
Astronomy & Astrophysics manuscript no. output ©ESO 2024
September 27, 2024

Euclid preparation

LII. Forecast impact of super-sample covariance on 3×2pt analysis with Euclid

Euclid Collaboration: D. Sciotti?1,2,3, S. Gouyou Beauchamps4,5,6, V. F. Cardone2,3, S. Camera7,8,9, I. Tutusaus10,11,12,5,
F. Lacasa11,13, A. Barreira14,15, M. Bonici20, A. Gorce16, M. Aubert17,18, P. Baratta4, R. E. Upham19, C. Carbone20,
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ABSTRACT

Context. Deviations from Gaussianity in the distribution of the fields probed by large-scale structure surveys generate additional terms in the data
covariance matrix, increasing the uncertainties in the measurement of the cosmological parameters. Super-sample covariance (SSC) is among the
largest of these non-Gaussian contributions, with the potential to significantly degrade constraints on some of the parameters of the cosmological
model under study – especially for weak-lensing cosmic shear.
Aims. We compute and validate the impact of SSC on the forecast uncertainties on the cosmological parameters for the Euclid photometric survey,
and investigate how its impact depends on the specific details of the forecast.
Methods. We followed the recipes outlined by the Euclid Collaboration (EC) to produce 1σ constraints through a Fisher matrix analysis, consid-
ering the Gaussian covariance alone and adding the SSC term, which is computed through the public code PySSC. The constraints are produced
both by using Euclid’s photometric probes in isolation and by combining them in the ‘3×2pt’ analysis.
Results. We meet EC requirements on the forecasts validation, with an agreement at the 10% level between the mean results of the two pipelines
considered, and find the SSC impact to be non-negligible – halving the figure of merit (FoM) of the dark energy parameters (w0, wa) in the 3×2pt
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case and substantially increasing the uncertainties on Ωm,0,w0, and σ8 for the weak-lensing probe. We find photometric galaxy clustering to be less
affected as a consequence of the lower probe response. The relative impact of SSC, while highly dependent on the number and type of nuisance
parameters varied in the analysis, does not show significant changes under variations of the redshift binning scheme. Finally, we explore how
the use of prior information on the shear and galaxy bias changes the impact of SSC. We find that improving shear bias priors has no significant
influence, while galaxy bias must be calibrated to a subpercent level in order to increase the FoM by the large amount needed to achieve the value
when SSC is not included.

Key words. Cosmology: cosmological parameters – theory – large-scale structure of Universe – observations

1. Introduction

Over recent decades, we have witnessed a remarkable improve-
ment in the precision of cosmological experiments, and con-
sequently in our grasp of the general properties of the Uni-
verse. The Λ cold dark matter (CDM) concordance cosmological
model provides an exquisite fit to observational data from both
the very early and the very late Universe, but despite its suc-
cess, the basic components it postulates are poorly understood.
Moreover, the nature of the mechanism responsible for the ob-
served accelerated cosmic expansion (Riess et al. 1998; Perlmut-
ter et al. 1999) and that of the component accounting for the vast
majority of the matter content, dark matter, are still unknown.
Upcoming Stage IV surveys like the Vera C. Rubin Observatory
Legacy Survey of Space and Time (LSST, Ivezić et al. 2019), the
Nancy Grace Roman Space Telescope (Spergel et al. 2015), and
the Euclid mission (Laureijs et al. 2011; Euclid Collaboration:
Mellier et al. 2024) promise to help deepen our understanding
of these dark components and the nature of gravity on cosmo-
logical scales by providing unprecedented observations of the
large-scale structures (LSS) of the Universe.

Because of their high accuracy and precision, these next-
generation experiments will require accurate modelling of both
the theory and the covariance of the observables under study in
order to produce precise and unbiased estimates of the cosmo-
logical parameters. Amongst the different theoretical issues to
deal with is super-sample covariance (SSC), a form of sample
variance arising from the finiteness of the survey area. SSC was
first introduced for cluster counts by Hu & Kravtsov (2003), and
is sometimes referred to as ‘beat coupling’ (Rimes & Hamilton
2006; Hamilton et al. 2006). In recent years, SSC has received a
lot of attention (Takada & Hu 2013; Li et al. 2014; Barreira et al.
2018b; Digman et al. 2019; Bayer et al. 2023; Yao et al. 2024);
see also Linke et al. (2024) for an insightful discussion on SSC
in real space. Hereafter, Barreira et al. (2018b) is cited as B18.

The effect arises from the coupling between ‘supersurvey’
modes —with wavelength λ larger than the survey typical size
L = V1/3

s (where Vs is the volume of the survey)— and short-
wavelength (λ < L) modes. This coupling is in turn due to
the significant non-linear evolution undergone by low-redshift
cosmological probes (contrary to, for example, the cosmic mi-
crowave background), which breaks the initial homogeneity
of the density field, making its growth position dependent. In
Fourier space, this means that modes with different wavenum-
ber k = 2π/λ become coupled. The modulation induced by the
supersurvey modes is equivalent to a change in the background
density of the observed region, which affects and correlates all
LSS probes. It is accounted for as an additional, non-diagonal
term in the data covariance matrix beyond the Gaussian covari-
ance, which is the only term that would exist if the random field
under study were Gaussian. Being the most affected by non-
linear dynamics, the smaller scales are heavily impacted by SSC,
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where the effect is expected to be the dominant source of statis-
tical uncertainty for the two-point statistics of weak-lensing cos-
mic shear (WL): it has in fact been found to increase conditional
uncertainties by up to a factor of about 2 (for a Euclid-like sur-
vey, see Barreira et al. 2018a; Gouyou Beauchamps et al. 2022).
In the case of photometric galaxy clustering (GCph; again, for a
Euclid-like survey), Lacasa & Grain (2019) – hereafter LG19 –
found the cumulative signal-to-noise ratio to be decreased by a
factor of around 6 at `max = 2000. These works, however, either
do not take into account marginalised uncertainties or the vari-
ability of the probe responses, do not include cross-correlations
between probes, or do not follow the full specifics (such as mod-
elling of the observables, types of systematics included, binning
schemes, sky coverage and so forth) of the Euclid survey detailed
below.

There are two aims to the present study. First, we intend to
validate the forecast constraints on the cosmological parameters,
both including and neglecting the SSC term; these are produced
using two independent codes, whose only shared feature is their
use of the public Python module PySSC12 (LG19) to compute
the fundamental elements needed to build the SSC matrix. Sec-
ond, we investigate the impact of SSC on the marginalised un-
certainties and the dark energy figure of merit (FoM), both of
which are obtained through a Fisher forecast of the constraining
power of Euclid’s photometric observables.

The article is organised as follows: Sect. 2 presents an
overview of the SSC and the approximations used to compute it.
In Sect. 3 we outline the theoretical model and specifics used to
produce the forecasts, while Sect. 4 provides technical details re-
garding the implementation and validation of the code. In Sect. 5
we then present a study of the impact of SSC on Euclid con-
straints for different binning schemes and choices of systematic
errors and priors. Finally, we present our conclusions in Sect. 6.

2. SSC theory and approximations

2.1. General formalism

Throughout the article, we work with 2D-projected observables,
namely the angular Power Spectrum (PS), which in the Limber
approximation (Limber 1953; Kaiser 1998) can be expressed as

CAB
i j (`) =

∫
dV WA

i (z)WB
j (z)PAB(k`, z) , (1)

giving the correlation between probes A and B in the redshift
bins i and j, as a function of the multipole `; k` = (`+1/2)/r(z) is
the Limber wavenumber and WA

i (z),WB
j (z) are the survey weight

functions (WFs), or “kernels”. Here we consider as the element
of integration dV = r2(z) dr

dz dz which is the comoving volume
element per steradian, with r(z) being the comoving distance.

The SSC between two projected observables arises because
real observations of the Universe are always limited by a survey
1 https://github.com/fabienlacasa/PySSC
2 https://pyssc.readthedocs.io/en/latest/index.html
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window function M(x). Taking M(x) at a given redshift, thus
considering only its angular dependenceM(n̂)3, with n̂ the unit
vector on a sphere, we can define the background density con-
trast as (Lacasa et al. 2018)

δb(z) =
1

ΩS

∫
d2n̂M(n̂) δm [r(z)n̂, z] , (2)

with r(z)n̂ = x. In this equation, δm(x, z) =
[
ρm(x, z)/ρ̄m(z) − 1

]
is the matter density contrast, with ρm(x, z) the matter density
and ρ̄m(z) its spatial average over the whole Universe at redshift
z and ΩS the solid angle observed by the survey.

In other words, δb is the spatial average of the density con-
trast δm(x, z) over the survey area:

〈δm(x, z)〉universe = 0 , (3)
〈δm(x, z)〉survey = δb(z) . (4)

The covariance of this background density contrast is defined as
σ2(z1, z2) ≡ 〈δb(z1) δb(z2)〉 and in the full-sky approximation is
given by (Lacasa & Rosenfeld 2016)

σ2(z1, z2) =
1

2π2

∫
dk k2 P lin

mm (k, z12) j0 (kr1) j0 (kr2) , (5)

with P lin
mm(k, z12) ≡ D(z1) D(z2) P lin

mm(k, z = 0) the linear mat-
ter cross-spectrum between z1 and z2, D(z) the linear growth
factor and j0(kri) the first-order spherical Bessel function, and
ri = r(zi). The use of the linear PS reflects the fact that the SSC
is caused by long-wavelength perturbations, which are well de-
scribed by linear theory. We note that we have absorbed the Ω−1

S
prefactor of Eq. (2), equal to 4π in full sky, in the dVi terms,
being them the comoving volume element per steradian.

Depending on the portion of the Universe observed, δb will
be different, and in turn the PS of the considered observables
PAB(k`, z) (appearing in Eq. 1) will react to this change in the
background density through the probe response ∂PAB(k`, z)/∂δb.

SSC is then the combination of these two elements, encap-
sulating the covariance of δb and the response of the observables
to a change in δb; the general expression of the SSC between
two projected observables is (Lacasa & Rosenfeld 2016; Schaan
et al. 2014; Takada & Hu 2013):

CovSSC

[
CAB

i j (`),CCD
kl (`′)

]
=

∫
dV1dV2 WA

i (z1) WB
j (z1)

×WC
k (z2) WD

l (z2)
∂PAB(k`, z1)

∂δb

∂PCD(k`′ , z2)
∂δb

σ2(z1, z2) . (6)

We adopt the approximation presented in Lacasa & Grain
(2019), which assumes the responses to vary slowly in red-
shift with respect to σ2(z1, z2). We can then approximate the
responses with their weighted average over the WA

i (z) kernels
(Gouyou Beauchamps et al. 2022):

∂P̄AB(k`, z)
∂δb

=

∫
dV WA

i (z)WB
j (z) ∂PAB(k`, z)/∂δb∫

dV WA
i (z)WB

j (z)
, (7)

and pull them out of the integral. The denominator on the right-
hand side (r.h.s.) acts as a normalisation term, which we call IAB

i j .

3 Here we do not consider a redshift dependence ofM(n̂) but this can
happen for surveys with significant depth variations across the sky. This
is discussed in Lacasa et al. (2018).

We can further manipulate the above expression by factorising
the probe response as

∂PAB(k`, z)
∂δb

= RAB(k`, z)PAB(k`, z) , (8)

where RAB(k`, z), the “response coefficient”, can be obtained
from simulations, as in Wagner et al. (2015a,b); Li et al. (2016);
Barreira et al. (2019), or from theory (e.g. via the halo model) as
in Takada & Hu (2013); Krause & Eifler (2017); Rizzato et al.
(2019). Following LG19, we can introduce the probe response
of the angular power spectrum CAB

i j (`) in a similar way, using
Eq. (1)

∂CAB
i j (`)

∂δb
=

∫
dV WA

i (z)WB
j (z)

∂PAB(k`, z)
∂δb

≡ RAB
i j (`)CAB

i j (`) . (9)

Substituting Eq. (8) into the r.h.s. of Eq. (7), using Eq. (9) and
dividing by the sky fraction observed by the telescope fsky =
ΩS/4π, we get the expression of the SSC which will be used
throughout this work:

CovSSC

[
CAB

i j (`) CCD
kl (`′)

]
' f −1

sky

[
RAB

i j (`) CAB
i j (`)

× RCD
kl (`′) CCD

kl (`′) S A,B;C,D
i, j;k,l

]
. (10)

In the above equation, we define

S A,B;C,D
i, j;k,l ≡

∫
dV1dV2

WA
i (z1)WB

j (z1)

IAB
i j

WC
k (z2)WD

l (z2)

ICD
kl

σ2(z1, z2) .

(11)

The S A,B;C,D
i, j;k,l matrix (referred to as S i jkl from here on) is the vol-

ume average of σ2(z1, z2), and is a dimensionless quantity. It is
computed through the public Python module PySSC, released
alongside the above-mentioned LG19. A description of the way
this code has been used, and some comments on the inputs to
provide and the outputs it produces, can be found in Sect. 4.

The validity of Eq. (10) has been tested in LG19 in the
case of GCph and found to reproduce the Fisher matrix (FM,
Tegmark et al. 1997) elements and signal-to-noise ratio from the
original expression (Eq. 6):

- within 10% discrepancy up to ` ' 1000 for RAB
i j (k`, z) = const;

- within 5% discrepancy up to ` ' 2000 when using the linear
approximation in scale for RAB(k`, z) provided in Appendix C
of the same work.

The necessity to push the analysis to smaller scales, as well as
to investigate the SSC impact not only for GCph but also for
WL and their cross-correlation, has motivated a more exhaustive
characterisation of the probe response functions, which will be
detailed in the next section.
Another approximation used in the literature has been presented
in (Krause & Eifler 2017): the σ2(z1, z2) term is considered as a
Dirac delta in z1 = z2. This greatly simplifies the computation,
because the double redshift integral dV1dV2 collapses to a single
one. This approximation is used by the other two available public
codes which can compute the SSC: PyCCL (Chisari et al. 2019)
and CosmoLike (Krause & Eifler 2017). Lacasa et al. (2018)
compared this approximation against the one used in this work,
finding the former to fare better for wide redshift bins (as in the
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case of WL), and the latter for narrow bins (as in the case of
GCph).

Lastly, we note that in Eq. (10) we account for the sky
coverage of the survey through the full-sky approximation by
simply dividing by fsky; in the case of Euclid we have ΩS =

14 700 deg2 ' 4.4776 sr , which corresponds to fsky ' 0.356.
The validity of this approximation has been discussed in Gouyou
Beauchamps et al. (2022), and found to agree at the percent level
on the marginalised parameter constraints with the more rigor-
ous treatment accounting for the exact survey geometry when
considering large survey areas. For this test, they considered an
area of 15 000 deg2 and a survey geometry very close to what
Euclid will have, i.e. the full sky with the ecliptic and galactic
plane removed. Intuitively, the severity of the SSC decays as f −1

sky
because larger survey volumes can accommodate more Fourier
modes.

We note that we are considering here the maximum sky cov-
erage that Euclid will reach, i.e. the final data release (DR3). For
the first data release (DR1), the sky coverage will be significantly
lower and the full-sky approximation will not hold. In that case,
the partial-sky recipe proposed in Gouyou Beauchamps et al.
(2022) should be considered instead.

2.2. Probe response

As mentioned in the previous section, one of the key ingredients
of the SSC is the probe response. To compute this term for the
probes of interest, we build upon previous works (Wagner et al.
2015a,b; Li et al. 2016; Barreira & Schmidt 2017, B18), and
compute the response coefficient of the matter PS as

Rmm(k, z) =
∂ ln Pmm(k, z)

∂δb
= 1 −

1
3
∂ ln Pmm(k, z)

∂ ln k
+ Gmm

1 (k, z) ,

(12)

where Gmm
1 (k, z) is called the growth-only response, and is con-

stant and equal to 26/21 in the linear regime and can be com-
puted in the non-linear regime using separate universe simula-
tions, as done in Wagner et al. (2015b), whose results were used
in B18 (and in the present work). The latter uses a power law
to extrapolate the values of the response for k > kmax, with kmax
being the maximum wavenumber at which the power spectrum
is reliably measured from the simulations. Further details on this
extrapolation, as well as on the redshift and scale dependence
of Rmm, can be found respectively in Sect. 2 and the left panel
of Fig. 1 of B18. We note that Rmm is the response coefficient of
isotropic large-scale density perturbations; we neglect the contri-
bution from the anisotropic tidal-field perturbations to the total
response of the power spectrum (and consequently to the SSC),
which has been shown in B18 to be subdominant for WL with
respect to the first contribution (about 5% of the total covariance
matrix at ` & 300). While we do not expect this conclusion to
change substantially for GCph, we leave an accurate assessment
for future work.

The probes considered in the present study are WL, GCph
and their cross-correlation (XC); assuming general relativity, the
corresponding power spectra are given by the following expres-
sions

PAB(k, z) =


Pmm(k, z) A = B = L

b(1)(z)Pmm(k, z) A = L , B = G

b2
(1)(z)Pmm(k, z) A = B = G,

(13)

with (L,G) for (shear, position), Pmm(k, z) the non-linear mat-
ter PS and b(1)(z) the linear, scale-independent and deterministic
galaxy bias. A comment is in order about the way we model the
galaxy-matter and galaxy-galaxy power spectra. We are indeed
using a linear bias, but the non-linear recipe for the matter power
spectrum Pmm(k, z). This is reminiscent of the hybrid 1-loop per-
turbation theory (PT) model adopted by, for example, the DES
Collaboration in the analysis of the latest data release (Krause
et al. 2021; Pandey et al. 2022), but we drop the higher-order
bias terms. This simplified model has been chosen in order to be
consistent with the IST:F (Euclid Collaboration: Blanchard et al.
2020, from hereon EC20) forecasts, against which we compare
our results (in the Gaussian case) to validate them. We are well
aware that scale cuts should be performed to avoid biasing the
constraints, but we are here more interested in the relative im-
pact of SSC on the constraints than the constraints themselves.
Any systematic error due to the approximate modelling should
roughly cancel out in the ratio we compute later on. We note
also that we choose to include a perfectly Poissonian shot noise
term in the covariance matrix, rather than in the signal, as can be
seen in Eq. (25). The responses for the different probes can be
obtained in terms4 of Rmm(k, z) by using the relations between
matter and galaxy PS given above

Rgg(k, z) =
∂ ln Pgg(k, z)

∂δb
= Rmm(k, z) + 2b−1

(1)(z)
[
b(2)(z) − b2

(1)(z)
]
,

(14)

and similarly for Rgm:

Rgm(k, z) =
∂ ln Pgm(k, z)

∂δb
= Rmm(k, z) + b−1

(1)(z)
[
b(2)(z) − b2

(1)(z)
]
.

(15)

Having used the definitions of the first- and second-order galaxy
bias, that is, b(1)(z) = (∂ng/∂δb)/ng and b(2)(z) = (∂2ng/∂δ

2
b)/ng,

with ng the total angular galaxy number density, in arcmin−2. In
the following, where there is no risk of ambiguity, we drop the
subscript in parenthesis when referring to the first-order galaxy
bias – that is, b(z) = b(1)(z) – to shorten the notation, and we in-
dicate the value of the first-order galaxy bias in the i-th redshift
bin with bi(z). More details on the computation of these terms
can be found in Sect. 3.6. We note that Eqs. (14)–(15) are ob-
tained by differentiating a PS model for a galaxy density contrast
defined with respect to (w.r.t.) the observed galaxy number den-
sity, and so they already account for the fact that the latter also
“responds” to the large-scale perturbation δb. This is also the
reason why RGG

i j (`) can have negative values: for galaxy clus-
tering, the (number) density contrast δgal is measured w.r.t. the
observed, local number density n̄gal: δgal = ngal/n̄gal − 1. The lat-
ter also responds to a background density perturbation δb, and it
can indeed happen that n̄gal grows with δb faster than ngal, which
leads to δgal decreasing with increasing δb (which also implies
∂CGG

i j (`)/∂δb < 0). We also stress the fact that the second-order
galaxy bias appearing in the galaxy-galaxy and galaxy-lensing
response coefficients is not included in the signal, following
EC20. Once computed in this way, the response coefficient can
be projected in harmonic space using Eq. (9), and inserted in
Eq. (10) to compute the SSC in the LG19 approximation. The
projected RAB

i j (`) functions are shown in Fig. 1.

4 Since we are using the non-linear matter power spectrum Pmm(k, z),
we do not force Rmm(k, z) to reduce to its linear expression, that is to
say, we do not set Gmm

1 = 26/21 in Eq. (12).
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Fig. 1. Projected response coefficients for the WL and GCph probes and
their cross-correlation for the central redshift bin (0.8 . z . 0.9). The
shape and amplitude of the functions for different redshift pairs are anal-
ogous. For WL, the baryon acoustic oscillation wiggles are smoothed
out by the projection, because the kernels are larger than the GCph ones.
The different amplitude of the response is one of the main factors gov-
erning the severity of SSC.

3. Forecasts specifics

In order to forecast the uncertainties in the measurement of the
cosmological parameters, we follow the prescriptions of the Eu-
clid forecast validation study (EC20), with some updates to the
most recent results from the EC, which are used for the third Sci-
ence Performance Verification (SPV) of Euclid before launch.
In particular, the update concerns the fiducial value of the linear
bias, the redshift distribution n(z) and the multipole binning.

Once again, the observable under study is the angular PS of
probe A in redshift bin i and probe B in redshift bin j, given
in the Limber approximation by Eq. (1). The PAB(k`, z) multi-
probe power spectra are given in Eq. (13); in the following, we
refer interchangeably to the probes (WL, XC, GCph) and their
auto- and cross-spectra (respectively, LL, GL, GG).

3.1. Redshift distribution

First, we assume that the same galaxy population is used to probe
both the WL and the GCph PS. We therefore set

nL
i (z) = nG

i (z) = ni(z) , (16)

where nL
i (z) and nG

i (z) are respectively the distribution of sources
and lenses in the i-th redshift bin. Then, the same equality applies
for the total source and lens number density, n̄L and n̄G.

A more realistic galaxy redshift distribution than the analyti-
cal one presented in EC20 can be obtained from simulations. We
use the results from Euclid Collaboration: Pocino et al. (2021),
in which the n(z) is constructed from photometric redshift esti-
mates in a 400 deg2 patch of the Flagship 1 simulation (Potter
et al. 2017), using the training-based directional neighbourhood
fitting (DNF) algorithm (De Vicente et al. 2016).

The training set is a random subsample of objects with true
(spectroscopic) redshifts known from the Flagship simulation.
We choose the fiducial case presented in Euclid Collaboration:
Pocino et al. (2021), which takes into account a drop in com-
pleteness of the spectroscopic training sample with increasing
magnitude. A cut in magnitude IE < 24.5, isotropic and equal for
all photometric bands, is applied, corresponding to the optimistic
Euclid setting. The DNF algorithm then produces a first estimate
of the photo-z, zmean, using as a metric the objects’ closeness in

colour and magnitude space to the training samples. A second
estimate of the redshift, zmc, is computed from a Monte Carlo
draw from the nearest neighbour in the DNF metric. The final
distributions for the different redshift bins, ni(z), are obtained by
assigning the sources to the respective bins using their zmean, and
then taking the histogram of the zmc values in each of the bins –
following what has been done in real surveys such as the Dark
Energy Survey (Crocce et al. 2019; Hoyle et al. 2018).

As a reference setting, we choose to bin the galaxy distribu-
tion into Nb = 10 equipopulated redshift bins, with edges

zedges = {0.001, 0.301, 0.471, 0.608, 0.731, 0.851,
0.980, 1.131, 1.335, 1.667, 2.501} . (17)

The total galaxy number density is n̄ = 28.73 arcmin−2. As a
comparison, this was set to 30 arcmin−2 in EC20. We note that
this choice of redshift binning will be discussed and varied in
Sect. 5.3.

3.2. Weight functions

We model the radial kernels, or weight functions, for WL and
GCph following once again EC20. Adopting the eNLA (ex-
tended non-linear alignment) prescription for modelling the in-
trinsic alignment (IA) contribution, the weight function WA

i (z)
for the lensing part is given by (see e.g. Kitching et al. 2017;
Kilbinger et al. 2017; Taylor et al. 2018b)

WL
i (z) =W

γ
i (z) −

AIACIAΩm,0FIA(z)
D(z)

WIA(z) , (18)

where we define5

W
γ
i (z) =

3
2

(H0

c

)2

Ωm,0(1 + z)r(z)
∫ zmax

z

ni(z′)
n̄

[
1 −

r(z)
r(z′)

]
dz′,

(19)

and

WIA
i (z) =

1
c

ni(z)
n̄

H(z) . (20)

Finally, in Eq. (18), AIA is the overall IA amplitude, CIA a con-
stant, FIA(z) a function modulating the dependence on redshift,
and D(z) is the linear growth factor. More details on the IA mod-
elling are given in Sect. 3.5.

The GCph weight function is equal to the IA one, as long as
Eq. (16) holds:

WG
i (z) =WIA

i (z) =
1
c

ni(z)
n̄

H(z) . (21)

Figure 2 shows the redshift dependence of Eqs. (18) and (21),
for all redshift bins. We note that we choose to include the galaxy
bias term bi(z) in the PS (see Eq. 13) rather than in the galaxy
kernel, as opposed to what has been done in EC20. This is done
to compute the galaxy response as described in Sect. 2.2. How-
ever, as the galaxy bias is assumed constant in each bin, the ques-
tion is of no practical relevance when computing the S i jkl matrix,
since the constant bias cancels out.

We note that the above definitions of the lensing and galaxy
kernels (WA

i (z), A = L,G) differ from the ones used in LG19.

5 Equation (19) assumes general relativity and a spatially flat Universe.
For the general case, one must replace the term in brackets with fK(r′ −
r)/ fK(r′), with fK(r) the function giving the comoving angular-diameter
distance in a non-flat universe.
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This is simply because of a different definition of the CAB
i j (`)

Limber integral, which is performed in dV in LG19 and in dz
in EC20. The mapping between the two conventions is simply
given by the expression for the volume element:

dV = r2(z)
dr
dz

dz = c
r2(z)
H(z)

dz , (22)

and

WA
i (z) =WA

i (z)/r2(z) , (23)

with A = L,G. In Fig. 2 we plot the values ofWA
i (z) to facilitate

the comparison with EC20. As outlined in Appendix A, when
computing the S i jkl matrix through PySSC, the user can either
pass the kernels in the form used in LG19 or the one used in
EC20 – specifying a non-default convention parameter.

3.3. Gaussian covariance

The Gaussian part of the covariance is given by the following
expression:

CovG

[
ĈAB

i j (`), ĈCD
kl (`′)

]
=

[
(2 ` + 1) fsky ∆`

]−1
δK
``′

×

{ [
CAC

ik (`) + NAC
ik (`)

] [
CBD

jl (`′) + NBD
jl (`′)

]
+

[
CAD

il (`) + NAD
il (`)

] [
CBC

jk (`′) + NBC
jk (`′)

] }
, (24)

where we use a hat to distinguish the estimators from the true
spectra. The noise PS NAB

i j (`) are, for the different probe combi-
nations,

NAB
i j (`) =


(σ2

ε/2n̄L
i ) δK

i j A = B = L (WL)

0 A , B

(1/n̄G
i ) δK

i j A = B = G (GCph) .

(25)

In the above equations, δK
i j is the Kronecker delta andσ2

ε the vari-
ance of the total intrinsic ellipticity dispersion of WL sources,
where σε =

√
2σ(i)

ε , with σ(i)
ε being the ellipticity dispersion

per component of the galaxy ellipse. Some care is needed when
defining the shear noise spectrum: the above equation can then
also be written as NLL

i j (`) =
[
(σ(i)

ε )2/n̄L
i

]
δK

i j , that is, using the el-
lipticity dispersion per component instead of the total one, which
is the appropriate choice for harmonic-space analyses (Hu & Jain
2004; Joachimi & Bridle 2010). We note that the average densi-
ties used in Eq. (25) are not the total number densities, but rather
those in the i-th redshift bin. In the case of Nb equipopulated
redshift bins, they can be simply written as n̄A

i = n̄A/Nb for both
A = (L,G). Finally, we recall that fsky is the fraction of the to-
tal sky area covered by the survey, while ∆` is the width of the
multipole bin centred on a given `. From Sect. 3.1 we have that
n̄ = 28.73 arcmin−2, while we set σε = 0.37 (from the value
σ(i)
ε = 0.26 reported in Euclid Collaboration: Martinet et al.

2019) and fsky = 0.356 (corresponding to ΩS = 14 700 deg2). We
have now all the relevant formulae for the estimate of the Gaus-
sian and the SSC terms of the covariance matrix. To ease the
computation of Eq. (24) we have prepared an optimised Python
module, Spaceborne_covg6, available as a public repository.

6 https://github.com/davidesciotti/Spaceborne_covg

In the context of the present work, we do not consider the
other non-Gaussian contribution to the total covariance matrix,
the so-called connected non-Gaussian (cNG) term. This addi-
tional non-Gaussian term has been shown to be subdominant
with respect to the Gaussian and SSC terms for WL both in Bar-
reira et al. (2018a) and in Upham et al. (2022). For what concerns
galaxy clustering, Wadekar et al. (2020) showed that the cNG
term was subdominant, but this was for a spectroscopic sam-
ple so (i) they had a much larger contribution from shot-noise-
related terms compared to what is considered here for the Euclid
photometric sample, and (ii) they considered larger and more lin-
ear scales than in the present study. Lacasa (2020) showed that
the cNG term in the covariance matrix of GCph only impacts
the spectral index ns and HOD parameters, but there are a few
differences between that analysis and the present work, such as
the modelling of galaxy bias. Thus it is still unclear whether the
cNG term has a strong impact on cosmological constraints ob-
tained with GCph. Quantifying the impact of this term for the
3×2pt analysis with Euclid settings is left for future work.

3.4. Cosmological model and matter power spectrum

We adopt a flat w0waCDM model, that is, we model the dark en-
ergy equation of state with a Chevallier–Polarski–Linder (CPL)
parametrisation (Chevallier & Polarski 2001; Linder 2005):

w(z) = w0 + wa z/(1 + z) . (26)

We also include a contribution from massive neutrinos with total
mass equal to the minimum allowed by oscillation experiments
(Esteban et al. 2020)

∑
mν = 0.06 eV, which we do not vary in

the FM analysis. The vector of cosmological parameters is then

θcosmo =
{
Ωm,0,Ωb,0,w0,wa, h, ns, σ8

}
, (27)

with Ωm,0 and Ωb,0 being respectively the reduced density of to-
tal and baryonic matter today, h is the dimensionless Hubble pa-
rameter defined as H0 = 100 h km s−1 Mpc−1 where H0 is the
value of the Hubble parameter today, ns the spectral index of the
primordial power spectrum and σ8 the root mean square of the
linear matter density field smoothed with a sphere of radius 8
h−1 Mpc. We follow EC20 for their fiducial values that are

θ fid
cosmo = {0.32, 0.05,−1.0, 0.0, 0.67, 0.96, 0.816} . (28)

This parameter vector then is used as input for the evaluation
of the fiducial linear and non-linear matter PS; for the purpose
of validating our forecasts against the EC20 results, we use the
TakaBird recipe, that is, the HaloFit version updated in Taka-
hashi et al. (2012) with the Bird et al. (2012) correction for mas-
sive neutrinos. For the results shown in this paper, however, we
update the non-linear model to the more recent HMCode2020
recipe, (Mead et al. 2021), which includes a baryonic correction
parameterised by the log10(TAGN/K) parameter, characterising
the feedback from active galactic nuclei (AGN). This is imple-
mented in CAMB7 (Lewis et al. 2000) and, at the time of writing,
is planned to be included in CLASS8 (Blas et al. 2011) as well.
Because of this, we add a further free parameter in the analysis,
log10(TAGN/K) , with a fiducial value of 7.75.

7 https://camb.info/
8 https://lesgourg.github.io/class_public/class.html
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Fig. 2. Kernels and galaxy distribution considered in this work. The first two plots show the kernels, or weight for the two photometric probes.
The analytic expressions for these are, respectively, Eq. (18) (left, WL) and Eq. (21) (right, GCph). At high redshifts, the IA term dominates over
the shear term in the lensing kernels, making them negative. The rightmost plot shows the redshift distribution per redshift bin for the sources (and
lenses), as well as their sum, obtained from the Flagship 1 simulation as described in Sect. 3.1.

3.5. Intrinsic alignment model

We use the eNLA model as in EC20, setting CIA = 0.0134 and

FIA(z) = (1 + z) ηIA [〈L〉(z)/L?(z)] βIA , (29)

where 〈L〉(z)/L?(z) is the redshift-dependent ratio of the mean
luminosity over the characteristic luminosity of WL sources as
estimated from an average luminosity function (see e.g. Joachimi
et al. 2015, and references therein). The IA nuisance parameters
vector is

θIA = {AIA, ηIA, βIA} , (30)

with fiducial values – following EC20

θ fid
IA = {1.72,−0.41, 2.17} . (31)

All of the IA parameters except for CIA are varied in the analysis.

3.6. Linear galaxy bias and multiplicative shear bias

Following EC20 we model the galaxy bias as scale-independent.
As for the redshift dependence, we move beyond the simple an-
alytical prescription of EC20 and use the fitting function pre-
sented in Euclid Collaboration: Pocino et al. (2021), obtained
from direct measurements from the Euclid Flagship galaxy cat-
alogue, based in turn on the Flagship 1 simulation:

b(z) =
AzB

1 + z
+ C , (32)

setting (A, B,C) = (0.81, 2.80, 1.02).
The galaxy bias is modelled to be constant in each bin with

the fiducial value obtained by evaluating Eq. (32) at effective
values zeff

i computed as the median of the redshift distribution
considering only the part of the distribution at least larger than
10% of its maximum. We choose to use the median instead of
the mean since, for equipopulated bins – as can be seen from
the rightmost panel of Fig. 2 – the galaxy distribution of the last
bins is highly skewed, and the value of the bias computed at the
mean is potentially less accurate; this choice does not, on the
other hand, affect the galaxy bias values in the first bins sensibly.
The zeff

i values obtained in this way are

zeff = {0.212, 0.363, 0.447, 0.566, 0.682,
0.793, 0.910, 1.068, 1.194, 1.628} . (33)

We therefore have Nb additional nuisance parameters:

θgal. bias = {b1, b2, . . . , bNb } , (34)

with fiducial values

θfid
gal. bias = {1.031, 1.057, 1.081, 1.128, 1.187, (35)

1.258, 1.348, 1.493, 1.628, 2.227} .

The modelling of galaxy bias just described is the same used in
EC20, with different fiducial values.
We can take a further step forward towards the real data analysis
by including the multiplicative shear bias parameters, m, defined
as the multiplicative coefficient of the linear bias expansion of
the shear field γ (see e.g. Cragg et al. 2023):

γ̂ = (1 + m)γ + c, (36)

with γ̂ the measured shear field, γ the true one, m the multiplica-
tive and c the additive shear bias parameters (we do not con-
sider the latter in the present analysis, as we assume it will be
corrected in the shear data processing pipeline). The multiplica-
tive shear bias can come from astrophysical or instrumental sys-
tematics (such as the effect of the point spread function – PSF),
which affect the measurement of galaxy shapes. We take the mi
parameters (one for each redshift bin) as constant and with a
fiducial value of 0 in all bins. To include this further nuisance
parameter, one just has to update the different angular PS as

CLL
i j (`)→ (1 + mi)(1 + m j)CLL

i j (`)

CGL
i j (`)→ (1 + m j)CGL

i j (`)

CGG
i j (`)→ CGG

i j (`) ,

(37)

where mi is the i-th bin multiplicative bias, and the GCph spec-
trum is unchanged since it does not include any shear term. We
then have

θshear bias = {m1,m2, . . . ,mNb } , (38)

with fiducial values

θ fid
shear bias = {0, 0, . . . , 0} . (39)
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Finally, we introduce the ∆zi parameters to allow for uncer-
tainties over the first moments of the photometric redshift distri-
bution (argued to have the largest impact on the final constraints
in Reischke 2024). We then have (Troxel et al. 2018; Abbott et al.
2018; Tutusaus et al. 2020):

ni(z)→ ni(z − ∆zi), (40)

which adds new entries to our nuisance parameter vector:

θphoto−z = {∆z1,∆z2, . . . ,∆zNb } , (41)

with fiducial values:

θ fid
photo−z = {0, 0, . . . , 0} . (42)

These nuisance parameters – unless specified otherwise – are
varied in the Fisher analysis so that the final parameters vector is

θ = θcosmo ∪ θIA ∪ θgal. bias ∪ θshear bias ∪ θphoto−z ,

and

θ fid = θ fid
cosmo ∪ θ

fid
IA ∪ θ

fid
gal. bias ∪ θ

fid
shear bias ∪ θ

fid
photo−z ,

both composed of Np = 7 + 3 + 3Nb = 3Nb + 10 elements.

3.6.1. Higher-order bias

To compute the galaxy–galaxy and galaxy–galaxy lensing probe
response terms (Eqs. 14 and 15) we need the second-order
galaxy bias b(2)(z). To do this, we follow Appendix C of LG19,
in which this is estimated following the halo model9 as (Voivodic
& Barreira 2021; Barreira et al. 2021)

b(i)(z) =

∫
dM ΦMF(M, z)bh

(i)(M, z)〈N |M〉/ngal(z), (43)

with

ngal(z) =

∫
dM ΦMF(M, z)〈N |M〉, (44)

the galaxy number density, ΦMF(M, z) the halo mass function
(HMF), bh

(i)(M, z) the i-th order halo bias, and 〈N|M〉 the aver-
age number of galaxies hosted by a halo of mass M at redshift
z (given by the halo occupation distribution, HOD). These are
integrated over the mass range log M ∈ [9, 16], with the mass
expressed in units of solar masses (we don’t include h in our
units). The expression for the i-th order galaxy bias (Eq. 43)
is the same as Eq. (C.2) of LG19, but here we are neglecting
the scale dependence of the bias evaluating it at k = 0 so that
u(k |M = 0, z) = 1, u(k |M, z) being the Fourier Transform of the
halo profile. Strictly speaking, this gives us the large-scale bias,
but it is easy to check that the dependence on k is negligible over
the range of interest.

Although Eq. (43) allows the computation of both the first
and second-order galaxy bias, we prefer to use the values of
b(1)(z) measured from the Flagship simulation for the selected
galaxy sample; this is to maintain consistency with the choices
presented at the beginning Sect. 3.6. For each redshift bin, we
vary (some of) the HOD parameters to fit the measured b(1)(z),
thus getting a model for bh

(1)(z). We then compute bh
(2)(z) using

as an additional ingredient the following relation between the
first and second-order halo bias, which approximates the results
9 We neglect the response of 〈N|M〉 to a perturbation δb in the back-
ground density, as done in LG19.

from separate universe simulations (Lazeyras et al. 2016) within
the fitting range 1 . bh

(1) . 10:

bh
(2)(M, z) = 0.412 − 2.143 bh

(1)(M, z)

+ 0.929
[
bh

(1)(M, z)
]2

+ 0.008
[
bh

(1)(M, z)
]3
. (45)

Finally, we plug the bh
(2) values obtained in this way back into

Eq. (43) to get the second-order galaxy bias. The details of the
HMF and HOD used and of the fitting procedure are given in
Appendix B.

3.7. Data vectors and Fisher matrix

Up to now, we have outlined a fully general approach, without
making any assumptions about the data. We now need to set data-
related quantities.

First, we assume that we will measure CAB
i j (`) in ten equally

populated redshift bins over the redshift range (0.001, 2.5).
When integrating Eq. (1) in dz, zmax must be larger than the upper
limit of the last redshift bin to account for the broadening of the
bin redshift distribution due to photo-z uncertainties. We have
found that the CAB

i j (`) stop varying for zmax ≥ 4, which is what
we take as the upper limit in the integrals over z. This also means
that we need to extrapolate the bias beyond the upper limit of the
last redshift bin; we then take its value as constant and equal to
the one in the last redshift bin, that is, b(z > 2.501) = b10.

Second, we assume the same multipole limits as in EC20,
and therefore examine two scenarios, as follows:

- pessimistic:

(`min, `max) =


(10, 1500) for WL

(10, 750) for GCph and XC
,

- optimistic:

(`min, `max) =


(10, 5000) for WL

(10, 3000) for GCph and XC
.

Then, for the multipole binning, instead of dividing these ranges
into N` (logarithmically equispaced) bins in all cases as is done
in EC20, we follow the most recent prescriptions of the EC and
proceed as follows:

– we fix the centres and edges of 32 bins (as opposed to 30) in
the ` range [10, 5000] following the procedure described in
Appendix C. This will be the ` configuration of the optimistic
WL case.

– The bins for the cases with `max < 5000, such as WL pes-
simistic, GCph, or XC, are obtained by cutting the bins of
the optimistic WL case with `centre > `max. This means that
instead of fixing the number of bins and having different bin
centres and edges as done in EC20, we fix the bins’ centres
and edges and use a different number of bins, resulting in,
for example, N WL

` > N
GCph
`

.

The number of multipole bins is then N WL
` = 26 and N GCph

`
=

N XC
`

= 22 in the pessimistic case and N WL
` = 32 and N GCph

`
=

N XC
`

= 29 in the optimistic case. In all these cases, the angular
PS are computed at the centre of the ` bin, as done in EC20.
We note that, because of the width of the galaxy – and, more
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importantly, lensing – kernels, a given fixed `max will not cor-
respond to a unique kmax value. A more accurate approach
could be, for example, to use the k-cut method presented in
Taylor et al. (2018a), which leverages the BNT (Bernardeau-
Nishimichi-Taruya) transform (Bernardeau et al. 2014) to make
the lensing kernels separable in z, hence allowing for a cleaner
separation of scales. We leave the investigation of this important
open issue to dedicated work.

As mentioned, we consider the different probes in isolation,
as well as combine them in the ‘3×2pt’ analysis, which includes
three 2-point angular correlation functions (in harmonic space):
CLL

i j (`),CGL
i j (`) and CGG

i j (`). The ` binning for the 3×2pt case is
the same as for the GCph one.

The covariance matrix and the derivatives of the data vec-
tor w.r.t. the model parameters are the only elements needed to
compute the FM elements. The one-dimensional data vector C
is constructed by simply compressing the redshift and multipole
indices (and, in the 3×2pt case, the probe indices) into a single
one, which we call p (or q). For Gaussian-distributed data with
a parameter-independent covariance, the FM is given by:

Fαβ =
∂C
∂θα

Cov−1 ∂C
∂θβ

=
∑
pq

∂Cp

∂θα
Cov−1

pq
∂Cq

∂θβ
. (46)

We refer the reader to EC20 for details on the convergence and
stability of the Fisher matrix and derivatives computations.

We note that the size of the 3×2pt covariance matrix quickly
becomes large. For a standard setting withNb = 10 redshift bins,
there are respectively (55, 100, 55) independent redshift bin pairs
for (WL, XC, GCph), to be multiplied by the different N`. In
general, Cov will be a NC × NC matrix with

NC =

[
Nb(Nb + 1)/2

][
N WL
` +N

GCph
`

]
+N2

bN
XC
`

=

[
Nb(Nb + 1) +N2

b

]
N

3×2pt
`

, (47)

where the second line is for the 3×2pt case, which has the same
number of ` bins for all probes, and

NC =
[
Nb(Nb + 1)/2

]
N

WL/GCph
`

, (48)

for the WL and GCph cases. As an example, we have
N

3×2pt, opt
C = 6090.

Being diagonal in `, most elements of this matrix will be
null in the Gaussian case. As shown in Fig. 3, this is no longer
true with the inclusion of the SSC contribution, which makes the
matrix computation much more resource-intensive. The use of
the Numba JIT compiler10 can dramatically reduce the CPU (for
Central Processing Unit) time from about 260 s to about 2.5 s for
the Gaussian + SSC 3×2pt covariance matrix (the largest under
study) on a normal laptop working in single-core mode.

Given the highly non-diagonal nature of the Gaussian + SSC
covariance, we might wonder whether the inversion of this ma-
trix (which is needed to obtain the FM, see Eq.46) is stable. To
investigate this, we compute the condition number of the covari-
ance, which is defined as the ratio between its largest and small-
est eigenvalues and in this case of order 1013. This condition
number, multiplied by the standard numpy float64 resolution
(2.22 × 10−16), gives us the minimum precision that we have on
the inversion of the matrix, of about 10−3. This means that nu-
merical noise in the matrix inversion can cause, at most, errors
of order 10−3 on the inverse matrix. Hence, we consider the in-
version to be stable for the purpose of this work.
10 https://numba.pydata.org

4. Forecast code validation

In order to validate the SSC computation with PySSC, we com-
pare the 1σ forecast uncertainties (which correspond to a 68.3%
probability, due to the assumptions of the FM analysis) ob-
tained using two different codes independently developed by two
groups, which we call A and B. To produce the FM and the ele-
ments needed for its computation (the observables, their deriva-
tives and the covariance matrix), group A uses a private11 code
fully written in Python and group B uses CosmoSIS12 (Jennings
et al. 2016). As stated in the introduction, the only shared feature
of the two pipelines is the use of PySSC (to compute the S i jkl
matrix). For this reason, and because the SSC is not considered
in isolation but added to the Gaussian covariance, we compare
the forecast results of the two groups both for the Gaussian and
Gaussian + SSC cases.

Following EC20, we consider the results to be in agreement
if the discrepancy of each group’s results with respect to the me-
dian – which in our case equals the mean – is smaller than 10%.
This simply means that the A and B pipelines’ outputs are con-
sidered validated against each other if∣∣∣∣∣∣σi

α

σm
α

− 1

∣∣∣∣∣∣ < 0.1 for i = A,B; σm
α =

σA
α + σB

α

2
, (49)

with σA
α the 1σ uncertainty on the parameter α for group A. The

above discrepancies are equal and opposite in sign for A and B.
The marginalised uncertainties are extracted from the FM

Fαβ, which is the inverse of the covariance matrix Cαβ of the
parameters: (F−1)αβ = Cαβ. The unmarginalised, or conditional,
uncertainties are instead given by σunmarg.

α =
√

1/Fαα. We then
have

σα = σ
marg.
α =

√
(F−1)αα . (50)

The uncertainties found in the FM formalism constitute lower
bounds, or optimistic estimates, on the actual parameters’ uncer-
tainties, as stated by the Cramér-Rao inequality.

In the following, we normalise σα by the fiducial value of
the parameter θα, in order to work with relative uncertainties:
σ̄i
α = σi

α/θ
fid
α ; σ̄m

α = σm
α /θ

fid
α , again with i = A,B. If a given

parameter has a fiducial value of 0, such as wa, we simply take
the absolute uncertainty. The different cases under examination
are dubbed ‘G’, or ‘Gaussian’, and ‘GS’, or ‘Gaussian + SSC’.
The computation of the parameters constraints differs between
these two cases only by the covariance matrix used in Eq. (46)
to compute the FM:

Cov =

{
CovG Gaussian
CovGS = CovG + CovSSC Gaussian + SSC .

(51)

As mentioned above, we repeat the analysis for both Euclid’s
photometric probes taken individually, WL and GCph, as well
as for the combination of WL, GCph, and their cross-correlation
XC, the 3×2pt.

For the reader wanting to validate their own code, we de-
scribe the validation process in Appendix A. Here we sketch the
results of the code validation: in Fig. 4, we show the percent
discrepancy as defined in Eq. (49) for the 3×2pt case. Similar
results have been obtained for the GCph and WL cases, both for
the optimistic and pessimistic settings specified in Sect. 3.7. The
constraints are all found to satisfy the required agreement level

11 Available upon request to the author, Davide Sciotti
12 https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Fig. 3. Correlation matrix in log scale for all the statistics of the 3×2pt data-vector in the G and GS cases. The positive and negative elements are
shown in red and blue, respectively. The Gaussian covariance is block diagonal (i.e. it is diagonal in the multipole indices, but not in the redshift
ones; the different diagonals appearing in the plot correspond to the different redshift pair indices, for `1 = `2). The overlap in the WL kernels
makes the WL block in the Gaussian + SSC covariance matrix much more dense than the GCph one.

m, 0 b, 0 w0 wa h ns 8 FoM0

1

2

3

4

5

6

7

/
fid

 [%
]

% difference w.r.t. mean, 3 × 2pt, optimistic, max = 3000

A vs B, G
A vs B, GS

Fig. 4. Percentage discrepancy of the normalised 1σ uncertainties with
respect to the mean for the WL probe, both in the G and GS cases (op-
timistic settings). The index i = A,B indicates the two pipelines, whilst
α indexes the cosmological parameter. The desired agreement level is
reached in all cases (WL, GCph probes and pessimistic case not shown).

(less than 10% discrepancy with respect to the mean). In light of
these results, we consider the two forecasting pipelines validated
against each other. All the results presented in this paper are the
ones produced by group A.

5. SSC impact on forecasts

We investigate here how the inclusion of SSC degrades the con-
straints with respect to the Gaussian case. To this end, we look
in the following at the quantity

R(θ) = σGS(θ)/σG(θ) , (52)

where σG(θ) and σGS(θ) are the usual marginalised uncertain-
ties on the parameter θ computed, as detailed above, with Gaus-
sian or Gaussian + SSC covariance matrix. We run θ over the
set of cosmological parameters listed in Eq. (27), that is, θ ∈
{Ωm,0,Ωb,0,w0,wa, h, ns, σ8}.

In addition, we examine the FoM as defined in Albrecht et al.
(2006), a useful way to quantify the joint uncertainty on several
parameters. In this work, we parameterise the FoM following
EC20: for two given parameters θ1 and θ2, we have

FoMθ1θ2 =

√
det(F̃θ1θ2 ) . (53)

This quantity is inversely proportional to the area of the 2σ con-
fidence ellipse in the plane spanned by the parameters (θ1, θ2).
F̃θ1θ2 is the Fisher submatrix obtained by marginalising over all
the parameters but θ1 and θ2, and is computed by inverting Fαβ

(that is, taking the parameters’ covariance matrix), removing all
the rows and columns but the ones corresponding to θ1 and θ2
and reinverting the resulting 2 × 2 matrix. In the following, we
mainly focus on the joint uncertainty on the dark energy equa-
tion of state parameters w0 and wa, and unless specified other-
wise we use the notation FoM = FoMw0wa. However, the FoM
can help quantify the joint uncertainty on different sets of param-
eters, such as (Ωm,0 − S 8), with S 8 ≡ σ8(Ωm,0/0.3)0.5 (see e.g.
Abbott et al. 2022).

We also use the notation R(FoM) as a shorthand for
FoMGS/FoMG. We note that, since we expect the uncertainties
to be larger for the GS case, we have R(θ) > 1, and the FoM be-
ing inversely proportional to the area of the uncertainty ellipse,
R(FoM) < 1.

5.1. Reference scenario

Let us start by considering the case withNb = 10 equipopulated
redshift bins. To isolate the impact of SSC and gain better physi-
cal insight, we begin by computing the conditional uncertainties
as described in the last section.
Table 1 gives the values of the R ratios for the different param-
eters in the optimistic scenarios, for the single probes and their
combination.

In accordance with previous results in the literature, we find
that the WL constraints are dramatically impacted by the inclu-
sion of SSC: as found in Barreira et al. (2018a) (cfr. their Fig. 2),
all cosmological parameters are affected, with wa and h being
impacted the least and (Ωm,0, σ8, log10(TAGN/K)) the most. This
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Table 1. Ratio between the GS and G conditional uncertainties for all cosmological parameters and probes in the reference case, for the optimistic
settings.

R(x) Ωm,0 Ωb,0 w0 wa h ns σ8 log10(TAGN/K)
WL 3.127 1.839 2.014 1.189 1.683 2.496 2.889 2.171
XC 1.361 1.278 1.183 1.314 1.207 1.293 1.284 1.398
GCph 1.096 1.158 1.057 1.043 1.089 1.099 1.077 1.293
3×2pt 1.321 1.078 1.083 1.055 1.047 1.050 1.039 1.130

is because the SSC effect is essentially an unknown shift, or
perturbation, in the background density within the survey vol-
ume, and is hence degenerate with the parameters which more
closely relate to the amplitude of the signal. Being this a non-
linear effect, its impact is also tied to the amount of power on
small scales, which in turn is influenced by the baryonic boost,
parameterised by log10(TAGN/K) in our model.

The results in Table 1 also show that GCph is not as strongly
affected by SSC – with the exception of the log10(TAGN/K) con-
straint. This is an expected result (see e.g. Bayer et al. 2023),
mainly driven by the fact that the GCph probe response coeffi-
cients are lower (in absolute value) than the WL ones, as can be
seen in Fig. 1. This is due to the additional terms that account
for the response of the galaxy number density ng (see Eq. 14),
which is itself affected by the super-survey modes. Additionally,
as can be seen from Fig. 2, all WL kernels have non-zero values
for z → 0, contrary to the GCph ones. In this limit, the effective
volume probed by the survey tends to 0, hence making the vari-
ance of the background modes σ2 tend to infinity. We thus have
a larger S i jkl matrix, which is one of the main factors driving
the amplitude of the SSC. We also note that the importance of
baryonic feedback for GCph depends on the galaxy bias model
used; it will likely be reduced when using a non-linear bias ex-
pansion, needed for an accurate analysis on small scales (Des-
jacques et al. 2018). Both topics are still active areas of research,
and we leave the characterisation of the SSC impact with the in-
clusion of higher-order bias terms for future work.

The impact for the full 3×2pt case sits in principle in between
the two extremes as a consequence of the data vector containing
the strongly affected WL probe, and the less affected GCph one.
However, this is clearly apparent only in the case of Ωm,0, since it
is the only cosmological parameter for which the WL constrain-
ing power is higher than the GCph one; for the other parameters,
the trend resembles very closely the one found for GCph, be-
cause of its dominant contribution to the 3×2pt precision.
Lastly, the contribution from the XC probe is again an interme-
diate case, as can be anticipated by looking at its response co-
efficient in Fig. 1, so the final impact on the FM elements will
be intermediate between the WL and GCph cases, as the R(θ)
values in Table 1 indeed show.

Having explored the impact of SSC on the conditional uncer-
tainties, we move on to analyse a more realistic scenario, namely
letting the parameters in the analysis free to vary, as opposed to
fixing them to their fiducial values.
To compute the 1σ uncertainties in this case, we marginalise
over all cosmological and nuisance parameters. We add Gaussian
priors of standard deviation σp = 5 × 10−4 on the multiplicative
shear bias parameters, and of σp = σz(1 + z) with σz = 0.002
(see Euclid Collaboration: Mellier et al. 2024 and references
therein) on the dzi parameters. We also include a Gaussian prior
of σp = 0.06 on log10(TAGN/K) , which roughly matches the
prior range recommended in Mead et al. (2021). To add these
priors in the FM analysis, it is sufficient to add (σp

α)−2 to the ap-

propriate diagonal elements of the G and GS FMs (σp
α being the

value of the prior on parameter α).
The results of this analysis, which we take as our reference

scenario, are shown in Table 2 and in Figs. 5 - 8. For the WL
case, marginalisation over all cosmological and nuisance param-
eters leads to the result that the SSC has now a very minor impact
– of a maximum of about 13% in the optimistic case – on the
constraints and the FoM: again, this is in line with what found
in Barreira et al. (2018a). We also compute the Ωm,0 − S 8 FoM,
after projecting the FM to the new parameter space with S 8 re-
placingσ8 (see e.g. Coe 2009). This drops from 336 to 292 in the
optimistic case, corresponding to a ratio of 0.87 (0.92 in the pes-
simistic case), closely mirroring the results found for FoMw0wa.
These values are actually easily explained: marginalising over
cosmological and nuisance parameters, particularly if these are
degenerate with the amplitude of the signal, dilutes the SSC ef-
fect in a larger error budget; because of this, it is the relative
rather than the absolute impact of SSC that decreases. Indeed,
marginalising over additional parameters is formally equiva-
lent to having additional covariance. The parameters that mostly
change the SSC impact when marginalised over are the cosmo-
logical ones, but the multiplicative nuisance parameters mi and bi
also play a role: adding these to the set of free parameters intro-
duces a degeneracy between these and the overall amplitude of
CAB

i j (`). Such a degeneracy is a mathematical one present on the
whole ` range. As a consequence, the constraints on all the pa-
rameters and the FoM are degraded in a way that is independent
of the presence of SSC. This is shown in Figs. 5 and 6, which re-
spectively exhibit the relative uncertainty σ̄ and the FoMs in the
G and GS cases for each parameter, if we marginalise or not over
nuisance parameters. Letting these free to vary, i.e. marginalis-
ing over them, tends to increase the uncertainty on cosmological
parameters way more than including SSC, and this is even more
true when these nuisance parameters are simply multiplicative
such as bi and mi.
This of course does not mean that varying more parameters im-
proves the constraints. Indeed, the uncertainties on all parame-
ters increase (hence the FoM decreases) with respect to the case
of conditional uncertainties introduced above.

The same reasoning applies to the GCph probe, for which the
SSC impact drops now to a subpercent level in the pessimistic
case and to about 10% at most in the optimistic case (on w0 and
the two FoMs). As mentioned above, for GCph, one of the rea-
sons behind the observed decrease in the (already low) SSC rel-
ative impact is the marginalisation over the galaxy bias param-
eters, which are perfectly degenerate with the amplitude of the
signal and over which we impose no prior.

On the other hand, the results for the 3×2pt case show that
the SSC still matters. The additional information carried by the
GCph and XC data allows the partial breaking of parameter de-
generacies, including those with probe-specific systematics such
as mi and bi, hence making the scale-dependent increase of the
uncertainties due to the inclusion of SSC important again. For
this reason, in this case, the 3×2pt does not follow the behaviour
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Table 2. Ratio between the GS and G marginalised uncertainties for all cosmological parameters and the FoM in the reference scenario, for the
optimistic and pessimistic settings.

R(x) Ωm,0 Ωb,0 w0 wa h ns σ8 log10(TAGN/K) FoMw0wa FoMΩm,0S 8

WL, Pes. 1.009 1.014 1.008 1.006 1.028 1.040 1.026 1.003 0.982 0.921
WL, Opt. 1.115 1.057 1.113 1.051 1.009 1.001 1.129 1.006 0.872 0.871
GCph, Pes. 1.001 1.000 1.001 1.001 1.000 1.000 1.001 1.000 1.000 0.999
GCph, Pes., GCph diag. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GCph, Opt. 1.030 1.006 1.091 1.091 1.033 1.003 1.060 1.004 0.910 0.924
GCph, Opt., GCph diag. 1.004 1.003 1.001 1.000 1.002 1.001 1.002 1.001 0.990 0.995
3×2pt, Pes. 1.720 1.075 1.622 1.282 1.013 1.011 1.096 1.011 0.502 0.568
3×2pt, Pes., GCph diag. 1.673 1.092 1.463 1.202 1.016 1.011 1.113 1.009 0.541 0.584
3×2pt, Opt. 1.401 1.197 1.489 1.301 1.102 1.206 1.143 1.034 0.422 0.593
3×2pt, Opt. , GCph diag. 1.401 1.205 1.422 1.255 1.106 1.215 1.146 1.030 0.437 0.589

of the single probes as seen earlier. In particular, the dark energy
FoM, whose increase with respect to present surveys is one of
the main objectives of the Euclid mission, is highly degraded –
by a factor of about 2 in the optimistic case. This is mainly due
to the large impact on the dark energy equation of state parame-
ters, showing the importance of accounting for SSC in upcoming
LSS analyses. The same conclusion holds for FoMΩm,0S 8 , with a
slightly larger R value driven by the lower impact on σ8 w.r.t. w0
and wa. In Fig. 7 we show the comparison of the 2D contours for
all cosmological parameters between G and GS in the case of the
3×2pt analysis, in the optimistic case; the most impacted param-
eters in this case are Ωm,0,w0 and wa. In addition, this shows that
SSC does not seem to strongly affect the correlations between
cosmological parameters.

Table 2 also shows the ratios in the ‘GCph diag.’ case, in
which we neglect the GCph cross-reshift elements (i.e. we take
the diagonal of the CGG

i j (`) matrix for each ` value). This choice
is sometimes made because of the large sensitivity of such mea-
surements on the photometric redshift calibration, which is less
of an issue for WL due to its broad kernel. The values show the
robustness of our conclusions even in this case, with the R values
being very close to the standard case both for GCph and for the
3×2pt.

We note that these conclusions depend on the scale cuts im-
posed in the data vector, as can be seen from the lower FoM de-
crease (and of the SSC impact as a whole, with some exceptions)
in the pessimistic case, in line with what found in Lacasa (2020)
for GCph. This is a direct consequence of the larger amount of
non-linear modes included in the data vectors, which as men-
tioned previously are more subject to mode coupling and hence
contribute more to SSC. For WL, it should be noted that the di-
agonal elements of the total covariance matrix are always dom-
inated by the Gaussian contribution, because of the presence of
the scale-independent shape noise (see Eq. 24 for A = B = L),
which largely dominates over the SSC on small scales. This is
consistent with the results of Upham et al. (2022) showing that
the diagonal elements of the WL total covariance matrix are
more and more dominated by the Gaussian term as we move to
higher `. This is also the case for GCph, although the predomi-
nance of the Gaussian term along the diagonal is less pronounced
because of the smaller contribution of shot noise.
As mentioned above, more sophisticated choices of scale cuts,
e.g. through the use of the BNT transform, will allow decreasing
the high-k contribution to a given ` mode, hence mitigating the
SSC impact more than the “hard” angular scale cut considered
here (and in EC20). We leave the investigation of this point to a
forthcoming publication.

To conclude this section, it is also worth looking at the im-
pact of SSC on the astrophysical nuisance parameters. Indeed,
although an issue to be marginalised over when looking at cos-
mological ones, the IA and the galaxy bias parameters are of
astrophysical interest. We show the impact of SSC on the con-
straints on these quantities in Fig. 8, as well as on the galaxy bias
and the multiplicative shear bias parameters.

For IA-related nuisance parameters, the uncertainty increase
due to SSC is lower than 5% when considering WL-only, and
below 1% for the full case. The multiplicative shear bias param-
eters are affected by a similar amount (up to around 10% for the
last bin) and in a similar way for WL and the 3×2pt. As for the
galaxy bias parameters, the impact is modest for GCph but quite
significant (between 30 and 40%) for the 3×2pt. These results
are analogous to what was found before for the cosmological
parameters: in the marginalised 3×2pt case the impact of SSC
is more apparent, since many degeneracies are broken thanks to
the probes combination and cross-correlation.
In this case, contrary to the IA parameters, the uncertainty on bi
and mi in each of the ten redshift bins is significantly affected
by SSC. This is because both of these nuisance parameters sim-
ply act as a multiplicative factor on the power spectrum and are
thus highly degenerated with the effect of SSC. Again, this is
related to the fact that the first-order effect of SSC is to mod-
ulate the overall clustering amplitude because of a shift in the
background density δb. For the mi parameters, we remind that
a tight (while realistic) prior is imposed, keeping the SSC un-
certainty increase, and hence the R ratio, quite low even for the
full 3×2pt. We note that going beyond the linear approximation
for the modelling of the galaxy bias will add more nuisance pa-
rameters, thus degrading the overall constraints on cosmological
parameters and further reducing the relative impact of SSC.

5.2. Non-flat cosmologies

In the previous section, we investigate the SSC on the cosmolog-
ical parameters under the assumption of a flat model. Actually,
the requirement on the FoM assessed in the Euclid Red Book
(Laureijs et al. 2011) refers to the case with the curvature as an
additional free parameter to be constrained, that is, the non-flat
w0waCDM model. This is why in EC20 are also reported the
marginalised uncertainties for the parameter ΩDE,0, with a fidu-
cial value Ωfid

DE,0 = 1 − Ωm,0 to be consistent with a flat universe.
It is then worth wondering what the impact of SSC is in this case
too. This is summarised in Table 3, where we now also include
the impact on ΩDE,0.

A comparison with the results in Table 2 is quite hard if we
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Table 3. Same as Table 2 but removing the flatness prior.

R(x) Ωm,0 ΩDE,0 Ωb,0 w0 wa h ns σ8 log10(TAGN/K) FoMw0wa FoMΩm,0S 8

WL, Pes. 1.022 1.002 1.012 1.019 1.009 1.001 1.012 1.003 1.005 0.979 0.966
WL, Opt. 1.059 1.001 1.016 1.060 1.019 1.010 1.004 1.058 1.001 0.937 0.945
GCph, Pes. 1.004 1.002 1.003 1.001 1.003 1.001 1.002 1.001 1.000 0.995 0.996
GCph, Opt. 1.035 1.026 1.017 1.062 1.062 1.021 1.012 1.037 1.008 0.890 0.908
3×2pt, Pes. 1.871 1.227 1.129 1.399 1.343 1.031 1.019 1.310 1.010 0.482 0.534
3×2pt, Opt. 1.491 1.126 1.117 1.462 1.207 1.022 1.081 1.060 1.083 0.548 0.655
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Fig. 5. Marginalised and conditional optimistic 1σ uncertainties on the
cosmological parameters, relative to their corresponding fiducial values
(in percent units), in both the G and GS cases for WL, GCph, and the
3×2pt. We highlight the logarithmic scale on the x-axis, made necessary
by the large range of values. The values in these plots have been used to
compute the ratios in Tables 1 and 2.
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Fig. 6. Same as Fig. 5, but for the dark energy and Ωm,0 − S 8 FoM.

Fig. 7. Contour plot for the G and GS constraints, considering the full
3×2pt analysis in the optimistic case, in the reference scenario. The
two shaded regions of the ellipses represent the 1 and 2σ contours. For
clarity, the nuisance parameters are shown separately in Fig. 8 and the
log10(TAGN/K) parameter name has been shortened to log(T ).

look at the single parameters. Indeed, opening up the parame-
ter space by removing the flatness assumption introduces addi-
tional degeneracy among the parameters controlling the back-
ground expansion, which are thus less constrained whether SSC
is included or not. We can nevertheless note again that, for
the marginalised uncertainties, 3×2pt is still the most impacted
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Fig. 8. Percent increase of the marginalised 1σ uncertainty of the nuisance parameters, for all probe choices, in the optimistic case and for the
reference scenario.

probe; the difference between pessimistic and optimistic scenar-
ios is now less evident with R(θ) increasing or decreasing de-
pending on the parameter and probe considered.
Once more, the most affected parameters for WL are (Ωm,0, σ8),
the uncertainties on which are now further degraded by the fact
that they correlate with the parameter ΩDE,0 which is also af-
fected. Although (w0,wa) are also degraded by the SSC, a sort of
compensation is at work, so that the overall decrease in the FoM
is similar to the case with the flatness prior. The motivations that
make GCph much less affected still hold when dropping the flat-
ness prior, explaining the corresponding R(θ) values.

We also note a slight increase of R(FoM) in the 3×2pt
optimistic case, meaning a smaller degradation of the FoM
due to SSC. The dark energy FoM indeed degrades by 52%
(45%) in the non-flat case vs. 50% (58%) for the flat case in the
pessimistic (optimistic) scenario, while FoMΩm,0S 8 degrades by
47% (35%) in the non-flat case vs. 43% (41%) for the flat case
in the pessimistic (optimistic) scenario. This can be qualitatively
explained by noting that the decrease of both FoM(G) and
FoM(GS) is related to a geometrical degeneracy which is the
same on all scales, whether or not they are affected by the
increase in uncertainty due to the SSC inclusion.

Overall, these results suggest a dependence of the SSC sig-
nificance on both the number and type of parameters to be con-
strained. Qualitatively, we can argue that SSC is more or less
important depending on whether the additional parameters (with
respect to the reference case of a flat model) introduce degen-
eracies which are or not scale-dependent and how strong is the
degeneracy between these parameters and the amplitude of the
power spectrum. To give an example, in future works lens mag-
nification effects should be included in the analysis as these were
shown to have a significant impact on cosmological constraints
(Unruh et al. 2020). From our results, we can anticipate that the
inclusion of magnification-related nuisance parameters will fur-
ther dilute the impact of SSC.

5.3. Dependence on redshift binning

The results summarised in Tables 1–3 were obtained for a fixed
choice of number and type of redshift bins. We investigate here
how the results depend on these settings given that we expect
both the G and GS constraints to change as we vary the number
and type of bins. We consider again the reference scenario intro-
duced in Sect. 5.1, that is, the case of flat models, marginalising
over the full set of nuisance parameters while imposing Gaus-
sian priors over some of them. In this section we only consider
the WL and 3×2pt cases, since as we have seen SSC has a mod-
est impact on GCph.

Let us first consider changing the number of redshift binsNb.
We show the scaling of R(θ) as a function of Nb for the WL and
3×2pt probes, respectively, in Fig. 9 – for both the pessimistic
and optimistic assumptions. The most remarkable result is the
weak dependence of R(x) w.r.t. Nb, as can be inferred from the
small y range spanned by the curves – see e.g. the bottom right
panel, for the FoM. More specifically, the scaling of R(θ) with
Nb depends on the parameter and the probe one is looking at.
It is quite hard to explain the observed trends because of the
interplay of different contrasting effects. For instance, a larger
number of bins implies a smaller number density in each bin,
and hence a larger shot noise. As a consequence, the SSC con-
tribution to the total covariance for the diagonal elements will
likely be more and more dominated by the Gaussian component
because of the larger shot and shape noise terms. However, this
effect also depends on the scale so that, should the SSC be the
dominant component on the scales to which a parameter is most
sensitive, the impact should still be important. On the other hand,
a larger number of bins also comes with a larger number of nui-
sance parameters which, as shown above, leads to a reduction of
the SSC impact. Quantifying which actor plays the major role is
hard which explains the variety of trends in the different panels.

As a further modification to the reference settings, we can
change how the redshift bins are defined. We have up to now
considered equipopulated (EP) bins so that the central bins cover
a smaller range in z, because of the larger source number density.
As an alternative, we divide the full redshift range into Nb bins
with equal redshift support (‘equidistant’, ED), and recompute
the FM forecasts with and without SSC. We show the FoM ratio
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as a function of the number of bins for EP and ED bins consider-
ing WL (left) and 3×2pt (right) probes in the optimistic scenario
in Fig. 10. We note that finding the exact number and type of
redshift bins used to maximise the constraining power of Euclid

is outside the scope of this paper; this effort is indeed brought
forward in the context of the SPV exercise.

In order to qualitatively explain these results, let us first con-
sider the WL case. Given that the bins are no longer equipop-
ulated, the number density of galaxies will typically be larger
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in the lower redshift bins than in the higher ones. As a conse-
quence, the larger the number of bins, the higher the shape noise
in the higher redshift bins so that the SSC will be subdominant
in a larger number of bins, which explains why its impact de-
creases (i.e. R(FoM) increases) with Nb. Nevertheless, the im-
pact of SSC will be larger than in the EP case since SSC will
dominate in the low redshift bins which are the ones with the
largest signal-to-noise ratio. This effect is small, and the differ-
ence in R(FoM) between ED and EP is no larger than 3–5%.

When adding GCph and XC into the game, the impact of
SSC is determined by a combination of contrasting effects. On
the one hand, we can repeat the same qualitative argument made
for WL also for GCph and XC13 thus pointing at R(FoM) in-
creasing with Nb. The larger the number of bins, the narrower
they are, and the smaller the cross-correlation between them
hence the smaller the Gaussian covariance. This in turn increases
the number of elements in the data vector whose uncertainty is
dominated by the SSC. Should this effect dominate, we would
observe a decrease of R(FoM) withNb with the opposite trend if
it is the variation of the shape and shot noise to matter the most.
This qualitative argument allows us then to roughly explain the
non-monotonic behaviour of R(FoM) we see in the right panel
of Fig. 10.
It is worth remarking, however, that the overall change of
R(FoM) for subsequent ED (or EP) bins over the range in Nb
is smaller than ∼ 5% which is also the maximum value of the
difference between R(FoM) values for EP and ED bins once Nb
is fixed.

The analysis in this section motivates us to argue that the
constraints and FoM degradation due to SSC have a weak de-
pendence on the redshift binning scheme.

5.4. Requirements on prior information

The results in the previous paragraph show that the SSC may
dramatically impact the constraints on the cosmological param-
eters. As a consequence, the 3×2pt FoM is reduced by up to
∼ 50% with respect to the case when only the Gaussian term is
included in the total covariance. This decrease in the FoM should
actually not be interpreted as a loss of information due to the ad-

13 We note that, although the C(`) for XC are not affected by noise, (cfr.
Eq. 25), their covariance is (cfr. Eq. 24).
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Fig. 12. FoMGS contours in the (εb, σm) plane for FoMGS/FoMref going
from 0.8 to 1.1 in steps of 0.05 (from right to left).

dition of the SSC. On the contrary, one can qualitatively say that
removing SSC from the error budget is the same as adding infor-
mation that is not actually there. It is nevertheless interesting to
ask which additional information must be added to recover the
Gaussian FoM, which is usually taken as a reference for gauging
the potential of a survey. This information can come from priors
on the nuisance (or cosmological) parameters. In the following
section, we investigate the former option by adding Gaussian pri-
ors on the galaxy and multiplicative shear bias parameters.

To this end, we consider the realistic case of a flat model plus
the galaxy bias and multiplicative shear bias as nuisance param-
eters. As a simplifying assumption, we assume that all the Nb
bias values bi are known with the same percentage uncertainty
εb = σb, i/bfid, i, while we put the same prior σm on all the mi pa-
rameters (having set the fiducial value mfid to 0). We then com-
pute the FoM with and without SSC for the 3×2pt probe in the
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optimistic scenario and investigate how the ratio R(FoM) scales
with (εb, σm) obtaining the results shown in Fig. 11.

Both in the G and GS cases, the FoM shows little to no sen-
sitivity to priors above ∼ 1% and no sign of saturation even
for extremely narrow priors (as little as 0.01%) because of the
presence of such a large number of nuisance parameters. For σm
we observe a similar behaviour, with the difference between the
curves corresponding to the two larger priors values being visi-
bly smaller than the difference between the curves correspond-
ing to the smaller ones. This is less true for the GS FoM (orange
curves), as the presence of SSC in the error budget decreases the
relative overall improvement coming from a smaller uncertainty
over the mi parameters.

A prior on the nuisance parameters increases both the Gaus-
sian and Gaussian + SSC FoM so that one could expect their
ratio to be independent of the prior itself. This is not exactly
the case since the correlation between different multipoles in-
troduced by SSC alters the way the prior changes the FM ele-
ments. As a result, we find a non-flat scaling of R(FoM) as can
be seen from the right panel of Fig. 11. The behaviour ofR(FoM)
with εb tells us that FoMGS increases with decreasing εb slower
than FoMG when the galaxy bias is known with an uncertainty
smaller than the percent level. Another way to interpret it is that
the information gained in the FoM saturates faster when SSC is
included: better constraints on εb do not bring more information
as the SSC now dominates the error budget. However, it is worth
stressing that, even for a strong prior on the multiplicative shear
bias, the FoM ratio can actually be improved significantly only
under the (likely unrealistic) assumption of a subpercent prior on
the galaxy bias.

The need for such strong priors comes from the attempt to
retrieve the same FoM as a Gaussian case. Alternatively, one
can also wonder which additional information must be added
through priors to retrieve the idealised FoM value obtained in
forecasts that neglect the SSC. In other words, we look for the
requirements that must be put on the priors (εb, σm) in order to
make FoMGS/FoMref = 1, where FoMref = 617 is the FoM com-
puted for a flat reference case without SSC and with no priors on
galaxy bias, but a fiducial prior σm = 5 × 10−4 on the shear bias.
The answer to this question is shown in Fig. 12 for the optimistic
scenario and 10 equipopulated redshift bins. Some numbers help
to better understand how priors can indeed supply the additional
information to retrieve the FoM one would obtain in an ideal
case where SSC is absent. Solving

FoMGS(εb, σm) = f FoMref

with respect to εb, we get

εb =


(0.05, 0.03, 0.02) % for σm = 0.5 × 10−4

(0.04, 0.02, 0.02) % for σm = 5 × 10−4

(0.03, 0.02, 0.01) % for σm = 10 × 10−4 ,

where the three values refer to f = (0.8, 0.9, 1.0). These
numbers (and the contours in Fig. 12) show that it is possible
to compensate for the degradation due to SSC only by adding
strong priors on the galaxy bias, which have a much larger im-
pact on the (G and GS) FoM than strong priors on the multiplica-
tive shear bias. However, it is worth noticing that it is actually
easier to obtain priors on the multiplicative shear bias provided
a sufficient number of realistic image simulations are produced
and fed to the shear measurement code to test its performance. It

is therefore worth wondering how much the FoM is restored by
improving the prior on m for a fixed one on the bias. We find

FoMGS

FoMref
=


(1.24, 1.13, 1.08) for εb = 0.01%

(0.68, 0.62, 0.59) for εb = 0.1%

(0.5, 0.45, 0.43) for εb = 1% ,

with the three values referring to σm = (0.5, 5.0, 10) × 10−4. As
expected, improving the prior on the multiplicative bias with
respect to the fiducial one (which, we remind, is included in
FoMref) does not help a lot in recovering the constraining power.
A very tight prior of around 0.1% prior on the galaxy bias can
recover a significant amount of the reference FoM (almost 70%)
thanks to the additional information compensating for the pres-
ence of SSC.

Investigating whether the priors proposed here can be
achieved in practice (e.g. through theoretical bias models tai-
lored to galaxy clustering data or N-body hydrodynamic sim-
ulations) is outside the aim of this work. We refer the inter-
ested reader to for example Barreira et al. (2021), Zennaro et al.
(2022), and Ivanov et al. (2024) for some preliminary results.

6. Conclusions

Precision cosmology requires precision computation: previously
neglected theoretical contributions must therefore now be taken
into account. Motivated by this consideration, we computed and
studied the impact of SSC on the Euclid photometric survey, ex-
ploring how the different probes and their combination are af-
fected by this additional, non-Gaussian term in the covariance
matrix. The analysis of the impact of SSC on the spectroscopic
survey, which has been shown to be small in Wadekar et al.
(2020) for the Baryon Oscillation Spectroscopic Survey (BOSS)
data, is left for future work. We employed a FM analysis, produc-
ing forecasts of the 1σ marginalised uncertainties on the mea-
surement of the cosmological parameters of the flat and non-
flat w0waCDM cosmological models. We validated two different
forecast pipelines against the results of EC20, taking as reference
survey the one specified therein, and then updated the galaxy
bias and the source redshift distributions according to the most
recent versions presented in Euclid Collaboration: Pocino et al.
(2021). The SSC was computed relying on the analytical approx-
imations and numerical routines presented in LG19, interfacing
the public code PySSCwith two distinct forecast pipelines to val-
idate the constraints. As a further step forward, we build upon the
work of LG19 by computing the scale and redshift dependence
of the response functions of the different probes, starting from
the results of Wagner et al. (2015b) and Barreira et al. (2018b).

We quantify the severity of the impact with the ratio σGS/σG
between the marginalised or conditional uncertainties with and
without SSC; this is found to vary significantly between different
parameters and probes, and between the number and type of free
nuisance parameters, in agreement with recent results (Upham
et al. 2022; Barreira et al. 2018a; Lacasa 2020).
The conditional uncertainties show WL to be dramatically im-
pacted by SSC, with all cosmological parameter uncertainties
increasing by up to 210% (for Ωm,0) in the optimistic case. The
GCph constraints are less sensitive to the addition of SSC, show-
ing a smaller broadening of the uncertainties for all parameters,
namely by up to one order of magnitude with respect to WL.
The 3×2pt case sits in between these two, while being in gen-
eral closer to the GCph results because of its larger constraining
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power.
When considering marginalised constraints, the relative impact
of SSC decreases significantly. In this case, the most impacted
parameters for the single probes are mainly Ωm,0, w0, wa, and
σ8. Furthermore, the 3×2pt becomes by far the most impacted
probe, precisely because of its power in breaking parameter de-
generacies. Indeed, in the reference case and the optimistic sce-
nario, (FoMw0wa,FoMΩm,0S 8 ) decrease by (58%, 41%), hinting at
the necessity to include SSC in the upcoming Euclid analysis.

These results are the consequence of a complicated interplay
between three factors. First, SSC originates from the uncertainty
in the determination of the background mean density when mea-
suring it over a finite region. This prevents determination of the
overall amplitude of the matter power spectrum, which increases
the uncertainty on those parameters that concur in setting its am-
plitude, mainly Ωm,0 and σ8. Second, the elements of the SSC
matrix depend on the amplitude of the response functions. Third,
the impact depends on how large a contribution the signal re-
ceives from the low-z region, where the effective volume probed
is smaller, making the variance of the background modes larger.
The last two factors are both more severe for WL than for GCph,
causing the former probe to be more affected than the latter.

Finally, the deviation of a given element of the GS FM from
the Gaussian one also depends on its correlations: in other words,
the degradation of the constraints on a given parameter can be
large if this is strongly correlated with a parameter severely de-
graded by SSC. Quantifying the impact of SSC on a single pa-
rameter is therefore quite hard in general, and must be investi-
gated on a case-by-case basis taking care of the details of the
probe and the way it depends on the parameter of interest.

Nuisance parameters to be marginalised over act as a sort
of additional contribution to the covariance. As such, the impor-
tance of both the Gaussian and SSC contribution to the overall
effective covariance becomes less important when the number
of nuisance parameters increases. In order to consider cases that
most closely mimic future Euclid data, we opened up the pa-
rameter space by adding ΩDE,0 (i.e. removing the flatness prior).
We find that, as long as the additional parameters have a scale-
independent degeneracy with the most impacted ones, the rel-
ative impact of SSC decreases. We stress, however, that this
reduction in the SSC impact has undesired consequences; the
marginalised uncertainties on the parameters are definitely wors-
ened, but the degradation is roughly the same whether the SSC is
included or not, hence making the ratio σGS/σG closer to unity
for all parameters and probes. This result can be taken as a warn-
ing against investing too much effort in refining the estimate of
the computationally expensive SSC when no approximations are
made. For a Euclid-like survey, the main concern would indeed
be the number of nuisance parameters, which makes the impact
of the SSC itself less relevant.

We furthermore note that, in light of the recent theoretical de-
velopments presented in Lacasa et al. (2023), it appears feasible
to include the effect of SSC in the form of nuisance parameters,
which would be the value of the density background δb in each
redshift bin. This approach is interesting as it would reduce the
complexity of the data covariance matrix and would allow a sim-
pler interpretation of the effect of SSC and how it is correlated
to the other cosmological and nuisance parameters.

Variations in the z binning strategy have contrasting effects:
a larger number of bins means a larger number of nuisance pa-
rameters (either galaxy bias or multiplicative shear bias for each
bin), which leads to a loss of constraining power. Moreover, the
larger the number of bins, the larger the Gaussian contribution to
the covariance, making the shot and shape noise dominate over

SSC for diagonal elements. On the downside, a larger number
of bins leads to larger data vectors, thus adding information that
can partially compensate for the increase in the covariance. The
contrasting effects at play conspire in such a way that the degra-
dation of the FoM due to SSC is found to be approximately in-
dependent of the number of redshift bins (cfr. Fig. 10).

An interesting development in this sense is to leverage the
SSC dependence on the low-z contribution to investigate whether
or not its impact could be mitigated by the use of the BNT trans-
form, which transforms redshift bins in such a way as to increase
the separation between the WL kernels. This will be investigated
in a forthcoming work.

An alternative strategy is to increase the constraining power
by adding information through informative priors, hence recov-
ering the FoM when SSC is incorrectly neglected. We investi-
gate this possibility by quantifying the requirements on the prior
information needed to recover the Gaussian FoM. Our results
show that the main role is played here by the priors on galaxy
bias parameters, while the FoM recovery is less sensitive to the
prior on the multiplicative shear bias. However, the galaxy bias
must be known to subpercent level in order to recover ∼ 70%
of the Gaussian FoM. Investigating whether or not this is possi-
ble is outside the scope of this paper. We nevertheless note that
such remarkable prior information is the same as stating we are
able to model the evolution of the bias with redshift. This is ac-
tually quite difficult based on the current knowledge of galaxy
formation processes. Alternatively, one could look for an empir-
ical fitting formula as a compromise between the need for strong
priors on bias and the number of nuisance parameters.

One part of the covariance modelling not investigated in this
work is the geometry of the survey footprint. While it is true
that, for the large sky coverage considered, the full-sky approxi-
mation for SSC has been shown to suffice (Gouyou Beauchamps
et al. 2022), a more realistic treatment accounting for the survey
geometry should be considered for the Gaussian term. Still, we
expect the main conclusions of this study to hold, as the mode
coupling caused by the convolution with the survey mask, gener-
ating off-diagonal elements also in the Gaussian covariance, will
mainly affect large scales where SSC is subdominant. It is how-
ever important to note that small holes in the survey mask (e.g.
due to the presence of bright stars) generate mode coupling also
on small scales, where we have seen the SSC impact to be most
prominent. This will be investigated in future works.

Although some more work is needed to improve the ro-
bustness of our results, for example by comparing the different
approximations presented in the literature, we can conclude
that the effect of including the SSC term in the total covari-
ance matrix of Euclid photometric observables is definitely
non-negligible, especially for WL and 3×2pt. However, the
degradation of the constraints on cosmological parameters
depends on the particular probe and the number and kind of
parameters to constrain. The FoM is nevertheless reduced by
52% (45%) for the 3×2pt probe in the pessimistic (optimistic)
scenario where all cosmological (including ΩDE,0) and nuisance
(multiplicative shear bias) parameters are left free to vary.
Maximising the power of the actual Euclid photometric data
by taking into account the presence of SSC is a daunting task,
which we will report on in a forthcoming publication.
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Appendix A: Details of the code validation

In the following, we provide an overview of the steps undertaken
to compare and validate the codes used in this work, and some
of the lessons learnt in the process.

In order to compute and validate the results we adopt the
scheme sketched in Fig. A.1, which highlights the dependency
of each main element of the forecast computation on the others.
In particular, we have that:

1. The 1σ constraints are obtained from the FM through
Eq. (50), and the FM is built in turn from the (inverse) co-
variance matrix and the derivatives of the angular PS CAB

i j (`)
as indicated in Eq. (46).

2. The Gaussian covariance depends on the CAB
i j (`) through

Eq. (24) (and the noise PS, Eq. 25). The SSC also depends on
the CAB

i j (`), with the added contribution of the RAB
i j (`) terms

and the output of the PySSC module, the S i jkl matrix – fol-
lowing Eq. (10).

3. The CAB
i j (`) are constructed by convolving the (non-linear)

matter PS with the lensing and galaxy weight functions, as
in Eq. (1). The S i jkl matrix also depends on the weight func-
tions (see Eq. 11), which are in fact the main external input
needed by PySSC, and on the linear matter PS through the
σ2(z1, z2) term (Eq. 5). It is to be noted, however, that PySSC
computes this PS internally, needing only the specification
of a dictionary of cosmological parameters with which to
call the Boltzmann solver CLASS through the Python wrap-
per classy. This means that we also have to make sure that
the fiducial value of the parameters used to compute the PS
of Eq. (1) are the same ones passed to PySSC (this time to
compute the linear PS), in order to work with the same cos-
mology.

While to compute the constraints we follow the scheme from
right to left, starting from the basic ingredients to arrive at the
final result, the general trend of the validation is the opposite:
we begin by comparing the final results, then work our way back
whenever we find disagreement.

We then start the comparison from the σα. If a discrepancy
larger than 10% is found, we check the quantities they depend
on, which in this case are the covariance matrices (see Eq. 46).
If these agree, we check the codes directly. If these disagree,
we iterate the process by checking the subsequent element in
the scheme (in this case the S i jkl matrix and the CAB

i j (`)), until
agreement is found. Essentially, this means that the disagreement
in the outputs of the codes at each step can either come from
the inputs, or from the codes themselves. Once the cause of the
discrepancy is found and fixed, the computation is repeated and
the process can start again.

The pipelines under comparison are both written in the
Python language. One of them requires as external inputs the
weight functions, the angular PS CAB

i j (`) and their derivatives
with respect to the cosmological parameters; whilst the other
produces these through the use of CosmoSIS14 (Jennings et al.
2016), and hence needs no external inputs but the vectors of fidu-
cial cosmological and nuisance parameters. For the reader wish-
ing to repeat the validation, we list below some of the lessons
learnt in the code comparison process.

– PySSC needs as input the WL and GCph kernels of Eqs. (18)
and (21), as well as their argument, the redshift values. The

14 https://bitbucket.org/joezuntz/cosmosis/wiki/Home

𝜎!"# Cov##$

Cov" 𝐶%&'((ℓ)
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Validation
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Fig. A.1. Some of the most important elements examined in the compar-
ison. The arrows show the ordering followed to produce the parameters
constraints, which is opposite to the one followed to validate the code.
The derivatives of the PS with respect to the cosmological parameters,
entering the final step of the computation, are not shown.

code then uses this redshift array to perform the necessary in-
tegrals in dV through Simpson’s rule. The user is responsible
for sampling the kernels on a sufficiently fine z grid [O(104)
values have been found to be sufficient in the present case]
to make sure these integrals are performed accurately.

– The latest version of PySSC accepts a convention param-
eter. This specifies whether the kernels are in the form used
in LG19 (convention = 0) or the one prescribed in EC20
(convention = 1). The two differ by a 1/r2(z) factor, as
shown in Eq. (23). Passing the kernels in the EC20 form
without changing the parameter’s value from 0 – the default
– to 1 will obviously yield incorrect results.

– The ordering of the S i jkl matrix’s elements depends on the
ordering chosen when passing the input kernels to PySSC –
whether WL

i (z) first and WG
i (z) second or vice versa. This

must be kept in mind when implementing Eq. (10).
– The GCph constraints can show a discrepancy greater the

10% for the dark energy equation of state parameters w0 and
wa even when the corresponding covariance is found to be in
good agreement. This discrepancy is due to GCph being less
numerically stable because of the lower constraining power
compared to the other probes, and because the bias model
considered has a strong degeneracy with σ8, making the
numerical derivatives unstable (see e.g. Casas et al. 2023).
Since this is a known issue, not coming from the SSC com-
putation, and the covariance matrices and angular PS show
good agreement, we choose to overcome the problem by us-
ing, for GCph, one code to compute both sets of parameter
constraints (that is, we run one FM evaluation code with as
input the covariance matrices from both groups).

Appendix B: High order bias from halo model

As described in Sect. 3.6.1, the higher-order bias b(2)(z) has been
estimated using the halo model. In the following, we provide fur-
ther details on the input quantities, and how we set the relevant
parameters.

A key role is played by the halo mass function ΦMF(M, z),
which we model as

ΦMF(M, z) =
ρ̄m

M
f (ν)

d lnσ−1

dM
, (B.1)

with M the halo mass, ρ̄m the mean matter density, ν =
δc/σ(M, z), δc = 1.686 the critical overdensity for collapse, and
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σ(M, z) the variance of linear perturbation smoothed with a top-
hat filter of radius R =

[
3M/(4πρ̄m)

]1/3. We follow Tinker et al.
(2010), setting

f (ν) = NMF

[
1 + (βMFν)−2φMF

]
ν 2ηMF exp

(
−γMFν

2/2
)
, (B.2)

where NMF is a normalisation constant, and the halo mass func-
tion fitting parameters βMF, ηMF, γMF and φMF – not to be con-
fused with ΦMF(M, z) – scale with redshift as illustrated in
Eqs. (9–13) of the above-mentioned paper.

The other quantity needed is the average number of galaxies
hosted by a halo of mass M at redshift z. This is given by
〈N |M〉(M) = Ncen(M) [1 + Nsat(M)] , (B.3)
where Ncen(M, z) and Nsat(M, z) account for the contributions of
central and satellite galaxies, respectively. We model these terms
as in White et al. (2011)

Ncen(M) =
1
2

{
1 + erfc

[
ln

(
M/Mcut

)
√

2σc

]}
, (B.4)

Nsat(M) =


0 M < κsMcut(

M − κsMcut

M1

)αs

M ≥ κsMcut,
(B.5)

with fiducial parameter values
{log10 (Mcut/M�), log10 (M1/M�), σc, κs, αs}

= 13.04, 14.05, 0.94, 0.93, 0.97 , (B.6)
M� being the mass of the Sun. These values give the best fit to
the clustering of massive galaxies at z ∼ 0.5 as measured from
the first semester of BOSS data. It is, however, expected that they
are redshift-dependent although the precise scaling with z also
depends on the galaxy population used as a tracer. We there-
fore adjust them so that the predicted galaxy bias matches, at
each given redshift, our measured values from the Flagship sim-
ulation. Since, for each z, we have a single observable quantity,
we cannot fit all parameters. On the contrary, we fix all of them
but Mcut to their fiducial values and use Eq. (43) to compute the
bias as a function of Mcut. We then solve with respect to Mcut
repeating this procedure for each redshift bin. We then linearly
interpolate these values to get Mcut as a function of z, and use it
to compute b(2)(z). Although quite crude, we have verified that
changing the HOD parameter to be adjusted (e.g. using σc or
M1) has a negligible impact on the predicted Rgm(`) and Rgg(`).

Appendix C: Multipole binning

We bin the ` space according to the following procedure: the `k
values, where k = 1, ...,N`, are the centres of N` + 1 logarith-
mically equispaced values, λk, which act as the edges of the N`

bins:
`k = dex

[(
λ−k + λ+

k

)
/2

]
, (C.1)

with dex(x) = 10x,
(
λ−k , λ

+
k

)
= (λk, λk+1), and

λk = λXC
min + (k − 1)(λXC

max − λ
XC
min)/N` , (C.2)

being{
λXC

min, λ
XC
max

}
=

{
log10 (`XC

min), log10 (`XC
max)

}
. (C.3)

In order to compute the Gaussian covariance, we also need the
width of the bin, which will simply be
∆`k = dex(λk+1) − dex(λk) , (C.4)
so that ∆`k is not the same for all bins, since the bins are loga-
rithmically – and not linearly – equispaced.
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