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Abstract

Continuous normalizing flows (CNFs) learn the probability path between a refer-
ence distribution and a target distribution by modeling the vector field generating
said path using neural networks. Recently, Lipman et al. [45] introduced a simple
and inexpensive method for training CNFs in generative modeling, termed flow
matching (FM). In this paper, we repurpose this method for probabilistic inference
by incorporating Markovian sampling methods in evaluating the FM objective, and
using the learned CNF to improve Monte Carlo sampling. Specifically, we propose
an adaptive Markov chain Monte Carlo (MCMC) algorithm, which combines a
local Markov transition kernel with a non-local, flow-informed transition kernel, de-
fined using a CNF. This CNF is adapted on-the-fly using samples from the Markov
chain, which are used to specify the probability path for the FM objective. Our
method also includes an adaptive tempering mechanism that allows the discovery
of multiple modes in the target distribution. Under mild assumptions, we establish
convergence of our method to a local optimum of the FM objective. We then
benchmark our approach on several synthetic and real-world examples, achieving
similar performance to other state-of-the-art methods, but often at a significantly
lower computational cost.

1 Introduction

The task of sampling from a probability distribution known only up to a normalization constant
is a fundamental problem arising in a wide variety of fields, including statistical physics [51],
Bayesian inference [25], and molecular dynamics [43]. In particular, let π(dx) be a target probability
distribution on Rd with density π(x) with respect to the Lebesgue measure of the form1

π(x) =
π̂(x)

Z
, (1)

where π̂ : Rd → R+ is a continuously differentiable function which can be evaluated pointwise,
and Z =

∫
Rd π̂(x)dx is an unknown normalizing constant. We are interested in generating samples

from the target distribution π in order to approximate integrals of the form π[f ] = Eπ[f(x)], where
f : Rd → R.

∗Equal contribution
1In a slight abuse of notation, we use π to denote both the target distribution and its density.
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A standard solution to this problem is Markov chain Monte Carlo (MCMC) [12, 64], which relies
on the construction of a Markov process which admits the target π as its invariant distribution. One
of the most broadly applicable and widely studied MCMC methods is the Metropolis-Hastings
(MH) algorithm [32], which proceeds in two steps. First, given a current sample x, a new sample
y is proposed according to some proposal distribution q(·|x). Then, this sample is accepted with
probability α(x, y) = min

{
1, π(y)q(x|y)

π(x)q(y|x)
}

. This strategy generates a Markov chain with the desired
stationary distribution and, under mild conditions on the proposal and the target, also ensures that the
Markov chain is ergodic [65]. However, for high-dimensional, multi-modal settings, such methods
can easily get stuck in local modes, and suffer from very slow mixing times [e.g., 48].

Naturally, the choice of proposal distribution q(·|x) is critical to ensuring that MH MCMC algorithms
explore the target distribution within a reasonable number of iterations. A key goal is to obtain pro-
posal distributions with fast mixing times, which can be applied generically to any target distribution.
This is particularly challenging in the face of complex, multi-modal (or metastable) distributions,
which commonly arise in applications such as genetics [38], protein folding [41], astrophysics [22],
and sensor network localization [37]. On the one hand, local proposals, such as those employed in the
Metropolis-Adjusted Langevin Algorithm (MALA) [66] or Hamiltonian Monte Carlo (HMC) [20, 56]
struggle to transition between regions of high-probability, resulting in very long decorrelation times
and few effective independent samples [e.g., 49]. On the other hand, global proposal distributions
must be very carefully designed in order to avoid high rejection rates, particularly in high dimensions
[17, 47].

Another popular approach to sampling is variational inference (VI) [10, 34, 61, 79], which obtains
a parametric approximation πθ∗(x) ≈ π(x) to the target by minimising the Kullback-Leibler (KL)
divergence to the target over a parameterized family of distributionsDθ = {πθ : θ ∈ Θ}. State-of-the-
art VI methods use normalizing flows (NFs), which consist of a sequence of invertible transformations
between a reference and a target distribution, to define a flexible variational family [62]. There has
also been growing interest in the use of continuous normalizing flows (CNFs), which define a path
between distributions using ordinary differential equations [15, 27, 45]. CNFs avoid the need for
strong constraints on the flow but, until recently, have been hampered by expensive maximum
likelihood training.

In recent years, several works have sought hybrid methods which utilize NFs to enhance the per-
formance of MCMC algorithms; see, e.g., [28] for a recent review. For example, NFs have been
successfully used to precondition complex Bayesian posteriors, significantly improving the per-
formance of existing MCMC methods [e.g., 33, 39, 59, 68]. The synergy between local MCMC
proposals and global, flow-informed proposals has also been explored, leading to enhanced mixing
rates and effective estimation of multimodal targets [e.g., 24, 67].

Our contributions In this paper, we continue this promising line of work, introducing a new
probabilistic inference scheme which integrates CNFs with MCMC sampling techniques. Our
approach utilizes flow matching (FM), a scalable, simulation-free training objective for CNFs recently
introduced by Lipman et al. [45]. This enables, for the first time, the incorporation of CNFs into
an adaptive MCMC algorithm. Concretely, our approach augments a local, gradient-based Markov
transition kernel with a non-local, flow-informed transition kernel, defined using a CNF. This
CNF, and the corresponding transition kernel, are adapted on-the-fly using samples from the chain,
which are used to define the probability path for the FM objective. Our scheme also includes an
adaptive tempering mechanism, which is essential for discovering multiple modes in complex target
distributions. Under mild assumptions, we establish that the flow-network parameters output by
our method converge to a local optimum of the FM objective. We then demonstrate empirically the
performance of our approach on several synthetic and real-world examples, illustrating comparable
or superior performance to other state-of-the-art sampling methods.

2 Preliminaries

Continuous Normalizing Flows A continuous normalizing flow (CNF) is a continuous-time
generative model which is trained to map samples from a base distribution p0 to a given target
distribution [15]. Let vt be a time-dependent vector field that runs continuously in the unit interval.
Under mild conditions, this vector field can be used to construct a time-dependent diffeomorphic map
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called a flow ϕ : [0, 1]× Rd → Rd, defined via the ordinary differential equation (ODE):

d

dt
ϕt(x) = vt(ϕt(x)), ϕ0(x) = x. (2)

Given a reference density p0 : Rd → R+, and the flow ϕ, we can generate a probability density path
p : [0, 1]× Rd → R+ as the pushforward of p0 under ϕ, viz pt := [ϕt]♯p0, for t ∈ [0, 1]. This yields,
via the instantaneous change-of-variables formula [e.g., 14]

log pt(xt) = log p0(x)−
∫ t

0

∇ · vs(xs)ds, (3)

where xs := ϕs(x), and where∇ is the divergence operator, i.e. the trace of the Jacobian matrix. In
modern applications, the vector field vt is often parameterized using a neural network vθt , in which
case the ODE in (2) is referred to as a neural ODE [15]. In turn, this yields a deep parametric model
ϕθ
t for the flow ϕt, known as a CNF [27].

Flow Matching One would typically like to learn a CNF which maps between a given reference
density p0 and a target density π. Given samples from the target, one approach is to maximize the
log-likelihood Ex∼π

[
log pθ1(x)

]
. In practice, however, maximum likelihood training is very slow as

both sampling and likelihood evaluation require multiple network passes to solve the ODE in (2).

Flow Matching (FM) provides an alternative, simulation-free method for training CNFs [45]. Let
pt(x) be a target probability density path such that p0 = p is a simple reference distribution, and
p1 ≈ π is approximately equal to the target distribution. Let vt(x) be a vector field which generates
this pt(x). Then the FM objective for the CNF vector field vθt (x) is defined as

L(θ;π) = Et∼U(0,1)Ex∼pt

[
∥vθt (x)− vt(x)∥22

]
. (4)

In practice, we do not have direct access to the target vector field, vt(x), and so we cannot minimize
(4) directly. However, as shown in Lipman et al. [45, Theorem 2], it is equivalent to minimize the
conditional flow-matching (CFM) loss

J (θ;π) = Et∼U(0,1)Ex1∼πEx∼pt(·|x1)

[
||vθt (x)− vt(x|x1)||22

]
, (5)

where pt(·|x1) is a conditional probability density path satisfying p0(x|x1) = p0 and p1(x|x1) ≈ δx1
,

and vt(·|x1) : Rd → Rd is a conditional vector field that generates pt(·|x1). There are various choices
for pt(·|x1) and vt(·|x1). For simplicity, we here assume that the conditional probability path is
Gaussian, viz pt(x|x1) = N (x|mt(x1), st(x1)

2Id), where m : [0, 1] × Rd → Rd denotes a time-
dependent mean, and s : [0, 1] × R → R+ a time-dependent scalar standard deviation. For our
experiments, we further adopt the optimal transport conditional probability path introduced in [45],
setting mt(x1) = tx1 and st(x1) = 1− (1−σmin)t for some σmin ≪ 1. In this case, the conditional
vector field assumes the particularly simple form vt(x|x1) =

x1−(1−σmin)x
1−(1−σmin)t

.

3 Markovian Flow Matching

In this section, we present our main contribution, an adaptive MCMC algorithm which combines a
non-local, flow-informed transition kernel trained via FM; a local, gradient-based Markov transition
kernel; and an adaptive annealing schedule. We begin by describing how CNFs can be used within a
MH MCMC algorithm.

3.1 MCMC with Flow Matching

Suppose, for now, that we have access to a CNF (ϕθ
t )t∈[0,1], trained (e.g.) via flow-matching, with

corresponding vector field (vθt )t∈[0,1], which generates a probability path (pθt )t∈[0,1] between a
reference density p0 and an approximation of the target density π. Given a point x0 ∈ Rd on the
reference space, we can evaluate the log-density of the pullback of the target distribution π as

log[ϕθ
1]

♯π(x0) = log π(ϕθ
1(x0))−

∫ 0

1

∇ · vθt (ϕθ
t (x0))dt. (6)
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Under the assumption that the CNF approximately transports samples from p0 to π, we expect that
[ϕθ

1]♯p0 ≈ π in the target space, and that [ϕθ
1]

♯π ≈ p0 in the reference space. Given that the reference
distribution p0 is chosen such that it is easy to sample from, this suggests the following strategy,
sometimes referred to as neural trasport MCMC or neutraMCMC [28, 33, 44, 59]. First, transform
initial positions x1 from the target space to the reference space by solving[

x0

log pθ1(x1)− log p0(x0)

]
=

[
x1

0

]
+

∫ 0

1

[
vθt (xt)

−∇ · vθt (xt)

]
dt, (7)

which integrates the combined dynamics of xt and the log-density of the sample backwards in time.
Then, generate MCMC proposals y0 in the reference space using any standard MCMC scheme which
targets the pullback of the target distribution, as defined in (6). Finally, transform accepted proposals
back to target space using the forward dynamics, viz[

y1
log pθ1(y1)− log p0(y0)

]
=

[
y0
0

]
+

∫ 1

0

[
vθt (yt)

−∇ · vθt (yt)

]
dt. (8)

This corresponds to using a transformation-informed proposal in a Markov transition step, an approach
which has been successfully applied using (discrete) normalizing flows [28, 33, 44, 59].

There are various possible choices for the proposal distribution on the reference space (see Appendix
A). For example, [23] consider an independent MH (IMH) proposal, where i.i.d. samples are drawn
from the reference distribution. Here we focus on a flow-informed random-walk, motivated largely
by its superior empirical performance in numerical experiments. This proposal performs particularly
well on high-dimensional problems, where overfitting of the CNF can be corrected with stochastic
steps, while exacerbated by independent proposals [39]. Concretely, our flow-informed random-walk
transition kernel, summarized in Algorithm 2 (see Appendix A), can be written as

P (x, dy;π, θ) = α(x, y)ρθ(dy|x) + (1− b(x))δx(dy), (9)

where ρθ(dy|x) is the distribution defined by the transition

x0 = x+

∫ 0

1

vθt (ϕ
θ
t (x))dt, y0 ∼ N (x0, σ

2
opt), y = y0 +

∫ 1

0

vθt (ϕ
θ
t (y0))dt, (10)

and α(x, y) = min
{
1, π(y)ρθ(x|y)

π(x)ρθ(y|x)
}

and b(x) =
∫
Rd α(x, y)ρθ(dy|x).

Training the CNF Thus far, we have assumed that it is possible to train a CNF which maps samples
from the reference distribution p0 to (an approximation of) the target distribution π. Clearly, however,
the CFM objective is not immediately applicable in our setting, since we do not have access to
samples from the target π.

Tong et al. [72] propose two alternatives in this case: (i) use an importance sampling reweighted
objective function, or (ii) use samples from a long-run MCMC algorithm (e.g., MALA) as approximate
target samples. Both of these approaches, however, have limitations. The former is unlikely to succeed
when the proposal distribution differs significantly from the target distribution, while the latter will
only perform well when the chosen MCMC method mixes well.

In this paper, we adopt a different approach, updating the parameters of a CNF based on a dynamic
estimate of the CFM objective obtained via an adaptive MCMC algorithm. This is similar in spirit
to other recent flow-informed MCMC algorithms [24, 35, 67], and the Markovian score climbing
algorithm in [54].

3.2 Adaptive MCMC with Flow Matching

Overview Our adaptive MCMC scheme combines a non-local, flow-informed transition kernel
(e.g., a flow informed random-walk) and a local transition kernel (e.g., MALA), which generate new
samples from a sequence of annealed target distributions. These new samples are used to define a
new estimate of the CFM objective in (5), which is optimized to define a new CNF. These steps are
repeated until the samples converge in distribution to the target π, and the flow-network parameters
converge to a local minima of the flow matching objective (see Proposition 3.1). This scheme, which
we refer to as Markovian Flow Matching (MFM), is summarized in Algorithm 1.
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Sampling There is significant freedom regarding the choice of both the local and the non-local
MCMC algorithms. In our experiments, we adopt the Metropolis-Adjusted Langevin Algorithm
(MALA) as the local algorithm. Thus, the local Markov kernel Q is given by

Q(x, dy;π) = α(x, y)q(dy|x) + (1− b(x))δx(dy), (11)

where q(dy|x) is given by

q(dy|x) ∝ exp

(
− 1

4τ
∥y − x− τ∇ log π(x)∥2

)
dy, (12)

and where, as elsewhere, α(x, y) = min
{
1, π(y)q(x|y)

π(x)q(y|x)
}

and b(x) =
∫
Rd α(x, y)q(dy|x). In princi-

ple, however, other choices such as HMC could also be used.

Meanwhile, for the non-local MCMC algorithm, we adopt the flow-informed random walk with non-
local Markov kernel P defined in (9). Together, assuming alternate local and non-local steps, these
two kernels define a Markov chain with Markov transition kernel R := P ◦Q, given explicitly by
R(x, dy;π, θ) =

∫
Z Q(x, dz;π)P (z,dy;π, θ). In practice, the balance between local and non-local

moves is controlled by the hyperparameter kQ, which sets the number of local steps before a global
step.

Training Following each MCMC step, the parameters of the flow-informed Markov transition
kernel P are updated based on a new estimate of J (θ;π). To be precise, suppose we write
µt := µ0R

k(·, ·;π, θ) for the distribution of the Markov chain with kernel R(·, ·;π, θ) after k ∈ N
steps, starting from initialization µ0, where Rk = R ◦R · · · ◦R. Our objective function is then given
by

J (θ;µk) = Et∼U(0,1)Ex1∼µk
Ex∼pt(·|x1)

[
||vθt (x)− vt(x|x1)||22

]
. (13)

For our choice of conditional probability path (i.e., the optimal transport path), we can in fact rewrite
this objective as [45, Section 4.1]

J (θ;µk, σmin) = Et∼U(0,1)Ex1∼µk
Ex0∼p0

[∣∣∣∣vθt (ϕt(x0|x1))− vt(ϕt(x0|x1)|x1)
∣∣∣∣2
2

]
, (14)

where vt(x|x1) =
x1−(1−σmin)x
1−(1−σmin)t

and ϕt(x|x1) = (1 − (1 − σmint)x + tx1. In practice, we will
optimize a Monte Carlo estimate of this objective, namely,

J (θ; {xi(k)}Ni=1, σmin) =
1

N

N∑
i=1

∣∣∣∣vθti(ϕti(x
i
0|xi(k)))− vti(ϕti(x

i
0|xi(k))|xi(k))

∣∣∣∣2
2
, (15)

where {xi(k)}Ni=1 are the samples from N chains of our MCMC algorithm after k ∈ N iterations,
xi
0

i.i.d.∼ p0, and ti ∼ U(0, 1). The use of N particles allow the state’s mutation to N computing cores
running in parallel at each iteration. Sampling steps can be run in parallel using modern vector-
oriented libraries, before each particle is used to approximate the loss and update the parameters.
Thus, the speedup gained by using more than one core scales linearly with the number of cores as
long as there are as many cores as there are particles.

Annealing For complex (e.g., multimodal) target distributions, it can be challenging to learn a CNF
that successfully maps between the reference p0 and the target π. For example, if the locations of
the modes of the target are not known a priori, and the MCMC chains are initialized far from one or
more of the modes, it is unlikely that the local MCMC kernel, and therefore the trained flow, will ever
discover these modes [e.g., 24, Section IV.C]. To alleviate this problem, one approach is to iteratively
target a sequence of annealed densities {πk(x)}k=0:K , which smoothly interpolate between a simple
base distribution π0(x) (e.g., a standard Gaussian), and the target distribution πK(x) := π(x). This
idea is central to other Monte Carlo sampling methods such as Sequential Monte Carlo (SMC) [18]
and Annealed Importance Sampling (AIS) [55], as well as sampling methods used in score-based
generative modelling [e.g., 70]. In our case, the annealed targets act as intermediary steps within the
flow-informed MCMC scheme.

A standard way in which to construct the sequence {πk(x)}k=0:K is to use a geometric interpolation,
defining

πk(x) = πK(x)βkπ0(x)
1−βk , (16)
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Algorithm 1 Markovian Flow Matching

1: Input: target π, base π0, vector field vθt , reference p0, concentration σmin, initial parameters θ0,
target ESS fraction α, iterations K, number of particles N , local kernel Q, flow-informed kernel
P , MCMC steps per resampling step kQ, step sizes ε1:K .

2: Output: flow-network parameters θK
3: Sample xi

0 ∼ π0 for i = 1, . . . , N (initialize samples)
4: for k = 1 : K do
5: if βk−1 < 1 then
6: βk = solve (17) for βk−1 < β ≤ 1 (update annealing temperature)
7: πk = solve (16) (update annealing density)
8: end if
9: if k mod kQ + 1 = 0 then

10: xi
k ∼ P (xi

k−1, ·;πk, θk−1) for i = 1, . . . , N (flow-informed Markov transition).
11: else
12: xi

k ∼ Q(xi
k−1, ·;πk) for i = 1, . . . , N (local Markov transition).

13: end if
14: θk = θk−1 + εk∇θJ (θk−1|{xi

k}Ni=1, σmin) (update flow-network parameters)
15: end for

where β0:K is a sequence of temperatures which satisfies 0 = β0 < β1 < · · · < βK = 1 [e.g., 55].
In practice, it can be difficult to choose a good sequence of temperatures that provides a smooth
transition between densities. One heuristic for adaptively setting this sequence is based on the
effective sample size (ESS). In particular, by setting the ESS to a user-specified percentage α of the
number of particles N , the next temperature βk in the schedule can be determined by solving the
recursive equation [9]

βk = inf

{
βk−1 < β ≤ 1 :

[
1
N

∑N
i=1 w

βk−1

i (β)
]2

1
N

∑N
i=1 w

βk−1

i (β)2
= α

}
, (17)

where w
βk−1

i (β) =
[
πK(xi)βπ0(x

i)1−β
]
/
[
πK(xi)βk−1π0(x

i)1−βk−1
]
= [πK(xi)/π0(x

i)]β−βk−1

are new importance weights given the current temperature βk−1. In practice, we find that the inclusion
of this adaptive tempering scheme is essential in the presence of highly multimodal target distributions,
enabling the discovery of modes which are not known a priori.

Convergence The output of Algorithm 1 is a vector of parameters θK which defines a CNF
(ϕθK

t )t∈[0,1]. Under the assumption that the parameter estimate converges, that is, θK → θ∗global as
K →∞, where θ∗global = argminθ∈Θ J (θ;π) is the global minimizer of the CFM objective J (θ;π)
in (5), this CNF is guaranteed to generate a probability path (pθt )t∈[0,1] which transports samples
from the reference p0 to the true target π [e.g., 45].

In practice, the objective J (θ;π) is highly non-convex, and thus it is not possible to establish a
convergence result of this type without imposing unreasonably strong assumptions on the vector field
(vθt )t∈[0,1]. This being said, it is reasonable to ask whether θK converges to a local optimum of the
CFM objective. We now answer this question in the affirmative. In particular, under mild regularity
conditions, Proposition 3.1 guarantees that θK → θ∗ almost surely as K →∞, where θ∗ denotes a
local minimum of the CFM objective. This proposition closely mirrors [54, Proposition 1]. Its proof,
which relies on a classical result in [6, Theorem 3.17], is provided in Appendix B.
Proposition 3.1. Assume that Assumptions B.1 - B.6 hold (see Appendix B). Assume also that
(θK)K∈N is a bounded sequence, which almost surely visits a compact subset of the domain of
attraction of θ∗ infinitely often. Then θK → θ∗ almost surely.

4 Related work

In recent years, a number of works have proposed algorithms which combine MCMC techniques
with NFs; see, e.g., [2, 28] for recent surveys. Broadly speaking, these algorithms fall into two
distinct categories. NeutraMCMC methods leverage NFs as reparameterization maps which simplify
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the geometry of the target distribution, before running (local) MCMC samplers in the latent space.
This technique was pioneered in the seminal paper [59], and since been investigated in a number of
different works [e.g., 13, 33, 44, 54, 58, 68, 82, 84]. Flow MCMC methods, meanwhile, utilize the
pushforward of the base distribution through the NF as an (independent) proposal within an MCMC
scheme. This approach was first studied by [3], and further extended in [4, 31, 57].

More recently, [24, 67] have introduced adaptive MCMC schemes which combine local MCMC
samplers (e.g., MALA or HMC), with a non-local, flow-informed proposal (IMH or i-SIR); see
also [35]. Our algorithm combines aspects of both neutraMCMC and flow MCMC methods and,
unlike any existing approach, make use of a CNF (as opposed to a discrete NF), by leveraging the
conditional flow matching objective. The use of NFs within other Monte Carlo algorithms has also
been the subject of recent interest. For example, [5, 50] consider augmenting SMC with NFs, while
[19, 52] use NFs (or diffusion models) within AIS.

Although less directly comparable to our own approach, several other recent works have proposed
to use (controlled) diffusion processes to sample from unnormalized probability distributions. Such
works include Zhang and Chen [85], who introduce the path integral sampler, Vargas et al. [75],
who propose the denoising diffusion sampler, and Zhang et al. [83], who introduce generative flow
samplers. Some other relevant contributions in this direction include [1, 8, 16, 60, 63, 69, 73, 74, 75,
76, 77, 78].

5 Experiments

In this section, we evaluate the performance of MFM (Algorithm 1) on two synthetic and two
real data examples. Our method is benchmarked against four relevant methods. The Denoising
Diffusion Sampler [DDS; 75] is a VI method which approximates the reversed diffusion process
from a reference distribution to an extended target distribution by minimizing the KL divergence.
Adaptive Monte Carlo with Normalizing Flows [NF-MCMC; 24] is an augmented MCMC scheme
which uses a mixture of MALA and adaptive transition kernels learned using discrete NFs. Flow
Annealed Importance Sampling Bootstrap [FAB; 52] is an augmented AIS scheme minimizing the
mass-covering α-divergence with α = 2. Finally, Adaptive Tempered SMC (AT-SMC), i.e. the SMC
algorithm described in [18] using a MALA transition kernel and a sequence of annealed distributions
chosen adaptively by solving (17).

For each experiment, all MALA kernels use the same step size, targeting an acceptance rate of close
to 1 since we estimate expectations, e.g. in (14), using the current ensemble of particles, rather than a
single long chain. Following [85], we parameterize the vector field as

NN∗(t; θ3)v
θ
t (x) = NN(x, t; θ1) + NN(t; θ2)×∇ log π(x), (18)

where the neural networks are standard MLPs with 2 hidden layers, using a Fourier feature aug-
mentation for t [71], and where NN∗ outputs a real value that reweights the vector field output
using the time component. This architecture is also used by DDS [75, Section 4]. Meanwhile,
FAB and NF-MCMC use rational quadratic splines [21]. Flows are trained using Adam [40] with
a linear decay schedule terminating at εK = 0. We report results for all methods averaged over
10 independent runs with varying random seeds. Code to reproduce the experiments is provided at
https://github.com/albcab/mfm.

5.1 4-mode Gaussian mixture

Our first example is a mixture of four Gaussians, evenly spaced and equally weighted, in two-
dimensional space. The four mixture components have means (8, 8), (−8, 8), (8,−8), (−8,−8),
and all have identity covariance. This ensures that the modes are sufficiently separated to mean
that jumping between modes requires trajectories over sets with close to null probability. Given the
synthetic nature of the problem, we can measure approximation quality using the Maximum Mean
Discrepancy (MMD) [e.g., 29]; see Appendix C.1 for details. We can also include, as a benchmark,
the results for an approximation learned using FM with true target samples. Diagnostics for all
models are presented in Table 1, and learned flow samples in Figure 1. Further algorithmic details
and results are provided in Appendix C.2.

In this experiment, only our method (Figure 1a) and DDS (Figure 1c) learn the fully separated modes,
reflecting the greater expressivity of CNFs in comparison to the discrete NFs used in, e.g., NF-MCMC
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4-mode 16-mode
MMD seconds MMD seconds

FM w/ π samples 3.69e-4±1.84e-4 22.3± 0.64 1.35e-3±6.66e-4 22.4± 1.01
MFM kQ = K 2.37e-3±2.29e-3 27.9± 1.27 1.88e-2±3.67e-3 28.2± 2.84
MFM kQ = 10 8.13e-4±4.41e-4 117.± 5.65 2.87e-3±9.67e-4 89.6± 5.19
DDS 1.76e-4±2.32e-4 114.± 0.68 1.02e-1±4.10e-2 115.± 0.64
NF-MCMC 5.85e-3±3.91e-3 72.0± 11.7 8.05e-3±1.42e-2 67.0± 12.3
FAB 2.69e-4±2.06e-4 101.± 3.24 1.51e-3±1.06e-3 102.± 4.32
AT-SMC 3.95e-2±2.90e-2 2.18± 0.26 1.73e-2±5.30e-3 2.19± 0.21

Table 1: Diagnostics for the two synthetic examples. MMD is the Maximum Mean Discrepancy
between real samples from the target and samples generated from the learned flow. Results are
averaged and empirical 95% confidence intervals over 10 independent runs.

(Figure 1d). It is worth noting that DDS provides a closer approximation to the real target than MFM
and, notably, even FM trained using true target samples (top row). Given that both methods use the
same network architecture but a different learning objective, this suggests a potential limitation with
the FM objective, at least when using this network architecture. This being said, MFM is notably
more efficient than DDS (as well as the other methods) in terms of total computation time. While this
is not a critical consideration in this synthetic, low-dimensional setting, it is a significant advantage
of MFM in higher-dimensional settings involving real data (e.g., Section 5.3 and Section 5.4).

(a) MFM kQ= 102 (b) FAB (c) DDS (d) NF-MCMC

Figure 1: Comparison between MFM, FAB, DDS, and NF-MCMC. Samples from the target density
for the 4-mode Gaussian mixture example.

5.2 16-mode Gaussian mixture

The second experiment is a mixture of bivariate Gaussians with 16 mixture components. This is a
modification of the 4-mode example, with contrasting qualities that illustrate other characteristics
of each of the presented methods. In this case, the modes are evenly distributed on [−16, 16]2, with
random log-normal variances. The number of modes reduces the size of sets of (near) null probability
between the modes, making jumping between them easier. To increase the difficulty of this model, all
methods are initialized on a concentrated region of the sampling space. Diagnostics are presented in
Table 1 and learned flow samples in Figure 2. Further details are provided in Appendix C.3.

In this example, DDS collapses to the modes closest to the initial positions while our method captures
the whole target. Since the modes are no longer separated by areas of near-zero probability, the
discrete NF methods are now able to accurately capture the target density. In this case, FAB marginally
outperforms MFM as measured by the MMD, but this slight improvement in performance comes at
the cost of a much higher run-time.

5.3 Field system

Our first real-world example considers the stochastic Allen–Cahn model [7], used as a benchmark
in [24], and described in Appendix C.5. This fundamental reaction-diffusion equation is central to
the study of phase transitions in condensed matter systems. Incorporating random forcing terms
or thermal fluctuations allows for a stochastic treatment of the dynamics, capturing the inherent
randomness and uncertainties in physical systems. This model leads to a discretized target density
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(a) MFM kQ= 102 (b) FAB (c) DDS (d) NF-MCMC

Figure 2: Comparison between MFM, FAB, DDS, and NF-MCMC. Samples from the target density
for the 16-mode Gaussian mixture example.

which takes the form

log π(x) = −β
(

a

2∆s

d+1∑
i=1

(xi − xi−1)
2 +

b∆s

4

d∑
i=1

(1− x2
i )

2

)
, (19)

with ∆s = 1
d , and boundary conditions x0 = xd+1 = 0. In our experiments, we take d = 64.

Meanwhile, following [24], other parameter values are chosen to ensure bimodality at x = ±1:
a = 0.1, b = 1/a = 10, and β = 20. The bimodality induced by the two global minima complicates
mixing when using traditional MCMC updates. Learning the global geometry of the target and using
that information to propose transitions facilitates movement between modes. Unlike previous work
[e.g., 24], we deliberately choose not to employ an informed base measure. Instead, we opt for a
standard Gaussian with no additional information, making the problem significantly more challenging.
This choice illustrates the robustness of our approach.

Numerical diagnostics for each method are presented in Table 2. In this case, we use the Kernelized
Stein Discrepancy (KSD) as a measure of sample quality [e.g., 26, 46]; see Appendix C.1 for details.
While this is not a perfect metric, it does allow us to qualitatively compare the different methods
considered.

In this case, the tempering mechanism of our method is crucial for ensuring that the learned flow
does not collapse on one of the modes and instead explores both global minima. This is confirmed
when plotting the samples generated in the grid in Figure 3. This experiment demonstrates the ability
of our method to capture complex multi-modal densities, even without an informed base measure, at
a significantly lower computational cost (e.g., 10-25x faster) than competing methods. Indeed, while
FAB was the best performing method in this experiment as measured by the KSD, it failed to capture
both of the modes in the target distribution, and required a much greater total computation time (see
Table 2).

It is worth noting that MFM (and the other two benchmarks, DDS and FAB) significantly outper-
formed NF-MCMC in this example, despite the similarities between MFM and NF-MCMC. While
we tested various hyperparameter configurations for NF-MCMC, we were not able to find a setting
that achieved comparable results in the absence of an informed base measure.

(a) MFM kQ= 102 (b) FAB (c) DDS (d) NF-MCMC

Figure 3: Comparison between MFM, FAB, DDS, and NF-MCMC. Representative samples from the
target density for the Field system example.
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5.4 Log-Gaussian Cox process

Bayesian inference for high-dimensional spatial models is known to be challenging. One such model
is the log-Gaussian Cox process (LGCP) introduced in [53], which is used to model the locations of
126 Scots pine saplings in a natural forest in Finland. See Appendix C.6 for full details. The target
space is discretized to a M = 40 × 40 regular grid, rendering the target dimension d = 1600. In
Table 2, we report diagnostics for each algorithm.

In this case, the lack of multimodality in the target makes it a good fit for non-tempered schemes.
Similar to the previous example, NF-MCMC is unable to obtain an accurate approximation to the
target distribution. We suspect that this may be a result of non-convergence: due to memory issues, it
was not possible to run NF-MCMC (or FAB) for more than K = 103 iterations. This also explains
the (relatively) smaller run times of these algorithms in this example. By a small margin, DDS
provides the best approximation of the target, slightly outperforming MFM and FAB. Meanwhile,
MFM provides a good approximation to the target at a lower computational cost with respect to its
competitors.

Field system Log-Gaussian Cox
K = 104 KSD U-stat. KSD V-stat. seconds KSD U-stat. KSD V-stat. seconds
MFM kQ = K 2.61± 2.00 20.9± 2.49 52.3± 1.23 1.13e-1±.05 28.1± 0.24 117± 4.19
MFM kQ = 103 2.67± 2.16 21.0± 2.66 53.6± 1.33 1.12e-1±.04 28.1± 0.23 143± 14.5
DDS 15.2± 35.9 18.0± 36.9 2400± 8.65 7.59e-2±.02 24.7± 0.08 3260± 8.41
NF-MCMC 548± 325 549± 325 2000± 15.6 11.8± 7.55 89.0± 238 215± 46.4
FAB 0.14± 0.42 1.78± 0.42 3880± 7.19 1.55e-1±.06 52.3± 2.02 1040± 2.78
AT-SMC 1.61± 2.33 18.4± 2.35 4.13± 0.30 1.39e-2±.01 25.0± 0.12 6.11± 0.44

Table 2: Diagnostics for the two real data examples. KSD U-stat and V-stat are the Kernel Stein
Discrepancy U- and V-statistics between the target and samples generated from the learned flow.
Results are averaged and empirical 95% confidence intervals over 10 independent runs.

6 Conclusion

Summary. In this paper, we introduced Markovian Flow Matching, a new approach to sampling from
unnormalized probability distributions that augments MCMC with CNFs. Our method combines a
local Markov kernel with a non-local, flow-informed Markov kernel, which is adaptively learned
during sampling using FM. It also incorporates an adaptive tempering mechanism, which allows for
the discovery of multiple target modes. Under mild assumptions, we established convergence of
the flow network parameters output by our algorithm to a local optimum of the FM objective. We
also benchmarked the performance of our algorithm on several examples, illustrating comparable
performance to other state-of-the-art methods, often at a fraction of the computational cost.

Limitations and Future Work. We highlight three limitations of our work. First, our theoretical
result established convergence of the flow network parameters obtained via MFM to a local minimum
of the FM objective. Further work is required to understand how well these local minima generalize,
in order to accurately quantify how accurately the corresponding CNF captures the target posterior.
Second, we did not establish non-asymptotic convergence rates for our method. Finally, since it was
not the main focus of this work, we did not explore in great detail other choices of architecture for
the flow network. We expect that, for certain targets, this could have a significant impact on the
performance of MFM. Indeed, a promising avenue for further research lies in developing tailored
CNFs designed for particular posterior distributions. This approach would go beyond the current
practice of including the gradient of the log-posterior and instead exploit unique characteristics
intrinsic to each model when constructing the flow.

Acknowledgments and Disclosure of Funding

LS and CN were supported by the Engineering and Physical Sciences Research Council (EPSRC),
grant number EP/V022636/1. CN acknowledges further support from the EPSRC, grant numbers
EP/S00159X/1 and EP/Y028783/1.

10



References
[1] T. Akhound-Sadegh, J. Rector-Brooks, A. J. Bose, S. Mittal, P. Lemos, C.-H. Liu, M. Sendera,

S. Ravanbakhsh, G. Gidel, Y. Bengio, et al. Iterated denoising energy matching for sampling
from Boltzmann densities. In Proceedings of the 41st International Conference on Machine
Learning (ICML), 2024. 7

[2] M. S. Albergo and E. Vanden-Eijnden. Learning to sample better. arXiv preprint
arXiv:2310.11232, 2023. 6

[3] M. S. Albergo, G. Kanwar, and P. E. Shanahan. Flow-based generative models for Markov
chain Monte Carlo in lattice field theory. Physical Review D, 100(3):034515, 2019. 7

[4] M. S. Albergo, G. Kanwar, S. Racanière, D. J. Rezende, J. M. Urban, D. Boyda, K. Cranmer,
D. C. Hackett, and P. E. Shanahan. Flow-based sampling for fermionic lattice field theories.
Physical Review D, 104:114507, 2021. doi: 10.1103/PhysRevD.104.114507. 7

[5] M. Arbel, A. Matthews, and A. Doucet. Annealed flow transport Monte Carlo. In Proceedings
of the 38th International Conference on Machine Learning (ICML), 2021. 7

[6] A. Benveniste, M. Metivier, and P. Priouret. Adaptive Algorithms and Stochastic Approximations.
Springer-Verlag, Berlin, Heidelberg, 1990. doi: 10.1007/978-3-642-75894-2. 6

[7] N. Berglund, G. D. Gesù, and H. Weber. An Eyring–Kramers law for the stochastic Allen–Cahn
equation in dimension two. Electronic Journal of Probability, 22:1 – 27, 2017. doi: 10.1214/
17-EJP60. 8

[8] J. Berner, L. Richter, and K. Ullrich. An optimal control perspective on diffusion-based
generative modeling. Transaction on Machine Learning Research (TMLR), 2024. 7

[9] A. Beskos, A. Jasra, N. Kantas, and A. Thiery. On the convergence of adaptive sequential
Monte Carlo methods. Annals of Applied Probability, 26(2):1111–1146, 2016. doi: 10.1214/
15-AAP1113. 6

[10] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: a review for statisticians.
Journal of the American Statistical Association, 112(518):859–877, 2017. doi: 10.1080/
01621459.2017.1285773. 2

[11] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax. 18

[12] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov Chain Monte Carlo.
Chapman and Hall/CRC, 1st edition, 2011. doi: 10.1201/b10905. 2

[13] A. Cabezas and C. Nemeth. Transport elliptical slice sampling. In Proceedings of the 26th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023. 7

[14] R. Chen and Y. Lipman. Flow matching on general geometries. In Proceedings of the 12th
International Conference on Learning Representations (ICLR), 2024. 3

[15] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In Proceedings of the 32nd Annual Conference on Neural Information Processing
Systems (NeurIPS), 2018. 2, 3

[16] V. De Bortoli, M. Hutchinson, P. Wirnsberger, and A. Doucet. Target score matching. arXiv
preprint arXiv:2402.08667, 2024. 7

[17] L. Del Debbio, J. Marsh Rossney, and M. Wilson. Efficient modeling of trivializing maps for
lattice ϕ 4 theory using normalizing flows: a first look at scalability. Physical Review D, 104(9):
094507, 2021. doi: 10.1103/PhysRevD.104.094507. 2

[18] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006. 5, 7

11

http://github.com/google/jax


[19] A. Doucet, W. Grathwohl, A. G. Matthews, and H. Strathmann. Score-based diffusion meets
annealed importance sampling. In Proceedings of the 36th Annual Conference on Neural
Information Processing Systems (NeurIPS), 2022. 7

[20] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics letters
B, 195(2):216–222, 1987. doi: 10.1016/0370-2693(87)91197-X. 2

[21] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural spline flows. In Proceedings
of the 33rd Annual Conference on Neural Information Processing Systems (NeurIPS), 2019. 7

[22] F. Feroz, M. Hobson, and M. Bridges. MultiNest: an efficient and robust Bayesian inference
tool for cosmology and particle physics. Monthly Notices of the Royal Astronomical Society,
398(4):1601–1614, 2009. 2

[23] M. Gabrié, G. M. Rotskoff, and E. Vanden-Eijnden. Efficient Bayesian sampling using nor-
malizing flows to assist Markov chain Monte Carlo methods. In Proceedings of the 38th
International Conference on Machine Learning (ICML): 3rd Workshop on Invertible Neural
Networks, Normalizing Flows, and Explicit Likelihood Models, 2021. 4

[24] M. Gabrié, G. M. Rotskoff, and E. Vanden-Eijnden. Adaptive Monte Carlo augmented with
normalizing flows. Proceedings of the National Academy of Sciences, 119(10):e2109420119,
2022. doi: 10.1073/pnas.2109420119. 2, 4, 5, 7, 8, 9, 20

[25] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis. Chapman and
Hall/CRC, 1995. 1

[26] J. Gorham and L. Mackey. Measuring sample quality with kernels. In Proceedings of the
Proceedings of the 34th International Conference on Machine Learning (ICML), 2017. 9, 18

[27] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. FFJORD: Free-form
continuous dynamics for scalable reversible generative models. In Proceedings of the 7th
International Conference on Learning Representations (ICLR), 2018. 2, 3, 19, 21

[28] L. Grenioux, A. Durmus, É. Moulines, and M. Gabrié. On sampling with approximate transport
maps. In Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.
2, 4, 6

[29] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schöolkopf, and A. Smola. A kernel two-sample
test. Journal of Machine Learning Research (JMLR), 13:723–773, 2012. 7, 18

[30] M. G. Gu and F. H. Kong. A stochastic approximation algorithm with Markov chain Monte-
Carlo method for incomplete data estimation problems. Proceedings of the National Academy
of Sciences, 95(13):7270–7274, 1998. doi: 10.1073/pnas.95.13.7270. 17

[31] D. C. Hackett, C.-C. Hsieh, M. S. Albergo, D. Boyda, J.-W. Chen, K.-F. Chen, K. Cranmer,
G. Kanwar, and P. E. Shanahan. Flow-based sampling for multimodal distributions in lattice
field theory. arXiv preprint arXiv:2107.00734, 2021. 7

[32] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970. doi: 10.1093/biomet/57.1.97. 2

[33] M. Hoffman, P. Sountsov, J. V. Dillon, I. Langmore, D. Tran, and S. Vasudevan. Neutra-lizing
bad geometry in Hamiltonian Monte Carlo using neural transport. In Proceedings of the 1st
Symposium on Advances in Approximate Bayesian Inference (AABI), 2019. 2, 4, 7

[34] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal
of Machine Learning Research, 14(1):1303–1347, 2013. 2

[35] N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, and M. J. White.
Accelerating Markov chain Monte Carlo sampling with diffusion models. Computer Physics
Communications, 296:109059, 2024. doi: 10.1016/j.cpc.2023.109059. 4, 7

[36] M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–
1076, 1989. 19, 21

12



[37] A. Ihler, J. Fisher III, R. Moses, and A. Willsky. Nonparametric belief propagation for self-
localization of sensor networks. IEEE Journal on Selected Areas in Communications, 23(4),
2005. doi: 10.1109/JSAC.2005.843548. 2

[38] S. T. Jensen, X. S. Liu, Q. Zhou, and J. S. Liu. Computational discovery of gene regulatory
binding motifs: a Bayesian perspective. Statistical Science, 19(1):188–204, 2004. doi: 10.1214/
088342304000000107. 2

[39] M. Karamanis, F. Beutler, J. A. Peacock, D. Nabergoj, and U. Seljak. Accelerating astronomical
and cosmological inference with preconditioned Monte Carlo. Monthly Notices of the Royal
Astronomical Society, 516(2):1644–1653, 2022. doi: 10.1093/mnras/stac2272. 2, 4

[40] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the
3rd International Conference on Learning Representations (ICLR), 2015. 7

[41] S. Kou, J. Oh, and W. H. Wong. A study of density of states and ground states in hydrophobic-
hydrophilic protein folding models by equi-energy sampling. The Journal of Chemical Physics,
124(24), 2006. doi: 10.1063/1.2208607. 2

[42] A. Lee. U-Statistics: Theory and Practice. Taylor & Francis, 1st edition, 1990. doi: 10.1201/
9780203734520. 18

[43] B. Leimkuhler and C. Matthews. Molecular dynamics. Interdisciplinary Applied Mathematics,
39:443, 2015. doi: 10.1007/978-3-319-16375-8. 1

[44] S.-H. Li and L. Wang. Neural network renormalization group. Physical Review Letters, 121:
260601, 2018. doi: 10.1103/PhysRevLett.121.260601. 4, 7

[45] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. In Proceedings of the 11th International Conference on Learning Representations
(ICLR), 2023. 1, 2, 3, 5, 6

[46] Q. Liu, J. Lee, and M. Jordan. A kernelized Stein discrepancy for goodness-of-fit tests. In
Proceedings of the 33rd International Conference on Machine Learning (ICML), 2016. 9, 18

[47] A. H. Mahmoud, M. Masters, S. J. Lee, and M. A. Lill. Accurate sampling of macromolecular
conformations using adaptive deep learning and coarse-grained representation. Journal of
Chemical Information and Modeling, 62(7):1602–1617, 2022. doi: 10.1021/acs.jcim.1c01438.
2

[48] O. Mangoubi, N. S. Pillai, and A. Smith. Does Hamiltonian Monte Carlo mix faster than a
random walk on multimodal densities? arXiv preprint arXiv:1808.03230, 2018. 2

[49] O. Mangoubi, N. Pillai, and A. Smith. Simple conditions for metastability of continuous Markov
chains. Journal of Applied Probability, 58(1):83–105, 2021. doi: 10.1017/jpr.2020.83. 2

[50] A. Matthews, M. Arbel, D. J. Rezende, and A. Doucet. Continual repeated annealed flow
transport Monte Carlo. In Proceedings of the 39th International Conference on Machine
Learning (ICML), 2022. 7

[51] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation
of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):
1087–1092, 1953. 1

[52] L. I. Midgley, V. Stimper, G. N. Simm, B. Schölkopf, and J. M. Hernández-Lobato. Flow
annealed importance sampling bootstrap. In Proceedings of the 11th International Conference
on Learning Representations (ICLR), 2023. 7, 18, 20

[53] J. Møller, A. R. Syversveen, and R. P. Waagepetersen. Log Gaussian Cox processes. Scan-
dinavian Journal of Statistics, 25(3):451–482, 1998. doi: 10.1111/1467-9469.00115. 10,
22

[54] C. Naesseth, F. Lindsten, and D. Blei. Markovian score climbing: variational inference with
KL(p||q). Proceedings of the 34th Annual Conference on Neural Information Processing Systems
(NeurIPS), 2020. 4, 6, 7, 17

13



[55] R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125–139, 2001. doi:
10.1023/A:1008923215028. 5, 6

[56] R. M. Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte
Carlo, 2(11):2, 2011. 2

[57] K. A. Nicoli, S. Nakajima, N. Strodthoff, W. Samek, K.-R. Müller, and P. Kessel. Asymptotically
unbiased estimation of physical observables with neural samplers. Physical Review E, 101(2):
023304, 2020. doi: 10.1103/PhysRevE.101.023304. 7

[58] F. Noé, S. Olsson, J. Köhler, and H. Wu. Boltzmann generators: Sampling equilibrium states
of many-body systems with deep learning. Science, 365(6457), 2019. doi: 10.1126/science.
aaw1147. 7, 20

[59] M. D. Parno and Y. M. Marzouk. Transport map accelerated Markov chain Monte Carlo.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):645–682, 2018. doi: 10.1137/
17M1134640. 2, 4, 7

[60] A. Phillips, H.-D. Dau, M. J. Hutchinson, V. D. Bortoli, G. Deligiannidis, and A. Doucet.
Particle denoising diffusion sampler. In Proceedings of the 41st International Conference on
Machine Learning (ICML), 2024. 7

[61] R. Ranganath, S. Gerrish, and D. Blei. Black box variational inference. In Proceedings of the
17th International Conference on Artificial Intelligence and Statistics (AISTATS), 2014. 2

[62] D. Rezende and S. Mohamed. Variational inference with normalizing flows. In Proceedings of
the 32nd International Conference on Machine Learning (ICML), 2015. 2

[63] L. Richter, J. Berner, and G.-H. Liu. Improved sampling via learned diffusions. In Proceedings
of the 12th International Conference on Learning Representations (ICLR), 2024. 7

[64] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New York, 2nd
edition, 2004. doi: 10.1007/978-1-4757-4145-22. 2

[65] G. O. Roberts and J. S. Rosenthal. General state space Markov chains and MCMC algorithms.
Probability Surveys, 1:20 – 71, 2004. doi: 10.1214/154957804100000024. 2

[66] G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions and their
discrete approximations. Bernoulli, 2(4):341–363, 1996. 2

[67] S. Samsonov, E. Lagutin, M. Gabrié, A. Durmus, A. Naumov, and E. Moulines. Local-global
MCMC kernels: the best of both worlds. In Proceedings of the 36th Annual Conference on
Neural Information Processing Systems (NeurIPS), 2022. 2, 4, 7

[68] C. Schönle and M. Gabrié. Optimizing Markov chain Monte Carlo convergence with normalizing
flows and Gibbs sampling. In Proceedings of the 37th Annual Conference on Neural Information
Processing Systems (NeurIPS): AI for Science Workshop, 2023. 2, 7

[69] M. Sendera, M. Kim, S. Mittal, P. Lemos, L. Scimeca, J. Rector-Brooks, A. Adam, Y. Ben-
gio, and N. Malkin. Improved off-policy training of diffusion samplers. arXiv preprint
arXiv:2402.05098, 2024. 7

[70] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems
(NeurIPS), 2019. 5

[71] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ra-
mamoorthi, J. Barron, and R. Ng. Fourier features let networks learn high frequency functions in
low dimensional domains. In Proceedings of the 34th Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020. 7

[72] A. Tong, N. Malkin, G. Huguet, Y. Zhang, J. Rector-Brooks, K. Fatras, G. Wolf, and Y. Bengio.
Improving and generalizing flow-based generative models with minibatch optimal transport.
Transactions on Machine Learning Research (TMLR), 2024. 4

14



[73] B. Tzen and M. Raginsky. Theoretical guarantees for sampling and inference in generative
models with latent diffusions. In Proceedings of the 32nd Annual Conference on Learning
Theory (COLT), 2019. 7

[74] F. Vargas and N. Nüsken. Transport, variational inference and diffusions: with applications to
annealed flows and Schrödinger bridges. Proceedings of the 40th International Conference on
Machine Learning (ICML): Workshop on New Frontiers in Learning, Control, and Dynamical
Systems, 2023. 7

[75] F. Vargas, W. Grathwohl, and A. Doucet. Denoising diffusion samplers. In Proceedings of the
11th International Conference on Learning Representations (ICLR), 2023. 7

[76] F. Vargas, A. Ovsianas, D. Fernandes, M. Girolami, N. D. Lawrence, and N. Nüsken. Bayesian
learning via neural Schrödinger–Föllmer flows. Statistics and Computing, 33(1):3, 2023. doi:
10.1007/s11222-022-10172-5. 7

[77] F. Vargas, T. Reu, and A. Kerekes. Expressiveness remarks for denoising diffusion models
and samplers. In Proceedings of the 5th Symposium on Advances in Approximate Bayesian
Inference (AABI), 2023. 7

[78] F. Vargas, S. Padhy, D. Blessing, and N. Nüsken. Transport meets variational inference:
controlled Monte Carlo diffusions. In Proceedings of the 12th International Conference on
Learning Representations (ICLR), 2024. 7

[79] M. J. Wainwright, M. I. Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008. doi: 10.1561/
2200000001. 2

[80] K. W. K. Wong, M. Gabrié, and D. Foreman-Mackey. flowMC: Normalizing flow enhanced
sampling package for probabilistic inference in JAX. Journal of Open Source Software, 8(83):
5021, 2023. 18

[81] H. Wu, J. Köhler, and F. Noé. Stochastic normalizing flows. Advances in Neural Information
Processing Systems, 33:5933–5944, 2020. 20

[82] B. J. Zhang, Y. M. Marzouk, and K. Spiliopoulos. Transport map unadjusted Langevin algo-
rithms. arXiv preprint arXiv:2302.07227, 2023. 7

[83] D. Zhang, R. T. Q. Chen, C.-H. Liu, A. Courville, and Y. Bengio. Diffusion generative flow
samplers: Improving learning signals through partial trajectory optimization. In Proceedings of
the 12th International Conference on Learning Representations (ICLR), 2024. 7

[84] L. Zhang, D. M. Blei, and C. A. Naesseth. Transport score climbing: variational inference using
forward kl and adaptive neural transport. Transactions on Machine Learning Research (TMLR),
2023. 7

[85] Q. Zhang and Y. Chen. Path integral sampler: a stochastic control approach for sampling. In
Proceedings of the 10th International Conference on Learning Representations (ICLR), 2022. 7

15



A Flow-Informed Markov Chain Monte Carlo Methods

Algorithm 2 Flow-informed Random Walk Metropolis Hastings

1: Input: initial x, target π, vector field vθt , flow parameters θ
2: Output: x′

3: σopt ← 2.38/
√
d

4: ϕ1(x) = xt=1 ← x

5:

[
x0

∆ log p(x0)

]
←

[
x
0

]
+

∫ 0

1

[
vθt (ϕt(x))

−∇ · vθt (ϕt(x))

]
dt

6: y0 ∼ N (·|x0, σ
2
opt)

7:

[
y1

∆ log p(y1)

]
←

[
y0
0

]
+

∫ 1

0

[
vθt (ϕt(y))

−∇ · vθt (ϕt(y))

]
dt

8: α← min
{
1, π(y1) exp(−∆ log p(y1))

π(x1) exp(∆ log p(x0))

}
9: With probability α make x′ ← y1 else x′ ← x

Algorithm 3 Flow-informed Independent Metropolis Hastings

1: Input: initial x, target density π, vector field vθt , reference density p0, flow parameters θ.
2: Output: x′

3: ϕ1(u) = ut=1 ← x

4:

[
u0

∆ log p(u0)

]
←

[
u1

0

]
+

∫ 0

1

[
vθt (ϕt(u))

−∇ · vθt (ϕt(u))

]
dt

5: ϕ0(x) = xt=0 ∼ p0

6:

[
x1

log p(x1)

]
←

[
x0

log p0(x0)

]
+

∫ 1

0

[
vθt (ϕt(x))

−∇ · vθt (ϕt(x))

]
dt

7: α← min
{
1, π(x1)p0(u0) exp(−∆ log p(u0))

exp(log p(x1))π(u1)

}
8: With probability α make x′ ← x1 else x′ ← x

Algorithm 4 Flow-informed Conditional Importance Sampling

1: Input: initial x, target density π, vector field vθt , reference density q0, flow parameters θ, number
of importance samples K.

2: Output: x′

3: ϕ1(u) = ut=1 ← x

4:

[
u0

∆ log p(u0)

]
←

[
u1

0

]
+

∫ 0

1

[
vθt (ϕt(u))

−∇ · vθt (ϕt(u))

]
dt

5: w0 ← π(u1)
p0(u0) exp(−∆ log p(u0))

6: x(0) ← x
7: for k = 1 : K do
8: ϕ0(x) = xt=0 ∼ q0

9:

[
x1

log p(x1)

]
←

[
x0

log p0(x0)

]
+

∫ 1

0

[
vθt (ϕt(x))

−∇ · vθt (ϕt(x))

]
dt

10: wk ← π(x1)
exp(log p(x1))

11: x(k) ← x1

12: end for
13: Choose k′ with probability P (k′ = k) ∝ wk, then make x′ ← x(k′)
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B Proof of Proposition 3.1

Our proof follows closely the proof of [54, Proposition 1]. Let θ∗ be a minimizer of the CFM
objective in (4), which we recall is given by

J (θ;π) = Ex1∼πEt∼U(0,1)Ex∼pt(·|x1)

[
||vθt (x)− vt(x|x1)||2

]
:= Ex1∼π [j(θ, x1)] (20)

where we have defined j(θ, x1) = Et∼U(0,1)Ex∼pt(·|x1)

[
||vθt (x)− vt(x|x1)||2

]
. Now, consider the

ordinary differential equation (ODE) given by
d

dt
θ(t) = ∇Jθ(θ(t);π), θ(0) = θ0, t ≥ 0. (21)

We say that θ̂ is stability point of this ODE if, given the initial condition θ(0) = θ̂, the ODE admits
the unique solution θ(t) = θ̂ for all t ≥ 0. Naturally, the minimizer θ∗ is a stability point of this ODE,
since ∇θJ (θ;π)|θ=θ∗ = 0. Meanwhile, we call Θ the domain of attraction of θ∗ if, given the initial
condition θ(0) ∈ Θ, the solution θ(t) ∈ Θ for all t ≥ 0, and θ(t) converges to θ∗ as t→∞.

Let xk ∈ Rdx , and X ⊆ Rdx be an open subset of Rdx . Let Θ ⊆ Rdθ be an open set in Rdθ , and
Θc ⊆ Θ be a compact subset of Θ. Consider the Markov transition kernel M := P ◦Qk given by a
cycle of kQ repeated transitions of a MALA transition kernel and a flow-informed RWMH transition
kernel, viz

Mπ,θ(x, dy) =

∫
· · ·

∫
Q(x,dx1; θ)Q(x1,dx2) . . . Q(xkQ−1,dxkQ

; θ)P (xkQ
,dy;π, θ). (22)

This transition kernel is π-invariant since both P and Q are π-invariant. In addition, let Mk
π,θ(x,dy)

be the repeated application of this Markov transition kernel, namely,

Mk
π,θ(x, dy) =

∫
· · ·

∫
Mπ,θ(x, dx1)Mπ,θ(x1,dx2) · · ·Mπ,θ(xk−2,dxk−1)Mπ,θ(xk−1,dy).

(23)

Following [30, 54], we impose the following assumptions, for some sufficiently large positive real
number q > 1.
Assumption B.1 (Robbins-Monro Condition). The step size sequence (εk)∞k=1 satisfies the following
requirements:

∞∑
k=1

εk =∞,

∞∑
k=1

ε2k <∞. (24)

Assumption B.2 (Integrability). There exists a constant C1 > 0 such that for, any θ ∈ Θ, x ∈ X and
k ≥ 1, ∫

(1 + |y|q)Mk
π,θ(x,dy) ≤ C1(1 + |x|q). (25)

Assumption B.3 (Convergence of the Markov Chain). For each θ ∈ Θ, it holds that

lim
k→∞

sup
x∈X

1

1 + |x|q

∫
(1 + |y|q)|Mk

π,θ(x, dy)− π(dy)| = 0. (26)

Assumption B.4 (Continuity in θ). There exists a constant C2 such that for all θ, θ′ ∈ Θc,∣∣∣∣∫ (1 + |y|q)(Mk
π,θ(x,dy)−Mk

π,θ′(x, dy))

∣∣∣∣ ≤ C2|θ − θ′|(1 + |x|q). (27)

Assumption B.5 (Continuity in x). There exists a constant C3 such that for all x1, x2 ∈ X ,

sup
θ∈Θ

∣∣∣∣∫ (1 + |y|q+1)(Mk
π,θ(x1,dy)−Mk

π,θ(x2,dy))

∣∣∣∣ ≤ C3|x1 − x2|(1 + |x1|q + |x2|q). (28)

Assumption B.6 (Conditions on the Objective Function). For any compact subset Θc ⊂ Θ, there
exist positive constants p,K1,K2,K3 and v > 1/2 such that for all θ, θ′ ∈ Θc and x, x1, x2 ∈ X ,

|∇θj(θ, x1)| ≤ K1(1 + |x1|p+1), (29)

|∇θj(θ, x1)−∇θj(θ, x
′
1) ≤ K2|x1 − x′

1|(1 + |x1|p + |x2|p), (30)

|∇θj(θ, x1)−∇θj(θ
′, x1) ≤ K3|θ − θ′|v(1 + |x1|p+1). (31)

With the above assumptions, the result follows from Theorem 1 of [30] by setting x→ x1, Πθ →
Mπ,θ, H(θ, x)→ ∇θj(θ, x1).
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C Additional Experimental Details

Code for the numerical experiments is written in Python with array computations handled by JAX [11].
The implementation of relevant methods for comparison is sourced from open source repositories:
DDS using franciscovargas/denoising_diffusion_samplers, NF-MCMC using kazewong/flowMC
[80], and FAB using lollcat/fab-jax [52]. All experiments are run on an NVIDIA V100 GPU with
32GB of memory. In the following subsections, we will give more details on the modelling and
hyperparameter choices for each experiment, along with additional results.

C.1 Diagnostics

Let π and ν be two probability measures. Let F denote the unit ball in a reproducing kernel Hilbert
space (RKHS)H, associated with the positive definite kernel k : Rd × Rd → R. Then the maximum
mean discrepancy (MMD) between π and ν is defined as [29, Section 2.2]

MMD2
k(π, ν) = ∥mπ −mν∥2F , (32)

where mπ is the mean embedding of π, defined via Eπ[f ] = ⟨f,mπ⟩H for all f ∈ H. Using standard
properties of the RKHS, the squared MMD can be written as [29, Lemma 6]

MMD2
k(π, ν) = Ex,x′∼π [k(x, x

′)]− 2Ex∼π,y∼ν [k(x, y)] + Ey∼ν,y′∼ν [k(y, y
′)] . (33)

Thus, given samples (xi)
m
i=1 ∼ π and (yi)

m
i=1 ∼ ν, an unbiased estimate of the squared MMD can

be computed as

M̂MD
2

k(π, ν) =
1

m(m− 1)

m∑
i=1

m∑
i̸=j

k(xi, xj)−
2

m2

m∑
i=1

m∑
j=1

k(xi, yj)

+
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(yi, yj). (34)

For a kernel k, the kernel Stein discrepancy (KSD) between π and ν is defined as the MMD between
π and ν, using the Stein kernel kπ associated with k, which is defined as

kπ(x, x
′) = ∇x · ∇x′k(x, x′) +∇xk(x, x

′) · ∇x′ log π(x′)

+∇x′k(x, x′) · ∇x log π(x) + k(x, x′)∇x log π(x) · ∇x′ log π(x), (35)

and satisfies the Stein identity Eπ [kπ(x, ·)] = 0. We thus have that

KSD2
k(π, ν) = MMD2

kπ
(π, ν) (36)

= Ex,x′∼π [kπ(x, x
′)]− 2Ex∼π,y∼ν [kπ(x, y)] + Ey∼ν,y′∼ν [kπ(y, y

′)] (37)

= Ey∼ν,y′∼ν [kπ(y, y
′)] . (38)

We can obtain estimates of the KSD by using U-statistics or V-statistics. In particular, an unbiased
estimate of KSD2

k(π, ν) is given by the U-statistic [42]

K̂SD
2

k,U (π, ν) =
1

n(n− 1)

n∑
i=1

n∑
i ̸=j

kπ(yi, y
′
i). (39)

Alternatively, we can estimate KSD2
k(π, ν) using a biased (but non-negative) V-statistic of the form

[46, Section 4]

K̂SD
2

k,V (π, ν) =
1

n2

n∑
i=1

n∑
j=1

kπ(yi, y
′
i). (40)

In all of our numerical experiments, we calculate the U- and V- statistics using the inverse multi-
quadratic kernel k(x, x′) = (1 + (x− x′)T (x− x′))β due to its favourable convergence properties
[26, Theorem 8], setting β = − 1

2 .
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C.2 4-mode Gaussian mixture

For this experiment, all methods use N = 128 parallel chains for training and 128 hidden dimensions
for all neural networks. Methods with a MALA kernel use a step size of 0.2, and methods with
splines use 4 coupling layers with 8 bins and range limited to [−16, 16].
In Table 3, we present results for K = 103 iterations. Since MFM is much more efficient than other
methods, we also report results for a great number of total iterations. Table 4 contains results for
K = 5 · 103 iterations for MFM and AT-SMC. In the main text, we present results for K = 5 · 103
learning iterations for MFM and AT-SMC, and K = 103 iterations for the other algorithms, since
this renders the total computational cost of all algorithms somewhat comparable.

For both choices of K, we also present results using Hutchinson’s trace estimator (HTE) [27, 36]
to calculate the MH acceptance probability in the flow-informed Markov transition kernel. As
expected, its effect on sample quality becomes more apparent as kQ increases. However, its effect on
computation time is less significant than in larger dimensional examples.

K = 103 E[ϕ1]#p0 log π KSD U-stat. KSD V-stat. MMD seconds
FM w/ π samples −4.20± 0.08 6.85e-3±3.75e-3 7.16e-3±3.75e-3 1.90e-3±1.16e-3 6.46± 0.32
MFM kQ = K −4.55± 0.16 7.62e-3±7.46e-3 7.98e-3±7.45e-3 3.00e-3±2.20e-3 10.4± 0.66
MFM kQ = 102 −4.50± 0.14 5.36e-3±3.18e-3 5.71e-3±3.19e-3 2.03e-3±2.12e-3 12.1± 0.65
– w/ HTE −4.52± 0.15 4.77e-3±1.93e-3 5.12e-3±1.93e-3 2.27e-3±1.30e-3 13.9± 0.33
MFM kQ = 10 −4.49± 0.08 7.01e-3±3.49e-3 7.36e-3±3.49e-3 1.62e-3±7.61e-4 24.8± 1.38
– w/ HTE −4.53± 0.12 1.10e-2±6.80e-3 1.14e-2±6.81e-3 2.64e-3±1.03e-3 30.0± 1.70
DDS −4.22± 0.03 9.89e-4±1.05e-3 1.30e-3±1.05e-3 1.76e-4±2.32e-4 114.± 0.68
NF-MCMC −4.37± 0.21 1.80e-2±1.44e-2 1.83e-2±1.44e-2 5.85e-3±3.91e-3 72.0± 11.7
FAB −4.67± 0.16 2.31e-3±1.19e-3 2.69e-3±1.21e-3 2.69e-4±2.06e-4 101.± 3.24
AT-SMC −4.47± 0.04 3.95e-3±2.06e-3 4.30e-3±2.06e-3 2.98e-2±4.08e-2 1.38± 0.08

Table 3: Diagnostics for the 4-mode Gaussian mixture with K = 103. E[ϕ1]#p0
log π is the Monte

Carlo approximation of the log-target density using the learned flow to generate samples; KSD U-stat
and V-stat are the Kernel Stein Discrepancy U- and V-statistics between the target and samples
generated from the learned flow; MMD is the Maximum Mean Discrepancy between real samples
from the target and samples generated from the learned flow. Results are averaged and empirical 95%
confidence intervals over 10 independent runs.

K = 5 · 103 E[ϕ1]#p0
log π KSD U-stat. KSD V-stat. MMD seconds

FM w/ π samples −4.22± 0.04 1.50e-3±6.38e-4 1.81e-3±6.33e-4 3.69e-4±1.84e-4 22.3± 0.64
MFM kQ = K −4.47± 0.05 3.15e-3±2.10e-3 3.50e-3±2.10e-3 2.37e-3±2.29e-3 27.9± 1.27
MFM kQ = 102 −4.45± 0.04 3.61e-3±2.07e-3 3.96e-3±2.07e-3 1.05e-3±8.90e-4 39.2± 1.74
– w/ HTE −4.48± 0.09 3.50e-3±2.22e-3 3.86e-3±2.22e-3 1.88e-3±1.96e-3 41.2± 1.65
MFM kQ = 10 −4.44± 0.07 3.15e-3±2.28e-3 3.49e-3±2.28e-3 8.13e-4±4.41e-4 117.± 5.65
– w/ HTE −4.46± 0.06 4.80e-3±3.17e-3 5.15e-3±3.17e-3 1.37e-3±9.65e-4 147.± 9.44
AT-SMC −4.48± 0.04 4.07e-3±1.24e-3 4.42e-3±1.24e-3 3.95e-2±2.90e-2 2.18± 0.26

Table 4: Diagnostics for the 4-mode Gaussian mixture with K = 5 · 103. E[ϕ1]#p0
log π is the Monte

Carlo approximation of the log-target density using the learned flow to generate samples; KSD U-stat
and V-stat are the Kernel Stein Discrepancy U- and V-statistics between the target and samples
generated from the learned flow; MMD is the Maximum Mean Discrepancy between real samples
from the target and samples generated from the learned flow. Results are averaged and empirical 95%
confidence intervals over 10 independent runs.

C.3 16-mode Gaussian Mixture

Like the 4-mode example, all methods use N = 128 parallel chains for training and 128 hidden
dimensions for all neural networks. Methods with a MALA kernel use a step size of 0.2, and methods
with splines use 4 coupling layers with 8 bins and range limited to [−16, 16]. In Table 5 we present
results for K = 103 iterations. In Table 6, we provide results for MFM and AT-SMC for K = 5×103

learning iterations. In the main text, we present results for K = 5 · 103 learning iterations for MFM
and AT-SMC and K = 103 iterations for all other algorithms, which yields a more comparable total
computation time.
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K = 103 E[ϕ1]#p0
log π KSD U-stat. KSD V-stat. MMD seconds

FM w/ π samples −7.09± 0.31 2.94e-2±1.32e-2 2.99e-2±1.32e-2 8.89e-3±1.79e-3 6.67± 0.19
MFM kQ = K −6.95± 0.47 1.67e-2±1.14e-2 1.71e-2±1.15e-2 3.71e-2±4.81e-3 10.4± 0.64
MFM kQ = 102 −7.21± 0.73 1.80e-2±9.31e-3 1.85e-2±9.43e-3 1.81e-2±8.97e-3 11.4± 0.74
– w/ HTE −7.34± 0.81 2.10e-2±8.65e-3 2.15e-2±8.75e-3 1.74e-2±8.12e-3 13.0± 0.83
MFM kQ = 10 −7.21± 0.58 2.95e-2±1.03e-2 3.01e-2±1.04e-2 1.06e-2±2.76e-3 20.3± 1.17
– w/ HTE −7.18± 0.85 3.17e-2±1.97e-2 3.23e-2±1.99e-2 1.30e-2±3.33e-3 22.5± 1.81
DDS −5.86± 0.20 6.65e-3±6.69e-3 6.94e-3±6.69e-3 1.02e-1±4.10e-2 115.± 0.64
NF-MCMC −5.74± 0.35 1.23e-2±1.71e-2 1.26e-2±1.72e-2 8.05e-3±1.42e-2 67.0± 12.3
FAB −5.89± 0.28 4.22e-3±3.31e-3 4.58e-3±3.34e-3 1.51e-3±1.06e-3 102.± 4.32
AT-SMC −5.91± 0.07 2.07e-3±1.03e-3 2.38e-3±1.04e-3 3.72e-2±4.45e-3 1.36± 0.20

Table 5: Diagnostics for the 16-mode Gaussian mixture with K = 103. E[ϕ1]#p0
log π is the Monte

Carlo approximation of the log-target density using the learned flow to generate samples; KSD U-stat
and V-stat are the Kernel Stein Discrepancy U- and V-statistics between the target and samples
generated from the learned flow; MMD is the Maximum Mean Discrepancy between real samples
from the target and samples generated from the learned flow. Results are averaged and empirical 95%
confidence intervals over 10 independent runs.

K = 5 · 103 E[ϕ1]#p0
log π KSD U-stat. KSD V-stat. MMD seconds

FM w/ π samples −5.74± 0.11 2.91e-3±1.23e-3 3.26e-3±1.24e-3 1.35e-3±6.66e-4 22.4± 1.01
MFM kQ = K −6.09± 0.10 3.00e-3±7.87e-4 3.34e-3±7.95e-4 1.88e-2±3.67e-3 28.2± 2.84
MFM kQ = 102 −5.90± 0.08 5.37e-3±2.00e-3 5.74e-3±2.01e-3 2.98e-3±1.37e-3 34.8± 1.95
– w/ HTE −5.88± 0.12 5.43e-3±2.32e-3 5.80e-3±2.33e-3 3.86e-3±1.23e-3 38.7± 2.53
MFM kQ = 10 −5.98± 0.13 5.48e-3±2.07e-3 5.86e-3±2.09e-3 2.87e-3±9.67e-4 89.6± 5.19
– w/ HTE −5.92± 0.09 9.18e-3±4.48e-3 9.57e-3±4.50e-3 8.58e-3±1.00e-3 110.± 6.77
AT-SMC −5.84± 0.05 2.09e-3±8.53e-4 2.40e-3±8.56e-4 1.73e-2±5.30e-3 2.19± 0.21

Table 6: Diagnostics for the 16-mode Gaussian mixture with K = 5 · 103. E[ϕ1]#p0
log π is the

Monte Carlo approximation of the log-target density using the learned flow to generate samples; KSD
U-stat and V-stat are the Kernel Stein Discrepancy U- and V-statistics between the target and samples
generated from the learned flow; MMD is the Maximum Mean Discrepancy between real samples
from the target and samples generated from the learned flow. Results are averaged and empirical 95%
confidence intervals over 10 independent runs.

C.4 Many Well

We also present a synthetic problem approximating the 32-dimensional Many Well distribution given
by the product of 16 copies of the 2-dimensional Double Well distribution [e.g., 52, 58, 81],

log p(x1, x2) = −x4
1 + 6x2

1 +
1

2
x1 −

1

2
x2
2 + constant, (41)

where each copy of the Double Well is evaluated on a different pair of the 32 inputs. The 32-
dimensional Many Well has 216 = 65536 modes, one for each possible choice of mode in each of the
16 copies of the double well. We can obtain exact samples from the Many Well by sampling each
independent copy of the Double Well.

Like previous synthetic examples, all methods use N = 128 parallel chains for training and 128
hidden dimensions for all neural networks. Methods with a MALA kernel use a step size of 0.1,
and methods with splines use 4 coupling layers with 8 bins and a range limited to [−16, 16]. Table
7 presents results for K = 103 iterations. In Table 8, we provide results for MFM and AT-SMC
for K = 5× 103 learning iterations. In the main text, we present results for K = 5 · 103 learning
iterations for MFM and AT-SMC and K = 103 iterations for all other algorithms, which yields a
more comparable total computation time.

C.5 Field system

The stochastic Allen–Cahn equation is defined in terms of a random field ϕ : [0, 1]→ R satisfying
the following stochastic partial differential equation [e.g., 24, Section V]:

∂ϕ

∂t
= a

∂2ϕ

∂s2
+ a−1(ϕ− ϕ3) +

√
2β−1η(t, s), (42)
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K = 103 E[ϕ1]#p0
log π KSD U-stat. KSD V-stat. MMD seconds

FM w/ π samples 86.6± 1.88 17.4± 6.24 19.3± 6.25 1.24e-8±1.81e-8 6.95± 0.31
MFM kQ = K 101.± 0.70 0.12± 0.12 0.77± 0.13 2.28e-8±1.57e-8 11.1± 0.67
MFM kQ = 102 101.± 0.70 0.12± 0.11 0.77± 0.13 2.28e-8±1.57e-8 120.± 17.6
– w/ HTE 101.± 0.70 0.11± 0.12 0.77± 0.13 2.28e-8±1.57e-8 35.6± 3.95
MFM kQ = 10 101.± 0.77 0.11± 0.11 0.76± 0.12 2.28e-8±1.57e-8 1100.± 90.2
– w/ HTE 101.± 0.69 0.11± 0.09 0.76± 0.10 2.27e-8±1.56e-8 259.± 17.6
DDS 133.± 3.92 0.13± 0.14 0.61± 0.13 1.49e-5±2.03e-5 227.± 0.91
NF-MCMC 39.2± 1.61 1.17± 0.65 2.29± 0.66 4.79e-7±2.41e-7 184.± 44.1
FAB 137.± 0.33 4.79e-3±2.55e-2 4.32e-1±4.14e-2 3.87e-7±2.90e-7 304.± 3.64
AT-SMC 130.± 2.93 0.02± 0.03 0.57± 0.03 1.75e-5±1.19e-5 1.35± 0.36

Table 7: Diagnostics for the many well with K = 103. E[ϕ1]#p0
log π is the Monte Carlo approxi-

mation of the log-target density using the learned flow to generate samples; KSD U-stat and V-stat
are the Kernel Stein Discrepancy U- and V-statistics between the target and samples generated from
the learned flow; MMD is the Maximum Mean Discrepancy between real samples from the target
and samples generated from the learned flow. Results are averaged and empirical 95% confidence
intervals over 10 independent runs.

K = 5 · 103 E[ϕ1]#p0
log π KSD U-stat. KSD V-stat. MMD seconds

FM w/ π samples 98.6± 5.32 2.57± 4.07 4.56± 4.07 −1.13e-9±2.81e-8 25.6± 0.48
MFM kQ = K 101.± 0.64 1.02e-1±9.03e-2 7.64e-1±9.78e-2 2.28e-8±1.57e-8 29.7± 1.03
MFM kQ = 102 101.± 0.63 1.02e-1±9.05e-2 7.64e-1±9.73e-2 2.28e-8±1.57e-8 587.± 27.0
– w/ HTE 102.± 0.78 1.02e-1±8.32e-2 7.62e-1±8.91e-2 2.27e-8±1.58e-8 154.± 7.51
MFM kQ = 10 102.± 0.81 9.93e-2±7.24e-2 7.63e-1±8.15e-2 2.27e-8±1.57e-8 5130.± 104.
– w/ HTE 103.± 2.20 3.85e-1±2.69e-1 1.05± 0.27 2.21e-8±1.57e-8 1190.± 27.6
AT-SMC 130.± 3.17 2.44e-2±5.99e-2 5.79e-1±6.76e-2 1.52e-5±1.00e-5 2.59± 0.27

Table 8: Diagnostics for the many well with K = 5 · 103. E[ϕ1]#p0
log π is the Monte Carlo

approximation of the log-target density using the learned flow to generate samples; KSD U-stat
and V-stat are the Kernel Stein Discrepancy U- and V-statistics between the target and samples
generated from the learned flow; MMD is the Maximum Mean Discrepancy between real samples
from the target and samples generated from the learned flow. Results are averaged and empirical 95%
confidence intervals over 10 independent runs.

where a > 0 is a parameter, β is the inverse temperature, s ∈ [0, 1] denotes the spatial variable,
and η is spatiotemporal white noise. We impose Dirichlet boundary conditions throughout, so that
ϕ(s = 0) = ϕ(s = 1) = 0.

The associated Hamiltonian, reflecting a spatial coupling term penalizing changes in ϕ, takes the
form:

U∗[ϕ] = β

∫ 1

0

[
a

2

(
∂ϕ

∂s

)2

+
1

4a

(
1− ϕ2(s)

)2]
ds. (43)

At low temperatures, this coupling induces alignment of the field in either the positive or negative
direction, leading to two global minima, ϕ+ and ϕ−, with typical values of ±1.

For this example, all methods use N = 1024 parallel chains for training and 256 hidden dimensions
for all neural networks. Methods with a MALA kernel use a step size of 0.0001, and methods with
splines use 8 coupling layers with 8 bins and range limited to [−5, 5]. Results for K = 104 learning
iterations are presented in Table 9. In the main text, we present results for kQ = 102 for MFM.

Interestingly, in high-dimensional problems such as this and the following, the version of the algorithm
using Hutchinson’s trace estimator [27, 36] to calculate the MH acceptance probability has little
apparent effect on the approximation quality. It does, however, have a significant impact on the
computation time.

C.6 Log-Gaussian Cox process

The original 10 × 10 square meter plot is standardized to the unit square. We discretize the unit
square [0, 1]2 into a M = 40 × 40 regular grid. The latent intensity process Λ = {Λm}m∈M is
specified as Λm = exp(Xm), where X = {Xm}m∈M is a Gaussian process with a constant mean
µ0 ∈ R and exponential covariance function Σ0(m,n) = σ2 exp (−|m− n|/(40β)) for m,n ∈M ,
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K = 104 E[ϕ1]#p0
log π KSD U-stat. KSD V-stat. seconds

MFM kQ = K −74.7± 5.67 2.61± 2.00 20.9± 2.49 52.3± 1.23
MFM kQ = K/10 −69.6± 6.07 2.90± 2.50 21.2± 3.16 61.7± 4.37
– w/ HTE −74.2± 6.51 2.67± 2.16 21.0± 2.66 53.6± 1.33
MFM kQ = K/100 −55.4± 4.19 2.84± 3.31 20.9± 3.33 180± 42.2
– w/ HTE −72.1± 11.6 3.84± 3.04 22.6± 4.26 71.5± 6.93
DDS −76.3± 17.4 15.2± 35.9 18.0± 36.9 2400± 8.65
NF-MCMC −26.9± 9.62 548± 325 549± 325 2000± 15.6
FAB −50.4± 0.14 0.14± 0.42 1.78± 0.42 3880± 7.19
AT-SMC −63.5± 9.91 1.61± 2.33 18.4± 2.35 4.13± 0.30

Table 9: Diagnostics for the field system with K = 104. E[ϕ1]#p0
log π is the Monte Carlo approxi-

mation of the log-target density using the learned flow to generate samples; KSD U-stat and V-stat are
the Kernel Stein Discrepancy U- and V-statistics between the target and samples generated from the
learned flow. Results are averaged and empirical 95% confidence intervals over 10 independent runs.

i.e. X ∼ N (µ01d,Σ0) for 1d = [1, . . . , 1]T ∈ Rd with dimension d = 1600. The chosen parameter
values are σ2 = 1.91, β = 1/33, and µ0 = log(126)−σ2/2, corresponding to the values estimated in
[53]. The number of points in each grid cell Y = {Ym}m∈M ∈ N40×40 are modelled as conditionally
independent and Poisson distributed with means aΛm,

L(Y |X) =
∏

m∈[1:30]2

exp(xmym − a exp(xm)), (44)

where a = 1/402 represents the area of each grid cell. For this example, all methods use N = 128
parallel chains for training and 1024 hidden dimensions for all neural networks. Methods with a
MALA kernel use a step size of 0.01, and methods with splines use 8 coupling layers with 8 bins and
range limited to [−10, 10]. Results for K = 104 learning iterations are presented in Table 10. In the
main text, we present results for kQ = 103 for MFM. We were unable to run NF-MCMC and FAB
for K = 104 iterations because of memory issues; instead, we present results for K = 103 iterations
only for the models using discrete normalizing flows.

K = 104 E[ϕ1]#p0
log π KSD U-stat. KSD V-stat. seconds

MFM kQ = K −1960± 10.8 1.13e-1±5.18e-2 28.1± 0.246 117± 4.19
MFM kQ = 103 −1960± 10.8 1.14e-1±5.13e-2 28.1± 0.241 1690± 870
– w/ HTE −1960± 12.2 1.12e-1±4.93e-2 28.1± 0.236 143± 14.5
MFM kQ = 102 −1960± 12.6 1.15e-1±5.12e-2 28.0± 0.265 17300± 9970
– w/ HTE −1960± 11.1 1.15e-1±5.17e-2 28.1± 0.239 394± 157
DDS −1850± 8.59 7.59e-2±2.24e-2 24.7± 0.08 3260± 8.41
NF-MCMC −1410± 53.8 11.8± 7.55 89.0± 238 215± 46.4
FAB −3070± 80.7 1.55e-1±6.12e-2 52.3± 2.02 1040± 2.78
AT-SMC −1910± 4.21 1.39e-2±1.14e-2 25.0± 0.12 6.11± 0.44

Table 10: Log Gaussian Cox point process diagnostics for K = 104 where E[ϕ1]#p0
log π is the

Monte Carlo approximation of the log-target density using the learned flow to generate samples;
KSD U-stat and V-stat are the Kernelized Stein discrepancy’s U- and V-statistics between the target
and samples generated from the learned flow. Results are averaged and empirical 95% confidence
intervals over 10 independent runs.
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