RATIONAL INATTENTION AND CHILD DEVELOPMENT

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	Perception and cognitive control in rationally inattentive child behaviour
14	
15	Samuel David Jones ^{1, 2} , Manon Wyn Jones ¹ , Kami Koldewyn ¹ , and Gert Westermann ²
16	
17	¹ Department of Psychology, Bangor University
18	² Department of Psychology, Lancaster University
19	
20	762 words
21	
~~	
22	Samuel David Jones ORCID: 0000-0002-8870-3223
23	
24	
25	Author note
26	
27	Correspondence concerning this article should be addressed to Samuel Jones, Room
28	309, Brigantia, Bangor University, Bangor, LL57 2AS. Email: <u>samuel.jones@bangor.ac.uk</u> .
29	Samuel Jones is supported by Royal Society Research Grant [RG\R1\241234]. Gert
30	Westermann is supported by Economic and Social Research Council (ESRC) International
31	Centre for Language and Communicative Development (LuCiD) [ES/S007113/1 and
32	ES/L008955/1]. We have no conflicts of interest to disclose.

33

34

Abstract

35	Astle (2024) and Mani (2024) raise important questions about the representativeness of
36	the theory and neural network model presented in Jones et al. (2024). In response, we briefly
37	lay out future research priorities and the implications of a fully developed theory of rational
38	inattention for how we think about, measure, and respond to individual differences in child
39	development.

40 41

Perception and cognitive control in rationally inattentive child behaviour

- 42 Astle (2024) and Mani (2024) raise important questions about the representativeness of 43 the theory and neural network model presented in Jones et al. (2024). Astle (2024) notes that 44 learning difficulties are rarely so discrete and rarely accompany areas of *absolute* rather than 45 relative strength (Goh et al., 2021). Meanwhile, Mani (2024) questions the neurocognitive 46 correlate of the network's cost function, and questions whether the model captures the 47 developmental emergence of meta-cognitive awareness of knowledge gaps that drives 48 information selection (De Eccher et al., 2024). We fully embrace these commentaries, and agree 49 that the theory and model presented in Jones et al. (2024) require development in order to align 50 more faithfully with child behaviour.
- 51

52 The deficits instantiated in Jones et al. (2024) are highly abstract, affording them a 53 discreteness that is unlikely if lower-level deficits are modelled more accurately (see Jones et 54 al., 2024, section 2.3 for rationale). Absolute domains of strength emerge in this network 55 because noisy channels compete with channels entirely unaffected by perceptual imprecision. 56 Crudely, then, generalised deficits and relative rather than absolute areas of strength may be 57 simulated in this architecture by reducing the precision of multiple channels, making some 58 more precise than others. However, to capture rich and experimentally verifiable cascading 59 effects and cross-domain interactions it will be necessary to move beyond using an abstract 60 rendering of channel precision as proxy.

61

62 As a starting point, we might imagine integrating the decision making model of Jones 63 et al. (2024), which 'brackets out' the nature of perceptual experience, with low-level sensory 64 modelling work of the form presented in Jones et al. (2023), which explains variance in 65 language acquisition as a function of variance in the precision of neural responses from the 66 cochlea. Such an approach may help to strengthen our claim that relatively subtle primary 67 neurological deficits may drive the behavioural entrenchment of learning difficulties via 68 rationally inattentive behaviour; a critical claim of the target article which speaks to Mani's 69 (2024) closing remarks regarding the capacity of the framework to explain causal origins.

70

71 We believe that the neural network presented in Jones et al. (2024) does illustrate the 72 emergence of metacognitive awareness described by Mani (2024), despite ourselves not using

RATIONAL INATTENTION AND CHILD DEVELOPMENT

73 this term¹. The network initially attends evenly across its environment, but later redistributes 74 its attentional preferences as a function of learning progress, plotting a trajectory towards 75 increasingly rich model-based exploration and learning underpinned by a single, plastic 76 architecture (e.g., Jones et al., 2024, Figure 1). Training therefore instantiates bi-directional 77 information flow between perceptual input and top-down cognitive control, with 'firewall' 78 effects seen in the cost functions of trained networks with precision deficits. For instance, the 79 cost function of the network with simulated developmental language disorder and dyslexia (e.g., 80 Jones et al., 2024, Figure 5) evolves from 81 82 (1) speech MSE \times speech weight + text MSE \times text weight + numeric MSE \times 83 numeric weight + social MSE \times social weight 84 85 to 86 87 numeric $MSE \times$ numeric weight + social $MSE \times$ social weight (2) 88 89 as the speech and text weights shift incrementally to zero, removing these terms. This makes 90 explicit our claim that children work with subjective cost functions tailored by their perceptual 91 experience. That said, we fully agree with Mani (2024) that considerable work is required to 92 develop neurocognitively faithful cost functions. Ultimately, this should balance uncertainty 93 reduction with reward procurement across varying timescales. It may be expedient, for instance, 94 to attend to information sources that are endogenously imprecise when expected reward is high. 95 Moreover, immediate uncertainty reduction is not always the best policy in the long-term – an 96 often-cited game theoretic example is that it might be unwise to remove the mask of your captor. 97 In updating weights exclusively as a function of the derivative of instantaneous error, the neural 98 network model of Jones et al. (2024) is unable to capture such phenomena. 99 100 The commentaries highlight that the rational inattention framework requires 101 elaboration and similarly that the associated model, which represents just one computational 102 approach among many, constitutes a form of *ansatz*: a first assumption to be improved through

103 ongoing empirical investigation. Capturing the authentic perceptual experience and cognitive

¹ We avoid this term because top-down control is not necessarily a conscious process, as the word 'awareness' suggests.

RATIONAL INATTENTION AND CHILD DEVELOPMENT

104	control profile of the child is an important next step in reconciling the computational rationality
105	framework with models of neurodivergent child behaviour. The result of this reconciliation
106	would be, as Astle (2024) notes, a robust framework that may help to strengthen existing calls
107	to modify, as far as possible, the child's learning environment to accommodate their relative
108	strengths, rather than to pursue characteristically ineffective programmes of clinical
109	intervention (see also Jones & Westermann, 2022).
110	
111	References
112	
113	Astle, D. E. (2024). 'Fix' the child or change the learning environment? Developmental
114	Science.
115	De Eccher, M., Mundry, R., & Mani, N. (2024). Children's subjective uncertainty-driven
116	sampling behaviour. Royal Society Open Science, 11(4), 231283.
117	https://doi.org/10.1098/rsos.231283
118	Goh, S. K. Y., Griffiths, S., Norbury, C. F., & the SCALES Team. (2021). Sources of
119	variability in the prospective relation of language to social, emotional, and behavior
120	problem symptoms: Implications for developmental language disorder. Journal of
121	Abnormal Psychology, 130(6), 676-689. https://doi.org/10.1037/abn0000691
122	Jones, S. D., Jones, M. W., Koldewyn, K., & Westermann, G. (2024). Rational inattention: A
123	new theory of neurodivergent information seeking. Developmental Science, e13492.
124	https://doi.org/10.1111/desc.13492
125	Jones, S. D., Stewart, H. J., & Westermann, G. (2023). A maturational frequency
126	discrimination deficit may explain developmental language disorder. Psychological
127	<i>Review</i> . https://doi.org/10.1037/rev0000436
128	Jones, S. D., & Westermann, G. (2022). Prediction Cannot Be Directly Trained: An Extension
129	to Jones and Westermann (2021). Journal of Speech, Language, and Hearing
130	Research, 65(10), 3930-3933. https://doi.org/10.1044/2022_JSLHR-22-00332
131	Mani, N. (2024). The timescales of rational inattention. Developmental Science.