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Abstract—Developing a cross-domain classification model for
remote sensing images has drawn significant attention in the
literature. By leveraging the open-set Unsupervised Domain
Adaptation (UDA) technique, the generalization performance of
deep learning models has been improved with the capability to
recognize unknown categories. However, it remains challenging
to explore distribution patterns in the target domain using
uncertain category-wise supervision from unlabeled datasets
while reducing negative transfer caused by unknown samples. To
develop a robust open-set UDA framework, this paper presents
Prototypical Unknown-aware Multiview Consistency Learning
(PUMCL) designed for remote sensing scene classification across
heterogeneous domains. Specifically, it employs a consistency
learning scheme with multiview and multilevel perturbations
to improve feature learning from unlabeled target samples. An
entropy separation strategy is utilized to facilitate open-set detec-
tion and recognition during adaptation, enabling unknown-aware
feature alignment. Furthermore, the introduction of prototypical
constraints optimizes pseudo-label generation through online
denoising and promotes a compact category-wise feature sub-
space for improved class separation across domains. Experiments
conducted on six cross-domain scenarios using AID, NWPU, and
UCMD datasets demonstrate the method’s superior performance
compared to nine state-of-the-art approaches, achieving a gain
of 4.5% to 21.2% in mIoU. More importantly, it shows promising
class separability with clear boundaries between different classes
and compact clustering of unknown samples in the feature space.
The source code will be available at https://github.com/zxk688.

Index Terms—Open-set, unsupervised domain adaptation,
scene classification, remote sensing images, consistency learning.

I. INTRODUCTION

REMOTE sensing image classification, as a fundamental
task in Earth observation, has long been utilized for ur-

ban planning, environmental monitoring, and natural resource
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management [1]–[3]. The continuous advancement of sensors
and platforms for Earth observation has resulted in abundant
remote sensing data, presenting significant opportunities for
remote sensing scene classification [4], [5]. In recent years,
deep learning models have become primary tools for remote
sensing image classification, owing to their exceptional ability
to extract abstract features from remote sensing imagery data
[6], [7]. Their excellent performances depend on the assump-
tion that the training and test data adhere to be identically
distributed.

However, in practical remote sensing applications, data
shifts often arise from variations in acquisition conditions,
scenes, seasons, and sensors. These differences result in per-
formance degradation and biases when applying a trained
model from the source domain to cross-domain classification
tasks, as it cannot effectively characterize the representations
of image data in the unseen domain [8]. Mitigating such
training or methodological biases is identified as one of the key
components of responsible artificial intelligence practices [9].
Fortunately, the development of transferable deep models has
gained increasing attention in the literature [10]. To mitigate
the impact of domain shift, unsupervised domain adaptation
(UDA), a common transfer learning technique, has been used
to enhance the performance of deep models on unlabeled target
domains [11], [12].

The objective of UDA is to minimize distribution incon-
sistency across various domains by projecting the source and
target domain into a shared subspace or by aligning target
samples with the corresponding source class centers [13]–
[17]. Specifically, as a mainstream technique in UDA, ad-
versarial training employs a dual-branch network architecture
that jointly processes both source and target domain data.
By alternatively training a feature generator and a domain
discriminator in an adversarial manner, it reduces the feature
distribution discrepancy between the two domains [18]. Al-
though adversarial training can effectively match the global
marginal distributions, it may not ensure the separation of
different classes within the target domain. In contrast, the
self-training-based approach iteratively refines the model by
introducing pseudo-labels, thus explicitly providing category-
wise supervision information for the target domain [19]. Self-
training depends on high-confidence pseudo-labels, which are
typically selected based on the model’s predictive uncertainty
[20]. However, pseudo-labels can introduce noise due to
domain discrepancies during model optimization, resulting in
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imprecise category knowledge. This issue has been identified
as the primary reason why a weakly supervised approach based
on pseudo-labels cannot perform on par with an Oracle (or a
fully supervised model) [21].

Fig. 1: Illustration of the open-set UDA problem, where the
target domain contains “unknown” classes that are absent in
the source domain.

Most existing works are developed assuming that the source
and target domains share the same label space, i.e., in a
closed-set scenario. In real-world applications, it is often
impossible to guarantee that all incoming test data belong
to existing classes from the source domain [22]. Therefore,
developing models for open-world remote sensing is critically
important [23]. Specifically, an open-set UDA setting has
been introduced, which allows the target data to contain an
additional ”unknown” category, covering all irrelevant classes
not present in the source domain [24], [25], as shown in Fig. 1.
Open-set UDA poses two key challenges. First, it is essential to
accurately identify the decision boundary between known and
unknown classes, even without accessible information about
the unknown classes [26]. However, mitigating the influence
of distribution shifts between domains is more difficult than
in a closed-set scenario. Secondly, directly aligning the entire
distribution of source and target domains can be risky due
to the presence of unknown classes in the target domain,
which may degrade the performance of the domain adaptation
model—a phenomenon known as negative transfer. Therefore,
open-set cross-domain classification algorithms should pos-
sess the ability to identify samples from unseen classes as
”unknown” while accurately classifying samples from known
classes.

Unlike the closed-set UDA approach, unknown sample
recognition strategies or modules are required in the open-
set UDA, e.g., the auxiliary binary classifier to group the
samples into known and unknown classes in adversarial learn-
ing [27], [28]. Alternatively, open-set recognition strategies
are designed for unknown sample recognition based on pre-
diction uncertainty, sample affinity, or distance measurement,
which normally relies on predefined thresholds [29]–[31].
Since no prior knowledge is available for unknown classes,
which may comprise a mixture of various land scene types,
high-confidence pseudo-labels generated by the biased model
cannot be considered inherently reliable in self-training [30].
Furthermore, to improve the feature representation capability

of the target domain, the self-supervised-enhanced open-set
UDA method has been developed by exploiting contrastive
learning of unlabeled samples to mine the feature patterns
[29]. While current research has yielded impressive perfor-
mance within specific datasets, challenges arise when dealing
with diverse scenarios. Uncertainties, including sample offsets,
noisy pseudo-labels, semantic space disparities, and discrete
feature distributions, collectively inhibit existing methods from
providing reliable supervision information and category-wise
knowledge of ground objects for model optimization.

Motivated by the abovementioned challenges, we attempt
to propose a robust open-set cross-domain scene classification
method, Prototypical Unknown-aware Multiview Consistency
Learning (PUMCL), for remote sensing images. It employs
a consistency learning strategy for both known and unknown
samples with multiview and multilevel perturbations to reduce
sample offsets between the two domains and minimize domain
discrepancies. To address semantic space disparities caused by
category inconsistency, unknown-aware feature alignment is
applied in consistency learning through an entropy separation
strategy with gradient reversal. This is achieved by alternately
increasing the conditional entropy of known and unknown
samples with respect to the classifier while minimizing dis-
crepancies of known samples relative to the backbone. As a
result, the decision boundary is shifted towards balancing the
classification of both known and unknown samples. To reduce
the impact of noisy pseudo-labels and discrete feature distribu-
tions on classification, prototypical constraints are constructed
to reweight the generated pseudo-labels, mitigating the disper-
sion of feature distributions caused by domain discrepancy and
shrinking category-wise subspace across domains for better
class separation. The main contributions of this article are as
follows:

1) A robust open-set UDA framework, PUMCL, based on
consistency learning, is proposed. It fully exploits the
category-wise cross-domain transferable knowledge and
feature distribution patterns from the unlabeled samples
without predefined thresholds. As a result, it achieves
better performance than nine state-of-the-art methods in
six groups of UDA experiments.

2) We construct multilevel consistency regularization strate-
gies and incorporate entropy separation and prototyp-
ical constraints into consistency learning to enhance
unknown-aware feature alignment and learn a shrinkable
feature structure by introducing reliable category-wise
pattern knowledge.

This article is organized as follows. In Section II, we
briefly review related research on cross-domain remote sensing
classification. In Section III, we detail the key components
and training scheme of the proposed approach. After that,
Section IV presents and analyzes the performance evaluations
of our algorithm and the compared methods. Finally, Section
V concludes the paper.
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II. RELATED WORK

A. Domain Alignment in Image Classification Tasks

Previous research on the cross-domain classification of
remote sensing images can be divided into three categories:
approaches based on divergence measurements, adversarial
learning, and self-training. In the first category, feature dis-
tributions of the two domains are aligned by optimizing
divergence metrics such as the maximum mean discrepancies
(MMDs) [16] and conditional MMDs [32], [33], and per-
class MMDs [34]. Adversarial-learning-based methods have
emerged as the most developed type of UDA method in remote
sensing. It generally includes a generator for representation
learning and a discriminator for domain classification [35],
[36]. This approach alternatively trains a feature generator and
a domain discriminator in an adversarial manner, where both
components engage in a game-theoretic process for feature
alignment at the latent space [37], [38]. Various schemes
have been developed to improve the discriminative capability
of the adversarial learning models, e.g., using a weighted
discriminator to perform sample instance reweighting and
calibrate domain alignment according to samples’ importance
[39], [40]. Moreover, a fundamental theoretical framework
has been established for UDA with imbalanced prediction
consistency, significantly enhancing the network’s discrimina-
tive ability [41]. Since a non-negligible gap exists, matching
global distribution between the source and target domain
cannot guarantee an improvement in class separability [42].
To address this problem, self-training-based methods have
been used to improve adaptation performance by conducting
category-wise feature alignment. The idea behind self-training
is to use high-confidence pseudo-labels in the target domain
to iteratively refine the model [43]. These pseudo-labels are
typically selected using sorted output probabilities from the
corresponding categories or thresholding methods based on the
prediction confidence of the model. Although self-training can
provide additional category-wise supervision, the generated
pseudo-labels are inevitably noisy, which can mislead the
classifier during backpropagation.

B. Open-set Cross-Domain Learning

Open-set adaption should exclusively focus on the known
classes to avoid incorporating irrelevant information. Most
methods are developed on the basis of adversarial learning and
self-training in the closed-set UDA. Specifically, an adversarial
learning-based approach using the backpropagation method
was developed, utilizing a classifier and a feature generator
to separate unknown targets from known samples [44]. [45]
extended adversarial learning using multiple auxiliary classi-
fiers with a weighting module to assess distinctive domain
characteristics and indicate their likelihood of belonging to
known or unknown classes. Furthermore, separate-to-adapt
(STA) [46] performs adversarial domain alignment based on
multi-binary classifiers and applies a coarse-to-fine weight-
ing mechanism on the samples with an auxiliary classifier
to distinguish the known samples from the unknown ones.
Unknown-Aware Domain Adversarial Learning (UADAL) [27]
explicitly segregates unknown features in domain adversarial

learning by using entropy values as the open-set recognition
indicator. In [31], an adaptive threshold segmentation method
based on the Otsu algorithm is used to detect unknown samples
in the testing set. In [47], an instance affinity matrix was
proposed to distinguish unknown samples by increasing the
affinity between similar samples across domains and reducing
the affinity of irrelevant classes. Uncertainty distance mea-
surement was proposed to identify unknown classes [48].
Self-supervised-driven open-set UDA (SSOUDA) utilized a
contrastive learning strategy to effectively extract the structural
knowledge of the target domain [29]. However, three trial-
and-error thresholds are required to obtain reliable pseudo-
labels. More recently, the multi-adversarial Open-Set Domain
Adaptation Network (MAOSDAN) [28] utilized auxiliary ad-
versarial learning to mitigate the negative transfer effect of
unknown samples in network training. Another line of work
to address the cross-domain classification issue is zero-shot
learning [8], [49]. Although these models can recognize and
even classify unknown categories, they still require textual
descriptions of known-class images for assistance during both
training and testing [8].

Overall, it is still challenging to retain low category-
wise distribution discrepancy across different domains while
achieving high interclass similarity for image classification
[26]. Although the contrastive self-supervised learning-based
approach can improve feature discriminative capability [50],
the absence of reliable category-wise supervision could hin-
der the exploration of distribution patterns, leading to weak
robustness.

III. METHODOLOGY

As shown in Fig. 2, the proposed PUMCL framework
consists of three parts: constructing weak-to-strong views,
unknown-aware consistency learning, and prototypical con-
straints. Specifically, the multiview consistency learning
part employs consistency regularization to generate domain-
invariant representations under various augmentations to mine
invariant representations of the target domain. Furthermore, it
leverages entropy separation to detect and recognize unknown
samples for unknown-aware domain alignment, in which a
gradient reverse layer (GRL) is utilized to separate the known
and unknown feature spaces in an adversarial learning manner.
Finally, the prototypical constraint module calculates weights
based on the distance between prototypes and the sample
feature within the target domain, adaptively reducing the noise
in pseudo-labels used in consistency learning. Additionally, it
shrinks the category subspace to enhance class separability.

A. Preliminaries

In this study, there exists a labeled source domain dataset
Ds = {xs,i, ys,i}ns

i=1, where xs,i represents a randomly sam-
pled instance from the source domain and ys,i is the corre-
sponding label, with a total of ns images in the dataset. Also,
we have an unlabeled target domain dataset Dt = {xt,j}nt

j=1,
where xt,j represents a randomly sampled instance from the
target domain without labels, with a total of nt images. In
open-set UDA scenarios, the label set of the target domain
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Fig. 2: Overall framework of PUMCL. Specifically, FP means feature perturbations, and GRL means gradient reverse layer.

Ct = {1, 2, . . . , C} is larger than that of the source domain
Cs = {1, 2, . . . , C − u}, i.e., Cs ⊂ Ct, where u is the number
of the extra classes that do not exist in the source domain and
are uniformly designated as unknown class Cu in the target
domain.

The cross-domain classification network in the proposed
framework consists of a backbone as feature extractor f(·)
that extracts useful representations from the input data and a
classifier g(·) that projects the representations into different
classes. The objective is to guide the network in learning the
category-wise knowledge of the target domain under unsuper-
vised conditions while enabling it to accurately distinguish
between known and unknown classes. As the labeled source
data is the only supervised information available, the source
cross-entropy loss Lsce is utilized to minimize the discrepancy
between the classifier’s predictions and the labels, which is
defined as follows:

Lsce = −
1

ns

ns∑
i=1

∑
c∈Cs

ys,i log (p (ŷ = c | xs,i)) (1)

where ys,i represents the true label of source domain image
xs,i, and p (ŷ = c | xs,i) represents the predicted conditional
probability distribution for the sample xs,i when the predicted
label ŷ belongs to the c-th class. Notably, we utilize the weakly

augmented version xw
s,i instead of the original image xs,i in

the training process.

B. Multiveiw Consistency Learning

1) Consistency Regularization: Consistency regularization
leverages unlabeled data by assuming that the model should
produce similar predictions when presented with perturbed
versions of the same image. This technique has proven effec-
tive for exploiting unlabeled data under the cluster assumption,
where the decision boundary lies in low-density regions.
The goal of consistency learning in UDA is to enhance the
robustness of the model by learning invariant representations
of the target domain samples under various augmentations.
Traditional consistency regularization strategies focus on min-
imizing the cross-entropy between the class predictions of
weakly augmented samples and strongly augmented samples.
However, this approach primarily enhances discriminative
features within a limited perturbation space. Inspired by the
UniMatch method [51], we combined image-level and feature-
level perturbations in independent streams to expand the
perturbation space and obtain more robust features. Given
B target domain samples in a mini-batch, each subjected to
one weak augmentation xw

t,j , based on which feature pertur-
bation xfp

t,j is performed. Additionally, two views of strong
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augmentations xs1
t,j and xs2

t,j , generating a total of 4B mixed
augmentation samples with each offering a unique perspective
for representation learning. Specifically, weak augmentations
include image flipping and random cropping, while strong
augmentations are based on color transformations [52]. With
respect to feature perturbation, channel dropout is adopted in
this paper, which has been demonstrated sufficiently effective
[51].

Instead of minimizing the divergence between the prob-
ability distributions obtained by various perturbations [51],
we exploit the pseudo-labels ŷwt,j generated by the weakly
augmented samples xw

t,j to explicitly guide the consistency
learning. Thus, the consistency loss Lcsl is expressed as:

Lcsl =
1

B

B∑
µH(ŷwt,j , p(x

fp
t,j))

+
µ

2

(
H
(
ŷwt,j , p(x

s1
t,j)
)
+H

(
ŷwt,j , p(x

s2
t,j)
)) (2)

where H(·) represents the cross-entropy loss function between
two probability distributions. It is essentially an average of
three loss functions, where the weight µ is set to 0.5.

2) Contrastive Enhancement: To make the features more
discriminative, we introduce contrastive enhancement in a
self-supervised manner. Denoted by f(xs1

t,j) and f(xs2
t,j), the

projected features of paired augmented samples xs1
t,j and xs2

t,j

through the feature extractor f(·). The goal of contrastive en-
hancement is to maximize the similarity between the strongly
augmented samples xs1

t,j and xs2
t,j of the same data example

while minimizing the resemblance between samples from
another view with different semantics which is regarded as
the negative sample x−

t,l,l ̸=j .
Inspired by [53], [54], we adopt a simple and effective

loss function to maximize the similarity between features of
positive pairs while minimizing their similarity to the features
of negative samples, thereby learning a more discriminative
representation. Instead of using the contrast between weak and
strong samples to maximize feature similarity, we construct
positive and negative samples from two strong versions of the
samples. As a result, the contrastive enhancement loss function
Lctl is defined as:

Lctl = − log
exp

(
sim

(
f(xs1

t,j), f(x
s2
t,j)
)
/τ
)

∑2B
l=1 I(l ̸= j) exp

(
sim

(
f(xs1

t,j), f(x
−
t,l)
)
/τ
)
(3)

where sim(·) is the cosine similarity metric function, τ is the
temperature parameter, and I ∈ {0, 1} is an indicator function
to evaluate whether l is equal to j.

By exploiting consistency learning with multilevel perturba-
tions and contrastive enhancement, the model not only learns
to generate invariant representations under various augmenta-
tions but also ensures that these representations are sufficiently
discriminative. This dual focus on unlabeled data promotes the
extraction of more robust and generalizable features, thereby
improving the model’s ability to distinguish samples in the
UDA context. The proposed consistency learning offers a
foundational framework for unknown-aware domain alignment
and open-set recognition. Notably, pattern knowledge of un-

known samples can be acquired and integrated into consistency
learning, as will be elaborated in Section III.D.

C. Prototypical Constraints

Although useful features of the target domain can be
extracted through consistency learning, pseudo-labels ŷwt,j
inevitably introduce noise in the training process and the
absence of reliable supervision information hinders the class
separability. Therefore, we utilize the prototypical constraints
to further refine noisy pseudo-labels in the target domain and
improve class separability.

1) Shrinkable Subspace Optimization: As new data
emerges, the unknown class typically consists of multiple
distinct classes with potentially diverse feature distributions.
Therefore, it is crucial to obtain intra-class compactness and
learn a clustered feature subspace. The source class prototype
is a representative feature vector for each class, initialized with
the source domain label:

φc
s =

∑
(xw

s,i,y
w
s,i)∈Ds

∑
i I
(
yws,i = c

)
f
(
xw
s,i

)∑
yw
s,i∈Ds

∑
i I
(
yws,i = c

) , c ∈ Cs (4)

where {φc
s}C−u

c=1 represents the feature prototype set. However,
calculating these prototypes is computationally intensive dur-
ing training. To mitigate this, we estimate the prototypes as
the moving average of cluster centroids within mini-batches,
allowing us to track gradually evolving prototypes. The ex-
ponential moving average strategy throughout the training
process can be expressed as follows:

φc
s ← λemaφ

c
s + (1− λema)φ

c
batch,s (5)

where φc
s denotes the prototype for class c, φc

batch,s represents
the mean feature for class c calculated within the current
training batch, and λema is momentum coefficient which is
set to 0.5.

We leverage the prototypical information of features to
constrain each category subspace intra-domain, simultaneously
constructing classifiers’ decision boundaries. This process dy-
namically evaluates the sample-level domain discrepancy inter-
domain. Since the labels for the source samples are available
and can serve as reliable supervision for domain alignment,
source prototypes are utilized to explicitly guide the target
samples toward the source category centroids, enhancing the
compactness of the feature space within the same classes.
Specifically, we utilize prototypical loss, Lprt, to minimize the
Euclidean distances between target features and prototypes in
the source domain:

Lprt =
1

ns

ns∑
i=1

min
c∈Cs

{
exp

(
−
∥∥f (xw

t,i

)
− φc

s

∥∥)∑
c′ exp

(
−
∥∥f (xw

t,i

)
− φc′

s

∥∥)
}
. (6)

2) Online Pseudo-Label Denoising: The commonly used
pseudo-label denoising method relies on a threshold to select
the high-confidence pseudo-labels while discarding those of
low confidence, which lacks flexibility and global distribution
patterns of the target domain. To fully exploit the knowledge
from unlabeled samples, we propose an online denoising
strategy for the pseudo-labels. As the model converges, the
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unlabeled samples will tend to align with the category-wise
feature centroids. Therefore, the target prototypes can be used
as a guide for pseudo-label denoising. Meanwhile, the pseudo-
labeled samples of the unknown class can be obtained and
refined to enhance unknown-aware domain alignment. Specif-
ically, the proposed approach utilizes the feature centroid of
weakly augmented target samples as prototypes to incremen-
tally refine pseudo-labels, thereby dynamically mitigating the
impact of unreliable labels. The category-wise weights are
determined by the distances between the target domain sample
features and the target prototypes of each class {φc

t}
Cu
c=1 within

the target domain, as follows:

φc
t =

∑
xw
t,j∈Dt

∑
j I
(
Φ(pc(xw

t,j)) = 1
)
f
(
xw
t,j

)∑
xw
t,j∈Dt

∑
j I
(
Φ(pc(xw

t,j)) = 1
) , c ∈ Ct (7)

ωc
t,j =

exp
(
−
∥∥f (xw

t,j

)
− φc

t

∥∥)∑
c′ exp

(
−
∥∥f (xw

t,j

)
− φc′

t

∥∥) , c ∈ Ct (8)

where Φ(·) denotes the conversion from the soft predictions to
hard labels, ωc

t,j represents the weight of sample xw
t,j belong-

ing to the c-th class. It can be observed that samples close to
the feature centroid can be regarded as the more trustworthy
ones, while samples far away from the prototypes are likely
outliers. Accordingly, we adjust the classification probabilities
incrementally based on this premise. Through progressively
updating the weights based on the newly acquired knowledge,
the refined pseudo-labels can be obtained by:

ŷw,c
t,j = Φ(ωc

t,jp
c(xw

t,j)) =

{
1, if c = argmaxc′ ω

c′

t,jp
c′(xw

t,j)

0, otherwise
(9)

where ŷw,c
t,j means the one-hot label of the sample xw

t,j denot-
ing whether it belongs to the c-th class.

D. Unknown-Aware Domain Alignment

1) Unknown and Known Class Separation: Normally, the
“known” region exhibits a higher density of occurrences,
which diminishes as predictive uncertainty increases. Con-
versely, the “unknown” region shows a lower density that
rises with increasing uncertainty. This inverse relationship
highlights the challenge of obtaining reliable information in
the face of growing uncertainty, as shown in Fig. 2. Since the
training process aims to fit source samples by minimizing the
cross-entropy losses, the model tends to classify target samples
into known classes, leading to a biased decision boundary
and often failing to effectively detect unknown classes [44].
Additionally, the unknown class might consist of multiple land
cover types with spectral characteristics similar to those of
the known classes. As reported in [55], the classifier predicts
higher entropy for unknown target samples and lower entropy
for known samples because no semantics of unknown-class
samples are available during the training process. Based on
this observation, we attempt to increase the entropy values of
the known and unknown categories conditioned on each other
to find a more separable decision boundary between the two.
Meanwhile, the consistency loss and prototypical constraints
will incorporate category-wise target domain knowledge to

guide the model in fitting both known and unknown samples,
thereby enhancing its ability to distinguish between these
classes.

To achieve the above purpose, we apply an entropy separa-
tion objective Lesl for the split of known and unknown feature
space in an adversarial learning manner. It is implemented
by alternately increasing the conditional entropy of known
and unknown samples with respect to the classifier while
minimizing discrepancies of known samples with respect to
the feature encoder. Specifically, a GRL is utilized during
backpropagation to implicitly conduct adversarial training.
Finally, the entropy separation loss Lesl is designed as follows:

Lesl =−
1

nt

nt∑
j=1

p
(
ŷ = Cu | xw

t,j

)
log
(
1− p

(
ŷ = Cu | xw

t,j

))
− 1

nt

nt∑
j=1

(
1− p

(
ŷ = Cu | xw

t,j

))
log
(
p
(
ŷ = Cu | xw

t,j

))
(10)

where p
(
ŷ = Cu | xw

t,j

)
represents the probability of belong-

ing to the unknown class Cu.
2) Unknown-Aware Class Recognition: Notably, the con-

sistency learning in Equation (2) is designed for the closed-
set UDA in which the source and target domains share label
spaces. For the open-set UDA task, we integrate unknown-
aware class recognition into consistency learning before
pseudo-labeling with prototypical constraints in Equation (9)
is used to refine the classifier’s decision boundary, generating
more reliable predictions ŷwt,j . More specifically, an indicator
function ξ(·) to identify whether a sample belongs to known
or unknown, which is defined as:

ξ(ŷwt,j) =

{
1, if ŷwt,j ∈ {1, 2, · · · , C − u}
0, otherwise

. (11)

Therefore, the final consistency loss, modified from Equation
(2), is defined as:

L′
csl =

1

γ1B

B∑
ξ(ŷwt,j)

·
[
µH(ŷwt,j , p(x

fp
t,j)) +

µ

2
H(ŷwt,j , p(x

s1
t,j)) +H(ŷ

w
t,j , p(x

s2
t,j)))

]
+

1

γ2B

B∑
(1− ξ(ŷwt,j))

·
[
µH(1, p(xfp

t,j)) +
µ

2
(H(1, p(xs1

t,j)) +H(1, p(x
s2
t,j)))

]
(12)

where γ1 and γ2 represent the proportions of known and
unknown samples selected within a mini-batch.

E. Training and inference

The final objective function is to learn the optimal θf and
θc of the feature extractor f(·) and classifier g(·), and the total
loss function is as follows:

argmin
θf ,θc

(
Lsce + λ(L′

csl + Lctl) + Lprt + argmax
θf ,θc

Lesl

)
(13)
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Table I: Details of three publicly available remote sensing
datasets used in this paper.

Dataset Classes
Images

per class
Total

images
Resolution

(m)
Image size

UCMD 21 100 2,100 0.3 256 × 256
NWPU 45 700 31,500 0.2∼30 256 × 256

AID 31 220∼420 10,000 0.5∼8 600 × 600

where λ is the weight coefficient of L′
csl and Lctl. The objec-

tive function is optimized with respect to the parameters θf
and θc. Notably, we implicitly conduct the entropy separation
through maximizing Lesl using a GRL. The training process
is summarized in Algorithm 1.

In the inference process, only the weakly augmented test
images are input to the well-trained feature extractor f(·) and
classifier g(·) to obtain the target domain classification result.

Algorithm 1 Training Process of PUMCL
Require: source domain Ds and target domain Dt, backbone
f(·) and classifier g(·) with parameters θf and θg , weight λ,
learning rate ε, maximum iterations K.
Output: networks f(·) and g(·).

1: initialize prototypes: φc
s ← yws,i and f(xw

s,i), φc
t ←

Φ(p(xw
t,j)) and f(xw

t,j)
2: for k ← 0 to K − 1 do
3: if k < 5 then
4: warm-up:

θf ← θf − ε∇θf (Lsce + λLctl)
θg ← θg − ε∇θgLsce

5: return
6: else
7: update source and target prototypes: φc

s/t ←
λemaφ

c
s/t + (1− λema)φ

c
batch,s/t

8: online denoising: ωc
t,j ← f(xw

t,j) and φc
t , ŷwt,j ←

Φ(ωc
t,j · p(xw

t,j))
9: unknown identification: ξ(ŷwt,j)← ŷwt,j

10: update f(·) and g(·):
θf ← θf − ε∇θf (Lsce + λ(L′

csl + Lctl) + Lprt − Lesl)
θg ← θg − ε∇θg (Lsce + λL′

csl − Lesl)
11: end if
12: end for

IV. EXPERIMENTS

A. Datasets

In the experiments, we utilized three open-source remote
sensing datasets to construct a set of six cross-domain tests
for open-set UDA tasks: the Aerial Image Dataset (AID)
[56], the Northwestern Polytechnical University (NWPU) [1]
dataset, and the University of California Merced Land Use
Dataset (UCMD) [57]. The details of these datasets are listed
in Table I.

1) AID: The AID dataset consists of 10, 000 remote sensing
images sourced from Google Earth, encompassing 30 distinct
categories. Each category contains 220 ∼ 420 images, with
a size of 600 × 600 pixels and spatial resolutions ranging
approximately from 0.5 to 8 meters.

2) NWPU: The NWPU dataset comprises a total of 31, 500
images across 45 scene categories, with each category con-
taining 700 images. All images are sized at 256× 256 pixels,
with spatial resolutions ranging from approximately 0.2 to 30
meters.

3) UCMD: The UCMD dataset comprises 2, 100 high-
resolution remote sensing images divided into 21 scene cat-
egories, each containing 100 images. Each image is of size
256× 256 pixels with a spatial resolution of 0.3 meters.

As shown in Fig. 3, the three datasets were acquired from
different sensors, exhibiting varying resolutions and spectral
characteristics. Following the processing in [29], we con-
structed the cross-domain settings using ten common classes.
First, we standardized the class names across the datasets to
ensure uniformity, including agricultural, baseball diamond,
beach, dense residential, forest, medium residential, parking
lot, river, sparse residential, and storage tanks, facilitating
consistent analysis and presentation. Among these, the first
seven classes are shared as known classes, while the re-
maining three are treated as unknown classes. To enhance
the challenges, classes with similar semantics were intro-
duced in both the known and unknown classes. For example,
dense residential and medium residential are designated as
known classes, whereas sparse residential is categorized as
an unknown class. Finally, six cross-domain scenarios can
be constructed: AID→NWPU, AID→UCMD, NWPU→AID,
NWPU→UCMD, UCMD→AID and UCMD→NWPU. Here,
the symbol→ indicates the adaptation from the source domain
to the target domain. The numbers of samples in the source and
target domains for each test set are 448 and 640, respectively.

B. Baseline Approaches

The proposed approach is compared against nine state-of-
the-art UDA methods and one approach without adaptation.

1) Source-Only: The model trained on the source domain is
applied directly to the target domain, and no domain adaptation
is done.

2) DANN [58]: A closed-set UDA method that reduces
domain differences through adversarial training between the
feature extractor and the discriminator. This approach in-
volves a feature extractor learning to produce domain-invariant
features while the discriminator tries to distinguish between
features from the source and target domains.

3) CDAN [59]: A closed-set UDA method that leverages
multilinear and entropy-conditioned reflectances to refine the
domain discriminator, thereby facilitating adversarial adapta-
tion.

4) NOUN [60]: A closed-set UDA method that normal-
izes output predictions to maintain consistent feature norms,
achieving a simple and compact conditional domain adapta-
tion.

5) STA [46]: An open-set UDA method that uses a coarse-
to-fine weighting mechanism to gradually separate samples of
known and unknown classes.

6) OSBP [44]: An open-set UDA method that introduces a
domain adversarial model using a fixed threshold to distinguish
between known and unknown target samples.
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Fig. 3: Samples used in the cross-domain experiment.

7) DAMC [45]: An open-set UDA method that proposes
an adversarial adaptation model with multiple auxiliary clas-
sifiers. It introduces a weighting module to evaluate different
domain features, assigning weights to target samples to pro-
mote positive transfer and reduce the domain gap of shared
classes.

8) UADAL [27]: An open-set UDA method that aligns the
source and target-known distributions while simultaneously
segregating the target-unknown distribution through adversar-
ial learning with an additional open-set classifier.

9) SSOUDA [29]: An open-set UDA method that com-
bines contrastive self-supervised learning with consistency
self-training, in which three thresholds were predefined for
pseudo-labeling.

10) MAOSDAN [28]: An open-set UDA method that em-
ploys attention-aware adaptation to distinguish unknown and
known samples in the target domain with an auxiliary classifier
to mitigate negative transfer effects.

C. Evaluation Metrics

To evaluate the effectiveness of our PUMCL method, we
utilized five critical metrics, as follows: (1) KNO, which
measures the normalized accuracy specifically for the known
classes; (2) UNK, which calculates the accuracy for unknown
classes; (3) Overall accuracy (OA) represents the total accu-
racy across all classes; (4) HOS, i.e., the harmonic mean of
KNO and UNK [61]. It ensures balanced performance between
known and unknown classes, addressing a common flaw of
relying solely on OA metrics that could lead to artificially high
scores when accuracy is high for known classes despite poor
performance in unknown classes. (5) Mean Intersection over
Union (mIoU). Unlike traditional accuracy metrics, which may
overstate performance by misclassifying classes as unknown,
mIoU provides a more comprehensive evaluation considering
class variations. These metrics can be formulated as follows:

KNO =
1

C − u

C−u∑
c=1

TPc

TPc + FPc
(14)

UNK =
TPCu

TPCu + FPCu

, (15)

OA =
TP+ TN

TP+ TN+ FP + FN
, (16)

HOS = 2× KNO×UNK

KNO+UNK
, (17)

mIoU =
1

C

C∑
c=1

TPc

FNc + FPc +TPc
(18)

where TP, FP, TN, and FN are the numbers of true positives,
false positives, true negatives, and false negatives, respectively.
The subscript c denotes the value of the c-th category.

These metrics collectively offer a comprehensive evaluation
of our model’s performance, ensuring a balanced assessment
across different dimensions of class recognition.

D. Experimental Setup

In our method, we employed ResNet50 network [62] as the
backbone for feature extraction, and the weights pre-trained
on the ImageNet dataset are loaded. The classifier contains a
pooling layer, flattened operation, and a linear projection. For
optimization, Stochastic Gradient Descent (SGD) was chosen,
with a momentum of 0.9. The learning rate was set to 0.003,
following the annealing approach recommended by [63]. We
set up our training with a batch size of 32 and planned
to train for 70 epochs. Moreover, the hyperparameter λ in
the total training loss function is set to 0.5. The optimal
parameters of the comparison approaches were determined
following the original papers. All experiments were carried
out on the PyTorch platform, utilizing an NVIDIA GeForce
RTX 3090 graphics card with graphics memory of 24GB.
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Table II: Performance of 11 methods on six open-set domain adaptation scenarios in terms of KNO, UNK, OA, HOS and
mIoU (%). The best and second-best results are highlighted in red and blue, respectively.

Method
Closed-set UDA Open-set UDA

Source-only DANN CDAN NOUN STA OSBP DAMC UADAL SSOUDA MAOSDAN OURS

AID→NWPU

KNO 43.5 90.4 89.5 88.6 54.2 75.9 62.7 69.0 69.2 65.8 71.2
UNK 0.0 0.0 0.0 0.0 90.6 49.0 75.0 88.0 67.7 83.3 92.7
OA 30.5 63.3 62.7 62.0 65.2 67.8 66.4 74.7 68.8 71.1 77.7

HOS 0.0 0.0 0.0 0.0 67.9 59.5 68.3 77.3 68.4 73.6 80.5
mIoU 21.9 54.4 53.6 53.3 48.1 56.9 53.4 62.3 55.8 58.9 66.8

AID→UCMD

KNO 50.2 89.5 90.2 87.5 56.0 51.6 57.8 57.8 61.4 62.7 85.3
UNK 0.0 0.0 0.0 0.0 76.6 57.3 78.1 85.9 68.8 94.3 94.3
OA 35.2 62.7 63.1 61.3 62.2 53.3 63.9 66.3 63.6 72.2 88.0

HOS 0.0 0.0 0.0 0.0 64.7 54.3 66.5 69.1 64.9 75.3 89.5
mIoU 26.9 53.9 54.8 54.1 44.8 38.2 51.3 51.9 47.9 59.9 81.1

NWPU→AID

KNO 57.1 93.8 95.3 98.2 72.8 91.1 88.6 79.7 86.4 75.0 93.1
UNK 0.0 0.0 0.0 0.0 71.9 35.9 46.9 84.9 75.5 75.0 99.5
OA 40.0 65.6 66.7 68.8 72.5 74.5 76.1 81.2 83.1 75.0 95.0

HOS 0.0 0.0 0.0 0.0 72.3 51.5 61.3 82.2 80.6 75.0 96.2
mIoU 27.0 56.8 59.7 62.1 60.2 66.6 69.2 73.2 73.1 71.0 92.0

NWPU→UCMD

KNO 46.7 90.0 94.6 94.4 73.2 88.4 82.6 57.4 85.0 71.2 90.8
UNK 0.0 0.0 0.0 0.0 73.4 24.0 58.3 72.9 53.6 92.2 93.8
OA 32.7 63.0 66.3 66.1 73.3 69.1 75.3 62.0 75.6 77.5 91.7

HOS 0.0 0.0 0.0 0.0 73.3 37.7 68.4 64.2 65.8 80.3 92.3
mIoU 21.5 56.2 59.0 59.2 59.4 60.8 67.1 48.0 67.0 67.0 86.9

UCMD→AID

KNO 52.7 92.6 83.7 90.0 55.1 76.6 75.7 69.2 62.9 65.4 75.9
UNK 0.0 0.0 0.0 0.0 81.3 61.5 64.1 75.0 79.2 76.6 86.5
OA 36.9 64.8 58.6 63.0 63.0 72.0 72.2 70.9 67.8 68.8 79.1

HOS 0.0 0.0 0.0 0.0 65.7 68.2 69.4 72.0 70.1 70.5 80.8
mIoU 23.4 54.8 48.3 53.4 48.3 65.9 61.7 59.6 52.5 58.2 70.2

UCMD→NWPU

KNO 51.6 83.9 85.5 85.7 43.5 68.1 56.7 62.9 67.6 65.2 68.5
UNK 0.0 0.0 0.0 0.0 86.5 55.7 66.1 86.5 77.6 74.5 87.5
OA 36.1 58.7 59.8 60.0 56.4 64.4 59.5 70.0 70.6 68.0 74.2

HOS 0.0 0.0 0.0 0.0 57.9 61.3 61.1 72.9 72.3 69.5 76.9
mIoU 24.4 47.2 50.3 50.4 39.1 51.7 45.6 56.0 56.2 53.5 61.3

E. Quantitative Analysis

Table II presents the evaluation results of all methods
across six open-set cross-domain scenarios. It is evident from
the table that the non-domain adaptive method, source-only,
performs the worst due to domain shift effects. This method
fails to accurately identify both known and unknown classes.

In the open-world cross-domain classification task, the goal
is to identify unknown samples while accurately classifying
the known samples, effectively balancing performance for
both. Closed-set UDA methods generally achieve higher accu-
racy for known samples, as evidenced by higher KNO values
compared to open-set UDA methods. However, these closed-
set methods struggle to correctly identify unknown classes.
They often misclassify unknown samples in the target domain
as known classes because they directly align the two domains
without the capability to recognize unknown samples, due to
the lack of prior knowledge about these unknown classes.
Consequently, this results in lower OA and mIoU values.

On the other hand, open-set UDA methods may experience
declines in the KNO metric due to feature overlaps caused by
unknown classes, which could shift the decision boundary to-

wards balancing the classification of both known and unknown
samples. However, they significantly improve the capability
to recognize unknown classes. As a result, all open-set UDA
methods demonstrate better performance in comprehensive
indices such as OA, HOS, and mIoU. As shown in Table II,
in the AID→UCMD, NWPU→AID, and NWPU→UCMD
scenarios, the KNO values in the proposed approach are com-
parable to those of closed-set UDA methods. However, in other
scenarios, the drop in KNO is more noticeable due to the high
spectral similarity between certain land use categories. Among
the six open-set methods, the proposed PUMCL still achieves
the highest KNO values in the four scenarios: AID→UCMD,
NWPU→AID, NWPU→UCMD, and UCMD→NWPU. This
advantage is attributed to the integration of prototypical
constraints and multiview consistency learning, which can
provide reliable supervised signals for the model training. In
the UCMD→AID and AID→NWPU scenarios, although our
PUMCL method ranks second to OSBP in the KNO metric
(by 0.7% and 4.7%, respectively), OSBP’s UNK accuracy is
significantly inferior (by 43.7% and 25.0%, respectively), due
to negative transfer effect of open-set UDA.
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Fig. 4: Confusion matrix on the NWPU→AID scenario.

With respect to the UNK metric, our PUMCL method
outperforms all other methods, showing improvements ranging
from 1.0% to 14.6%. While MAOSDAN achieves compara-
ble UNK accuracy to our method in the AID→UCMD and
NWPU→UCMD scenarios, it exhibits performance degrada-
tion on other adaptation datasets. In comparison, our methods
consistently achieve stable and promising performance across
all datasets. This improvement is credited to the entropy
separation strategy and unknown-aware consistency learning,
which provide reliable supervision information and establish
clear distribution patterns for detecting and recognizing un-
known classes.

For the three overall evaluation metrics, OA, HOS, and
mIoU, our method achieves optimal performance in all exper-
iments. Specifically, our PUMCL method achieves significant
gains of 3.0% to 15.8% in OA, 3.2% to 14.2% in HOS, and
4.5% to 21.2% in the mIoU. These results demonstrate that
our PUMCL method outperforms other methods in overall
performance while achieving the balance between known and
unknown class identification.

F. Confusion Matrix

To further analyze the classification performance of each
class, we present the confusion matrix in the NWPU→AID
scenario shown in Fig. 4, and NWPU→UCMD scenario shown
in Fig. 5. In the confusion matrix, each item corresponds to
the number of samples where a predicted class in a column
matches an actual class in a row. After normalization along the
row axis, the item in the diagonal represents the percentage
of instances that are correctly predicted, corresponding to the
recall of each class.

Fig. 4 illustrates a significant problem where the STA,
UADAL, SSOUDA, and MAOSDAN methods frequently mis-

classify known classes as unknown. For example, as shown
in Fig. 4(e) and (g), misclassification occurs in the “medium
residential” class because the unknown classes include “sparse
residential”, which shares similar characteristics with “medium
residential”. Similarly, the “forest” class was wrongly classi-
fied into the unknown classes by STA, as shown in Fig. 4(b).
This finding suggests that these four methods struggle to
differentiate classes with similar features, often leading to
known classes being misclassified as unknown. Conversely,
OSBP and DAMC exhibit poor recognition accuracy for
unknown classes and fail to effectively distinguish unknown
classes from known classes. This weakness is evident in their
tendency to classify unknown samples as known classes, such
as “agricultural” and “medium residential”, as displayed in
Fig. 4(c) and (d). Fig. 5 presents another clear example of the
model experiencing significant interference from the unknown
class. Except for ”medium residential” and ”dense residential,”
some other known classes have been misclassified by the
compared methods, e.g., “agricultural” shown in Fig. 5(d)
and (e), and “baseball diamond” shown in (d), (e) and (g).
As a result, serious confusion exists between many unknown
samples and these categories, further exacerbating the mis-
classification issue. In contrast, our method can effectively
distinguish confusing classes and accurately classify classes
with significant cross-domain feature discrepancies. This is
evidenced by the overall highest values along the diagonal in
the confusion matrices, as well as by the five metrics shown
in Table II, all of which are calculated based on the confusion
matrices.

G. Feature Visualization

To visually compare the classification performance of dif-
ferent open-set methods, we utilized the t-SNE technique to
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Fig. 5: Confusion matrix on the NWPU→UCMD scenario.

visualize features extracted from the final convolutional layer
in the backbone network. Fig. 6 displays the visualization
results for seven open-set UDA methods and the source-only
mode. We focus on the open-set UDA methods because the
closed-set UDA methods fail to identify unknown classes,
leading to poor feature representation. In the t-SNE plot, each
point represents a feature vector of an image projected into
a two-dimensional space, preserving the local relationships in
the original high-dimensional feature space. This visualization
allows us to observe the clustering and separation of features
learned by each adaptation method. Ideally, a well-performing
method should exhibit clear and distinct clusters for known
classes while effectively isolating or delineating unknown
classes.

It can be observed that the source-only method exhibits
poor clustering and classification performance due to domain
discrepancies, resulting in significant overlap between classes.
DAMC, UADAL, and SSOUDA alleviate domain shifts with
the generated representations that tend to be aggregated as
groups. Similarly, OSBP and STA also show reasonable clus-
tering for known classes. However, all these methods struggle
to find obvious decision boundaries that accurately classify all
classes, resulting in significant overlaps between them. MAOS-
DAN shows a promising clustering effect for known classes.
However, its unknown samples show scattered distribution
overlaps with the known classes, resulting in misclassification.
This effect arises because MAOSDAN relies heavily on the
probability of unknown predictions in the adaptation process,
pushing predictions toward unknown classes.

Compared with other open-set UDA methods, our method
shows better class separability, with more distinct clustering
of the same categories and clearer boundaries between differ-
ent classes in the t-SNE plot. Furthermore, considering that

the unknown class includes three distinct categories (“river”,
“sparse residential”, and “storage tank”), our PUMCL method
generates representations with three distinct unknown groups
in cross-domain scenarios, especially shown in AID→NWPU,
NWPU→AID, UCMD→AID, and UCMD→NWPU, which
indicates the effectiveness in internally detecting and distin-
guishing unknown classes. Overall, the t-SNE visualizations
provide insights into the feature representations learned by
each method and offer a qualitative assessment of their clas-
sification performance in open-set UDA scenarios. However,
as shown in the plots, there are still some overlaps between
the known and unknown classes in the proposed PUMCL
method. Additionally, our model underperforms on known
classes compared to the closed-set models, highlighting an area
for improvement in future studies.

To quantify the classification separation, we employ the
widely used silhouette score to evaluate the quality of feature
clustering [64]. The silhouette score ranges from -1 to 1, where
a score close to +1 indicates that a data point is well-matched
to its own cluster and poorly matched to neighboring clusters.
Table III shows a significant improvement in silhouette scores
for our method compared to the other open-set methods in all
UDA tests, verifying the promising separation capability of
our approach.

H. Ablation Study

Considering that the NWPU dataset contains more complex
samples and that the distribution of certain classes in the
UCMD dataset (such as ”agricultural” and ”baseball dia-
mond”) differs significantly from the other two datasets, we
selected the UCMD→NWPU scenario for the ablation study,
as shown in Table IV. The results demonstrate that the highest
accuracy, with an OA of 74.2%, is achieved when all modules
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Fig. 6: The t-SNE visualization of features for the seven open-set DA along with Source-only on six open-set DA scenarios.
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Table III: The silhouette scores (↑) of the seven open-set UDA
methods and source-only on six sets of tests. The best results
are marked in bold.

Methods
AID→
NWPU

AID→
UCMD

NWPU→
AID

NWPU→
UCMD

UCMD→
AID

UCMD→
NWPU

Source-only 0.47 0.51 0.44 0.47 0.51 0.53
STA 0.50 0.54 0.52 0.49 0.55 0.54

OSBP 0.61 0.59 0.61 0.60 0.64 0.63
DAMC 0.54 0.58 0.55 0.51 0.59 0.58
UADAL 0.60 0.60 0.62 0.54 0.61 0.55

SSOUDA 0.63 0.61 0.63 0.60 0.66 0.61
MAOSDAN 0.66 0.64 0.68 0.65 0.63 0.64

OURS 0.70 0.71 0.73 0.73 0.72 0.66

Table IV: Ablation study of each loss component for
UCMD→NWPU. The best results are marked in bold.

L′
csl Lctl Lprt Lesl KNO UNK OA HOS mIoU
! ! ! ! 68.5 87.5 74.2 76.9 61.3
% ! ! ! 68.3 73.4 69.8 70.8 57.4
! % ! ! 57.1 84.4 65.3 68.1 50.8
! ! % ! 63.6 86.5 70.5 73.3 56.7
! ! ! % 82.4 0.0 57.7 0.0 49.5
% % ! ! 30.6 83.9 46.6 44.8 24.7
% ! % ! 66.1 69.3 67.0 67.6 53.8
% ! ! % 75.9 0.0 53.1 0.0 41.1
! % % ! 54.2 88.0 64.4 67.1 48.8
! % ! % 78.3 0.0 54.8 0.0 46.9
! ! % % 80.4 0.0 56.2 0.0 47.5
% % % ! 27.9 79.2 43.3 41.3 21.7
% % ! % 53.3 0.0 37.3 0.0 25.9
% ! % % 73.2 0.0 51.2 0.0 38.3
! % % % 74.8 0.0 52.3 0.0 43.5
% % % % 51.6 0.0 36.1 0.0 24.4

are combined. Specifically, eliminating L′
csl, Lctl, Lprt, and

Lesl results in an OA reduction of 4.4%, 8.9%, 3.7%, and
16.5%, respectively. This clearly highlights the individual
contributions of each module to the overall performance,
with their combination providing the most robust solution
for open-set UDA. It can also be observed that significant
performance changes occur when any two of Lctl, Lprt and
Lels are combined. Specifically, there are notable performance
degradations in mIoU when Lctl and Lesl are removed.

Furthermore, the proposed consistency loss L′
csl serves as

the foundation for domain alignment. Implementing consis-
tency learning alone achieves an mIoU of 43.5%, which is the
highest when each loss function is applied individually. When
combined with the contrastive enhancement module Lctl, the
discriminative capability is further improved, resulting in a
5.3% improvement in mIoU. The Lctl, which operates in a
self-learning manner, acts as an auxiliary module to enhance
the discriminative power for target samples. Particularly, Lesl

enhances the recognition of unknown classes. As a result,
if this loss function is eliminated, the UNK values drop to
0.0%. When combined with other modules, it significantly
improves the unknown recognition capability despite some
sacrifice in the accuracy of known samples. Additionally,
adding prototypical constraints Lprt to consistency learning
L′
csl increases the overall classification accuracy, with a gain of

3.4% in mIoU. This improvement occurs because Lprt refines

Table V: Computational efficiency comparison of different
methods. The best results are marked in bold.

Methods FLOPs (G) ↓ Params (M) ↓ Testing Time ↓
(s/batch)

Training Time ↓
(s/batch)

DANN 5.3970 24.30 0.0206 0.27
CDAN 5.3970 26.13 0.0216 0.28
NOUN 5.3970 24.83 0.0209 0.26

STA 5.3986 30.29 0.0303 0.50
OSBP 5.3996 26.57 0.0223 0.10
DAMC 5.3986 27.65 0.0237 0.13
UADAL 5.3965 27.37 0.0225 0.30

SSOUDA 5.3970 26.08 0.0210 0.35
MAOSDAN 5.3971 27.47 0.0229 0.30

OURS 5.3971 26.42 0.0219 0.62

the alignment between domains by providing more reliable
pseudo-labels and creating more compact feature subspaces.

While the integration of all modules yields the best OA,
HOS, and mIoU values, it does not guarantee the highest
KNO and UNK values simultaneously. Nevertheless, it proves
beneficial for improving overall classification performance
while maintaining a balance between known and unknown
categories.

I. Efficiency and Complexity

To assess computational efficiency, we report the float-
ing point operations (FLOPs) and the number of trainable
parameters (Params) to determine computational and model
complexity, respectively. We also evaluate the training and
testing time per batch with the same batch size, as shown
in Table V. The FLOPs for all methods are nearly identical,
ranging from 5.3965 to 5.3996 GFLOPs, indicating similar
computational demands. The parameter count varies, with STA
having the highest complexity at 30.29 M and DANN the
lowest at 24.30 M. The differences are that STA, DAMC, and
UADAL use adversarial learning with an additional discrim-
inator, and MAOSDAN specifically incorporates an auxiliary
classifier, while our PUMCL does not require extra networks.
Testing time shows minor variations, with DANN being the
fastest (0.0206 s/batch) and STA the slowest (0.0303 s/batch).
Notably, while our method incurs a slightly higher training
time, it maintains a competitive testing time (0.0219 s/batch)
and balances model complexity with 26.42 million parameters,
positioning it as an effective trade-off between computational
efficiency and potential performance gains in UDA tasks.

V. CONCLUSION

In this study, we propose a robust framework for open-
set Unsupervised Domain Adaptation (UDA) in cross-domain
remote sensing scene classification. Our approach effectively
utilizes category-specific transferable knowledge and feature
distribution patterns from unlabeled target domain samples.
A key contribution is the introduction of a Prototypical
Unknown-aware Multiview Consistency Learning (PUMCL)
scheme, which integrates prototypical constraints to refine
pseudo-labels and enhance class separation. Additionally, our
method adopts an open-set adaptation strategy that adjusts con-
ditional entropy for known and unknown samples while align-
ing domains through unknown-aware consistency learning.
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These advancements collectively improve the adaptability and
reliability of remote sensing classifiers, representing significant
progress in open-set UDA for remote sensing applications.
We conducted comparative experiments against three closed-
set methods and six open-set methods to comprehensively
evaluate the proposed method. Utilizing three public datasets,
i.e., AID, NWPU, and UCMD, we conducted six groups of
cross-domain experiments. Our approach achieved the highest
scores in the metrics OA, HOS, and mIoU across these six
scenarios, surpassing the second-best results by 3.0% to 15.8%
in OA,3.2% to 14.2% in HOS, and 4.5% to 21.2% in mIoU.

We have the following findings from the experiments:
Through the confusion matrix analysis, we found that un-
known classes caused confusion between known and un-
known classes due to their similar spectral characteristics
and spatial structure. Our approach can significantly reduce
class confusion by learning more discriminative features and
shrinkable category-wise feature space. This has been verified
by the statistical and visual analysis of feature distribution
generated by different methods. Compared with other methods,
the proposed approach generates clearer boundaries between
different classes, especially more compact clustering of un-
known classes with fewer overlaps with the known classes.
Furthermore, the performance degradation observed in the
ablated modules confirms the effectiveness of the designed
loss functions and optimization strategies in enhancing overall
accuracy.

In our future research, more computationally efficient meth-
ods will be investigated to handle large-scale datasets and
reduce the training time without compromising accuracy.
Moreover, we will extend the framework to adapt modalities
beyond optical imagery, such as Synthetic Aperture Radar
(SAR) or hyperspectral images.
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