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Abstract
There is one faultless way of programming. It uses computer
intelligence to validate computer code: formal verification.
Yet for developers this faultless approach has remained alien,
incomprehensible, and many miss out on its proven benefits.
This set of patterns introduces Dafny to developers. Dafny
provides a powerful way to incorporate formal verification
into software that is integrated with languages like Java and
C#, generating code that is provably free from defects and
problems.

The patterns range from the Dafny design philosophy to
concepts like ghost variables and implementation details
such as the use of generative artificial intelligence. By offer-
ing an accessible approach to a difficult subject, they support
developers in producing faultless code.
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Introduction
This paper is our experimental attempt at using the patterns
form to address formal verification. Our intended readers
are programmers wanting to learn formal verification, or at
least to get some understanding of why it may be important
in the future. So you might be a student towards the end
of an undergraduate computer science qualification, or a
practitioner who has not forgotten everything from your
course on logic twenty years ago. Either way, you may be
wondering how this could be relevant to your job in future.

Well, yes, it may well be. With the increasing importance
of cybersecurity, and defect-free code, achieving code that
does exactly what it says and nothing else is increasingly
important. Verification tools are increasingly powerful, and
artificial intelligence is making them easier to use. Formal
verification is moving from only the realm of those with
military budgets, to anyone who needs certainty.

This paper has patterns at different scales, ranging from a
first, very general pattern that seeks to motivate the principle
of Formal Verification, through to patterns that describe
the thought process of developing Dafny programs. Being
singers, we have named patterns after songs. We have drawn
on the wealth of resources at dafny.org.
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1 Pattern: Protocologorically Correct
A.k.a. Formal Verification

We’ve a system to protect,
Or the kingdom will be wrecked,
Checked and double checked,
And protocologorically correct.
From The Slipper and the Rose,
by Richard M. Sherman and Robert B. Sherman.

Problem: How can we be as sure as possible a program is
correct?
In many systems, a small part of the code that is critical to
the working of the whole. Examples include cryptographic
algorithms, implementations of communications protocols,
primitives to synchronise multithreaded working, control
of vital hardware like medical devices or aircraft hardware,
and much else. The code might be in any one of a number
of languages, but it is essential that it works correctly.
You might write the code with extensive tests, ranging

from comprehensive unit tests, through functional tests and
system tests. That’s great, but as Edgar W. Dijkstra wrote in
"On the reliability of programs", [7]. Program testing can be
used very effectively to show the presence of bugs but never to
show their absence. Indeed, it is impossible to create enough
unit tests and functional tests to be sure all conceivable cases
have been covered.
Yet, in this case the amount of critical code is relatively

small — hundreds of lines perhaps — or your development
team is relatively large. And the algorithm is well understood,
and probably documented in detail.
Solution: Write mathematical specifications of your pro-
gram’s expected behavior, then automatically verify that
your program obeys your specification.
Formal verification tools analyse code before it runs — typi-
cally inside the development environment, or as a standalone
compilation phase. For this to work, programs must contain
not only executable statements, but also specification state-
ments that describe how your code is supposed to behave.
The program may also require further assertions that re-

late the executable and specification statements: assertions
describing the functionality they implement, that they will
not get stuck in a loop, that buffers will not overflow, and
that multi-threading problems will not happen.
These specification statements and assertions provide a

different ’lens’ on the code, and allow the program verifica-
tion tool — the verifier — to check that the code conforms to
those descriptions, often in remarkably complex ways.
Assuming a verifier runs successfully and approves the

code, it confirms that executing the program will implement
the specified behavior. For this to work in practice, programs,
specifications, and internal assertions must typically be de-
veloped together, or top down from specifications to code —

rather that taking an existing program and hoping to some-
how verify it meets a specification post-hoc.
Consequences:
Verification success does not prove the code works correctly
in every way we want it to; but it does prove that all the
specification constructs in the code are satisfied. So the skill
in formal verification programming is devising constructs
that check everything that needs to be verified about the
code.
Over the past 50 years, verification has made a number

of significant breakthroughs, first with the development of
interactive theorem provers in the 1960s [24], and then, at the
turn of the millennium, with the development of Satisfiability
Modulo Theory (SMT) solvers [3] — and (of course) ChatGPT
and similar may offer at least a quantum leap in our ability
to use such tools [23].
This means formal techniques must be an essential part

of software engineering education. Unfortunately, formal
methods are routinely hated by students due to perceived
difficulty, mathematicity, and practical irrelevance — and by
management staff for all those reasons plus the difficulty of
finding academics willing (or even able) to teach the material
[25, 26].
Known Uses:
CompCert C [2023] is a formally verified C compiler that won
the ACM Software Systems award in 2021: a comprehensive
study Yang et al. [30] found no bugs in the CompCert C com-
piler compared to the GCC [10] and LLVM [18] toolchains.
This study motivated Airbus to adopt CompCert C to help
ensure safety and enhance aircraft performance [9]. The seL4
project [14], awarded the ACM Software System Award in
2022, resulted in a formally verified high-assurance, high-
performance operating system microkernel employed to pro-
tect an autonomous helicopter against cyber-attacks [27].
In order to secure communication, both Chrome and An-
droid use formally verified cryptographic code [8]. Mozilla
incorporated its verified cryptographic library for Firefox
performance improvement [13].
Implementation:

As with contemporary general-purpose programming lan-
guages, formal verification tools and languages fall into two
distinct groups: functional languages, which avoid mutable
state and rely on higher-order ("dependent") types, such as
Agda, Idris, and Roc (formerly Coq); and imperative/object-
oriented languages which support mutable state and rely on
Hoare logics. The imperative languages fall into two distinct
types: special purpose languages designed for verification,
such as Dafny or Whiley, and tools designed to verify pro-
grams written in other programming languages, such as JML
for Java, SPARK Ada, Verifast for C, and Prusti for Rust [17].



The Faultless Way of Programming EuroPLoP 2024, July 3–7, 2024, Irsee, Germany

2 Pattern: Strange but True
A.k.a. Built-in Specification

Strange, dear, but true, dear
Song by Cole Porter

Problem: How can we write a program that can be verified?

You have identified that you are have the situation described
in the previous pattern: a relatively small, key, section of
your code that must be algorithmicly correct. Yet...

• Chances are you already know at least one common
imperative programming language. Why learn a new
language if you don’t have to?

• Verification tools can generally only cope with subsets
of existing languages.

• Since most languages don’t support specification state-
ments, they have to be expressed in clunky form either
as special comments or as annotations.

Indeed, most languages only support specification check-
ing as ’assertions’, run-time checks that the specification
holds. Yet, this run-time checking takes time, and worse, it
causes the software to fail if it finds an error—something
very irritating to the users. Much better would be if we could
be sure that the failure could not happen at all.
Solution: Validate the contracts using an SMP solver, and
build it into the programming language
Special purpose languages can integrate specification state-
ments tightly into programs, and verifiers tightly into the
toolchains. Dafny [17, 21] is one such language for formal
verification. Dafny was first developed in Microsoft Research
(MSR) [22]; it is currently being developed with the support
of the Amazon Automated Reasoning research group [1].
Dafny is statically typed, with programming language state-
ments looking a bit like JavaScript or C#. Dafny also includes
features drawn from imperative, functional, and object ori-
ented programming. Dafny programs can be transpiled into
C#, JavaScript, Python, C++, Java, or Go, and, critically, is
well supported in Visual Studio Code [5].

Technically, the distinguishing feature of Dafny is that it
supports code verification via design by contract [19, 20].
Dafny is based on the mathematical framework of Floyd-
Hoare logic [12], where program executions are sets of states
linked by executable statements, and the formal definition of
each statement describes the mathematical relationship be-
tween preceding and succeeding states. As well as the usual
imperative (variables, assignment, functions, data types, con-
ditionals, loops) and object-oriented language features (classes,
constructors, methods, fields), Dafny also includes verifica-
tion constructs, such as method preconditions and postcon-
ditions, loop variants and invariants, assertions, and lemmas.

To develop a verified program, developers write Dafny
code along with the specifications (pre-and post-conditions),
and then add loop invariants and assertions that help the
Dafny verifier prove the correctness of their code. While
coding in VS Code, the Dafny static program verifier checks
the functional correctness based on developers’ defined spec-
ifications and annotations — and makes those checks as you
type, like a spelling or grammar checker.

Figure 2. Dafny proving a simple program. Note the "Veri-
fication Succeeded" message, and the green bar on the left
that shows verification status of each line in the program

Implementation:
To prove that methods’ specifications hold, the Dafny pro-
gram verifier first transforms the code into an intermediate
verification representation [15] that encodes the verification
conditions in predicate calculus [16], and then invokes the Z3
SMT solver [6] to prove the verification conditions. The va-
lidity of these verification conditions implies the correctness
of a program’s code [16].
Specification constructs can be very complex, and it is

possible, even easy, to get them wrong or incomplete. So
formal verification is usually used in conjunction with other
ways of ensuring correctness:

• Code review, on ’pull request’ or by pair programming,
uses human checking.

• Unit testing uses automated testing; and
• System testing use human testing of the requirements.

Dynamic checking is an alternative approach [19, 20] that
checks specifications and assertions at run-time, and aborts
the code if the checks fail. Runtime assertion checks are
rarely used in conjunction with formal verification, although
recent research is investigating the integration of static proof
and dynamic checks [2, 29].
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3 Pattern: Doh-Re-Mi
A.k.a. Design by Contract

Let’s start at the very beginning,
A very good place to start.
Do-re-mi from The Sound of Music, by Oscar Ham-
merstein II

Problem: How can we describe what our program should
do?
For most programs, there are a bunch of things we would like
them not to do: not to destroy the world; not to trigger the
third world war; and not to leak all our bank account details
to websites selling mail-order brides, recruitment firms mas-
querading as social networks, or advertising corporations
disguised as search engines. More pragmatically, we would
like our programs not to suffer race conditions, not access
array elements that don’t exist, and not to indirect through
null pointers [11].
While the latter two problems can be addressed by type

systems and higher level memory handling [28], other prob-
lems are more difficult to deal with:

• Before we can say if a program is correct, we need to
know what being correct means for that program.

• We have a task our code needs to do;
• We need to be sure our program always carries out its
tasks correctly.

• We hope to use a program verified to give us that
assurance.

Solution: Specify what we want each function to achieve
Use design-by-contract [19] to write method pre- and post-
conditions to describe the task your methods should per-
form. A precondition (a Dafny requires clause on a method
definition) describes what must be true of any program state
immediately before the method is called: a postcondition
(a Dafny ensures clause on a method definition) describes
what must be true of any program state immediately after
the method has returned. Bertrand Meyer recognised the im-
portance of procedure specifications way back in his famous
article in Computer magazine from 1992 [19]. See Table 1.
Pre- and post- conditions have a double purpose. To ver-

ify a method body, Dafny assumes pre-conditions and must
prove the body establishes the post-conditions, while to ver-
ify a method call, Dafny proves the pre-conditions then as-
sumes the post-conditions.
Example:
Here’s an example of a Dafny swap method, and using it to
build a three-element sorting network.What’s actually pretty
damn cool is that given those specifications (postconditions)
for swap and sort, Dafny is able to prove that the sort does
actually, well, sort things correctly.
method swap(a : nat, b : nat)

Table 1. Bertrand Meyer’s original example of a contract

returns (y: nat, z: nat)
ensures y <= z
ensures (y == a && z == b) || (y == b && z == a)

{
if a <= b { y, z := a, b; }
else { y, z := b, a; }

}

method sort(a : nat, b : nat, c : nat)
returns (x : nat, y: nat, z: nat)
ensures x <= y <= z
ensures multiset{a,b,c} == multiset{x,y,z}

{
x, y := swap(a,b);
y, z := swap(y,c);
x, y := swap(x,y);

}

Known Use:
Amazon’s AWS has a rules-based permission system that
validates calls to an AWS API. There are typically 2 billion
such calls per second. Getting such rules correct is vital to
their customers’ trust in the system and so the core reasoning
engine is implemented in Dafny.
Implementation:

Dafny reasons about each method individually, only look-
ing "inside" a method body to check it fulfills its specifica-
tions. Only those specifications (requires and ensures clauses)
are visible outside a method. This is key to Dafny’s analyses
scaling: complex, detailed analyses are only ever required of
one method body at a time.

Dafny’s old construct in preconditions accesses the value
of a variable before a method was called. For example, here
the postcondition says the Inc method will increase the
counter by one unit.
method Inc()
ensures counter == old(counter) + 1
{
counter := counter + 1;

}

The assume statement provides global domination; Dafny
will blindly accept assumptions from that point on, even
when they contradict earlier assertions or deductions.
x := 0;
assume x == 1; // Doesn't cause a problem
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assert x == 1;

Dafny reports warnings for assume statements, so programs
that use them don’t count as verified. We can use assume
statements to ‘patch’ programs during development, and
remove them (or replace with assertions) once the program
is verified.
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4 Pattern: With a Little Help
I get by with a little help from my friends
Song by Paul McCartney of the Beatles

Problem: How to make a function verifiable?
There comes a time in every programmer’s life when dealing
with individual objects isn’t enough: one needs to deal with
collections of objects; and indeed to process each element of
a collection, perhaps to make a new collection, but equally
perhaps to reduce the collection down to some descriptive
statistics, or even a single datum, that in some sense charac-
terises the collection as a whole.

For example, given a non-empty Dafny array of integers:
s := [100, 200, −37, 45, −19, 56, 657, −2]

how might we write a method to return the smallest?
First, in Dafny, we want an independent logical specifica-

tion of what "the the smallest in the array" actually might
be.
Specifically, we can say two things about it: all the ele-

ments in the array must be larger than or equal to it; and it
must itself be in the array. So in Dafny, that becomes:
method FindSmallest(s: array<int>)

returns (min: int)
requires s.Length > 0 // Non−empty array
ensures forall k ::

0 <= k < s.Length ==> min <= s[k]
ensures exists k ::

0 <= k < s.Length && min == s[k]
{

// Something goes here.
}

Now as software developers, it probably won’t take us
very long to work out an implementation for this:
{ min := s[0];

for i := 1 to s.Length
{ if s[i] < min

{ min := s[i]; }
}

}

Unfortunately, Dafny is not able to verify this method’s be-
haviour, even though it is obvious to a human that it will
return the correct result. In VSCode, a large red X appears
by the function, and by hovering the mouse over the red-
underlined areas we see a host of error messages including
the following:

Solution: Provide intermediate invariants and assertions to
help Dafny figure it out
Loops are hard for the theorem prover to manage, so we need
to add steps to help it. In this case, the prover cannot prove
that all the elements in the array are greater than or equal to
the result. So we add a ’loop invariant’, as an intermediate
step to guide it. This ensures that the prover both checks that

the invariant is true as the loop is entered, and that it can use
the invariant to prove further constraints within the loop.
An ultimately intelligent prover will be able to construct its
own invariants on the fly, but until we have that we have to
supply them for ourselves.
{ min := s[0];

for i := 1 to s.Length
invariant forall k :: 0 <= k < i ==> min <= s[k]
{ if s[i] < min

{ min := s[i]; }
}

}

Given the preconditions, Dafny can now figure out that
the invariant is true at the start of the first loop, and then
looking at the loop implementation, it can prove that it is
true thereafter. The ’loop invariant’ acts as a crutch for the
theorem prover.
Of course, Dafny also complains that the other postcon-

dition cannot be satisfied either, so we add a corresponding
further loop invariant:
{ min := s[0];

for i := 1 to s.Length
invariant forall k :: 0 <= k < i ==> min <= s[k]
invariant exists k :: 0 <= k < i && min == s[k]
{ if s[i] < min

{ min := s[i]; }
}

}

And the job’s done. Dafny can nowprove thewholemethod;
and we can sure that the implementation will invariably pro-
duce results that satisfy the ’ensures’ conditions so long as
its ’requires’ conditions are satisfied.
Implementation - Refactoring:
Astute programmers may notice the repetition in the in-

variant clauses. We can use Dafny predicates to refactor out
Boolean expression.. Predicates may require preconditions,
like methods, but also need to tell Dafny when they read
from memory (don’t ask!):
predicate SmallestInArray( s: array<int>,

length: int, min: int )
// Answers whether min is the smallest value
// in the first length elements of array s:
requires length <= s.Length
reads s
{

forall k :: 0 <= k < length ==> min <= s[k] &&
exists k :: 0 <= k < length && min == s[k]

}

method FindSmallest(s: array<int>)
returns (min: int)

// Answers the smallest element in array s:
requires s.Length > 0 //precondition
ensures SmallestInArray( s, s.Length, min )

{ min := s[0];
for i := 1 to s.Length
invariant SmallestInArray( s, i, min )

{ if s[i] < min
{ min := s[i]; }

}
}
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Implementation - Using Generative AI:
Working out the intermediate steps varies from difficult to
almost impossible, since often the only help Dafny provides
is to indicate which postcondition is causing the problem.
Fortunately we now have good support, in the form of

Generative Large Language Models. ChatGPT 4.o is remark-
ably good both at offering suggestions why the problem has
occurred, and at offering solutions—albeit often not very
good ones. We can integrate it into the system as CoPilot, or
use the text interface directly.
Dafny is ideally suited for Generative AI queries, since

eachmethod is verified separately. So it is easy to pass the full
context for the query: the method’s code, the programmer’s
intention, and any error and context information.

For example, using ChatGPT directly, the query:
In ```method FindSmallest(s: array<int>)

returns (min: int)
requires s.Length > 0 // Non- empty array
ensures forall k ::

0 <= k < s.Length ==> min <= s[k]
ensures exists k ::

0 <= k < s.Length && min == s[k]
{ min := s[0];

for i := 1 to s.Length
{ if s[i] < min

{ min := s[i]; }
}

}```
Dafny cannot prove

```ensures forall k ::
<= k < s.Length ==> min <= s[k]```.

How do I fix this, please?

returns helpful suggestions to add the loop invariant. We
can extend queries to include error messages or other infor-
mation such as ‘despite what you just told me’, which also
seem to help.
It is trivial to validate the suggestions from ChatGPT;

so long as the executed code and external conditions are
unchanged, ChatGPT’s suggestions, such as new loop in-
variants, can only affect verification. So if the Dafny verifier
accepts them, they are a correct solution.
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5 Pattern: Ghostbusters!
Who you gonna call? Ghostbusters!
Song by Ray Parker Jr.

Problem: How can I prove other properties of the code?
Some features of the code cannot be captured by postcon-

ditions of the kind we have seen so far. For example, if we
are writing an encryption algorithm, we want to prevent
the ‘side channel attack’ that becomes possible when dif-
ferent kinds of input cause the algorithm to take different
amounts of time. Attackers can measure how long it takes
to decrypt different inputs and deduce encryption keys from
that. Which shows laudable cleverness to our minds, but
hey!

For example, here is an example of the kind of thing such
an encryption algorithm would need to do: a method to look
up the index of a value in a sequence of values. To be a bit
more elegant than the previous pattern, the implementation
uses Dafny’s sequence operations: ‘in’ and ‘!in’ for inclusion,
‘|s|’ for the length of the sequence, and ‘s[0..n]’ meaning the
first n elements.
method IndexOf( s: seq<int>, value: int)

returns (index: int )
// Answers the index of value in s
requires value in s
ensures 0 <= index < |s|
ensures s[index] == value
ensures value !in s[0..index]
{

for i := 0 to |s|
invariant value !in s[0..i]
{ if s[i] == value

{ return i;
}

}
return −1; // Not reached.

}

How might we assert that the amount of time the method
takes depends only on the length of s?
Solution:Use ghost code tomodel non-functional properties

While we cannot know how long the method will take, we
can be reasonably sure that the time taken by operations like
getting and calculating values will not depend on the values
involved. Instead, the processing time will depend only on
the different paths of execution through the method. So we
add ‘ghost variables’, which do not generate any run-time
code, and are only used by the Dafny prover. These count
the number of different paths of execution, so we can use an
assertion to state that these are as expected on exit, adjusting
the method accordingly:
method IndexOf2( s: seq<int>, value: int)

returns (index: int )
// Answers the index of value in s
requires value in s
ensures 0 <= index < |s|
ensures s[index] == value
ensures value !in s[0..index]
{

ghost var numIterations := 0;
ghost var numFirstBranch := 0;

for i := 0 to |s|
invariant value !in s[0..i]
{ numIterations := numIterations + 1;

if s[i] == value
{ numFirstBranch := numFirstBranch + 1;

break;
}

}
assert numIterations == |s|;
assert numFirstBranch == 1;
return i;

}

Ghost code is widely used in Dafny. Ghost variables can
model the history of operations on a data structure to prove
a property like ‘operations are performed in a FIFO order’;
track properties like ‘the algorithm will always terminate’;
or simplify complicated invariants by caching values. There
are also ‘ghost functions’—like the predicate in the previous
pattern—which are used only by the theorem prover and do
not generate any code.
Known Use:
AWS provide an Encryption SDK for customer use, available
on multiple platforms and languages. The core implementa-
tion is in Dafny, which does make at least some use of ghost
variables.
Implementation:
Unsurprisingly, Dafny complains quite a bit about the above
code. After a lot of discussion with ChatGPT as described in
the previous pattern, we achieve the following implementa-
tion:

method IndexOfConstTime( s: seq<int>, value: int)
returns (index: int)

requires value in s
ensures 0 <= index < |s|
ensures s[index] == value
ensures value !in s[0..index]

{
ghost var numIterations := 0;
ghost var numFirstBranch := 0;

var result := −1;
for i := 0 to |s|

invariant result == −1 ==> value !in s[0..i]
invariant result < |s|
invariant result >= 0 ==>

value !in s[0..result]
invariant result >= 0 ==> s[result] == value
invariant numIterations == i
invariant result != −1 ==> numFirstBranch==1
invariant result == −1 ==> numFirstBranch==0
{ numIterations := numIterations + 1;

if (s[i] == value) && (result == −1)
{ numFirstBranch := numFirstBranch + 1;

result := i;
}

}
assert numIterations == |s|;
assert numFirstBranch == 1;
return result;

}
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Notice that we have not only had to provide a large number
of helpers for Dafny; we have also had to change the real
implementation to satisfy the timing constraints.
Purists will note that ‘(s[i] == value) && (result == -1)’

actually involves multiple pathways since the second expres-
sion may not be evaluated. The solution, of course, is to use
the bitwise ‘&’ operator instead of the logical ‘&&’ one. But
Dafny’s ‘&’ does not work on booleans, so we shall need to
fix it in the generated code. Sigh!.

Overall, though, Dafny’s theorem prover has forced us to
change our implementation, and we have proved the result-
ing implementation has the required timing property. Dafny
has checked something that would be very hard to validate
using testing, and proved it to be true. Yippee!
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6 Conclusion
We have explored the philosophy of Faultless programming,
introduced Dafny, and explored some of the benefits and
approaches to using it. What might you do next?

We recommend you take the plunge, and learn Dafny prop-
erly! Set up a Visual Studio Code environment, download the
Dafny support package, and get coding. There are excellent
materials for learning the practical side of the language now
you have the concepts:
We suggest you find a problem that interests you and work
through it in aDafny implementation. Look for a self-contained
module, and one where the vital requirements are more func-
tional than non-functional. And get Dafny coding!

Good luck!
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