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Abstract

This paper examines the impact of intraday periodicity on forecasting realized
volatility using a heterogeneous autoregressive model (HAR) framework. We show
that periodicity inflates the variance of the realized volatility and biases jump es-
timators. This combined effect adversely affects forecasting. To account for this,
we propose a periodicity-adjusted HAR model, HARP, where predictors are con-
structed from the periodicity-filtered data. We demonstrate empirically (using 30
stocks from various business sectors and the SPY for the period 2000–2020) and
via Monte Carlo simulations that the HARP models produce significantly better
forecasts across all forecasting horizons. We also show that adjusting for periodicity
when estimating the variance risk premium improves return predictability.
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Introduction

With the availability of high-frequency data in the late 1990s, realized volatility (RV)

and related measures were developed as proxies for the daily observed volatility of all

financial securities for which intraday price observations were available (Andersen and

Bollerslev, 1998a). The shift in volatility from latent to quasi-observable1 meant fore-

casting could now rely on simple autoregressive models. Corsi (2009)’s heterogenous

autoregressive model (HAR) emerged as the standard in forecasting univariate realized

volatility.

In this paper, we show that the periodicity of intraday volatility impacts realized

volatility forecasts based on autoregressive models through two channels. The first and

most important channel is by distorting the variance of the realized volatility, which in

turn contributes to biasing the coefficients of the forecasting models. The second channel

is via the realized jumps regressors that appear in some predictive models and can also

be biased in the presence of intraday periodicity.

To address the observed impact of periodicity, we propose forecasting RV with predic-

tors based on data from which periodicity is filtered out. We refer to these autoregressive

models as ARP or HARP, with “P” from periodicity-filtered. When the integrated volatil-

ity follows a simple AR(1) model, we show that filtering out periodicity lowers the RV

variance when periodicity is estimated on a big sample. We compare the forecasting

performance of the HARP models with several HAR models existing in the literature. To

this end, we perform a simulation exercise, followed by an empirical application based on

high frequency data for the SPDR S&P 500 ETF (SPY) and 30 S&P 500 constituents,

observed over the period 2000-2020.

Our analysis attests the superiority of HARP models across all forecasting horizons,

with greater gains for the 1-day to 1-week ahead forecasts. For SPY, we observe im-

provements of up to 7% in the forecast losses using HARP models. For the stock average,

depending on the model specification, filtering data reduces the forecast losses by approx-

imately 6.6% to 7.3% at the 1-day and 1-week horizons. These results are consistent when

using different time-varying windows to estimate periodicity. Moreover, at the 1-month

horizon, HARP models still outperform their counterparts for both SPY and individual

stocks. However, we observe a decrease in the number of models significantly outperform-

ing standard HAR models, suggesting that the impact of intraday periodicity diminishes

as the horizon lengthens. Nevertheless, when comparing the eight HAR models consid-

1The use of the term quasi here is due to the fact that all realized measures are estimates.
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ered throughout the paper using the model confidence set approach (Hansen et al., 2011),

the filtered models consistently rank first. Finally, and to demonstrate the usefulness of

our approach, we use monthly RV predictions for SPY and individual stocks to estimate

the variance risk premium as the difference between the Risk-Neutral Variance (RNV)

of Bakshi et al. (2003) and the RV forecast. When predicting excess returns with the

variance risk premium, we find that VRP measures derived from HARP models lead to

improvements in forecasting future monthly excess returns. While the improvement for

the aggregate market is substantial, yielding an increase in the R2 of up to 50% relative

to their counterparts, for individual stocks, the R2 improvement is marginal, and the

overall significance is modest.

Andersen et al. (2003) document the presence of long memory in the time series of log-

arithmic realized volatilities and suggest a fractionally integrated autoregressive approach

in modelling. Inspired by the heterogeneous autoregressive conditional heteroskedastic-

ity (HARCH) model featured in Müller et al. (1997) and Dacorogna et al. (1997), Corsi

(2009) proposes the HAR model which regresses realized volatilities on past daily, weekly

and monthly realized volatilities. This model can replicate the high levels of persistence

observed in the series of daily realized volatilities, without relying on fractional integra-

tion. Given its simple linear structure and ease of estimation, the HAR has become the

most popular framework in forecasting realized volatilities.

The daily quadratic variation includes a continuous component and a jump part,2 with

the former component featuring a high level of persistence, while the jump component

shows little or no persistence. To account for the different levels of persistence in the two

components, Andersen et al. (2007a) propose adding the lagged realized daily squared

jump as an extra explanatory variable to the HAR regression, leading to the HAR-J

model. They also propose the HAR-CJ model, which uses as predictors daily, weekly

and monthly estimates of the integrated variance and integrated squared jumps. They

find that accounting for jumps generally leads to an increase in the explanatory power.

This finding is also confirmed by Corsi et al. (2010), who perform a more exhaustive

forecasting exercise.

Corsi and Renò (2012) add negative returns to the previous HAR specifications, in

order to account for a potential leverage effect. They show improved accuracy in forecast-

ing the S&P 500. Bollerslev et al. (2016) argue that all realized measures used in HAR

models are bound to include measurement errors, which should be taken into account

2See, for instance, Barndorff-Nielsen and Shephard (2004, 2006b), Mancini (2009), Christensen and
Podolskij (2007), Corsi et al. (2010), Andersen et al. (2012) and Bu et al. (2023).

3



in modelling. The model, abbreviated HAR-Q,3 performs well in environments of high

variability of the measurement error.

The impact of periodicity on the dynamic properties of high frequency returns was

first examined by Andersen and Bollerslev (1997). They model intraday volatility as a

product of two components: a deterministic periodic component and the actual volatility,

i.e. a stochastic component reflecting variability in the fundamental value of the financial

security. Such specification has become the literature standard and is also considered in

our analysis. Andersen et al. (2001) and Bollerslev et al. (2000) employ similar specifi-

cations in modelling intraday volatility in the FX and the US Treasury bond markets.

While the periodicity component does not impact the realized variance, by integrating

to 1 over the trading day,4 little is known of its impact on other realized measures.

Andersen et al. (2018) propose a statistical test for time-varying intraday periodicity in

high frequency data and associated realized measures. Christensen et al. (2018) develop

a test for the hypothesis that time-variation in intraday volatility is caused solely by

intraday periodicity. Dette et al. (2023) examine the effect of periodicity on the realized

bi-power variation, its variance and covariance with the realized variance, as well as on the

realized quarticity under a constant volatility data generating process (DGP hereafter).

Intraday periodicity has also been shown to impact the jump detection ability of the

intraday jump tests proposed by Andersen et al. (2007b) and Lee and Mykland (2008),

where high levels of periodicity can increase the probability of type I error (Andersen et al.,

2007b). This highlights the confounding impact of jumps and periodicity on the price

process and related functions. Boudt et al. (2011, 2012) recommend applying intraday

jump tests on returns from which periodicity is filtered out. They propose non-parametric

and parametric methods to estimate periodicity that are robust to jumps in prices and

time-varying volatility.

The rest of the paper is structured as follows. Section 1 provides the theoretical back-

ground on realized-type volatility measures and intraday periodicity estimation. Section 2

discusses the impact of intraday periodicity on RV forecasting and proposes periodicity

filtering. Sections 3 and 4 present simulation results and empirical applications, respec-

tively. Section 5 concludes. Appendices A and B provide AR(1) model derivations and

intraday periodicity estimator details.

3“Q” comes from the fact that the realized quarticity, as the estimated asymptotic variance of the
realized variance, is included in the specification.

4Intraday periodicity has no impact on the realized variance when the spot variance is assumed
constant throughout the day. However, with a time-varying spot variance, intraday periodicity may also
impact the realized variance.
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1 Theoretical background

Let p(t) denote a logarithmic asset price at time t belonging to a special class of

semimartingales with jumps:

dp(t) = µ(t) dt+ σ(t) dW (t) + dL(t), t ∈ [0, T ] (1)

where µ(t) is a continuous and locally bounded drift term, σ(t) is the spot volatility

which is adapted and càdlàg. W (t) is a one-dimensional standard Brownian motion,

while L(t) is a jump process. Without loss of generality, we assume that T is an integer,

representing the number of trading days. All integers in [0, T ] mark the end of a trading

day. The volatility at time t over the past day is given by the integrated variance,

IVt =
∫ t

t−1
σ2(u) du.

Within each trading day, there are M observations, which, for now, we assume equally

spaced, with the time interval between any two consecutive observations equal to ∆ = 1
M
.5

Let rt,i, i = 1, ...,M , be the i-th intraday return during the one-day interval (t − 1, t],

such that rt,i = p(t−1+ i∆)−p(t−1+(i−1)∆). In the absence of jumps, the integrated

volatility is consistently estimated by the realized variance (Andersen and Bollerslev,

1998a, Andersen et al., 2003), defined as:

RVt =
M∑
i=1

r2t,i.

If the price contains jumps, RVt is no longer consistent for the integrated variance,

converging to the quadratic variance of the price process,
∫ t

t−1
[σ2(u) + L2(u)] du. To

estimate the integrated variance, it becomes necessary to rely on a robust to jumps

estimator, such as the realized bipower variation of Barndorff-Nielsen and Shephard

(2004) given by:

BVt =
M

M − 1
1.57

M∑
i=2

|rt,i||rt,i−1|. (2)

Barndorff-Nielsen and Shephard (2006a) build a statistical test comparing RVt and

the jump robust BVt to infer whether jumps occur in the interval (t − 1, t]. The test

statistic is given in Appendix B.2, while Section IA.2 in the internet appendix confirms

all our results for an alternative jump test.

Kolokolov and Renò (2024) show that price staleness (zero returns) has a great impact

on realized power variations, and on the tests for jumps in prices using such measures.

5Note that defining realized volatility does not require equally spaced observations. We make this
assumption here for simplicity.
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They develop staleness-robust estimators, where the above equidistant sampling scheme

is replaced by a stochastic scheme i1, . . . , iNM
, such that returns rt,ij , j = 1, . . . , NM are

non-zero (Kolokolov and Renò, 2024).6 Whenever our analysis involves identifying and

estimating jump components, we implement the Kolokolov and Renò (2024) estimators.7

In formulas, derivations and the simulation exercise, we use the classical equidistant

sampling scheme throughout.

We define the intraday volatility periodicity, f(t), as a deterministic function multi-

plying the actual spot volatility stochastic process, s(t), as in Andersen and Bollerslev

(1997, 1998b), Andersen et al. (2001), Boudt et al. (2011):

σ(t) = s(t)f(t), (3a)

such that

∫ t

t−1

f 2(u) du = 1, (3b)

so that intraday periodicity has no impact on the integrated variance when s(t) is con-

stant, i.e.,
∫ t

t−1
σ2(u) du =

∫ t

t−1
s2(u) du. However, in a more realistic scenario where

time-varying spot variance is considered, the latter equality does not always hold. In

practice, as we observe a discrete number of observations, the condition in equation (3b)

can be written using the following Riemann sum:

∆
M∑
i=1

f 2
i = 1, (4)

where fi is the i-th value of the function f(·) observed during a trading day. Clearly,

when ∆ approaches 0, the Riemann sum converges to the integral in (3b).

The two components of spot volatility defined in (3a) differ greatly. The periodic

component is a deterministic function of intraday time and reflects intraday trading

patterns. The actual spot volatility s(t) is a stochastic process which varies over time

reflecting the available information on the asset.

To estimate the intraday periodicity, we use the nonparametric approach proposed by

Boudt et al. (2011),8 which is robust to the presence of jumps in the price process. Let

r̄t,i =
rt,i√
∆BVt

, i = 1, . . . ,M , t = 1, . . . , T be the standardized intraday returns, with BVt

6Kolokolov and Renò (2024) redefine the realized bipower variation as

∆M1.57
∑NM

j=2 |∆j
−1/2rt,ij ||∆j−1

−1/2rt,ij−1 |, where ∆j−1 = ij − ij−1 are the durations between

price changes, and ∆M is the average over these durations. Similar definitions apply to other realized
power variations.

7We are grateful to Roberto Renò for providing us with the implementation code.
8Among the various applications of periodicity-filtered returns, the authors demonstrate that these

filtered returns can also be employed to formulate a jump-robust estimate of the autocorrelation and
long-memory in the absolute or squared filtered high-frequency return series.
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given in equation (2). For a certain intraday time, i, we observe T standardized intraday

returns. The intraday periodicity estimator is defined as:

f̂WSD
i =

WSDi√
∆
∑M

j=1WSD2
j

(5)

WSDi =

√√√√1.081

∑T
l=1 χl,ir̄2l,i∑T
l=1 χl,i

,

for all i = 1, . . . ,M , where WSDi is the weighted standard deviation (WSD) and χl,i,

l = 1, . . . , T are weights computed using the shortest half scale periodicity estimator and

defined in appendix B.1. The periodicity-filtered returns are defined as:

rft,i =
rt,i

f̂WSD
i

. (6)

We can further define periodicity-filtered realized measures, such as the filtered realized

variance RV f
t =

∑M
i=1 (r

f
t,i)

2, the filtered realized bipower variation BV f
t = M

M−1
1.57∑M

i=2 |r
f
t,i||r

f
t,i−1| and so on.

2 Forecasting realized volatility in the presence of

periodicity

For a simple DGP, we consider the impact of intraday periodicity on the forecasting

regression, comparing the resulting coefficients with those obtained in the absence of

periodicity.

2.1 The simple AR(1) model

We assume the daily integrated variance (IV ) evolves according to an AR(1) process.

IVt = Θ+ ΦIVt−1 + ϵt, (7)

where t ∈ {1, 2, ..., T}, Θ > 0, |Φ| < 1, and ϵt is i.i.d. with Var(ϵt) = σ2
ϵ . In addition,

within each trading day, the actual spot volatility remains constant at a level equal

to a fraction of the daily integrated variance, ∆IVt. If we also account for intraday

periodicity, the spot volatility for the i-th ∆-length window during a trading day equals

∆IVtf
2
i . Assuming no drift, the i-th return is rt,i =

√
∆IVtfiwi, where wi is i.i.d. N (0, 1)

and independent of present and past values of s(·). Suppose one attempts to forecast

volatility using the following AR(1) model for the realized variance:

RVt = θ + ϕRVt−1 + et, (8)
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with ϕ equal to the well-known formula:

ϕ =
Cov (RVt, RVt−1)

Var (RVt)
. (9)

In the above equations, as RVt is only a proxy for the integrated variance, it is subject

to measurement error, leading to an attenuation bias in the estimate of ϕ (Bollerslev et al.,

2016). Below, we show that periodicity further increases this bias, resulting in a further

reduction –in absolute value– in the ϕ estimate.

To assess the impact of periodicity on the value of ϕ, we compute the numerator

and denominator in equation (9) in the presence/absence of periodicity. The required

derivations are enclosed in section A.1 of the appendix. While the auto-covariance remains

unaffected by periodicity, we obtain the following variance formulae for the case in which

periodicity is present (equation (10a)), compared to the case when it is absent (equation

(10b)):

Var(RVt) = V ar(IVt) + 2∆E(IV 2
t )∆

M∑
i=1

f 4
i , (10a)

Var(RVt)
NP = V ar(IVt) + 2∆E(IV 2

t ), (10b)

where the superscript NP above stands for “no periodicity”.

The main difference between the above formulae resides in the term
∑M

i=1 f
4
i . From

equation (4), we know that
∑M

i=1 f
2
i = ∆−1 > 1. Then,

∑M
i=1 f

4
i >

∑M
i=1 f

2
i = ∆−1, so

that Var(RVt) > Var(RVt)
NP .

The biased coefficient, ϕ = Φ
(
1 +

2∆E(IV 2
t )

V ar(IVt)
∆
∑M

i=1 f
4
i

)−1

(for derivations, see Ap-

pendix A.1), is lower –in absolute value– than the corresponding coefficient for the case

of no periodicity. ϕ understates the true correlation coefficient, Φ, for two reasons. First,

the presence of measurement error leads to the variance distortion in (10b), pushing ϕ

downwards from Φ. Second, as shown in equation (10a), the presence of periodicity

generates a further increase in the variance of realized volatility, further reducing ϕ.

A bias correcting solution in the spirit of Bollerslev et al. (2016) would be running a

regression with a time varying AR(1) parameter: RVt = θ+

[
ϕ+ ϕ1∆

√
Ê(IV 2

t )
∑M

i=1 f̂i
4
]
·

RVt−1 + ut. This correction would require pre-estimating periodicity, f̂i, i = 1, . . . ,M ,

in addition to estimating the integrated quarticity IQt = ∆E(IV 2
t ), which featured in

the above-mentioned work. If we wish to extend to an AR(p) model (p> 1), the issue of

correcting some or all regressors adds additional layers of complications.

Instead of applying a correction for periodicity, we propose using regressors based on

returns pre-filtered for periodicity. We thus define an ARP(1) model (“P” stands for

8



periodicity-filtered):

RVt = θf + ϕfRV f
t−1 + ϵft , (11)

where RV f
t−1 is the lagged RV based on rft,i, specified in (6). Appendix A.2 shows that

if the number of days in the sample, T , is high enough, the variance of the regressor

decreases, leading to a decrease in the variance of the error. In the above regression, the

dependent variable is unfiltered, while the regressor is filtered. As a result, the model in

equation (11) is not strictly an autoregression in RV. It is an autoregression in integrated

volatility proxies, where the proxies used on the two sides of the equal sign are different.

2.2 HAR models

As integrated volatility is likely a long memory process, HAR models are widely

preferred for its forecast when using high frequency data. Such models rely not only on

recent RV lags, but also on cumulated weekly and monthly realized variances. Let h

be the forecasting horizon, measured in days. Then, RVt,t+h−1 is the forecasted realized

variance over the next h days (starting from day t). The HAR model is defined as (Corsi,

2009):

HAR RVt,t+h−1 = β0 + βdRVt−1 + βwRVt−5,t−1 + βmRVt−22,t−1 + ϵt,t+h−1, (12)

where RVt−1 is the first lag of the (daily) realized variance, RVt−5,t−1 is the average

realized variance over the past week and RVt−22,t−1 the average realized variance over

the past month. In addition, ϵt,t+h−1 is the forecasting error, β0 the regression constant

term, while βd, βw and βm are the coefficients corresponding to the one-day, one-week

and one-month lagged values of the realized variance.

Defining RV f
t−1, RV f

t−5,t−1 and RV f
t−22,t−1 as the periodicity-filtered one-day, one-week

and one-month lagged realized variances, we can extend the ARP model to HARP:9

HARP RVt,t+h−1 = β0 + βdRV f
t−1 + βwRV f

t−5,t−1 + βmRV f
t−22,t−1 + ϵft,t+h−1, (13)

with ϵft,t+h−1 the forecasting error.

In addition to the HAR/HARP models above, we also analyse three other HAR-type

models and their periodicity-filtered counterparts: the HAR-J and HAR-CJ models by

Andersen et al. (2007a), and the HAR-Q model by Bollerslev et al. (2016). Below,

we present the forecasting regressions for these three HAR models and their HARP

counterparts.

9It is debatable whether the ARP/HARP specifications can be considered new models or a sub-class
of generic AR/HAR models for measures of integrated volatility. We take the liberty to refer to HARP
as models for simplicity and to the extent the literature generally refers to all HAR variations as models.

9



HAR-J and HARP-J

Andersen et al. (2007a) define the contribution of jumps to the daily quadratic vari-

ation of the price as Jt = max(RVt − Ct, 0), for t = 1, . . . , T , where Ct is a consistent

estimator of the integrated variance. Similarly, we can define a jump regressor based

on periodicity-filtered returns, Jf
t . The HAR-J and HARP-J models are obtained by

including Jt−1 and Jf
t−1, respectively, in the forecasting regression:

HAR-J RVt,t+h−1 = β0 + βdRVt−1 + βwRVt−5,t−1 + βmRVt−22,t−1 + βJJt−1 + ϵt,t+h−1,

(14)

HARP-J RVt,t+h−1 = β0 + βdRV f
t−1 + βwRV f

t−5,t−1 + βmRV f
t−22,t−1 + βJJ

f
t−1 + ϵft,t+h−1.

(15)

HAR-CJ and HARP-CJ

In this model, past lags of the estimated continuous and discontinuous components

of the quadratic variation are considered in the forecasting regression, as follows:

HAR-CJ RVt,t+h−1 = β0 + βCd
Ct−1 + βCwCt−5,t−1 + βCmCt−22,t−1 + βJdJt−1+

βJwJt−5,t−1 + βJmJt−22,t−1 + ϵt,t+h−1, (16)

HARP-CJ RVt,t+h−1 = β0 + βCd
Cf

t−1 + βCwC
f
t−5,t−1 + βCmC

f
t−22,t−1 + βJdJ

f
t−1+

βJwJ
f
t−5,t−1 + βJmJ

f
t−22,t−1 + ϵft,t+h−1, (17)

where Ct−1, Ct−5,t−1 and Ct−22,t−1 are the one-day, one-week and one-month lagged esti-

mates of the integrated variance, and Jt−1, Jt−5,t−1 and Jt−22,t−1 are the one-day, one-week

and one-month lagged estimates of the jumps’ contribution to the quadratic variation.

In equation (17), all these regressors are computed on periodicity-filtered returns, hence

the f superscript. In computing Ct and Cf
t , we employ the method in Andersen et al.

(2007a): Ct = RVt · It(no jumps) + BVt · It(jumps), for t = 1, . . . , T , where It(·) is the

indicator function for whether jumps were identified on day t or not. To test for jumps we

rely on the BNS test of Barndorff-Nielsen and Shephard (2006a),10 at the 1% significance

level.

HAR-Q and HARP-Q

As Bollerslev et al. (2016) indicate, the variance of the realized volatility measure-

ment error is a function of the integrated quarticity,
∫ t

t−1
σ4(u) du, t = 1, . . . , T . Their

main forecasting model accounts for the error in measuring the one-day lagged realized

10This test is outlined in Appendix B.2.
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variance,11 as follows:

HAR-Q RVt,t+h−1= β0 + (βd + βdQRQ
1/2
t−1)RVt−1 + βwRVt−5,t−1 + βmRVt−22,t−1+

ϵt,t+h−1,
(18)

HARP-Q RVt,t+h−1= β0 + (βd + βdQ(RQf
t−1)

1/2)RV f
t−1 + βwRV f

t−5,t−1 + βmRV f
t−22,t−1+

ϵft,t+h−1,

(19)

where RQt−1 = M
3

∑M
i=1 r

4
t−1,i estimates the integrated quarticity using unfiltered data,

while RQf
t−1 is its counterpart estimate based on periodicity-filtered data.

3 Simulation evidence

3.1 Simulation set-up

The starting point for our simulation is the one-factor stochastic volatility model

previously analyzed by Huang and Tauchen (2005) and given in equation (20a).12 To

this model, we add compound Poisson jumps in the price, accompanied by co-jumps in

volatility.13 For the intraday periodicity function, f(t), we employ the specification in

Andersen et al. (2012) and Hasbrouck (1999):

dp(t) = 0.03 dt+ f(t)ν(t)
(
−0.62 dWν1(t) +

√
0.6156 dWp(t)

)
+ zp(t) dN(t),

(20a)

ν2(t) = exp{0.125ν2
1(t)},

dν2
1(t) = −0.1ν2

1(t) dt+ dWν1(t) + zν1(t) dN(t),

N(t) ∼ Poisson(0.4t),

zp(t), zν1(t) ∼ N (0, 1.284).

f(t) = 0.88929198 + 0.75e−10t + 0.25e−10(1−t), (20b)

where W ’s are correlated standard Brownian motions, N(t) a counting process, while

zp(t) and zν1(t) are the respective jump sizes for price and volatility, independent of each

11Authors explain that measurement errors for the one week and one month realized volatilities do
not have a significant impact on forecasting.

12Section IB. , in the internet appendix, provides some results for some alternative DGPs. Section
IB.5 uses some of these alternative DGPs to perform some robustness checks for our analysis.

13The variance of both the price and volatility jump sizes is set to 1.284, accounting for approximately
30% of the quadratic variation in the model when no jumps are present. This number corresponds to
exp(0.1252), where the value 0.125 is the coefficient multiplying the volatility factor in equation (20a).
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other. The parameters in f(t) are calibrated such that the integrated squared periodicity

function equals 1.

In the absence of jumps, the model volatility is predictable and moderate, not leading

to a large number of extreme returns. When jumps are added to the price, it generates

unpredictable extreme returns that are independent of the volatility dynamics. However,

when volatility is allowed to co-jump with the price, we generate both extreme and

persistent volatility along with extreme returns. This occurs because jumps in volatility

propagate forward through the autoregressive specification in ν2
1 . This model adequately

characterizes both tranquil periods in the absence of jumps, as well as turbulent periods

due to the co-jump feature.

Simulations are generated using an Euler scheme based on 23,400 initial data points

(corresponding to seconds). We further aggregate data up to the following lower sampling

frequencies: 5 seconds (4680 observations), 30 seconds (780 observations), 1 minute (390

observations), 1.5 minutes (260 observations), 2 minutes (195 observations), 2.5 minutes

(156 observations), 5 minutes (78 observations), 10 minutes (39 observations), 15 minutes

(26 observations) and 30 minutes (13 observations). We simulate a total of 1,000 sample

paths of length 2,000 days.

3.2 Impact of filtering on the realized volatility

The simple AR(1) exercise in Section 2.1 showed that the presence of periodicity

inflated the variance of the realized volatility. Here, we investigate this effect, along with

the impact of filtering out periodicity, using the more complex simulated price process

described in Equation (20a). Let Var(RV unf
t ), Var(RV ft

t ) and Var(RV WSD
t ) be the

variances of the realized volatility estimators respectively based on: unfiltered returns,

returns filtered by the true periodicity, and returns filtered with the weighted standard

deviation method as shown in Section 1. Figure 1 shows the histograms of the ratios

Var(RV unf
t )/Var(RV ft

t ) and Var(RV WSD
t )/Var(RV ft

t ) computed on simulated returns.

We consider two sampling frequencies: 1-second, the frequency at which data is generated,

and 5-minute, the standard sampling frequency used in applications.

Both plots on the left show that when periodicity is present, the distribution of

Var(RV unf
t )/Var(RV ft

t ) is almost entirely shifted to the right of 1, suggesting that the

realized volatility variance increases substantially when periodicity is present. The plots

on the right show that filtering out periodicity using the weighted standard deviation

method is on average beneficial, as the distributions of Var(RV WSD
t )/Var(RV ft

t ) for

both sampling frequencies are centered close to 1.

12



Figure 1: Simulated impact of periodicity on the unconditional variance of RV

Note: This figure plots the distributions of the ratios Var(RV unf
t )/Var(RV ft

t ) and
Var(RV WSD

t )/Var(RV ft
t ) for simulated returns sampled every second and every 5 minutes.

Var(RV unf
t ), Var(RV ft

t ) and Var(RV WSD
t ) are the variances of the realized volatility estima-

tors based on, respectively, unfiltered returns, returns filtered by the true periodicity, and returns
filtered with the weighted standard deviation method as shown in Section 1.

3.3 Impact via jump regressors

Two of the most popular HAR models, HAR-J (equation (14)) and HAR-CJ (equation

(16)), use the estimated daily squared jumps as predictors. These estimates depend on

the outcome of jump tests that decide whether jumps in prices have occurred during a

particular trading day. Previous literature has already documented that the presence

of periodicity is likely to interfere with jump detection (Boudt et al., 2011, 2012, Dette

et al., 2023). Figure 2 plots the proportion of spurious jumps identified for simulated

returns and their filtered counterparts, where we relied on 1% and 5% significance levels

in jump testing.
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Figure 2: Simulated proportion of spurious jumps by sampling frequency for filtered and
unfiltered data
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Note: This figure depicts the proportion of spurious jumps across sampling frequencies. The
number of intraday observations on the x axis corresponds to the following sampling frequencies:
1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes
(195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).

The figure illustrates that a higher number of spurious jumps are detected in unfiltered

returns, a finding that holds true across all sampling frequencies. This suggests that

jump regressors in HAR-J and HAR-CJ models are likely affected by periodicity-related

estimation errors, which can further impact the accuracy of the realized variance forecasts.

3.4 HARP forecasting performance

In this section, we use simulated data to compare the forecasting performance of the

HARP models to that of the HAR models. To evaluate the forecasting performance of

the two classes of models, we use two distinct loss functions, the mean squared error

(MSE) and the quasi-likelihood (QLIKE) loss, defined in equation (21) below:

MSE(RVt, Ft) = (RVt − Ft)
2

QLIKE(RVt, Ft) =
RVt

Ft

− log
RVt

Ft

− 1,
(21)

where Ft denotes the out-of-sample forecast of the realized variance.

For forecast horizons beyond 1-day, both HARP and HAR models are adapted to the

new time scale via direct projection, replacing the daily RVs on the left-hand-side with

the weekly and monthly RVs. Separate models are fitted for each forecasting horizon. We

compute out-of-sample forecasts, re-estimating the models daily using a rolling window of

1000 days. For each forecasting model introduced in Section 1 and each forecast horizon,

we calculate the ratio of forecast losses for the HARP version of the model versus the
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HAR model.14 A ratio below one signals the superiority of the model based on filtered

returns.

Figure 3 illustrates the median and the 5% and 95% quantiles of the one-day ahead

forecast loss ratios from the HARP models versus the HAR models against various sam-

pling frequencies. In most cases, all quantiles consistently fall below 1 across the range of

sampling frequencies. Furthermore, regardless of the forecast horizon, model, or sampling

frequency, at least 70% of the loss ration distribution remains below 1. These findings

are also corroborated for forecast loss ratios based on one-week and one-month horizons.

We present these additional figures in Section IB.4 of the internet appendix.

Figure 3: One-day ahead loss ratio for the simulated model
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for HARP versus HAR models. The dashed horizontal line corresponds to the value 1. The
number of intraday observations on the x axis corresponds to the following sampling frequencies:
1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes
(195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).

14Days with jumps are estimated using the BNS test proposed by Barndorff-Nielsen and Shephard
(2006a) at the 1% significance level. This test is outlined in Appendix B.2.
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4 Empirical evidence

4.1 Data

We use intraday price data from the TickData database for the SPDR S&P 500 ETF

(SPY) and 30 individual stocks in the S&P 500 basket. The sample period spans from

January 2000 to December 2020 (5,284 trading days). The selection criteria for individual

stocks are as follows: (i) we only consider stocks that are continuously traded over the

sample period; (ii) we require these stocks to be very liquid to mitigate biases arising from

price staleness; to mitigate potential biases from price staleness, in each sector we select

stocks ranking in the top 15th percentile by trading volume. This ensures that the selected

stocks also fall within the bottom 20th percentile in terms of the proportion of zero

returns.15 (iii) to account for scenarios where intraday periodicity could exhibit sector-

specific patterns, we select at least one representative stock from each sector as classified

by the Global Industry Classification Standard (GICS), ensuring they meet conditions (i)

and (ii). This yields the following sectorial composition: Industrials (6 stocks), Materials

(2 stocks), Consumer Staples (3 stocks), Financials (2 stocks), Energy (2 stocks), Real

Estate (1 stock), Consumer Discretionary (4 stocks), Communication Services (2 stocks),

Health Care (3 stocks), Utilities (2 stocks), and Information Technology (3 stocks).

Data is aggregated from tick level using previous tick interpolation and then sampled

every 5 minutes. This sampling frequency is standard in the literature, motivated by the

trade-off between bias and variance (for more details, see Aı̈t-Sahalia et al., 2005, Hansen

and Lunde, 2006).16

As recent literature suggests, intraday periodicity, which is likely time-varying (An-

dersen et al., 2018), is computed for each day t based on data from the previous 20 trading

days.17 This approach covers a reasonable degree of variation in the periodicity function

from one day to another, with the results below showing improved performance of HARP

models with respect to HAR models. It is unclear, though, how our results would change

15These stocks are usually Dow Jones or S&P 100 constituents. For more details regarding the stocks,
please see Table 1. From those stocks that satisfy the criteria, we have implemented a random selection
process. However, it is important to bear in mind that stocks from the same sector, which meet the
criteria, typically exhibit a return correlation of around 0.35 to 0.50, and the correlation among their
variances oscillates around 0.65 to 0.90. This suggests that the results should hold if one replaces one of
our stocks with another stock that satisfies the criteria and belongs to the same sector.

16Liu et al. (2015) and Bu et al. (2023) show that 5-min RV is generally very difficult to beat,
corroborating previous findings in the literature regarding the good variance-bias trade-off afforded by
5-minute RV.

17This approach also avoids any potential forward-looking bias. In addition, for simplicity, the in-
sample exercise is carried out using the whole sample intraday periodicity estimate.
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if the true periodicity function varied drastically from day to day.18 Figure 4 plots the

estimated periodicity for SPY and the average estimated periodicity for the 30 S&P 500

stocks considered. Both plots reveal the characteristic U-shape for the estimated curve.

Figure 4: Intraday estimated periodicity for SPY (left) and average periodicity for all
stocks (right).
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Note: The panel on the left shows the estimated periodicity for SPY, while the panel on the right
shows the average estimated periodicity for the 30 S&P 500 stocks considered. Periodicity was
estimated using all available data and a 5-minute sampling frequency.

Table 1 reports, for each ticker in our sample, the minimum, maximum and median

values of the realized variance, the number of jumps detected and the estimated propor-

tion of the continuous component relative to the total RV. Days with jumps, in both

panels, are estimated at the 1% significance level using the staleness-robust Barndorff-

Nielsen and Shephard (2006a) procedure proposed by Kolokolov and Renò (2024). The

left (right) panel of the table reports these statistics for the unfiltered (filtered) return

data.

For SPY, we detect 324 jumps for unfiltered data, meaning that we identify jumps

on 6.13% of days. When data is filtered, the number of jumps drops to 271, suggesting

that 5.12% days had jumps.19 Results for individual stocks show high variability in the

number of jumps identified for both filtered and unfiltered data. On average, we observe

504 jumps for the unfiltered data, which decreases substantially after filtering to 183.

As shown in Section 3.3 above, the presence of intraday periodicity can lead to spurious

jump detection.

18In the internet appendix, we also report results for intraday periodicity estimated using sampling
windows’ sizes equivalent to 40, 125, 250, 500, and 1,000 trading days.

19The percentage of days with jumps are very close to the total number of FOMC meetings and
related macroeconomic announcements. In addition, we found that the Covid-19 period concentrates
about 15% of these jumps.
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Table 1: Realized variance minimum, maximum and median, realized number of jumps
and the estimated proportion of integrated variance in the quadratic variation for SPY
and 30 stocks

Unfiltered Filtered
Company Ticker Sector Min RV Max RV Med RV # Jumps %QV Min RV Max RV Med RV # Jumps %QV

SPDR ETF SPY ETF Index 0.010 59.863 0.433 324 98.773 0.010 53.325 0.432 271 98.984
3M MMM IND 0.082 91.955 0.993 529 96.532 0.084 88.370 0.981 178 98.152
Air Product&Chem APD MAT 0.134 97.709 1.301 555 95.664 0.126 113.489 1.291 209 97.908
American Tower AMT REIT 0.165 1048.657 1.684 559 95.639 0.165 1304.046 1.637 204 97.037
Brown-Forman Corp BFB CS 0.074 998.842 1.182 599 92.861 0.102 254.205 1.168 316 96.971
Citigroup C FIN 0.130 975.858 1.901 409 97.165 0.093 997.884 1.896 150 97.818
Coca-Cola KO CS 0.046 73.789 0.770 548 95.932 0.064 66.469 0.752 193 98.056
Conoco Phillips COP EN 0.165 200.297 1.751 436 96.862 0.171 151.894 1.738 163 98.251
Duke Energy DUK UT 0.051 189.935 1.061 572 96.315 0.057 197.351 1.039 185 98.275
eBay EBAY CD 0.134 236.419 2.432 528 97.383 0.123 361.374 2.421 186 98.283
General Dynamics GD IND 0.081 63.282 1.225 535 95.873 0.064 75.786 1.201 197 97.948
General Electric GE IND 0.108 180.389 1.516 445 97.054 0.101 139.008 1.494 198 98.004
Halliburton HAL EN 0.229 372.677 3.443 438 96.103 0.207 379.735 3.414 134 97.661
Home Depot HD CD 0.156 103.477 1.407 450 97.041 0.142 100.545 1.382 148 98.358
Honeywell HON IND 0.082 268.331 1.419 504 96.432 0.102 161.226 1.403 164 97.537
Howmet Aerospace HWM IND 0.280 291.089 2.959 443 97.081 0.191 209.633 2.910 215 98.151
Humana HUM HC 0.174 194.898 2.442 541 96.400 0.170 309.298 2.353 166 98.171
Intel INTC IT 0.154 107.011 1.886 497 97.871 0.153 101.833 1.833 204 98.135
Interpublic Group IPG MAT 0.229 615.148 2.412 501 93.063 0.190 155.507 2.411 181 97.689
McDonald’s MCD CD 0.087 161.156 0.968 509 94.988 0.087 106.360 0.956 139 98.281
Microsoft MSFT IT 0.078 62.386 1.328 453 97.606 0.053 80.630 1.300 191 98.200
Pfizer PFE HC 0.150 64.478 1.271 496 95.664 0.137 70.559 1.272 165 98.183
Procter&Gamble PG CS 0.101 82.119 0.742 559 96.129 0.090 127.868 0.736 150 98.351
Southern Co. SO UT 0.092 97.041 0.917 482 96.438 0.109 84.671 0.881 144 98.250
Starbucks SBUX CD 0.169 89.444 1.909 541 96.689 0.155 99.210 1.898 181 98.154
Travelers C Inc TRV FIN 0.102 263.929 1.108 582 95.474 0.106 229.683 1.107 181 98.827
United Health UNH HC 0.129 225.956 1.637 556 95.460 0.145 135.383 1.656 183 98.838
UPS UPS IND 0.081 216.939 0.896 533 95.732 0.059 118.149 0.888 189 97.850
Verizon VZ COMS 0.122 102.221 1.066 534 95.843 0.106 102.236 1.048 166 98.955
Vodafone VOD COMS 0.110 70.936 0.844 268 98.747 0.075 81.745 0.838 207 99.196
Xerox XRX IT 0.230 412.153 2.684 506 95.018 0.182 352.620 2.657 217 98.109

Avg. Stocks 0.131 265.284 1.572 504 96.169 0.120 225.226 1.552 183 98.120

Note: The table reports the descriptive statistics for the RV of the 30 individual stocks and SPY estimated at the 300 second frequency. The %QV

is estimated as %QV =

∑T
t=1Ct∑T

t=1 (Ct + Jt)
, while # jumps indicates the total number of days with jumps estimated at the 1% significance level using

the staleness-robust Barndorff-Nielsen and Shephard (2006a) procedure (Kolokolov and Renò, 2024). The sector column shows, for each stock, the
corresponding industry group based on the Global Industry Classification Standard (GICS). Industrials (IND), Materials (MAT), Real Estate (REIT),
Consumer Staples (CS), Financials (FIN), Energy (EN), Utilities (UT), Consumer Discretionary (CD), Health Care (HC), Information Technology
(IT), and Communication Services (COMS).

4.2 In-sample forecasting results

Tables 2, 3, 4 and 5 report the regression results for all HAR and HARP models,

estimated on the entire sample, for SPY and a stock average.20 Estimated standard errors

are robust to heteroscedasticity and autocorrelation, as we allow for serial correlation of

up to orders 5, 10 and 44 for the 1-day, 5-days and 22-days models, respectively. We

compute both in-sample and out-of-sample R-squared coefficients, reported as R2
is and

R2
oos, where the computation of R2

oos is based on Campbell and Thompson (2007) and

20Section IA.4 of the internet appendix also reports results for the Rivers and Vuong (2002) test,
comparing the in-sample performance of HARP and HAR models for SPY. Results indicate HARP
models generally outperform their HAR counterparts.
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uses over 3,000 observations.21

All tables show that for both SPY and the average stock, R2
oos from HARP models

is uniformly higher than for the HAR models, while R2
is is higher for all but one case

(1-day forecast with the HARPQ model). For SPY, the majority of the coefficients’

standard errors are lower following filtering. At the same time, the levels of persistence

in the residuals of the estimated HARP models are much lower than for the HAR models.

These results confirm that HARP models are generally better specified and have a greater

goodness of fit in comparison to HAR models.

Across all models, βd (βCd
) decreases as a result of filtering, while βw (βCw) increases.

Instead, the behaviour of the monthly coefficients varies with the model considered. All

tables report for SPY βd+βw+βm (βCd
+βCw+βCm for the HAR-CJ model), representing

the level of persistence. While all models show a very high degree of persistence, we

observe lower levels for the HARP and HARP-Q models over all horizons compared to

their unfiltered counterparts. On the contrary, the models including jump regressors see

an increase in persistence after filtering. For the average stock, persistence decreases

following filtering.

At first glance, a decrease in persistence alongside an increase in both in-sample and

out-of-sample R2 may appear puzzling. Moreover, results for the simple AR(1) in Section

2.1 above indicated that periodicity decreased persistence and filtering it out was likely

to restore it. The puzzling effect observed for lots of HARP models is simply the result

of having more than one explanatory variable. Consider the variance of the error for the

HAR model in equation (12) and its HARP counterpart:

Var(ϵt,t+h−1) = Var(RVt,t+h−1)− β2
d Var(RVt−1)− β2

w Var(RVt−5,t−1)− β2
mV ar(RVt−22,t−1)−

2βdβw Cov(RVt−1, RVt−5,t−1)− 2βdβm Cov(RVt−1, RVt−22,t−1)−

2βmβw Cov(RVt−22,t−1, RVt−5,t−1)

Assuming Var(RVt) does not change much with time, we have:

Var(ϵt+h−1) = Var(RVt)− Var(X)(β2
d + β2

w + β2
m)− C,

where Var(X) = Var(RVt) for HAR and Var(X) = Var(RV f
t ), while C denotes the

sum over all covariance terms. C does not change greatly in the presence or absence of

periodicity for two reasons: first, covariances are either not impacted or less impacted

by periodicity; second, products of coefficients with values in (0, 1) are unlikely to vary

21Section IA.2 in the internet appendix reports, as a robustness check, the results obtained for the
HAR(P)-J and HAR(P)-CJ models where the Andersen et al. (2012) test is used to identify jumps.
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greatly with periodicity. Given that Var(RV f
t ) ≤ Var(RVt) for big T , the decrease in

the variance of the error after filtering can only be due to an increase in β2
d + β2

w +

β2
m. Such an increase happens even if the persistence diminishes. Take for example

the HAR and HARP models in Table 2 below with h = 1. We observe a decrease in

persistence following filtering from 0.887 to 0.875. The sum of the squared coefficients is

0.2682+0.5222+0.0972 = 0.354 for HAR and 0.2312+0.5492+0.0952 = 0.364 for HARP,

ensuring an overall improved performance. This is possible because filtering in a HAR

model increases the coefficient with the highest value, βw, which has the biggest impact

in the sum of squares. At the same time, this coefficient is also estimated more precisely

after filtering, with its standard error decreasing for all forecasting models and horizons.

Table 2: Estimated 1-, 5-, and 22-day ahead HAR(P) models for SPY and stocks average

HAR HARP
h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β0 0.112⋆⋆⋆ 0.183⋆⋆⋆ 0.375⋆⋆⋆ 0.110⋆⋆⋆ 0.180⋆⋆⋆ 0.372⋆⋆⋆

s.e. (0.042) (0.049) (0.092) (0.041) (0.048) (0.092)
βd 0.268⋆⋆⋆ 0.242⋆⋆⋆ 0.147⋆⋆⋆ 0.231⋆⋆⋆ 0.200⋆⋆⋆ 0.127⋆⋆⋆

s.e. (0.091) (0.069) (0.038) (0.083) (0.062) (0.039)
βw 0.522⋆⋆⋆ 0.427⋆⋆⋆ 0.316⋆⋆⋆ 0.549⋆⋆⋆ 0.473⋆⋆⋆ 0.336⋆⋆⋆

s.e. (0.114) (0.099) (0.090) (0.103) (0.097) (0.086)
βm 0.097 0.147 0.159 0.095 0.131 0.152
s.e. (0.072) (0.097) (0.108) (0.075) (0.094) (0.103)

R2
is 0.546 0.619 0.452 0.550 0.625 0.465

R2
oos 0.479 0.555 0.440 0.502 0.581 0.450

βd + βw + βm 0.887 0.816 0.622 0.875 0.805 0.615

Average Stocks

R
2

is 0.464 0.560 0.478 0.479 0.576 0.487

R
2

oos 0.410 0.493 0.409 0.425 0.513 0.420
βd + βw + βm 0.861 0.798 0.649 0.810 0.747 0.602

Note: This table reports the regression coefficients, standard errors in parenthe-
ses, and in- and out-of-sample R-squared for the HAR and HARP models based
on various horizons, estimated on SPY data. The standard errors are estimated
using the Newey-West HAC estimator. The bottom panel shows the stock average
in- and out-of-sample R-squared obtained for HAR and HARP models of various
horizons. ⋆, ⋆⋆ and ⋆⋆⋆ denote significance at 10%, 5% and 1% level, respectively.

For the HARP model, standard errors for the constant and the daily coefficient are

lower for the 1-day ahead and 1-week ahead forecasting horizons, while standard errors

for the weekly coefficients are uniformly smaller. βm decreases following filtering and so
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does its standard error for h = 5 and h = 22.

Table 3: Estimated 1-, 5-, and 22-day ahead HAR(P)-J models for SPY and stocks
average

HAR-J HARP-J
h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β0 0.115⋆⋆⋆ 0.181⋆⋆⋆ 0.358⋆⋆⋆ 0.092⋆⋆ 0.163⋆⋆⋆ 0.358⋆⋆⋆

s.e. (0.039) (0.047) (0.088) (0.040) (0.046) (0.093)
βd 0.223⋆⋆ 0.231⋆⋆⋆ 0.140⋆⋆⋆ 0.222⋆⋆ 0.201⋆⋆⋆ 0.129⋆⋆⋆

s.e. (0.111) (0.066) (0.041) (0.091) (0.066) (0.042)
βw 0.568⋆⋆⋆ 0.439⋆⋆⋆ 0.297⋆⋆⋆ 0.586⋆⋆⋆ 0.503⋆⋆⋆ 0.347∗∗∗

s.e. (0.135) (0.102) (0.090) (0.125) (0.099) (0.089)
βm 0.093 0.146 0.190⋆ 0.114⋆ 0.146 0.172
s.e. (0.072) (0.094) (0.113) (0.068) (0.095) (0.109)
βJd −0.440⋆⋆ −0.489⋆⋆⋆ −0.292⋆⋆ −0.480⋆⋆⋆ −0.484⋆⋆⋆ −0.256⋆⋆

s.e. (0.217) (0.152) (0.142) (0.184) (0.138) (0.123)

R2
is 0.527 0.616 0.457 0.546 0.630 0.468

R2
oos 0.458 0.554 0.460 0.510 0.582 0.461

βd + βw + βm 0.885 0.816 0.627 0.922 0.850 0.649

Average Stocks

R
2

is 0.492 0.597 0.510 0.506 0.606 0.514

R
2

oos 0.385 0.488 0.407 0.418 0.515 0.418
βd + βw + βm 0.881 0.822 0.675 0.827 0.766 0.616

Note: The table reports the regression coefficients, standard errors in parentheses,
and in- and out-of-sample R-squared for the HAR-J and HARP-J models based on
various horizons, estimated on SPY data. Days with jumps are estimated using the
BNS test of Barndorff-Nielsen and Shephard (2006a) at the 1% significance level. The
test is implemented using the staleness-robust adjustment of Kolokolov and Renò
(2024). The standard errors are estimated using the Newey-West HAC estimator.
The bottom panel shows the stock average in- and out-of-sample R-squared obtained
for HAR and HARP models of various horizons. ⋆, ⋆⋆ and ⋆⋆⋆ denote significance at
10%, 5% and 1% level, respectively.

In the case of the HAR-J and HARP-J models, βJd is always negative, in line with

the existing literature (see Andersen et al., 2007a), and has smaller standard errors for

the filtered model. As filtering out periodicity reduces the number of detected spurious

jumps (see Section 3.3), the jump predictor for the HARP-J model is less affected by

measurement error and, as a result, it is more informative. Persistence increases following

filtering and standard errors are generally smaller for the HARP-J model.
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Table 4: Estimated 1-, 5-, and 22-day ahead HAR(P)-CJ models for SPY and stocks
average

HAR-CJ HARP-CJ
h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β0 0.120⋆⋆⋆ 0.183⋆⋆⋆ 0.356⋆⋆⋆ 0.097⋆⋆⋆ 0.163⋆⋆⋆ 0.353⋆⋆⋆

s.e. (0.036) (0.043) (0.086) (0.037) (0.043) (0.091)
βCd

0.220⋆⋆ 0.229⋆⋆ 0.139⋆⋆⋆ 0.220⋆⋆ 0.199⋆⋆⋆ 0.129⋆⋆⋆

s.e. (0.111) (0.066) (0.041) (0.091) (0.066) (0.042)
βCw 0.573⋆⋆⋆ 0.443⋆⋆⋆ 0.299⋆⋆⋆ 0.589⋆⋆⋆ 0.507⋆⋆⋆ 0.349⋆⋆⋆

s.e. (0.135) (0.102) (0.091) (0.126) (0.100) (0.087)
βCm 0.093 0.145 0.189⋆⋆⋆ 0.115 0.144 0.170
s.e. (0.073) (0.095) (0.114) (0.078) (0.096) (0.110)
βJd −0.028 −0.123 −0.080 −0.064 −0.117 −0.104⋆

s.e. (0.161) (0.095) (0.053) (0.138) (0.074) (0.054)
βJw −0.403 −0.303 −0.201 −0.407 −0.511 −0.032
s.e. (0.278) (0.380) (0.316) (0.344) (0.369) (0.464)
βJm 0.306 0.484 0.798 0.283 0.934 1.214
s.e. (0.588) (0.916) (1.471) (0.542) (0.861) (1.423)

R2
is 0.527 0.616 0.457 0.547 0.631 0.468

R2
oos 0.457 0.551 0.457 0.503 0.580 0.462

βd + βw + βm 0.886 0.817 0.627 0.924 0.850 0.647

Average Stocks

R
2

is 0.495 0.603 0.518 0.508 0.609 0.523

R
2

oos 0.367 0.501 0.425 0.412 0.514 0.424
βd + βw + βm 0.870 0.805 0.658 0.819 0.754 0.603

Note: The table reports the regression coefficients, standard errors in parentheses,
and in- and out-of-sample R-squared for the HAR-CJ and HARP-CJ models based
on various horizons, estimated on SPY data. Days with jumps are estimated using
the BNS test of Barndorff-Nielsen and Shephard (2006a) at the 1% significance
level. The test is implemented using the staleness-robust adjustment of Kolokolov
and Renò (2024). The standard errors are estimated using the Newey-West HAC
estimator. The bottom panel shows the stock average in- and out-of-sample R-
squared obtained for HAR and HARP models of various horizons. ⋆, ⋆⋆ and ⋆⋆⋆

denote significance at 10%, 5% and 1% level, respectively.

In line with our findings for the HARP-J model, for the HARP-CJ model, we notice

an important reduction in the standard errors for most coefficients of the realized jumps

regressors in comparison to the unfiltered model. For the 1-week ahead model, the stan-

dard errors of βCw decrease uniformly following filtering. While standard errors for some

coefficients and some horizons go up following filtering, probably impacted by the use of

a high number of explanatory variables, both in-sample and out-of-sample R2 indicate
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an improvement in performance for all forecasting horizons.

Table 5: Estimated 1-, 5-, and 22-day ahead HAR(P)-Q models for SPY and stocks
average

HAR-Q HARP-Q
h = 1 h = 5 h = 22 h = 1 h = 5 h = 22

β0 0.005 0.111⋆⋆ 0.319⋆⋆⋆ 0.059 0.139⋆⋆⋆ 0.342⋆⋆⋆

s.e. (0.045) (0.050) (0.083) (0.039) (0.047) (0.087)
βd 0.669⋆⋆⋆ 0.512⋆⋆⋆ 0.359⋆⋆⋆ 0.476⋆⋆⋆ 0.396⋆⋆⋆ 0.272⋆⋆⋆

s.e. (0.081) (0.097) (0.087) (0.071) (0.075) (0.061)
βw 0.363⋆⋆⋆ 0.320⋆⋆⋆ 0.232⋆⋆⋆ 0.420⋆⋆⋆ 0.371⋆⋆⋆ 0.260⋆⋆⋆

s.e. (0.082) (0.093) (0.092) (0.081) (0.091) (0.091)
βm 0.023 0.097 0.120 0.060 0.103 0.131
s.e. (0.072) (0.093) (0.106) (0.068) (0.089) (0.100)
βQ −0.007⋆⋆⋆ −0.005⋆⋆⋆ −0.004⋆⋆⋆ −0.003⋆⋆⋆ −0.003⋆⋆⋆ −0.002⋆⋆⋆

s.e. (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

R2
is 0.584 0.642 0.479 0.571 0.647 0.482

R2
oos 0.553 0.545 0.424 0.560 0.555 0.435

βd + βw + βm 1.055 0.929 0.711 0.957 0.870 0.663

Average Stocks

R
2

is 0.490 0.589 0.502 0.498 0.600 0.510

R
2

oos 0.411 0.477 0.407 0.418 0.504 0.409
βd + βw + βm 0.981 0.895 0.730 0.905 0.834 0.686

Note: The table reports the regression coefficients, standard errors in parentheses,
and in- and out-of-sample R-squared for the HAR-Q and HARP-Q models based
on various horizons, estimated on SPY data. The standard errors are estimated
using the Newey-West HAC estimator. The bottom panel shows the stock average
in- and out-of-sample R-squared obtained for HAR and HARP models of various
horizons. ⋆, ⋆⋆ and ⋆⋆⋆ denote significance at 10%, 5% and 1% level, respectively.

For the HARP-Q model, standard errors for the daily, weekly and monthly coefficients

are lower across the board than for HAR-Q, while the standard error of βQ, the estimated

coefficient for RQ
1/2
t RVt, stays approximately constant. While all out-of-sample R2 indi-

cate a better performance following filtering, the in-sample 1-day ahead model for SPY

is lower for the HARP-Q model. Bollerslev et al. (2016) explain that the adjustment to

account for measurement error has a bigger impact at shorter horizons, while measure-

ment errors tend to average out at longer horizons. It is thus plausible that for the 1-day

model, the HAR-Q correction trims “just enough” of the RVt−1 regressor, while further

trimming to account for periodicity increases the in-sample standard error.
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4.3 Out-of-sample forecasting results

In addition to the MSE and QLIKE forecast loss functions defined in equation (21), we

compute the GonzÃ¡lez-Rivera et al. (2004) Value-at-Risk-based smoothed loss function,

given by:

VaR =

[
α− 1

1 + eδ(rt−CVaRα
t )

]
(rt − CVaRα

t ) ,

where

CVaRα
t = µt + Φ−1(α)

√
Ft,

where CVaR is the conditional value at risk, µt the forecasted conditional mean, assumed

time-invariant here, and Ft the forecasted conditional variance. Φ−1 is the inverse of the

standard normal cdf, δ > 0 a parameter controlling the smoothness. Following Clements

and Preve (2021), we set δ = 25 and α = 0.05. We will further refer to the this smoothed

loss function simply as value-at-risk.

For SPY, as well as for the 30 stocks in our sample, we assess the significance of

the forecasting gains attained for the HARP models relative to the HAR models by

applying the Diebold and Mariano (1995) test. Let ϵt,t+h−1 be the errors from one of

the HAR models in equations (12), (14),(16) and (18) and ϵft,t+h−1 the errors from these

models’ HARP counterparts. Further, let L(·) denote one of the above loss functions

and dt = L(ϵft,t+h−1) − L(ϵt,t+h−1). Then, the Diebold and Mariano (1995) test statistic

is defined as:

DM =
1
T

∑T
t=1 dt√

V̂ar
(

1
T

∑T
t=1 dt

) → N (0, 1), (23)

where V̂ar
(

1
T

∑T
t=1 dt

)
is a consistent estimator for the variance of the dt sample mean.

We run a two-tailed test, where rejection when DM < 0 (DM > 0) means that the

average loss from HARP (HAR) models is lower than the average loss from HAR (HARP)

models.

We remind the reader that the intraday periodicity of day t is estimated using a rolling

window of 20 trading days. In addition, we re-estimate all HAR and HARP models on

rolling windows of 1000 days and compute out-of-sample forecast losses.22 The ratios of

the losses from HARP versus HAR models for the 1-day, 1-week and 1-month horizons

are reported in Table 6. For each forecasting horizon, the top panel shows results for the

SPY and the average across all stocks.

22The rolling window length is equivalent to approximately 20% of the length of the dataset.
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Table 6: Out-of-sample forecast losses

(a) h = 1 (b) h = 5 (c) h = 22

HARP/ HARP-Q/ HARP-J/ HARP-CJ/ HARP/ HARP-Q/ HARP-J/ HARP-CJ/ HARP/ HARP-Q/ HARP-J/ HARP-CJ/
HAR HAR-Q HAR-J HAR-CJ HAR HAR-Q HAR-J HAR-CJ HAR HAR-Q HAR-J HAR-CJ

SPY

MSE 0.956⋆ 0.985 0.957⋆ 0.955⋆ 0.934⋆ 0.978 0.934⋆ 0.933⋆ 0.984 0.966⋆ 0.985 0.976⋆

QLIKE 0.979⋆ 1.355♦ 0.985 1.018 0.932⋆ 0.936⋆ 0.928⋆ 0.950⋆ 0.957⋆ 0.930⋆ 0.956⋆ 0.945⋆

VaR 0.993 1.009 0.992⋆ 0.991⋆ 0.999 1.001 1.000 0.998 0.999 1.003 0.999 0.994⋆

Avg.
MSE 0.971 0.991 0.966 0.950 0.951 0.947 0.945 0.958 0.969 0.985 0.975 0.983
QLIKE 0.934 0.984 0.936 0.940 0.927 0.962 0.931 0.946 0.937 0.952 0.942 0.941

Stocks VaR 0.992 0.994 0.993 0.993 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.999

Diebold & Mariano Test – Individual Stocks

MSE 14 : 0 8 : 0 12 : 0 14 : 0 16 : 1 15 : 0 17 : 0 18 : 1 13 : 0 14 : 2 9 : 1 12 : 2
QLIKE 23 : 0 15 : 0 24 : 2 21 : 0 22 : 2 18 : 1 20 : 1 21 : 1 16 : 1 14 : 1 16 : 1 15 : 2
VaR 15 : 5 14 : 4 11 : 6 12 : 5 13 : 5 11 : 4 13 : 6 13 : 5 15 : 4 14 : 6 15 : 7 9 : 5

Note: This table reports the ratio of the losses from HARP versus HAR models for various forecasting horizons. ⋆(♦) indicates that the losses of the HARP (HAR)
models are significantly lower compared to the HAR (HARP) model at the 5% significance level based on the Diebold and Mariano (1995) test. The entries of type
“xx : yy” summarize the results of the Diebold and Mariano test for the 30 stocks considered. The first number, “xx”, shows the number of stocks for which the HARP
model significantly outperforms the HAR model, while the second number, “yy”, indicates the number of stocks for which the opposite is true. Filtered measures used
in the HARP models are constructed using a rolling window of 20 trading days to estimate the intraday periodicity of day t.
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Starred numbers indicate HARP outperforms HAR at a 5% significance level, while

numbers with a diamond superscript indicate that HAR significantly outperforms HARP.

For each forecasting horizon, the last three rows show the results of the Diebold and

Mariano (1995) test for the 30 stocks in our sample. For each entry, the first value

indicates the number of stocks for which HARP models outperform HAR models at

5% significance level, while the second value shows the number of stocks for which the

opposite is true.

In the case of the 1-day ahead forecasts (h = 1), all except two loss ratios take values

below 1 for SPY. The Diebold and Mariano (1995) test applied to the MSE loss function

indicates significant gains (at 5% significance level) from forecasting the SPY RV based

on filtered data for the HARP, HARP-J, and HARP-CJ. For the QLIKE and VaR loss

functions, we find significant gains after filtering for respectively the HARP and the

models with realized jumps in their specifications (last two columns).

The average loss ratios for all considered stocks and all models are below 1. Moreover,

independently of the loss function, forecasting model or horizon, we generally find signif-

icant gains from filtering for more than one-third of the stocks considered using the MSE

and VaR, while for the QLIKE we find significant gains for at least half of the stocks. In

contrast, for QLIKE, the number of stocks for which the opposite is true is at most 2,

while for the VaR loss function, it is 6, and for MSE, it is 0.

For the 1-week ahead forecasts (h = 5), all except two loss ratios are below 1 in the

case of SPY. Furthermore, for the first two loss functions, the Diebold and Mariano (1995)

test shows significant losses for at least 3 out of the 4 HARP models considered. Across

all models, the average loss ratios for all stocks under consideration are below 1. For 9

out of the 12 loss-function - model pairs, more than half of the stocks feature significantly

lower HARP losses. By comparison, HAR models outperform HARP models, based on

the MSE and QLIKE, for a number of stocks between 0 and 2.

For the 1-month ahead forecasts (h = 22), all but one ratios are below 1 for SPY.

The exception occurs for the VaR loss ratio HARP-Q/HAR-Q, but even in this case,

the ratio remains close to 1. For the HARP-CJ model, the Diebold and Mariano (1995)

test applied to all loss functions indicates significant gains over the HAR model. The

remaining HARP models always significantly outperform their HAR counterpart based

on the QLIKE loss function, whereas for the HARP-Q model we also find significantly

lower MSE.

The stock average loss ratios are always lower than 1. Furthermore, MSE is signifi-

cantly lower in the case of HARP models for a number of stocks ranging between 9 and
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14, while the HARP QLIKE loss is significantly lower for a number of stocks ranging

between 14 and 16. For the VaR loss function, the number of stocks showing significant

forecast gains following filtering is between 9 and 15. By comparison, the number of

stocks for which the HAR models outperform the HARP models oscillates between 0 and

2 for the MSE and QLIKE. Although this number oscillates between 4 and 7 for the

VaR loss function, we find that the number of significant stocks for the HARP models

generally doubles that of the HAR models.

We further compare the performance of the filtered models with that of the unfiltered

ones by ranking the eight models considered throughout the paper (HAR,HAR-J, HAR-

CJ, HAR-Q and their filtered counterparts) based on the model confidence set approach

of Hansen et al. (2011). For every possible pair of models p, q, where p, q = 1, . . . , 8, we

compute the difference between the values for a given loss function dpq,t = L(ϵp,[t,t+h−1])−
L(ϵq,[t,t+h−1]). Models with the highest losses are then sequentially eliminated until the

differences between the remaining models are not significant at a 5% significance level.

The remaining models are then ranked from the one exhibiting the lowest losses to the

one with the highest. The covariances for the employed tests statistics are estimated

using a block bootstrap with length equal to 20 days and 5,000 replications.

Table 7 summarizes the results on the model confidence set for SPY, as well as the 30

stocks in our sample, using the three loss functions we have used throughout this section.

For SPY, conditional on the model not having been eliminated, we report its ranking. For

all forecasting horizons, filtered models generally occupy at least 3 out of the 4 first places

for the MSE, while for the QLIKE and VaR losses, filtered models generally take at least

2 of the 4 first places. When h = 5, the periodicity filtered models are ranked 1–4 out

of 8 based on the MSE losses, taking the following order: HARP-J, HARP, HARP-CJ,

HARP-Q.

For the stocks, for each model, forecasting horizon and loss function, we report the

number of stocks for which the model was retained in the model confidence set. In the

majority of cases, this number increases following filtering. For instance, for h = 1, the

HAR model was not eliminated based on the QLIKE criterion for 10 out of the 30 stocks

in the sample. At the same time, the HARP model was retained for 26 out of the 30

stocks.

In summary, empirical evidence supports the notion that filtering periodicity results

in superior forecasting performance across all considered models and forecasting hori-

zons.23 Further validation of these findings is provided in the internet appendix. For

23Section IA.5 in the internet Appendix presents the results of a nested HAR model that incorporates
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instance, Section IA.1 presents out-of-sample results for log-transformed models, Sec-

tion IA.2 demonstrates out-of-sample results using an alternative test for jumps by An-

dersen et al. (2012), and Section IA.3 reports out-of-sample results using alternative

window sizes to compute intraday periodicity –specifically, windows equivalent to 40,

125, 250, 500, and 1,000 trading days.

Table 7: Model confidence set

Unfiltered Measures Filtered Measures

HAR HAR-Q HAR-J HAR-CJ HARP HARP-Q HARP-J HARP-CJ

Panel A: h = 1

SPY
MSE 6 2 7 8 3 1 4 5
QLIKE 5 3 4 1 2
VaR 4 3 1 2

Stocks

MSE 28 26 29 28 30 30 30 29
QLIKE 10 15 11 9 26 22 28 21
VaR 22 26 23 25 26 28 27 28

Panel B: h = 5

SPY
MSE 6 7 5 8 2 4 1 3
QLIKE 3 1 2
VaR 4 5 2 8 3 7 1 6

Stocks

MSE 26 28 27 27 29 29 29 29
QLIKE 13 19 12 10 21 28 22 19
VaR 26 28 25 27 28 30 27 28

Panel C: h = 22

SPY
MSE 6 8 4 5 3 7 2 1
QLIKE 1 2 3
VaR 1 4 5 2 3

Stocks

MSE 27 29 28 26 29 29 29 29
QLIKE 18 26 19 21 26 30 26 25
VaR 25 26 27 26 26 30 28 28

Note: The table reports results on the model confidence set across the three forecasting horizons:
one-day (h = 1), one-week (h = 5), and one-month (h = 22). For SPY, we report the ranking of
each model in the model confidence set. Empty entries indicate that the model was excluded from
the set. For the stocks, we report the number of stocks for which a model was retained in the model
confidence set. The covariances for the employed tests statistics are estimated using a block bootstrap
with length equal to 20 days and 5,000 replications.

all unfiltered and filtered regressors. We employ a LASSO approach to regularize the model. The results
confirm the advantages of using regressors from which periodicity has been filtered out. Specifically, we
find that the daily and weekly filtered coefficients are selected in at least 70% (and up to 91%) of the
days, while the same coefficients for unfiltered models are selected in less than 50% of the days at h = 1.
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4.4 An analysis of return predictability using periodicity-filtered
variance risk premium measures

Bollerslev et al. (2009) show that the variance risk-premium, measured as the dif-

ference between the implied and the realized variance, dominates other predictors in

explaining the variation in quarterly stock returns.24 Bekaert and Hoerova (2014) revisit

this question by employing a wide range of competing models to forecast realized variance.

In this section, we assess whether the superior forecasting performance of HARP models

translates into improved predictive power for stock returns. Specifically, we propose using

the HARP methodology to construct variance risk premium measures that may better

predict stock returns. We measure the variance risk-premium (VRP) as follows:

V RPt = EQ
t [RVt+1]− EP

t [RVt+1], (24)

where EQ
t [RVt+1] represents the risk-neutral variance with a 30-day maturity, proxied

by the model-free implied variance of Bakshi et al. (2003),25 and EP
t [RVt+1] denotes the

monthly forecast derived from either the HAR or HARP models.

Figure 5: Variance risk-premium
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Note: The plot depicts the SPY variance risk-premium (blue line), and the average of variance
risk-premia over individual stocks (red dashed line). EP

t [RVt+1] in equation (24) is derived with
the HARP model. Options written on SPY are available from January 10, 2005, so the SPY
VRP starts on the latter date, while the stocks’ VRP is available from December 26, 2003.

24Some of these predictors, typically available at the monthly or quarterly frequencies, are the Treasury
bill rate (Campbell, 1987), valuation ratios (Kothari and Shanken, 1997, Hodrick, 1992, Ang and Bekaert,
2007), and information derived from corporate payout and financing activities (Lamont, 1998, Baker and
Wurgler, 2000), among others.

25For details on the construction of the model-free implied variance, we direct the reader to Section IC.
of the internet appendix.
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Figure 5 illustrates the VRP for SPY (solid blue line) and the average VRP across all

individual stocks (dashed red line). Our findings align with those reported by Carr and

Wu (2008). The VRPs are statistically significant and consistently positive, indicating a

persistent premium for variance risk in the market. The magnitude of the SPY VRP is

larger than the average VRP of individual stocks.

Table 8: SPY monthly predictive regression

HAR HAR-Q HAR-J HAR-CJ HARP HARP-Q HARP-J HARP-CJ

Panel A: Univariate Predictive Regressions
VRP 1.044 0.850 1.044 0.987 1.442 1.275 1.436 1.299
t-statNW [2.542]⋆⋆ [2.449]⋆⋆ [2.638]⋆⋆⋆ [2.535]⋆⋆ [2.816]⋆⋆⋆ [2.603]⋆⋆⋆ [2.894]⋆⋆⋆ [2.719]⋆⋆⋆

t-statHD [2.205]⋆⋆ [1.876]⋆ [2.218]⋆⋆ [2.122]⋆⋆ [2.386]⋆⋆ [2.129]⋆⋆ [2.398]⋆⋆ [2.210]⋆⋆

W IV X [6.310]⋆⋆ [3.273]⋆ [8.043]⋆⋆⋆ [5.815]⋆⋆ [7.903]⋆⋆⋆ [5.386]⋆⋆ [8.196]⋆⋆⋆ [5.500]⋆⋆

R2 (%) 0.582 0.597 0.853 0.783 0.999 0.791 0.991 0.801

Panel B: Predictive Regressions with Controls
VRP 1.530 1.494 1.537 1.512 1.880 1.800 1.876 1.756
t-statNW [2.601]⋆⋆⋆ [2.508]⋆⋆ [2.600]⋆⋆⋆ [2.672]⋆⋆⋆ [2.944]⋆⋆⋆ [2.912]⋆⋆⋆ [3.036]⋆⋆⋆ [2.961]⋆⋆⋆

t-statHD [2.465]⋆⋆ [2.468]⋆⋆ [2.640]⋆⋆⋆ [2.491]⋆⋆ [2.800]⋆⋆⋆ [2.728]⋆⋆⋆ [2.784]⋆⋆⋆ [2.819]⋆⋆⋆

W IV X [5.165]⋆⋆ [3.662]⋆ [6.566]⋆⋆ [5.767]⋆⋆ [6.689]⋆⋆⋆ [6.651]⋆⋆⋆ [6.654]⋆⋆⋆ [6.664]⋆⋆⋆

SPRD 0.806 0.798 0.805 0.794 0.767 0.790 0.767 0.772
t-statNW [3.113]⋆⋆⋆ [3.058]⋆⋆⋆ [3.109]⋆⋆⋆ [3.044]⋆⋆⋆ [2.966]⋆⋆⋆ [3.079]⋆⋆⋆ [2.965]⋆⋆⋆ [2.981]⋆⋆⋆

t-statHD [2.971]⋆⋆⋆ [2.865]⋆⋆⋆ [2.965]⋆⋆⋆ [2.847]⋆⋆⋆ [2.741]⋆⋆⋆ [3.008]⋆⋆⋆ [2.791]⋆⋆⋆ [2.868]⋆⋆⋆

W IV X [7.214]⋆⋆⋆ [6.961]⋆⋆⋆ [7.182]⋆⋆⋆ [6.875]⋆⋆⋆ [6.765]⋆⋆⋆ [7.386]⋆⋆⋆ [6.688]⋆⋆⋆ [6.798]⋆⋆⋆

CV 2.333 2.354 2.323 2.365 2.127 2.075 2.125 2.178
t-statNW [3.574]⋆⋆⋆ [3.539]⋆⋆⋆ [3.557]⋆⋆⋆ [3.655]⋆⋆⋆ [3.672]⋆⋆⋆ [3.563]⋆⋆⋆ [3.561]⋆⋆⋆ [3.637]⋆⋆⋆

t-statHD [2.756]⋆⋆⋆ [2.704]⋆⋆⋆ [2.753]⋆⋆⋆ [2.708]⋆⋆⋆ [2.892]⋆⋆⋆ [2.795]⋆⋆⋆ [2.790]⋆⋆⋆ [2.662]⋆⋆⋆

W IV X [7.593]⋆⋆⋆ [6.162]⋆⋆ [6.909]⋆⋆⋆ [6.592]⋆⋆ [7.696]⋆⋆⋆ [6.562]⋆⋆ [6.737]⋆⋆⋆ [8.158]⋆⋆⋆

adj R2 (%) 5.101 5.011 5.096 5.135 5.307 5.043 5.255 5.350

Note: The table shows results for the monthly predictive regressions rt+1 = α + βV RPt + θ′Xt + et+1, where
rt+1 is the next month’s SPY return in excess of the 3-month T-bill rate, X is the matrix with controls, and θ is
the vector of coefficients. SPRD is the implied volatility spread (e.g., Cremers and Weinbaum, 2010), and CV is
the conditional variance (e.g., Bekaert and Hoerova, 2014). t-statNW is calculated using Newey-West standard
errors with a lag length of 44-days. t-statHD is calculated using Hodrick (1992)’s standard errors, while W IV X is
the robust Wald test of Kostakis et al. (2015). R-squares are reported as a percentage and are displayed in bold
font whenever they exceed those of the HAR (HARP) counterparts. Symbols ⋆, ⋆⋆, and ⋆⋆⋆ denote significance
levels of 10%, 5%, and 1%, respectively.

Our primary objective is to forecast the monthly market excess return, defined as the

SPY return in excess of the 3-month T-bill rate. To achieve this, we employ overlapping

predictive regressions. Table 8 presents the main findings in two panels. Panel A reports

the results for univariate regressions, where the subsequent monthly excess return is re-
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gressed on the VRP. Panel B shows the results for regressions with additional control

variables: conditional variance (CV) and the implied volatility spread (SPRD). While

VRP has been interpreted as an indicator of the representative agent’s risk aversion (e.g.,

Bollerslev et al., 2011, Bekaert et al., 2022), CV serves as a proxy for uncertainty over

consumption or dividend growth (e.g., Bekaert et al., 2009). These represent two impor-

tant state variables driving time variation in the equity premium. SPRD, calculated as

the difference between at-the-money (ATM) call and put implied volatilities, measures

price pressure related to market sentiment and risk perceptions regarding future economic

states. Such factors bolster the disparity between the risk-neutral and the physical vari-

ances.26 Extant literature has identified SPRD as a robust predictor of both the market

equity premium (e.g., Atilgan et al., 2015, Cao et al., 2020, Han and Li, 2021) and the

cross-section of stock returns (e.g., Cremers and Weinbaum, 2010, Bali and Hovakimian,

2009).

Given our use of overlapping excess returns, we employ multiple approaches to ensure

a robust statistical inference. We calculate Newey-West standard errors with a lag length

of 44 days,27 as well as Hodrick (1992) standard errors. In addition, we implement

the robust Wald test proposed by Kostakis et al. (2015), which addresses the issue of

persistence in predictors.

Results for the univariate regressions suggest a positive relationship between VRP

and future excess returns, consistent with previous findings in the literature. If investors

anticipate higher future volatility, a discount is built into prices, leading to higher future

returns. This positive relationship remains statistically significant regardless of whether

we employ HAR or HARP models, and across all the test statistics.VRP measures derived

from HARP models exhibit superior explanatory power, as evidenced by higher R-squared

values. Specifically, the HARP, HARP-J, and HARP-CJ models yield the highest R2 val-

ues, respectively. These improvements are sizeable; for instance, the predictive regression

using the HARP model for VRP construction achieves an R2 of 0.999%, which is almost

twofold higher than that obtained by the VRP derived from the HAR model. The findings

in Panel B further support the superiority of HARP-based VRP measures in predicting

excess returns. They display higher adjusted R2 and highly significant VRP regressors

for all models considered.28

26We find that SPRD has a correlation of 13% with VRP, which is in line with the magnitude reported
by Atilgan et al. (2015). This indicates that these measures likely capture different types of information.
For instance, Bali and Hovakimian (2009) find that SPRD is more closely related with jump risk.

27The use of a relatively large number of lags (2×horizon) improves the power of the Newey-West
estimator (e.g., Bekaert and Hoerova, 2014, Sun et al., 2008).

28Table IA.6, of the internet appendix, shows that similar conclusions are drawn if we only control
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We further investigate the predictive power of variance risk premia for future stock

excess returns. Consistent with previous literature (e.g., Carr and Wu, 2008, Vilkov,

2008), we identify non-zero VRPs for individual stocks, which are an order of magnitude

smaller than the market index VRP. This finding naturally leads us to examine whether

these individual VRPs contain valuable predictive information for future stock returns.

To address this question, we employ a panel regression framework with firm fixed effects

and clustered robust standard errors (Petersen, 2008). Our findings are presented in

Table 9.29

Table 9: Stocks monthly predictive regression

HAR HAR-Q HAR-J HAR-CJ HARP HARP-Q HARP-J HARP-CJ

Panel A: Univariate Predictive Regressions
VRP 0.103 0.082 0.098 0.097 0.110 0.080 0.113 0.107
t-stat [1.853]⋆ [1.386] [1.661]⋆ [1.775]⋆ [1.976]⋆⋆ [1.433] [2.000]⋆⋆ [2.098]⋆⋆

R2 (%) 0.054 0.033 0.050 0.047 0.060 0.037 0.063 0.056

Panel B: Predictive Regressions with Controls
VRP 0.183 0.165 0.181 0.180 0.170 0.147 0.172 0.168
t-stat [1.762]⋆ [1.629] [1.728]⋆ [1.630] [1.790]⋆ [1.519] [1.771]⋆ [1.817]⋆

SPRD 0.133 0.138 0.134 0.134 0.137 0.144 0.136 0.138
t-stat [2.100]⋆⋆ [2.079]⋆⋆ [2.116]⋆⋆ [2.164]⋆⋆ [2.065]⋆⋆ [2.156]⋆⋆ [2.064]⋆⋆ [2.090]⋆⋆

CV 0.115 0.126 0.116 0.119 0.123 0.137 0.122 0.124
t-stat [0.983] [1.060] [0.996] [1.056] [1.032] [1.260] [1.126] [1.123]

adj R2 (%) 0.176 0.168 0.178 0.178 0.187 0.174 0.185 0.189

Note: The table shows results for the monthly predictive regressions ri,t+1 = α + βV RPi,t + θ′Xi,t + ei,t+1,
where ri,t+1 denotes the next month’s return in excess of the 3-month T-bill rate for the ith stock, X is the
matrix with controls, and θ is the vector of coefficients. SPRD is the implied volatility spread (e.g., Cremers and
Weinbaum, 2010), and CV is the conditional variance (e.g. Bekaert and Hoerova, 2014). The model is estimated
within a panel framework with firm fixed effects. The t-statistics are estimated using clustered robust standard
errors (e.g., Petersen, 2008). R-squares are reported as a percentage and are displayed in bold font whenever
they exceed those of the HAR (HARP) counterparts. Symbols ⋆, ⋆⋆, and ⋆⋆⋆ denote significance levels of 10%,
5%, and 1%, respectively.

Results show that individual variance risk premia positively predict future monthly

excess returns, consistent with findings at the aggregate level. However, the coefficients

of all individual VRPs are less significant compared to the market VRP, indicating that

while individual VRPs possess some predictive power for future returns, their information

content is less rich. This result is unsurprising given our observation of a weakly positive

for the conditional variance of the models.
29Table IA.7 in the Internet Appendix presents qualitatively similar results when t-statistics are

computed using clustered robust standard errors with Newey-West correction and 44 lags.
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average VRP. Carr and Wu (2008) also note that individual stock VRP averages are

typically smaller than market VRP and can even be negative for some stocks.30

Despite the weaker predictive power of individual VRPs, we consistently observe that

HARP-based VRP measures outperform their HAR-based counterparts. With the sole

exception of the HARP-Q-based VRP, all HARP-based VRPs are significant at the 5%

level. In contrast, the HAR-based VRPs, are only significant at the 10% level. These

results are robust to controlling for the implied volatility spread and the conditional

variance, albeit weaker compared to the univariate results. While the HARP-based VRPs

are now significant at the 10% level, only the HAR-based and HAR-CJ-based VRPs

remain significant at the 10% level.

In summary, we document that VRP measures derived from HARP models are likely

more informative than their HAR counterparts in predicting future monthly excess re-

turns. For the aggregate market, the improvement is sizeable, yielding an increase in the

R2 of up to 50% relative to HAR-based measures. However, for individual stocks, the R2

improvement is marginal, and the overall significance is modest.

4.5 An alternative approach to dealing with periodicity

The HARP methodology proposed in this paper addresses the issue of forecasting with

periodicity-contaminated regressors by substituting them with filtered-out estimates. An

alternative approach is to explicitly incorporate periodicity into the forecasting regression,

akin to the HARQ model introduced by Bollerslev et al. (2016). This model, referred to

as HAR-QP, is constructed as a HAR model in which the coefficient of RVt−1 is corrected

for both measurement error and periodicity, as follows:

RVt,t+h−1 = β0 +

(
βd + βdQ

[
RQt−1∆f̂ 4

t−1

]1/2)
RVt−1 + βwRVt−5,t−1+βmRVt−22,t−1+

(25)

ϵt,t+h−1.

While this model, like the HARP models, depends on a pre-estimate of periodicity, its

coefficient correction is predicated on the assumption that IVt follows an AR(1) process.

More complex DGPs would require more involved corrections.

We compare the out of sample performance of this approach to the performances

of HARQ and HARP-Q models. Results are included in Table 10. Panels A and B

present, respectively, the ratio of losses from the HAR-P and HAR-QP models versus

30Please note that Carr and Wu (2008) define their VRP as realized minus implied variances, while
we define it as implied minus realized variances.
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the HAR-Q model for the 1-day, 1-week and 1-month horizons. In addition, the numbers

in parentheses, included in the superscript of each loss ratio, represent results from the

model confidence set. For Panel A (SPY), we provide the ranking of each model within

the model confidence set. Empty entries indicate that the model was excluded from the

set. For Panel B (stock average), we report the number of stocks for which a model was

retained by the model confidence set. The covariances for the employed test statistics are

estimated using a block bootstrap with a length of 20 days and 5,000 replications.

Table 10: out-of-sample forecast losses

HAR-Q HARP-Q HAR-QP HAR-Q HARP-Q HAR-QP
Panel A: SPY Panel B: Stock Average

h = 1

MSE 1.000(3) 0.985(2) 0.947(1) 1.000(30) 0.991(30) 0.993(30)

QLIKE 1.000(2) 1.355 0.994(1) 1.000(21) 0.984(29) 0.996(23)

VaR 1.000(2) 1.009(3) 0.997(1) 1.000(17) 0.994(24) 1.000(18)

h = 5

MSE 1.000(2) 0.978(1) 1.002(3) 1.000(26) 0.947(30) 0.979(28)

QLIKE 1.000 0.936(1) 1.002 1.000(24) 0.962(30) 0.999(27)

VaR 1.000(2) 1.001(3) 0.991(1) 1.000(20) 0.998(23) 0.996(25)

h = 22

MSE 1.000 0.966(1) 0.973(2) 1.000(28) 0.985(28) 0.968(30)

QLIKE 1.000 0.930(2) 0.923(1) 1.000(22) 0.952(30) 0.965(28)

VaR 1.000(2) 1.003(3) 0.999(1) 1.000(21) 0.998(25) 0.998(25)

Note: This table presents the ratio of losses from the HARP-Q and HAR-QP models
to the HAR-Q model for various forecasting horizons. The numbers in parentheses,
included in the superscript of each loss ratio, represent results in the model confidence
set. For SPY, we provide the ranking of each model within the model confidence set.
Empty entries indicate that the model was excluded from the set. For the stocks, we
report the number of stocks for which a model was retained in the model confidence
set. The covariances for the employed test statistics are estimated using a block
bootstrap with a length of 20 days and 5,000 replications.

As can be seen, the new HAR-QP model generally outperforms the standard HAR-Q

model, confirming the importance of accounting for intraday periodicity when forecasting

future RV . Additionally, the HAR-QP model performs well against the HARP-Q model.

Specifically, for SPY, improvements of up to 5% and 4% at h = 1, and up to 8% and

0.7% at h = 22 are observed relative to the HAR-Q and HARP-Q models, respectively.

The Model Confidence Set corroborates these improvements by consistently ranking the

HAR-QP model first at h = 1 and h = 22 across all loss functions, except for the MSE
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at h = 22. Notably, the HAR-Q model is never ranked first and is often excluded from

the set, affirming the superior performance of our proposed models. Turning our atten-

tion to the results for the stock average (Panel B), both the HAR-QP and HARP-Q

models outperform the HAR-Q model across all forecasting horizons and loss functions.

Furthermore, the number of stocks retained by the MCS approach is consistently higher

for models that account for intraday periodicity, further confirming their superior per-

formance over unfiltered approaches. In sum, our results indicate that the HARP-Q and

HAR-QP models should be preferred over the standard HAR-Q model.

5 Conclusion

The contribution of this paper is twofold. Firstly, we document the impact of volatil-

ity intraday periodicity on forecasting the realized variance using heterogenous auto-

regressive (HAR) models. While periodicity has no impact on the realized volatility

itself, it distorts its variance, leading to biases in the coefficients of the forecasting mod-

els. We derive the variance and the 1-lag auto-correlation coefficient for the realized

variance in the case of a very simple DGP and show that periodicity artificially inflates

the variance and has a decreasing impact on the autocorrelation. We further show that

filtering periodicity out shrinks back the variance, provided we estimate periodicity over a

big sample. In addition, we document that periodicity leads to spurious jumps detection.

Secondly, we propose a HAR model where predictors rely on data from which periodic-

ity is filtered out and denote this model “HARP”. We provide a thorough set of in-sample

and out-of-sample forecasting comparisons between the HARP and HAR models, relying

on both simulated and empirical data. Our analysis encompasses the HARP versions of

the most common HAR models in the literature, the HAR model by Corsi (2009), the

HAR-J and HAR-CJ models by Andersen et al. (2007a), and the HAR-Q model by Boller-

slev et al. (2016). Our dataset includes intraday observations for the SPDR ETF and 30

S&P500 constituents for the period 2000 to 2020. The simulation and empirical evidence

indicates that pre-filtering the data for periodicity leads to forecasting gains for all model

specifications and all forecasting horizons. The MCS also ranks the filtered models above

the unfiltered. Finally, an empirical application examining return predictability through

the RV-based variance risk premium demonstrates that filtering for periodicity to con-

struct the VRP results in a more accurate predictor of excess returns for both the index

and individual stocks, albeit with weaker results for the latter. These findings remain

robust even after controlling for the implied volatility spread and conditional variance.
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A Some Proofs for the Simple AR(1) Model

A.1 AR(1) with periodicity

Under the assumptions of Section 2.1, RVt =
∑M

i=1 r
2
t,i = ∆IVt

∑M
i=1 f

2
i w

2
i .

E(RVt) = ∆E(IVt)
M∑
i=1

f 2
i = E(IVt),

where we used the fact that E(w2
i ) = 1.

Proof of equation (10a).
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t ).

For comparison purposes, we compute the same variance in the absence of periodicity,

where the superscript NP below stands for “no periodicity”.:

Proof of equation (10b).

Var(RVt)
NP = ∆2 E(IV 2

t )E

 M∑
i=1

w4
i +

M∑
i=1

M∑
j=1
j ̸=i

w2
iw

2
j

− [E(IVt)]
2

= ∆2 E(IV 2
t )

[
3

∆
+

1

∆

(
1

∆
− 1

)]
− [E(IVt)]

2

= ∆2 E(IV 2
t )

(
2

∆
+

1

∆2

)
− [E(IVt)]

2

= Var(IVt) + 2∆E(IV 2
t ).
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Let wi, i = 1, . . . ,M be a sequence of i.i.d. standard normal variables entering the

intraday returns on day t and w∗
i , i = 1, . . . ,M another sequence of i.i.d. standard

normals, independent of wi, entering returns on day t − h, h ≥ 1. The auto-covariance

of lag h is obtained below.

Auto-covariance derivation.

Cov (RVt, RVt−h) = ∆2Cov(IVt, IVt−1)E

(
M∑
i=1

f 2
i wi,t

2

)
E

(
M∑
i=1

f 2
i wi,t−1

2

)
= Cov(IVt, IVt−1),

where we used the fact that wi,t ⊥ wi,t−1 and
∑M

i=1 f
2
i = 1

∆

Proof of the formula for ϕ.

ϕ =
Cov (RVt, RVt−1)

Var (RVt)

=
Cov (IVt, IVt−1)

Var(IVt) + 2∆2
∑M

i=1 f
4
i E(IV 2

t )

=
ΦVar(IVt)

Var(IVt) + 2∆2
∑M

i=1 f
4
i E(IV 2

t )

=
Φ

1 + 2∆2
∑M

i=1 f
4
i

E(IV 2
t )

Var(IVt)

.

A.2 AR(1) with filtered data

The filtered returns are rfi,t =
ri,t

f̂i
, leading to the filtered RV: RV f

t =
∑ ∆IVtf2

i w
2
i,t

f̂i
2 =

∆IVt

∑ f2
i

f̂i
2w2

i,t.

Let us first define a simpler version of the estimator f̂i, which is more efficient, but

less robust to jumps. This is not a problem as in this set-up we do not have jumps. Let

ri,t, t = 1 . . . T , assumed standardized with
√
∆IVt for simplicity: ri,t = fiwi,t∼ N (0, f 2

i ).

We define an estimator for the variance of ri,t as f̂ 2
i =

∑T
t=1 ri,t

2

T
, with the following

mean and variance:

E
(
f̂ 2
i

)
= E

(
f 2
i

∑T
t=1wi,t

2

T

)
= f 2

i

E
(
f̂ 2
i − f 2

i

)2
= E

(
f̂ 4
i

)
− f 4

i = E

(∑T
t=1 ri,t

2

T

)2

− f 4
i

=
1

T 2

[
T∑
t=1

E
(
ri,t

4
)
+
∑∑

t̸=τ

E
(
ri,t

2
)
E
(
ri,τ

2
)]

− f 4
i

=
1

T 2

[
3Tf 4

i + T (T − 1)f 4
i

]
− f 4

i =
f 4
i

T 2

[
3T + T 2 − T − T 2

]
=

2f 4
i

T
.
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Note that
(

2f4
i

T

)− 1
2
f̂i

2
= Op(1), so

f2
i

f̂i
2

p→ 1 based on the continuous mapping theorem.

As f̂i
2
enters RV f

t as a ratio, we will approximate the variance of this ratio. Let us

assume 1
x
= 1

µx+ϵ
, for x a random variable with expected value µx > 0. The second order

Taylor series approximation of 1
x
around µx is:

1

x
≈ 1

µx

− 1

µ2
x

(x− µx) +
2

2µ3
x

(x− µx)
2 + . . . =

1

µx

− 1

µ2
x

(x− µx) +
1

µ3
x

(x− µx)
2

Applying the expectation and variance operators:

E
(
1

x

)
≈ 1

µx

+
1

µ3
x

E (x− µx)
2 =

1

µx

+
1

µ3
x

Var(x)

Var

(
1

x

)
≈ 1

µ4
x

Var(x) +
1

µ6
x

Var (x− µx)
2 =

1

µ4
x

Var(x) +
1

µ6
x

Var
(
x2 − 2µxx+ µ2

x

)
=

1

µ4
x

Var(x) +
1

µ6
x

[
Var

(
x2
)
+ 4µ2

x Var(x)− 4µxCov
(
x, x2

)]
In our case, we have: x = f̂i

2
; 1
x
= 1

f̂i
2 = 1

f2
i +ϵ

so µx = f 2
i , µ

2
x = f 4

i , µ
4
x = f 8

i , µ
6
x = f 12

i .

E

(
1

f̂ 2
i

)
≈ 1

f 2
i

+
2

f 2
i T

Var

(
1

f̂ 2
i

)
≈ 2

f 4
i T

+
1

f 12
i

[
(8T 3 + 40T 2 + 48T ) f 8

i

T 4
+ 4f 4

i

2f 4
i

T
− 4f 2

i

f 6
i

T 2
(8 + 4T )

]
=

2

f 4
i T

+
1

f 4
i

[
8T 3 + 40T 2 + 48T

T 4
+

8

T
− 4

T 2
(8 + 4T )

]
=

2

f 4
i T

+
1

f 4
i

[
8T 2 + 40T + 48

T 3
− 8

T
− 32

T 2

]
=

2

f 4
i T

+
1

f 4
i

(
8T 2 + 40T + 48− 8T 2 − 32T

T 3

)
=

2

f 4
i T

+
1

f 4
i

(
8T + 48

T 3

)
=

2

f 4
i T

+Op(T
−2)

To compute the above variance, we needed higher order moments for f̂ 2
i . To determine

them, we used the fact that z =
∑T

t=1 ri,t
2

f2
i

∼ χ2(T ) as a sum of squared i.i.d. standard

normals:

f̂ 2
i =

∑T
t=1 ri,t

2

T
=

f 2
i

T
z =⇒ z = T f̂ 2

i /f
2
i ∼ χ2(T )

The moments for f̂ 2
i are given to the right below, as a function of corresponding

moments for z:

Var(z) = Var

(
T f̂2

i

f2
i

)
= 2T

Var (z2) = Var

(
T f̂2

i

f2
i

)2

= 8T 3 + 40T 2 + 48T

Cov (z, z2) = Cov

[(
T f̂2

i

f2
i

)2

,
T f̂2

i

f2
i

]
= 4T 2 + 8T

=⇒

Var
(
f̂ 2
i

)
=

2f4
i

T

Var
(
f̂ 2
i

)2
=

(8T 3+40T 2+48T)f8
i

T 4

Cov

[(
f̂ 2
i

)2
, f̂ 2

i

]
=

(4T 2+8T)f6
i

T 3
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The variance of the filtered RV can be thus approximated:

Var
(
RV f

t

)
≈ Var (IVt) + 2∆E

(
IV 2

t

)
+ Var (IVt)

4

T

(
1 +

1

T

)
+∆E

(
IV 2

t

)(14

T
+

32

T 2
+

144

T 3

)
= Var

(
RV NP

t

)
+ Var (IVt)

4

T

(
1 +

1

T

)
+∆E

(
IV 2

t

)(14

T
+

32

T 2
+

144

T 3

)
,

where Var
(
RV NP

t

)
is the variance when no periodicity is present.

By comparison, the variance of the unfiltered RV is:

Var (RVt) = Var (IVt) + 2∆E
(
IV 2

t

)
∆

M∑
i=1

f 4
i

= Var (IVt) + 2∆E
(
IV 2

t

)
+ 2∆E

(
IV 2

t

)(
∆

M∑
i=1

f 4
i − 1

)

= Var
(
RV NP

t

)
+ 2∆E

(
IV 2

t

)(
∆

M∑
i=1

f 4
i − 1

)

To understand the difference between the two variances, we will compare them for the

case when T = 1000 and for Var(IVt), E (IV 2
t ) and ∆

∑
f 4
i calibrated to their values for

our simulated data: Var (IVt) ≈ 0.5, E (IV 2
t ) = 1.615 and ∆

∑
f 4
i = 1.0815. This gives

us bias for Var (RVt) of 1.615× 2
78

× 0.0815 = 0.0034. For Var
(
RV f

t

)
, the biggest part

of the bias is Var (IVt)
4
T
+∆E (IV 2

t )
14
T
= 4

1000
0.5 + 14

78×1000
1.615 = 0.0023.

B More on Methodology

B.1 Weighted Standard Deviation

For each i = 1, . . . ,M , we observe T standardized returns, r̄t,i, which we sort in

increasing order, as follows:

r̄(1),i ≤ r̄(2),i ≤ · · · ≤ r̄(T ),i

Given the above ordered set, we define the sub-sets containing half (κ = ⌊T/2⌋ + 1)

contiguous observations: {r̄(1),i, . . . , r̄(κ),i}, . . . , {r̄(T−κ+1),i, . . . , r̄(T ),i}. The shortest half

scale estimator is the shortest length of these subsets:

ShortHi = 0.741min(r̄(κ),i − r̄(1),i, . . . , r̄(T ),i − r̄(T−κ+1),i)

The shortest half scale periodicity estimator is given by:

f̂ShortH
i =

ShortHi

∆
∑M

j=1 ShortH
2
j

, ∆ ≡ 1/M
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The weights used to compute the weighted standard deviation in equation (5) are

defined, for all l = 1, . . . , T and all i = 1, . . . ,M , as:

χl,i = χ(r̄l,i/f̂
ShortH
i ),

χ(z) =

{
1 if z2 ≤ 6.635

0 otherwise.

B.2 Jump Tests

In this paper, we identify jumps relying mostly on the test proposed by Barndorff-

Nielsen and Shephard (2006a) and further developed by Huang and Tauchen (2005). The

test statistic, ZBV
t , is given by:

ZBV
t =

1−BVt/RVt√
0.61M−1max(1, TPQt/BV 2

t )
∼ N (0, 1)

where TPQt is the realized tripower quarticity, that consistently estimates the integrated

quarticity in the presence of jumps and is defined as:

TPQt = M1.74
M

M − 2

M∑
i=3

|rt,i|4/3|rt,i−1|4/3|rt,i−2|4/3
p−→
∫ t

t−1

σ4(u) du.

The above test is widely used in empirical work due to its simplicity and reasonable

size and power properties under various scenarios (see Dumitru and Urga, 2012).
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Internet Appendix
Forecasting the Realized Variance in the

Presence of Intraday Periodicity
Abstract

This appendix collects additional simulation and empirical results supporting
the main paper.
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IA. Additional Empirical Results

IA.1 Results for log-transformed HAR and HARP models

Table IA.1: Out-of-sample forecast losses for log-transformed models

(a) h = 1 (b) h = 5 (c) h = 22

HARP/ HARP-Q/ HARP-J/ HARP-CJ/ HARP/ HARP-Q/ HARP-J/ HARP-CJ/ HARP/ HARP-Q/ HARP-J/ HARP-CJ/
HAR HAR-Q HAR-J HAR-CJ HAR HAR-Q HAR-J HAR-CJ HAR HAR-Q HAR-J HAR-CJ

SPY

MSE 0.998 0.903⋆ 0.991 0.994 0.990 0.969⋆ 0.997 0.998 1.002 0.985⋆ 1.003 0.988⋆

QLIKE 0.987⋆ 0.993 0.990 0.993 0.984⋆ 0.979⋆ 0.987 0.983⋆ 0.994 0.957⋆ 0.988⋆ 0.993
VaR 0.999 0.997 0.999 0.999 0.990⋆ 0.998 0.995⋆ 0.996 0.991⋆ 0.989⋆ 0.982⋆ 0.997

Avg.
MSE 0.962 0.985 0.972 0.983 0.948 0.952 0.957 0.965 0.976 0.970 0.980 0.971
QLIKE 0.955 0.942 0.961 0.964 0.955 0.945 0.959 0.966 0.965 0.952 0.969 0.965

Stocks VaR 0.996 0.994 0.997 0.997 0.999 0.998 0.998 0.998 0.999 0.998 0.999 0.997

Diebold & Mariano Test – Individual Stocks

MSE 24 : 0 7 : 0 15 : 0 10 : 0 25 : 0 9 : 0 21 : 0 13 : 1 11 : 1 14 : 1 16 : 0 12 : 1
QLIKE 30 : 0 17 : 0 28 : 0 25 : 0 29 : 0 26 : 2 29 : 0 23 : 0 24 : 0 18 : 1 21 : 0 17 : 1
VaR 11 : 0 10 : 0 10 : 0 9 : 0 8 : 1 5 : 0 6 : 0 6 : 2 5 : 1 3 : 1 6 : 3 4 : 0

Note: This table reports the ratio of the losses from HARP versus HAR models for various forecasting horizons. ⋆(♦) indicates that the losses of the HARP (HAR)
models are significantly lower compared to the HAR (HARP) model at the 5% significance level based on the Diebold and Mariano (1995) test. The entries of type
“xx : yy” summarize the results of the Diebold and Mariano test for the 30 stocks considered. The first number, “xx”, shows the number of stocks for which the HARP
model significantly outperforms the HAR model, while the second number, “yy”, indicates the number of stocks for which the opposite is true.
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IA.2 Results based on the jump test by Andersen et al. (2012)

In what follows, we report some out-of-sample empirical findings for an alternative

test for jumps, i.e. the test by Andersen et al. (2012). This test relies on the median

realized variance to estimate the integrated variation and is shown to have better finite

sample properties than the original test by Barndorff-Nielsen and Shephard (2006a). The

test statistic is given below:

ZMedRV
t =

1−MedRVt/RVt√
0.96M−1max(1,MedRQt/MedRV 2

t )
∼ N (0, 1), (IA.1)

with

MedRVt =
M

M − 2
1.42

M−1∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)2
p−→
∫ t

t−1

σ2(u) du

and

MedRQt =
M2

M − 2
0.92

M−1∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)4
p−→
∫ t

t−1

σ4(u) du.

As with the Barndorff-Nielsen and Shephard (2006a) test, we use staleness-robust esti-

mators as proposed by Kolokolov and Renò (2024).
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Table IA.2: Out-of-sample forecast losses

(a) h = 1 (b) h = 5 (c) h = 22

HARP-J/ HARP-CJ/ HARP-J/ HARP-CJ/ HARP-J/ HARP-CJ/
HAR-J HAR-CJ HAR-J HAR-CJ HAR-J HAR-CJ

SPY

MSE 0.952⋆ 0.932⋆ 0.882⋆ 0.852⋆ 0.982⋆ 0.984
QLIKE 0.966⋆ 0.904⋆ 0.922⋆ 0.920⋆ 0.997 0.972⋆

VaR 0.993 0.992⋆ 0.997 0.998 0.999 0.998

Avg.
MSE 0.957 0.956 0.961 0.972 0.988 0.988
QLIKE 0.931 0.930 0.950 0.945 0.973 0.985

Stocks VaR 0.994 0.993 0.999 0.999 0.997 0.996

Diebold & Mariano Test – Individual Stocks

MSE 16 : 0 12 : 0 15 : 0 12 : 1 15 : 3 12 : 0
QLIKE 25 : 0 21 : 1 19 : 1 22 : 1 22 : 0 18 : 0
VaR 14 : 0 13 : 0 7 : 0 5 : 1 11 : 0 9 : 2

Note: This table reports the ratio of the losses from HARP versus HAR models for various
forecasting horizons. Days with jumps are estimated using the ADS test of Andersen et al.
(2012) at the 1% significance level. ⋆(♦) indicates that the losses of the HARP (HAR) models
are significantly lower compared to the HAR (HARP) model at the 5% significance level based
on the Diebold and Mariano (1995) test. The entries of type “xx : yy′′ summarize the results of
the Diebold and Mariano test for the 30 stocks considered. The first number, “xx′′, shows the
number of stocks for which the HARP model significantly outperforms the HAR model, while
the second number, “yy′′, indicates the number of stocks for which the opposite is true.

IA.3 Estimating intraday periodicity by varying the rolling win-

dow size

In what follows, we estimate intraday periodicity using different size windows, which

are equivalent to 40, 125, 250, 500, and 1,000 trading days. Then, we re-run the out-

of-sample forecast exercise across all horizons. As in the main results in the paper,

we assess the performance using the QLIKE, MSE and the VaR loss functions. We

also evaluate the predictive ability of the HARP models using the test proposed by

Diebold and Mariano (1995) at the 5% significance level. The model incorporating jump

regressors estimate days with significance jumps using the BNS test of Barndorff-Nielsen

and Shephard (2006a) at the 1% level. The test is implemented using the staleness-robust

adjustment of Kolokolov and Renò (2024).
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Table IA.3: Forecasts results for SPY when periodicity is estimated across different size windows

W = 20 W = 40 W = 125 W = 250 W = 500 W = 1000 W = 20 W = 40 W = 125 W = 250 W = 500 W = 1000
HARP/HAR HARP-Q/HAR-Q

MSE

h = 1

0.956⋆ 0.922⋆ 0.924⋆ 0.924⋆ 0.918⋆ 0.922⋆ 0.985 0.984 0.975 0.972⋆ 0.974⋆ 0.971⋆

QLIKE 0.979⋆ 0.988 0.972⋆ 0.968⋆ 0.970⋆ 0.965⋆ 1.355♦ 1.334♦ 1.450♦ 1.166♦ 1.235♦ 1.436♦

VaR 0.993 0.992⋆ 0.997 0.995 0.997 0.997 1.009 1.004 1.005 1.002 1.003 1.005

MSE

h = 5

0.934⋆ 0.998 0.989 0.977⋆ 0.998 0.989 0.978 0.966⋆ 0.949⋆ 0.945⋆ 0.925⋆ 0.904⋆

QLIKE 0.932⋆ 0.970 0.990 0.995 0.958⋆ 0.949⋆ 0.936⋆ 0.939⋆ 0.911⋆ 0.936⋆ 0.987 0.922⋆

VaR 0.999 0.998 0.995⋆ 0.996 0.996 0.995⋆ 1.001 1.001 0.998 0.996 0.997 0.998

MSE

h = 22

0.984 0.997 0.963⋆ 0.971 0.970⋆ 0.933⋆ 0.966⋆ 0.976 0.992 1.017 1.012 0.958⋆

QLIKE 0.957⋆ 0.978 0.965⋆ 0.978 0.984 0.930⋆ 0.930⋆ 0.958⋆ 0.951⋆ 1.001 0.996 0.908⋆

VaR 0.999 0.999 0.999 0.998 0.997 0.996⋆ 1.003 1.002 0.998 0.996⋆ 0.997 0.997

HARP-J/HAR-J HARP-CJ/HAR-CJ

MSE

h = 1

0.957⋆ 0.924⋆ 0.923⋆ 0.923⋆ 0.918⋆ 0.921⋆ 0.955⋆ 0.948⋆ 0.921⋆ 0.923⋆ 0.918⋆ 0.921⋆

QLIKE 0.985 0.981 0.974 0.970⋆ 0.972⋆ 0.967⋆ 1.018 0.975 0.964⋆ 0.961⋆ 0.960⋆ 0.957⋆

VaR 0.992⋆ 0.991⋆ 0.998 0.997 0.999 0.998 0.991⋆ 0.989⋆ 0.999 0.997 0.999 0.999

MSE

h = 5

0.934⋆ 0.998 0.989 0.978 0.998 0.989 0.933⋆ 0.993 0.985 0.974⋆ 1.010 0.985
QLIKE 0.928⋆ 0.951⋆ 0.992 0.998 0.960 0.951⋆ 0.950⋆ 0.951⋆ 0.964⋆ 0.974 0.934⋆ 0.924⋆

VaR 1.000 0.998 0.995⋆ 0.997 0.997 0.995⋆ 0.998 0.997 0.993⋆ 0.995 0.992⋆ 0.993⋆

MSE

h = 22

0.985 1.020 0.965⋆ 0.973 0.972⋆ 0.934⋆ 0.976⋆ 0.969⋆ 0.955⋆ 0.962⋆ 0.961⋆ 0.924⋆

QLIKE 0.956⋆ 0.989 0.966⋆ 0.980 0.985 0.931⋆ 0.945⋆ 0.935⋆ 0.959⋆ 0.970⋆ 0.975 0.926⋆

VaR 0.999 1.008 0.999 0.998 0.997 0.997 0.994⋆ 0.983⋆ 0.993⋆ 0.990⋆ 0.990⋆ 0.989⋆

Note: This table reports the out-of-sample forecasts loss ratio across different size windows used to estimate intraday periodicity. ⋆(♦) indicates that the
losses of the HARP (HAR) models are significantly lower compared to the HAR (HARP) models at the 5% significance level using the test proposed by
Diebold and Mariano (1995). The first row shows the length of the window used to estimate the intraday periodicity, given in number of trading days.
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IA.4 Forecast diagnostics based on the Rivers and Vuong (2002)

test

Table IA.4: Results for the Rivers and Vuong (2002) test applied to SPY data

BV Med-RV
HARP/ HARPQ/ HARP-J/ HARP-CJ/ HARP-J/ HARP-CJ/
HAR HARQ HAR-J HAR-CJ HAR-J HAR-CJ

h = 1 0.811 0.129 0.850 0.674 0.003∗ 0.000∗

h = 5 0.039∗ 0.000∗ 0.474 0.439 0.000∗ 0.000∗

h = 22 0.000∗ 0.000∗ 0.040∗ 0.026∗ 0.025∗ 0.006∗

Note: The table reports the p-values for the two-sided Rivers and Vuong (2002) test.
The test evaluates at the 5% significance level whether the in-sample performance
of the HARP (HAR) models is significantly better relative to the performance of the
HAR (HARP) models. Starred values indicate significance for the HARP models,
while a diamond superscript indicates significance in favour of the HAR models. Re-
sults in the “BV” column are based on the Barndorff-Nielsen and Shephard (2006a)
test, while those in the “Med-RV” column are based on the Andersen et al. (2012)
test.

IA.5 Nesting the HAR and HARP models on a LASSO Ap-

proach

Throughout the paper, we have compared the performance of the HAR model with

that of our proposed HARP models. These comparisons have been conducted using

statistical and economic loss functions, as well as tests for equal predictive ability. So

far, we have consistently demonstrated that HARP models significantly outperform their

unfiltered counterparts across all forecasting horizons, regardless of whether we consider

the SPY or individual stocks. Additionally, a return predictability exercise, which re-

gresses the next monthly excess return on the VRP constructed using the forecasts of the

HAR(P) models, corroborates the relevance of filtering out intraday periodicity.

However, in this section, we take a further step in understanding the benefits of

filtering out intraday periodicity. To achieve this, we create a nested HAR model that
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considers all unfiltered and filtered regressors. This model is outlined below:

RVt,t+h−1 = β0 + βdRVt−1 + βwRVt−5,t−1 + βmRVt−22,t−1

+ βf
dRV f

t−1 + βf
wRV f

t−5,t−1 + βf
mRV f

t−22,t−1 + et,t+h−1. (IA.2)

We rely on a LASSO approach to eliminate the non-informative or redundant regressors.

A priori, we should expect that if filtering intraday periodicity results in more informative

realized measures, then unfiltered measures should be removed from the model, and vice

versa for the reverse case. We compute these regressions out-of-sample using a rolling

window of size equal to 1,000 days, and the intraday periodicity of day t is computed

using a time-varying window equivalent to 20 trading days. The regularization parameter

is selected using a K-fold cross-validation with K = 10.31

The proportion of days per year in which the filtered and/or unfiltered coefficients

were selected is plotted in Figure IA.1. As can be seen, the daily and weekly filtered

coefficients are selected in at least 70% (and up to 91%) of the days, while the same

coefficients for unfiltered models are selected less than 50% of the time at h = 1 and up

to 76% at h = 22. Interestingly, at h = 1, the daily and weekly unfiltered coefficients are

never selected during the Global Financial Crisis (GFC). A plausible rationale for this

finding could be explained by the fact that during periods of financial turmoil, investors

may rebalance their portfolios more often to capture the best returns, which may further

increase activity at the beginning and end of the market, making intraday periodicity

more vivid. As a result, unfiltered measures are more prone to be estimated with errors,

making them less informative.

Finally, we assess the performance of the HAR-LASSO against the HAR model, and

for completeness, we also report the performance of the HARP model. These results are

reported in Table IA.5.32 Looking at the MSE loss function, we find that the HAR-LASSO

always outperforms the HAR model, while it outperforms the HARP model at h = 5 and

31Different values of K render qualitatively similar conclusions.
32Please note that the performance is based on a combination of the HAR and HARP regressors, which

are selected dynamically throughout the sample period by optimizing the regularization parameter used
to shrink the model.
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h = 22. A very intriguing finding is observed when looking at the QLIKE loss function,

where the QLIKE loss of the HAR-LASSO is twice as large as that of the HAR model.

To understand this result, Figure IA.2 plots in the left panel the out-of-sample fitted

values for the HARP, HAR-LASSO, and the RV , while the right panel depicts the image

of the MSE and QLIKE loss functions. As can be seen, the QLIKE is an asymmetric

loss that penalizes more heavily underestimates of the true value than overestimates, and

as shown in the left panel, the forecasts of the HAR-LASSO –although very close to the

RV– generally underestimates the future RV , explaining why the QLIKE provides such

a large value.

In sum, the HAR-LASSO approach corroborates our main results, as unfiltered mea-

sures are more often excluded from the model, indicating that filtering for periodicity

enriches the information set of the realized regressors.
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Figure IA.1: HAR-LASSO selection of coefficients
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Note: The plot depicts the proportion of days, per year, in which the HAR and HARP coefficients were selected by a
HAR-LASSO estimation that includes the filtered and unfiltered measures. From top to bottom, the left (right) panels
show the results for HAR (HARP) coefficients for daily, weekly, and monthly out-of-sample regressions. Intraday
periodicity was estimated using a time-varying window of length W = 20 days.
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Table IA.5: HAR-LASSO out-of-sample forecast losses

HAR/ HAR/
HARP HAR-LASSO

h = 1

MSE 0.956 0.965
QLIKE 0.979 1.825

h = 5

MSE 0.934 0.841
QLIKE 0.932 2.239

h = 22

MSE 0.984 0.918
QLIKE 0.957 2.578

Note: This table reports the ra-
tio of the losses from HAR-LASSO
versus HAR models for various
forecasting horizons.

Figure IA.2: Out-of-sample fitted values and loss-function
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Note: The plot depicts in two panels the SPY RV together with the out-of-sample fitted
values of the HARP and HAR-LASSO models, and the image of the MSE and QLIKE loss
functions where the true forecast value is 2.

IA.6 Additional Predictive Regression Results

Table IA.6 reports the predictive regression results controlling only for the conditional

variance proxied by the out-of-sample forecasts of the HAR(P) models. The upper (lower)

panel contains respectively the results for SPY and individual stocks. As can be seen, the

results remain quantitatively and qualitatively similar after removing the implied volatil-
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ity spread (SPRD) as a control. That is, the VRP is a strong predictor of future monthly

excess returns, and VRP measures derived from HARP models moderately outperform

their HAR counterparts as measured by a higher adjusted R2.

Moreover, our results indicate

Table IA.6: VRP Predictive regressions controlling for CV

HAR HAR-Q HAR-J HAR-CJ HAR-P HARP-Q HARP-J HARP-CJ

Panel A: SPY Predictive Regressions
VRP 1.547 1.505 1.554 1.522 1.896 1.759 1.906 1.817
t-statNW [2.458]⋆⋆ [2.255]⋆⋆ [2.725]⋆⋆⋆ [2.563]⋆⋆ [2.630]⋆⋆⋆ [2.588]⋆⋆⋆ [3.032]⋆⋆⋆ [2.966]⋆⋆⋆

t-statHD [2.157]⋆⋆ [1.854]⋆ [2.420]⋆⋆ [2.381]⋆⋆ [2.496]⋆⋆ [2.305]⋆⋆ [2.688]⋆⋆⋆ [2.609]⋆⋆⋆

WIV X [6.260]⋆⋆ [4.590]⋆⋆ [6.432]⋆⋆ [5.165]⋆⋆ [7.081]⋆⋆⋆ [6.102]⋆⋆ [7.142]⋆⋆⋆ [6.740]⋆⋆⋆

CV 2.312 2.340 2.302 2.351 2.157 2.120 2.145 2.188
t-statNW [3.267]⋆⋆⋆ [3.388]⋆⋆⋆ [3.266]⋆⋆⋆ [3.250]⋆⋆⋆ [3.223]⋆⋆⋆ [3.243]⋆⋆⋆ [3.223]⋆⋆⋆ [3.134]⋆⋆⋆

t-statHD [2.422]⋆⋆ [2.279]⋆⋆ [2.201]⋆⋆ [2.258]⋆⋆ [2.217]⋆⋆ [2.304]⋆⋆ [2.206]⋆⋆ [2.268]⋆⋆

WIV X [6.850]⋆⋆⋆ [5.840]⋆⋆ [6.904]⋆⋆⋆ [7.172]⋆⋆⋆ [6.807]⋆⋆⋆ [6.972]⋆⋆⋆ [6.705]⋆⋆⋆ [7.541]⋆⋆⋆

adj R2 (%) 4.887 4.833 4.886 4.976 4.987 4.876 5.046 5.087

Panel B: Stocks Predictive Regressions
VRP 0.162 0.146 0.159 0.160 0.149 0.127 0.151 0.145
t-stat [1.686]⋆⋆ [1.490] [1.726]⋆ [1.635] [1.760]⋆ [1.635] [1.774]⋆ [1.800]⋆

CV 0.066 0.074 0.068 0.071 0.073 0.084 0.072 0.074
t-stat [0.921] [1.024] [0.938] [1.016] [0.998] [1.143] [0.987] [0.987]

adj R2 (%) 0.091 0.077 0.094 0.096 0.104 0.091 0.106 0.108

Note: The table shows, in two panels, results for predictive regressions, where the monthly excess
return is regressed on the V RP and CV (e.g., Bekaert and Hoerova, 2014). For SPY (Panel A), we
report t-statistics computed using the Newey-West statistics (t-statNW ) with 44-lags, Hodrick (1992)
standard errors (t-statHD), and the robust Wald test (W IV X) of Kostakis et al. (2015). For stocks,
we employ a panel regression framework with firm fixed effects and compute t-statistics using clustered
robust standard errors (e.g. Petersen, 2008). Adjusted R-squares are reported as a percentage and are
displayed in bold font whenever they exceed those of the HAR (HARP) counterparts. Symbols ⋆, ⋆⋆, and
⋆⋆⋆ denote significance levels of 10%, 5%, and 1%, respectively.
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Table IA.7: Stocks monthly Predictive Regressions

HAR HAR-Q HAR-J HAR-CJ HAR-P HARP-Q HARP-J HARP-CJ

Panel A: Univariate Predictive Regressions
VRP 0.103 0.082 0.098 0.097 0.110 0.080 0.113 0.107
t-statNW [1.969]⋆⋆ [1.555] [1.911]⋆ [1.945]⋆ [2.174]⋆⋆ [1.687]⋆ [2.221]⋆⋆ [2.052]⋆⋆

R2 (%) 0.054 0.033 0.050 0.047 0.060 0.037 0.063 0.056

Panel B: Predictive Regressions with Controls
VRP 0.183 0.165 0.181 0.180 0.170 0.147 0.172 0.168
t-statNW [1.685]⋆ [1.551] [1.660]⋆ [1.663]⋆ [1.769]⋆ [1.629] [1.743]⋆ [1.746]⋆

SPRD 0.133 0.138 0.134 0.134 0.137 0.144 0.136 0.138
t-statNW [2.076]⋆⋆ [2.101]⋆⋆ [2.086]⋆⋆ [2.106]⋆⋆ [2.095]⋆⋆ [2.125]⋆⋆ [2.095]⋆⋆ [2.188]⋆⋆

CV 0.115 0.126 0.116 0.119 0.123 0.137 0.122 0.124
t-statNW [1.088] [1.195] [1.103] [1.163] [1.161] [1.307] [1.152] [1.146]

adj R2 (%) 0.176 0.168 0.178 0.178 0.187 0.174 0.185 0.189

Note: The table shows results for the monthly predictive regressions ri,t+1 = α+βV RPi,t+θ′Xi,t+ei,t+1, where
ri,t+1 denotes the next month’s return in excess of the 3-month T-bill rate for the ith stock, X is the matrix with
controls, and θ is the vector of coefficients. SPRD is the implied volatility spread (e.g., Cremers and Weinbaum,
2010), and CV is the conditional variance (e.g. Bekaert and Hoerova, 2014). The model is estimated within a
panel framework with firm fixed effects. The t-statistics are estimated using clustered robust standard errors
with Newey-West correction with 44 lags. R-squares are reported as a percentage and are displayed in bold font
whenever they exceed those of the HAR (HARP) counterparts. Symbols ⋆, ⋆⋆, and ⋆⋆⋆ denote significance levels
of 10%, 5%, and 1%, respectively.
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IB. Additional Results on Simulated Data

For all simulated models, we use an Euler scheme based on 23,400 initial data points

(corresponding to seconds). We simulate a total of 1,000 sample paths of length 1,000

days.

IB.1 One-factor volatility model plus jumps

dp(t) = 0.03 dt+ f(t)ν(t)
(
−0.62 dWν1(t) +

√
0.6156 dWp(t)

)
+ zp(t) dN(t), (IB.3a)

ν2(t) = exp{0.125ν2
1(t)}, dν2

1(t) = −0.1ν2
1(t) dt+ dWν1(t),

N(t) ∼ Poisson(0.4t), zp(t) ∼ N (0, 1.284).

f(t) = 0.88929198 + 0.75e−10t + 0.25e−10(1−t),

Figure IB.3: HARP-J and HAR-J coefficients for the SV1F model with jumps
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Note: This figure compares the estimates of the HARP-J (squared marker) and HAR-J (diamond
marker) models against the true estimates across different sampling frequencies. The number of
intraday observations on the x axis corresponds to the following sampling frequencies: 1 second
(23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes (195),
2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).
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Figure IB.4: Proportion of spurious jumps by sampling frequency for filtered and unfil-
tered data
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Note: This plot graphs the proportion of spurious jumps across sampling frequencies. Jumps were
detected using the Barndorff-Nielsen and Shephard (2006a) jump test evaluated at the 1% and 5%
significance level. The number of intraday observations on the x axis corresponds to the following
sampling frequencies: 1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5
minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes
(26) and 30 minutes (13).

IB.2 Proportion of spurious jumps

Figure IB.5: Proportion of spurious jumps by sampling frequency for filtered and unfil-
tered data based on the jump test by Andersen et al. (2012)
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Note: This plot graphs the proportion of spuriously detected jumps across sampling frequencies
using the jump test given in (IA.1), evaluated at the 1% and 5% significance level. The number
of intraday observations on the x axis corresponds to the following sampling frequencies: 1 second
(23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes (195),
2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).
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IB.2.1 Loss ratios for the one-factor model plus jumps

Figure IB.6: One-day ahead loss ratio
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for HARP versus HAR models. The dashed horizontal line corresponds to the value 1. The
number of intraday observations on the x axis corresponds to the following sampling frequencies:
1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes
(195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).
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Figure IB.7: One-week ahead loss ratio
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for HARP versus HAR models. The dashed horizontal line corresponds to the value 1. The
number of intraday observations on the x axis corresponds to the following sampling frequencies:
1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes
(195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).
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Figure IB.8: One-month ahead loss ratio
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for HARP versus HAR models. The dashed horizontal line corresponds to the value 1. The
number of intraday observations on the x axis corresponds to the following sampling frequencies:
1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes
(195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).
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IB.3 Two-factor volatility model

Two volatility factors (SV2F) (IB.4a)

dp(t) = 0.03 dt+ f(t)ν(t)
(
−0.3 dWν1(t)− 0.3 dWν2(t) +

√
0.82 dWp(t)

)
,

ν2(t) = s-exp{−1.2 + 0.04ν2
1(t) + 1.5ν2

2(t)},

dν2
1(t) = −0.00137ν2

1(t) dt+ dWν1(t),

dν2
2(t) = −1.386ν2

2(t) dt+
(
1 + 0.25ν2

2(t)
)
dWν2(t).

f(t) = 0.88929198 + 0.75e−10t + 0.25e−10(1−t), (IB.4b)

where s-exp denotes the exponential function with a polynomial spline at high values to

avoid explosive behaviour.

Figure IB.9: Simulated returns for the one-factor stochastic volatility model (no jumps)
and the two-factor stochastic volatility model
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Note: The plot shows the dynamics of simulated 1-second returns over 1000 trading days.
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Figure IB.10: HARP and HAR coefficients
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Note: This figure compares the estimates of the HARP (squared marker) and HAR (diamond
marker) models against the true estimates across different sampling frequencies. The number of
intraday observations on the x axis corresponds to the following sampling frequencies: 1 second
(23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes (195),
2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13). From
left to right, the first panel of the figure corresponds to βd from (12), the middle panel to βw, while
the last panel to βm. The straight line in each panel represents the corresponding estimates on the
daily quadratic variance. These are referred to as “true” coefficients.
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Figure IB.11: HARP/HAR loss ratio for the two-factor volatility model
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for the HARP versus the HAR model. All forecasting horizons are included: one-day
(h = 1), one-week (h = 5) and one-month (h = 22). The dashed horizontal line corresponds to the
value 1. The number of intraday observations on the x axis corresponds to the following sampling
frequencies: 1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes
(260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30
minutes (13).
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Figure IB.12: HARP-Q/HAR-Q loss ratio for the two-factor volatility model
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for the HARP versus the HAR model. All forecasting horizons are included: one-day
(h = 1), one-week (h = 5) and one-month (h = 22). The dashed horizontal line corresponds to the
value 1. The number of intraday observations on the x axis corresponds to the following sampling
frequencies: 1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes
(260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30
minutes (13).
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IB.4 One-factor volatility model with jumps and co-jumps in

volatility

Figure IB.13: Proportion of spurious jumps by sampling frequency for filtered and unfil-
tered data using the jump test by Andersen et al. (2012)
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Note: This plot graphs the proportion of spuriously detected jumps across sampling frequencies
using the jump test given in (IA.1), evaluated at the 1% and 5% significance level. The number
of intraday observations on the x axis corresponds to the following sampling frequencies: 1 second
(23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes (195),
2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).

The figure also illustrates that, for the jump test proposed byAndersen et al. (2012),

more spurious jumps are detected for unfiltered returns, a result that holds true across all

sampling frequencies. This result corroborates our main results based on the Barndorff-

Nielsen and Shephard (2006a) test, thereby suggesting that jump regressors in models

HAR-J and HAR-CJ are likely to be affected by periodicity-related estimation error,

which can further impact the forecast of the realized variance.
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Figure IB.14: One-week ahead loss ratio for the simulated model
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for HARP versus HAR models. The dashed horizontal line corresponds to the value 1. The
number of intraday observations on the x axis corresponds to the following sampling frequencies:
1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes
(195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).

23



Figure IB.15: One-month ahead loss ratio for the simulated model
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for HARP versus HAR models. The dashed horizontal line corresponds to the value 1. The
number of intraday observations on the x axis corresponds to the following sampling frequencies:
1 second (23400), 5 seconds (4680), 30 seconds (780), 1 minute (390), 1.5 minutes (260), 2 minutes
(195), 2.5 minutes (156), 5 minutes (78), 10 minutes (39), 15 minutes (26) and 30 minutes (13).

Figures IB.14 and IB.15 plot the median and the 5% and 95% quantiles of the forecast

loss ratios from the HARP models versus the HAR models against the sampling frequency

for one-week and one-month forecast horizons. In most cases, all quantiles are consistently

below 1 across sampling frequencies. These results corroborate those reported for the

one-day-ahead forecasts, thereby confirming that HARP models provide more accurate

forecasts than models that do not account for intraday periodicity.

IB.5 Sensitivity and validity analysis

This section acts as a robustness check for our results. It explores how various sources

of estimation error in the intraday periodicity estimates can impact our findings. We

ultimately show that our results hold even in the presence of such errors. The estimation
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error in disentangling periodicity has two main sources: the number of days used to

estimate periodicity is too short and the jumps in the price interfere with periodicity

estimation, especially at higher frequencies.

A time-varying periodicity function (see Andersen et al., 2018) calls for estimating

periodicity over shorter windows of time. As shorter estimation windows can lead to less

reliable periodicity estimates, figure IB.16 explores the sensitivity of our results on fore-

casting RV to the length of the periodicity estimation window. We plot the distribution

of the HARP/HAR loss ratios obtained at the highest sampling frequency for the SV2F

model against the length of the periodicity estimation window. At very high sampling

frequencies and in the absence of jumps, the impact of measurement error emanating

from any other source than the length of the estimation window is insignificant.

Figure IB.16: The impact of the length of the periodicity estimation window on the
performance of HARP models
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for the HARP versus the HAR model against the length of the time window over which
periodicity was estimated. Simulations are based on the SV2F model and shown results are for a
sampling frequency equal to 1 sec.

The distribution of the loss ratios does not change much with the length of the esti-

mation window for periodicity. The median is always below 1, confirming that filtering

improves the forecasting performance. The distribution of the QLIKE ratios is slightly

more dispersed than the distribution of the MSE ratios for shorter estimation windows.

We further consider the impact of the jump-related periodicity estimation error on our

analysis. To this end, we compare the HARP forecast loss for the filtered SV1F process

with jumps to the forecast loss for the filtered SV1F model to which we add jumps only
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after applying the periodicity filter. Specifically, for the latter forecast loss, we apply the

periodicity filter at different sampling frequencies before adding the jumps also sampled

correspondingly. The first forecast loss is impacted by jump-related periodicity estimation

error, while the second loss is not. The distributions of the ratios of the two losses for

different forecasting horizons are plotted against the sampling frequencies in figure IB.17.

The “HARP fj” notation indicates the HARP model where filtering (“f”) occurs on data

with jumps (”j”), while the “HARP fnj” denotes the forecasting model where filtering

(“f”) occurs on data with no jumps (”nj”).

Figure IB.17: The impact of the jump-related periodicity estimation error on the perfor-
mance of HARP models
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Note: The figure plots the median and the 5% and 95% quantiles for the MSE and QLIKE loss
ratios, for the HARP fj model, for which filtering is applied to data containing jumps, versus the
HARP fnj model, for which filtering is performed before adding jumps to the data. Simulations
are based on the SV1F model plus jumps. All forecasting horizons are included: one-day (h = 1),
one-week (h = 5) and one-month (h = 22). The number of intraday observations on the x axis
corresponds to the following sampling frequencies: 1 second (23400), 5 seconds (4680), 30 seconds
(780), 1 minute (390), 1.5 minutes (260), 2 minutes (195), 2.5 minutes (156), 5 minutes (78), 10
minutes (39), 15 minutes (26) and 30 minutes (13).

At high frequencies, the distribution of the loss ratio shifts above 1 and is more dis-
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persed than at lower frequencies. This shift is mostly visible for the 1-day and 1-week

ahead forecasts, where all three quantiles are located above 1 for sampling frequencies

higher than 30 seconds. For the one-month ahead forecasts, the median and the 95%

quantile at high frequency are above 1, indicating an upwards shift, but the distribution

is a lot more dispersed, with the 5% quantile well below 1. In this case, aggregation of

data over long horizons makes the impact of jump-related estimation error less clear in

terms of direction, but still very much visible in terms of dispersion. For all forecast-

ing horizons, the impact of jump-related estimation error gradually decreases with the

sampling frequency.

Finally, we examine whether excessive or insufficient filtering impacts our results.

We rely on the SV2F 5-minute data and employ the forecast loss definition used in

presenting the Diebold and Mariano (1995) test in section 4.3. Let L(ϵWSD
t+1 ) and L(ϵunft+1 )

be, respectively, the HARP and HAR model forecast losses computed using the MSE loss

function. LetRV ft
t andRV WSD

t be the realized variance estimators based on, respectively,

returns filtered by the true periodicity, and returns filtered with the weighted standard

deviation method outlined in section 1. We define excessive filtering the situation for

which RV WSD
t < RV ft

t and insufficient filtering when RV WSD
t > RV ft

t . In figure IB.18,

we plot the loss differential L(ϵWSD
t+1 ) − L(ϵunft+1 ) against RV WSD

t − RV ft
t . The surface

of the plot is split in four quadrants based on the criteria: RV WSD
t − RV ft

t ≶ 0 and

L(ϵWSD
t+1 )− L(ϵunft+1 ) ≶ 0. In each quadrant, we also report the average loss difference per

quadrant, ∆Lt+1, as well as the percentage of points.
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Figure IB.18: One-day ahead loss differential as a function of the amount of filtering
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Note: The figure depicts the loss differential for HARP versus HAR models, L(ϵWSD
t+1 ) − L(ϵunft+1 ),

against the previous day difference between the filtered and no periodicity realized volatilities,
RV WSD

t − RV ft
t . The loss function considered is the MSE. Each quadrant reports the average

loss difference, ∆Lt+1, as well as the percentage number of points in that quadrant (red). Data is
generated from the SV2F model.

Overall, filtering leads to forecast gains, as more than 75% of the points in the scatter

plot are situated below the line L(ϵWSD
t+1 ) = L(ϵunft+1 ), where loss differentials are also

higher in absolute value. Over 67% of the points are to the right of the RV WSD
t = RV ft

t

line, out of which 51% are in the fourth quadrant, where L(ϵWSD
t+1 ) − L(ϵunft+1 ) < 0 and

RV WSD
t −RV ft

t > 0. This quadrant also features the most extreme points of the scatter

plot and the highest loss difference in absolute value. The second quadrant, defined by

L(ϵWSD
t+1 ) − L(ϵunft+1 ) > 0 and RV WSD

t − RV ft
t < 0, also contains some extreme points,

showing that excessive filtering can have adverse effects. This is not worrisome though,

as this quadrant has the lowest percentage of points and a relatively low loss differential

in absolute value.
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IC. Estimation of Risk-Neutral Measures

Option data are downloaded from OptionMetrics. We used standardized option data

from the volatility surface file to have the same maturity for our options every day. We

compute the Risk-Neutral Variance (RNV ) of the option-implied stock return distribu-

tion using the model-free methodology of Bakshi et al. (2003). Using the time t prices of

out-of-the-money (OTM) call, Ct(τ ;K), and put, Pt(τ ;K), options with strike price K

and time-to-expiration τ , the RNV is defined as:

RNVt(τ) = exp(rfτ)Vt(τ)− µt(τ)
2, (IC.5)

where rf is the risk-free rate, and µt(τ) is given by:

µt(τ) = exp(rfτ)− 1− exp(rfτ)

2
Vt(τ)−

exp(rfτ)

6
Wt(τ)−

exp(rfτ)

24
Xt(τ), (IC.6)

and Vt(τ), Wt(τ), and Xt(τ) are the time t prices of τ -maturity quadratic, cubic, and

quartic contracts, defined as contingent claims with payoffs equal to the second, third,

and fourth power of the asset log-return, respectively. The corresponding prices of these

contracts are given by:

Vt(τ) =

∫ ∞

St

2

(
1− log

(
K

St

))
K2

Ct(τ ;K)dK +

∫ St

0

2

(
1 + log

(
St

K

))
K2

Pt(τ ;K)dK,

(IC.7)

Wt(τ) =

∫ ∞

St

6 log

(
K

St

)
− 3

(
log

(
K

St

))2

K2
Ct(τ ;K)dK

−
∫ St

0

6 log

(
St

K

)
+ 3

(
log

(
St

K

))2

K2
Pt(τ ;K)dK, (IC.8)
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Xt(τ) =

∫ ∞

St

6 log

(
K

St

)
− 3

(
log

(
K

St

))2

K2
Ct(τ ;K)dK

−
∫ St

0

6 log

(
St

K

)
+ 3

(
log

(
St

K

))2

K2
Pt(τ ;K)dK, (IC.9)

where St is the price of the underlying stock price. To compute the integrals, we interpo-

late implied volatilities between the lowest and highest available moneyness using cubic

splines and perform constant extrapolation with 1% and 300% moneyness as bounds, re-

sulting in 1000 grid points. Then, these implied volatility are converted to option prices

using the Black and Scholes (1973) formula and use those prices to numerically calculate

the above integrals.33

33It is important to note that this approach does not assume that the Black and Scholes (1973) model
is valid. Rather, the Black and Scholes (1973) formula is only used as a one-to-one mapping between the
option prices and IVs. This is done because fitting the IV curve is much easier than fitting option prices
as IVs are comparable across strikes.
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