by numerically computing the stochastic action in Eq. (3.16) and has

no closed-form expression for either the accrued geometric phase or the associated

probability density. The mapping between (Θ(t),Φ(t)) and (θ(t), ϕ(t)) in this case

is always characterized by C = 0. The optimal (most likely) value of the geometric

phase, χopt, is then determined by the competition between these two families of

solutions.

For strong measurements (τ ≪ T ), solutions ϕ(t)n=0 are less probable than ϕeq,

so the optimal geometric phase is given by Eq. (3.44). In the weak measurement

regime (τ ≫ T ), we have the converse, solutions ϕ(t)n=0 are more likely. We label

Θjump the value of Θ, which for a given measurement strength, will delineate a

discontinuity in χopt. Θjump has a τ dependence and separates two distinct types of

behaviour of χopt(Θ) as it approaches the strong measurement limit. At Θjump(τ),

χopt jumps discontinuously to the value determined by ϕeq, with τc marking the

smallest value of τ for which this discontinuous jump occurs. This jump in the
5As for the solutions at the equator, multiple solutions of the Euler-Lagrange equations exist

for given boundary conditions, corresponding to local minima of the actions
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Figure 3.10: Optimal self-closing quantum trajectories. Equilibrium quantum

trajectories ϕeq [panel (a)] and ϕ(t)n=0 [panel (b)]for various choices of Θ, with

τ/T = 0.2. The shaded region in panel (b) is a guide to the eyes highlighting the

C = 0 submanifold on the Bloch sphere. The trajectories with C = 1 cover the

whole sphere as shown in panel (a). Panel c) Candidate optimum geometric phases,

χeq and χ2 and corresponding probabilities, P (χeq) and the competing optimum

P (χ2), at Θ = 0.9 < Θc as a function of τ . The two candidate solutions merge into

a single q-trajectory before the value of τc.
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geometric phase is shown in Fig. 3.11. We name the largest value of Θjump, ΘC , and

it is determined to be ΘC ≈ 0.95.

Below ΘC , χopt tends smoothly towards the geometric phase associated with

ϕeq. Numerical evidence suggests that the family of quantum trajectories ϕ(t)n=0

merge smoothly with the associated trajectory ϕeq. This behaviour is illustrated in

Fig. 3.10b, where the blue-coloured quantum trajectories denote the region in which

the family of trajectories ϕ(t)n=0 merges into ϕeq. This behaviour is quantified in

Fig. 3.10c, which shows how, at Θ < ΘC , the geometric phase from the ϕ(t)n=0

family of trajectories coincides with that from ϕeq at τ < τc. Crucially, this merger

occurs above the critical measurement strength τc, suggesting that the value of τc as

determined on the Bloch sphere equator does correspond to a topological transition

across the entire Bloch sphere. This transition is manifest in the behaviour of χopt

as a function of Θ (see Fig. 3.11), where τc separates phases that are continuous

and monotonically decreasing (from 0 to π) and those which are non-monotonic (0

to 0). The transition in the topological number for optimal self-closing trajectories

and the corresponding discontinuity in the geometric phase are distinct from the

open geometric phase transition. While the latter is associated with a vanishing

post-selection probability at the critical point [54], for self-closing trajectories, two

trajectories from distinct families become equally likely at the transition point.

This topological transition is well defined in terms of the most likely trajectories

belonging to either of the two families identified above. However, any experiment

would not be able to access the most likely trajectories directly. This is due to the

improbability of attaining exactly the required measurement record r(t). This may

be addressed by comparing the likelihood of trajectories which are approximately

equivalent to the required paths. The sets of trajectories to be compared must

necessarily include an ensemble of trajectories that are equivalent up to the precision

of the experiment. The averaged geometric phase is expected to display a crossover

as opposed to a sharp transition at τc. In a scenario with finite experimental

precision, the value of τc will therefore be smeared out. However, a transition can
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Figure 3.11: Optimal geometric phases, χopt, as a function of Θ for a range

of measurement strengths. The critical measurement strength τc distinguishes

the behaviour χopt(Θ = π/2) = 0 and χopt(Θ = π/2) = −π. The location of

discontinuities specify Θjump we see for Θ > ΘC ≈ 0.95, the geometric phase can

exhibit such a jump.

still be identified in terms of which of the ensembles (each associated with a distinct

optimal geometric phase) is most probable. We calculate the effect this has on the

value of τc in the next section.

3.4.2 Comparing Critical Measurement Strengths

We make a comparison between the critical measurement strength we have

calculated for Gaussian measurements and the critical measurement strength

described in Section 2.2.4. In order to make a meaningful comparison between

the two distinct measurement strengths characterised by η and τ , we calculate the

decoherence rate associated with both types of measurements to establish a map

between the two measurement strength parameters η and τ .

Whenever our system, in a generic state Eq. (3.45), is measured by the null-weak

measurement operators Eq. (2.45) its average post-measurement state will be given

by Eq. (3.46),

ρ(t) =

 ρ11 ρ12

ρ21 ρ22

 , (3.45)
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⟨ρ(t+ ∆t)⟩ =
∑
r

P (r)Mrρ(t)M †
r

P (r)

=

 ρ11
√

1 − ηρ12
√

1 − ηρ21 ρ22(|1 − η| + |η|)

 . (3.46)

During the quasi-continuous null type weak measurement protocol the measurement

strength η depends on the total number of measurements during a cycle N (where

we later have N → ∞ or equivalently η → 0) as η = 4c
N

. We may now say the total

time, T , for a cycle is given by T = N∆t. Hence the change in the coherence of the

average state after a single measurement,
√

1 − η, has a dependence on ∆t,

√
1 − η →

√
1 − 4c

N
→
√

1 − 4c∆t
T

. (3.47)

From this, we see that the first-order change in the coherence as a function of ∆t is

given by

1 − 2c∆t
T

+O
(
∆t2

)
, (3.48)

which uncovers the decoherence rate

ΓNull = −2c
T
. (3.49)

Similarly, a qubit state (Eq. (3.45)) measured by a Gaussian measurement with

the family of Kraus operators Eq. (3.4) will have an average post-measurement state

given by

⟨ρ(t+ δt)⟩ =
∫
P (r)Mδtρ(t)M †

δt

P (r) dr

=
∫
Mδtρ(t)M †

δtdr

=

 ρ11 ρ12e
− δt

2τ

ρ21e
− δt

2τ ρ22

 .
(3.50)

During the interval δt the coherence of the average post-measurement state reduces

by a factor exp(− δt
2τ ). Consequently, the first-order change in the state coherence as
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a function of δt is

1 − δt
2τ +O

(
δt2
)
. (3.51)

This reveals a decoherence rate associated with Gaussian measurements

Γ = − 1
2τ . (3.52)

For each measurement protocol ΓT is a meaningful dimensionless parameter and

can be used to convert directly between the measurement parameters η and τ ,

ΓGaussT = ΓNullT. (3.53)

From Eq. (3.49) we have ΓGaussT = 2c. The critical measurement strength identified

for a quasi-continuous loop of measurements is c ≈ 2.15 [54], corresponding to

ΓNullT ≈ 4.30. For the Gaussian Measurement protocol ΓGaussT = T
2τ . In

Section 3.4.1 we found that the dimensionless critical measurement strength τ̃crit ≈

0.11 (when τ = T τ̃). Hence for T = 1, ΓcriticalT ≈ 1
2(0.11) = 4.54. As expected, the

Gaussian critical measurement strength is similar, though not coincidental, to the

binary critical measurement strength.

3.5 Gaussian Corrections

To incorporate multiple trajectories in the picture we include Gaussian corrections in

the analyses of optimal self-closing trajectories. This method allows us to account

for the effect of solutions that deviate slightly from the optimal solutions while

still satisfying the required boundary conditions (and hence can be associated with

distinct geometric phases). Operationally, the identification of τc when including

extra trajectories is achieved by replacing a direct comparison of the measure of

two individual quantum trajectories, with a comparison of the state transition

probabilities,

R =
p(ϕn=1

Θ= π
2
)

p(ϕn=0
Θ= π

2
) → R = Peq(2π + ϕe|ϕe)

Pn=0(ϕe|ϕe)
, (3.54)
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so that Peq(2π + ϕe|ϕe) is the self-closing transition probability evaluated for

trajectories close to ϕeq with geometric phases −π. Pn=0(ϕe|ϕe) is the self-closing

transition probability evaluated for trajectories close to ϕn=0 which are associated

with a vanishing geometric phase. Here, we limit our analysis of Gaussian corrections

to states initialized with Θ = π/2 since the transition and its critical value are

determined by the equatorial dynamics. The dynamics are then fully constrained to

one dimension, parametrized by ϕ.

3.5.1 Phase Space Gaussian Fluctuations

Peq and Pn=0 can be evaluated using a saddle point approximation around

their associated candidate optimum quantum trajectory. Computing saddle point

approximations is a standard procedure explicated in Ref. [147]. The conventional

algorithm consists of expanding the action around a chosen extremal trajectory by

rewriting q = q∗ + δq and p = p∗ + δp, where δq and δp are small deviations from

the optimal values q∗ and p∗. The Gaussian terms in the path integral may then

be evaluated, neglecting higher-order corrections. The result is an approximated

probability,

P = N
∫

DqDp eS[q,p] ≈ N

√√√√ (2π)n
det(A|q∗,p∗)e

S[q∗,p∗], (3.55)

where A|q∗,p∗ is the functional hessian of the CDJ action evaluated on the optimum

path with zero Dirichlet boundary conditions and N is an overall normalisation

factor.

The challenging step to implementing Eq. (3.55) is the calculation of the

functional determinant of the A|q∗,p∗ . For the key case of interest on the Bloch

sphere equator, we have the action-functional

S[ϕ, pϕ, r] =
∫ T

0

(
−pϕϕ̇+ pϕ

(
Φ̇ − r

τ
sin(ϕ)

)
− r2 − 2r cos(ϕ) + 1

2τ

)
dt. (3.56)

Since the stochastic action is in the form of an integral
∫
F (ϕ(t), pϕ(t), r(t))dt,

an application of the Euler-Lagrange equations straightforwardly obtains the first
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functional derivatives as follows:

δS

δϕ
= ṗϕ − rpϕ cos(ϕ) + r sin(ϕ)

τ
,

δS

δpϕ
= Φ̇ − r sin(ϕ)

τ
− ϕ̇,

δS

δr
= cos(ϕ) − pϕ sin(ϕ) − r

τ
.

(3.57)

In preparation for applying another functional derivative Eq. (3.57) may be cast in

the form of functionals with the dummy time variable s,

δS

δϕ(t1)
=
∫ ∞

−∞

τpϕ(s)δ̇(t1 − s) − pϕ(s)r(s)δ(t1 − s) cos(ϕ(s))
τ

ds,

δS

δpϕ(t1)
=
∫ ∞

−∞

−r(s)δ(t1 − s) sin(ϕ(s)) + Φ̇τδ(t1 − s) − τδ(t1 − s)ϕ̇(s)
τ

ds,

δS

δr(t1)
=
∫ ∞

−∞

−2pθ(s)δ(t1 − s) sin(ϕ(s)) − 2r(s)δ(t1 − s) + 2δ(t1 − s) cos(ϕ(s))
2τ ds.

(3.58)

Recall the definition of the functional derivative

δS

δxi(t2)
= lim

ϵ1→0

1
ϵ1

(S[xi + ϵ1δ] − S[xi]). (3.59)

Applying Eq. (3.59) to Eqs. (3.58) and naming ∆t = t2 − t1 we obtain the following

equations

δ

δϕ(t2)

(
δS

δϕ(t1)

)
= lim

ϵ1→0

1
ϵ

[(
d

dt1
pϕ(t1) − r(t1) cos(ϕ(t1) + ϵδ(∆t))pϕ(t1)

τ

)

−
(
dpϕ(t1)
dt1

− pϕ(t1)r(t1) cos(ϕ(t1))
τ

)]
= 1
τ
pϕ(t1)r(t1) sin(ϕ(t1))δ(∆t) (3.60)

δ

δpϕ(t2)

(
δS

δϕ(t1)

)
= lim

ϵ1→0

1
ϵ

[(
d

dt1
(pϕ(t1) + ϵδ(∆t)) − r(t1) cos(ϕ(t1))(pϕ(t1) + ϵδ(∆t))

τ

)

−
(
dpϕ(t1)
dt1

− pϕ(t1)r(t1) cos(ϕ(t1))
τ

)]
= − d

dt1
δ(∆t) − 1

τ
r(t1)δ(∆t) cos(ϕ(t1)) (3.61)
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δ

δr(t2)

(
δS

δϕ(t1)

)
= lim

ϵ1→0

1
ϵ

[(
d

dt1
pϕ(t1) − (r(t1) + ϵδ(∆t)) cos(ϕ(t1))pϕ(t1)

τ

)

−
(
dpϕ(t1)
dt1

− pϕ(t1)r(t1) cos(ϕ(t1))
τ

)]
= pϕ(t1)δ(∆t)(− cos(ϕ(t1))) − δ(∆t) sin(ϕ(t1))

τ
(3.62)

δ

δϕ(t2)

(
δS

δpϕ(t1)

)
= lim

ϵ1→0

1
ϵ

[(
Φ̇ − r(t1) sin(ϕ(t1) + ϵδ(∆t))

τ
− d(ϕ(t1) + ϵδ(∆t))

dt1

)

−
(

Φ̇ − r(t1) sin(ϕ(t1))
τ

− d

dt1
ϕ(t1)

)]
= d

dt1
δ(∆t) − 1

τ
r(t1)δ(∆t) cos(ϕ(t1)) (3.63)

δ

δpϕ(t2)

(
δS

δpϕ(t1)

)
= lim

ϵ1→0

1
ϵ

[(
Φ̇ − r(t1) sin(ϕ(t1))

τ
− d(ϕ(t1))

dt1

)

−
(

Φ̇ − r(t1) sin(ϕ(t1))
τ

− d

dt1
ϕ(t1)

)]
= 0 (3.64)

δ

δr(t2)

(
δS

δpϕ(t1)

)
= lim

ϵ1→0

1
ϵ

[(
Φ̇ − (r(t1) + ϵδ(∆t)) sin(ϕ(t1))

τ
− d(ϕ(t1))

dt1

)

−
(

Φ̇ − r(t1) sin(ϕ(t1))
τ

− d

dt1
ϕ(t1)

)]
= −δ(∆t) sin(ϕ(t1))

τ

δ

δϕ(t2)

(
δS

δϕ(t1)

)
= lim

ϵ1→0

1
ϵ

[(−pϕ(t1) sin(ϕ(t1) + ϵδ(∆t)) − r(t1) + cos(ϕ(t1) + ϵδ(∆t))
τ

))

−
(−pϕ(t1) sin(ϕ(t1)) − r(t1) + cos(ϕ(t1))

τ

)]
= pϕ(t1)δ(∆t)(− cos(ϕ(t1))) − δ(∆t) sin(ϕ(t1))

τ
(3.65)
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δ

δpϕ(t2)

(
δS

δϕ(t1)

)
= lim

ϵ1→0

1
ϵ

[(−(pϕ(t1) + ϵδ(∆t)) sin(ϕ(t1)) − r(t1) + cos(ϕ(t1))
τ

))

−
(−pϕ(t1) sin(ϕ(t1)) − r(t1) + cos(ϕ(t1))

τ

)]
= −δ(∆t) sin(ϕ(t1))

τ
(3.66)

δ

δr(t2)

(
δS

δϕ(t1)

)
= lim

ϵ1→0

1
ϵ

[(−pϕ(t1) sin(ϕ(t1)) − (r(t1) + ϵδ(∆t)) + cos(ϕ(t1))
τ

))

−
(−pϕ(t1) sin(ϕ(t1)) − r(t1) + cos(ϕ(t1))

τ

)]
= −δ(∆t)

τ
. (3.67)

These Eqs. (3.60)- (3.67) are organised into the matrix of operators

A(t2, t1) =


δS

δϕ(t2)δϕ(t1)
δS

δp(t2)δϕ(t1)
δS

δr(t2)δϕ(t1)
δS

δϕ(t2)δp(t1)
δS

δp(t2)δp(t1)
δS

δr(t2)δp(t1)
δS

δϕ(t2)δr(t1)
δS

δp(t2)δr(t1)
δS

δr(t2)δr(t1)

 . (3.68)

When Eq. (3.68) is evaluated at the equilibrium quantum trajectory, it simplifies to:

A(t2, t1)|ϕeq =


−

√
1−Φ̇4τ4

τ
− d
dt1

−
√

1−Φ̇2τ2

τ
√

Φ̇2τ2+1
0

d
dt1

−
√

1−Φ̇2τ2

τ
√

Φ̇2τ2+1
0 − Φ̇√

Φ̇2τ2+1

0 − Φ̇√
Φ̇2τ2+1

− 1
τ

 δ(∆t). (3.69)

Equipped with vanishing boundary conditions Eq. (3.69) has an empty spectrum.

This presents an obstacle to evaluating Det[A(t2, t1)|ϕeq ], since Det[A(t2, t1)|ϕeq ] is

defined to be the product of the operator eigenvalues. To make further progress,

we integrate the measurement record function out. The functional determinant in

Eq. (3.55) may be expressed as a path integral,

∫
DxDyDz exp

(∫ ∫
dt1dt2 xTA(t2, t1)|q=qclx

)
(3.70)
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Where x is the deviation from the classical trajectory

x =


x

y

z

 =


δϕ− ϕcl

δp− pcl

δr − rcl

 .

We may then perform the Gaussian integral over z using the general result

Dv(x) exp
(

−1
2

∫ ∫
dx dx′ v(x)A(x, x′)v(x′) +

∫
dx j(x)v(x)

)
(3.71)

∝ (detA)− 1
2 exp

(1
2

∫ ∫
dx dx′ j(x)A−1(x, x′)j(x′)

)
,

where we have also used the definition of a Green’s function
∫
dx′A(x, x′)A−1(x′, x′′) = δ(x− x′′). (3.72)

Naming the vector y =

x
y

 we obtain6

∫
DxDyDz exp

(∫ ∫
dt1dt2 xTA(t2, t1)|ϕeqx

)
= (3.73)

∫
DxDyDz exp

∫ ∫
dttdt2yTB(t2, t1)|ϕeqy − z(t1)δ(∆t)z(t2)

τ
(3.74)

−
∫
dt2

2y(t2)(Θ(t2) − Θ(t2 − T ))z(t2)√
1 + Φ̇2τ 2

. (3.75)

where we have isolated the simpler operator

B(t2, t1)|ϕeq =

 −
√

1−Φ̇4τ4

τ
δ(∆t) − d

dt1
δ(∆t) −

√
1−Φ̇2τ2

τ
√

Φ̇2τ2+1
δ(∆t)

d
dt1
δ(∆t) −

√
1−Φ̇2τ2

τ
√

Φ̇2τ2+1
δ(∆t) 0

 . (3.76)

Solving the z component by applying Eq. (3.71) to Eq. (3.70) we find the divergent

pre-factor Det
[

− δ(∆t)
τ

]− 1
2
, and the Green’s function associated with − δ(∆t)

τ
is given

by −τδ(∆t). By comparison with Eq. (3.71) we identify, j(t2) = − 2Φ̇y(t2)√
Φ̇2τ2+1

. The

6Here we have repurposed the notion Θ to indicate the Heaviside function.
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Gaussian corrections with the record function integrated out then become equivalent

to the new path integral
∫
DxDy exp

(∫
dt1dt2 − 2Φ̇2τy(t1)δ(∆t)y(t2)

Φ̇2τ 2 + 1

)
exp

(∫ ∫
dttdt2yTB(t2, t1)y

)
.

(3.77)

This path integral has the concomitant functional Hessian

C(t2, t1)|ϕeq =

 −
√

1−Φ̇4τ4

τ
δ(∆t) − d

dt1
δ(∆t) −

√
1−Φ̇2τ2

τ
√

Φ̇2τ2+1
δ(∆t)

d
dt1
δ(∆t) −

√
1−Φ̇2τ2

τ
√

Φ̇2τ2+1
δ(∆t) −2Φ̇2τδ(∆t)

Φ̇2τ2+1

 . (3.78)

In order to find the spectrum associated with this operator we set up the

eigenvalue equation
 −

√
1−Φ̇4τ4

τ
d
dt2

−
√

1−Φ̇2τ2

τ
√

Φ̇2τ2+1

− d
dt2

−
√

1−Φ̇2τ2

τ
√

Φ̇2τ2+1
− 2Φ̇2τ

Φ̇2τ2+1


x
y

 = η

x
y

 . (3.79)

However, once again we find that, subject to the boundary conditions that x(0) =

x(T ) = 0 and y(0) = y(T ) = 0, there will be no corresponding solutions.

3.5.2 State Space Gaussian Fluctuations

Since we encounter these difficulties in the phase space formulation of the SPI we

move on to expressing the stochastic path integral in the Lagrangian formulation

Eq. (4.27). Despite the presence of the state-dependent functional measure in

Eq. (3.28), we find that this form is more tractable. Simplifying Eq. (4.27), (3.28)

and (3.27) with θ(t) = π
2 and Θ = π

2 , and recalling the value of θe, the path integral

we required for Peq(2π + ϕe|ϕe) is,

P(2π + ϕe|ϕe) ∝ (3.80)∫
Dϕ

√
τ

2π sin2(2πt− ϕ)e
∫ (

− 1
2 τϕ̇

2 csc2(2πt−ϕ)+ϕ̇ cot(2πt−ϕ)
)
dt (3.81)

≈ eS[ϕeq ]
∫

Dδϕ
√

τ

2π sin2(2πt− ϕeq)
e
∫
δϕA|ϕeq δϕdt.
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Following the method described in [158], we apply a time reparameterization around

the equilibrium trajectory, so the new time variable u is determined by u(t) =
1
τ

∫ t
0 sin(2πt′ − ϕeq(t′))dt′ with u(0) = 0. This acts as a local-scale transformation

that eliminates the state-dependent functional measure, simplifying the path integral

to

P(2π + ϕe|ϕe) ≈ N eS[ϕeq ]
∫

Dδϕe
∫
δϕΣ|ϕeq δϕdu. (3.82)

This may then be evaluated using

eS[ϕeq ]
∫

Dδϕe
∫
δϕΣ|ϕeq δϕdu = eS[ϕeq ]

(
det Σ|ϕeq

)− 1
2

(3.83)

= eS[ϕeq ]
(det

[
Σ|ϕeq

]
det

[
d2

du2

] )− 1
2
(

det
ζ

[ d2

du2

])− 1
2
,

where the final functional determinant is Riemann-Zeta regularized [147]. This

regularized determinant would normally be absorbed in the functional measure,

however, given the time parametrization we employed depends on the value of the

state parameter we must include the state-dependent part of the Riemann Zeta

regularised contribution of this term, which can be expressed as [158]

detζ
d2

du2 =
∏
π2n2∏ 1

u(T )2 = |u(T )| = 4π2τ

4π2τ 2 + 1 . (3.84)

The ratio of functional determinants may be calculated by the Gelfand-Yaglom

method [159] giving,

det
[
Σ|ϕeq

]
det

[
d2

du2

] = f(u|t = 1)
f 0(u|t = 1) =

τ sinh
(√

4π2τ2+1
τ

)
√

4π2τ 2 + 1
, (3.85)

where Σ|ϕeqf(u) = λf(u) and d2

du2f
0(u) = λ0

i f
0(u) with initial conditions f (0)(0) = 0

and ˙f (0)(0) = 1. For the winding trajectory, ϕeq = 2πt − arctan(2πτ), we find a

closed-form expression for the probability density,

P (2π + ϕe|ϕe) ∝ e−2π2τ

4π2τ 2 sinh
(√

4π2τ2+1
τ

)
(4π2τ 2 + 1) 3

2

− 1
2

. (3.86)
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For Pn=0(ϕe|ϕe), we employ the same method, however, there is no closed-form

solution for the saddle point, we resort to a numerical approximation of each of the

three contributing factors (equivalent to Eq. (3.83) evaluated around ϕn=0) directly

evaluating eS[ϕn=0] and |u(T )| numerically while approximating the ratio of the two

functional determinants using the smallest N eigenvalues,

det
[
Σ|ϕn=0

]
det

[
d2

du2

] ≈
∏N
i λi∏N
i λ

0
i

. (3.87)

Using these results, the ratio R is plotted in Fig. (3.9b), where R is compared

to R and to the value of R computed using numerical simulations. We find that

the effective value of τ eff
c ≈ 0.045 is in excellent agreement with the results from

trajectory simulations, substantiating the validity of the Gaussian approximation.

This shows that the Gaussian action is a valid approximation to capture the whole

statistics of quantum self-closing trajectories, and this might be valuable in any

realization in which identifying the most probable trajectories might not be feasible.

3.6 Disscussion

In this chapter, we have added to the growing body of research into measurement-

induced topological transitions, discovering a range of extensions to the post-selected

geometric phase transition including post-selecting for the most probable readouts

r(t) and relaxing assumptions regarding the systems state preparation. We also

uncover a qualitatively new type of transition which manifests for closed geometric

phases and is only accessible through the study of self-closing quantum trajectories.

Looking ahead, there may be analogous closed geometric phase transitions present in

higher dimensional systems. The Gaussian fluctuation technique we demonstrate for

our single qubit system may prove advantageous in the study of related phenomena

present at the single qubit level, such as geometric dephasing, or may be applied

to the dynamics of higher dimensional systems whenever the influence of multiple

trajectories must be accounted for.
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Chapter 4

Dual Qubit Entanglement

Dynamics Under Measurement

and Noise

In this chapter we study the effect of local unitary noise on the entanglement

evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.

Recent studies have investigated the entanglement properties of monitored dual

qubits systems [30, 160, 161]. We construct a CDJ path integral, as described in

Section 2.3.2.2, for our system, and we extend the approach to account for the

additional effect of unitary noise. Nascent features of the many-body competition

between unitary evolution and monitoring in the entanglement dynamics can

be identified even in two-qubit systems [162, 163, 164, 165, 166, 167] and the

presence of a stochastic unitary component can have non-trivial effects in many-

body MIPTs [168, 169, 170].

We use the stochastic action to identify the most probable quantum trajectories

and their associated entanglement dynamics. We then use diagrammatic methods to

obtain a closed-form approximation of the average entanglement dynamics, which

exhibits an analytical dependence on the noise and measurement intensity. We

find that both the optimal trajectory and diagrammatic expansion capture the
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oscillations of entanglement at short times. A numerical investigation is required

to probe the long-time steady-state entanglement, which reveals a non-monotonic

relationship between concurrence and noise strength.

4.1 The Model: Two-Qubit Noisy Monitored

Dynamics

Consider a two-qubit system, represented schematically in Fig. 4.1, subject to

unitary noisy dynamics and continuous quantum monitoring. The unitary dynamics

in the system are generated by the Hamiltonian H specified as

H = H0 +Hn, (4.1)

H0 = iℏJ(σ1,+σ2,− − σ1,−σ2,+), (4.2)

Hn = 2ϵ(t)σ1,y + 2λ(t)σ2,y, (4.3)

where σi,j is the j-th Pauli matrix acting on the i-th qubit, σi,± = σi,x± iσi,y. Fixing

ℏ = 1, and J = 1 as an overall energy scale, ϵ and λ become randomly fluctuating

dimensionless Gaussian noises, defined by ⟨ϵ(t)ϵ(t′)⟩ = ⟨λ(t)λ(t′)⟩ = Γδ(t− t′). The

parameter Γ determines the noise strength, which we assume to be equal for both

qubits.

The system is further subject to continuous Gaussian monitoring on each

qubit [16, 17], which is described by the state update over an infinitesimal time

δt as

|ψt+δt⟩ = N −1M1,r ⊗M2,w|ψt⟩, (4.4)

with the two Gaussian measurement operators (see Eq. (2.4)) acting on the first and

second qubits, respectively, given by

Mr = 4

√
δt

2πτ exp
(

− δt

4τ (r − σ1,z)2
)
, (4.5)

Mw = 4

√
δt

2πτ exp
(

− δt

4τ (w − σ2,z)2
)
, (4.6)
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Figure 4.1: (a) Sketch of the two-qubit system we study. Two qubits (represented by

single-qubit bock spheres) are coupled to quantum detectors (green) with output r,

w and Kraus operator backaction Mr, Mw. The qubit unitary dynamics is generated

by an inter-qubit interaction term (red wavy line) and local noisy Hamiltonian terms

(blue arrows). (b) Stochastic trajectories of squared concurrence C2 (faded orange

background) from numerical simulations with fixed measurement strength (τ = 0.2)

and noise strength (Γ = 3) and corresponding average (orange full line). The average

C2 vs time is plotted for a range of noise strengths at fixed measurement strength

(τ = 0.2).
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and the normalization N −1 set by ⟨ψt+δt|ψt+δt⟩ = 1. Here, the measurement readouts

rk and wk are drawn from the probability distributions

P (rk) = ⟨ψt|M †
rk
Mrk

|ψt⟩, (4.7)

P (wk) = ⟨ψt|M †
wk
Mwk

|ψt⟩. (4.8)

The measurement strength, τ , is the time required to separate the readout

distributions for |0⟩ and |1⟩ by two standard deviations as explained in Section 2.1.2,

where |0⟩ and |1⟩ correspond to a single qubit eigenstate of σz. In the limit δt → 0,

this formulation is equivalent to the stochastic Schrodinger equation (SSE) [16]

d|ψ⟩ =
[

− 1
τ

(σ1,zσ2,z − ⟨σ1,zσ2,z⟩)2dt (4.9)

+
√

2
τ

(σ1,z − ⟨σ1,z⟩)dW1 +
√

2
τ

(σ1,z − ⟨σ1,z⟩)dW2

]
|ψ⟩,

with Gaussian noise increments dW1 and dW2 so that ⟨dW1⟩ = ⟨dW2⟩ = 0 and

variance dW 2
1 = dW 2

2 = dt.

The evolution of the monitored system over a finite time t is obtained as a

succession of N of these Kraus operators applied to the system so that t = kδt with

{k ∈ N|k ≤ N}. The limiting procedure, defined by N → ∞, δt → 0 while keeping

δt N = t, defines a continuous monitoring process as per the stochastic evolution of

the SSE in Eq. (4.9). A continuous stream of measurement readouts is obtained: so

{rk} → r and {wk} → w, become continuous random variables. We can conveniently

group all the stochastic variables of the model in the vector s = (r, w, ϵ, λ) ∈ R4.

We parameterised our system with the state parameter qk = (ak, ck, αk, γk) ∈ R4 so

that,

|ψk⟩ = ak|00⟩ + ck|01⟩ + αk|10⟩ + γk|11⟩. (4.10)

After taking the continuous limit, these state parameters {qk} also become

continuous functions of time q(t).

We can formulate the time evolution from the combined quantum monitored and

stochastic unitary evolution in a time-discretised formulation that is convenient for
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both the action formulation and the numerical implementation. In the discrete limit,

the Born rule gives the conditional probability of a pair of measurement readouts,

P (rk, wk|ψk, λk, ϵk) = ⟨ψk|E(rk, wk)†E(rk, wk)|ψ⟩,

E(rk, wk) = e−iHδt(Mrk
⊗Mwk

). (4.11)

Here the unitary transformation e−iHδt is considered to act across the interval [t, t+

δt] with noise variables drawn from the independent Gaussian distributions

P (ϵk) =
√

δt

2πΓe
− δt

2Γ ϵ
2
k , (4.12)

P (λk) =
√

δt

2πΓe
− δt

2Γλ
2
k , (4.13)

across each time interval. The effect of the Hamiltonian Eq. (4.1) and continuous

monitoring is combined in the state update given by,

|ψk+1⟩ = E(rk)|ψk⟩/
√
P (rk, wk). (4.14)

Taking this process back into the continuum limit produces dynamics that combine

the effect of both the noisy Hamiltonian and the measurement (see Eq. (4.18)-

(4.25))).

In the rest of the chapter, we will study the stochastic dynamics of the qubit

entanglement within this model. The time evolution is such that if the state

preparation satisfies, q(0) ∈ R, then q(t) ∈ R at all subsequent times. For the sake

of simplicity, we study qubit dynamics with the initially unentangled preparation

|ψ(0)⟩ = (1
2 ,

1
2 ,

1
2 ,

1
2). We do not expect the qualitative features of our analysis to be

affected by this choice.

4.2 Optimal entanglement

We employ the concurrence, C, as an entanglement monotone to quantify the

entanglement in the system. For the 2-qubit state parameterised in Eq. (4.10),

the concurrence is given by,

C = 2|aγ − αc|. (4.15)
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The deterministic component of the Hamiltonian, H0, can generate entanglement

between the two qubits. If the system is initialised in a separable state, H0 drives

oscillations of entanglement with a period of t = π. The local random Hamiltonians

generically scramble these oscillations, leading to a stochastic evolution with a well-

defined steady-state distribution of states and, hence, entanglement. The local

monitoring, a stochastic process, also drives the system towards a well-defined

steady-state entanglement distribution. However, the entanglement dynamics

are controlled by the competition between the measurements, which reduce the

entanglement, and the unitary dynamics, which typically establish it.

The stochastic entanglement evolution is reported in Fig. 4.1, showing the

average squared concurrence as a function of time for a range of different noise

strengths. Unless otherwise stated, results obtained from numerical simulations use

the parameter δt = 0.02 and are based on a sample of size 400 trajectories for

any given value of the protocol parameters. The average entanglement generically

displays oscillations at short times before reaching a stated state value, which

depends on the noise and measurement strength.

4.2.1 Chantasri-Dressel-Jordan Path Integral with unitary

noise

We construct a path integral formulation of the probability distribution over

quantum trajectories up to time T , P(q(T )) via the CDJ path integral (Section

2.3.2.2) to identify the optimal entanglement dynamics. The CDJ path integral

is again constructed by noting that the full probability distribution for the

measurement process can be expressed as a product of sequential conditional

probabilities (cf. (2.74)) so

P(q(T ), s(T )|qi) = F(t0, tN)× (4.16)

lim
δt→0,N→∞

N−1∏
k=0

P (qk+1|qk, sk)P (sk|qk),
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4.2. Optimal entanglement

where F(t0, tN) = δ3(q(N) − qf )δ3(q(0) − qi) sets the initial and final states to be

qi and qf .

The path integral (4.16) therefore requires two critical pieces of information:

the infinitesimal state update P (qk+1|qk, sk) and the conditional measurement

readout probability distribution P (sk|qk). The state updating term in Eq. (4.16) is

deterministic, so it can be expressed as a delta function,

P (qk+1|qk, sk) = δd(qk+1|qk, s(t)) (4.17)

=
( 1

2πi

)d ∫ i∞

−i∞
ddpe−pp·(qk).

This step introduces conjugate momenta 1 pk = (pa, pc, pα, pγ). Expanding both

sides of Eq. (4.14) up to the first order in δt, we obtain, in the continuum limit, the

stochastic differential equations for the evolution of the state parameters,

ȧ = A− cλ− αϵ, (4.18)

ċ = C + α + aλ− γϵ, (4.19)

α̇ = D − c+ aϵ− γλ, (4.20)

γ̇ = Y + cϵ+ αλ, (4.21)

where

A = aw

τ
(c2 + γ2) + ar

τ
(α2 + γ2), (4.22)

C = cw

τ
(c2 + γ2 − 1) + cr

τ
(α2 + γ2), (4.23)

D = αw

τ
(c2 + γ2) + rα

τ
(α2 + γ2 − 1), (4.24)

Y = γw

τ
(c2 + γ2 − 1) + rγ

τ
(α2 + γ2 − 1). (4.25)

Eq. (4.22-4.25) contain the effect of the measurement on the state dynamics. In

the absence of these terms, Eq. (4.18-4.21), describe the effect of any unitary noise
1Similar to the discussion of the CDJ action in chapter 3.2.1, the integrals in Eq. (4.17) are

taken over the imaginary axis but the conjugate momentum variables are treated as real since this

reproduces the Lagrange multiplier optimization of lim δto → 0
∏N−1

k=0 P (sk|qk).
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λ(t), ϵ(t) on the system dynamics. We observe the noise free (λ = 0, ϵ = 0) and

measurement-free oscillations2 (r = 0, w = 0) given by ċ = α, α̇ = −c, are contained

within Eq. (4.18-4.21) as expected.

The probability P (sk|qk) may be expressed as the product P (ϵk)P (λk)P (rk, wk|qk)

and the factor P (ϵk)P (λk) is defined in Eq. (4.12). Expanding Eq. (4.11) to leading

(first) order in time, we find that the state-dependent conditional probability density

is,

P (rk, wk|qk) = δt

2πτ e
− δt

2τ
(r2

k+w2
k−2wkw̄k−2rk r̄k+2), (4.26)

where the mean readouts of the detectors are w̄k = (2c2
k + 2γ2

k − 1), r̄k =

(2α2
k + 2γ2

k − 1). Following the usual procedure for constructing path integrals set

out in Section 2.3.2.2, extraneous factors of δt are absorbed into the functional

measure, we express P in terms of an action S[q,p, s],

P(q(T ), s(T )|qi) ∝
∫
DqDpDse−S[q,p,s]. (4.27)

The functional S, acting on the whole set of quantum trajectories is given by

S[q,p, s] =
∫ T

0

(
− p · q̇ + H

)
dt. (4.28)

Here H is expressed as

H = paA+ pcC + pαD + pγY − λ2 + ϵ2

2Γ (4.29)

+ 1
2τ

r2 + w2 − 2rr̄ − 2ww̄ + 2
,

and is referred to as stochastic Hamiltonian [28, 29, 30, 31], in analogy with the

Hamiltonian formulation of a classic system. From this formulation, we see that the

conjugate momenta act as Legendre multipliers, enforcing constraints on the rate of

change of the state parameters. We will utilise this action formulation to investigate

the optimal entanglement growth in the system.
2Demanding r and w identically vanish forces the measurement operators to become identically

unity - hence they induce no backaction on the state.
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4.2. Optimal entanglement

4.2.2 Optimal Squared Concurrence

Extremising the CDJ stochastic action (Eq. (4.28)) via Hamilton’s equation’s

−∂qH = ṗ, ∂pH = q̇, ∂rH = 0 leads to equations of motion that specify quantum

trajectories that are extremal points of the action. Solutions of Eq. (4.18) combined

with Eq. (4.30 - 4.37) therefore constitute either most probable, least probable

or saddle point trajectories for any given boundary conditions. The nature of any

given solution is most easily determined by evaluating the action and comparing the

solution with a nearby quantum trajectory. So for any accessible initial and final

boundary conditions, we can use these equations (Eqs. 4.28, 4.18 and 4.30-4.37) to

determine the most likely quantum trajectory.

The extremization of Eq. (4.28) is carried out explicitly, resulting in

λ = −Γ(−apc + cpa + pαγ − pγα) (4.30)

ϵ = Γ(apα + cpγ − paα− pcγ) (4.31)

r = apaα
2 + apaγ

2 + cpcα
2 + cpcγ

2 + pααγ
2 + pαα

3

− pαα + pγα
2γ + pγγ

3 − pγγ − 2α2 − 2γ2 + 1, (4.32)

w = ac2pa + apaγ
2 + c2pαα + c2pγγ + cpcγ

2 + c3pc

− cpc − 2c2 + pααγ
2 + pγγ

3 − pγγ − 2γ2 + 1. (4.33)

Eqs. (4.30-4.33) express each stochastic variable in terms of the state parameters and

conjugate momentum. These, in turn, are determined by the evolution of the system

state parameters obtained earlier (Eq. (4.18)), along with four further expressions
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for the evolution of the conjugate momentum variables, given by

ṗa = −1
τ

(
c2paw + parα

2 + parγ
2 + paγ

2w + τpαϵ+ τpcλ
)

(4.34)

ṗc = 1
τ

− 2acpaw − 2cpααw − 2cpγγw − 3c2pcw + 4cw + τpα + τpaλ

− pcrα
2 − pcrγ

2 − pcγ
2w + pcw − τpγϵ

 (4.35)

ṗα = 1
τ

− 2aparα + c2(−pα)w − 2cpcrα− τpc − 3pαrα2 − pαrγ
2 + pαr

− pαγ
2w + τpaϵ− 2pγrαγ − τpγλ+ 4rα

 (4.36)

ṗγ = 1
τ

− 2aparγ − 2apaγw − 2cpcrγ − 2cpcγw + c2(−pγ)w − 2pαrαγ + τpαλ

− 2pααγw − pγrα
2 − 3pγrγ2 + pγr − 3pγγ2w + pγw + τpcϵ+ 4rγ + 4γw

.
(4.37)

Eqs. (4.30-4.33) can be substituted into the remaining equations of motion,

resulting in an 8-dimensional system of ODEs in phase space. The state initialisation

a(0) = c(0) = α(0) = γ(0) = 1
2 , may then be combined with a final time boundary

condition (or equivalently, with a choice of initial momentum) to generate extremal

quantum trajectories. While the exact solutions obtained from Eq. (4.30-4.37)

depends on the initial state, we expect that the ensuing set of optimal trajectories

will exhibit qualitatively and quantitatively similar behaviour in terms of their

dynamic entanglement properties for generic non-entangled initial states.

To determine the most likely quantum trajectory for a given initial and final

concurrence, we evaluate the probability of each candidate’s optimal quantum

trajectory over the equivalence class of final state conditions with equal entanglement

monotone value (see Eq. (4.15)). In other words, we find candidate optimal

trajectories that share an equal final concurrence, then search this set for the

most probable overall trajectory. Examples of these optimal entanglement dynamics

are provided in Fig. 4.2, where they are compared to the associated post-selected
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Figure 4.2: Squared concurrence vs time for post-selected trajectories to maximum

entanglement [panel (a)] and minimum entanglement [panel (b)] at t = 3. Solid lines

are for the average squared concurrence, and dashed lines are for the most probable

trajectory with the specified boundary conditions for different noise strengths of

Γ = 0.01 (Orange) and Γ = 0.5 (Blue). In all cases, τ = 0.2. Across a range of

noise strengths, an optimal concurrence track with a maximum concurrence at t = π

approximately reproduces the system’s deterministic oscillations. The optimal path

with a final minimum entanglement is sensitive to changes in Γ.
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Figure 4.3: Global optimum squared concurrence vs time for τ = 0.6 (Purple),

τ = 0.7 (Blue), τ = 0.4 (Orange) and τ = 0.3 (Red). For τ > 0.5, C2 along the

global optimal trajectory oscillates, while for τ < 0.5, it saturates to fixed values

after a few units of time. Inset: Plot of the steady-state global optimum concurrence

against measurement strength for τ < 0.5.

average concurrence. We observe that the optimal entanglement captures some

general features of the post-selected averages, particularly the number of inflexion

points reproduced. However, these optimal curves are poor estimates of the average

entanglement growth and attenuation.

In addition to the most probable trajectories for given initial and final conditions,

we may also identify the most probable concurrence globally (without any final

boundary conditions). This is achieved by substituting in the values w̄ = 1 − 2c2 −

2γ2, r̄ = 1 − 2α2 − 2γ2, λ = 0, ϵ = 0 (the mean values of these stochastic variables

at each time step, as can be identified from Eq. (4.26) into Eqs. (4.18)-(4.21). The

result is a set of ODEs that generated the global optimum trajectory. We see that the

resulting equations of motion are then independent of Γ, hence the global optimum

concurrence is independent of the noise strength. This is expected given that the

unitary noise is independent of the system’s state; hence, the noise fluctuations play

no role.

As shown in Fig. 4.3 the qualitative behaviour of the globally most probable
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4.3. diagrammatic Approximation for the Average Squared Concurrence

entanglement undergoes a transition at τ ≈ 0.5. Above τ ≈ 0.5, the globally

optimum concurrence oscillates continuously as a function of time - dominated by

the influence of the driving Hamiltonian. The concurrence saturates to a fixed value

below τ ≈ 0.5. This phenomenology is illustrated in Fig. 4.3. It is a monotonically

decreasing function of the measurement strength, as might be expected in the strong

measurement regime since measurement attenuates the entanglement. We note that

the average concurrence also achieves a steady state - however, this occurs across

all ranges of τ and generally saturates at a value distinct from the corresponding

optimum concurrence.

4.3 diagrammatic Approximation for the Average

Squared Concurrence

Besides the optimal behaviour, further analytical insight into the stochastic

entanglement dynamics can be obtained for weak coupling/short-time dynamics, for

which diagrammatic methods can be applied considering a suitable reformulation

of the stochastic action [29]. We follow the procedure described in [29, 10] to

construct a second stochastic action, again using Eq. (4.16) as the starting point,

which models the systems dynamics while enabling diagrammatic methods. We will

use a diagrammatic weak coupling expansion to find a closed-form expression for the

average squared concurrence as a function of time that shows excellent agreement

with the results of simulations in combined weak measurement weak noise regimes.

4.3.1 Ito’s Rule Formulation of the Stochastic Dynamics

As a first step, we transform the state update equations Eq. (4.18) into stochastic

differential equations using Ito’s rules, i.e. δt2r2 → δtτ, δt2w2 → δtτ, δt2ϵ2 →

Γδt, δt2λ2 → Γδt. We apply these rules to the second-order expansion of the state

update equation Eq. (4.14) to properly account for the noise fluctuations. The
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measurement record functions are then approximated as their mean values plus

some Gaussian noise, r → −r̄ +
√
τθ, w → −w̄ +

√
τϕ. Here, θ and ϕ are new

Gaussian noise variables with mean 0 and variance δt−1. Additionally, we re-scale

the earlier Gaussian noise variables with the transformation λ →
√

Γλ, ϵ →
√

Γϵ

λ ϵ so they also have a variance of δt−1. From this, we find the following SDEs

governing the system state parameters

ȧ = −dt
(
a

τ
Ã+ aΓ

)
+ aλ√

τ

(
α2 + γ2

)
+ aλ√

τ
(c2 + γ2) −

√
Γcθ −

√
Γαϕ, (4.38)

ċ = dt

(
α− Γc+ c

τ
C̃

)
+ cλ√

τ
(γ2 + c2 − 1) + cϵ√

τ
(α2 + γ2) −

√
Γγϕ+

√
Γaθ,

(4.39)

α̇ = dt

(
α

τ
D̃ − c− Γα

)
+ αλ√

τ
(γ2 + c2) + αϵ√

τ
(γ2 + α2 − 1) +

√
Γaϕ−

√
Γγθ,

(4.40)

γ̇ = dt

(
γ

τ
Ỹ − Γγ

)
+ λ√

τ
(c2γ + γ3 − γ) + ϵ√

τ
(α2γ + γ3 − γ) +

√
Γcϕ+

√
Γαθ,

(4.41)

where

Ã =
(
c2γ2 + c4

2 + α2γ2 + α4

2 + γ4
)
,

C̃ = (−α2γ2 − α4

2 − c2γ2 + γ2 − γ4 − c4

2 + c2 − 1
2),

D̃ = (−c2γ2 − c4

2 − α2γ2 + γ2 − γ4 − α4

2 + α2 − 1
2),

Ỹ = (−c2γ2 + c2 − c4

2 − α2γ2 + α2 − α4

2 + γ4 + 2γ2 − 1).

We observe that in the limit where Γ approaches zero, Eqs. (4.38)-(4.41) recover

the stochastic Schrödinger equation (Eq. (4.9)). These SDEs are utilized in the

creation of a new path integral in the same manner as Eqs. (4.18)- (4.21); each

state parameter acquires a corresponding conjugate momentum through the Fourier

representation of a Dirac delta function (Eq. (4.17)) in Eq. (4.16). We reuse the

notation p = (pa, pc, pα, pγ) to index these new conjugate momenta.
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Each new Gaussian random variable, in discrete time, has an accompany-

ing state-independent probability distribution, P (θ) =
√

δt
2πe

− δt
2 θ

2 and P (ϕ) =√
δt
2πe

− δt
2 ϕ

2 . Along with the transformed distributions from Eq. (4.12), we multiply

together these independent distributions to form the following probability density,

P (θ, ϕ, λ, ϵ) = δt2

4π2 e
− δt

2 (θ2+ϕ2+ϵ2+λ2)dθdϕdλdϵ. (4.42)

This stochastic action component is considerably simplified compared to its

equivalent in Eq. (4.26).

A second stochastic path integral may be constructed from this new model of the

system [10, 29] substituting in time discretised versions of the Fourier-transformed

Dirac delta distributions associated with Eq. (4.38) and the distribution of Eq. (4.42)

into Eq. (4.16). Taking this into the continuum limit and then integrating out all

four Gaussian noises from the resulting path integral produces a phase space path

integral

P ∝
∫

DqDpeS̃. (4.43)

The stochastic action S̃ is composed of three parts

S̃ = S̃f + S̃i + S̃b. (4.44)

The free action, S̃f , contains all bilinear terms of the action

S̃f =
∫
paȧ+ Γapa + pcċ+ cpα + Γcpc + cpc

2τ − pcα

+ pαα̇ + Γpαα + pαα

2τ + pγ γ̇ + Γpγγ + pγγ

τ
dt. (4.45)

The interaction action, S̃i, contains all remaining terms

S̃i =
∑
ρ

Fρa
nacncαnαγnγpma

a pmc
c pmα

α pmγ
γ , (4.46)

where the sum is over all the strings ρ = {na, nc, nα, nγ,ma,mc,mα,mγ} such that∑
j nj ≤ 6 and the coefficients of each terms are explicitly given in Section 4.3.1.1

in Eq. (4.48). The final term in the action expresses the boundary conditions

S̃b = 1
2δ(t)pa + 1

2δ(t)pc + 1
2δ(t)pα + 1

2δ(t)pγ. (4.47)
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We used the state normalization condition, a2 + c2 + α2 + γ2 = 1, to simplify the

result. One advantage of having the action in this form is that the free part of the

action in Eq. (4.45) is exactly solvable, and it becomes possible to apply various

diagrammatic methods. In the following section, we use this path integral to find a

closed-form approximation for concurrence as a function of time.

4.3.1.1 Interaction Action

We report the full expression for the interaction action S̃i in Eq. (4.44) used in the

diagrammatic approximation of ⟨C2⟩. The expression consists of 127 distinct terms,

each associated with an interaction vertex.
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S̃i = 1
τ

∫
dt

p2
cc

6

2 + apapcc
5 + pcc

5

2 + pcpααc
5 + pcpγγc

5 + a2p2
ac

4

2 + p2
αα

2c4

2 (4.48)

+ p2
cγ

2c4 +
p2
γγ

2c4

2 + apac
4

2 + apapααc
4 + pααc

4

2 + apapγγc
4 + pγγc

4

2 + pαpγαγc
4

− p2
cc

4 + 2pcpγγ3c3 + 2apapcγ2c3 + pcγ
2c3 + 2pcpααγ2c3 − apapcc

3 − pcc
3

− pcpααc
3 − 2pcpγγc3 + p2

cα
4c2

2 + p2
cγ

4c2 + p2
γγ

4c2 + 2apapγγ3c2 + pγγ
3c2 + 2pαpγαγ3c2

+ 1
2Γp2

ac
2 + p2

cc
2

2 + 1
2Γp2

γc
2 + a2p2

aγ
2c2 + p2

cα
2γ2c2 + p2

αα
2γ2c2 + apaγ

2c2 + 2apapααγ2c2

+ pααγ
2c2 − p2

cγ
2c2 − p2

γγ
2c2 − apapγγc

2 − pγγc
2 − pαpγαγc

2 + pcpαα
5c

+ 2pcpγγ5c+ apapcα
4c+ pcα

4c

2 + 2apapcγ4c+ pcγ
4c+ 2pcpααγ4c+ 2pcpγα2γ3c

+ 2pcpαα3γ2c+ 2apapcα2γ2c+ pcα
2γ2c− Γapapcc+ Γapαpγc− 2Γpapγαc+ pcpγα

4γc

+ Γpapαγc− Γpcpγγc+ pcpγγc− pcpαα
3c− 3pcpγγ3c− apapcγ

2c− pcγ
2c

− 2pcpααγ2c− pcpγα
2γc+ p2

αα
6

2 + p2
γγ

6 + apapαα
5 + pαα

5

2 + 2apapγγ5 + pγγ
5

+ 2pαpγαγ5 + a2p2
aα

4

2 + apaα
4

2 + a2p2
aγ

4 + p2
αα

2γ4 + p2
γα

2γ4 + apaγ
4 + 2apapααγ4

+ pααγ
4 + 2pαpγα3γ3 + 2apapγα2γ3 + pγα

2γ3 + 1
2Γa2p2

c + 1
2Γa2p2

α + 1
2Γp2

aα
2 + p2

αα
2

2

+ 1
2Γp2

γα
2 + p2

αα
4γ2 +

p2
γα

4γ2

2 + 2apapαα3γ2 + pαα
3γ2 + 1

2Γp2
cγ

2 + 1
2Γp2

αγ
2 + p2

γγ
2

+ a2p2
aα

2γ2 + apaα
2γ2 − Γapapαα + Γapcpγα + pαpγα

5γ + apapγα
4γ + pγα

4γ

2 − 2Γapcpαγ

+ Γpapcαγ − Γpαpγαγ + pαpγαγ − p2
αα

4 − 2p2
γγ

4 − apapαα
3 − pαα

3 − 2apapγγ3 − 2pγγ3

− 3pαpγαγ3 − p2
αα

2γ2 − p2
γα

2γ2 − apapααγ
2 − pααγ

2 − 2pαpγα3γ − apapγα
2γ − pγα

2γ


(4.49)

4.3.2 Diagrammatic Approximation for the Squared Con-

currence

We aim to compute the moments of the squared concurrence ⟨C2⟩ = 4(⟨a2γ2⟩ −

2⟨acαγ⟩ + ⟨α2c2⟩). To this end, various approximation techniques [10, 9] may be
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applied to Eq. (4.43). We are interested specifically in a diagrammatic method

for a weak coupling approximation [10] that gives a closed-form expression for the

squared concurrence. A weak coupling approximation involves expanding around the

free action S̃f , for which we have a closed-form expression for the Green’s function

G associated with the free propagator,

G(t, t′) = Θ(∆t)e
−(2Γτ+1)∆t

2τ P, (4.50)

where Θ(t) is the Heaviside function (with Θ(0) = 0 due to Ito’s condition and

lim∆t→0+ Θ(∆t) = 1) and P is a matrix of differential operators which act on a

vector of four-dimensional real-valued functions q(t) = (q1, q2, q3, q4) = (a, c, α, γ),

P =



e−∆t(2Γ+ 1
2τ

) 0 0 0

0 cos(∆t) sin(∆t) 0

0 − sin(∆t) cos(∆t) 0

0 0 0 e−∆t(2Γ+ 3
2τ

)


, (4.51)

with ∆t = t − t′. We may consider the (i, l)-th component of the matrix

corresponding to pre-multiplication by the pl component (p(t) = (p1, p2, p3, p4) =

(pa, pc, pα, pγ)), of momenta and post multiplication with the qj state parameter.

This free propagator will be the basis to evaluate Feynman diagrams for averages of

state-dependent quantities and expansion of the interaction action S̃i.

We associate a Feynmann diagram with the average of a monomial in the state

and momentum variables. Averages are performed over the free action and are

computed via the Green’s function in Eq. (4.50). Following the general construction

in [10], each term in S̃i is associated with a single vertex in a Feynman diagram

characterised by the edges it connects with. Different edges, labelled by different

lines (full/dashed/dotted/wiggly), correspond to different state parameters as per

the correspondence in Table 4.1. To fully specify the diagram, we further associate

ingoing arrows with state parameters and outgoing arrows with conjugate momenta.
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State Variable Momentum Edge

a pa

c pc

α pα

γ pγ

Table 4.1: Association between edge type and state variable type for the construction

of Feynmann diagrams.

For example, the vertex associated with αγpapc, which corresponds to the factor

Γ
∫ T

0 papcαγdt in Eq. (4.48), is given by the diagram in Fig. 4.5(a). Similarly, the

vertex associated with pccγ2 (
∫ T

0 pccγ
2dt in Eq. (4.48)) is shown in Fig. 4.5(b). The

vertex in Fig. 4.5(a) consists of two state parameters and two conjugate momenta

and the corresponding diagram features two ongoing and two outgoing edges; the

vertex in Fig. 4.5(b) instead includes three state parameters but only one momentum

and its diagram accordingly requires three ingoing and one outgoing edge. For

vertices that include no state parameters, such as pa, which corresponds to the term
1
2
∫ T

0 paδ(t)dt in S̃b, the diagrams are simple, consisting of a single outgoing edge. As

an example, the diagram for 1
2
∫ T

0 paδ(t)dt is given in Fig. 4.5(c).

When computing averages of state-dependent quantities perturbatively, the

monomials to average will be included as edges of the Feynman diagrams.

Specifically, the squared concurrence of interest here, ⟨C2⟩ = 4(⟨a2γ2⟩ − 2⟨acαγ⟩ +

⟨α2c2⟩), consists of three terms, each with four state parameters. Each of the three

terms may be approximated separately. For example, for the term ⟨acαγ⟩, one of

Feynman’s diagrams contributing to the average to order five interaction vertices

(IV) is presented in Fig. 4.5(d). The state parameters are associated with vertices

(grey-coloured vertices in Fig. 4.4), placed at the final time position in our Feynman

diagrams. The remaining vertices (black) are from the expansion of the interaction

action.

Time-directed (right to left) Feynman diagrams may now be constructed by
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selecting all combinations of interaction vertices that can be connected to the

appropriate final time vertices. All diagrams contributing non-vanishingly to this

approximation must connect with final vertices determined by the state parameters

we are averaging, with no unconnected edges left over (see Fig. 4.4). Note that since

the quadratic action mixes terms with different state parameters and conjugates

momenta, the propagators can connect different types of edges.

We sum up all such Feynman diagrams and then convert them into equations

according to the following rules [10]

1a. For every interaction vertex in the diagram, a prefactor of − 1
n! is added where

n is the count of conjugate momenta in that vertex.

1b. If the same vertex occurs k times in a diagram, then there is an additional

factor of 1
k! .

1c. If there are m distinct ways of connecting edges to vertices that yield the same

diagram there is a final prefactor factor of m. This is the combinatorial factor

determined by the number of unique Wick contractions leading to the same

diagram.

2. Each edge between time tj and tk is replaced with the qi-th pl-th component

of the free propagator Gpl,qi
(tj, tk).

3. Integrate from 0 to ∞ over the time index associated with each interaction

vertex.

We organise our approximation by the number of interaction vertices used. We

include terms up to five IVs to obtain a closed form expression for ⟨C2⟩ in Eq. (4.52).

Note that three or fewer IV diagrams leave unconnected edges, and using only four

IVs is equivalent to only solving the linear component of Eq. (4.38). This linear

approximation is given by the first term in Eq. (4.52), which corresponds to diagrams

with four vertices, while subsequent terms are built from five IV.
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(a) (b)

(c)

(d)

Figure 4.4: (a)-(c) Examples of interaction vertices associated with terms in

Eq. (4.48). (d) An example of a Feynman diagram which contributes to the

calculation of ⟨acαγ⟩.

⟨C2⟩ ≈ sin4(t)e−2t(2Γ+ 1
τ

) + 1
8τ e

−2t(2Γ+ 1
τ )
64Γτ 4 sinh

(
t
τ

)
4τ 2 + 1 − 32Γτ 3 sin(2t)

4τ 2 + 1

− 4Γτ sin(4t) + 2t(8Γτ − 5) cos(2t) + 9t+ sin(2t) − sin(4t) + 3t cos(4t)
 (4.52)

We plot Eq. (4.52) for a selection of measurement and noise strength choices

in Fig. 4.5. The diagrammatic approximation is valid for a combination of weak

noise and measurement strength. Eq. (4.52) outperforms the linear approximation,

which consists of only the first term in Eq. (4.52), (also plotted in Fig. 4.5): the

latter captures the oscillations with the correct frequency at short times, but misses

the correct values of amplitudes. Notably, it is evident from Fig. 4.5 that, after a

period of oscillating behaviour, the system’s average entanglement will eventually

enter a steady state (cf. Fig. 4.7). We note that our weak coupling approximation

at five IVs fails to capture this regime across all values of the measurement and

noise strength; in fact, the long time limit of Eq. (4.52) corresponds to a vanishing

entanglement.
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Figure 4.5: Average squared concurrence against time. Numerical simulations

(solid orange lines) are compared with the linear approximation (dotted black)

and the weak coupling approximation —Eq. (4.52)— (dashed blue) for different

measurement and noise strengths. The weak coupling approximation outperforms

the linear approximation and shows excellent agreement with numerical simulations

in the weak measurement regime
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4.4 Steady-State Entanglement

While the diagrammatic approximation developed above can only capture the entan-

glement dynamics at short times and predicts vanishing steady-state concurrence,

the system is generically expected to reach an average steady-state entanglement

from the competition of the unitary entangling terms and measurement disentangling

effects. This competition is the source of measurement-induced entanglement

transitions in many-body systems, and a steady-state interplay is already present at

the level of 2 qubits.

4.4.1 A Simplified SDE Model for Steady-State Concur-

rence

Having obtained a system of SDEs governing the system’s dynamics with Eq. (4.38),

we seek simplifications that may be made to the model to obtain an expression

for the entanglement. In particular, we seek an expression that saturates at some

non-vanishing steady state. One method to achieve this is to combine the SDEs

of Eq. (4.38) such that the only independent state parameter is an entanglement

monotone. So here we attempt to extract an ODE in terms of C from our system of

SDEs.

We first observe that the evolution of the concurrence is subject to the identity,

2CĊ = 8(aγ − cα)[aγ̇ + ȧγ − cα̇− ċα]. (4.53)

We further note that, aγ−cα
|aγ−cα| = 1

sgn(aγ−cα) , converting the identity Eq. (4.53) into

Ċ = 2
sgn(aγ − cα) [aγ̇ + ȧγ − cα̇− ċα]. (4.54)

We may then substitute the set of SDEs (Eq. (4.38)) into Eq. (4.54), discarding

terms that have more than four state parameters multiplied together. This step

is motivated by the observation that the normalisation of real numbers will cause

the numerical value of these terms to be, on average, lower than the others. We
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additionally apply the equation aγ−cα
sgn(aγ−cα) = C

2 to Eq. (4.54), resulting in,

Ċ ≈ −(2Γ + 1
τ

)C + 2
(

c2 − α2

sgn(aγ − cα)

)
+ cαλ√

τ
− aγϵ√

τ
. (4.55)

We have not yet successfully excised the state variables from Eq. (4.55). Although we

acknowledge the stochastic nature of the state parameters, and the interdependence

between C and the system’s state, we proceed by treating the expressions that

depend on state parameters as some arbitrary unknown functions of time. The

resulting SDE in the variable C has an exact closed-form solution contingent on the

unknown functions is provided by the ODE,

⟨Ċ⟩ ≈ −(2Γ + 1
τ

)⟨C⟩ + 2⟨ c2 − α2

sgn(aγ − cα)⟩. (4.56)

Naming the expression K(t) = ⟨ c2−α2

sgn(aγ−cα)⟩. Eq. (4.56) has a closed-form solution for

the average concurrence,

⟨C(t)⟩ ≈ e
t
τ

+2Γt
∫
dt′2e t′

τ
+2Γt′K(t). (4.57)

The function K(t) may be computed directly from numerical simulation. The results

of using a numerically calculated K(t) in Eq. (4.57) is plotted in Fig. 4.6 where

we see good agreement with the results from simulations in the regime of weak

noise. This experimental approximation tends to be steady, although it significantly

underestimates ⟨C2⟩∞ in the strong measurement regime.

4.4.2 Numerical Simulation

Having made only limited progress in capturing the steady state analytically, we

study the steady state of the system numerically. The results, which confirm the

existence of the non-monotonic effect of noise on entanglement, are reported in

Fig. 4.7 for both entanglement monotones of interest.

In the absence of measurements, the combination of unitary dynamics and

Gaussian noise is expected to lead to a uniformly distributed ‘ergodic’ steady state,

where every accessible final state is realised with equal probability. Using the
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Figure 4.6: Comparisonn of the steady-state approximation — Eq. (4.56)— (dotted

lines) and full numerical solutions (full lines) for the average concurrence as

a function of time for τ = 0.2 and a range of noise strengths (0.05, 0.3, 1).

The approximation underestimates the steady-state concurrence, with significant

discrepancies at strong noise.
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values of ⟨C2⟩∞ in the ergodic case is helpful as a reference point. Parametrizing

a generic final state of the system as |ψ⟩ with a = cos(ψ),c = sin(ψ) cos(θ),

α = sin(ψ) sin(θ) cos(ϕ) and γ = sin(ψ) sin(θ) sin(ϕ), the measure on the state

parameters becomes dµ = sin(θ) sin2(ψ)dθdϕdψ. In the ergodic regime, where all

states are equally likely, the average squared concurrence is given by

⟨C2⟩ = 1
2π2

∫ ∫ ∫
4 sin2(θ) sin2(ψ)Z(θ, ψ, ϕ)2dµ = 1

3 , (4.58)

where Z(θ, ψ, ϕ) = cos(ψ) sin(ϕ) − cos(θ) sin(ψ) cos(ϕ), which agrees with the no-

measurement limit in the numerical simulations. (c.f. Fig.(4.7)). Remarkably,

increasing the noise strength under continuous monitoring has a non-monotonic

effect on the concurrence. In particular, at any measurement strength, weak noise in

the system increases the total steady-state entanglement, while larger noise strength

induces a decrease in concurrence.

The effect can be understood by observing that, for low noise, increasing noise

generically increases the probability of exploring larger parts of the Hilbert space

(with higher entangled states). In contrast, larger local noise tends to induce

large fluctuations of the local energy levels, which hinder the entangling effect

of the two-qubit Hamiltonian. This effect becomes inappreciable for vanishing

measurements when the steady-state distribution tends to Eq. (4.58), i.e. it is mainly

independent of the noise strength. It also becomes gradually less pronounced for

strong measurements where the disentangling effect of measurements dominates over

the noise.

4.5 Discussion

We combined the effects of monitoring with independent external noise into an SPI

formalism. This extension of the CDJ formalism can be the basis for the efficient

study of noisy measurement-induced dynamics in more complex systems. We used

the formalism to extract optimum entanglement dynamics; however, incorporating

noise into the CDJ formalism enables predictions of optimal quantum trajectories for

108



4.5. Discussion

τ = 10 τ = 2 τ = 1.5 τ = 1 τ=0.5

0.05 0.10 0.50 1 5 10
0.1

0.2

0.3

0.4

0.5

Γ

〈C
〉 ∞

τ = 10

τ = 2

τ = 1.5

τ = 1

τ=0.5

0.05 0.10 0.50 1 5 10
0.10

0.15

0.20

0.25

0.30

Γ

〈C
2
〉 ∞

Figure 4.7: (a) Steady State concurrence vs noise intensity, Γ, for a range of

measurement strengths. (b) Steady State squared concurrence vs noise intensity,

Γ, for a range of measurement strengths. Entanglement exhibits a non-monotonic

dependence on noise strength.
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a variety of noisy systems. This is particularly relevant given experimental advances

that allow for the tracking of individual quantum trajectories. We also apply path

integral methods on stochastic quantum dynamics to find the average entanglement

dynamics, finding good agreement between theory and simulations. The approach

we have applied for the squared concurrence may be extended to any multinomial

function of quantum state parameters, enabling the approximation of moments and

response functions.
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Chapter 5

Testing a Nonequilibrium

Fluctuation Theorem for Qubit

Dynamics

Our primary objective in this chapter is to design an experimental setup to validate

Manzano’s fluctuation theorem (MFT), described in Section 2.4.2, using the most

straightforward quantum system - a single qubit. First, we need to identify some

qubit dynamics that meet the fundamental criteria for applying MFT (Eq. (2.103))

while also being feasible for experimental implementation. To demonstrate the

unique features of Eq. (2.103), we design a test that applies to qubit dynamics

that earlier quantum fluctuation theorems [91, 92, 93, 94, 95]would not govern. We

achieve this goal by utilising a generalised measurement approach. Furthermore,

we elaborate on this generalised measurement procedure’s basic operator algebra

description by mathematically modelling the ancillary qubit system necessary for

executing the generalised measurement. This comprehensive schematic description

will offer experimentalists a ready-made two-qubit experimental design. Lastly,

we broaden the applicability of our research beyond its initial scope, exploring

extensions to the original fluctuation theorem that are of additional interest [102].

The reader will notice that we break with our usual procedure since our analysis
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of MFT will not involve any path integral methods. We consider our qubit system

driven by a CPTP map as described in Section 2.1.3. These dynamics are equivalent

to an unselective measurement process, hence why they may be investigated using a

generalised measurement process- however, unlike the processes we applied the CDJ

method to, the induced quantum trajectories involve discontinuous dynamics in the

qubit state space. While treating such a system with a stochastic path integral

formulation is possible, we see no advantages to applying such a sophisticated

approach. Instead, we opt to examine trajectories directly using measurement

operators.

5.1 Finding Candidate Quantum Channels

5.1.1 Criterion for Testable Qubit Dynamics

We explore a range of possible Markovian open qubit dynamics to ascertain the

simplest possible dynamics for which a meaningful test of the fluctuation theorem

in Eq. (2.103) may be performed. As discussed in Section 2.4.2, the Kraus operator

representation must admit a dual reverse dynamics Eq. (2.99) that satisfies a detailed

balance relation Eq. (2.101) with its associated forward dynamics. For this to

hold, we require that the Kraus operator decomposition satisfies the condition in

Eq. (2.98). This equation places a restriction equivalent to requiring that each Kraus

operator is a ladder operator inducing jumps between eigenstates of π with a fixed

nonequilibrium potential ∆Φ

[Mk, ln(π)] = ∆ϕπ(k)Mk, (5.1)

[M †
k , ln(π)] = −∆ϕπ(k)M †

k . (5.2)

whereas discussed in Section 2.4.2,∆ϕ(k) is a quantity (nonequilibrium potential)

associated with each Kraus operator.

A set of Kraus operators {Nj} provides a new Kraus representation of the

quantum channel E if and only if it is related to the original Kraus representation
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{Mi} by some unitary matrix U as

Nj =
∑
i

UijMi. (5.3)

If we suppose that the original set of Kraus operators obeys the detailed balance

equation (Eq. (2.101)) with their dual counterparts

Mi = e∆ΦiM̃i = e∆ΦiAπ
1
2Miπ

− 1
2 A†, (5.4)

∑
j

U †
ijNj = e∆ΦiAπ

1
2

(∑
j

U †
ijNj

)
π− 1

2 A†. (5.5)

It is clear from Eq. (5.5) that this new set of equations cannot generally be brought

into the formNi = e∆ΦN
i Ñi, so the new Kraus representation does not satisfy a simple

detailed balance relation with its dual Kraus operator, clarifying the importance of

the particular unravelling chosen for the channel.

In addition to finding open dynamics with a particular Kraus representation

satisfying detailed balance, we require two further requirements to be satisfied. First,

the chosen dynamics must be readily experimentally implementable. Secondly, we

demand the set ∆ϕπ(k) are not all zeros (i.e. the requirements for MFT are satisfied

in a non-trivial way). A great variety of qubit quantum channels satisfy Eq. (2.98)

but do so with vanishing nonequilibrium potentials (∆ϕπ(k) = 0). Vanishing

potentials will be induced whenever the invariant state of the CPTP map under

consideration is the maximally mixed state. Hence, the Kraus operators associated

with the measurement outcomes should not, for example, all be Hermitian.

The FT may apply both to a single application of a CPTP map (see Sec-

tion 2.1.3), multiple concatenations of these channels or even a concatenation of

many infinitesimal CPTP maps (see Section 2.1.4) specified in the form of a lindblad

equation. We first examine qubit dynamics in the Lindblad form.
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5.1.2 Candidate Lindblad Dynamics

For a system evolving according to some Lindblad equation with Lindblad jump

operators {Lk},

L(ρ) = −i[H, ρ] +
∑
k

D[Lk]ρ. (5.6)

Eq. (2.103) may be applied to this qubit system by considering the evolution in

infinitesimal time steps, Eq. (2.18). In this case, the Kraus operators take the form.

M0 = I −
(
iH + 1

2
∑
k

L†
kLk

)
δt (5.7)

Mk =
√
Lkδt. (5.8)

In particular, a concatenation of these Kraus operators defines a quantum trajectory,

and the application of Eq. (2.99) defines the dual Kraus operators, where the

invariant state π is defined by L(π) = 0. The Kraus operators (Eq. (5.7)) must

satisfy the same criterion as discussed above, with the additional observation that

the invariant state must be diagonal in the energy eigenbasis.

Here, we give several Lindblad operators that satisfy non-trivially the fluctuation

theorem. Consider a simple stochastic process L1 that induces jumps towards the

poles of the Bloch sphere (in the σz basis) and with no driving Hamiltonian. A

parameter ν controls the relative frequency of the two possible quantum jumps1

L1ρ = νD[σ−] + (1 − ν)D[σ+]. (5.9)

The stationary state for this Lindblad, specified by L1π1 = 0, and the corresponding

three infinitesimal Kraus operators are specified in Eq. (5.11) are given by

π1 =

ν 0

0 1 − ν

 , (5.10)

M1,0 =

1 − δt
2 0

0 1 − δt
2

 ,M1,1 =
√
δt

0 0

1 0

 ,M1,2 =
√
δt

0 1

0 0

 . (5.11)

1Here the dissipators D are defined in Sec. 2.1.4
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L1 non trivially satisfies the requirements of MFT and may be a good basis for an

experimental test. A driving Hamiltonian σz may introduce more complexity into

these dynamics. Incorporating this unitary evolution into the stochastic dynamics,

the Lindblad operator L2 comes with an unchanged invariant state π2 = π1, although

the infinitesimal Kraus operators (5.13) has a modified drift term.

L2ρ = −i12[σz, ρ] + νD[σ−] + (1 − ν)D[σ+], (5.12)

M2,0 =

1 − (1
2 + i)δt 0

0 1 − (1
2 − i)δt,

M2,1 =
√
δt

0 0

1 0

 ,M2,2 =
√
δt

0 1

0 0

 .
(5.13)

Note that by introducing a driving Hamiltonian in L2, we require that the invariant

state of the quantum channel must be diagonal in the energy eigenbasis - which

holds for π2.

Considering the Lindblad L3, which is made even more general through the

additional parameters γ and Ω, which control the ratio of unitary evolution to

stochastic jumping we then substantively modify the dynamics by choosing a driving

Hamiltonian that rotates the qubit state around the x-axis in the Bloch sphere

L3ρ = −iΩ2 [σx, ρ] + γνD[σ−] + γ(1 − ν)D[σ+]. (5.14)

These dynamics have the invariant state

π3 =

 νγ2+Ω2

ν2+2Ω2 i(2ν − 1) γΩ
ν2+2Ω2

−i(2ν − 1) γΩ
ν2+2Ω2

νγ2+Ω2

ν2+2Ω2

 , (5.15)

and infinitesimal Kraus operators given by

M3,0 =

1 − dt
2 dt −idt

−idt 1 − dt
2 dt

 ,M3,1 =
√
dt

0 0

1 0

 ,M3,2 =
√
dt

0 1

0 0

 . (5.16)

MFT cannot be applied to these system dynamics since π3 fails to be diagonal in

the σx basis. Despite this, we note that the fixed state tends to be the maximally
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mixed state for Ω ≫ γ, the limit where only the unitary dynamics are relevant. In

this case, L3 would trivially satisfy the MFT desideratum.

To provide an example of a Lindblad operator that satisfies Manzano’s FT

trivially, we look at L4, which has been experimentally realised for a driven transmon

qubit circuit which is capacitively coupled to waveguide cavity [38]. A homodyne

measurement along some quadrature of the electromagnetic field ae−iϕ + a†eiϕ,

constitutes a weak measurement along the corresponding dipole of the transmon

qubit, σ+e−iϕ + σ−eiϕ. The time-dependent field H drives the qubit

H = ℏΩ cos
(
ωt+ ϕ

)
σy, (5.17)

where ω is the resonance frequency of the qubit and Ω is the Rabi drive frequency.

The homodyne readout dVt obtained over the time interval (t, t+δt) is given by dVt =
√
ηγℏσxδt+ √

γdr, where η is the quantum efficiency of the homodyne detection, γ

is the radiative decay rate, and dr is a zero-mean Gaussian random variable with

variance δt. L4 is then given by

L4ρ = − i

ℏ
[H, ρ] + γD[σ−]ρ+ √

ηγH[σ−r]ρ, (5.18)

where the jump superoperator acts as H[O](ρ̃) = Oρ̃+ ρ̃O† − tr[(O+O†)ρ̃]ρ̃. From

the relation

Mr = 4

√
η

2πδt exp
(

− ηr2

4δt

)(
1 − i

ℏ
Hdt− 1

2 ĉ
†ĉδt+ √

ηĉr
)

(5.19)

the infinitesimal Kraus operators associated with the quantum channel are

Mr = 4

√
η

2πδt exp
(

− ηr2

4δt

) 1 − γδt
2 −δtΩℏ cos(ϕ− tω)

δtΩℏ cos(ϕ− tω) + r
√
γη 1

 .
(5.20)

With stochastic dynamics obeying ρ(t + dt) = MrρM
†
r

Tr[MrρM
†
r ]

, we average over the

measurement readouts keeping only terms up to first order in time,

ρ(t+ dt) =
∫ ∞

−∞

MrρM
†
r

Tr[MrρM
†
r ]
dr =

 ρ00 ρ01

ρ10 ρ11



+ dt

 −γρ00 − Ω(ρ01 + ρ10) cos(ϕ− tω) Ω(ρ00 − ρ11) cos(ϕ− tω) − 1
2γρ01

Ω(ρ00 − ρ11) cos(ϕ− tω) − 1
2γρ10 γρ00 + Ω(ρ01 + ρ10) cos(ϕ− tω)

 .
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From this, we see that the channel characterised by the Hamiltonian in Eq. (5.17)

is equivalent to the Lindblad ρ̇ = − i
ℏ [H, ρ] + γD[σy]ρ. This channel is unital since

− i

ℏ
[H, I] + σyIσ†

y − 1
2
(
σ†
yσyI + Iσ†

yσy
)

= 0. (5.21)

Any unital quantum channel can never accumulate a nonvanishing nonequilibrium

potential.

5.1.3 Discrete Qubit Measurements

5.1.3.1 Binary Qubit Measurements

We find that, for a qubit, quantum channels decomposed into only two Kraus

operators will either fail to have defined dual dynamics or their possible dual

trajectories always occur with equal probability to their forward trajectories. We

demonstrate this by systematically examining all possible forms of dual Kraus

operator representations. First, we assume that an invariant state of some qubit

channel E exists; we then choose the diagonal basis of the invariant space to represent

the Kraus operators. Eq. (2.98) severely constrains the form the measurement

operators can take; all such Kraus operators may be specified using at most four

arbitrary complex numbers α, β, γ, δ. We then test all possible combinations to the

generic state ρ =

ρ00 ρ01

ρ10 ρ11

, the resulting non-selective post-measurement state

may then be analysed.

For the first set of channels, without loss of generality, we choose M1 =

α 0

0 0

.

For the first two cases, the channel is necessarily unital and, therefore, will be

unsuitable for testing.

Ma,2 =

0 0

0 β

 , Ea(ρ) =

ρ00 0

0 ρ11

 . (5.22)

Mb,2 =

β 0

0 γ

 , Eb(ρ) =

 ρ00 βγ∗ρ01

γβρ10 ρ11

 . (5.23)
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For this next type of map, the fixed state is pure, which is another disqualifying

characteristic

Mc,2 =

0 β

0 0

 , Ec(ρ) =

ρ00 + ρ11 0

0 0

 . (5.24)

The last operator to check in conjunction with M1, is Md,2 =

0 0

β 0

, however,

such a Kraus operator decomposition is impossible for any CPTP map, so this

combination may be disqualified immediately.

The next three cases to check are associated with M1 =

0 0

0 α

. We note that

there is one fewer combination to check, as the operator ordering is irrelevant. We

find that our first channel Ee is unital, and therefore trivial

Me,2 =

β 0

0 γ

 Ee(ρ) =

 ρ00 βγ∗ρ01

γβ∗ρ10 ρ11

 . (5.25)

The next channel Ef (ρ) projects the system’s final state into a pure state, again

disqualifying it from consideration

Mf,2 =

0 0

β 0

 Ef (ρ) =

0 0

0 1

 . (5.26)

Taking Mg,2 =

0 β

0 0

 will fail to produce a CPTP channel. For the next two

cases we take M1 =

α 0

0 β

. Examining the form of these channels reveals that the

fluctuation theorem cannot apply to either channel since, in both cases, the fixed

state is necessarily pure

Mh,2 =

0 γ

0 0

 Eh(ρ) =

ρ00 + |γ|2ρ11 αβ∗ρ01

βα∗ρ10 (1 − |γ|2)ρ11

 (5.27)

Mi,2 =

0 0

γ 0

 Ei(ρ) =

(1 − |γ|2)ρ00 αβ∗ρ01

βα∗ρ10 ρ11 + |γ|2ρ00

 (5.28)
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In the final case, we take M1 =

0 α

0 0

, the ensuing channel is unital and therefore

trivial

Mj,2 =

0 0

β 0

 Ej(ρ) =

ρ11 0

0 ρ00

 . (5.29)

5.1.3.2 Triple Readout Protocol

Inspired by Eq. (5.13), we examine the non-infinitesimal version of these measure-

ment operators that take the same form as those associated with L1 and L2. Again

parameterising these operators using generic complex numbers α, β, γ, δ,

M0 =

 α 0

0 β

 ,M1 =

 0 γ

0 0

 ,M2 =

 0 0

δ 0

 , (5.30)

subject to the conditions |α|2 + |δ|2 = 1 and |γ|2 + |β|2 = 1. Two key properties

of the channel defined by the operators Eq. (5.30) are the unique invariant state π

(Eq. 5.31) and the three possible changes in nonequilibrium potential specified in

Eq. (5.32),

π =

 |γ|2
|γ|2−|α|2+1 0

0 1 − |γ|2
|γ|2−|α|2+1

 =

 π00 0

0 1 − π00

 , (5.31)

∆Φπ(0) = 0,

∆Φπ(1) = 2 tanh−1
(

2 (|α|2 − 1)
|γ|2 − |α|2 + 1 + 1

)
,

∆Φπ(2) = −2 tanh−1
(

2 (|α|2 − 1)
|γ|2 − |α|2 + 1 + 1

)
.

(5.32)

This particular Kraus operator decomposition of E has, in combination with a

freely chosen symmetry operator A, a dual map Ẽ with dual Kraus operators. Using

Eq. (2.99) and choosing the trivial symmetry operator A = I, we find the associated

dual Kraus operators

M̃0 =

 α∗ 0

0 β∗

 , (5.33)
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M̃1 =

 0 0√
1−|α|2

|γ|2 γ∗ 0

 , M̃2 =

 0
√

|γ|2
1−|α|2 δ

∗

0 0

 .

5.2 Developing and Refining a Measurement Pro-

tocol

We take the set of Kraus operators in Eq. (5.30) to be suitable to test; we

take these instead of the infinitesimal time case since we can exert more direct

control over the process and use the same experimental platform to drive the dual

dynamics. To actively test Eq. (2.103), it is necessary to determine the accumulated

nonequilibrium potential and the probability for all quantum trajectories generated

during the dynamics. A straightforward experimental sketch is as follows:

1. Associate each measurement readout with a change in the nonequilibrium

potential, and then implement the forward measurement process:

(a) Prepare an initial mixed state

(b) Perform an initial protective measurement of this state on some ortho-

normal basis

(c) Implement the chosen series of generalised measurements

(d) Take a final projective measurement onto another chosen orthonormal

basis.

2. Repeat step one until the statistical properties of the generalised measurement

readouts become clear. From this data calculate P (γ) for every possible γ and

associate an ∑R
r=1 ∆Φπ(r)(kr) with each γ.

3. Implement the dual measurement process:

(a) Prepare an initial mixed state

(b) Project this state onto the orthonormal basis related by the chosen

symmetry operator A to the basis used in step 3a.
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(c) Implement the chosen series of dual generalised measurements

(d) Take a final projective measurement onto the orthonormal basis related

by the chosen symmetry operator A to the basis used in step 3a.

4. Repeat step three until the statistical properties of the dual generalised

measurement readouts become clear. Then, verify the relationship between

the accumulated nonequilibrium potential along the trajectories and their

statistical relationship with their associated dual trajectories.

This procedure is easier sketched than executed. As discussed in Section 2.1,

to perform such a measurement, we need at least a three-level ancillary system

to perform the generalised measurement. However, three-level systems (qutrits)

are more challenging to fabricate than qubits primarily due to their higher

dimensionality and heightened noise sensitivity, making it harder to maintain

coherence and perform precise operations. Moreover, the lack of established

platforms and control techniques for qutrits makes them an unattractive platform

for implementing an FT test.

The forward generalised measurements process described in step two may be

implemented using a single ancillary qubit if we allow each generalised measurement

operator to be performed in two substeps. One possible experimental architecture for

this design, discussed with K. Murch [171], is cross-shaped transmon qubits, a type of

quantum bit that uses a superconducting circuit composed of a Josephson junction

crossed by another junction to create a cross-shaped structure [172]. This type

of qubit has a reduced sensitivity to charge noise compared to standard transmon

qubits, and it may be readily coupled to other qubits and control mechanisms. The

coupling between the system and ancillary qubit could be achieved by coupling via

a third detuned qubit: this would be a qubit whose energy level is shifted away from

resonance with control signals or neighbouring qubits. The system and ancillary
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qubit would be governed by the Hamiltonian Hc with a coupling strength c

Hc =



0 0 0 0

0 0 c 0

0 c 0 0

0 0 0 0


. (5.34)

To perform a two substep measurement equivalent to Eq. (5.30), we first assume

the system is in the separable state |ψ0⟩ = (a|0⟩+b|1⟩)⊗|0⟩, where the second qubit

is the ancillary system. In the first substep, we apply an iSWAP gate2 to the system

and then measure the ancillary qubit. Let Hc drive the system, then the interaction

duration t controls the degree of rotation between |01⟩ and |10⟩ up to the desired

rotation angle θ. At this stage, the system is in the state

|ψ1⟩ = a|0⟩ ⊗ |0⟩ − ib sin(θ/2)|0⟩ ⊗ |1⟩ + b cos(θ/2)|1⟩ ⊗ |0⟩. (5.35)

A projective measurement of the ancillary qubit in the σz basis produces back-

action on the system state, which depends on the measurement readout; the system

qubit updates to a|0⟩ + b cos(θ/2)|1⟩ if the detector registers 0 and −ib sin(θ/2)|0⟩

if the detector registers 1. We begin the second substep by flipping the ancillary

qubit (corresponding to a π rotation on the Bloch sphere) irrespective of the first

measurement readout. Then, another iSWAP gate may be applied in the manner

as before with the rotation angle ϕ. The two conditional quantum states of the

system are then a cos(ϕ/2)|0⟩ ⊗ |1⟩ − ia sin(ϕ/2)|1⟩ ⊗ |0⟩ + b cos(θ/2)|1⟩ ⊗ |1⟩ and

−ib sin(θ/2)|0⟩ ⊗ |0⟩ for 1. We then complete the second substep by performing

another Von-Neuman measurement on the ancillary qubits computational basis.

This procedure effectively implements the measurements

M0 =

cos(ϕ2 ) 0

0 cos( θ2)

 ,M1 =

0 −i sin( θ2)

0 0

 ,M2 =

 0 0

−i sin(ϕ2 ) 0

 . (5.36)

2iSWAP =


1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1


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∆Φ0 = 0,∆Φ1 = log
(

cos(ϕ) − 1
cos(θ) − 1

)
,∆Φ2 = log

(
cos(θ) − 1
cos(ϕ) − 1

)
. (5.37)

Where the readout (0, 0) is associated with M2, (0, 1) with M0 and (1, 0) is equivalent

to M1. We note that (1, 1) occurs with zero probability in our scheme.

A small modification of this procedure may be used to implement the dual

process; we need to add a negative sign to the rotation angle of both iSWAP gates.

The corresponding Kraus operators then are

M̃0 =

cos(ϕ/2) 0

0 cos(θ/2)

 , M̃1 =

 0 0

i sin(ϕ) 0

 , M̃2 =

0 i sin(θ)

0 0

 .
(5.38)

Any experiment will necessarily introduce sources of error; therefore, it is

essential to be aware of what deviation from theory these imperfections are likely

to introduce. Analytically calculating this behaviour is not advantageous since the

deviation from the expected behaviour will depend on each particular trajectory

chosen. Therefore, our experimental collaborators [171], using detailed knowledge

of the decoherence and readout fidelity effects introduced by their experimental

instruments, simulate the expected behaviour of a short implementation of our

experimental design.

A readout fidelity f implies the measurement device registers the wrong reading

(1 − f) fraction of readouts, so the probabilities for the readouts (0, 0), (0, 1), (1, 0),

and (1, 1) to correspond to the purported post-measurement states are f 2, f(1 − f),

f(1 − f), and (1 − f)2. To account for this source of error, the post-measurement

state for the projective readout (0, 0) is taken to be a convex combination,

ρ = f 2ρ00 + f(1 − f)ρ01 + f(1 − f)ρ10 + (1 − f)2ρ11. (5.39)

where ρij is the system state with f = 1 and readout (i, j). The post-measurement

state for the other readouts is calculated similarly. The effect of decoherence is

incorporated after each projective measurement by multiplying e−t/T1 by ρ′
11, adding
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Figure 5.1: Reproduced with permission from K. Murch and X. Linpeng [171].

[Panel a] Readout trajectories of the forward dynamics in the ideal case. [Panel b]

Readout trajectories in the case with readout fidelity f = 0.9, T1 = T2 = 30 µs,

and readout time t = 2 µs. The target Kraus operator are arbitrarily chosen to be

θ = ϕ = π/4. These simulations are performed for ten generalised measurements.

The colour concentration corresponds to the probability of the readout.

(1 − e−t/T1)ρ′
11 to ρ′

00, and multiplying e−t/2T1−t/T2 to ρ′
01 and ρ′

10. Here, ρ′ is the

reduced density matrix for the system qubit, t is the time of one readout, and

T1, T2 are the timescale over which the quantum coherence of the qubit’s state is

preserved. T1 is the characteristic time for the qubit to relax to its ground state,

and T2 is the dephasing time, the timescale over which the phase coherence of the

qubit’s superposition states is lost.

Fig. 5.1 shows readout trajectories for the forward dynamics in the ideal case and

the realistic case that includes readout fidelity and decoherence. In the latter case,

obtaining the readouts (1, 1) is possible. Fig. 5.2 shows the degree of agreement

between the results of numerical simulations and the detailed balance relation

Eq. (2.103) for a selection of readout fidelities decoherence times. Here, the forward

trajectory (M2,M1,M2,M1,M2) and its dual reverse (M̃2, M̃1, M̃2, M̃1, M̃2) are used.

Significant deviations are predicted when the measurement fidelity ≤ 0.9 and the

coherence time is less than 10 µs.
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Figure 5.2: Ratio between the forward and reverse trajecories against ϕ. Reproduced

with permission from K. Murch and X. Linpeng [171]. The theoretical detailed

balance relation is compared to the results from numerical simulation for a range of

readout fidelities and decoherence times. θ is set at π/4 and ϕ is varied from 0 to π.
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5.3 Beyond a Theoretical Validation

In addition to merely testing a known theoretical result, we briefly explore ways

our measurement scheme may be used to explore new theoretical questions. In

particular, we look at a convex combination of CPTP maps constrained by

Eq. (2.103), finding the new nonequilibrium potentials combine non-trivially. We

additionally explore how well the nonequilibrium potentials constrain the statistics

of open dynamics that are only approximately governed by Eq. (2.103).

5.3.1 Convex Combination of Nonequilibrium Potentials

Consider a convex combination of CPTP maps,

E = pEa + (1 − p)Eb, (5.40)

where we assume both subchannels are constrained by MFT. To apply Eq. (2.103)

to E , we require that this aggregate channel independently satisfies the MFT

requirements. Once this is established it becomes logical to consider how the

nonequilibrium potentials of Ea and Eb combine to produce new nonequilibrium

potentials.

In general, the invariant states of two channels do not obey any simple

combination algorithm under a convex combination of their channels. Eq. (5.41)

demonstrates that a convex combination of invariant states fails to be invariant for

a convex combination of channels

E(qπa + (1 − q)πb) = pEa(qπa + (1 − q)πb) + (1 − p)Eb(qπa + (1 − q)πb)

= pqπa + (1 − p)(1 − q)πb + pEa((1 − q)πb) + Eb(qπa).
(5.41)

This suggests that the nonequilibrium potentials will also fail to satisfy any simple

combination rule.

We illustrate this nontrivial behaviour by considering the simple case of two

CPTP maps, Ea and Eb, with simultaneously diagonalisable fixed points and Kraus

representations of the same form. Imposing these two strict conditions, we see
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immediately that the combined channel will also be constrained by Eq. (2.103); we

label these two sets of Kraus operators

Ma
1 =

αa 0

0 βa

 ,Ma
2 =

0 γa

0 0

 ,Ma
3 =

 0 0

δa 0

 , (5.42)

M b
1 =

α2 0

0 β2

 ,M b
2 =

0 γ2

0 0

 ,M b
3 =

 0 0

δ2 0

 . (5.43)

Separately, these two channels have fixed points πa and πb and the combined

invariant state is given by πab

πa/b =

 |β1/2|2−1
|β1/2|2+|δ1/2|2−2 0

0 1 − |β1/2|2−1
|β1/2|2+|δ1/2|2−2

 (5.44)

πab =

 (p−1)|β2|2−p|β1|2+1
(p−1)(|α2|2+|β2|2)−p(|α1|2+|β1|2)+2 0

0 (p−1)|α2|2−p|α1|2+1
(p−1)(|α2|2+|β2|2)−p(|α1|2+|β1|2)+2

 (5.45)

Correspondingly, each map individually has the changes in nonequilibrium potentials

given by Eq. (5.46) and, in combination, is associated with the potentials in

Eq. (5.47). Eq. (5.47) cannot be decomposed into terms that depend only on one

subchannel.

∆ϕa/b = 0,∆ϕa/b = ±2 tanh−1
(

|δ1/2|2 − |β1/2|2

|β1/2|2 + |δ1/2|2 − 2

)
(5.46)

∆ϕ = 0,∆ϕ = ±2 tanh−1
(

(p− 1)|α|2 − p(|α1|2 − |β1|2 + |β2|2) + |β2|2

(p− 1)(|α2|2 + |β2|2) − p(|α1|2 + |β1|2) + 2

)
(5.47)

An example of how the channel potentials combine is demonstrated in Fig. 5.3.

5.3.2 Deviations from the Detailed Balance Relation

In addition to the primary measurement protocol, we include the effect of an

additional qubit rotation on the system. The aim is to stop MFT from applying

to the system. Physically this involves allowing processes that affect a coherent

evolution between states and which may not share a common nonequilibrium
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Figure 5.3: A parametric plot of the pair (∆ϕa(α1, β1),∆ϕ(α1, β1)) showing an

example of how the nonequilibrium potentials for CPTP maps Eq. (5.42) and

Eq. (5.43) may combine for p = 1
2 and fixed ∆ϕb = − 1

10 . This illustrates how

the non-equilibrium potentials of a sub-channel may constrain the non-equilibrium

potential of the overall dynamics.

potential difference ∆ϕ. By including a tunable rotation deviations from the FT

can be investigated in a controlled way. We consider the measurement of the form

Eq. (5.30) implemented by the same two sub-step measurement protocol described

in Section 5.2. However, we introduce an additional qubit rotation on the system

before the final ancilla measurement. Suppose the final ancillary readout registers

the zero state. In that case, we apply a rotation Γ = Rx(γ)⊗I directly to the system

degree of freedom with the new parameter γ,

Γ =

 cos
(
γ
2

)
−i sin

(
γ
2

)
−i sin

(
γ
2

)
cos

(
γ
2

)
⊗ I. (5.48)

If the final ancillary readout registers 1 no additional action is taken.

Applying the additional qubit rotation only to states that register a 0 readout

in the first measurement step ensures that there will continue to be only three

Kraus operators since the (1, 1) readout still occurs with vanishing probability. The
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resulting Kraus operators

N0 =

cos γ cos ϕ
2 −i cos θ

2 cos ϕ
2 sin γ

−i sin γ cos γ cos θ
2

, N1 =

 0 0

−i sin ϕ
2 cos γ − cos θ

2 sin ϕ
2 sin γ

 ,

N2 =

0 −i sin θ
2

0 0


(5.49)

violate the MFT. Any set of Kraus operators of this form in the eigenbasis of their

invariant state cannot satisfy the FT, as they are a linear combination of all jump

operators. The size of the violation is controlled by the parameter γ.

Since the form of the Kraus operators is changed by the inclusion of γ, as noted

above, a jump in the nonequilibrium potential cannot be directly associated with

each Kraus operator. However, given that γ is small, a nonequilibrium potential

jump may be associated with each operator unambiguously. These approximate

nonequilibrium potentials come from the eigenvalues of the new invariant state.

Recall that the critical feature of Manzano’s FT is that, for some arbitrary states

|ψ⟩ and |ϕ⟩ (with the symmetry operator set to the identity)

p(ϕ, k|ψ)
p(ψ, k|ϕ) = |⟨ϕ|Mk|ψ⟩|2

|⟨ψ|M̃k|ϕ⟩|2
= e−∆Φk . (5.50)

Note that this ratio is independent of ψ and ϕ. While Eq. (5.50) is typically extended

to incorporate more Kraus operators, it is sufficient to consider the application of a

single map.

To investigate how the extra small qubit rotation affects MFT, we calculate

numerically the real ratio between the forward and dual processes

p(ϕ, k|ψ)
p(ψ, k|ϕ) = |⟨ϕ|Nk|ψ⟩|2

|⟨ψ|Ñk|ϕ⟩|2
(5.51)

and compare this with the ratio we would expect had the MFT held

p(ϕ, k|ψ)
p(ψ, k|ϕ)

?≈ e−∆Φk . (5.52)
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Figure 5.4: The numerical difference between the left-hand side and right-hand

side of Eq. (5.52) as a function of θψ and θϕ. The two additional parameters ϕψ
and ϕϕ are set equal to 1. This deviation is illustrated for a selection of rotation

values γ ∈ 0.01, 0.1, 1. [Top Row]corresponds to the back-action N0. [Bottom Row]

corresponds to the back-action N1. .

Let |ψ⟩ and |ϕ⟩ be parameterised in standard Bloch sphere coordinates by (θψ, ϕψ)

and (θϕ, ϕϕ) respectively. The results of this numerical calculation are shown in

Fig. 5.4.

We observe several notable features; firstly, the independence of the ratio

on the choice of ψ and ϕ no longer holds. Secondly, for a wide range of the

parameter space (θψ, ϕψ, θϕ, ϕϕ), the non-equilibrium potential provides a good

approximation for constraining the trajectory statistics. Finally, deviations from the

ratio predicted from the nonequilibrium potential are the most pronounced when:

the final projective measurement is applied along a Bloch sphere angle ∆θ = π

relative to the forward process state initialisation (the N0 case), and the forward

process is initialised on the Bloch sphere equator (the N1 case).
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5.4 Discussion

We have identified an example of open qubit CPTP dynamics that is realizable

by a generalized measurement scheme and would produce quantum trajectories

that are governed by Manzano’s fluctuation theorem. Our chosen measurement

scheme is general enough to investigate the non-trivial implications of MFT. Working

with experimentalists we ensured our proposed experiment would be realistically

achievable using, as an example of an experimental protocol, Xmon qubits in a

quantum circuit. Numerical simulations showed that even in the presence of some

detector error and loss of coherence an experimental implementation should still

attain good agreement with theory. We also demonstrated how our proposed

experimental protocol could be readily modified to explore stochastic dynamics that

extend beyond those covered by MFT.
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Chapter 6

Conclusions

In this thesis, we have developed a comprehensive action formalism rooted in the

Chantasri–Dressel–Jordan (CDJ) framework to describe various features of the

dynamics of continuously monitored single-qubit and coupled two-qubit systems.

We have also designed a measurement protocol to test an open single-qubit system’s

thermal and statistical properties. The entire work is underpinned by a unifying

thread: the examination of the properties of individual measurement-induced

quantum trajectories.

For the single-qubit case, we established a path integral formalism incorporating

a global phase parameter, facilitating the determination of statistical properties of

measurement-induced geometric phases. Performing the passage between the phase

and state space forms of the path integral defined a Lagrangian density associated

with nonholonomic constraints. Using this formulation, we analysed the topological

properties of the open geometric phase for post-selected quantum trajectories with

various initial conditions, revealing a general topological transition phenomenon.

More significantly, we explored geometric phases associated with self-closing

trajectories, unveiling a measurement-induced topological transition that is present

across the entire Bloch sphere, although the underlying mechanism differed from

that of open-geometric phases. For the closed geometric phase, the transition

is dictated by the competition of local most likely trajectories, whereas for open
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geometric phases, the phase becomes unobservable (occurring with vanishing

probabilities) at the transition point. Furthermore, we have shown that including

the effects of trajectories around an optimal trajectory via Gaussian fluctuations

is an excellent approximation of the entire distribution simulated numerically and

leads to modifications of the transition critical point; this has practical implications

on experimentally identifying the transition.

Extending the CDJ formalism to coupled two-qubit systems, we derived stochas-

tic actions incorporating continuous monitoring and Gaussian noise fluctuations

by combining the CDJ path integral with the standard SPI on Gaussian noise

fluctuations. We identified optimal quantum trajectories and analysed their

associated concurrence, capturing features of the general entanglement dynamics

like their oscillations and non-monotonicity. However, while these paths offer

some insights into the systems’ overall qualitative behaviour, they fall short

in quantitatively reproducing specifics, e.g., oscillation amplitudes and max/min

values. For the global optimal trajectory, the associated most likely entanglement

can also capture a transition from an oscillating behaviour at short times to an

overdamped approach to a steady state as a function of the measurement strength.

While such behaviour has a counterpart in the average dynamics, the optimal

trajectory does not capture the correct steady-state dependence of the entanglement

and misses the effect of the Gaussian noise.

To address these limitations we use a diagrammatic approach, which allows us to

capture more features of the systems entanglement dynamics, especially for short-

timescales and weak noise and measurement strengths. While the leading-order

term in the diagrammatic expansion captures the entanglement oscillations at short

times with the appropriate frequency, the next non-trivial term showed a much

better agreement with the oscillations’ amplitudes. Notably, finite order expansion

of the perturbation will generically lead to a vanishing steady state concurrence,

which does not agree with the numerical simulation. This hints at the need for

some form of infinite resummation of the perturbation series to capture the long-
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time steady-state behaviour.

Numerical simulations demonstrated non-monotonic relationships between the

steady-state entanglement and noise strength. These effects can be uniquely

attributed to the entanglement along quantum trajectories as determined by

measurement- and Hamiltonian-induced fluctuations and can serve as a first test of

the ability to track non-linear quantum resources, like entanglement, along quantum

trajectories.

We concluded our investigation of qubit quantum trajectories by designing an

experimental protocol to study quantum fluctuation theorems. In particular, our

protocol demonstrates the significance of the nonequilibrium potential, a quantity

introduced in Manzano’s fluctuation theorem (MFT) as a precursor to entropy

production and which serves to constrain trajectory statistics during open system

dynamics. We collaborated closely with experimentalists to ensure the feasibility of

our protocol. As part of the experimental design phase, we explored the thermal

properties of an assortment of qubit CPTP maps. We demonstrated how our

measurement protocol could probe the limits of MFT and considered the possible

sub-structures that might be present in the thermodynamic properties of a convex

combination of quantum channels.

The formalism developed here shows that an action formalism can capture

geometric phases and entanglement dynamics and shed new light on these phe-

nomena using path integral techniques, such as the least action principle, Gaussian

fluctuations, and diagrammatics. While our work sets the basis for addressing these

features in single and dual qubit systems, geometric phases and entanglement are

critical concepts in many-body quantum dynamics. As such, our work sets the first

steps to devise more methods and approximate treatments of many-body complex

dynamics like topological order control and measurement-induced many-body phase

transitions.
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