
D-Optimal Design for Nested Sensor Placement

David Sudell, MSci. (Hons) MSc.

School of Mathematical Sciences

Lancaster University

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of

Philosophy

March 2024

Abstract

This thesis introduces a new method for the construction of D-optimal designs with a nesting

restriction on the choice of design points. It is motivated by an industrial problem in sensor

placement for flood monitoring, although the applications to experiment design are not

restricted to this field. The nesting structure has two levels. Design points occupy the

lower level, and each design point is required to be associated with precisely one member

of the higher level. An adaptation of an existing pairwise swap algorithm, sometimes called

the Fedorov algorithm, is made to suit this nesting requirement for static linear models.

The adaptation features swap operations at the higher level of the nesting structure as well

as at the lower level. The performance of this method is demonstrated using simulated

and application datasets. Further adaptations are then made to allow for Poisson models,

employing a Gaussian quadrature method to effect a Bayesian design. Changes in design

points over time are also made possible using applications of the algorithm for the linear

model case. The primary motivation across all of the new methodology and its applications

is the use of remote sensors in the natural environment as part of the Internet of Things.

Acknowledgements

The completion of this thesis would not have been possible without the constant support

and encouragement of my two supervisors, Professor Rebecca Killick and Professor Andrew

Titman, both of the school of Mathematical Sciences at the University of Lancaster. They

have been extremely generous with their time, and their support is deeply appreciated.

i

Declaration

I declare that this thesis is my own work and has not been submitted in any form for the

award of a higher degree elsewhere.

David Sudell

ii

Contents

1 Introduction 1

1.1 Motivation . 1

2 Literature Review 4

2.1 Optimal experiment design . 4

2.2 The Fedorov exchange algorithm for exact designs 5

2.2.1 Other exchange algorithms . 6

2.3 Contributions . 6

3 Linear Models 8

3.1 Problem structure . 8

3.1.1 Assumptions . 11

3.2 Algorithm Methodology . 11

3.2.1 Nested Fedorov algorithm . 12

3.3 Updating the information matrix . 14

3.3.1 Determinant update . 14

3.3.2 Inverse update . 17

3.4 Datasets . 17

3.4.1 Simulated data Type A . 17

3.4.2 Simulated data Type B- environmental 18

3.4.3 Application data- monitoring flooding of roads 20

3.5 Testing Results . 22

3.5.1 Testing simulated datasets Type A . 22

iii

3.5.2 Testing simulated type B (environmental) datasets 25

3.5.3 Testing on the application data . 27

3.5.4 Testing results- Expected Values . 29

3.5.5 Testing results- Prediction Variance 32

3.6 Discussion . 34

4 Poisson Models 36

4.1 Introduction . 36

4.2 The model . 36

4.3 Gaussian quadrature . 38

4.3.1 Procedure . 38

4.3.2 Distribution of parameters . 39

4.3.3 Number of points . 40

4.3.4 Implications for algorithm . 40

4.4 Results . 41

4.4.1 Simulated Type A Data . 42

4.4.2 Simulated Type B Data . 49

4.4.3 Application Data . 57

4.4.4 Discussion . 69

5 Design point reallocation 72

5.1 The temporal element in the Sensor Placement Problem 73

5.2 Notation . 74

5.2.1 Model specification . 75

5.3 Move costs . 75

5.4 Methodology . 76

5.5 Results . 77

5.5.1 Simulated data . 78

5.5.2 Application data . 78

5.6 Discussion . 79

5.6.1 Allocation of sensors to epochs . 79

iv

5.6.2 Move costs . 79

5.6.3 Poisson models . 80

6 Conclusions and future directions 81

6.1 Contributions . 81

6.2 Future work . 82

A Nested Fedorov algorithm in detail 85

A.1 Nested Fedorov algorithm . 85

A.2 Standard Fedorov algorithm . 86

A.3 Sensors-per-collector constraint . 89

v

List of Figures

1.1 Sensor placement application example . 2

3.1 Simulated environmental datasets heatmaps for two negatively correlated

characteristics . 19

3.2 Application dataset locations . 21

3.3 Mean efficiency relative to known optimal design 23

3.4 Simulated datasets (Type A hidden-design), absolute values of mean entries

of M(ξH)−1. Darker shading indicates higher values. 23

3.5 Simulated environmental, D-efficiency achieved 26

3.6 Simulated environmental datasets, absolute values of mean entries ofM(ξH)−1.

Darker shading indicates higher values. 26

3.7 Application dataset, mean D-efficiency achieved using nested Fedorov algo-

rithm, 128 algorithm random starts . 28

3.8 Application dataset: chosen sensor locations in any design with at least half

the maximal value achieved overall; and chosen sensors in the maximal design. 29

3.9 Simulated environmental datasets, expected values 30

3.10 Application dataset, expected maximum determinant achieved with increas-

ing number of algorithm random starts (draws) 31

3.11 Fraction of Design Space plots for simulated datasets (simulated environment) 33

4.1 Simulation Type A1, conditions 1. D-efficiencies achieved relative to known

optimal Poisson design. 45

vi

4.2 Simulation Type A1, conditions 2. D-efficiencies achieved relative to known

optimal Poisson design. 46

4.3 Simulation Type A1, conditions 3. D-efficiencies achieved relative to known

optimal Poisson design. 47

4.4 Simulation Type A2 plot 1: D-efficiencies achieved relative to best-found design. 49

4.5 Simulation Type A2 plot 2: D-efficiencies achieved relative to best-found design. 50

4.6 Simulation Type A2 plot 3: D-efficiencies achieved relative to best-found design. 51

4.7 Simulation Type A2 plot 4: D-efficiencies achieved relative to best-found design. 52

4.8 Simulation Type A2 plot 5: D-efficiencies achieved relative to best-found design. 53

4.9 Simulation Type A2 plot 6: D-efficiencies achieved relative to best-found design. 54

4.10 Simulation Type A2 plot 7: D-efficiencies achieved relative to best-found design. 55

4.11 Simulation Type A2 plot 8: D-efficiencies achieved relative to best-found design. 56

4.12 Simulation Type B plot 1: D-efficiencies achieved relative to best-found design. 58

4.13 Simulation Type B plot 2: D-efficiencies achieved relative to best-found design. 59

4.14 Application data results, conditions ‘1’ (prior parameter covariances 0.5, prior

means of parameters (0.05, 0.1, 0.15),
√
2km grid) 60

4.15 Application data results, conditions ‘2’ (prior parameter covariances 0.5, prior

means of parameters (0.15, 0.1, 0.05), 2km grid) 61

4.16 Application data results, conditions ‘3’ (prior parameter covariances 0.5, prior

means of parameters (0.05, 0.1, 0.15,),
√
2km grid) 62

4.17 Application data results, conditions ‘4’ (prior parameter covariances 0.5, prior

means of parameters (0.15, 0.1, 0.05), 2km grid) 63

4.18 Application data results, conditions ‘5’ (prior parameter covariances 0.1, prior

means of parameters (0.05, 0.1, 0.15,),
√
2km grid) 64

4.19 Application data results, conditions ‘6’ (prior parameter covariances 0.1, prior

means of parameters (0.15, 0.1, 0.05), 2km grid) 65

4.20 Application data results, conditions ‘7’ (prior parameter covariances 0.1, prior

means of parameters (0.05, 0.1, 0.15,),
√
2km grid) 66

4.21 Application data results, conditions ‘8’ (prior parameter covariances 0.1, prior

means of parameters (0.15, 0.1, 0.05), 2km grid) 67

vii

List of Tables

3.1 Simulated results (for Type A, hidden-design and hidden-design-with-decoy).

Numerical values are to 2 decimal places. 24

5.1 Comparison of D-efficiencies achieved using time-based methods for simulated

data (Type A) (3 sig. figures). 78

5.2 Comparison of efficiencies achieved using time-based methods for application

data (3 sig. figures). 79

viii

Chapter 1

Introduction

1.1 Motivation

With an increasing number of Internet of Things devices being deployed in the natural

environment to monitor conditions over time, problems concerning sensor placement are re-

ceiving ever-greater attention, see for example the Wireless Sensor Networks section detailed

by Ray (2018). Accurate inference is important, but cost and other practical considerations

must also be taken into account, by attempting to limit the resources used in sensor de-

ployment (for example, limiting the number of sensors used). The problem considered in

this thesis is that of determining the optimal sensor placement experiment under certain

geographical constraints. Sensors are to be placed in a real-world environment in order

to measure a single variable of interest. It is assumed that a number of static, location-

dependent attributes are known for any potential sensor location. These attributes are to

be used as predictors in a statistical model, with the final aim of estimating the model

parameters in order to describe the relationship between the location attributes and the

sensor-measured response variable. Thus the emphasis is primarily on parameter estima-

tion, although prediction also has practical importance.

In the motivating example, the sensors detect water levels and are installed in gully pots

at the sides of roads. A smaller number of localised data-collecting devices, referred to

hereafter as collectors, are also installed, affixed to lampposts in the vicinity. Each deployed

collector will in general have multiple sensors associated to it. This is illustrated hypotheti-

1

Figure 1.1: Sensor placement application example

cally in Figure 1.1. It is assumed that the sensors are identical in terms of reliability, and are

therefore entirely exchangeable with one another; variation in sensor behaviour/reliability

is not an area of investigation for this thesis. The sensors transmit their data readings at

high frequency to the collector within range. The collectors retain and consolidate the data

they have received from these in-range sensors, and then send these on in regular packets

to an internet server. One benefit of such a system is the need for only a low number of

devices that are capable of long-range transmission or internet access. In fact, transmission

over long distances by the sensors themselves is often difficult or impossible due to their

physical positioning, potentially below ground level. However, the arrangement does mean

that each sensor is reliant upon the presence of a sufficiently close collector. It is usually

desirable in such a situation to position clusters of sensors around collectors in such a way

that each sensor has no more than one associated collector. This is not only because of

limitations on sensor/collector resources that would make a double parentage wasteful; but

also because of the nature of many natural or urban environments in which sensors are

deployed. In such environments, the location attributes used to design the experiment often

require sufficiently great separations in order to vary sufficiently. A greater spread of sensor

locations, made possible by a greater spread of collectors will tend, in general, to result in

higher variation in location attributes and correspondingly a better experimental design; it

will also mean that there are few, if any, multiple collector parentages for sensors.

2

Thus the sensor placement problem is complicated by the imposition of a geographical two-

level nested structure upon the sensor placement. The sensors are at the lower level, and

a smaller number of collectors at the higher level. Analogous situations may be found in

Wireless Sensor Network problems, as in the relay nodes of Bakhsh (2017), although with

an energy-efficiency motivation as opposed to an optimal design one.

While optimal experiment design is a rich area with many results applicable to sensor place-

ment problems, there is currently a lack of methods applicable to these hierarchical con-

straints. The closest example may be that of Goos and Jones (2019), in which performance

of different machines is investigated. Allowance is made for a categorical branching factor

and, dependent upon this, a categorical (or quantitative) nested factor. There is therefore

a nesting structure here, where the branching factor could be considered analogous to the

collectors in our application. However, in our application we assume that the potential

collector sites are chosen based on practical considerations. Hence we do not consider the

collector to which a sensor site is associated to have any direct bearing on the distribution

of responses at that site and hence the nested models considered in Goos and Jones (2019)

are not applicable. In practice, there may be some spatial correlation, as considered in

Fedorov (1996). However, the practical desire to choose multiple sensors per collector would

complicate this approach considerably. In addition to this, in the motivating scenario there

is no guarantee that spatial separation is as important to the model as the other attributes

used such as road type; often, very geographically close locations can have quite different

attribute values and behaviours. Taking all of these issues into consideration; our objective

is to achieve useful inference on the model parameters, and without necessarily having access

to any response data before deploying the sensors. It is therefore appropriate to consider

the sensor placement problem as an optimal experiment design problem, and build upon

existing methods in this area to suit the needs of the nesting structure and practical sensor

placement problem.

3

Chapter 2

Literature Review

2.1 Optimal experiment design

In the design of experiments, the aim is to investigate the effect of experimental treatments

upon a response variable by applying the treatments to experimental units. The treatments

are quantities of interest, and the units are the individual items to which the treatments are

applied, allocated or assigned. A factor is a treatment that can be controlled as an inde-

pendent variable in order to observe the effect upon the value of the response for each unit.

In doing so, one chooses different values or levels for each factor involved. A combination

of two or more factors at specified levels constitutes a treatment combination (Hicks and

Turner (1999) p4), and the vector of factor levels for such a combination becomes a design

point. The treatment combinations to be applied to each unit must be decided before an ex-

periment can be conducted; that is, the set of design points must be chosen. These decisions

can be made using the motivation of optimality (Morris, 2011). Optimal experiment design

aims to engineer the choice of design points before collection of the data, according to some

predetermined criterion. This criterion depends upon the requirements of the experiment,

but often relates in some way to the information matrix (St John and Draper, 1975). There

are many optimality criteria, including the D, A, G and E criteria (Nishii, 1993). The

commonly-used D-optimality criterion maximises the value of the determinant of the infor-

mation matrix; its interpretation as minimising the generalised variance of the parameter

estimates (Nguyen and Miller, 1991) makes it a sensible choice as a criterion in investigating

4

potential methods for our inference problem. This optimisation can be performed before

the acquisition of any data as it relies only upon the design. Further constraints may also

be imposed in addition to maximizing or minimizing a criterion value; for example, Lee

(1988) minimize a convex function of the information matrix, with additional constraints

that other convex functions of the information matrix are less than or equal to zero.

2.2 The Fedorov exchange algorithm for exact designs

Exchange algorithms make sequential changes to a starting design by exchanging currently

selected design points with currently unselected ones. The starting design usually contains

as many points as are intended for the final design. A certain algorithm which we shall

from hereon refer to as the standard Fedorov algorithm, or simply the Fedorov algorithm,

is such an exchange algorithm and is one of several designed to achieve good exact designs

with respect to D-optimality (Fedorov, 1972). It improves some initial randomly generated

design, if possible, by the performance of successive one-for-one swaps of design points.

Each swap is made so as to result in the maximal possible increase in the information

matrix determinant given the current proposed design. The process is, briefly:

1. Start from an initial random design.

2. Compute, in turn, the change in determinant which would result from making a single

swap of each design point in the design with each available non-design point.

3. Of these possible single swaps, choose the one corresponding to the greatest increase

in determinant (if any does result in an increase)- perform the swap.

4. Repeat steps 2-3 until no increase is possible.

Note that another popular algorithm bearing Fedorov’s name and proposed in the same

work gives continuous designs, whereas the exchange algorithm described here gives an

exact design. Reference to the Fedorov algorithm here will mean the Fedorov exchange

algorithm.

5

2.2.1 Other exchange algorithms

A number of alternative or potentially superior exchange algorithms have been proposed

since Fedorov (1972). Mitchell (1974) allows excursions in the design; that is, changes in

the number of design points that can be exchanged at a time up to a varying limit; the limit

is permitted to increase up to a threshold as it becomes increasingly difficult to improve the

design close to the optimal design, until exploration is halted when this threshold is reached.

Johnson and Nachtsheim (1983) provides an exchange algorithm based on selecting a set

(of pre-specified cardinality) of points that results in the lowest variance of predictions.

More recently, Labadi (2015) proposes refinements of the Fedorov exchange algorithm with

exchange of two points at a time, and Harman and Filová (2020) proposes a ‘randomised

exchange algorithm’ for D-optimality of approximate designs, based upon trying exchanges

of weights (with the design expressed in terms of weights on each design point) within

repeatedly selected batches of design points. Most of these algorithms are similar in nature

to Fedorov but slightly alter the way in which the swap is decided upon, or the number of

swaps performed at a time. These may include extra user-set parameters affecting run-time

but not the final solution. Thus we acknowledge that such modifications to Fedorov could

be employed, but we do not include them in our adaption of the algorithm.

2.3 Contributions

The broad scenario of a nested structure for sensor placement has been examined before

using relay nodes (analogous to the collectors) in Wireless Sensor Networks; for example the

placement of the relay nodes with fixed sensor locations, minimising the number of nodes and

a cost function (Li et al., 2017), and clustering the relay nodes for energy efficiency (Chugh

and Panda, 2018). However, there is an absence of sensor placement methodology relating

to statistically-motivated parameter estimate optimization subject to a nested structure.

Conversely, in the statistical literature, as mentioned above, optimal designs may currently

be sought according to appropriate criteria on the information matrix and further constraints

on the design space may be imposed, but thus far such constraints have not to the authors’

knowledge included a nested structure.

6

The contribution of this thesis is to propose an algorithmic method to address this gap

and combine the sensor placement and experiment design areas, while observing the nested

structure requirement. In Chapter 3 notation is introduced, and an exchange algorithm is

proposed for construction of exact designs with the aim of maximising D-optimality for linear

models. Simulations and application data are used in assessing algorithm performance.

Chapter 4 extends the methodology of Chapter 3 to allow for a Poisson model assumption,

whilst Chapter 5 addresses the possibility of design point reallocation over time.

7

Chapter 3

Linear Models

3.1 Problem structure

This chapter addresses the problem of constructing D-optimal designs for linear models,

subject to the nesting constraint (which was described in Section 1.1 and is formalised

shortly using set notation to describe a partition). We begin by introducing the relevant

notation. For k ∈ N we introduce a compact subset of Rk, χ, as the design space; n elements

xi, i = 1, . . . , n of χ are to be chosen for observation in an experiment, where the xi are

k-tuples. The compactness of χ is to prevent exclusion of suprema of function values (Kiefer,

1959). Note that k will be equal to the number of predictor variables being recorded and used

in the experiment. The choice of model(s) to be applied to the sensor data naturally affects

the methods used in planning the experiment. In this chapter we make the assumption

that standard linear models with least-squares estimation will be used. Suppose that the

choices of the xi are restricted to a pre-determined finite subset A of N distinct points of

χ, corresponding in practical terms to the available sites for sensor installation. It may

be assumed that the attributes corresponding to the entries of the xi are permitted to be

continuous or categorical. The composition of A is assumed to be known. Suppose further

that we have a sequence f of p continuous real-valued known functions f = (f1, f2, . . . , fp) on

χ, to give the coefficient structure of the linear model; write f(x) for (f1(x), f2(x), . . . , fp(x))

when x ∈ χ. Observations yi are to be collected once the xi have been chosen, with the

8

observations assumed to be of the form:

yi =

p∑
j=1

(fj(xi)βj) + ei (3.1)

for p unknown coefficients βj whose values are to be estimated by the experiment, and n

error terms ei which are uncorrelated, and each with Gaussian distribution; mean 0 and

variance σ2. Let ξA be a probability measure in a class of probability measures ΞA giving

a design with the following restrictions. Suppose that, for every x ∈ χ, ξA(x) = q/n, for

some q ∈ {1, 2, . . . , n}, then ξA assigns whole numbers of design points to the available

experimental observation units (sensor sites), and the design is commonly referred to as

exact. In practical terms this is of course a necessity. Suppose further that ξA uses each x

either once or not at all (so that the experiment may be conducted with fixed sensors in

certain available locations), and restrict ξA to using points in A (again, for the locations to

be real possibilities for sensor installation). The design matrix for ξA is:

X(ξA) =

f1(xA1) f2(xA1) . . . fk(xA1)

f1(xA2) f2(xA2) . . . fk(xA2)

...
. . .

...

f1(xAn) f2(xAn) . . . fk(xAn)

.

for A = {xA1 , . . . , xAn}, and the information matrix M(ξA) is, up to proportionality,

M(ξA) = (1/n)(X(ξA)
′X(ξA)),

with individual elements, up to proportionality, given by:

mj1,j2(ξA) =
1

n

∑
a∈{A1,A2,...,An}

fj1(xa)fj2(xa).

Since we assume that each potential sensor site belongs to precisely one potential collector

site, suppose that A is partitioned by a family of subsets H1, H2, . . . ,Hh0 for h0 ∈ N, so

that h0 gives the number of potential collector sites available for installation of collectors.

9

Use a membership function g:

g : A → {1, 2, . . . , h0}

such that

x ∈ Hl ⇔ g(x) = l ∀x ∈ A, l ∈ {1, 2, . . . , h0},

and let ΞH be a class of designs ξH satisfying a final restriction in addition to those already

described; that ξH uses design points from at most h1 of the subsets forming the partition,

with h1 representing the number of collectors to be used. That is:

|{g(x) : ξH(x) = 1, x ∈ A}| ≤ h1;

for some h1 ∈ {1, 2, . . . , h0}. Note that in a slight abuse of the notation, h1 here is an integer

quantity of these potential collector sites to be used, and does not represent the identity of

a particular element of the partition. Assuming that ordinary least squares estimates of the

parameters are to be obtained following the data collection phase, we have

β̂ = (X(ξH)′X(ξH))−1X(ξH)′y

for the observations y = (y1, y2, . . . , yn)
′, and the variance-covariance matrix of the param-

eter estimates β̂ will be given by

σ2(X(ξH)′X(ξH))−1.

One further item of notation is helpful in describing the algorithm methodology below.

Suppose a design ξH is in the process of being altered, for instance by the addition or removal

of one of its design points. Suppose also that there are several candidate alterations. The

candidate altered designs will be denoted in subscript with lower-case indexing letters, for

example ξHi . Once the change has been made, subsequent reference to ξH can then be

assumed to imply the new design; that is, in our example the i is dropped following the

change. Additional levels of conditionality are expressed with successive letters, so that a

two-level-deep conditionality may for example be expressed by ξHij .

10

3.1.1 Assumptions

The following assumptions will be made regarding the experiment:

• Responses from the experiment are of the form given in expression 3.1; that is, it

is sensible to attempt to describe them through use of a linear model, allowing for

interactions.

• We assume Gaussianity with zero covariance; in practical terms, this means that

observations from distinct locations are independent. This is a reasonable assumption

as distinct sensor sites are not expected to exhibit dependent behaviour beyond the

effects of the known location attributes.

• Observations are permitted only once at sites in A, and will be taken only for points

in A.

• The nesting structure restriction, caused by the need for local data collectors and

described by the H1, H2, . . . ,Hh0 partition, is to be observed.

We may now proceed to a description of the algorithm methodology.

3.2 Algorithm Methodology

The material in Section 1.1 provides some background to optimal experiment design and

in particular the use of the Fedorov algorithm to attempt to construct D-optimal exact

designs. If we are to assume that construction of a design with a high determinant |M(ξH)|

is desirable for the sensor placement problem, the methodology of the Fedorov algorithm

provides a starting point. We require a design in ΞA that also satisfies the nesting structure

requirement (i.e. that is also in ΞH). The Fedorov algorithm does not respect nesting

structure. Thus we propose a new algorithm which, inspired by the Fedorov algorithm,

solves the nested design problem. In designing such an algorithm, several problematic

questions particular to the nesting structure scenario must be considered. Näıvely, one

might try to optimise individual designs for each chosen collector. However, the lack of

inter-subset communication is likely to lead to replication of structure between collectors,

11

and hence sub-optimal designs. Instead, it is necessary to account for the effect of any

design change on the determinant of the overall design. However, note that the presence of

nesting induces a large number of possibilities. It is not practical to consider each possibility

explicitly; indeed, the choice of collectors alone is equal to
(
h0

h1

)
.

3.2.1 Nested Fedorov algorithm

The algorithm developed adopts the general approach of attempting to make pairwise ex-

changes, but on two levels rather than the one used by the standard Fedorov algorithm.

Were the collector installation locations fixed, the standard Fedorov algorithm could be ap-

plied to the set of potential swaps that satisfy the nesting constraints. However, since the

optimal set of collector locations is unknown, the algorithm also accommodates the exchange

of collectors. The algorithm proceeds from an initial random design in ΞH to make swaps

of the potential collector sites in the nesting. Each such swap involves identifying the best

pair of candidate collector sites for the removal and addition, based upon the effect on the

determinant |M(ξH)| given the design points associated with each candidate collector site.

Once a collector swap has been made, the standard Fedorov algorithm is run with respect

to the design points (sensor locations) and only allowing swaps consistent with the currently

chosen collector sites. Allowances are made for particular cases involving fluctuations in the

numbers of design points being used, and cases of an entire chosen collector site becoming

unused. Algorithm 1 gives an overview of the algorithm. The various matrix operations

involved are made significantly more efficient using the methods described in Section 3.3.

The algorithm inputs for the Nested Fedorov algorithm are:

1. n (the prescribed number of design points (sensors)) and h1 (the prescribed number of

collectors to be used)- assume that the h0 potential collector sites are simply labelled

1, . . . , h0;

2. {(x, g(x))} ∀x ∈ A (the nesting structure);

3. Criterion for minimum determinant before a matrix is deemed singular- this is not

referred to explicitly in the algorithm description, but checks are made at the relevant

points before altering the design, in order to avoid a singular matrix M .

12

input : n, h1, h0,{(x, g(x))}, and minimum determinant criterion.
1 Create a random sample C ∈ {1, 2, . . . h0}, with |C| = h1;
2 Run standard Fedorov algorithm on {x : g(x) ∈ C} with a random starting set of

min(n, |{x : g(x) ∈ C}|) design points- resultant design ξH ∈ ΞH ;
3 while an increase in |M(ξH)| is achieved do
4 if |{x : g(x) = c AND ξH(x) = 1}| > 0 ∀c ∈ C then
5 for ci ∈ {c : c ∈ C} do
6 Set the design for ξHi to {x : g(x) ∈ (C \ ci) AND ξH(x) = 1}.;
7 for pj ∈ {g(x) : g(x) /∈ C} do
8 if |{x : g(x) = pj}| ≤ (n− |{x : ξHi(x) = 1}|) then
9 Set the design for ξHij to {x : ξHi(x) = 1 OR g(x) = pj}

10 else
11 Set ξHij = ξHi ;

12 for k in 1 : (n− |{x : ξHi(x) = 1}|) do
13 for xl ∈ {x : g(x) = pj AND ξHij (x) = 0} do
14 Set the design for ξHijk

to {x : ξHij (x) = 1} ∪ xl
15 end
16 ξHij ← arg max

ξHijk

|M(ξHijk
)|.

17 end

18 end

19 end
20 ξHi ← argmax

ξHij

|M(ξHij)|.

21 end
22 ξH ← argmax

ξHi

|M(ξHi)| and then C ← {g(x) : ξH(x) = 1} ;

23 Run standard Fedorov algorithm on {x : g(x) ∈ C} with starting design ξH .

24 else
25 for pi ∈ {g(x) : g(x) /∈ C} do
26 Set the design for ξHi to {x : ξH = 1 OR g(x) = pi}.
27 end
28 C ← C ∪ pi where i = argmax

i
|M(ξHi)|. Note that ξH is not altered here;

29 Run standard Fedorov algorithm on {x : g(x) ∈ C} with starting design ξH .

30 end
31 if The current run of the while loop has not resulted in an increase in |M(ξH)|,

then
32 undo its effects, and halt the while loop at this point.
33 end

34 end
output: ξH (C may be inferred from this).

Algorithm 1: Nested Fedorov Algorithm

13

Given the nature of the nesting structure of possibilities in our problem, the quality of the

end design is sensitive to the starting design (see the Type A simulation results in Section

3.5.1 for an illustration of this), and it is therefore advisable to perform multiple random

starts of the algorithm when searching for a design. In addition to this Nested Fedorov

algorithm, two further methods are employed in the testing process, purely for comparative

purposes. The first method takes a simple random sample from the set of potential collectors

sites, and then from the associated design points a random sample giving a non-singular

design; this process is repeated as many times as required. The second method, referred to

as the näıve one, chooses a set of collector sites, and thence the design points, based upon

expectation of the points averaged over a variety of weightings for the predictors- points

with higher mean expectation are favoured, with the reasoning that a näıve deployment of

sensors might give priority to geographical locations at which events of interest have been

observed to occur with highest frequency (that is, for example, at flooding hotspots).

3.3 Updating the information matrix

The material in this section describes methods for computing the effects of design point

changes upon the relevant matrix determinant and inverse. Such methods have been em-

ployed before in optimal experiment design, for example in Arnouts and Goos (2009).

3.3.1 Determinant update

Each comparison of a candidate design over a current one, during one pass of the Fedorov

algorithm, requires knowledge of the candidate design’s information determinant as well as

the existing determinant |M(ξ)|. Let xi be the candidate row to be added to the design

and xk the row to be removed (using k rather than j since j was associated with columns

in Section 3.1). Then, given that inserting the row xi in the (design) matrix X causes the

matrix M = X′X to become M + xix
′
i whilst removing the row xk from X gives the matrix

M − xkx
′
k, (treating xi and xk here as column vectors so that xix

′
i and xkx

′
k are equal to

the outer products of each respective vector with itself), the expression of interest for the

determinant resulting from the potential swap of xi and xk is |M + xix
′
i − xkx

′
k|.

14

Proposition 3.3.1 For a square invertible matrix M and column vectors xi, xk;

|((M + xix
′
i)− xkx

′
k)| = (1 +∆)|M |

where

∆ = b− a− ab,

and

a = x′k

(
M−1 − M−1xix

′
iM

−1

1 + xiM−1xi

)
xk and

b = x′iM
−1xi.

Proof. By Theorem 18.1.1 in Harville (1997), for an invertible square matrix M and two

column vectors v1 and v2,

|M + v1v
′
2| = (1 + v′2M

−1v1)|M |.

Since the case for removal of a row follows easily as a slight variant on this,

|M − v1v
′
2| = |M + (−v1)v′2|

= (1 + v′2M
−1(−v1))|M |

= (1− v′2M
−1v1)|M |,

the simultaneous insertion of one row and deletion of another can be expressed as

|((M + xix
′
i)− xkx

′
k)| = (1− xk(M + xix

′
i)
−1xk)|(M + xix

′
i)|

= (1− x′k(M + xix
′
i)
−1xk)(1 + x′iM

−1xi)|M |.

As can be seen from the above, the approach requires the inverse of M . Sherman and

Morrison (1950) consider the effect on an inverse of changing single matrix elements led

to an expression for the update of a matrix in the required manner (Bartlett, 1951); for a

15

square invertible matrix M and two column vectors v1 and v2,

(M + v1v
′
2)

−1 = M−1 − (M−1v1v
′
2M

−1)

(1 + v′2M
−1v1)

, (3.2)

where similarly to the case of the determinant update, it can be seen that the case for

removal of a row is:

(M − v1v
′
2)

−1 = (M + (−v1)v′2)−1 (3.3)

= M−1 − (M−1(−v1)v′2M−1)

(1 + v′2M
−1(−v1))

(3.4)

= M−1 +
(M−1v1v

′
2M

−1)

(1− v′2M
−1v1)

. (3.5)

Thus we arrive at an improved expression for the matrix update:

|((M + xix
′
i)− xkx

′
k)| =

(
1− x′k

(
M−1 − M−1xix

′
iM

−1

1 + xiM−1xi

)
xk

)
(1 + x′iM

−1xi)|M |

Multiplying out gives the form with ∆ defined as in the proposition statement.

From the above, to calculate the determinant that would result from a single row swap

in the design matrix X (not in M , note, which is X′X assuming an exact design) during

the process of running the Fedorov algorithm, all that is required is to know M−1, as well

as the two design points involved in the row swap. Note that whilst |M | also appears in

the expression in (3.3.1), multiplication out of everything preceding the |M | results in an

expression of the form (1+∆) so that if the ∆ is positive, the corresponding row swap should

cause an increase in |M |. This quantity ∆ is often referred to as Fedorov’s delta (Cook and

Nachtsheim, 1980). Thus swaps can actually be made on the basis of their effect on ∆

rather than on |M | directly. Whilst |M | is not required for the update of M−1 either, as

shall be seen below, it is still useful to be able to calculate and update |M | for comparisons

and observation, and the extra computation to convert ∆ to |((M + xix
′
i)− xkx

′
k)| is small

(o(1)).

16

3.3.2 Inverse update

The determinant update in Section 3 necessitates knowledge of M−1. To avoid calculating

a new inverse when performing a row swap, the following allows update of the inverse in a

similar manner to that of the determinant above:

Corollary 3.3.2 For a square invertible matrix M and column vectors xi, xk;

(M + xix
′
i − xkx

′
k)

−1 =(
M−1 − M−1xix

′
iM

−1

1 + x′iM
−1xi

)
+

(
M−1 − M−1xix

′
iM

−1

1+x′
iM

−1xi

)
xkx

′
k

(
M−1 − M−1xix

′
iM

−1

1+x′
iM

−1xi

)
1− x′k

(
M−1 − M−1xix′

iM
−1

1+x′
iM

−1xi

)
xj

Proof. By (3.2),

(M + xix
′
i − xkx

′
k)

−1 = (M + xix
′
i)
−1 +

(M + xix
′
i)
−1xkx

′
k(M + xix

′
i)
−1

1− x′k(M + xixi)−1xk
,

which by (3.3) is equal to the stated expression.

This expression relies only upon M−1 and the two rows involved in the swap. When large

numbers of successive row swaps are being performed, these update techniques reduce com-

putation time considerably by avoiding any more than one initial calculation of an inverse

and determinant per run of the Fedorov algorithm.

3.4 Datasets

Three types of dataset are used in evaluating the Nested Fedorov Algorithm’s efficacy. The

first two are simulated, and the third is an application dataset; all three are now described

in detail.

3.4.1 Simulated data Type A

The first set of small-scale simulated sets of potential design points is constructed in the

following way. It is desirable that a design ξΩ that is known to have an optimal value of

|M(ξH)| be concealed in the simulated data, in order to test the algorithm’s tendency to

17

identify it. For each simulation scenario, a factorial design array size 16× 4 is constructed

on the range [−1, 1], and a column of 1′s appended. This forms the optimal design, so that

n = 16, p = 5. This is then augmented with points lying within the hypercuboid formed

by this design, in one of two possible ways. The first is to add uniformly randomly sampled

vectors on the hypercuboid to make the total number of points up to 160. The second

consists firstly in augmenting the optimal design with a copy of itself, one of whose columns

is scaled by 0.95, then augmenting further to a total of 160 points using uniformly randomly

sampled vectors confined to the hypercuboid, as with the first method. These two types

of simulated datasets are referred to later as hidden-design and hidden-design-with-decoy

respectively. The set of candidate design points in each case is then allocated a nesting

partition structure such that:

• For some predetermined value of h1, the known optimal design would be accessible

through a choice of h1 collector sites, thus allowing the algorithm the possibility of

attaining this design.

• For the nesting structure of the hidden-design-with-decoy datasets, as for the optimal

design, the altered copy of the optimal design is accessible through a choice of h1

collector sites; additionally, it is ensured that no element of the altered optimal design

is assigned to the same potential collector site as any element of the actual optimal

design, thus testing the algorithm by inviting it to choose a different set of collector

sites than those that would lead to the unaltered optimal solution.

• Overall the expected number of points per potential collector site is the same for all

potential collector sites, accounting for the need to satisfy the preceding two require-

ments by adjusting the sampling probabilities accordingly for potential collector sites

belonging to/not belonging to the optimal and (if present) altered optimal designs.

Beyond these conditions, the creation of the partition is random.

3.4.2 Simulated data Type B- environmental

A 50×50 grid of discrete location points is generated, to represent locations evenly spaced in

each of the two axes, and a Euclidean distance matrix D computed for the grid (2500×2500,

18

Figure 3.1: Simulated environmental datasets heatmaps for two negatively correlated char-
acteristics

symmetric and with 0 diagonal). A 2500-dimension multivariate normal sample is then

generated, in the manner of the generation of artificial distribution data by Dormann et

al. (2007), with all means equal to 0 and a covariance matrix Σ with elements σlm given

by σlm = exp(-ρ × dlm) where dlm is the corresponding entry in D and ρ is a pre-selected

constant to control the degree to which sites are mutually correlated. This sample, arranged

in a 50 × 50 matrix Φ = [ϕij] to match the elements of the location grid, is then used to

generate location characteristics pijr, with r the index for the location characteristic in

question, in the following way:

pijr = αrϕij + ϵijr,

where:

1. ϵijr ∼ N(0, 0.25) is randomly sampled, the choice of variance value being made in

order to achieve what appears to be a reasonable amount of variance in the location

characteristics across the grid.

2. the quantities αr ∈ R are specified parameters, chosen collectively based upon the

location characteristics pertaining to the r’s such as to match common sense expecta-

tions of the behaviour of the location characteristics- for example, αr might be chosen

to be positive for altitude and rainfall, and correspondingly negative for traffic, al-

19

though it is in a sense safer to treat each of these variables in a more abstract manner,

given their artificiality.

Figure 3.1 gives an example pair of heatmaps for two characteristics in one of these sim-

ulated environments. The two characteristics are negatively correlated with one another.

Following the generation of these simulated environments, potential collector sites are ran-

domly sampled from a lower-granularity 5 × 5 subset grid, and potential sensor locations

sampled from those members of the original 50 × 50 grid belonging to one of the sampled

potential collector sites, on the basis of Euclidean distance. Four different possible numbers

of available collectors are used; 2, 3, 4 and 5; and for each of these, the total number of

potential collector sites made available is greater by a factor of four (i.e. 8,12,16,20); the

number of sensors used is greater by a factor of six; and the number of potential sensor sites

made available is greater by a factor of 60, all relative to the number of collectors used. For

each of these four cases, 50 different environments are simulated, and on each of these 50

environments the Nested Fedorov Algorithm is run 16 times (parallel processing is utilised

here).

3.4.3 Application data- monitoring flooding of roads

A dataset containing different variables giving attributes of real-world locations on roadsides

was provided by InTouch Ltd.. The attributes available include, for each potential sensor

site:

• Latitude

• Longitude

• Altitude

• Road speed limit (all locations were on roadsides)

• Tree count within a 100m radius

• Average daily number of stops of any bus at a bus stop within 100m.

20

Figure 3.2: Application dataset locations

21

A regular grid of squares is used to partition the geographical region concerned, with the

centre of each square as a potential collector site. The range of a collector is indicated by

the size of the grid squares. A ten by twelve
√
2km-wide spacing is used, such that each

collector’s ‘range’ is at most 1km. Figure 3.2 depicts the set of all potential sensor sites,

superimposed on the grid of square collector regions described above. Note that certain

potential collector sites near the top left have no potential sensor sites.

3.5 Testing Results

Results for applying the Nested Fedorov algorithm to each of the simulated dataset types,

as well as to the application dataset, are described with accompanying plots. Subsequently,

further results for all dataset types are described for calculation of expected values, and

prediction variances.

3.5.1 Testing simulated datasets Type A

The Nested Fedorov algorithm is first applied to the two type A simulated hidden-design

and hidden-design-with-decoy datasets- recall that the hidden-design datasets contains a

hidden optimal design with the remaining points being randomly uniformly sampled, while

the hidden-design-with-decoy datasets also contains a slightly altered copy of the optimal

design. As described above, the simulated datasets are constructed using |A| = 160, n = 16;

for the testing results, the nesting structure is then set up with h0 = 20 and h1 = 5. 500

initial sets of potential design points and nesting structures are run for each of the two types,

with 16 algorithm random starts (parallel processing is utilised here) for each of these 500.

It should be noted that the practicality of generating such algorithm testing scenarios with

known D-optimal solutions does of course dwindle rapidly as the parameters are changed so

as to increase the numbers of possibilities. Figure 3.3 shows the D-efficiency achieved (that

is, (|M(ξH)|/|M(ξΩ)|)
1
p) for the known optimal design for design space type A (hidden-

design), at successive numbers of collector swaps performed during an algorithmic run; the

corresponding plot for the hidden-design-with-decoy datasets is extremely similar and is

not shown. Table 3.1 summarises these simulated results. With the known optimal design

22

Figure 3.3: Mean efficiency relative to known optimal design

Figure 3.4: Simulated datasets (Type A hidden-design), absolute values of mean entries of
M(ξH)−1. Darker shading indicates higher values.

23

Method Statistic type
PΩ D

Dataset type
hidden hidden-design hidden hidden-design
design with-decoy design with-decoy

1 Nested Fedorov, after 2
swaps

0.25 0.19 0.73 0.82

2 Nested Fedorov, after 10
swaps

0.42 0.35 0.94 0.96

3 Näıve method 0.15 0.12 0.52 0.56

4 Random sampling 0.05 0.05 0.36 0.42

Table 3.1: Simulated results (for Type A, hidden-design and hidden-design-with-decoy).
Numerical values are to 2 decimal places.

denoted by ξΩ, the statistic types are defined as:

• D = mean(|M(ξH)|/|M(ξΩ)|)1/p is the mean D-efficiency;

• PΩ = mean|{x : ξH(x) = 1, ξΩ(x) = 1}|/n where n = 16- this is the mean proportion

of the sensors belonging to the optimal design that were chosen by the algorithm

(note that the || notation here denotes set cardinality, not matrix determinant as in

the previous bullet point).

Random samples of 100 for each dataset/nesting structure are also run, as well as a Näıve

sampling for each of these, and the results averaged.

Observations and further information:

• For the hidden-design scenario (no decoy), the algorithm was able to identify an op-

timal design in 488 out of 500 of the datasets that were simulated, for at least one of

the sixteen random starts performed per dataset (and in many cases for more than

one of these). For the hidden-design-with-decoy scenario, this figure was 493 out of

500. Figure 3.3 indicates that the performance of six swaps is almost always sufficient

to achieve a high efficiency under these circumstances (but this should not be taken

as a general rule).

24

• From Table 3.1, while the näıve method tends to find better designs than does the

random sampling method, both are consistently outperformed by the algorithm, as

hoped.

• It can be seen that the presence of a scaled copy of the known optimal design is not a

detriment to the algorithm’s ability to find good designs; indeed, the mean efficiency

tends to be greater when a decoy is present, as the algorithm has been provided with

alternative routes to a good if not optimal design, lessening slightly the importance

of the choices that a given random start makes. The presence of scaled copies or

structures resembling an optimal solution(s) is of course in practice dependent upon

the environment and the nesting structure, and with the optimal design unknown is

impossible to detect.

• The variance of the D-efficiences is 0.00143 for the initial designs, and has only reduced

to 0.00136 upon completion of the tenth collector swap. This illustrates the high

sensitivity of the end design’s quality to the starting design.

Figure 3.4 gives a visualisation of the absolute values of M(ξH)−1, with the matrix entries

first averaged (mean) over the relevant results for each of the algorithm results, the näıve

method and the random sampling. This matrix is proportional to the covariance matrix for

the parameter estimates in the linear model. As hoped, the algorithm gives lower values

(lighter shading on the plot) for these estimator variances than do either of the other two

methods. The off-diagonal covariances are almost all lower, and those that are not are still

of comparable value.

3.5.2 Testing simulated type B (environmental) datasets

Recall that the simulated Type B environmental datasets differ from the Type A hidden-

design and hidden-design-with-decoy datasets not only in the method of construction, but

in the fact that no hidden design is built into the structure. It is therefore not possible to

make any comparison with a known optimal design’s determinant. However, the algorithm

does appear to settle on average on designs which would probably not be bettered by

further algorithm random starts. Figure 3.5 gives achieved D-efficiency values relative to

25

Figure 3.5: Simulated environmental, D-efficiency achieved

Figure 3.6: Simulated environmental datasets, absolute values of mean entries of M(ξH)−1.
Darker shading indicates higher values.

26

the best found design, with increasing numbers of collector swaps made, for each of the

four setup scenarios described in Section 3.4.2. While an increasing number of collectors

(and associated proportional increases in the numbers of potential collector sites, potential

sensor sites and available sensors, again as described in Section 3.4.2) causes the algorithm

to require a greater number of collector swaps before no further increases appear possible,

the algorithm still appears able to find no better solutions after approximately six collector

swaps in the worst case. It should be noted that with a higher number of available collectors

comes in general a higher potential for improvement after multiple collector swaps, because

of the potential need to change each of the originally chosen collectors in turn. In terms of

comparison of the algorithm performance with that of the other two methods, Figure 3.6

depicts absolute values of means of entries of M(ξH)−1 as in Figure 3.4- once again, the

algorithm gives lower variances (lighter-shaded diagonal) for the parameter estimates than

do either of the other methods, and the off-diagonal covariances are almost all lower, with

the remaining being of comparable value.

3.5.3 Testing on the application data

The Nested Fedorov algorithm is run on the application dataset using all six attributes, with

128 random starts of the algorithm performed (parallel processing is utilised here in batches

of sixteen). 10 collectors are used, over 60 potential collector sites, and 100 sensors over 2037

potential sites (subject of course to the choice of collector sites). The results are depicted

in Figure 3.7 with D-efficiency relative to best design found, plotted against the number of

collector swaps performed. As with the simulated environmental datasets, the application

one affords no known means of calculating the value of the optimal determinant for our

problem, and so a value of 1.0 on the y axis this plot should not be taken necessarily to

mean an optimum- it corresponds to the highest-determinant designs found by the algorithm.

By the point of 10 swaps, the mean determinant appears to be levelling off. As was the

case for the simulated data, there is a marked increase in determinant during the earlier

collector swaps, suggesting that performing a large number of algorithm random starts with

a suitably calibrated relatively low number of collector swaps is probably the most efficient

means of achieving the best design possible with whatever resources are available. Figure

27

Figure 3.7: Application dataset, mean D-efficiency achieved using nested Fedorov algorithm,
128 algorithm random starts

28

Figure 3.8: Application dataset: chosen sensor locations in any design with at least half the
maximal value achieved overall; and chosen sensors in the maximal design.

3.8 shows the geographical distribution of chosen sensors for the application dataset. The

left plot includes any sensor that features in any design that achieved at least half of the

maximal value achieved overall; a total of 23 different collectors appear- recall that the use

of at most 10 collectors was permitted during the course of any one of the 132 algorithm

random starts. This suggests that of the available 60 collectors, the same ones tended to

be chosen in order to achieve the designs that were, in the results, maximal or approaching

maximal. The maximal designs themselves were identical and appeared three times in the

132 algorithm random start results. The plot on the right of the figure shows the sensor

sites chosen for this maximal design, with point size representing the value of one of the

covariates (in this case, altitude) at those sensor sites. The algorithm is tending to have

to obtain values of similar magnitude around a given collector, due to the nature of the

dataset.

3.5.4 Testing results- Expected Values

Further inspection of the algorithm results can be made using expected values of algorithm

performance. Figures 3.9 and 3.10 plot the expected maximum determinant value against

29

Figure 3.9: Simulated environmental datasets, expected values

30

Figure 3.10: Application dataset, expected maximum determinant achieved with increasing
number of algorithm random starts (draws)

31

the number of algorithm random starts, for the cases of performing zero, one or ten collector

swaps, with the simulated Type B (environmental) and application datasets. The expected

maximum value here is calculated in the following manner: let R be the number of algorithm

runs (random starts). The random variable g of interest is the maximum of R independent

algorithm run results. If F (X) is the cumulative distribution function for the (scaled)

determinant value for a single algorithm run, G(X) = F (X)R, and E [X] = ΣXg(X).

Using empirical values from the algorithm runs to produce a histogram leads to the values

shown in the plots. The importance of performing a sufficient number of collector swaps can

be seen; performing only two swaps can lead to very slow increase in maximal value achieved

with respect to the number of algorithm random starts. If the number of collector swaps

is substantially below the number of collectors being used, and the latter is in some sense

large, then supposing the probability of randomly choosing good collectors in the starting

design is small, the probability of attaining a good design after the collector swaps will also

be small. It would seem logical to perform at least as many collector swaps as there are

collectors, to allow in theory for each collector to be swapped once, in an attempt to keep

this probability as high as possible.

3.5.5 Testing results- Prediction Variance

The prediction variance of a point x ∈ A in the design space is proportional to x′M−1x

(Cook and Nachtsheim, 1980). While our method takes as its criterion the minimisation

of variance of the parameter estimates, the motivating problem still makes it desirable

that prediction variances be low. A brief check confirms at least that these variances are

improved upon by the nested Fedorov algorithm, in comparison with the näıve and random

sampling methods described in section 3.2.1. A method for depicting prediction variance

over a design space is described in Zahran et al. (2003). Prediction variance is considered

cumulatively on its range over the design space, plotted against the proportion of the design

space having this prediction variance or lower. Thus, for the maximum possible prediction

variance, 100% of the space will have this value or lower, while the plot shape illustrates the

degree to which prediction variance varies across points of the space. A flatter line suggests

more homogeneity of prediction variance. This method is used for the construction of plots

32

Figure 3.11: Fraction of Design Space plots for simulated datasets (simulated environment)

33

in Figure 3.11 (for Simulated Type B) All the plots demonstrate lower prediction variances

for the Nested Fedorov algorithm’s designs than for the näıve or random sample designs,

for all points in the design space, as well as a much more homogeneous variance across the

space. Similar behaviours are observed for the Simulated Type A and application data (not

plotted here).

3.6 Discussion

The work presented in this chapter represents the first investigation of a specific, thus far

under-explored problem in the area of optimal experiment design. An adapted version of

the Fedorov algorithm has been shown to perform well in correctly identifying a set of design

points corresponding to a known D-optimal ΞH design in small-scale testing scenarios, and

to converge to at least local maxima when applied to further simulated datasets and to

the application dataset supplied by the industrial partner. It consistently performs better

than randomly sampling designs to satisfy the nesting structure requirement, or than using

a näıve point-expectation method. The need to run a sufficient number of random starts,

and collector swaps, has been identified, as this will help to avoid local maxima in the

design space- it should be noted here that while the standard Fedorov algorithm can become

trapped in local maxima dependent upon starting design, the Nested Fedorov algorithm can

in addition to this become trapped due to the combinatorics induced by the partition; that

is, not only due to the shape of the space that exists with any given, fixed choice of collectors.

It is suggested that the numbers of random starts and collector swaps may realistically be

dictated by computational constraints, but that it is advisable to be prepared to perform at

least as many collector swaps as there are collectors. In addition to constraining the total

number of collectors, it may be practically desirable to limit the total number of sensors

per collector to be within some range (neither too high nor too low). The Nested Fedorov

algorithm implementation in R has this functionality included, which is described in the

Appendix A. Some obvious next steps are: to adapt the algorithm to account for non-

normal errors; and to explore adaptations of the method to allow for changing the sensor

locations during the course of the experiment in order to increase the information they

34

provide. Regarding the first of these points, in many applications the sensor observations

may be in the form of counts meaning a Poisson model would be more appropriate. Russell

et al. (2009) note the difficulty of finding optimal designs in the standard non-nested Poisson

scenario, if there is no prior knowledge of the parameter values.

35

Chapter 4

Poisson Models

4.1 Introduction

In Chapter 2, we solved the problem of identifying designs with high determinants with

respect to the D-optimality criterion, satisfying the nesting constraint, and under the as-

sumptions of a linear model. In practice, the assumption of responses generated from a

Normal distribution may not be appropriate. In order to address this potential shortcom-

ing, the manner of calculation of the optimality criterion must be adjusted.

We assume that a Poisson count model is required, with canonical log-link. Then the

D-optimality criterion can be expressed in terms of XTWX where W is a diagonal matrix

with non-zero entries equal to the Poisson means for the corresponding points (Yanping et

al, 2006). The motivation here is that one potential application of our methods is in flood

prediction, and one appropriate response variable to model is the count of flood events-

whatever these may be defined to be- over time. Thus a Poisson count process would

be likely to be an appropriate choice to model the response. This chapter will describe

adaptations to our methodology for dealing with this scenario.

4.2 The model

Assume that a Poisson count model is being used in the experiment; that is, we have a

Generalized Linear Model with a log-link function, and each of the n observations yi has a

36

Poisson distribution with rate parameter λi where

log(λi) =

p∑
j=1

(fj(xi)βj).

As with the Gaussian model, we have p unknown coefficients βj whose values are to be

estimated by the experiment. The information matrix is XTWX where W is the diagonal

matrix:

W =

λ1 0 . . . 0

0 λ2

...
. . .

...

0 . . . λn

where λi = exp(

∑p
j=1 fj(xj)βj) for i = 1, . . . , n. The situation has clearly changed from

that of the standard linear model.

If an experiment is to be designed for the use of a Poisson model, values are required for the

parameters λj in order to compute XTWX, and the design of a D-optimal experiment can

no longer be conducted solely on the basis of the attribute values chosen at certain potential

design point locations. If the parameters were known, the method would closely resemble

that used for the linear model case in Chapter 3, but with the D-optimality criterion being

based upon |XTWX| rather than |XTX|. However, in practice the parameters are unknown.

If we assume that the design is to be constructed entirely before any data are collected, they

cannot be estimated from the data. It then becomes necessary to design the experiment

accounting for possible plausible values of these unknown model parameters. One possible

method in this regard is to account for ranges of possible values of these parameters; either

via a grid search, or through a more sophisticated method that uses probability distributions

of the parameters. The latter option is clearly preferable from a theoretical viewpoint, given

it allows for incorporation of prior knowledge of the parameters’ behaviours- indeed, even if

such knowledge is unavailable, an assumption of multivariate normality for the parameters’

distribution might give more realistic results than a uniform grid.

The issue of computation must also be considered in comparing the two options; however,

37

since either would involve evaluation of a determinant at each of the chosen points, the

amount of computation would be likely to be comparable for a given number of points. Thus

it would seem sensible to use a method based on prior distributions for the parameters. In

particular, Gaussian quadrature (Golub and Welsch, 1969) is a useful tool for achieving this.

4.3 Gaussian quadrature

Gaussian quadrature is a method for estimating definite integrals through a weighted sum

of the function evaluated at certain points; the weights and locations of these points are

chosen based upon roots of suitable orthogonal polynomials (Golub and Welsch, 1969). The

general form of the approximation is:

∫
D
f(x)dx ≈

d∑
i=1

wif(xi)

over a region of integration D, with weights wi and quadrature points xi for a chosen

number of quadrature points d. Assuming that the design is for a model with more than

one parameter (which is true for all applications in our target area), our problem requires

that we optimise the information determinant over a multidimensional integral estimate

(using a multivariate distribution for the combined model parameters). This is a Bayesian

optimal design procedure, and the quantity to be optimised is of the form: E(log(det(I(θ))),

where I is the information matrix of the design. (Khuri et al, 2006). Gaussian quadrature

has been used before for Bayesian optimal experiment design, for example in Bliemer et al.

(2009), Gotwalt et al (2009) and Goos et al (2018).

4.3.1 Procedure

With the assumption of a Poisson model, the procedure for calculating a determinant of a

given design becomes the following:

1. Use the quadrature points as inputs to calculate weight matrices- each weight matrix

will correspond to one quadrature point, and its (diagonal) entries will correspond to

the design points being used (with the β’s in W above provided by the quadrature

38

point- W depends upon the unknown parameters in the model).

2. From the weight matrices, calculate the logged determinant of XTWX for each

quadrature point, using the design X;

3. Use the quadrature weights to sum the obtained values.

The resultant sum can be used in optimisation to find a design; for example, in an adapted

version of the Standard Fedorov algorithm, a value of this sum for each potential design

(resulting from each potential swap) will be considered, and the design corresponding to the

highest value of the estimated determinant chosen. A toy example of obtaining this sum is

as follows: suppose n = 4 and p = 2; that is, four design points are to be chosen, and there

are two parameters (so that each design point will be of length two). Suppose also that

three quadrature points are to be used per parameter. This means that there will be 3p = 32

quadrature points overall. Based upon whatever multivariate distribution is assumed for

the two parameters, a point and weight is obtained for each quadrature point. We take

Q as a 9 × 2 matrix of the quadrature points, and we take X as the 4 × 2 matrix of the

design points. We calculate exp(QXT). Each row of the resultant 9× 4 matrix provides the

diagonal for one 4× 4 diagonal weight matrix. There will then be nine values of |XTWX|,

one for each weight matrix. Using the nine quadrature weight values, a weighted sum of the

logs of these values is computed. This value is then used in optimisation for the choice of

design points.

4.3.2 Distribution of parameters

In the absence of any specific knowledge, a sensible prior assumption is that the parameters

follow a multivariate Gaussian distribution, given its ubiquity and utility (Rencher and

Christensen (2012) p91). A particular version of the Gaussian quadrature method, Gauss-

Hermite quadrature, estimates an integral of a function multiplied by e−x2
, comparison

of which with a Gaussian density function shows its suitability for the estimation of the

expectation of a Gaussian-distributed variable. A set of quadrature points (and weights) can

be obtained for a univariate Gaussian variable, and then used to correspond to a multivariate

distribution by duplicating/combining, rotating, scaling and translating the points. In this

39

way, an estimate may be obtained of the integral of interest over a multivariate Gaussian

distribution of the unknown parameters. There are several algorithms for computing Gauss-

Hermite quadrature points, among them the Golub-Welsch algorithm (Golub and Welsch,

1969), which is employed in the current work.

4.3.3 Number of points

The number of points in each dimension of the multivariate distribution (that is, the number

of points with respect to each parameter of the model) is a variable that must be chosen

carefully. Note that if the routine for conversion to a multivariate distribution described

above is to be followed, it will be constant for all parameters. An increase in the number

of quadrature points per dimension clearly brings with it an exponential increase in the

number of determinants that must be evaluated- for p predictors and q quadrature points per

dimension, we would have qp points at which to evaluate a determinant. Since the eventual

goal is, as in previous chapters, to obtain a D-optimal design using an exchange algorithm,

it is necessary to perform qp determinant calculations repeatedly, for every potential swap

to be evaluated- this can quickly cause the amount of computation required to become

unmanageable. However, choose too few points and the approximation afforded by the

quadrature method becomes unacceptably poor. As a bare minimum one would expect to

have to use three points per dimension, in order to account somewhat for the shape of the

Gaussian distribution, with the use of further points up to a practical limit determined by

computing power available.

If a comparable amount of computing power to that used in the search for an optimal

linear design were available in the search for an optimal Poisson-based design, a lower

number of algorithmic runs and/or collector swaps would likely be possible.

4.3.4 Implications for algorithm

The use of a weight matrix necessitates in itself a substantial amount of alteration to the

Nested Fedorov algorithm (Algorithm 1). The computation time increases dramatically

when using a Poisson model in the implementation of the Nested Fedorov algorithm, as one

would expect due to the necessity of performing the Gauss-Hermite quadrature for each

40

potential change to the candidate design. The methods described in Section 3.3 may be

adapted to the update of the determinant and inverse of M when M is defined not as

M = XTX, but as M = XTWX with W being a diagonal matrix with diagonal entries

λi. This allows for the use of the computational shortcuts. Since M = XTWX, which we

can consider as M = XT (WX), where WX consists in multiplying each row of the design

matrix by its corresponding weight, the matrix of interest with design point xi inserted and

design point xj removed becomes M +xix
′
iλi−xjx

′
jλj , and the only adjustment required to

the statements of Proposition 3.3.1 and Corollary 3.3.2 is the substitution of x′iλi for x
′
i, and

x′jλj for x′j . This is only possible because the weight matrix is diagonal. Suppose that the

design has points of length p, and d points are used per quadrature dimension. Then in order

to implement the quadrature for the Poisson case and use the computational shortcuts, dp

separate M matrices and associated determinants are required. These must not only be

computed, but stored in parallel in order to be individually updated. This can potentially

lead to storage issues for large values of d and p. There is an additional reason for caution

in the use of the shortcut. It can lead to problems in numerical accuracy depending upon

the sizes of values present in the weight matrices involved. In particular, small discrepancies

can arise between computed matrix determinants/inverses, and the determinants/inverses

obtained as a result of matrix linear transformations. These discrepancies can compound

over time, with the error propagation potentially leading to differences in designs chosen

with and without use of the shortcut.

4.4 Results

The three main types of dataset used in the linear case (Chapter 2) are used again here for

evaluating the algorithm’s performance in identifying Poisson-based designs. That is,

• Type A Simulated: Uniform sampling to augment (hide) specified designs; in this case,

separate optimal designs for both the linear and Poisson-model case can be generated,

to enable comparisons.

• Type B Simulated: Sampling based on a simulated grid with spatial correlation.

41

• Application Data: the same application dataset that was used for the linear model

testing.

As in the linear model case, repetitions of each type of simulated dataset are generated, and

the proposed Nested Fedorov algorithm run repeatedly upon each. The following sections

describe the characteristics of the simulations performed for each dataset type. In all cases,

we assume a prior multivariate Normal distribution for the p parameters, β = (β1, . . . , βp):

β ∼ Np(µ,Σ),

where various values are assumed for the vector µ and the matrix Σ for the specific dataset

scenarios.

4.4.1 Simulated Type A Data

Two main sets of Type A simulations are presented; the first, A1, incorporating known

optimal Poisson designs, and the second, A2, without the presence of such designs. For A1,

comparisons are also made involving linear and Poisson known optimal designs. There are

advantages to each of the two approaches. The method for construction of known D-optimal

Poisson designs given in Ford et al (1992) makes it possible to construct a design that would

be optimal given the true model parameters. Suppose there are p predictors x1, x2, . . . , xp,

with parameters β1, β2, . . . , βp, and the predictors are each on the range [l, u]. The known D-

optimal design is constructed beginning with one point x∗ with highest possible expectation

given the parameter values. This will be a p-vector with ith entry the lower bound l or upper

bound u, according to whether the corresponding parameter value is negative or positive

respectively. In addition to this point, p further points are included in the design. For

i in 1, . . . , p, the ith of these additional points is identical to x∗ with the exception that

the ith entry becomes l − 2/βi if βi < 0, or u − 2/βi if βi > 0. This is subject to the

condition that |βi(u − l)| ≥ 2 for all βi. However, it should be noted this does not mean

the design would necessarily be optimal, given the prior distribution of the parameters, as

we are optimising a Bayesian criterion. Subsequent reference to a known optimal design

in the Poisson model case should be read with this in mind. An additional issue is that

42

this construction of the known Poisson design imposes the constraint n = p + 1; that is,

that the number of points in the design is one greater than the number of predictors. Since

computation times increase dramatically with the number of predictors, particularly when

using the quadrature method, it can become impractical to perform simulations involving

as many predictors as desired under such a constraint. It is therefore helpful to perform a

second set of simulations without the known Poisson designs present, permitting a higher

number of design points relative to the number of predictors.

Simulated Type A1- with known Poisson design

A known Poisson-optimal design is constructed with n = p+1 points, following the method in

Ford et al (1992). The points that would form a known linear-optimal design are constructed

factorially, constituting 2p points. To the union of these two sets of points, uniformly

sampled random points are appended, in the same manner as for the generation of Type A

simulated data for the linear designs in Chapter 3. The resultant dataset has a hierarchy

structure imposed in such a way that the known Poisson-optimal design is accessible through

a choice of (at most) the appropriate number of collectors, and all the points in the linearly

optimal design are accessible through a single choice of collector. This latter condition is

imposed because there are a high number of possible choices of subsets of the 2p points that

make up the linearly optimal design that prove optimal for a linear design of only p + 1

points. In order to test the algorithm’s ability to find an optimal Poisson design as opposed

to a linear one, all of these possibilities are made accessible to it as ‘linear decoys’. This

procedure is followed for simulations with the characteristics:

• Use 4 predictors in the model, including the intercept;

• Stipulate that the algorithm is to choose 5 sensor locations from a pool of 80 potential

design points, and 5 collectors to be chosen from a pool of 20 (note that 5 sensor

locations corresponds to p+ 1 for the size of the known optimal design);

• Use 5 quadrature points per dimension;

• Use covariances of 0.5 and variances of 1 for the parameters, so that the means are

the only potential discrepancies between the parameters’ prior distributions;

43

• Use three different sets of prior means for the parameters in turn: µ = c(−0.6,−0.6, 0.6, 0.6),

µ = (0.6, 0.6, 0.6, 0.6), and µ = (−0.6,−0.6,−0.6,−0.6). Note that non-intercept pre-

dictors for the Type A simulations have no inherent meaningful ordering, given their

identical variances and covariances;

• Generate 32 simulated datasets for each set of prior means, to assess convergence for

different sets of available points subject to those conditions; and

• Apply the algorithm 16 times per simulated dataset, to assess convergence from dif-

ferent starting points (parallel processing is utilised here).

The Nested Fedorov algorithm is run on the datasets, using the Gaussian quadrature to find

a Poisson design. The algorithm is also run independently each time with the objective of

finding a linear model, and the output design fed into a third, Poisson run of the algorithm

to serve as a ‘warm start’. The results for the first and third of these runs- that is, for

the runs for which a Poisson design was the goal- are shown side-by-side in Figures 4.1,

4.2 and 4.3, with the random-start results depicted in white and the warm-start ones in

grey. The values are D-efficiencies assuming the multivariate Normal distribution used by

the algorithm for the quadrature, and are relative to the known optimal Poisson design.

In particular, the exponentiated weighted sum of logged determinants of the XTWX for

each quadrature point is calculated for a given design, and the ratio of this value to the

corresponding value for the optimal Poisson design is taken to the power 1/p. The most

striking features of the results are that:

• The algorithm (with either warm or random starts) tends to converge after 3 collector

swaps in most cases.

• The variance of the D-efficiencies is similar for all the scenarios;

• The warm starts result in better, or comparable, designs than random starts, and do

so with a lower number of collector swaps.

The algorithm appears to choose clearly between points belonging to the known optimal

Poisson design, and to the known optimal linear design set; a mean of 4.75 of the 5 design

44

points come from the optimal linear design when searching for a linear design, whilst when

searching for a Poisson design, the algorithm chooses a mean of 3.6 of the 5 points from

the optimal Poisson design with a warm start, and a mean of 3.975 with a random start.

It is not surprising that these means are not closer to 5, given that there is duplication of

certain vertices between the linearly optimal and Poisson-optimal design. A majority of

points on average are chosen from the appropriate optimal design given the type of design

the algorithm is instructed to find.

Figure 4.1: Simulation Type A1, conditions 1. D-efficiencies achieved relative to known
optimal Poisson design.

Simulated Type A2- without known Poisson design

150 Uniformly sampled points are generated on a specified range. In contrast with the Type

A1 simulations, no Poisson or linear optimal design is constructed. Again, as for Type A1,

45

Figure 4.2: Simulation Type A1, conditions 2. D-efficiencies achieved relative to known
optimal Poisson design.

46

Figure 4.3: Simulation Type A1, conditions 3. D-efficiencies achieved relative to known
optimal Poisson design.

47

two starts are compared; firstly, the Nested Fedorov algorithm with random start is run

to find a Poisson design, and secondly, warm start from the design identified from a linear

model. The following characteristics are used in the simulations:

• Use 4 predictors in the model, including the intercept;

• Stipulate that the algorithm is to choose 16 sensor locations from a pool of 150 po-

tential design points, and 5 collectors to be chosen from a pool of 20;

• Use 4 quadrature points per dimension;

• Use covariances of 0.2 and variances of 1 for the parameters, so that the means are

the only potential discrepancies between the parameters’ prior distributions.

• Use four different sets of prior means for the parameters in turn: µ = (0.1, 0.1, 0.1, 0.1),

µ = (0.5, 0.5, 0.5, 0.5), µ = (0.1, 0.23, 0.37, 0.5), or µ = (0.5, 0.37, 0.23, 0.1). Note again

that non-intercept predictors for the Type A simulations have no inherent meaningful

ordering, given their identical variances and covariances.

• Generate 16 simulated datasets for each set of prior means, and for the ranges [0, 0.5]

and [0, 1]; and

• Apply the algorithm 16 times per simulated dataset (parallel processing is utilised

here).

The results for the random and warm-start Poisson models are shown in Figures 4.4, 4.5, 4.6,

4.7, 4.8, 4.9, 4.10 and 4.11, with the random-start results depicted in white and the warm-

start ones in grey. As before, the values are D-efficiencies assuming the multivariate Normal

distribution used by the algorithm for the quadrature, and are relative to the best design

found on a by-dataset basis. The quadrature means are listed with the value corresponding

to the intercept last. Observations on the results include that:

• The algorithm (with either random or warm starts) tends to converge after 2 collector

swaps in most cases;

• The variance of the designs’ D-efficiencies is greater when the datasets have range

[0, 0.5], rather than range [0, 1];

48

• The warm starts tend to result in better, or comparable, designs in comparison with

random starts, and do so with a lower number of collector swaps than required by the

random-start runs.

Figure 4.4: Simulation Type A2 plot 1: D-efficiencies achieved relative to best-found design.

4.4.2 Simulated Type B Data

As in Chapter 3, the Type B datasets differ from the Type A datasets in that they simulate

a spatial correlation. The following characteristics are used:

• Use 3 predictors in the model, including the intercept;

• Stipulate that the algorithm is to choose 30 sensor locations from a pool of 300 po-

tential design points, and 5 collectors to be chosen from a pool of 20;

• Use 5 quadrature points per dimension;

49

Figure 4.5: Simulation Type A2 plot 2: D-efficiencies achieved relative to best-found design.

50

Figure 4.6: Simulation Type A2 plot 3: D-efficiencies achieved relative to best-found design.

51

Figure 4.7: Simulation Type A2 plot 4: D-efficiencies achieved relative to best-found design.

52

Figure 4.8: Simulation Type A2 plot 5: D-efficiencies achieved relative to best-found design.

53

Figure 4.9: Simulation Type A2 plot 6: D-efficiencies achieved relative to best-found design.

54

Figure 4.10: Simulation Type A2 plot 7: D-efficiencies achieved relative to best-found design.

55

Figure 4.11: Simulation Type A2 plot 8: D-efficiencies achieved relative to best-found design.

56

• Use covariances of 0.2 and variances of 1 for the parameters, so that the means are

the only potential discrepancies between the parameters’ prior distributions.

• Use two different sets of prior means for the parameters in turn: µ = c(0.1, 0.1, 0.1, 0.1)

and µ = (0.5, 0.5, 0.5, 0.5). Note again that non-intercept predictors for the Type A

simulations have no inherent meaningful ordering, given their identical variances and

covariances.

• Generate 10 simulated datasets for each set of prior means; and

• Apply the algorithm 16 times per simulated dataset (parallel processing is utilised

here).

Figures 4.12 and 4.13 show results for, as with the Type A simulations, both a random

and a warm start for each collector swap. In both cases the algorithm converges after

approximately five collector swaps, and benefits from the use of a warm start. It can be

seen that the parameters’ prior means affect the variance of the results, with a higher

variance for the 0.1 means in comparison with the 0.5 means. It is possible that this can be

explained by the 0.1 means causing a spanning of zero which induces greater uncertainty in

the points’ expectations. In practice, the prior means used will be informed by the context

and cannot be controlled.

4.4.3 Application Data

The Nested Fedorov algorithm is applied, for Poisson designs, to the application dataset

described in Section 3.4.3. The following characteristics are used:

• Use 3 predictors in the model, including the intercept. This means that each potential

design point contains two attributes from the application dataset, and a 1 for the

intercept;

• Stipulate that the algorithm is to choose 20 sensor locations from the available 2417

potential design points, and 5 collectors to be chosen from the 32 available collector

sites;

57

Figure 4.12: Simulation Type B plot 1: D-efficiencies achieved relative to best-found design.

58

Figure 4.13: Simulation Type B plot 2: D-efficiencies achieved relative to best-found design.

59

Figure 4.14: Application data results, conditions ‘1’ (prior parameter covariances 0.5, prior
means of parameters (0.05, 0.1, 0.15),

√
2km grid)

60

Figure 4.15: Application data results, conditions ‘2’ (prior parameter covariances 0.5, prior
means of parameters (0.15, 0.1, 0.05), 2km grid)

61

Figure 4.16: Application data results, conditions ‘3’ (prior parameter covariances 0.5, prior
means of parameters (0.05, 0.1, 0.15,),

√
2km grid)

62

Figure 4.17: Application data results, conditions ‘4’ (prior parameter covariances 0.5, prior
means of parameters (0.15, 0.1, 0.05), 2km grid)

63

Figure 4.18: Application data results, conditions ‘5’ (prior parameter covariances 0.1, prior
means of parameters (0.05, 0.1, 0.15,),

√
2km grid)

64

Figure 4.19: Application data results, conditions ‘6’ (prior parameter covariances 0.1, prior
means of parameters (0.15, 0.1, 0.05), 2km grid)

65

Figure 4.20: Application data results, conditions ‘7’ (prior parameter covariances 0.1, prior
means of parameters (0.05, 0.1, 0.15,),

√
2km grid)

66

Figure 4.21: Application data results, conditions ‘8’ (prior parameter covariances 0.1, prior
means of parameters (0.15, 0.1, 0.05), 2km grid)

67

• Set the parameters’ prior means to (0.05, 0.1, 0.15); and

• Use 5 quadrature points per dimension.

The following parameters are varied, for a total of eight sets of conditions:

• The covariances in the covariance matrix for the parameters’ priors are set at 0.5 for

the first four sets of conditions, and 0.1 for the last four;

• Two different allocations of potential sensor sites (design points) to potential collector

sites are generated from the dataset; for odd numbered conditions, based upon a grid

of
√
2×
√
2km squares, and for even-numbered conditions with 2× 2km squares.

Figures 4.14-4.21 give results for 16 algorithm repetitions (parallel processing is utilised

here) for each of these eight sets of conditions. For each collector swap, three boxplots are

shown side-by-side;

1. the first (white) for the Nested Fedorov algorithm, finding a Poisson design using the

specified quadrature;

2. the second (pale grey) for the Nested Fedorov algorithm finding a linear design;

3. the third (dark grey) for the Nested Fedorov algorithm finding a Poisson design, but

with the Poisson parameters assumed to be at their prior means (effectively a ‘one-

point quadature’).

For each of the 16 repetitions within each condition, the same starting design (16 randomly

generated) is used for each of the Nested Fedorov algorithm runs. The D-efficiencies are

calculated relative to the best-found design in any of the three types of algorithm run,

and are based upon determinants calculated using three times as many quadrature points

per dimension (3 × 5 = 15) as used in the actual algorithm runs. Thus even the linear-

model algorithm runs have their results displayed in terms of the Poisson model, to enable

comparison. The results demonstrate that a change in covariances from 0.1 to 0.5 for the

quadrature results in decreases in variance of the achieved D-efficiencies. Also, a wider grid

allocation of potential collector sites to potential sensor sites (more potential sensor sites

68

per potential collector), tends to cause higher variance in results, but slightly fewer required

collector swaps for convergence. This may be due to the number of potential collector swaps

possible at any given stage- when this is lower, one might expect a lower number of higher-

gain swaps to occur in the process of convergence. Each potential swap can cause a higher

increase in determinant (because of the higher number of potential sensor sites associated

with each potential collector). Thus, it is easier for the algorithm to become trapped in

a local maximum because of the restricted choice of collectors. However, in the process of

so-doing the algorithm can make some high gains in determinant. The values for the first

collector swap tend to be similar, suggesting that there may not be a large benefit in the extra

computation required for 3 quadrature points per dimension over only 1 point. Additionally,

for this simulated type at least, searching for a linearly optimal model gives a design that

serves well for the Poisson case too, although this is dependent upon the assumptions made

for the true parameter values. Recall that for the Type B simulations, some increases in

efficiency were achieved near the beginning of warm starts. These increases would not have

been possible through linear application of the Nested Fedorov algorithm alone since these

warm starts began with the best design that could be found for the linear model. Recall

also that for the Type A1 simulations, the algorithm differentiated correctly between points

belonging to the optimal linear and Poisson designs. This shows that the Nested Fedorov

method does have the capacity to distinguish between designs that are optimal for linear

and for Poisson scenarios, when such designs consist of different sets of points.

4.4.4 Discussion

The expansion of our aims to Poisson models increases the complexity of the optimisation

with the use of Gauss-Hermite quadrature to estimate an integral for a multivariate dis-

tribution of the prior parameters. This significantly affects computation time, owing to

the need to account for possible parameter values in the calculated determinants. Higher

variances and higher expected values in the parameters’ prior distributions tend to lead to

lower variances in the achieved D-efficiences. Designs found for the linear model case tend

to perform well for the Poisson model too, but some simulations have shown that the best-

found linear designs can still be improved upon through application of the Nested Fedorov

69

algorithm again for a Poisson design.

Other distributions

The assumption of a Poisson model for the design may be too restrictive in terms of mean

and variance, given its use of a single parameter to describe both of these. In reality, it may

be that the variance for observed counts is greater than the mean (overdispersion) because

of unavailability of important attributes at the sensor sites. The assumption could be refined

to accommodate this through the use of a quasi-Poisson or negative Binomial model instead.

A quasi-Poisson model allows, through the inclusion of an extra parameter, for a linear de-

pedence of variance on mean rather than a simple equality (Ver Hoef and Boveng, 2007).

Meanwhile, the negative Binomial goes a step further by allowing a quadratic relationship.

With this latter option would come additional complexity in using the distribution and,

inevitably, a greater demand for computing power. The information matrix would depend

upon the regression parameters but also on the dispersion parameter. From an implemen-

tation perspective, if the counts were instead assumed to be Binomial/binary, and the link

function to be logit, the information matrix would have the same XTWX form, but with

diagonal elements µi ∗ (1 − µi) instead of the µi elements considered in this chapter. This

would mean that the Poisson methodology could be adapted for the Binomial case with

relative ease.

Discrete multivariate distribution of parameters

A key element of the methodology for the Poisson-based adaptations made in this chapter

is the characterisation of the distribution of the prior parameters. One issue is the point at

which this distribution is estimated. The approach taken in this chapter has been to specify

a continuous multivariate Normal distribution for the prior parameters, and approximate the

resulting integral using a quadrature. An alternative to this approach would be to assume

a discrete distribution at the outset, and obtain an exact expectation from this discrete

distribution, thus making the distribution estimation at an earlier point, in the manner of

Cook et al (2004).

70

Developing the existing methodology

The results have demonstrated the potential utility of the linear-model Nested Fedorov

algorithm in providing a warm start for the Poisson version. A possible method for further

study is to develop the linear model option to allow ‘backtracking’ from a best found design

to several designs of comparable, if slightly lower, determinant which may have several

different choices of collectors, and using these as starting points for application of the Poisson

Nested Fedorov algorithm.

71

Chapter 5

Design point reallocation

Chapter 3 described methodology developed for the generation of optimal linear designs for

the nested sensor placement problem. Chapter 4 developed this work through the generation

of Poisson model designs. This chapter addresses a different extension of the original problem

by again considering the generation of linear models (as in Chapter 3), but with the inclusion

of a time-dependent element. The original assumption was that the chosen design points

were to form an exact design with precisely one usage of each point; that is, that a response

variable would be recorded precisely once for each design point. In practice however, the

experiment being conducted may continue over time in such a way that the response variable

is recorded at more than one time point. For example, sensors are placed and collect data

over time. The question then arises whether the optimal design(s) requires moves of sensors

over time. The primary concern here is the possible relocation of sensors, and time effects

are not considered. It should also be noted that the methodoloy uses the D-criterion to

design a linear model for all time points prior to the experiment, so that data from one

time point are not used to inform the design at subsequent time points. The discussion of

Poisson models in Section 5.6.3 notes the possibility of using collected data to inform the

design for later time points.

72

5.1 The temporal element in the Sensor Placement Problem

The sensor placement problem may be taken as an example to illustrate this idea with a

motivation. The assumption in Chapter 3 is that the response variable being recorded is

of such a nature that its value must be assessed over some sufficiently long, but defined,

time period at each sensor location. The accumulation of material in a roadside gully is an

example of such a response variable. The introduction of the time element makes possible

the move of a given sensor at some point in time to a new location. For instance, ideally

there would be the option to move any given sensor on any given day. However, it is not

feasible to allow sensors to be moved on this individual basis, and the notion of time is

therefore restricted to a lower granularity, with a batch approach to sensor moves. For

instance, the unit of time epochs might be a month, a quarter or a year. Every epoch, the

whole set of sensors are candidates to be moved to new locations, although each one might

alternatively remain where it is. The experiment then accommodates data from multiple

epochs. There is the possibility of moving some or all of the sensors whilst keeping the

collectors fixed, or of moving both sensors and collectors. Practicalities dictate that any

moves be conducted together over a short time period at the end of each epoch, as this

minimises resources required for deinstallation, transport and reinstallation. Let T be the

number of time epochs permitted by the available experimental resources. There is an

assumption that each epoch would make possible the recording of the response variable at

a maximum of n points (n sensors), in the same manner as the fixed n points of the static

single-epoch arrangement; thus, a total of nT responses are to be recorded during the course

of the experiment. The problem then becomes one of choosing:

1. The collector sites at each epoch.

2. The design points (sensor sites) at each epoch.

3. The reallocation of sensors and collectors at the beginning of each epoch subsequent

to the first one; this reallocation should attempt to minimise the total cost of moving

the requisite equipment, if such a cost is to be considered, although this minimisation

may compete with the optimality requirement of the design.

73

These choices may equivalently be expressed with primary emphasis on the holistic design

choices, rather than on the changes between epochs:

1. The collector sites to be used collectively across all epochs;

2. The design points to be used collectively across all epochs;

3. The allocation of these two sets of choices to individual epochs.

This distinction is made for a practical reason. Suppose that it is not possible to guarantee

that the experiment will in fact be conducted for the entirety of its intended timespan, for

instance owing to financial constraints or the risk of equipment malfunction. This consid-

eration, if entertained, makes it prudent to take a relatively greedy approach, prioritising

information gain in earlier epochs over the minimisation of equipment relocation costs dur-

ing later epochs. Whatever the emphasis in making these choices, the procedure may now

be formalised, with the relevant notation being chosen as follows.

5.2 Notation

As specified in Section 5.1, n design points are to be used in each time epoch, with a total of

T epochs and therefore nT points. Suppose there are a total of h0 potential collector sites

available for use. As in Chapter 3, let the set {1, . . . , h0} be treated as a fixed indexing of

these potential collector sites.

Let the set C consist of the chosen collectors across all T epochs; that is, it can be

partitioned as C = ∪t∈{1,...,T}Ct where Ct consists of the chosen collectors at epoch t. As

in Chapter 3, let there be an integer h1 number of collectors available for use during each

epoch, so that this value is fixed over time. Then each subset Ct (the choices of collector

for epoch t) has cardinality |Ct| ≤ h1, where the inequality indicates that not all collectors

need be deployed during a given epoch. Each potential collector site may be utilised up to

T times, subject of course to the numbers of usages of the other potential collector sites

together with the requirement that |C| = h1T . A potential collector site being used T times

would correspond to being used during every epoch of the experiment. Let ξH be the design

consisting of the sensor sites to be used, across all epochs, with design points belonging to

74

the finite subset A of the design space χ. Thus A represents the points that may be used

during any epoch, and this set is effectively duplicated for every new epoch; that is, it is

no longer (necessarily) the case that ξH(x) = 1 ∀x ∈ A since design points may now be

used more than once, provided that no two such usages occur during the same epoch. The

design must however still be exact ; for each x ∈ A, ξH(x) = q/n, for some q ∈ {1, 2, . . . , n}.

Let Xt represent the set of design points used during epoch t. Then |Xt| = n, for each

t ∈ {1, . . . , T}.

5.2.1 Model specification

We assume the same model form as in Chapter 3, repeated here for convenience. We have

a sequence f of p continuous real-valued functions f = (f1, f2, . . . , fp) on χ, to give the

coefficient structure of the linear model; write f(x) for (f1(x), f2(x), . . . , fp(x)) when x ∈ χ.

Observations yi are to be collected once the xi have been chosen, with the observations

assumed to be of the form:

yi =

p∑
j=1

(fj(xi)βj) + ei, (5.1)

for p unknown coefficients βj , whose values are to be estimated by the experiment, and

n error terms ei, which are uncorrelated, each with Gaussian distribution; mean 0 and

variance σ2. The use of a Poisson model as an alternative to Gaussianity is considered in

the discussion at the conclusion of this chapter.

5.3 Move costs

To maximise learning, one might expect that the use of as few duplications in design points

as possible would be desirable. This may not be the case if only a small subset of the

available design points are located near the vertices of the hypercuboid bounding the design

space, but this will by no means always be the case, and the methodology developed for

multiple time epochs must at least be capable of attempting to avoid duplications. This

leads to the expectation that it will often be necessary not only to move design points to

new locations between time epochs, but that entire collectors will need to be reassigned,

with the concomitant relocation of all probes associated with them. It may be assumed that

75

it is more (economically) costly to relocate an entire collector and all its sensors than it is to

relocate some or all of the sensors within the pool of available sensor sites associated with a

given collector. Thus, there is a compromise to be made between the amount of relocation

cost required by C, and the quality of the design that can be achieved by exploiting the

potential for sensor and/or collector relocations.

A methodology is adopted based on a set of varying applications of the Nested Fedorov and

standard Fedorov algorithms, and comparison of their results in terms of optimality.

5.4 Methodology

The following set of methods provides different approaches to striking balance between

minimising reallocation costs (but only implicitly), and maximising not only the overall

value of the design criterion, but its value for points used in the first time epoch. Each

method produces a design independently of the others, except 4, which takes the result of

3 as its input. The preferred design can be selected on the basis of its optimality value,

reallocation costs, or optimality during the first epoch; or a combination of these. As

specified in Section 5.2, there are T epochs in total. Each method adheres to any restriction

on the number of sensors per collector caused by the nesting structure. However, Methods

4 and 5 can result in designs that do not meet the requirement of n points per epoch. The

methods are as follows:

1. Use the Nested Fedorov algorithm to construct a design of Tn points using only h1

collectors, so that the chosen collectors will be fixed for the T epochs. The dataset

input consists of the set of available points for one epoch, duplicated so that the number

of available collector sites does not increase, but the number of available sensor sites

allocated to each collector is T times its value.

2. As Method 1, with the same dataset of potential sites, but construct the design for

only n points, intending these as the epoch 1 points; then allow the standard Fedorov

algorithm to add n points to the design (fixing the initial n points), for the subsequent

epochs with the collectors also fixed to be the same as for the first epoch.

76

3. Use the Nested Fedorov algorithm to choose h1 collectors and n points, for the first

epoch, then fix these collectors and points and allow the same algorithm to choose the

collectors and points for the subsequent epochs, from any of the available collector

and sensor sites.

4. Run the standard Fedorov algorithm on the output of Method 3, fixing the chosen

collectors but allowing the sensors to vary. This may of course result in a distribution

of probes that makes it difficult or impossible to adhere to the requirement that there

be precisely n points per epoch. This method is included as a slight adjustment to

Method 3 where the D-optimality may increase, but the practicality of assigned probes

to epochs becomes more problematic.

5. Use the Hierarchical Fedorov algorithm to choose the collectors for all epochs simulta-

neously. As with Method 4, this can make the probe-to-epoch allocation problematic,

in order to satisfy the requirement of precisely n points per epoch.

The Hierarchical Fedorov algorithm is adapted to allow the fixing of specified sensors and

collectors, in order to make Methods 2 and 3 possible. Note that the methods do not directly

consider move costs in the choices of pairwise swaps.

5.5 Results

Simulated datasets are again used to assess the methods’ ability to identify a known optimal

design, where optimality is assessed purely on the basis of D-optimality, not move costs. The

application dataset is also used. In Chapters 3 and 4 it was possible to make comparisons

of the progress of the algorithm(s) during a given run, between for example the use of the

Hierarchical Fedorov algorithm with and without an informed starting design, compared at

successive collector swaps. However, for the five methods described in 5.4, and the näıve

sampling method, the work being performed at a given stage does not have the same meaning

for different methods. For example, Methods 1 and 2 choose all the collectors to be used

from the beginning, but with different numbers of sensors initially. However, efficiencies

with respect to the D-optimality criterion may be used to compare the finally generated

77

Method Mean Efficiency Std. Dev. Efficiency

1 1.000 0.00181
2 1.000 0.00
3 0.995 0.0155
4 0.995 0.0155
5 0.991 0.0225

Table 5.1: Comparison of D-efficiencies achieved using time-based methods for simulated
data (Type A) (3 sig. figures).

designs. Similarities in terms of the collectors chosen may also be assessed.

5.5.1 Simulated data

50 simulations are performed with a known hidden linearly-optimal design of 16 points

augmented by Uniformly sampled points, as in Chapter 3. The data range is [−1, 1] for

these simulations. Two time epochs are used. There are 5 collectors to be chosen from

20 available collectors per epoch. For each method, this hidden design is made accessible

through an appropriate choice of collectors. For Methods 1 and 2, it is accessible through a

choice of 5 collectors, and for Methods 3-5, through a choice of 10 collectors. The methods

are repeated 16 times for each of the 50 simulations. Table 5.1 gives achieved efficiencies

for each of the methods. Methods 3, 4 and 5 are the only ones that can result in different

collectors being chosen for the second epoch compared to the first. For the simulated data,

these methods consistently choose to move all of the collectors to new locations for the

second epoch, when there is an optimal design that may be accessed through such a choice.

In this scenario, the optimal design requires moves of sensors over time in order to be

accessed.

5.5.2 Application data

The application dataset as used in Chapters 3 and 4 is used to test the time-based methods.

Two time epochs are used, with 16 algorithm repetitions, 20 design points chosen from

2047 potential points, and 5 collectors chosen from 55 sites. The achieved efficiencies are

displayed in Table 5.2.

78

Method Efficiency

1 0.900
2 1.00
3 0.828
4 0.829
5 0.862

Table 5.2: Comparison of efficiencies achieved using time-based methods for application
data (3 sig. figures).

It would appear from these results that whilst all five of the non-näıve methods do per-

form well, Method 2 outperforms the others. Method 2 has appeal as an approach, in its

combination of minimising reallocation costs by fixing the collectors in the epochs, with the

greedy approach to information by using n initial points for the first epoch, in an attempt

to concentrate the information in this first epoch.

5.6 Discussion

5.6.1 Allocation of sensors to epochs

Methods 4 and 5 do not display superiority in terms of D-optimality over Methods 1 and

2 in the simulation runs. This is despite the freedom that they are permitted in failing to

observe the requirement for n points per epoch. Had they proven superior to Methods 4 and

5, there would be grounds for adapting their methods to control the allocation of sensors

to epochs. This could be achieved by having the standard and Nested Fedorov algorithms

only be permitted to make swaps of sensors and collectors within assigned epochs, so that

the number of sensors used in any epoch did not change.

5.6.2 Move costs

Move costs could be incorporated in the implementations of the standard and Nested Fe-

dorov algorithms, in order that these costs be considered during the design construction

rather than as a criterion for deciding upon which of the five methods detailed in Section

5.4 to use. This would be achieved by altering the basis upon which the value of each po-

79

tential swap is assessed. The hypothetical change in D-optimality would still be calculated,

but a move cost(s) would be subtracted if the swap would result in a move or moves. The

ratio of move cost to D-optimality would be a user-defined input. The question of moving

entire collectors becomes complex in this scenario, since the number of points per collector

is not fixed. In such a scenario, it would also be of interest to explore the effect of varying

the ratio of move cost to D-optimality value. This ratio would be vital in determining the

behaviour of the algorithm subject to the cost and D-optimality requirements. However,

its value may be dictated by external factors, depending on the relative importance of the

parameter estimates and the costs of moving sensors over time.

5.6.3 Poisson models

An unrelated question is that of the use of a Poisson-based model. This would naturally

add a great deal of complexity to the problem, not least because of the dependence of

the parameter estimates upon the data. Should a Poisson model be assumed, it would

become prudent to use any data collected during the first time epoch in subsequent ones

in a Bayesian manner. The matter of allowing more than two time epochs (as used in the

simulations) would also add significant complexity to the process, but could be useful for

scenarios in which long term use and relocation of sensors is possible.

80

Chapter 6

Conclusions and future directions

6.1 Contributions

This thesis has presented new methodology for the construction of D-optimal designs sub-

ject to a nesting constraint. Allowing for this constraint in the construction of designs

makes it possible to assign design points to higher-level members of the nesting hierarchy,

which in practical terms means that sensors may be deployed in the natural environment

around local data collecting devices, for relay to a server. The methodology presented allows

for linear or Poisson models to be constructed with respect to D-optimality. The existing

Fedorov exchange algorithm is adapted to permit swaps of collectors based upon assess-

ment of their potential contribution to the design’s D-optimality criterion value. This is

performed for linear models in Chapter 3 and then for Poisson models in 4. The extension

to Poisson models involves additional computation using a Gaussian quadrature approach.

The successful implementation of these methods in R represents a considerable amount of

work. Linear models may also be constructed for multiple time epochs with respect to D-

optimality. Several potential methods are proposed and compared in Chapter 5, accounting

for the possibility of moves of sensors over time. Results have demonstrated a clear ability

of the Nested Fedorov algorithm to identify known optimal designs in all three of these

scenarios, and the algorithm also demonstrates convergence and improvement upon näıve

or alternative methods. In the linear case, the results have been shown to achieve designs

with consistent prediction variance across most of the design space.

81

6.2 Future work

There are many possibilities for further work. As noted in the discussion at the end of

Chapter 4, the use of a negative Binomial model rather than Poisson may help to account

for possible overdispersion caused by important but unavailable attributes at the sensor sites.

There would be likely to be an increase in the computation required, with a more complex

information matrix than for the Poisson case. This information matrix would depend upon

the model regression parameters but also upon the dispersion parameter.

Also based on the work in Chapter 4, an alternative to the quadrature method currently

employed for Poisson models would be the assumption of a discrete prior distribution for

the parameters. This might reduce computation times within the algorithm run itself by

removing the need for the quadrature, but would rely upon appropriate specification of the

prior distribution, which might in itself present more serious difficulties.

The use of a weight matrix for the Poisson model also raises the possibility of using a weight

matrix to deal with possible spatial correlation in the candidate design points. The issue of

dependent errors leads to a complex problem with a nonconvex space on which to optimise,

even before imposing the nesting constraint, as noted for example by Dette et al. (2016). It

may be necessary to start from a higher number of designs in order to increase the chance

of finding an optimal or close-to-optimal design. The starting designs may also need to be

more strategically chosen, using a grid search for example. The current implementation

of the Nested Fedorov algorithm already allows for the use of a weight matrix that is not

necessarily diagonal in the computation for linear model construction, and this means that

there is potential for further work on this in the near future.

Section 5.6 notes a number of possible areas for further work in the implementation of the

algorithms for use over multiple epochs.

One further area for exploration is the possibility of multiple membership of sensors to

collectors. The current assumption is that there is no overlap and that each potential

sensor (potential design point) has only one assigned collector. With multiple membership,

it becomes possible to choose which sensor-collector memberships to use, based on their

effect upon the optimality criterion. The Nested Fedorov algorithm in its current form then

82

becomes unsuitable for design construction, as it relies on a single membership of design

points to collectors. With multiple membership, one possible methodology would be to

choose a primary membership for each design point with more than one associated collector,

in order to consider the situation as if there were no multiple memberships. Suppose that a

point xi had two associated collectors c1 and c2. Before constructing any design, we might

consider the optimality criterion values that would arise by using all elements of each of the

pools of potential design points associated with c1 and c2 in turn, and assess the changes

in these two values that would be caused by associating xi with each of them. xi would

then be assigned to the one whose value it best affected. However, this approach would be

highly dependent upon the order in which points with multiple memberships were assigned

to single collectors, and in any case would not directly take account of the actual design

subsequently chosen by the Nested Fedorov algorithm.

An alternative approach would be to modify the Nested Fedorov algorithm methodology

itself such that during the course of the algorithm’s run, the multiple memberships were

considered as part of the decision to make a collector swap. Suppose that a collector swap

were to be made, removing collector c1 and including collector c2 in its place. Any design

points already being used for c1 that also had membership to c2 could be retained. Any

others would be removed and their sensors relocated to c2, provided that they could be

accommodated there. Before actually performing a collector swap, however, a choice would

still need to be made as to the most appropriate swap to perform. In the current Nested

Fedorov algorithm methodology, the consideration of a potential swap includes consideration

of the potential removal of one collector’s design points from the design, and the potential

inclusion of another collector’s design points. The potential removal and potential inclusion

could now include bounds. For the potential removal,

• the worst case is the optimality criterion change that would result from excluding all

of the points associated with the candidate-collector-for-removal, including those with

membership to other currently used collectors;

• the best case is the optimality criterion change that would result from excluding only

those of the candidate-collector-for-removal’s points that have no membership with

83

any of the other currently used collectors.

For the potential inclusion,

• the worst case is the optimality criterion change that would result from including only

those of the candidate-collector-for-inclusion’s points that have no membership to a

currently-used collector;

• the best case is the optimality criterion change that would result from including all

of the candidate collector-for-inclusion’s points, regardless of their membership to any

of the currently-used collectors. For points currently used by some other currently-

chosen collector, but with membership to the candidate-collector-for-inclusion, they

are temporarily considered as if they belonged to the candidate collector rather than

the current design.

These bounds would then permit calibration of the algorithm according to the degree of

optimism to be employed in making collector swaps. The calibration would also depend

upon the nature of the multiple memberships, which might include factors such as:

• Mean number of memberships per design point;

• Mean number of multiple memberships per collector;

• Quantities relating to a distance matrix for the collectors, constructed based upon the

number of design points in common.

These potential areas of further exploration afford many opportunities for exciting develop-

ments of the methodology presented in this thesis.

84

Appendix A

Nested Fedorov algorithm in detail

This Appendix provides a more detailed account of the Nested Fedorov algorithm and its

implementation in R; Algorithm 2 is replicated from Chapter 3 for convenience, and contains

the main components, whilst Algorithm 3 describes the adaption of a given design to satisfy

a constraint on the number of design points per collector, which is a possible practical

requirement. Information on the implementation of the standard Fedorov algorithm is also

provided.

A.1 Nested Fedorov algorithm

The algorithm inputs for the Nested Fedorov algorithm are:

• n (the prescribed number of design points) and h1 (the prescribed number of collectors

to be used)- assume that the h0 potential collector sites are simply labelled 1, . . . , h0;

• {(x, g(x))} ∀x ∈ A (the nesting structure);

• Criterion for minimum determinant before a matrix is deemed singular- this is not

referred to explicitly in the algorithm description, but checks are made at the relevant

points before altering the design, in order to avoid a singular matrix M .

• An option to calculate the D-optimality criterion either for a linear model, or for a

Poisson one, using a specified Gaussian quadrature input. The implementation for the

85

Gaussian quadrature input makes use of code sourced from BioStatMatt (2015) which

itself uses the Gauss Hermite function from Swihart and Lindsey (2022).

In addition to these inputs are various parameters governing the numbers of runs of the

algorithm and its components. In the interests of clarity, these are not included explicitly

in the algorithm description, but are as follows:

• Number of times to repeat the algorithm overall; the code permits repetitions of the

algorithm with the same starting design, or with different specified starting designs.

This feature can be useful in observing possible relationships between starting and

output designs.

• Maximum number of times to attempt a collector swap, for each of the overall algo-

rithm repetitions specified in the previous point. This is the only stopping criterion

used by the Nested Fedorov algorithm in its current implementation. It can be used

as a fail-safe against large computation times with small incremental improvements

in the D criterion value, and also facilitates comparison of the progress of multiple

repetitions of the algorithm at each collector swap;

• Number of additional times (beyond once) to run the standard Fedorov algorithm

after a collector swap, and the number of times to attempt a swap of design points in

these runs. This corresponds to line 23 in Algorithm 2.

• Number of additional times (beyond once) to run the standard Fedorov algorithm after

having added a collector, in the case of there being too few used, and the number of

times to attempt a swap in these runs. This corresponds to line 29 in Algorithm 2.

A.2 Standard Fedorov algorithm

The standard Fedorov algorithm is implemented in R, in order that it may be run at

lines 23 and 29 of the Nested Fedorov algorithm (algorithm 2). At these points, it is

run on {x : g(x) ∈ C}, with starting set of design points {x : ξH(x) = 1} ∪ E where E

consists of min(n, |{x : g(x) ∈ C}|)− |{x : ξH(x) = 1}| randomly sampled points from

86

input : n, h1, h0,{(x, g(x))}, and minimum determinant criterion.
1 Create a random sample C ∈ {1, 2, . . . h0}, with |C| = h1;
2 Run standard Fedorov algorithm on {x : g(x) ∈ C} with a random starting set of

min(n, |{x : g(x) ∈ C}|) design points- resultant design ξH ∈ ΞH ;
3 while an increase in |M(ξH)| is achieved do
4 if |{x : g(x) = c AND ξH(x) = 1}| > 0 ∀c ∈ C then
5 for ci ∈ {c : c ∈ C} do
6 Set the design for ξHi to {x : g(x) ∈ (C \ ci) AND ξH(x) = 1}.;
7 for pj ∈ {g(x) : g(x) /∈ C} do
8 if |{x : g(x) = pj}| ≤ (n− |{x : ξHi(x) = 1}|) then
9 Set the design for ξHij to {x : ξHi(x) = 1 OR g(x) = pj}

10 else
11 Set ξHij = ξHi ;

12 for k in 1 : (n− |{x : ξHi(x) = 1}|) do
13 for xl ∈ {x : g(x) = pj AND ξHij (x) = 0} do
14 Set the design for ξHijk

to {x : ξHij (x) = 1} ∪ xl
15 end
16 ξHij ← arg max

ξHijk

|M(ξHijk
)|.

17 end

18 end

19 end
20 ξHi ← argmax

ξHij

|M(ξHij)|.

21 end
22 ξH ← argmax

ξHi

|M(ξHi)| and then C ← {g(x) : ξH(x) = 1} ;

23 Run standard Fedorov algorithm on {x : g(x) ∈ C} with starting design ξH .

24 else
25 for pi ∈ {g(x) : g(x) /∈ C} do
26 Set the design for ξHi to {x : ξH = 1 OR g(x) = pi}.
27 end
28 C ← C ∪ pi where i = argmax

i
|M(ξHi)|. Note that ξH is not altered here;

29 Run standard Fedorov algorithm on {x : g(x) ∈ C} with starting design ξH .

30 end
31 if The current run of the while loop has not resulted in an increase in |M(ξH)|,

then
32 undo its effects, and halt the while loop at this point.
33 end

34 end
output: ξH (C may be inferred from this).

Algorithm 2: Nested Fedorov Algorithm

87

{x : ξH(x) = 0, g(x) ∈ C}. Note this standard Fedorov run does not affect C, the currently

chosen collectors. If specified, at each of these two points (lines 23 and 29), the standard

Fedorov algorithm may be run a further number of times, each time with a new randomly

sampled starting set, of size min(n, |{x : g(x) ∈ C}|) sampled from {x : g(x) ∈ C}, with the

best design always being chosen. The implementation of the standard Fedorov algorithm

has certain bespoke features to aid its use within the Nested algorithm:

• An option to use a stopping criterion based on determinant increase, or to impose a

maximum number of swaps. If the latter option is selected, the algorithm continues

either until no increase in determinant is achieved, or the maximum number of swaps

has been performed.

• An optional input of a starting design ξH from which to attempt pairwise swaps. If

|M(ξH)| and/orM(ξH)−1 are known, these may also be input to eliminate unnecessary

computation. If no starting design is specified, a random one is used; uniform random

sampling of the required number of design points is performed from the candidate

points until a design with non-singular M is found.

• If the starting design input option is exercised, a further option is also available,

allowing a specified subset of the starting design to be fixed. This means that this

subset will remain in the design, and the only points to be considered for replacement

with other points as a result of pairwise swaps will be the elements of its complement

in the starting design.

• As for the Nested Fedorov algorithm; an option to calculate the D-optimality criterion

either for a linear model, or for a Poisson one, using a specified Gaussian quadrature

input.

Both the standard and Nested Fedorov algorithm implementations include an option to make

use of the computational shortcuts for determinant update and inverse update described in

Section 3.3, for either linear or Poisson models.

88

A.3 Sensors-per-collector constraint

Algorithm 3 considers the possibility that, for practical reasons, the constraint |{x : g(x) =

c}| ∈ [a, b] ∀c ∈ C is to be imposed on the design, if possible, with a, b ∈ N. This algorithm

may be run separately on an output design from the Nested Fedorov algorithm, although

its use is included as an option in the Nested Fedorov algorithm implementation as a final

amendment to the output design, for ease.

1 if there exists at least one rearrangement of the current design points given by ξH ,
subject to the current collector choice of C, that would satisfy the constraint
|{x : g(x) = c}| ∈ [a, b] ∀c ∈ C, with a, b ∈ N ;

2 then
3 while the constraint is not met do
4 Define the following disjoint sets;
5 C1 = {c ∈ C : |{x : g(x) = c}| = a};
6 C2 = {c ∈ C : |{x : g(x) = c}| = b};
7 C3 = {c ∈ C : |{x : g(x) = c}| < a};
8 C4 = {c ∈ C : |{x : g(x) = c}| > b} and;
9 C5 = {c ∈ C : |{x : g(x) = c}| ∈ (a, b)};

10 and effect a single pairwise swap of design points in ξH ; permissible swaps
are those that either;

11 ((decrease |C2 ∪ C5| by 1) AND (increase |C3| by 1)), OR;
12 ((decrease |C4| by 1) AND (increase |C3| by 1)), OR;
13 ((decrease |C4| by 1) AND (increase |C1 ∪ C5| by 1));
14 (Note that the above three cases have been deliberately written so as to be

disjoint, as this helps to avoid consideration of duplicate cases in the
implementation). Choose the swap that results in the greatest change in
the value of |M(ξH)|, even if this is negative. If no swap is possible, halt
the while loop.

15 end

16 else
17 Leave ξH unchanged.
18 end

Algorithm 3: Greedy design-points-per-collector constraint modification.

In order to mitigate the risk of error propagation in real-world applications, the com-

putational shortcut option in the Nested Fedorov algorithm includes the computation of

determinants and inverses explicitly at regular strategic points in order to correct any er-

rors. Similarly in the standard Fedorov algorithm implementation, an option is available

that uses the Section 3.3 techniques in deciding upon a swap, but computes the resulting

89

determinant and inverse explicitly at the conclusion of each swap.

90

Bibliography

Arnouts, H. and P. Goos (2009). Update formulas for split-plot and block designs. Compu-

tational Statistics and Data Analysis 54 , 3381–3391.

Bakhsh, S.T. (2017). Energy-efficient distributed relay selection in wireless sensor network

for Internet of Things. 13th International Wireless Communications and Mobile Comput-

ing Conference (IWCMC), 1802–1807 DOI: 10.1109/IWCMC.2017.7986557.

Bartlett, M. S. (1951). An Inverse Matrix Adjustment Arising in Discriminant Analysis

Annals of Mathematical Statistics 22 (1), 107–111.

BioStatMatt (2015). Notes on Multivariate Gaussian Quadrature. R bloggers https://www.r-

bloggers.com/2015/09/notes-on-multivariate-gaussian-quadrature-with-r-code/ Accessed

on 25 March 2024.

Bliemer, M. C. J., J. M. Rose, and S. Hess (2009). Approximation of Bayesian Efficiency in

Experimental Choice Designs. Journal of Choice Modeling 1 , 98–127.

Chugh, A. and S. Panda (2018). Strengthening Clustering Through Relay Nodes in Sensor

Networks. Procedia Computer Science 132 , 689–695.

Cook, R. D. and C. J. Nachtsheim (1980). A Comparison of Algorithms for Constructing

Exact D-Optimal Designs. Technometrics 22 (3), 315–324.

Cook, R.J., G.Y. Yi and K-A. Lee (2004). A Conditional Markov Model for Clustered

Progressive Multistate Processes under Incomplete Observation. Biometrics 60 , 436–

443.

91

Dette, H., A. Pepelyshev and A. Zhigljavsky (2016). Optimal Designs in Regression with

Correlated Errors. The Annals of Statistics 44 (1), 113–152.

Dormann, C. F., J. M. McPherson, M. B. Araújo, R. Bivand, J. Bolliger, G. Carl, R. G.

Davies, A. Hirzel, W. Jetz, W. D. Kissling, I. Kühn, R. Ohlemüller, P. R. Peres-Neto, B.

Reineking, B. Schröder, F. M. Schurr and R. Wilson (2007). Methods to account for spatial

autocorrelation in the analysis of species distributional data: a review. Ecography 30 ,

609–628.

Golub, G. H. and J. H. Welsch (1969). Calculation of Gauss Quadrature Rules Mathematics

of Computation 23 (106), 221–230 + s1–s10.

Fedorov, V. V. (1972). Theory of Optimal Experiments. 1st ed. Academic Press, New York,

NY.

Fedorov, V. (1996). Design Of Spatial Experiments: Model Fitting And Prediction Handbook

of Statistics 13 . DOI: 10.2172/231193

Ford, I., B. Torsney and C. F. J. Wu (1992). The Use of a Canonical Form in the Construc-

tion of Locally Optimal Designs for Non-Linear Problems Journal of the Royal Statistical

Society. Series B (Methodological) 54 , 569–583.

Goos, P. and B. Jones (2019). Design in the Presence of Nested Factors. Technomet-

rics 61 (4), 533–544. DOI: 10.1080/00401706.2018.1562986

Goos, P. and K. Mylona (2018). Quadrature Methods for Bayesian Optimal Design of Ex-

periments With Nonnormal Prior Distributions. Journal of Computational and Graphical

Statistics 27 , 179–194.

Gotwalt, C. M., B. A. Jones and D. M. Steinberg (2009). Fast Computation of Designs

Robust to Parameter Uncertainty for Nonlinear Settings. Technometrics 51 , 88–95.

Harman, R. and L. Filová and P. Richtárik (2020). A Randomized Exchange Algorithm

for Computing Optimal Approximate Designs of Experiments. Journal of the American

Statistical Association 115 , 348–361.

92

Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective, 1st ed. Springer-

Verlag, New York, NY.

Hicks, C. R. and K. V. Turner (1999). Fundamental concepts in the design of experiments.

5th ed. Oxford University Press, New York, NY.

Johnson, M. E. and C. J. Nachtsheim (1983). Some Guidelines For Constructing Exact

D-Optimal Designs on Convex Design Spaces. Technometrics 25 (3), 271–277.

Kiefer, J. (1959). Optimum Experimental Designs Journal of the Royal Statistical Society.

Series B (Methodological) 21 (2), 272–319.

Khuri, A. I., B. Mukherjee, B. K. Sinha and M. Ghosh (2006). Design Issues for Generalized

Linear Models: A Review Statistical Science 21 (3), 376–399.

Labadi, L. A. (2015). Some Refinements on Fedorov’s Algorithms For Constructing D-

Optimal Designs. Brazilian Journal of Probability and Statistics 29 (1), 53–70.

Lee, M. S. C. (1988). Constrained Optimal Designs. Journal of Statistical Planning and

Inference 18 , 377–389.

Li, H., C. Ao, Y. Xu, J. Tian and K. Yamashita (2017). Relay Node Position Optimization

in Complex Environment. IEEE Wireless Communications and Networking Conference

(WCNC), 1–6 DOI: 10.1109/WCNC.2017.7925497

Mitchell, T. J. (1974). An Algorithm for the Construction of D-Optimal Experimental

Designs. Technometrics 16 (2), 203–210.

Morris, M. (2011). Design of experiments: an introduction based on linear models. 1st ed.

Chapman & Hall/CRC, Boca Raton, FL.

Nguyen, Nam-Ky and A.J. Miller (1991). A review of some exchange algorithms for con-

structing discrete D-optimal designs. Computational Statistics & Data Analysis 14 , 489–

498.

Nishii, R. (1993). Optimality of experimental designs. Discrete Mathematics 116 (1-3),

209–225.

93

Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud

University - Computer and Information Sciences 30 (3), 291–319.

Rencher, A. C. and W. F. Christensen (2012). Methods of multivariate analysis. 3rd ed.

Wiley, Hoboken, NJ.

Russell, K. G., D. C. Woods, S. M. Lewis and J. A. Eccleston (2009). D-Optimal Designs

for Poisson Regression Models. Statistica Sinica 19 (2), 721–730.

Sherman, J. and W.J. Morrison (1950). Adjustment of an inverse matrix corresponding

to a change in one element of a given matrix. Annals of Mathematical Statistics. 21 (1),

124–127.

St. John, R. C. and N. R. Draper (1975). D-Optimality for Regression Designs: A Review.

Technometrics 17 (1), 15–23.

Swihart, B. and J. Lindsey (2022). rmutil: Utilities for Nonlinear Regression

and Repeated Measurements Models R package version 1.1.10 https://CRAN.R-

project.org/package=rmutil

Ver Hoef, J. M. and P. L. Boveng (2007). Quasi-Poisson Vs. Negative Binomial Regression:

How Should We Model Overdispersed Count Data? Ecology 88 (11), 2766–2772.

Yanping, W., R. H. Myers, E. P. Smith and K. Ye (2006). D-optimal designs for Poisson

regression models. Journal of Statistical Planning and Inference 136 , 2831–2845.

Zahran, A., C. M. Anderson-Cook and R. H. Myers (2003). Fraction of Design Space to

Assess Prediction Capability of Response Surface Designs. Journal of Quality Technol-

ogy 35 (4), 377–386. DOI: 10.1080/00224065.2003.11980235

94

	Introduction
	Motivation

	Literature Review
	Optimal experiment design
	The Fedorov exchange algorithm for exact designs
	Other exchange algorithms

	Contributions

	Linear Models
	Problem structure
	Assumptions

	Algorithm Methodology
	Nested Fedorov algorithm

	Updating the information matrix
	Determinant update
	Inverse update

	Datasets
	Simulated data Type A
	Simulated data Type B- environmental
	Application data- monitoring flooding of roads

	Testing Results
	Testing simulated datasets Type A
	Testing simulated type B (environmental) datasets
	Testing on the application data
	Testing results- Expected Values
	Testing results- Prediction Variance

	Discussion

	Poisson Models
	Introduction
	The model
	Gaussian quadrature
	Procedure
	Distribution of parameters
	Number of points
	Implications for algorithm

	Results
	Simulated Type A Data
	Simulated Type B Data
	Application Data
	Discussion

	Design point reallocation
	The temporal element in the Sensor Placement Problem
	Notation
	Model specification

	Move costs
	Methodology
	Results
	Simulated data
	Application data

	Discussion
	Allocation of sensors to epochs
	Move costs
	Poisson models

	Conclusions and future directions
	Contributions
	Future work

	Nested Fedorov algorithm in detail
	Nested Fedorov algorithm
	Standard Fedorov algorithm
	Sensors-per-collector constraint

