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Abstract

Particle-in-cell codes usually represent large groups of particles as a single macropar-

ticle. These codes are computationally efficient but lose information about the

internal structure of the macroparticle. To improve the accuracy of these codes,

this thesis presents a method in which, as well as tracking the macroparticle, the

moments of the macroparticle are also tracked.

One representation of moments uses integrals. In this representation of moments,

the moment tracking equations are known, but the coordinate transformations for

moments where the space and time coordinates are mixed cannot be calculated.

These coordinate transformations are important in astrophysical plasma, where

there is no preferred coordinate system. An alternative representation of moments

uses Schwartz distributions. By using the language of Schwartz distributions, the

equations to track the moments, and perform coordinate transformations of moments

are calculated. The moment tracking and coordinate transformation equations are

tested by modelling the motion of uncharged particles in a circular orbit around a

black hole. Numerical testing shows that the error in tracking moments is small,

and scales quadratically.

Two different methods to find the current distribution from a set of moments are

presented. The first reconstructs the original distribution function used to find the

moments, and derives the current distribution from the reconstructed distribution
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function. The second method uses the language of Schwartz distributions to directly

calculate the current from the set of moments. The current distribution construction

equations are tested for a variety of distribution functions, and show that using the

language of Schwartz distributions introduces errors, but is computationally faster.

The error in moment tracking, coordinate transformations, and in finding the current

can be improved by including higher order moments.

The considerations needed to create a full particle-in-cell code, and how this code

can be evaluated, are discussed.
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Chapter 1

Introduction

1.1 The numerical modelling of plasmas

A plasma is the de-localisation of electrons from their nuclei, causing the motion of

particles within a medium to be dominated by electromagnetic fields [2]. Despite

plasma being observed for millennia, in the form of lightning and fire, it was not

created in the laboratory until 1879 by Crookes [3]. Even after this laboratory

observation, it took until 1928 for Langmuir to make the first theoretical description

of a plasma [4]. Since then, plasma has become increasingly important within

modern physics, being used for nuclear fusion [5, 6], high gradient acceleration in

particle accelerators [7, 8, 9], and observed in space physics [10, 11, 12, 13] and

extreme astrophysical environments [10, 14]. Plasma has also become ubiquitous

within modern society, appearing in plasma televisions, fluorescent lightbulbs, and

used in arc welding for metalwork, amongst others [15, 16]. There are many new

areas where plasma is being used to innovate within existing fields, including medical

applications [17, 18], creating carbon-neutral jet fuels [19], and purifying wastewater

[20]. Because of the vast variety of applications plasma has within modern physics

and society, it is important to accurately understand how plasma behaves, and to

be able to model this behaviour numerically.
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Chapter 1. Introduction

An important property of a plasma is the ability to shield individual particles

from charges far away in the plasma. If a single ion is added to the plasma, the

nearby electrons are attracted to it, and the nearby ions are repelled from it. This

means an electron far away from the newly added ion will not see any additional

electromagnetic force [21]. This phenomena is called ‘Debye shielding’. The sphere

around an ion, beyond which the charge is shielded, is the ‘Debye sphere’ of a plasma.

The number of electrons within the Debye sphere shows how dominant collisions are

within a plasma. The larger the number of electrons within the Debye sphere, the

less importance collisions have within the plasma, and the more importance there

is on collective effects [2].

In many plasmas there are too many particles to model every particle at once.

Instead, some approximation of the motion within the plasma must be made.

There are a variety of different approximations that are used, which are each

valid for specific scenarios. The simplest method to model a plasma is to use

magnetohydrodynamics. In this case either the entire plasma is treated as a single

charged fluid, or each species (e.g. the electrons or the ions) is a separate charged

fluid. These charged fluids are solved alongside Maxwell’s equations to model

the plasma. This is the computationally fastest model, and is used for modelling

magnetic confinement fusion [22], and in some models of solar plasma [23], amongst

others. Magnetohydrodynamics gives large scale behaviour of a plasma, but fails to

model important properties within the plasma, such as wave breaking (part of the

plasma travelling faster than another area, and overtaking it) [24, 25], or Landau

damping (the damping of space charge effects as particles travelling at different

speeds to the bulk plasma are accelerated or decelerated to match the bulk flow of

the plasma) [2].

A more accurate, but computationally intensive method to model plasma is to use

kinetic models. There are two choices when developing a kinetic model. If the plasma
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1.1. The numerical modelling of plasmas

being modelled can be approximated as collisionless, then the Vlasov equation

describes the system [26]. The situations in which collisions need to be considered

within a plasma include establishing thermodynamic equilibrium within a plasma,

or in the collisions required for nuclear fusion [27]. If the plasma needs to include

collisions, then the Fokker-Planck equation is used to describe the motion of the

particles [2, 27]. Both of these methods suffer from being incredibly computationally

intensive, as they require solving a seven-dimensional partial differential equation

(time, three spatial coordinates, and three velocity coordinates). This computational

intensity has restricted solving the Vlasov equation directly to a (1+1)D (one spatial

dimension and one velocity dimension) problem, and it has only become possible in

the last 20 years to simulate a basic (3+3)D Vlasov model [10, 28].

Rather than solving the full (3+3)D Vlasov equation, another option is to use a

particle-in-cell (PIC) code. These treat the plasma as a collection of particles,

which are updated in six-dimensional position and velocity phase space. It is

too computationally intensive to model the behaviour of every particle within the

plasma. PIC codes solve this issue by grouping large numbers of particles into a

single macroparticle. Macroparticles make these codes computationally feasible, at

the expense of losing information about the fine structure within the plasma.

Whilst PIC codes are predominantly used for modelling plasma, they can also

be used for modelling electrons travelling through a particle accelerator. This is

particularly useful for cases where the non-linear effects, such as space charge, and

complicated magnetic fields within the accelerator need to be modelled [29, 30].

They can also be used in the modelling of a klystron, used to generate high intensity

radio frequency (RF) waves used for accelerating particles [31, 32].
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Chapter 1. Introduction

Figure 1.1: The algorithm for a standard particle-in-cell code.

The original algorithm for the PIC code was pioneered by Dawson [33]. A standard

PIC code consists of three parts: update the macroparticle’s positions and velocities,

deposit the current to a discretised grid, and solve Maxwell’s equations on this

discretised grid (figure 1.1). Modern PIC codes contain extra features, with some

codes being able to work in arbitrary curvilinear coordinates [34], conserve energy

to within machine precision (in certain circumstances) [35], simulate quantum

electrodynamic effects [36, 37], and model collisions [38, 39, 40]. Despite this, all

PIC codes suffer from the same fundamental issue: there is no information about

the structure within a macroparticle.

1.2 Using moments to improve macroparticles

In most PIC codes, accuracy is improved by increasing the number of macroparticles.

By contrast, this thesis presents a different method, in which a macroparticle

represents the moments of a group of particles [41, 42, 43, 44, 45] (figure 1.2).

Such a model may be more efficient in cases where a large number of particles can

be accurately modelled by a small number of macroparticles and their moments, and
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1.2. Using moments to improve macroparticles

Figure 1.2: Tracking several individual particles compared to a macroparticle with

moments. The five particles (the black lines) in the left diagram are replaced by a

single macroparticle (the orange line) in the right diagram. By tracking the moments,

quantities such as the difference between the centre of charge of the five particles

and the position of the macroparticle (the first order moment, represented by the

horizontal blue arrows), and the variance in position of the particles (the second

order moment, represented by the green error bars) can be tracked.

the electromagnetic field does not vary much across the extent of the macroparticle.

Additionally, when the dominating interactive force can be calculated from the

Liénard-Wiechert potential, the electromagnetic fields can be calculated directly

from the moments of the macroparticle [46].

There are several existing methods for tracking moments: the code MERLIN

implements a transition matrix approach for particle accelerators [44] and a

continuous model has been developed through a Hamiltonian approach [45]. Moment

tracking can also be done continuously by differentiating the definition of a moment

and using the Vlasov equation [43, 47]. In the literature of plasma physics, the

concept of moment tracking is often used when discussing magnetohydrodynamics

[10, 48, 49]. Moments in the context of magnetohydrodynamics are constructed by

integrating over velocity space only and can be interpreted as physical quantities

such as temperature and pressure, and shall be referred to as plasma moments.

In this work, moments shall be constructed by integrating over both velocity and
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Chapter 1. Introduction

Figure 1.3: The algorithm for a particle-in-cell code with moment tracking. The

electromagnetic field solver is the same in both the standard particle-in-cell and

moment tracking models.

position space, giving related, but different quantities. The transport of moments is

used in wider fields where the Liouville equation holds, such as particle nucleation

[50], crystal growth [51], nuclear collisions [52], and fluid dynamics [53].

To track moments, the PIC algorithm needs to be modified (figure 1.3). At each time

step, as well as updating a macroparticle’s position and velocity, the moments also

need to be updated. This creates additional computational overhead. In a standard

PIC code, the current of a macroparticle is deposited onto grid points by assuming

the macroparticle has a ‘shape function’, which weights how the current is placed

onto the grid points (this is known as the cloud-in-cell method) [54, 55]. By using

moments instead of a shape function, a more accurate current distribution function

within the macroparticle can be found. This in turn feeds into Maxwell’s equations

for updating the electromagnetic fields, which gives a more accurate electromagnetic

field with which to update the macroparticle’s position, velocity, and moments. Thus

by using macroparticles with moment tracking, the accuracy within a PIC code can

6



1.2. Using moments to improve macroparticles

be improved, at the expense of computational overhead.

Order of

moments tracked
Information known

Number of

differential equations

to solve

Number of

differential equations

to solve relative to

a standard macro-particle

Monopole (zeroth order) xµ, uµ 6 1

Dipole (first order) xµ, uµ, V a 12 2

Quadrupole (second order) xµ, uµ, V a, V ab 33 5.5

Octopole (third order) xµ, uµ, V a, V ab, V abc 89 14.83

Hexadecapole (fourth order) xµ, uµ, V a, V ab, V abc, V abcd 215 35.83

Table 1.1: The amount of information in a macroparticle that tracks moments

compared to a standard macroparticle. The increased information results in more

memory usage and a larger number of first order differential equations to solve.

Since there are six differential equations per time step for a standard macroparticle,

the fourth column is the third column divided by six.

Tracking more moments is more computationally expensive, as these moments

come with additional computational work (both more differential equations to solve

at each time step and more memory usage per macroparticle). This increased

computational work is balanced by reducing the total number of macroparticles

in the simulation. At the quadrupole (second) order there are 33 equations to

solve at each time step (21 quadrupole moments, 6 dipole (first order) moments,

3 components of velocity and 3 components of position). This increases to 215

equations if the expansion is carried out to the hexadecapole level (fourth order)

(table 1.1).

To perfectly track the moments, an infinite set of moments is required. This is

because, as is shown in this thesis, higher order moments generate lower order

moments. Since it is not possible to track an infinite set of moments, a truncation is

required. There are multiple possibilities for this truncation. One possible method
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Chapter 1. Introduction

is to directly track only a certain number of moments, and then approximate the

higher order moments using these lower order moments [43]. Another truncation

is to only consider a finite number of moments, neglecting the contribution from

moments of a higher order than the truncation. This is the truncation used in

this thesis. Care must be taken to ensure the truncation is of as low an order as

possible to minimise computational load, whilst also ensuring that neglecting the

higher order moments does not significantly impact accuracy. This thesis calculates

all moments to quadrupole order, although all results presented can be generalised

to arbitrary order.

1.3 Coordinate transformations of moments

Since the conception of black holes by Schwarzschild [56] as a consequence of

Einstein’s theory of general relativity, there has been a fascination with the concept

of black holes in both modern physics [14, 57] and modern culture [58]. Recently,

there has been a focus on using PIC codes to model the dynamics of plasma around

black holes [34, 59, 60, 61]. Such plasmas may be important in active galactic

nuclei, pulsars and gamma-ray bursts [61, 62, 63]. Reference [14] contains a full

review of these studies. In such systems, there is not a preferred coordinate system

i.e. when modelling a static uncharged black hole, there is a choice to work in

Schwarzschild coordinates, or Kruskal-Szekeres coordinates, amongst others. As

there is a choice, it is useful to be able to transform between different coordinate

systems, especially where the time and space coordinates are mixed together

(such as the coordinate transformation between Kruskal-Szekeres and Schwarzschild

coordinates, shown in figure 1.4a). Coordinate transformations that mix space and

time coordinates also appear in particle accelerators. When simulating the motion

of a linearly accelerating bunch in a particle accelerator, the transformation into the

instantaneous rest frame of an accelerating bunch mixes space and time coordinates

(figure 1.4b), so the spacetime coordinate transformations presented in this work

8



1.3. Coordinate transformations of moments

are necessary.

t
=

co
ns
ta
nt

T = constant

r = constant

t = constant

Event horizon

R

T

(a) A spacetime diagram in Kruskal-

Szekeres coordinates of a particle trav-

elling at a constant r in Schwarzschild

coordinates (the orange hyperbola). The

diagonal blue lines are time slicings in

Schwarzschild coordinates (constant t),

and the horizontal purple lines are time

slicings in Kruskal-Szekeres coordinates

(constant T ). The dashed black line

represents the event horizon.

t
=

co
ns
ta
nt

T = constant

r = constant

t = constant

Light cone

R

T

(b) A spacetime diagram in the lab frame

of an accelerating bunch showing parti-

cles that are accelerating according to a

lab observer (the orange hyperbola). The

diagonal blue lines are time slicings in

the instantaneous rest frame coordinates

(constant t), and the horizontal purple

lines are time slicings in the lab frame

(constant T ). The dashed yellow line

represents the light cone.

Figure 1.4: Spacetime diagrams showing the difference in time slicing between

Kruskal-Szekeres and Schwarzschild coordinates, and between the lab frame and

instantaneous rest frames of an accelerating bunch. The moments in a given

coordinate system have no components in the direction of the time slicing in that

coordinate system.

The moments of a macroparticle depend on the choice of time slicing (figure 1.5).

This time slicing is a foliation given by spatial hypersurfaces of constant coordinate

time. In all coordinate systems considered in this thesis, the global coordinate time

will be used as the time slicing. In general, different coordinate systems will give

different time slicings. This means when transforming between coordinate systems

that mix temporal and spatial coordinates, for example, transforming between
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Chapter 1. Introduction

Figure 1.5: An example of two different time slicings. When taking moments, the

time slicing is the hypersurface the moments are integrated over. By using a different

time slicing (e.g. either the horizontal dashed purple lines t or the curved dashed

blue lines t̂), the distance between the centre of the macroparticle (the orange arrow)

and the nearby particles the macroparticle is representing (the green contours) is

different, so different moments will be found.

Schwarzschild and Kruskal-Szekeres coordinates, the time slicing will change (figure

1.4a). Additionally, it will be shown in chapter 4 that this time slicing is required

to allow alternative representations of moments to be defined uniquely.

There are several choices for the time slicing. One time slicing may be the global

Killing timelike vector in relativistic scenarios, the lab time in non-relativistic

models, or the parameter of the beamline in a particle accelerator. Another possible

time slicing is the backward light cone of an observer, which is the frame used

when making astrophysical observations. A choice of time slicing commonly used

in modelling plasma around black holes is found in the fiducial observer (FIDO)

scheme, where the time slicing is given relative to local moving observers [64, 65].

A fourth possible time slicing is to take all the vectors orthogonal to the velocity of

the world line. By using geodesics to propagate the vectors to the world line, they

can be used for the Dixon representation of a multipole [66]. The proper time of the
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1.4. Finding the charge and current distribution from a set of moments

initial centre of charge of a bunch cannot be used as a time slicing, as this is not an

inertial frame [67].

One of the key results of this thesis is the formula for the coordinate transformation

of moments between coordinate systems that mix space and time coordinates. The

standard integral representation of moments cannot transform moments between

coordinate systems where the time slicing changes. Simply transforming the

moments into the new coordinate system does not take into account the change

in time slicing. In principle, if one were to use the standard representation of

moments, an ‘effective’ coordinate transformation could be performed. This is the

process of reconstructing the distribution function from the moments, transforming

the distribution function into the new coordinate system and retaking the moments

in the new coordinate system. This requires a model function, which is a function

that is used as a basis for reconstructing the distribution function. This process is

outlined in chapter 6.

In order to find the coordinate transformations that change the time slicing, a

different representation of moments must be used, in terms of Schwartz distributions

[68, 69]. In this representation of moments, the moments are transformed into the

new coordinate system, then projected onto the new time slicing to find the full

coordinate transformation.

1.4 Finding the charge and current distribution

from a set of moments

Tracking the moments is only one step of the particle-in-cell algorithm. As shown

in figure 1.3, the next step is to use the moments to find the current of each

macroparticle. In a standard PIC code, macroparticles are represented with a ‘shape

function’, which does not change over time [54, 55]. By using the moments, the

11



Chapter 1. Introduction

distribution function of particles within a macroparticle can be approximated. This

creates a more accurate current distribution within a macroparticle. Additionally

by tracking the moments, this current distribution can change over time, in contrast

to the shape function approach, where the current distribution is constant.

In general, even with an infinite set of moments, it is not possible to exactly

reconstruct the original distribution used to create these moments [70]. This inability

to exactly reconstruct a distribution from a set of moments is known as the moment

problem. The most general of these problems assumes the original distribution

function is integrable from −∞ to ∞, and is known as the Hamburger problem

[70]. In the case that the distribution function is compact, i.e. the bounds of

integration are finite, then given an infinite set of moments, the function can be

exactly reconstructed [71].

Given only a finite set of moments, it is not possible to exactly reconstruct the

distribution used to generate the moments. Instead, some approximation to the

original distribution function must be made. There are several existing approaches

to approximating the reconstruction of a function given a set of moments. One

method is to reconstruct the distribution by approximating the initial distribution

as a set of splines, and give this set of splines the same moments as the initial

distribution [72, 73]. Another approach models the distribution function as a series

of orthogonal polynomials, which can in turn be related to the moments [74, 75].

Machine learning has also been applied to this problem, using the moments of a

bunch to reconstruct the phase space distribution within a particle accelerator [76,

77].

The reconstruction of moments has a vast field of applications, including particle

crystallisation and nucleation [50, 72, 73], 2D image reconstruction [78, 79],

biophysics [80, 81], aerosols [82], the analysis of phonons [83, 84], and in the study
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of ferrofluids [85].

Most studies for reconstructing model functions have been limited to either one or

two dimensions. As far as the author is aware, there is little literature on how to

reconstruct a function in an arbitrary number of dimensions using analytic methods.

This thesis presents a method in which the original distribution function in an

arbitrary number of dimensions can be reconstructed by creating a new function

with the same moments as the original function. An alternative way of finding

the 4-current from a given distributional 7-current is presented. This is done by

integrating over the velocity space and using this reduced 7-current (a distributional

4-current) to reconstruct the source 4-current directly.

1.5 Thesis structure, conventions, and notation

This thesis is structured as follows: Chapter 2 introduces the seven-dimensional

time-phase space, and the Vlasov equation, which describes the dynamics of

collisionless charged particles. Chapter 3 introduces moments, and the existing

methods for modelling them. Chapter 4 introduces a distributional representation of

moments in terms of derivatives of Dirac delta functions and uses this representation

to show the time evolution of moments. Several tests are done analytically, showing

that the moment tracking equations agree with the transition matrix approach

for modelling a quadrupole magnet; that moment tracking conserves phase space

volume; and a limitation of the moment tracking model due to the truncation.

The coordinate transformations for the moments are also found in this chapter.

Chapter 5 numerically validates the moment tracking and coordinate transformation

equations, through a computational model of uncharged particles circling a black

hole. Chapter 6 shows how the moments can be used to find the charge and a

current of a macroparticle, and numerically tests two different methods for finding

this current. Chapter 7 discusses what further work needs to be taken to create a full
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Chapter 1. Introduction

PIC code, and considers the specific application of the moment tracking model for

simulating a klystron. Lastly, chapter 8 uses the language of differential geometry

and de Rham currents to present the Vlasov equation, the transport equations,

coordinate transformations, and current and charge reconstruction in this language.

Whilst this approach gives a more geometric approach to deriving these equations,

which may be considered philosophically nicer, there are no new results in this

chapter, and as such this chapter can be skipped by a reader not familiar with the

language of differential geometry. Alternatively, a reader familiar with the language

of differential geometry may prefer to read chapter 8 first, to gain a more geometric

interpretation of the mathematical results presented in this thesis.

Throughout the thesis, several complex proofs will be shown. These begin with

Proof. and end with the symbol. These proofs may be skipped at first reading.

The calculations necessary to study plasma are performed in seven-dimensional time-

phase space. Therefore, different summation conventions for indices are needed:

summations over time, space, and velocity; time and space but not velocity; space

and velocity but not time; just space, and just velocity. Because of this, the following

summation conventions will be used:

• Latin indices a, b, c represent summations over 0, . . . , 6.

• Greek indices µ, ν, ρ represent summations over 0, . . . , 3.

• An underlined index means there is no summation over the 0 index, i.e. a =

1, . . . , 6 and µ = 1, 2, 3.

• Bold capital Latin indices I,K and Greek indices Σ,Λ represent multi-

index lists, with capital Latin letters representing lists including spatial and

velocity coordinates and capital Greek letters representing lists over just spatial

coordinates. These lists are defined in section 6.2.

Additionally the following conventions and notations will be used:

14



1.5. Thesis structure, conventions, and notation

• Dimensions are used such that c = G = 1.

• The metric signature of spacetime is (−,+,+,+).

• The notation f |p represents the evaluation of a function at a point, i.e. f |p is

f evaluated at p.

• After their introduction, the arguments of a function will not be written, unless

needed for emphasis.

• An underlined variable represents a set of three components e.g. x represents

the set of x1, x2, x3.

• A doubly underlined variable represents a set of six components e.g. ξ

represents the set of ξ1, ξ2, ξ3, ξ4, ξ5, ξ6.

• A column vector will be denoted in bold font (e.g. a,E).

• A tilde underneath a variable (e.g. u˜) represents a vector at a point.

• A tensor density of weight one will be denoted in Fraktur (e.g. f, J) or

calligraphic (e.g. I,J ) font.

• In chapter 8, the evaluation of a vector field on a scalar field shall be denoted

using angled brackets, e.g. if W = W a∂a, then W 〈f〉 = W a∂af represents the

vector field W acting on the scalar field f .
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Chapter 2

The Vlasov equation and the

transport equations

2.1 Seven-dimensional time-phase space

To model the complex dynamics of plasmas, it is necessary to work on a 7

dimensional time-phase space. These dimensions are time, three spatial dimensions

and three proper velocity (4-velocity) dimensions. The time-phase space will be

denoted by E . It is often necessary to integrate over a specific time slice of E . An

integral over a specific time slice will be denoted Σ for an arbitrary time t or Σt0 for

the evaluation at a specific time t0. The coordinates of this dimension are (t, xµ, uµ)

where t is the global time, xµ is a space coordinate, and uµ is a spatial coordinate

of 4-velocity, defined such that

uµ = u0vµ, (2.1.1)

where vµ is the 3-velocity, and u0 is the positive solution to the quadratic equation

gµνu
µuν = −1 (2.1.2)
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2.1. Seven-dimensional time-phase space

where g is the metric. In the specific example of Minkowski spacetime with Cartesian

coordinates, u0 is the Lorentz factor in special relativity, given by

u0 =
(

1 +
3∑

µ=1

uµuµ
) 1

2
. (2.1.3)

The notation (ξa) will be used to represent a general coordinate, such that

ξ0 = t, ξµ = xµ, ξµ+3 = uµ (2.1.4)

i.e. ξ4 = u1, etc.

This thesis exclusively works in frames where t is a global time coordinate. As

previously stated in the introduction, these frames are required to allow the moments

to be defined (figure 1.5). It is assumed a global time coordinate always exists, at

least near the world line. It will be shown in section 8.2 that the natural induced

coordinates on E when using a global time coordinate are actually the Newtonian

velocities vµ, rather than the spatial component uµ of 4-velocity. For computational

purposes it is more convenient to work with 4-velocity as this moves the singularity

from c = 1 to infinity, removing the numerical floating point rounding error from

particles travelling very close to the speed of light. The removal of this singularity is

particularly useful for modelling particle accelerators, where speeds are often close

to the speed of light. Using the 4-velocity does not affect any of the analytic results

in this thesis.

Any integral of a scalar field must contain a measure Ω. The inclusion of the measure

ensures that the evaluation of an integral is coordinate independent. This measure

is given by

Ω = Ω0 dt d
3x d3u. (2.1.5)

On E , Ω0 is given by

Ω0 =
det(g)

(u0)4u0

(2.1.6)
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Chapter 2. The Vlasov equation and the transport equations

where the lack of square root in the determinant is because the integrals are over

both position and velocity space, and the 1/(u0)4u0 term comes from using 4-velocity

as the velocity coordinates instead of Newtonian velocity. When integrating over a

specific time slice, the measure becomes

Ω0Σ
= Ω0|t =

det(g)

(u0)4u0

∣∣∣∣
t

. (2.1.7)

This evaluation at specific time t will be implicit, and will not be stated in the

integrals to enhance readability, as it does not affect any results in the thesis. In

the specific case of special relativity, the measure can be written as

Ω0 =
−det(g)

γ5
(2.1.8)

where γ is the Lorentz factor. These measures are derived in section 8.2, by pulling

back the natural measure on the tangent bundle.

2.2 The Vlasov equation

As discussed in the introduction, one method to model the complicated dynamics of

plasmas is to treat the plasma as collisionless. This method was first pioneered by

Vlasov in 1938 to model the dispersion of waves in electron gases [86] (This paper

is translated in ref. [26]).

To formulate a fully relativistic Vlasov equation, consider a group of charged

particles, each with charge q and mass m. The distribution function of this group

of particles is denoted f(t, x, u). Note that since f represents a group of particles,

the support of f is closed. Consider an arbitrary spacetime with metric gµν(t, x),

Christoffel symbols Γµνρ(t, x) and electromagnetic 2-form Fµν(t, x). Let C(t) be a

world line parameterised by t, the same parameter as the global time ξ0. Let η be

the prolongation of C, that is a curve on E such that

η0(t) = C0(t) = t, ηµ(t) = Cµ(t), ηµ+3(t) =
dCµ(t)

dt
. (2.2.1)
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2.2. The Vlasov equation

For a given value of t, η(t) is a point in seven-dimensional time-phase space. In

terms of coordinate functions (t, xµ, uµ), this can be represented as

η0(t) = C0(t) = t, ηµ(t) = Cµ(t) = xµ|η(t), ηµ+3 =
dCµ(t)

dt
=
uµ

u0

∣∣∣∣
η(t)

. (2.2.2)

In general, η(t) is a curve in time-phase space. In this thesis η(t) will be the curve

moments are taken around. In particle accelerators, the ideal orbit is a natural

choice for η(t). This choice does not exist in plasmas; in these cases choices for η(t)

could be the position of the macroparticle, or a trajectory based on the initial centre

of charge of the macroparticle.

The Vlasov vector field, W = W a∂a, where ∂a = ∂/∂ξa, is defined such that η is an

integral curve of W ,

W a|η(t) =
d

dt
ηa(t). (2.2.3)

Finding the derivatives of η gives 7 ordinary differential equations (ODEs),

W 0|η(t) =
dC0(t)

dt

∣∣∣∣
η(t)

= 1, W µ|η(t) =
dCµ(t)

dt
=
uµ

u0

∣∣∣∣
η(t)

, W µ+3|η(t) =
d2Cµ(t)

dt2
.

(2.2.4)

To find the acceleration, note that the parameterisation of η(t), the global time

coordinate t, is not affine. This means this acceleration is calculated using the

pregeodesic equation combined with the (pre-)Lorentz force,

d2Cµ(t)

dt2

∣∣∣∣
η

+

(
Γµνρ

dCν(t)

dt

dCρ(t)

dt

)∣∣∣∣
η

=

(
κ
dCµ(t)

dt

)∣∣∣∣
η

+

(
q

m

1

u0
Fνρg

µν dC
ρ(t)

dt

)∣∣∣∣
η

(2.2.5)

where both the first term on the right hand side, and the 1/u0 term in the Lorentz

force arise from using coordinate time as the parameterisation, rather than proper

time. To find κ(t), note C0 = t, hence d2C0/dt2 = 0, solving this gives

κ = Γ0
νρ

dCν(t)

dt

dCρ(t)

dt
− q

m

1

u0
Fνρg

0ν dC
ρ(t)

dt
. (2.2.6)
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Chapter 2. The Vlasov equation and the transport equations

From this, solving equation (2.2.4) for all η gives

W 0 = 1,W µ =
uµ

u0
,

W µ+3 = − Γ
µ
νρ
uν

u0

uρ

u0
+

q

m

1

u0
Fνρg

µν u
ρ

u0
+ Γ0

νρ

uν

u0

uρ

u0

uµ

u0
− q

m

1

u0
Fνρg

0ν u
ρ

u0

uµ

u0
.

(2.2.7)

Combining these terms together and acting on the particle distribution function f

gives the Vlasov equation,

W a∂af = 0 (2.2.8)

where ∂a = ∂/∂ξa. Rearranging this gives an important formulation of the Vlasov

equation for calculating the dynamics of moments in the integral representation of

moments in section 3.2,
∂f

∂t
= −W a ∂f

∂ξa
. (2.2.9)

Since W µ|η(t) and W µ+3|η(t) correspond to the velocity and acceleration of a particle

with the world line C, rewriting the Vlasov equation defined through a prolongation

allows it to be compared to the more common formulation of the Vlasov equation

(e.g. the Vlasov equation presented in refs. [10, 87]),

∂f

∂t
+W µ ∂f

∂xµ
+W µ+3 ∂f

∂uµ
= 0. (2.2.10)

In general, the Vlasov field is parameterisation dependent. This thesis will

work exclusively in the coordinate time frames. These are frames where the

parameterisation t of η(t) is the same as the time coordinate. This is true for

the lab time in non-relativistic models, the Killing time in relativistic models, and

the parameterisation of the beamline in a model of a particle accelerator. In any

coordinate time frame, the Vlasov vector field will take the form of equation (2.2.7).

If proper time is used as the parameterisation, then a different Vlasov vector field

will be found [88, 89]. This formulation of the Vlasov vector field is also distinct

from the 3 + 1 formalism used in the fiducial observer (FIDO) scheme used when

modelling plasma around strongly gravitating objects [64, 65]. The moment tracking

and coordinate transformations found in this thesis will work in the FIDO scheme,
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2.3. The transport equations

but will not work in the proper time parameterisation.

The Vlasov equation does not model a full PIC code on its own, and needs to be

‘coupled’ together with other equations to get a complete system. One choice is to

couple the Vlasov equation to Maxwell’s equations. By coupling to the dynamical

Maxwell’s equations (both Faraday’s law and Ampère’s law) a full electrodynamic

PIC code can be developed. This will be the coupling for the full PIC code presented

in chapter 7, and is the coupling in most PIC codes [36, 37]. Alternatively in

cases where the magnetic force between particles is small compared to the external

forces, only Gauss’s law or Ampère’s law is needed for the coupling, to allow an

electrostatic PIC code to be developed [87, 90]. Another option is to integrate the

Vlasov equation over velocity space to get equations for the plasma moments [35,

91]. This couples the Vlasov equation to the plasma moments, although it is stressed

that these moments are only integrated over velocity space, so are distinct from the

moments discussed in the rest of this thesis.

2.3 The transport equations

Rather than modelling the distribution function f , the 7-current Ja can be studied.

This 7-current is related to the distribution function as

Ja = fΩ0W
a = fW a, (2.3.1)

where

f = fΩ0 (2.3.2)

is the distribution function density. Whilst f can be used in the integral represen-

tation of moments in chapter 3; to use the Ellis and geometric representations of

moments in chapters 4 and 8, the distribution of particles needs to be represented

as the 7-current.
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Chapter 2. The Vlasov equation and the transport equations

To find the dynamics of the 7-current, there are two equations. Firstly, the

conservation of charge,

∂aJ
a = 0. (2.3.3)

Secondly, the Vlasov equation,

JaW b − JbW a = 0. (2.3.4)

These two equations will be referred to as the transport equations, since they define

the transport of the 7-current over time. These equations follow from the Vlasov

equation and the condition

∂a(Ω0W
a) = 0. (2.3.5)

Equation (2.3.5) will not be shown directly. In section 3.2 it is shown that this

equation (2.3.5) corresponds to the conservation of charge. Equation (2.3.5) will

also be shown in chapter 8. This is done by showing the equivalent equation on the

tangent bundle is true, and pulling back this equation back onto E .

To show the conservation of charge from the 7-current (equation (2.3.3)), insert

equation (2.3.1) into equation (2.3.3),

∂aJ
a = ∂a (fΩ0W

a) = Ω0W
a∂a(f) + f∂a (Ω0W

a) = 0 (2.3.6)

where the Vlasov equation is used on the first term of the final step. To show the

Vlasov equation for the 7-current (equation (2.3.4)), insert equation (2.3.1) into

equation (2.3.4),

JaW b − JbW a = fΩ0W
aW b − fΩ0W

bW a = 0. (2.3.7)

These transport equations will be used in chapter 4 to give the dynamics for the

moments in a distributional representation.
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Chapter 3

The integral representation of

moments

3.1 Moments

One way of representing the bulk properties of a collection of particles are with their

moments. The zeroth order moment, called the monopole, is given by

q =

∫
Σ

f(t, x, u) d3x d3u (3.1.1)

and represents the total number of particles described by f . Note that, since charge

is conserved, whilst the monopole is integrated at a specific moment in time, it is

actually a constant, this will be proven when finding the dynamics of the moments

in section 3.2, and equivalently shown in sections 4.3 and 8.3.2.

The first order moment, called the dipole, is given by

V µ(t) =

∫
Σ

(
xµ − ηµ(t)

)
f(t, x, u) d3x d3u,

V µ+3(t) =

∫
Σ

(
uµ − dCµ

dt
(t)
)
f(t, x, u) d3x d3u.

(3.1.2)

These can be combined into a single equation,

V a(t) =

∫
Σ

(
ξa − ηa(t)

)
f(t, x, u) d6ξ (3.1.3)
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Chapter 3. The integral representation of moments

where ξa and ηa are defined by (2.1.4) and (2.2.2) respectively, d6ξ = d3x d3u,

and recall that an underlined latin index represents a summation over 1 . . . 6. The

dipole moment corresponds to the deviation of the centre of charge from the centre

of the macroparticle. If the initial centre of the macroparticle is chosen such that

the dipole moments are initially zero, then whilst the centre of the macroparticle

will obey the Lorentz force equation, the centre of charge will not [67]. Hence, the

two paths will diverge. The dipole moment represents the difference between these.

The exact centre of charge, ξaCoC, is given by

ξaCoC =
1

q
V a + ηa. (3.1.4)

The second order moment, called the quadrupole, is given by

V ab(t) =

∫
Σ

(
ξa − ηa(t)

)(
ξb − ηb(t)

)
f(t, x, u) d6ξ. (3.1.5)

The quadrupole moments are related to the variance of the macroparticle. The

covariance matrix of the macroparticle is given by

(Covariance)ab = (V ab − V aV b). (3.1.6)

Note in the case the dipole is negligible compared to the quadrupole, then the

quadrupole moments approximately represent the covariance of the macroparticle.

This formalism for the moments can be generalised to the nth order moment,

V a1,...,an(t) =

∫
Σ

((
ξa1 − ηa1(t)

)
. . .
(
ξan − ηan(t)

))
f(t, x, u) d6ξ (3.1.7)

where V is totally symmetric. Moments represented in this way will be called the

integral representation of moments. Note the sums are only over space and velocity

coordinates, and there are no corresponding ‘time’ moments. The naming convention

for multipoles scales as 2k, so the zeroth order moment is the monopole, then the

dipole, quadrupole, octopole etc. (table 1.1). The octopole moment corresponds

to the skew of the macroparticle, and the hexadecapole moment corresponds to
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3.2. Dynamics of moments

the kurtosis of the macroparticle. In contrast to this naming convention, moments

in the context of magnetic multipoles scales as 2k (dipole, quadrupole, sextupole,

octopole etc.). To avoid ambiguity, magnetic multipoles will always be explicitly

named as such e.g. a quadrupole magnet refers to a quadrupole magnetic field,

whilst a quadrupole refers to quadrupole moments.

As previously stated, the moments in this work are integrated over both position and

momentum space, in contrast to the conventional moment equations for plasmas,

which are just integrated over velocity space [10]. This definition of moments is

often used to give physical properties of the plasma, like the current, temperature

and pressure. It is possible to find the moments used in this work by integrating these

quantities over position space. To go from the integral representation of moments

back to the conventional moment equations for plasmas, you must reconstruct the

original distribution function, and then integrate this over velocity space. This is

done to find the current for solving Maxwell’s equations in chapter 6.

3.2 Dynamics of moments

Using the Vlasov equation, it is possible to calculate the dynamics of moments using

the integral representation. This was first done by Dymnikov and Perelshtein in 1978

[41]. It was also done through an equivalent but distinct method by Channell in

1983 [42], which was then implemented by Channell into the moment tracking code

BEDLAM [43].

Both of these methods give the differential equations for the moments as an infinite

series. As using an infinite series of moments is not practical, a truncation is required.

This truncation is the highest order of moments considered, where moments beyond

the truncation order are assumed to be zero. The choice of this truncation is one

the largest sources of error in a moment tracking code, as will be shown in chapter
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Chapter 3. The integral representation of moments

5. In practical codes, the simplest choice is to perform the truncation and neglect

the higher order moments, however in certain moment tracking codes, for example

in BEDLAM [43], higher order moments are approximated using the lower order

moments, such as

V abc ≈ 1

3

(
V aV bc + V bV ac + V cV ba

)
(3.2.1)

where V abc is the octopole moment. This thesis will not take this approach, instead

performing the truncation and neglecting the higher moments. This is because

the focus of the computational results will be on how the truncation affects the

convergence of the moment tracking model.

As a starting example to demonstrate Dymnikov and Perelshtein’s method, the

constancy of the monopole will be shown. Begin by differentiating equation (3.1.1)

with respect to time
dq

dt
=

d

dt

∫
Σ

f(t, x, u) Ω0 d
6ξ (3.2.2)

where the scalar distribution is used rather than the density distribution. Since the

domain of the integral is a time slice of the time-phase space E , the derivative with

respect to time can be passed inside the integral,

dq

dt
=

∫
Σ

df

dt
Ω0 d

6ξ. (3.2.3)

Next, using equation (2.2.9),

dq

dt
= −

∫
Σ

W a ∂f

∂ξa
Ω0 d

6ξ. (3.2.4)

Integrating by parts gives

dq

dt
=

∫
Σ

f∂a (W aΩ0) d6ξ (3.2.5)

where the evaluation of f on the boundaries of Σ vanishes since the support of f

is closed. This vanishes if and only if ∂a(W aΩ0) = 0. The rate of change of the

monopole must be zero as this corresponds to the conservation of charge. Thus,

as previously stated, the condition ∂a(W
aΩ0) = 0 must be true for charge to be
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3.2. Dynamics of moments

conserved. A more formal proof that this term vanishes will be done in chapter 8

through pulling back the measure on the tangent bundle.

To replicate Dymnikov and Perelshtein’s result for the rate of change of the dipole,

begin by differentiating equation (3.1.3) with respect to time and use equation

(2.2.9),

dV a

dt
=

d

dt

∫
Σ

(ξa − ηa) f Ω0 d
6ξ (3.2.6)

= −
∫

Σ

η̇a f Ω0 d
6ξ +

∫
Σ

(ξa − ηa) df
dt

Ω0 d
6ξ (3.2.7)

= −η̇a
∫

Σ

f Ω0 d
6ξ −

∫
Σ

(ξa − ηa)W c∂cf Ω0 d
6ξ (3.2.8)

where η̇a(t) are functions of t only, so they can be pulled out the integral. Next,

integrate the last term by parts, using ∂c(W cΩ0) = 0, ∂bξa = δab , and ∂cηa = 0 (since

ηa(t) is a function of time only), giving

dV a

dt
= −η̇aq +

∫
Σ

∂c(ξ
a)W cf Ω0 d

6ξ (3.2.9)

= −η̇aq +

∫
Σ

W af Ω0 d
6ξ. (3.2.10)

Next, Taylor expand W a about η,

W a =
∞∑
m=0

1

m!
(ξb1 − ηb1) . . . (ξbm − ηbm)∂b1 . . . ∂bmW

a|η. (3.2.11)

Insert this expansion into dV a/dt,

dV a

dt
= −η̇aq +

∞∑
m=0

1

m!
∂c1 . . . ∂cmW

a|η
∫

Σ

(ξc1 − ηc1) . . . (ξcm − ηcm) f Ω0 d
6ξ

(3.2.12)

= −η̇aq +
∞∑
m=0

1

m!
V c1...cm∂c1 . . . ∂cmW

a|η. (3.2.13)

The first term in the expansion contains no derivatives, and the moment correspond-

ing to m = 0 is the monopole q. This means the first term in the expansion is η̇a q
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Chapter 3. The integral representation of moments

(since W a|η = η̇a), cancelling the first term on the right hand side. This gives the

differential equation for the dipole moment as

dV a

dt
=

∞∑
m=1

V c1...cm∂c1 . . . ∂cmW
a|η. (3.2.14)

This has an important property: higher order moments generate lower order

moments.

Before showing the differential equations for a general moment, it is worth showing

the equation for the quadrupole first, to show how the process changes for higher

order moments. Begin by differentiating equation (3.1.5),

dV ab

dt
= −

∫
E
η̇a
(
ξb − ηb

)
f Ω0 d

6ξ −
∫

Σ

η̇b (ξa − ηa) f Ω0 d
6ξ

+

∫
Σ

(ξa − ηa)
(
ξb − ηb

) df
dt

Ω0 d
6ξ

(3.2.15)

= −η̇aV b − η̇bV a −
∫

Σ

(ξa − ηa)
(
ξb − ηb

)
W c∂cf Ω0 d

6ξ (3.2.16)

= −η̇aV b − η̇bV a +

∫
Σ

(
ξb − ηb

)
W af Ω0 d

6ξ +

∫
Σ

(ξa − ηa)W bf Ω0 d
6ξ

(3.2.17)

where equation (2.2.9) is used, followed by integration by parts. Expanding W a

around η,

dV ab

dt
= −η̇aV b − η̇bV a

+

∫
Σ

∞∑
m=0

1

m!
∂c1 . . . ∂cmW

a|η (ξc1 − ηc1) . . . (ξcm − ηcm)
(
ξb − ηb

)
f Ω0 d

6ξ

+

∫
Σ

∞∑
m=0

1

m!
∂c1 . . . ∂cmW

b|η (ξc1 − ηc1) . . . (ξcm − ηcm) (ξa − ηa) f Ω0 d
6ξ. (3.2.18)

The m = 0 terms of these sums cancel the first two terms of the right hand side,

and simplifying the remaining terms gives

dV ab

dt
=

∞∑
m=1

1

m!

(
∂c1 . . . ∂cmW

a|ηV bc1...cm + ∂c1 . . . ∂cmW
b|ηV ac1...cm

)
. (3.2.19)
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3.2. Dynamics of moments

To generalise this to the arbitrary order moment, begin by differentiating equation

(3.1.7) with respect to time,

dV a1...an

dt
=

n∑
k=1

∫
Σ

−η̇ak (ξa1 − ηa1) . . . (ξak−1 − ηak−1)

× (ξak+1 − ηak+1) . . . (ξan − ηan) fd6ξ

+

∫
Σ

(ξa1 − ηa1) . . . (ξan − ηan)
df

dt
Ω0 d

6ξ. (3.2.20)

Using equation (2.2.9),

dV a1...an

dt
= −

n∑
k=1

η̇akV a1...ak−1ak+1...an

−
∫

Σ

(ξa1 − ηa1) . . . (ξan − ηan)W c∂cf Ω0 d
6ξ. (3.2.21)

Integrating by parts,

dV a1...an

dt
= −

n∑
k=1

η̇akV a1...ak−1ak+1...an

+
n∑
k=1

∫
Σ

(ξa1 − ηa1) . . . (ξak−1 − ηak−1)

× (ξak+1 − ηak+1) . . . (ξan − ηan)W akf Ω0 d
6ξ. (3.2.22)

Inserting the Taylor expansion forW , introducing the substitution ζa(t) = ξa−ηa(t)
for brevity,

dV a1...an

dt
= −

n∑
k=1

η̇akV a1...ak−1ak+1...an

+
n∑
k=1

∞∑
m=0

1

m!

∫
Σ

fζa1 . . . ζak−1ζak+1 . . . ζanζc1 . . . ζcm∂c1 . . . ∂cmW
ak |η Ω0 d

6ξ.

(3.2.23)

Separating out the m = 0 term, and pulling the differentials of W ak outside the
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Chapter 3. The integral representation of moments

integral (since they are evaluated at η, so are functions of time only),

dV a1...an

dt
= −

n∑
k=1

η̇akV a1...ak−1ak+1...an +
n∑
k=1

η̇ak
∫

Σ

ζa1 . . . ζak−1ζak+1 . . . ζan Ω0 d
6ξ

+
n∑
k=1

∞∑
m=1

1

m!
∂c1 . . . ∂cmW

ak |η
∫

Σ

ζa1 . . . ζak−1ζak+1 . . . ζanζc1 . . . ζcmf Ω0 d
6ξ.

(3.2.24)

The remaining integrals are simply moments, so first and second sums cancel, giving

the remaining terms as

dV a1...an

dt
=

n∑
k=1

∞∑
m=1

1

m!
V a1...ak−1ak+1...anc1...cm∂c1 . . . ∂cmW

ak |η. (3.2.25)

This is the general equation of motion for an arbitrary order moment.

As stated before, it is not possible to track an infinite set of moments. As such, a

truncation is introduced, choosing the highest set of moments that will be considered.

In this thesis, this truncation will be at the quadrupole level. After the truncation

at the quadrupole level, the differential equations for the dipole and the quadrupole

become

dV a

dt
= V b∂bW

a +
1

2
V bc∂b∂cW

a (3.2.26)

dV ab

dt
= V cb∂cW

a + V ac∂cW
b. (3.2.27)

In these equations, the dipole generated by the quadrupole can clearly be seen. As

previously stated, the moments of order octopole and higher have been assumed to

be negligible as part of the truncation. The accuracy of this assumption is discussed

in chapter 5.

Dymnikov and Perelshtein’s method is not the only way to derive the differential

equations for the moments through the integral representation. Channell’s method

[42] uses a similar approach, but begins by multiplying the Vlasov equation by some
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3.3. Coordinate transformations of moments where the time slicing is preserved

set of points (ξa − ηa),((
ξa1−ηa1(t)

)
. . .
(
ξan−ηan(t)

))∂f
∂t

= −
((

ξa1−ηa1(t)
)
. . .
(
ξan−ηan(t)

))
W a∂af.

(3.2.28)

Multiplying by the measure and integrating across a time slice of time-phase space,

∫
Σ

ζa1 . . . ζan
∂f

∂t
Ω0 d

6ξ = −
∫

Σ

ζa1 . . . ζanW aΩ0∂a(f) d6ξ (3.2.29)

where the substitution ζa(t) = ξa − ηa(t) is used for brevity. Next, pulling the ∂/∂t

out of the integral on the left hand side, noting that dζa/dt = η̇a, and integrating

by parts on the right hand side,

d

dt

∫
Σ

ζa1 . . . ζanf Ω0 d
6ξ +

n∑
k=1

∫
Σ

η̇akζa1 . . . ζak−1ζak+1 . . . ζanf Ω0 d
6ξ

=
n∑
k=1

∫
Σ

ζa1 . . . ζak−1 . . . ζak+1ζanW akf Ω0 d
6ξ. (3.2.30)

The term on the left hand side and the first term on the right hand side are moments,

dV a1...an

dt
= −

n∑
k=1

η̇akV a1...ak−1ak+1...an

+
n∑
k=1

∫
Σ

ζa1 . . . ζak−1 . . . ζak+1ζanW akf Ω0 d
6ξ. (3.2.31)

At this point this is equivalent to equation (3.2.22) from the Dymnikov and

Perelshtein approach, and by Taylor expandingW ak , equation (3.2.25) can be found.

3.3 Coordinate transformations of moments where

the time slicing is preserved

In general, the coordinate transformations for moments are complex [66, 68, 69].

As the integral representation of moments relies on integrals to define the moments,

they are highly coordinate dependent objects. For the specific case of coordinate

transformations where the time coordinate is unchanged, the integral representation
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Chapter 3. The integral representation of moments

of the moments can be used to find the coordinate transformation. In coordinate

transformations where the time and spatial coordinates are mixed together, then the

integral representation of moments cannot be used, and an alternative representation

of moments presented in chapter 4 must be used.

Consider two coordinate systems ξa and ξ̂a. If a coordinate transformation does not

change the time slicing i.e. t̂ = t, it is possible to calculate the transformation of

moments through the integral representation of moments. Since there is no change

in time coordinate, the manifold Σ being integrated over is the same, Σ̂ = Σ. This

means that the bounds of integration are the same.

As previously stated, f transforms as a density, so

f̂ = f
d7ξ

d7ξ̂
= f

d6ξ

d6ξ̂

dt

dt̂
= f

d6ξ

d6ξ̂
(3.3.1)

since t̂ = t. From this, it is trivial to see that the monopole is invariant under a

coordinate transformation, since

q =

∫
Σ

f d6ξ =

∫
Σ

f̂ d6ξ̂. (3.3.2)

To find the coordinate transformation of the dipole and quadrupole, observe that

ξa(ξ̂a) gives ξa as a function in the new coordinate system. Consider the expansion

of ξa in ξ̂a about ηa(t̂),

ξa =
∞∑
n=0

1

n!

(
ξ̂b1 − η̂b1

)
. . .
(
ξ̂bn − η̂bn

) ∂

∂ξ̂b1
. . .

∂

∂ξ̂bn
ξa|η. (3.3.3)

Inserting these expansions into the expression for the dipole,

V a =

∫
Σ

f (ξa − ηa) d6ξ (3.3.4)

=

∫
Σ

f̂

(
∞∑
n=0

1

n!

(
ξ̂b1 − η̂b1

)
. . .
(
ξ̂bn − η̂bn

) ∂

∂ξ̂b1
. . .

∂

∂ξ̂bn
ξa|η − ηa

)
d6ξ̂. (3.3.5)
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3.3. Coordinate transformations of moments where the time slicing is preserved

Pulling the derivatives of ξ out of the integral give an expansion in terms of an

infinite series of moments,

V a =

∫
Σ

f̂

(
∞∑
n=1

1

n!

(
ξ̂b1 − η̂b1

)
. . .
(
ξ̂bn − η̂bn

))
d6ξ̂

∂

∂ξ̂b1
. . .

∂

∂ξ̂bn
ξa|η

+

∫
Σ

(ξa|η − ηa) d6ξ̂. (3.3.6)

Evaluating this integral as the moments of f̂,

V a =
∞∑
n=1

1

n!
V̂ b1...bn

∂

∂ξ̂b1
. . .

∂

∂ξ̂bn
ξa|η. (3.3.7)

As with the differential equations for the moments, the coordinate transformation

is also an infinite series of moments in the original coordinate system. This means

again a truncation must be performed. Performing the truncation at the quadrupole

level,

V a = V̂ b ∂ξ
a

∂ξ̂b

∣∣∣∣
η

+
1

2
V̂ bc ∂2ξa

∂ξ̂c∂ξ̂b

∣∣∣∣
η

. (3.3.8)

The coordinate transformation of the quadrupole is found through a similar

procedure,

V ab =

∫
Σ

(
ξa − ηa

)(
ξb − ηb

)
f d6ξ (3.3.9)

=

∫
Σ

(
∞∑
n=0

1

n!

(
ξ̂c1 − η̂c1

)
. . .
(
ξ̂cn − η̂cn

) ∂

∂ξ̂c1
. . .

∂

∂ξ̂cn
ξa|η − ηa

)

×
(
∞∑
m=0

1

m!

(
ξ̂d1 − η̂d1

)
. . .
(
ξ̂dm − η̂dm

) ∂

∂ξ̂d1

. . .
∂

∂ξ̂dm
ξb|η − ηb

)
f̂ d6ξ̂.

(3.3.10)

Noting that the n = 0 and m = 0 terms of the sums cancel with the ηa and ηb terms,

and pulling out the derivatives,

V ab =
∞∑
n=1

∞∑
m=1

1

n!

1

m!

∫
Σ

(
ξ̂c1 − η̂c1

)
. . .
(
ξ̂cn − η̂cn

)
×
(
ξ̂d1 − η̂d1

)
. . .
(
ξ̂dm − η̂dm

)
f̂ d6ξ̂

×
(

∂

∂ξ̂c1
. . .

∂

∂ξ̂cn
ξa|η

)(
∂

∂ξ̂d1

. . .
∂

∂ξ̂dm
ξb|η
)
. (3.3.11)
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Chapter 3. The integral representation of moments

(a) The original coordinate system. (b) The transformed coordinate system.

Figure 3.1: An example of a coordinate transformation where the dipole moment

(the blue horizontal arrows) is zero in the original coordinate system, and non-zero

in the transformed coordinate system. This dipole is generated by the quadrupole

(the green error bars) when transforming coordinates.

Evaluating these integrals,

V ab =
∞∑
n=1

∞∑
m=1

1

n!

1

m!
V̂ c1...cnd1...dm

(
∂

∂ξ̂c1
. . .

∂

∂ξ̂cn
ξa|η

)(
∂

∂ξ̂d1

. . .
∂

∂ξ̂dm
ξb|η
)
.

(3.3.12)

This is the infinite sum of the coordinate transformation. Truncating this at the

quadrupole level gives only the n = 1,m = 1 term of the summation,

V ab = V̂ cd ∂ξ
a

∂ξ̂c

∣∣∣∣
η

∂ξb

∂ξ̂d

∣∣∣∣
η

. (3.3.13)

It is worth stressing that whilst the quadrupole appears to be tensorial, it is only

tensorial because of the truncation. If the truncation was at a higher order, the

transformation for the quadrupole would depend on the higher order moments.

Since the coordinate transformation of moments depends on higher order moments,

if a dipole moment is zero in one coordinate system it is not zero in all coordinate

systems (figure 3.1).

In the case where the time coordinate changes, Σ̂ 6= Σ. Because of this, it is no longer

possible to to relate the two manifolds together (figure 1.5). This means it is not

possible to calculate the coordinate transformation where the time slicing changes

using the integral representation of moments. In chapter 4 we will show a method
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3.3. Coordinate transformations of moments where the time slicing is preserved

of calculating the coordinate transformation when the time slicing changes, by

introducing a projection to transfer the moments from one time slicing to another.
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Chapter 4

The Ellis representation of moments

4.1 Defining Ellis multipoles

Rather than defining moments explicitly through spatial integrals (equation (3.1.7)),

an alternative representation of moments is through derivatives of Dirac delta

functions. This means that rather than modelling a macroparticle as just a Dirac

delta function and using a shape function to deposit charge (the cloud-in-cell

approach), the macroparticle is represented as a set of derivatives of Dirac delta

functions.

By using the language of the Schwartz distributions presented in this section, any

coordinate transformation of the moments can be calculated, including those mixing

space and time coordinates, which, as previously stated in section 3.3, cannot be

done through equation (3.1.7). This coordinate transformation is done by projecting

the moments from the original time slicing to the new time slicing.

Representing a multipole expansion using derivatives of a Dirac delta function is

known as the Ellis representation of a multipole [46, 69, 92]. This thesis uses a

specific adapted Ellis representation where there is a foliation given by the global

time coordinate. In terms of Dirac delta functions the expansion to the second order
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4.1. Defining Ellis multipoles

(the quadrupole), J a, is

J a =
1

2

∫
R
η̇a V bc

(
∂b∂cδ

(6)(ξ − η)
)
dt−

∫
R
δab X

bc
(
∂cδ

(6)(ξ − η)
)
dt

−
∫
R
η̇a V b

(
∂bδ

(6)(ξ − η)
)
dt+

∫
R
δab X

b δ(6)(ξ − η)dt+

∫
R
η̇a q δ(6)(ξ − η)dt (4.1.1)

where we recall that η is a fixed curve along E and that the differentiation is with

respect to ξ i.e. ∂b = ∂/∂ξb, and

δ(6)(ξ − η) = δ(ξ1 − η1) . . . δ(ξ6 − η6) (4.1.2)

and

V bc(t) =

∫
Σ

(ξb − ηb)(ξc − ηc) f d6ξ, V b(t) =

∫
Σ

(ξb − ηb) f d6ξ, q =

∫
Σ

f d6ξ,

Xab(t) = V ac∂cW
b, Xa(t) = V b∂bW

a +
1

2
V bc∂b∂cW

a.

(4.1.3)

Note q has no dependence on time due to the conservation of charge. In contrast

with the quadrupoles presented in [69], the coordinate system is not chosen such that

η is always along the origin. This means that equation (4.1.1) cannot be simplified

to remove the integrals.

The terms q, V a, Xa, V ab, and Xab are called the components of a multipole. As this

definition involves partial derivatives of Dirac delta functions, they are defined by

their action on test functions (φ0, . . . , φ6) which are the components of a covector,

and have compact support. Equation (4.1.1) acting on φa gives∫
E
J aφad

7ξ =
1

2

∫
R
η̇aV bc

(
∂c∂bφa|η(t)

)
dt+

∫
R
Xab

(
∂bφa|η(t)

)
dt

+

∫
R
η̇aV b

(
∂bφa|η(t)

)
dt+

∫
R
Xaφa|η(t)dt+

∫
R
η̇a q φa|η(t)dt. (4.1.4)

The evaluation of the test form at η will not be explicitly written in future

representations of J a, but is implicitly present.

An alternative representation of moments uses covariant derivatives, rather than

partial derivatives. This is known as the Dixon representation of a multipole [66,
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Chapter 4. The Ellis representation of moments

69, 93]. This is not possible here due to the lack of a natural covariant derivative

on E .

Recall that the components in (4.1.3) are only over (1, . . . , 6) (there are no terms

of the form V 0 or V 01). We shall see below that by writing a multipole in this

way the components of a multipole are unique. This is due to the adapted Ellis

representation used, with the specific time slicing.

The components of J a can be extracted using the following test forms:

q|t0 = lim
ε→0

1

ε

∫
E
J a δ0

a ψ

(
t− t0
ε

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ

V b|t0 = lim
ε→0

1

ε

∫
E
J a δ0

a ψ

(
t− t0
ε

)(
ξb − ηb

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ

V bc|t0 = lim
ε→0

2

ε

∫
E
J a δ0

a ψ

(
t− t0
ε

)(
ξb − ηb

)(
ξc − ηc

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ

(
Xb + qη̇b

)
|t0 = lim

ε→0

1

ε

∫
E
J a δba ψ

(
t− t0
ε

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ

(
Xbc + V bη̇c

)
|t0 = lim

ε→0

1

ε

∫
E
J a δca ψ

(
t− t0
ε

)(
ξb − ηb

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ

(4.1.5)

where ψ : R → R is a test function such that ψ1(0) = 1, it is flat about zero and∫
R ψ1(t)dt = 1, t0 is the point at which the moments are evaluated.

Proof. Only the V bc term and Xbc+V bη̇c term will be shown as the other terms can

be found similarly.

Consider J a acting on the V bc equation of (4.1.5). The only non-zero derivatives

are the ξb and ξc terms. There are three possibilities, each ξb or ξc can either not be

differentiated, differentiated once, or differentiated twice. If it is not differentiated,

then the evaluation at η gives (ξb− ηb)|η = ηb− ηb = 0. If it is differentiated exactly

once, then ∂a(ξb − ηb) = δba, a Kronecker delta. If this is differentiated twice, then
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4.1. Defining Ellis multipoles

the derivative of a Kronecker delta will vanish. Thus the only non zero term when

acting J a on the V bc equation of (4.1.5) is the term where the number of derivatives

matches the number of ξb terms. In this case this happens when there are exactly

two partial derivatives. This gives

lim
ε→0

2

ε

∫
E
J a δ0

a ψ

(
t− t0
ε

)(
ξb − ηb

)(
ξc − ηc

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ

= lim
ε→0

1

ε

∫
R
η̇0V bcψ

(
t− t0
ε

) 6∏
i=1

ψ(ξi|η − ηi)dt. (4.1.6)

Noting ξa|η = ηa, η̇0 = 1, V bc = V bc(t) and introducing the substitution t = t0 + εt′

gives

lim
ε→0

2

ε

∫
E
J a δ0

a ψ

(
t− t0
ε

)(
ξb − ηb

)(
ξc − ηc

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ

= lim
ε→0

∫
R
V bc(t0 + εt′)ψ (t′) (ψ(0))6dt′. (4.1.7)

Integrating and taking the limit, noting ψ(0) = 1 gives

lim
ε→0

2

ε

∫
E
J a δ0

a ψ

(
t− t0
ε

)(
ξb − ηb

)(
ξc − ηc

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ = V bc|t0 (4.1.8)

as required. In the extension to a higher order multipole, this still works as the δ0
a

term isolates only the V ab term.

To isolate the Xbc+V bη̇c term of J a, consider J a acting on the Xbc+V bη̇c equation

of (4.1.5),

lim
ε→0

1

ε

∫
E
J a δca ψ

(
t− t0
ε

)(
ξb − ηb

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ

= lim
ε→0

1

ε

∫
R
η̇aV bψ

(
t− t0
ε

) 6∏
i=1

ψ(ξi|η − ηi)dt

+ lim
ε→0

1

ε

∫
R
Xabψ

(
t− t0
ε

) 6∏
i=1

ψ(ξi|η − ηi)dt. (4.1.9)
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Chapter 4. The Ellis representation of moments

Repeating the previous process gives

lim
ε→0

1

ε

∫
E
J a δca ψ

(
t− t0
ε

)(
ξb − ηb

) 6∏
i=1

ψ
(
ξi − ηi

)
d7ξ =

(
Xbc + V bη̇c

)
|t0 .

(4.1.10)

Xab can be isolated after finding V a using the appropriate test form. Since

the components V a, V ab, Xa and Xab can all be extracted using test forms, the

components of J a are unique.

If the V 0 terms etc. were included in the multipole, then there can be multiple

components which correspond to the same multipole (the components are not

unique). To see this, consider the integral

∫
R

(
Uab + kaη̇b

)
(∂bφa|η) dt (4.1.11)

where ka are constants. Noting that η̇b∂bφa|η = dφa/dt|η, this integral evaluates as

∫
R

(
Uab + kaη̇b

)
(∂bφa|η) dt =

∫
R
Uab (∂bφa|η) dt+

∫
R
ka
(
η̇b∂bφa|η

)
dt (4.1.12)

=

∫
R
Uab (∂bφa|η) dt+

∫
R
ka

dφa
dt

∣∣∣∣
η

dt (4.1.13)

=

∫
R
Uab (∂bφa|η) dt−

∫
R

d

dt
(ka) φa|η dt (4.1.14)

=

∫
R
Uab (∂bφa|η) dt. (4.1.15)

This shows that if the indices run over (0, . . . , 6), there is a gauge-like invariance

that means it is impossible to uniquely define the moments. In the case ka are not

constants, this method can be used to project components into other components.

This will be used in section 4.4 when calculating the coordinate transformation, to

project the transformed multipole onto the new time slicing.
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4.2. Relating the components of Ellis multipoles and moments

4.2 Relating the components of Ellis multipoles and

moments

To show the relationship between the components of (4.1.4) and the moments of

f (equation (4.1.3)), the distribution function f is squeezed. This is the process of

representing a function using a Dirac delta function and the derivative of Dirac delta

functions . The moments of f are the coefficients of this expansion. By doing this,

it can be shown that the moments of the distribution function f naturally appear

in the components of the Ellis representation of a multipole.

Squeezing a distribution can be shown using the language of differential geometry.

Consider a smooth 6-form, J , that describes the flow of particles in a collisionless

plasma,

J = f iW d7ξ = fW aia d
7ξ = f dξ1...6 − fW adt ∧ iadξ1...6 (4.2.1)

where ∧ is the wedge product, iW is an internal contraction with respect to W , and

ia is an internal contraction with respect to ∂a,

dξ1...6 = dξ1 ∧ dξ2 ∧ dξ3 ∧ dξ4 ∧ dξ5 ∧ dξ6. (4.2.2)

The 6-form J is called the current 6-form, and is investigated in more detail in

chapter 8.

A one parameter family of smooth 6-forms Jε can be defined as

Jε|(t,ξ) =
1

ε6
f

(
t,
ξ − η
ε

)
dξ1...6

∣∣∣∣∣(
t,ξ

) − 1

ε6

(
f

(
t,
ξ − η
ε

)
W a

)
dt ∧ iadξ1...6

∣∣∣∣∣(
t,ξ

)
(4.2.3)

where ξ refers to the combination of all spatial coordinates. This is not the only

choice of one parameter family for J . This particularly choice of one parameter

family is used as it corresponds to the time slicing, since the dependence of Jε on

the global time coordinate is not affected by ε.
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Chapter 4. The Ellis representation of moments

By expanding Jε about ε = 0,

φ ∧ Jε = J̄ aφa +O(ε3) (4.2.4)

where φ is a test form (a form with compact support) φadξa, and

J̄ a =
1

2

∫
R
η̇a V̄ bc

(
∂b∂cδ

(6)(ξ − η)
)
dt−

∫
R
δab X̄

bc
(
∂cδ

(6)(ξ − η)
)
dt

−
∫
R
η̇a V̄ b

(
∂bδ

(6)(ξ − η)
)
dt+

∫
R
δab X̄

b δ(6)(ξ − η)dt

+

∫
R
η̇a q δ(6)(ξ − η)dt (4.2.5)

where

q =

∫
Σ

f
(
t, ξ̄
)
dξ̄1...6, V̄ a = ε

∫
Σ

f
(
t, ξ̄
) (
ξ̄a − ηa

)
dξ̄1...6,

V̄ ab = ε2

∫
Σ

f
(
t, ξ̄
) (
ξ̄a − ηa

) (
ξ̄b − ηb

)
dξ̄1...6,

X̄a = V̄ b(∂bW
a)|η +

1

2
V̄ bc(∂b∂cW

a)|η, X̄ab = V̄ bc(∂cW
a)|η,

(4.2.6)

where Σ is the spatial part of E . Note X̄a is inhomogeneous in ε, since V a contains

an ε term whilst V ab contains an ε2 term.

Proof. Begin by wedging Jε against a test form φ = φadξ
a,

φ ∧ Jε|(t,ξ) =
1

ε6
f

(
t,
ξ − η
ε

)
φ0 dt ∧ dξ1...6

∣∣∣∣∣(
t,ξ

)

− 1

ε6
f

(
t,
ξ − η
ε

)
W aφb dξ

b ∧ dt ∧ iadξ1...6

∣∣∣∣∣(
t,ξ

)

(4.2.7)

=
1

ε6
f

(
t,
ξ − η
ε

)
φ0 dt ∧ dξ1...6

∣∣∣∣∣(
t,ξ

)

+
1

ε6
f

(
t,
ξ − η
ε

)
W aφb dt ∧ dξb ∧ iadξ1...6

∣∣∣∣∣(
t,ξ

)

(4.2.8)

=
1

ε6
f

(
t,
ξ − η
ε

)
φ0

(
ξ
)
dt ∧ dξ1...6

∣∣∣∣∣(
t,ξ

)

+
1

ε6
f

(
t,
ξ − η
ε

)
W aφa dt ∧ dξ1...6

∣∣∣∣∣(
t,ξ

) .

(4.2.9)
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4.2. Relating the components of Ellis multipoles and moments

Making the substitution ξ̄ = (ξ−η)/ε, and making the evaluation at (t, ξ) implicitly,

φ ∧ Jε|(t,ξ) =
1

ε6
f
(
t, ξ̄
)
φ0

(
t, η + εξ̄

)
ε6dt ∧ dξ̄1...6

+
1

ε6
f
(
t, ξ̄
)
W a

(
η + εξ̄

)
φa

(
t, η + εξ̄

)
ε6dt ∧ dξ̄1...6

(4.2.10)

= f
(
t, ξ̄
)
φ0

(
t, η + εξ̄

)
dt ∧ dξ̄1...6

+ f
(
t, ξ̄
)
W a

(
t, η + εξ̄

)
φa

(
t, η + εξ̄

)
dt ∧ dξ̄1...6.

(4.2.11)

Taylor expanding φ0, φa, and W a around η, noting there are only spatial derivatives

as ξ0|η − η0 = t− t = 0,

φ ∧ Jε|(t,ξ) = f
(
t, ξ̄
)
φ0|η dt ∧ dξ̄1...6 + f

(
t, ξ̄
)
W a|ηφa|η dt ∧ dξ̄1...6

+ f
(
t, ξ̄
)
ε
(
ξ̄b − ηb

)
∂bφ0|η dt ∧ dξ̄1...6 + f

(
t, ξ̄
)
ε
(
ξ̄b − ηb

)
∂b(φaW

a)|η dt ∧ dξ̄1...6

+
1

2
f
(
t, ξ̄
)
ε2
(
ξ̄b − ηb

) (
ξ̄c − ηc

)
∂b∂cφ0|η dt ∧ dξ̄1...6

+
1

2
f
(
t, ξ̄
)
ε2
(
ξ̄b − ηb

) (
ξ̄c − ηc

)
∂b∂c(φaW

a)|η dt ∧ dξ̄1...6 +O(ε3). (4.2.12)

Next, integrate this over E , splitting E into R× Σ. The terms only depending on ξ̄

can be integrated out,∫
E
φ∧Jε|(t,ξ) =

∫
R

(∫
Σ

f
(
t, ξ̄
)
dξ̄1...6

)
φ0|η dt+

∫
R

(∫
Σ

f
(
t, ξ̄
)
dξ̄1...6

)
W a|ηφa|η dt

+

∫
R

(
ε

∫
Σ

f
(
t, ξ̄
) (
ξ̄b − ηb

)
dξ̄1...6

)
∂bφ0|η dt

+

∫
R

(
ε

∫
Σ

f
(
t, ξ̄
) (
ξ̄b − ηb

)
dξ̄1...6

)
∂b(φaW

a)|η dt

+
1

2

∫
R

(
ε2

∫
Σ

f
(
t, ξ̄
) (
ξ̄b − ηb

) (
ξ̄c − ηc

)
dξ̄1...6

)
∂b∂cφ0|η dt

+
1

2

∫
R

(
ε2

∫
Σ

f
(
t, ξ̄
) (
ξ̄b − ηb

) (
ξ̄c − ηc

)
dξ̄1...6

)
∂b∂c(φaW

a)|η dt+O(ε3). (4.2.13)

Using the definitions of q, V̄ a, and V̄ ab from equation (4.2.6),∫
E
φ ∧ Jε|(t,ξ) =

∫
R
qφ0|η dt+

∫
R
qW a|ηφa|η dt+

∫
R
V̄ b∂bφ0|η dt

+

∫
R
V̄ b∂b(φaW

a)|η dt+
1

2

∫
R
V̄ bc∂b∂cφ0|η dt+

1

2

∫
R
V̄ bc∂b∂c(φaW

a)|η dt+O(ε3).

(4.2.14)
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Chapter 4. The Ellis representation of moments

Next, expand the partial derivatives, and note W a|η = η̇a,∫
E
φ ∧ Jε|(t,ξ) =

∫
R
qφ0|η dt+

∫
R
qη̇aφa|η dt+

∫
R
V̄ b∂bφ0|η dt

+

∫
R
V̄ bη̇a∂bφa|η dt+

∫
R
V̄ bφa|η(∂bW a)|η dt+

1

2

∫
R
V̄ bc∂b∂cφ0|η dt

+
1

2

∫
R
V̄ bcη̇a∂b∂cφa|η dt+

∫
R
V̄ bc(∂cW

a)|η(∂bφa)|η dt

+
1

2

∫
R
V̄ bcφa|η(∂b∂cW a)|η dt+O(ε3). (4.2.15)

Recalling the definitions of X̄a and X̄ab from equation (4.2.6),∫
E
φ ∧ Jε|(t,ξ) =

∫
R
qφ0|η dt+

∫
R
qη̇aφa|η dt+

∫
R
V̄ b∂bφ0|η dt

+

∫
R
V̄ bη̇a∂bφa|η dt+

∫
R
X̄aφa|η dt+

1

2

∫
R
V̄ bc∂b∂cφ0|η dt

+
1

2

∫
R
V̄ bcη̇a∂b∂cφa|η dt+

1

2

∫
R
X̄ac(∂cφa)|η dt+O(ε3). (4.2.16)

Recalling η̇0 = 1, this can be further simplified,∫
E
φ ∧ Jε|(t,ξ) =

∫
R
qφ0|η dt+

∫
R
qη̇aφa|η dt+

∫
R
V̄ bη̇a∂bφa|η dt+

∫
R
X̄aφa|η dt

+
1

2

∫
R
V̄ bcη̇a∂b∂cφa|η dt+

∫
R
X̄ac(∂cφa)|η dt+O(ε3). (4.2.17)

This is the same as J̄ aφa, as required.

Thus there is a close relationship between the components of a multipole and the

moments of f .

4.3 Dynamics of moments

4.3.1 Time evolution of moments

Having defined the Ellis representation of the quadrupole, we are now in a position

to calculate the dynamics of the Ellis quadrupole. The transport equations for J a

given by equation (4.1.1) are found by considering the transport equations for Ja.
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4.3. Dynamics of moments

Since they are linear, they can be directly applied to distributions. The conservation

of charge is given by

∂aJ a = 0, (4.3.1)

and the Vlasov equation is given by

J aW b − J bW a = 0. (4.3.2)

These can be used to find the dynamics of the moments. The transport equations

can also be defined by their actions on test forms λ and αab,∫
E
J a∂aλ d

7ξ = 0,

∫
E
J aW bαab d

7ξ = 0 (4.3.3)

where αab is antisymmetric, both λ and αab have compact support, and recall that

E is the time-phase space.

Proof. Acting ∂aJ a on a test function λ and integrating by parts,∫
E
∂aJ aλ d7ξ = −

∫
E
J a∂aλ d

7ξ (4.3.4)

so these conditions are equivalent. For the Vlasov equation, consider

J aW bαab =
1

2

(
J aW b + J bW a

)
αab +

1

2

(
J aW b − J bW a

)
αab. (4.3.5)

Since αab is antisymmetric, the contraction (J aW b + J bW a)αab vanishes, leaving

J aW bαab =
1

2

(
J aW b − J bW a

)
αab (4.3.6)

hence the second part of (4.3.3).

The transport equations for J a (equation (4.3.3)) can be used to find the dynamics

of the moments, which are given by

dV ab

dt
= Xab +Xba,

dV a

dt
= Xa,

dq

dt
= 0, (4.3.7a)

Xab = V bc∂cW
a, Xa = V b∂bW

a +
1

2
V bc∂b∂cW

a. (4.3.7b)
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Proof. Begin by considering the conservation of charge (equation (4.3.1)), and act

on a test form λ,∫
E
J a∂aλd

7ξ =
1

2

∫
R
V abη̇c∂a∂b∂cλdt+

∫
R
Xab∂b∂aλdt+

∫
R
V aη̇b∂a∂bλdt

+

∫
R
Xa∂aλdt+

∫
R
qη̇a∂aλdt = 0. (4.3.8)

From here, note

η̇a
∂λ

∂ξa
=
dλ

dt

∣∣∣∣
η

(4.3.9)

so integration by parts can be used to pass a derivative onto the V a and V ab terms.

This gives∫
E
J a∂aλd

7ξ = −1

2

∫
R

dV ab

dt
∂a∂bλdt+

∫
R
Xab∂b∂aλdt−

∫
R

dV a

dt
∂aλdt

+

∫
R
Xa∂aλdt+

∫
R

dq

dt
λdt = 0. (4.3.10)

Collecting terms based on derivatives of λ gives the first line of (4.3.7).

To consider the effects of the Vlasov equation (equation (4.3.2)), act J a on W bαab,

and expand the partial derivatives,∫
E
J aW bαabd

7ξ =
1

2

∫
R
V cbη̇a

(
αad∂b∂cW

d + ∂bαad∂cW
d

+ ∂cαad∂bW
d +W d∂b∂cαad

)
dt+

∫
R
Xab (W c∂bαac + αac∂bW

c) dt

+

∫
R
V bη̇a (W c∂bαac + αac∂bW

c) dt+

∫
R
XaW bαabdt+

∫
R
qW bη̇cαbcdt. (4.3.11)

Next, look at terms of the form

W aη̇bαab, (4.3.12)

recalling the implicit evaluation at η, W |η = η̇a. Since αab is antisymmetric,

W aη̇bαab = 0. (4.3.13)

This is true for the derivatives of αab as well, since the derivatives are also

antisymmetric. This means terms of the formW dη̇a∂b∂cαad etc. vanish. Rearranging
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the remaining terms in derivatives of αab gives∫
E
J aW bαabd

7ξ =

∫
R

(
V cb∂cW

a −Xab
)
η̇d∂bαda dt+

∫
R

(
V cb∂cW

0
)
η̇d∂bαd0 dt

+

∫
R
Xab∂bW

dαad dt+

∫
R

(
V b∂bW

a +
1

2
V bc∂b∂cW

a −Xa

)
η̇dαda dt

+

∫
R

(
1

2
V bc∂b∂cW

0 + V b∂bW
0

)
η̇dαd0 dt (4.3.14)

where the minus sign in the Xa and Xab terms comes from flipping the αab indices.

Next, note that calculations are in a frame where W 0 = 1, so derivatives of W 0

vanish. Two of the remaining terms give the required differential equations,

Xab = V bc∂cW
a, (4.3.15)

Xa = V b∂bW
a +

1

2
V bc∂b∂cW

a. (4.3.16)

Lastly, for the remaining integral, the third integral of equation (4.3.14), taking the

antisymmetric part of Xab∂bW
d gives

Xab∂bW
dαad =

(
Xab∂bW

d −Xdb∂bW
a
)
αad (4.3.17)

=
(
V bc∂bW

a∂cW
d − V cb∂cW

a∂bW
d
)
αad (4.3.18)

= 0. (4.3.19)

So the differential equations in the bottom line of (4.3.7) uniquely solve the system,

giving the equations of motion for the moments through the Ellis representation of

multipoles.

As a corollary, inserting equation (4.3.7b) into equation (4.3.7a) give equations

(3.2.26) and (3.2.27), so the Ellis representation can also be used to find the

differential equations for the moments. These differential equations are the same

as directly differentiating (3.1.7).

Whilst the integral representation and Ellis representation find the same dynamics

of the moments, there is a different philosophy to each approach. The method
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Chapter 4. The Ellis representation of moments

presented in section 3.2 gives an infinite Taylor expansion, and picks the truncation

point at the end of the method. Alternatively, the Ellis representation makes the

choice of truncation when first performing the multipole expansion to a specific

order. This order of expansion is then kept throughout. Whilst this work only

carries out this expansion to quadrupole order, it is simple to extend this result to

higher orders.

4.3.2 Comparison with transition matrices for a beam pass-

ing through a quadrupole magnet

Before modelling the moments numerically, this section analyses the differential

equations to see if the models give the expected trends when comparing them to

existing, simpler methods.

In a particle accelerator, the dynamics of individual particles through an element of a

particle accelerator (drift space, dipole magnet, quadrupole magnet, RF cavity, etc.)

are calculated using transition matrices. Transition matrices approximate the final

position and velocity of a particle through an accelerator element. This formulation

can be done in (3+3)D position-velocity phase space, but for ease of reading, only

one spatial and one velocity dimension will be considered. This position and velocity

can be denoted as a column vector, with their final state being given after passing

through a transition matrix T ,xfin
dxfin
ds

 = T

xinit
dxinit
ds

 (4.3.20)

where s is a global parameter defining position along the beamline, and dx/ds gives

the rate of change of the particle’s position with respect to s along the beamline.

This quantity will be related to velocity later in this section. For more information

on how these matrices are formulated, the reader is directed to references [94] and

[95]. Transition matrices are different for each accelerator element.
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A focussing quadrupole magnet has the magnetic field

Bquad =
(
Gy Gx 0

)
(4.3.21)

where G > 0. This has the transition matrix

Tquad =

 cos(
√
Ks) 1√

K
sin(
√
Ks)

−
√
K sin(

√
Ks) cos(

√
Ks)

 (4.3.22)

where K = qG/mγ, and s is the parameter of the beamline.

The quadrupole moments, Ξ, of a bunch of n particles, each with individual position

xi and velocity dxi/ds, can be calculated as

Ξ =
n∑
i=1

 xi

dxi
ds

 xi

dxi
ds

T

=

Ξ11 Ξ12

Ξ12 Ξ22

 . (4.3.23)

Thus the moments after the bunch has passed through an accelerator element can

be found using the transition matrices,

Ξfin =
n∑
i=1

T
xi,init

dxi,init
ds

T
xi,init

dxi,init
ds

T

(4.3.24)

=
n∑
i=1

T

xi,init
dxi,init
ds

xi,init
dxi,init
ds

T

T T (4.3.25)

= T Ξinit T
T (4.3.26)

so the dynamics of the moments of a bunch can also be found through the transition

matrices. These equations give the moments after an accelerator element of finite

thickness has been travelled through. This can be turned into an infinitesimal rate of

change by considering differentiation from first principles as an accelerator element

becomes infinitely thin,
dΞ

ds
= lim

s→0

Ξfin − Ξinit

s
. (4.3.27)

Using this equation allows the rates of change for the moments to be found through

the transition matrix approach. These should match, to leading order, those found
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through the differential equations (3.2.26) and (3.2.27).

For the quadrupole magnet,

dΞ

ds
=

 2Ξ12 Ξ22 −KΞ11

Ξ22 −KΞ11 −2KΞ12

 . (4.3.28)

Proof. Using equation (4.3.26) with the focussing quadrupole magnet transition

matrix gives

Ξ11
fin = cos2(

√
Ks)Ξ11 + sin2(

√
Ks)

Ξ22

K
+

2√
K

cos(
√
Ks) sin(

√
Ks)Ξ12 (4.3.29)

Ξ12
fin =

(
cos2(

√
Ks)− sin2(

√
Ks)

)
Ξ12 +

sin(
√
Ks) cos(

√
Ks)√

K
Ξ22

−
√
K sin(

√
Ks) cos(

√
Ks)Ξ11

(4.3.30)

Ξ22
fin = K sin2(

√
Ks)Ξ11 + cos2(

√
Ks)Ξ22 − 2

√
K sin(

√
Ks) cos(

√
Ks)Ξ12.

(4.3.31)

To find the rate of change of the moments, use equation (4.3.27). To find the limits,

use the standard results that for small s, cos(
√
Ks) ≈ 1, sin(

√
Ks) ≈

√
Ks, thus

dΞ11

ds
= lim

s→0

1

s

(
Ξ11 +

s2Ξ22

K
+ 2sΞ14

)
− Ξ11

s
= 2Ξ12 (4.3.32)

dΞ12

ds
= lim

s→0

1

s

(
Ξ12 −Ks2 Ξ12 + sΞ22 −KsΞ11

)
− Ξ12

s
= Ξ22 −K Ξ11 (4.3.33)

dΞ22

ds
= lim

s→0

1

s

(
K2s2 Ξ11 + Ξ22 − 2KsΞ12

)
− Ξ22

s
= −2K Ξ12. (4.3.34)

These are the leading order contributions to the transition matrices for the moments.

This can be compared to the rates of change found through tracking the moments

directly. There are two ways to calculate the dynamics of the moments from

equations (3.2.26) and (3.2.27). Firstly, the Vlasov equation in Frenet-Serret

coordinates (a coordinate system defined relative to the ideal orbit) could be

found and the moment tracking equations could be calculated directly in the same
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4.3. Dynamics of moments

coordinate system as the particle accelerator. Alternatively, since the ideal orbit

through a pure quadrupole magnet is a straight line, the Vlasov field calculated in

section 2.2 can be used, and the transformation for the moments between the two

coordinate systems calculated at the end. This latter approach is what will be done

here.

In the quadrupole magnetic field, the rates of change for the V 11, V 14, and V 44

moments are given by

dV 11

dt
= 2V 14

(
1

γ
− u2

x

γ3

)
− 2V 15uyux

γ3
− 2V 16uzux

γ3
(4.3.35)

dV 14

dt
= −V 11Kuz +

V 14Kxuxuz
γ2

+
V 15Kuxuyx

γ2
+ V 16K

(
xu2

z

γ2
− x

γ

)
+ V 44

(
1

γ
− u2

x

γ3

)
− V 45uyux

γ3
− V 46uzux

γ3

(4.3.36)

dV 44

dt
= −2V 14Kuz +

2V 44Kuzuxx

γ2
+

2V 45Kuzuyx

γ2
+ 2V 46K

(
u2
zx

γ2
− x
)
.

(4.3.37)

These expressions were found using the symbolic algebra software Maple.

To compare these expressions to those found using the transition matrices, recall

that the moments are taken along the ideal orbit, so x, ux, and uy are zero, and it

is assumed that uz ≈ γ i.e. the particles are ultra-relativistic. This gives

dV 11

dt
=

2V 14

γ
(4.3.38)

dV 14

dt
=
V 44

γ
− V 11Kγ (4.3.39)

dV 44

dt
= −2V 14Kγ. (4.3.40)

To compare these two results, note that the velocities in the transition matrix

approach are dx/ds, rather than ux. To make comparisons between the different
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Chapter 4. The Ellis representation of moments

methods, introduce the following substitutions,

d

ds
= c

d

dt
=

d

dt
,

dx

ds
=
dx

dt
=
ux
γ
, Ξ11 = V 11, Ξ12 =

V 14

γ
, Ξ22 =

V 44

γ2
.

(4.3.41)

These equalities hold for dV/ds since γ is constant in magnetic fields. Inserting

these into dΞ/ds (equation (4.3.28)) gives

dΞ11

ds
= 2Ξ14 → dV 11

dt
=

2V 14

γ
(4.3.42)

dΞ14

ds
= Ξ44 −K Ξ11 → 1

γ

dV 14

dt
=
V 44

γ2
−KV 11 → dV 14

dt
=
V 44

γ
−KγV 11 (4.3.43)

dΞ44

ds
= −2K Ξ14 → 1

γ2

dV 44

dt
= −2KV 14

γ
→ dV 44

dt
= 2KV 14γ (4.3.44)

which is equivalent to equations (4.3.35), (4.3.36), and (4.3.37), thus the transition

matrix approach and moment tracking approach give the same results.

For dipole magnets (magnets that bend the trajectory radially) the coordinate

systems are too distinct for this approach to work. This is because the moment

tracking method uses Cartesian coordinates, so bending the trajectory in a dipole

magnet involves mixing z and x coordinates. In contrast, the transition matrix

approach uses Frenet-Serret coordinates, which are defined relative to the centre

of the bunch, so the bending from the dipole magnetic moment is not considered.

Whilst it may be possible to use this approach to compare the moment tracking with

other transition matrices, this is only useful as a test that the theory gives existing

results. It is instead more important to test this code numerically, to see if the extra

effects included through using more complex electromagnetic and gravitational fields

give new results.
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4.3. Dynamics of moments

4.3.3 Conservation of non-relativistic emittance

The volume a bunch of particles occupies in phase space is known as the emittance.

This emittance, ε, is the determinant of the quadrupole moments, and is defined in

the non-relativistic limit as

ε = det(V ) (4.3.45)

where V is the 6 × 6 matrix of quadrupole moments given by V ab. In a purely

conservative system in flat space, emittance is conserved. The conservation of

emittance follows from Liouville’s theorem [96]. In an arbitrary coordinate system,

emittance will not necessarily be conserved. Using the differential equations for the

moments, the rate of change of emittance is given by

dε

dt
= 2det(V )∂cW

c. (4.3.46)

Proof. The rate of change of emittance can be shown by differentiating ε with respect

to time,

dε

dt
=

d

dt
det(V ) (4.3.47)

= det(V )(V −1)ab
dV ab

dt
(4.3.48)

= det(V )(V −1)ab
(
V ac∂cW

b + V ac∂cW
b
)

(4.3.49)

= det(V )
(
δcb∂cW

b + δac∂cW
b
)

(4.3.50)

= 2det(V )∂cW
c. (4.3.51)

as required.

Recall equation (2.3.5), in the system of a linear particle accelerator where it is

assumed the system is non-relativistic, |det(g)| = 1, so equation (2.3.5) becomes

∂cW
c = 0, hence emittance is constant under these assumptions. For cases where

the effects of γ are important, then the choice of coordinate system becomes more

important. Switching between the Frenet-Serret coordinate system, where this

definition of emittance is defined, and the lab time coordinate system used in the
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moment tracking, is not straightforward. In cases where curvature matters, i.e.

det(g) 6= 1, then in general emittance will not be conserved, since phase space

volume is not conserved in curved spacetimes.

4.3.4 Limitations of moment tracking

Moment tracking will not work well when the field around η is not accurately

modelled by a small number of derivatives (figure 4.1). This is due to the truncation

error. Specifically, when modelling only up to quadrupole moments, the dipole

moment will not be modelled well when the field cannot be accurately modelled by

only two derivatives. The quadrupole moments will not be modelled well when the

field cannot be modelled by only a single derivative. As an example of this, consider

a sextupole magnetic field (recalling that the naming convention for magnetic field

multipoles scales as 2k), given by

Bsextupole =
(
Sxy, S

2
(x2 − y2) , 0

)
(4.3.52)

where S is the sextupole field strength. This field is quadratic, which means that,

when evaluated along the ideal orbit η, where x = y = 0, the field and its first

derivatives vanish. This means there is no contribution to the quadrupole moments

from the sextupole magnetic field.

This effect will be studied in more detail in chapter 5 where the effects of the

truncation on the error convergence will be examined.
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4.4. Coordinate transformations of multipoles where the time slicing changes

(a) An electric field where moment

tracking will work well.

(b) An electric field where moment

tracking will not work well.

Figure 4.1: Examples of electric fields where the moment tracking method will work

well and will not work well. When the fields (the red curves) rapidly change across

the extent the macroparticle represents, (the support of f , indicated by the horizontal

blue line), the moment tracking method will not work well.

4.4 Coordinate transformations of multipoles where

the time slicing changes

Having introduced the Ellis representation of the quadrupole, we are now in a

position to calculate the coordinate transformations where the time slicing changes.

As previously stated, this cannot be done using the integral representation of

moments. This means that equations (4.4.22) and (4.4.23), below, are a new result.

Consider a new coordinate system denoted by hatted coordinates (t̂, ξ̂â), where the

time coordinate is changed i.e. t̂(t, ξa) is a function of both t and ξa. Hatted indices

will be used to remind the reader that the quantity is in the new coordinate system.

To find the transformation rules of a multipole, it is assumed J a transforms as a

tensor density, i.e.

Ĵ b̂ = J a ∂ξ̂
b̂

∂ξa
d7ξ

d7ξ̂
(4.4.1)

such that ∫
E
J aφad

7ξ =

∫
E
Ĵ âφ̂âd

7ξ̂ (4.4.2)

is an invariant quantity.
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Since η̇a are functions on a world line, they transform as

˙̂ηâ =
∂ξ̂â

∂ξb
dt̂

dt
η̇b (4.4.3)

where
˙̂ηâ(t̂) =

dη̂â(t̂)

dt̂
. (4.4.4)

Recall φa and ∂a are tensorial, so the transformation rules for these are

φ̂â =
∂ξb

∂ξ̂â
φb,

∂

∂ξ̂â
=
∂ξb

∂ξ̂a
∂

∂ξb
. (4.4.5)

Note that although a quantity may only have indices over (1, . . . , 6) in the original

coordinate system, when it is transformed into the new new coordinate system its

indices will run over (0, . . . , 6). This means that the moments will have indices over

(0, . . . , 6) in the transformed coordinate system, and, as such, the components will

not be unique (as shown in section 4.1). Since the components are not unique, they

will not be denoted with V a and Xa etc., and instead denoted with Ua and Y a

respectively. Using these transformation rules gives∫
E
J aφad

7ξ =

∫
E
Ĵ âφ̂âd

7ξ̂ =
1

2

∫
R

˙̂ηâÛ ĉb̂∂̂b̂∂̂ĉ(φ̂â)dt̂+

∫
R
Ŷ âb̂∂̂ĉφ̂âdt̂

+

∫
R

˙̂ηâÛ b̂∂̂b̂φ̂âdt+

∫
R
Ŷ âφ̂âdt̂+

∫
R

˙̂ηâqφ̂âdt̂ (4.4.6)

where ∂̂a = ∂/∂ξ̂â, and the components of Ĵ â are given by

Û b̂ĉ = V deAb̂dA
ĉ
e,

Ŷ ĉd̂ =

(
XabAĉbA

d̂
a +

1

2
V ef η̇a∂a

(
Ad̂fA

ĉ
e

)) dt

dt̂
,

Û â = V bAâb +
1

2
V bcAâbc,

Ŷ ĉ =

(
XdAĉd + V bη̇a∂a(A

ĉ
b) +XabAĉab +

1

2
V deη̇a∂a

(
Aĉde
)) dt

dt̂

(4.4.7)

and the notation

Aâc =
∂ξ̂â

∂ξc
, Aâbc =

∂2ξ̂â

∂ξb∂ξc
(4.4.8)

is used. A hatted index is used to make the Aâc notation distinct from Acâ.
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Proof. Proceed term by term using the transformation rules for η̇a (equation (4.4.3)),

and ∂a and φa (equation (4.4.5)). For the V ab term,∫
R
V bcη̇a∂b∂cφadt =

∫
R
V bc ˙̂ηd̂Aa

d̂

dt

dt̂
Aêb∂̂ê

(
Af̂c ∂̂f̂

(
Aĝaφ̂ĝ

)) dt
dt̂
dt̂. (4.4.9)

Performing these derivatives gives∫
R
V bcη̇a∂b∂cφadt =

∫
R
V bc ˙̂ηd̂Aa

d̂

dt

dt̂
Aĝabcφ̂ĝ

dt

dt̂
dt̂+

∫
R
V bc ˙̂ηd̂Aa

d̂

dt

dt̂
AêbA

ĝ
ac∂̂ê(φ̂ĝ)

dt

dt̂
dt̂

+

∫
R
V bc ˙̂ηd̂Aa

d̂

dt

dt̂
AêcA

f̂
ab∂̂ê(φ̂f̂ )

dt

dt̂
dt̂+

∫
R
V bc ˙̂ηd̂Aa

d̂

dt

dt̂
AêbA

f̂
cA

ĝ
a∂̂ê∂̂f̂ (φ̂ĝ)

dt

dt̂
dt̂

+

∫
R
V bc ˙̂ηd̂Aa

d̂

dt

dt̂
Af̂cbA

h
f̂
Aĝahφ̂ĝ

dt

dt̂
dt̂+

∫
R
V bc ˙̂ηd̂Aa

d̂

dt

dt̂
Af̂cbA

ĝ
a∂̂f̂ (φ̂ĝ)

dt

dt̂
dt̂. (4.4.10)

Simplifying these terms down∫
R
V bcη̇a∂b∂cφadt =

∫
R
V bcη̇a∂a

(
Aĝbc

)
φ̂ĝ
dt

dt̂
dt̂+

∫
R
V bcAêbη̇

a∂a
(
Aĝc
)
∂̂ê(φ̂ĝ)

dt

dt̂
dt̂

+

∫
R
V bcAêcη̇

a∂a

(
Af̂b

)
∂̂ê(φ̂f̂ )

dt

dt̂
dt̂+

∫
R
V bc ˙̂ηd̂AêbA

f̂
c ∂̂ê∂̂f̂ (φ̂d̂)dt̂+

∫
R
V bc ˙̂ηd̂Af̂cb∂̂f̂ (φ̂d̂)dt̂.

(4.4.11)

For the Xab term,∫
R
Xab∂bφadt =

∫
R
XabAĉb∂̂ĉ

(
Ad̂aφ̂d̂

) dt
dt̂
dt̂ (4.4.12)

=

∫
R
XabAd̂abφ̂d̂

dt

dt̂
dt̂+

∫
R
XabAĉbA

d̂
a∂̂ĉ(φ̂d̂)

dt

dt̂
dt̂. (4.4.13)

For the V a term,∫
R
η̇aV b∂bφadt =

∫
R

˙̂ηĉAaĉ
dt̂

dt
V bAd̂b ∂̂d̂

(
Aêaφ̂ê

) dt̂
dt
dt (4.4.14)

=

∫
R
η̇aV bAêbaφ̂ê

dt̂

dt
dt+

∫
R

˙̂ηĉAaĉV
bAd̂bA

ê
a∂̂d̂φ̂êdt (4.4.15)

=

∫
R
V bη̇a∂a(A

ê
c)φ̂ê

dt̂

dt
dt+

∫
R

˙̂ηĉV bAd̂b ∂̂d̂φ̂ĉdt. (4.4.16)

For the Xa term, ∫
R
Xdφddt =

∫
R
XdAĉdφ̂ĉ

dt̂

dt
dt. (4.4.17)
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Summing all these terms together gives the transformed quadrupole,∫
E
J aφad

7ξ =

∫
E
Ĵ âφ̂âd

7ξ̂ =
1

2

∫
R
V bc ˙̂ηd̂AêbA

f̂
c ∂̂ê∂̂f̂ (φ̂d̂)dt̂

+

∫
R

(
XabAĉbA

d̂
a +

1

2
V efAĉeη̇

a∂a

(
Ad̂f

)
+

1

2
V efAd̂f η̇

a∂a
(
Aĉe
))

∂̂ĉ(φ̂d̂)
dt

dt̂
dt̂

+

∫
R

˙̂ηâ
(
V bAd̂b +

1

2
V bcAâcb

)
∂̂d̂φ̂âdt

+

∫
R

(
XdAĉd + V bη̇a∂a(A

ĉ
b) +XabAĉab +

1

2
V deη̇a∂a

(
Aĉde
))

φ̂ĉ
dt

dt̂
dt̂. (4.4.18)

This gives equation (4.4.7) as required, where the components of the quadrupole in

the new coordinate system are no longer unique.

As previously stated, Ua, Uab, Y a, and Y ab have indices ranging over (0, . . . , 6), not

just (1, . . . , 6). As shown in section 4.1, for the components of a multipole to

be unique, the components must only range over (1, . . . , 6). The reason that the

multipole contains terms of the form U0 etc. is because it is still adapted to the

time slicing t from the original coordinate system. To adapt the components to the

new time slicing, and find the full coordinate transformation, they are projected

onto the new time coordinate t̂. Consider differentiating along a world line,

∂η̇ = η̇a∂a = ∂0 + η̇a∂a. (4.4.19)

By rearranging this for ∂0, these terms are projected onto components along ∂a, and

components along the world line,

∂0 = ∂η̇ − η̇a∂a. (4.4.20)

Since Ua are functions along a world line,

∂η̇U
a =

dUa

dt
(4.4.21)

with similar relations for Uab, Y a, Y ab, and φ|η. By using this projection, terms like

U00 get projected into terms in V̂ ab, X̂ab, V̂ a, and X̂a.
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Using this projection allows multipoles to be adapted to the time slicing t̂ in the

new coordinate system, i.e. adapted such that the components indices only range

over (1, . . . , 6), giving the full coordinate transformation. The new moments are

V̂ âb̂ = V cdAâcA
b̂
d − η̇eV cdA0̂

cA
b̂
dA

â
e

dt̂

dt

− η̇eV cdAâcA
0̂
dA

b̂
e

dt̂

dt
+ η̇eη̇fV cdA0̂

cA
0̂
dA

â
eA

b̂
f

(
dt̂

dt

)2

,

(4.4.22)

V̂ â = V bAâb +
1

2
V bcAâbc − η̇dV bA0̂

bA
â
d

dt̂

dt
− 1

2
η̇dV bcA0̂

bcA
â
d

dt̂

dt

+
1

2
V bcdt

dt̂

d

dt

(
η̇bAâdA

0̂
bA

0̂
c

dt̂

dt

)
+

1

2
η̇b
dV bc

dt
AâbA

0̂
bA

0̂
c

−
(
XcbAâbA

0̂
c +

1

2
V ef η̇c∂c

(
A0̂
fA

â
e

)) dt

dt̂
.

(4.4.23)

To calculate terms of the form dAâd/dt, recall the implicit evaluation at η, so

dAâd
dt

∣∣∣∣∣
η

= η̇b∂bA
â
d. (4.4.24)

Additionally, note
dη̇a

dt
=
d2ηa(t)

dt2
(4.4.25)

which, in contrast to η̇a, does not transform as a vector.

Similar terms exist for X̂ âb̂ and X̂ â such that (4.3.7) is still satisfied, and are given

by

X̂ âb̂ =

(
XcdAâcA

b̂
d +

1

2
V efAâe η̇

c∂c

(
Ab̂f

)
+

1

2
V efAb̂f η̇

c∂c
(
Aâe
)) dt

dt̂

−
(
XcdAâcA

0̂
d +

1

2
V efAâe η̇

c∂c

(
A0̂
f

)
+

1

2
V efA0̂

f η̇
c∂c
(
Aâe
))

η̇gAb̂g

−
(
XcdA0̂

cA
b̂
d +

1

2
V efA0̂

eη̇
c∂c

(
Ab̂f

)
+

1

2
V efAb̂f η̇

c∂c

(
A0̂
e

))
η̇gAâg

+

(
XcdA0̂

cA
0̂
d +

1

2
V efA0̂

eη̇
c∂c

(
A0̂
f

)
+

1

2
V efA0̂

f η̇
c∂c

(
A0̂
e

))
η̇gη̇hAâgA

b̂
h

dt̂

dt

+ η̇fV deA0̂
dA

0̂
eA

b̂
f

d

dt

(
η̇gAâg

dt̂

dt

)
− V deAb̂dA

0̂
e

dt

dt̂

d

dt

(
η̇cAâc

dt̂

dt

)
, (4.4.26)
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and

X̂ â =
(
XdAâd + V bη̇e∂e(A

â
b ) +XcbAâcb +

1

2
V deη̇c∂c

(
Aâde

)) dt

dt̂

− d

dt

(
η̇eV bA0̂

bA
â
e

dt̂

dt
+

1

2
η̇eV bcA0̂

bcA
â
e

dt̂

dt

)
+

1

2

(
dt

dt̂

)2
d2

dt2

(
η̇fV deA0̂

dA
0̂
eA

â
f

dt̂

dt

)
+

1

2

d2t

dt̂2
d

dt

(
η̇fV deA0̂

dA
0̂
eA

â
f

dt̂

dt

)
− dt

dt̂

d

dt

((
XcdAâdA

0̂
c +

1

2
V efAâe η̇

c∂c

(
A0̂
f

)
+

1

2
V efA0̂

f η̇
c∂c
(
Aâe
)) dt

dt̂

)
. (4.4.27)

These terms can also be found using equation (4.1.3) in the new coordinate system.

Proof. Consider the non-unique quadrupole, where, as this is all in the new

coordinate system, hats have been removed from the indices temporarily to aid

readability,∫
E
J aφad

7ξ =
1

2

∫
R
η̇aU bc∂b∂cφadt+

∫
R
Y ab∂bφadt

+

∫
R
η̇aU b∂bφadt+

∫
R
Y aφadt+

∫
R
η̇aqφadt. (4.4.28)

Use the projection (equation (4.4.20)) and proceed term by term. Starting with the

Uab term, noting the symmetry of Uab,∫
R
η̇aU bc∂b∂cφadt =

∫
R
η̇aU bc∂b∂cφadt

+ 2

∫
R
η̇aU b0∂b∂0φadt+

∫
R
η̇aU00∂0∂0φadt

(4.4.29)

=

∫
R
η̇aU bc∂b∂cφadt+ 2

∫
R
η̇aU b0∂η̇∂bφadt

− 2

∫
R
η̇aη̇dU b0∂b∂dφadt+

∫
R
η̇aU00∂η̇∂0φadt

−
∫
R
η̇aη̇bU00∂0∂bφadt.

(4.4.30)

Recalling that ∂η̇φa = dφa/dt, and then integrating by parts gives∫
R
η̇aU bc∂b∂cφadt =

∫
R
η̇a
(
U bc − 2η̇cU c0

)
∂b∂cφadt

− 2

∫
R

d

dt

(
η̇aU b0

)
∂bφadt+

∫
R

d

dt

(
η̇aU00

)
∂0φadt

−
∫
R
η̇aη̇bU00∂b∂0φadt. (4.4.31)
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Projecting the remaining ∂0 terms gives

∫
R
η̇aU bc∂b∂cφadt =

∫
R
η̇a
(
U bc − 2η̇cU c0

)
∂b∂cφadt− 2

∫
R

d

dt

(
η̇aU b0

)
∂bφadt

+

∫
R

d

dt

(
η̇aU00

)
∂η̇φadt+

∫
R

d

dt

(
η̇aU00

)
η̇b∂bφadt

−
∫
R
η̇aη̇bU00∂η̇∂bφadt+

∫
R
η̇aη̇bη̇cU00∂b∂cφadt. (4.4.32)

Integrating by parts and simplifying,

∫
R
η̇aU bc∂b∂cφadt =

∫
R
η̇a
(
U bc − 2η̇cU c0 + η̇bη̇cU00

)
∂b∂cφadt

− 2

∫
R

d

dt

(
η̇aU b0

)
∂bφadt+

∫
R

d2

dt2
(
η̇aU00

)
φadt

+

∫
R

d

dt

(
η̇aU00

)
η̇b∂bφadt−

∫
R

d

dt

(
η̇aη̇bU00

)
∂bφadt. (4.4.33)

For the Y ab term,

∫
R
Y ab∂bφadt =

∫
R
Y ab∂bφadt+

∫
R
Y a0∂0φadt (4.4.34)

=

∫
R
Y ab∂bφadt+

∫
R
Y a0∂η̇φadt−

∫
R
Y a0η̇b∂bφadt (4.4.35)

=

∫
R

(
Y ab − Y a0η̇b

)
∂bφadt−

∫
R

d

dt
Y a0φadt. (4.4.36)

For the Ua term,

∫
R
η̇aU b∂bφadt =

∫
R
η̇aU0∂0φadt+

∫
R
η̇aU b∂bφadt (4.4.37)

=

∫
R
η̇aU0∂η̇φadt−

∫
R
η̇aU0η̇a∂bφadt+

∫
R
η̇aU b∂bφadt (4.4.38)

= −
∫
R

d

dt

(
η̇aU0

)
φadt+

∫
R
η̇a
(
U b − U0η̇b

)
∂bφadt. (4.4.39)
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Summing all these terms together,

∫
E
J aφad

7ξ =
1

2

∫
R
η̇a
(
U bc − 2η̇cU c0 + η̇bη̇cU00

)
∂b∂cφadt

−
∫
R

d

dt

(
η̇aU b0

)
∂bφadt+

1

2

∫
R

d2

dt2
(
η̇aU00

)
φadt

+
1

2

∫
R

d

dt

(
η̇aU00

)
η̇b∂bφadt−

1

2

∫
R

d

dt

(
η̇aη̇bU00

)
∂bφadt

+

∫
R

(
Y ab − Y a0η̇b

)
∂bφadt−

∫
R

d

dt
Y a0φadt−

∫
R

d

dt

(
η̇aU0

)
φadt

+

∫
R
η̇a
(
U b − U0η̇b

)
∂bφadt+

∫
R
Y aφadt+

∫
R
η̇aqφadt. (4.4.40)

Grouping terms together,

∫
E
J aφad

7ξ =
1

2

∫
R
η̇a
(
U bc − 2η̇cU c0 + η̇bη̇cU00

)
∂b∂cφadt

+

∫
R

(
Y ab − Y a0η̇b − d

dt

(
η̇aU b0

)
+

1

2

d

dt

(
η̇aη̇bU00

))
∂bφadt

+
1

2

∫
R

d2

dt2
(
η̇aU00

)
φadt+

1

2

∫
R

d

dt

(
η̇aU00

)
η̇b∂bφadt−

∫
R

d

dt
Y a0φadt

+

∫
R
η̇a
(
U b − U0η̇b

)
∂bφadt+

∫
R

(
Y a − d

dt

(
η̇aU0

))
φadt+

∫
R
η̇aqφadt. (4.4.41)

Calculating some derivatives and symmetrising U0b gives

∫
E
J aφad

7ξ =
1

2

∫
R
η̇a
(
U bc − η̇bU c0 − η̇cU b0 + η̇bη̇cU00

)
∂b∂cφadt

+

∫
R

(
Y ab − Y a0η̇b − η̇a d

dt

(
U b0
)

+
1

2
η̇aη̇b

d

dt

(
U00
))

∂bφadt

+

∫
R

(
−U b0 d

dt
(η̇a) +

1

2
U00 d

dt

(
η̇aη̇b

))
∂bφadt

+
1

2

∫
R

d2

dt2
(
η̇aU00

)
φadt+

1

2

∫
R

d

dt

(
η̇aU00

)
η̇b∂bφadt−

∫
R

d

dt
Y a0φadt

+

∫
R
η̇a
(
U b − U0η̇b

)
∂bφadt+

∫
R

(
Y a − d

dt

(
η̇aU0

))
φadt+

∫
R
η̇aqφadt. (4.4.42)
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Noting dUab/dt = Y ab + Y ba gives

∫
E
J aφad

7ξ =
1

2

∫
R
η̇a
(
U bc − η̇bU c0 − η̇cU b0 + η̇bη̇cU00

)
∂b∂cφadt

+

∫
R

(
Y ab − Y a0η̇b − η̇aY b0 − η̇aY 0b + η̇aη̇bY 00

)
∂bφadt

+

∫
R

(
1

2
U00 d

dt

(
η̇aη̇b

)
− U b0 d

dt
(η̇a)

)
∂bφadt

+
1

2

∫
R

d2

dt2
(
η̇aU00

)
φadt+

1

2

∫
R

d

dt

(
η̇aU00

)
η̇b∂bφadt

−
∫
R

d

dt
Y a0φadt+

∫
R
η̇a
(
U b − U0η̇b

)
∂bφadt+

∫
R

(
Y a − d

dt

(
η̇aU0

))
φadt

+

∫
R
η̇aqφadt. (4.4.43)

Rearranging for clarity, and reinserting hats over quantities,

∫
E
Ĵ âφ̂âd

7ξ̂ =
1

2

∫
R

˙̂ηâ
(
Û b̂ĉ − ˙̂ηb̂Û ĉ0̂ − ˙̂ηĉÛ b̂0̂ + ˙̂ηb̂ ˙̂ηĉÛ 0̂0̂

)
∂̂b̂∂̂ĉφ̂âdt̂

+

∫
R

(
Ŷ âb̂ − Ŷ â0̂ ˙̂ηb̂ − ˙̂ηâŶ 0̂b̂ + ˙̂ηâ ˙̂ηb̂Ŷ 0̂0̂

)
∂̂b̂φ̂âdt̂

+

∫
R

(
Û 0̂0̂ ˙̂ηb̂

d

dt̂

(
˙̂η
â
)
− Û b̂0̂ d

dt̂

(
˙̂ηâ
))

∂̂b̂φ̂âdt̂

+

∫
R

˙̂ηa
(
Û b̂ − Û 0̂ ˙̂ηb̂ +

1

2

d

dt̂

(
˙̂ηb̂Û 0̂0̂

)
− Ŷ b̂0̂

)
∂̂b̂φ̂âdt̂

+

∫
R

(
Ŷ â − d

dt̂

(
˙̂ηâÛ 0̂

)
+

1

2

d2

dt̂2

(
˙̂η
â
Û 0̂0̂
)
− d

dt̂
Ŷ â0̂

)
φ̂âdt̂. (4.4.44)

By noting η̇0 = 1, the Y 0a, Y a0, Y 00, and Y 0 components cancel. Additionally,

transform the relevant ˙̂ηâ and d/dt̂ terms back into the original coordinate system,

noting

d

dt̂2
=

(
dt

dt̂

)2
d2

dt2
+
d2t

dt̂2
d

dt
. (4.4.45)

This is done so the full coordinate transformation is defined relative to the original
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coordinate system. Doing this transformation gives the projected moments,

V̂ b̂ĉ = Û b̂ĉ − η̇aÛ ĉ0̂Ab̂a
dt̂

dt
− η̇aÛ b̂0̂Aĉa

dt̂

dt
+ η̇aη̇dÛ 0̂0̂Ab̂aA

ĉ
d

(
dt̂

dt

)2

,

X̂ âb̂ = Ŷ âb̂ − η̇cŶ â0̂Ab̂c
dt̂

dt
− η̇cŶ 0̂b̂Aâc

dt̂

dt
+ η̇cη̇dŶ 0̂0̂AâcA

b̂
d

(
dt̂

dt

)2

+ η̇cÛ 0̂0̂Ab̂c
d

dt

(
η̇cAâc

dt̂

dt

)
− Û b̂0̂dt

dt̂

d

dt

(
η̇cAâc

dt̂

dt

)
,

V̂ b̂ = Û b̂ − η̇aÛ 0̂Ab̂a
dt̂

dt
+

1

2

dt

dt̂

d

dt

(
η̇aÛ 0̂0̂Ab̂a

dt̂

dt

)
− Ŷ b̂0̂,

X̂ â = Ŷ â − dt

dt̂

d

dt

(
η̇bÛ 0̂Aâb

dt̂

dt

)
+

1

2

(
dt

dt̂

)2
d2

dt̂2

(
η̇cÛ 0̂0̂Aâc

dt̂

dt

)
+
d2t

dt̂2
d

dt

(
η̇cÛ 0̂0̂Aâc

dt̂

dt

)
− dt

dt̂

d

dt
Ŷ â0̂.

(4.4.46)

Combining this with (4.4.7) gives the full coordinate transformations for the

quadrupole.

Equation (4.4.22) and equation (4.4.23) are a new result, and are numerically tested

in the next chapter to show their validity. In a coordinate transformation where

there is no change in the time coordinate, A0̂
b = 0. This reduces equations (4.4.22)

and equation (4.4.23) to equations (3.3.7) and (3.3.13) respectively. This work has

transformed between two coordinate time frames, but can be generalised to any

frame, not just one where η̇0 = 1, with a more general projection

∂0 =
1

η̇0
∂η̇ −

η̇a

η̇0
∂a. (4.4.47)
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Chapter 5

Numerical validation of the moment

tracking and cooordinate

transformations around a black hole

5.1 Developing the simulation

To test the accuracy of the moment tracking and coordinate transformation

equations, a computational model was developed. The code tests whether the

truncation to quadrupole order is acceptable, or if a higher order multipole expansion

should be used for practical cases. The results presented here are an example of a

coordinate transformation that mixes time and space coordinates, focussing on the

particularly challenging case of black holes. It is important to stress that whilst

black holes are the focus of this numerical validation, the applications of this work

are not solely limited to plasma around black holes. In particular, the moment

tracking can be applied to any plasma, and to particle accelerators.

In all cases, only uncharged particles will be tracked. To calculate the inter-

macroparticle forces needed for a full PIC code, a method to use the moments

to deposit the charge from a macroparticle onto the grid must be developed. Two
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different methods to do this are presented in chapter 6.

To develop the code, the derivatives of the Vlasov equation were calculated using

the symbolic algebra software Maple. The simulation itself was written in C++.

There are 36 first derivatives of the Vlasov equation and 126 second derivatives.

Each of these derivatives are very complex, hence the need to calculate them using

symbolic algebra software. To give an example of this complexity, in Schwarzschild

coordinates (t, r, θ, φ, ur, uθ, uφ), one derivative of the Vlasov field is

∂W 4

∂uθ
= − 1

u0

(
−(r − rs) rsuθ
r
(
−1 + rs

r

) + 2 (−r + rs)uθ

)

− 2

u0

(
(r−rs)rsu0

2r3 − rs u2
r

2r(r−rs)

)
r2uθ(

−1− u2
r

1− rs
r
− r2u2

θ − r2
(
sin2 (θ)

)
u2
φ

)
− 2

u0

(
(−r + rs)u

2
θ − (r − rs)

(
sin2 (θ)

)
u2
φ

)
r2uθ(

−1− u2
r

1− rs
r
− r2u2

θ − r2
(
sin2 (θ)

)
u2
φ

)
+

2

u0

rrsu
2
ruθ

(r − rs)
(
−1− u2

r

1− rs
r
− r2u2

θ − r2
(
sin2 (θ)

)
u2
φ

) . (5.1.1)

The model uses the forward Euler method to integrate both the particle motion and

the moment equations [97]. Particle positions are updated using the 3-velocities

uµ/u0, and the 4-velocities are updated using the geodesic equation,

x
µ
new = x

µ

old +
u
µ

old

u0
old

∆t, (5.1.2a)

u
µ
new = u

µ

old − Γ
µ
νρu

ν
oldu

ρ
old ∆t, (5.1.2b)

where u0 is defined by equation (2.1.2) and ∆t is the time step size. Moments are

updated using the equations

V a
new = V b

old∂bW
a
old ∆t+

1

2
V bc
old∂b∂cW

a
old ∆t, (5.1.3a)

V ab
new =

(
V ac
old∂bW

b
old + V cb

old∂bW
a
old

)
∆t. (5.1.3b)

Despite the high numerical error associated with the forward Euler method, it is

acceptable for use as a test to assess the validity of the equations, as the dominating
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error is not numerical.

5.2 The spacetimes modelled

To validate the model, tests were performed in both Schwarzschild and Kruskal-

Szekeres coordinates. The coordinates in Schwarzschild coordinates are denoted

with lowercase letters ξµ(Sw) = (t, r, θ, φ, ur, uθ, uφ), with metric

g
(Sw)
00 = −

(
1− rs

r

)
, g

(Sw)
11 =

1

1− rs
r

,

g
(Sw)
22 = r2, g

(Sw)
33 = r2 sin2(θ),

(5.2.1)

where g(Sw)
µν is the metric in Schwarzschild coordinates.

Coordinates in Kruskal-Szekeres will be denoted with a capital letter, such that

the coordinates in Kruskal-Szekeres are ξµ(KS) = (T,R,Θ,Φ, UR, UΘ, UΦ). The

transformation from Schwarzschild coordinates to Kruskal-Szekeres coordinates

(shown in figure 1.4a) is given by

R =

√
r

rs
− 1 exp

(
r

2rs

)
cosh

(
t

2rs

)
, (5.2.2)

T =

√
r

rs
− 1 exp

(
r

2rs

)
sinh

(
t

2rs

)
, (5.2.3)

Uµ = uν
∂ξ

µ

(KS)

∂ξν(Sw)

(5.2.4)

where the subscript (KS) indicates the coordinates in Kruskal-Szekeres. The metric

in Kruskal-Szekeres coordinates is given by

g
(KS)
00 = −4r3

s

r
exp

(−r
rs

)
, g

(KS)
11 =

4r3
s

r
exp

(−r
rs

)
,

g
(KS)
22 = r2, g

(KS)
33 = r2 sin2(θ),

(5.2.5)

where r, the radial coordinate in Schwarzschild coordinates, can be found by the

inverse transformation

r = rs

(
1 +W0

(
R2 − T 2

e

))
(5.2.6)
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where W0 is the principal branch of the Lambert W function.

The numerical testing performed in this article uses moments on a scale that may be

considered small on astrophysical scales. This is because for numerical simulations in

Kruskal-Szekeres coordinates, it is impossible to run the model with large moments,

or for large amounts of time. As R is updated, the particle will eventually cross the

event horizon (the point T 2 − R2 = 1) due to numerical errors from updating the

position of the particle. This will happen with any numerical differential equation

solver that overestimates the true value. This is another reason it is important to

transform coordinates, so a full PIC simulation can be performed in Schwarzschild

coordinates, then transformed to Kruskal-Szekeres coordinates at the end, avoiding

these numerical issues. Although the variation in the metric over the domain

represented by the macroparticle and its moments may be small, this does not

mean the derivatives of the metric, which the moments couple to, are small.

5.3 Computational results

To test the model, the motion of 200 particles that began normally distributed at

r = 30000 in Schwarzschild coordinates with Schwarzschild radius rs = 3000, and a

time step size of ∆t = 0.01 were modelled. These particles were also transformed

into Kruskal-Szekeres coordinates. In both spacetimes, the particles were tracked

using equation (5.1.2) and the moments taken at t = 10. Moments were also taken

at t = 0 and tracked using equation (5.1.3). When taking the moments, recall that

f is a density, so the effect of curved spacetime adding a measure to the integrals

is included in the definition of f. Running the simulation until t = 10 corresponds

to 0.001% of an orbit around the black hole. Whilst this is small, it is required

because of the very small numerical time step required for stability in Kruskal-

Szekeres coordinates, and because of the relatively large number of particles being

tracked on a single core.
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By modelling particles at a radius of 10 rs, the accretion disc of the black hole

can be studied. Once the accuracy of the moment tracking model at this distance

from the black hole has been established, the accuracy of our model in the extreme

environments close to the Schwarzschild radius can be examined.

(a) t = 0, all ellipses overlap.

(b) t = 10 showing particles and moments tracked in Schwarzschild

coordinates.
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(c) t = 10 showing the same particles transformed to Kruskal-Szekeres

coordinates, then the moments and particles tracked, then transformed

back to Schwarzschild coordinates.

Figure 5.1: The (r, uφ) phase space portraits in Schwarzschild coordinates for the

individual particles, the centre of orbit with the path η, and the ellipses used to

visualise the actual moments and tracked moments of these particles. Also shown

are the ellipses generated from tracking the same particles and their moments in

Kruskal-Szekeres coordinates, then the moments coordinate transformed back into

Schwarzschild coordinates. These ellipses show the range that 95% of particles

will be within, if the particles are normally distributed. The reason that 95%

of particles are not within the ellipses in 5.1c and 5.1b is because the data is

no longer normally distributed. Note that if just a standard macroparticle was

tracked, only the centre of orbit would be known. [Associated dataset available at

http://dx.doi.org/10.5281/zenodo.8082181] (Ref. [98]).
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The results of the tracking are shown in figure 5.1, with the moments used to

calculate confidence ellipses in Schwarzschild spacetime. Figure 5.1 shows two

things: firstly, whilst there is some deviation between the moment tracking and

particle tracking ellipses, neither accurately reflect the underlying distribution of

particles. This is because the data develops a large skew, as the faster particles

orbits get thrown radially outwards. This means the particle distribution is no longer

normally distributed, and as such, cannot be modelled accurately with just the first

and second order moments. To improve this, higher order moments will also need

to be tracked. All models correctly predict the spread in the radial coordinate, such

that if the r and uφ axes were equally scaled, all models would correctly predict

a long, horizontally thin ellipse. The second feature is that whilst the data is

initially uncoupled, the velocity and position very quickly develop a covariance (a

V 16 moment), coupling the uφ and r motion together. This is an expected result,

as particles with a larger magnitude of uφ than the one required for a circular orbit

are spiralling away from the event horizon.

There is a noticeable displacement in the radial coordinate in the Kruskal-Szekeres

coordinates tracking (figure 5.1b) from 30000 to 30000.08. This is because in

Kruskal-Szekeres coordinates, small errors from the numerical integration will

compound, and result in the ideal orbit drifting from its expected position. This

compounding of errors is because Kruskal-Szekeres coordinates involve exponential

functions, so small deviations can result in substantial offsets, which cannot be

reduced by decreasing step size. This effect is small, and can be avoided by

prescribing η beforehand, if it is known. If η is cannot be prescribed before the

simulation is run this is still only a minor issue, as the offset from these numerical

factors is likely to be small compared to the other effects within a plasma.
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To quantify the error in the model, there are six different errors that are analysed:

εsp−sm, εsp−kp, εsp−km, εkp−km, εkp−sp, and εkp−sm. These errors are defined in table

5.1. The subscript sp represents that particles were tracked, then the moments

taken at the end of the simulation, all in Schwarzschild coordinates. A subscript km

represents moments being tracked in Kruskal-Szekeres coordinates. These subscripts

are defined pictorially in figure 5.2. A hatted V in table 5.1 represents a coordinate

transformation. As an example, εsp−sm represents the difference between tracking

the group of particles and taking their moments at the end (the black ellipse in

figure 5.1b), compared to tracking the moments using equations (3.2.26) and (3.2.27)

(the blue ellipse in figure 5.1b), all in Schwarzschild coordinates. These errors

assess either the error in the moment tracking model, the error in the coordinate

transformations, or the combined error of both. These six errors allow both the errors

in moment tracking and coordinate transformations to be quantified and measured

over time.

The error εkm−sm could also be calculated, to show the error in the coordinate

transformations between two different sets of tracked moments. The origin of this

error would not be discernible, as it would be impossible to distinguish between

errors caused by moment tracking in either coordinate system, or the error from the

coordinate transformation.

To examine the error, another simulation was performed, again around a black hole

with Schwarzschild radius rs = 3000, and an ideal circular orbit at r = 30000

in Schwarzschild coordinates. For these simulations the number of particles was

decreased to 20, and the time step used was increased to ∆t = 0.1, with 106

total iterations. This adjustment was made to allow the simulation to run for

more iterations, to obtain information about the long term behaviour of the model.

Note the time step size is in the respective frame, so t = 10000 in Schwarzschild

coordinates corresponds to T = 1200 in Kruskal-Szekeres coordinates. This amount
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Schwarzschild
spacetime

Kruskal-
Szekeres

coordinates

Vsm Vkm

Vsp Vkp

Transform coordinates

Transport
particles

Take
moments

Take
moments

Transport
particles

Take
moments

Transport
moments

Transport
moments

Take
moments

εsp−sm
εkp−smεsp−km

εkp−km

εkp−sp

εsp−kp

Figure 5.2: The model used to test the moment tracking and coordinate

transformation theories. The error in the moment tracking model is the

difference between transporting the moments and transporting the particles then

taking moments. The error in coordinate transforming is the difference between

transporting particles then taking moments in each frame. The combined error is

the difference between transporting the moments in one frame, compared to tracking

particle in the other. The errors are defined algebraically in table 5.1.

of time corresponds to 1.1% of a complete orbit. Whilst this is again small, it is

required due to the numerical instability of Kruskal-Szekeres coordinates. Figure

5.3 shows the three different total errors as functions of time, where the particles

are normally distributed around the ideal orbit with variance 10−20 in all dimensions.

In all cases the error rapidly grows, before stabilising. This is because, as shown in

figure 5.1b, there is a large radial dipole moment after only a small amount of time.

Because the V 1 moment is large, a small error then dominates compared to all other

errors. Despite this, the total error is still relatively small.

The error from the coordinate transformations is more substantial than the error

from the moment tracking. It is postulated that this increased error is because the
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(a) Schwarzschild coordinates.

0 200 400 600 800 1000
Time

10−8

10−5

10−2

ε
εkp−km

εkp−sp

εkp−sm

(b) Kruskal-Szekeres coordinates. Note

both blue and pink lines overlap.

Figure 5.3: The total error as a function of time for the different

types of errors the theory can generate. [Associated dataset available at

http://dx.doi.org/10.5281/zenodo.8082181] (Ref. [98]).

higher order moments affect the coordinate transformations twice: once during the

coordinate transformation (during equation (4.4.7)), and once during the projection

(during equation (4.4.20)). This suggests that for a moment tracking code that

also incorporates a coordinate transformation, a higher order of moments will be

needed. The bumps and discontinuities in the results are due to particles passing

the macroparticle centre. If a particle is travelling faster than the macroparticle

centre, the particle tracking moments (e.g. Vsp) will decrease, then increase once

the particle passes the macroparticle centre. The moment tracking code will not see

this behaviour, and will track the moments as always either decreasing or increasing,

rather than the true mixture of both. These discontinuities are an intrinsic part

of modelling moments. They can be avoided by sorting the particles before the

modelling starts, so higher speed particles are ahead of the macroparticle centre,

but this is no longer realistic.
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(a) Schwarzschild coordinates.
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(b) Kruskal-Szekeres coordinates. Note

blue and pink lines overlap for µkp <

10−5.

Figure 5.4: The total error as a function of µ, the initial total moment, for

the different kinds of errors the model can create. The gradient of the lines is

approximately linear in low µ, and approximately 1.7 for larger µ. [Associated

dataset available at http://dx.doi.org/10.5281/zenodo.8082181] (Ref. [98]).

To study the magnitude of the error, rather than just the shape, three main sources of

error can be identified: floating point errors, numerical errors (the error arising from

finite step size in numerical integration), and truncation errors (the error arising from

truncating the multipole expansion at second order). These errors will dominate in

different ways depending on the size of the total initial moments µ, where

µ =
∑
a

∣∣∣V a|t=0

∣∣∣2 +
∑
ab

∣∣V ab|t=0

∣∣ . (5.3.1)

Floating point errors can arise from a sufficiently small time step and small number

of iterations in any numerical differential equation solver, but in the case of this

work they also dominate if the moments are very small i.e. µ ≈ 10−15. Numerical

errors arise from the choice of integrator used, and in the case of forward Euler, are

linear in ∆t. The truncation errors arise from only running the moment tracking

code up to quadrupole order. There is an infinite expansion of moments, which is

truncated to quadrupole order in this thesis. Including more moments will decrease

the total error. At the quadrupole level, the truncation error is quadratic. This
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means total error ε(µ) ≈ µ2. This is verified in figure 5.4. The error is linear in the

low µ regime, where numerical errors dominate, and as µ increases, the total error

increases at about ε(µ) ≈ µ1.7. This is a combination of the predicted quadratic

increase, and the numerical error. This quadratic behaviour suggests that if the

moments are half the size, the total error will be quartered.
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Error and description of the error

εsp−sm =

√∑
a |V

a
sp − V a

sm|2 +
∑

ab

∣∣∣V ab
sp − V ab

sm

∣∣∣
The error between tracking particles then taking moments, compared to tracking

moments, both in Schwarzschild coordinates.

εsp−kp =

√∑
a

∣∣∣V a
sp − V̂ a

kp

∣∣∣2 +
∑

ab

∣∣∣V ab
sp − V̂ ab

kp

∣∣∣
The error between tracking particles and taking moments in Kruskal-Szekeres

coordinates then transforming these into moments in Schwarzschild coordinates,

compared to tracking particles and taking moments in Schwarzschild coordinates.

εsp−km =

√∑
a

∣∣∣V a
sp − V̂ a

km

∣∣∣2 +
∑

ab

∣∣∣V ab
sp − V̂ ab

km

∣∣∣
The error between tracking moments in Kruskal-Szekeres coordinates then

transforming these into moments in Schwarzschild coordinates, compared to tracking

moments in Schwarzschild coordinates.

εkp−km =

√∑
a

∣∣V a
kp − V a

km

∣∣2 +
∑

ab

∣∣∣V ab
kp − V ab

km

∣∣∣
The error between tracking particles then taking moments, compared to tracking

moments, both in Kruskal-Szekeres coordinates.

εkp−sp =

√∑
a

∣∣∣V a
kp − V̂ a

sp

∣∣∣2 +
∑

ab

∣∣∣V ab
kp − V̂ ab

sp

∣∣∣
The error between tracking particles and taking moments in Schwarzschild

coordinates then transforming these into moments in Kruskal-Szekeres coordinates,

compared to tracking particles and taking moments in Kruskal-Szekeres coordinates.

εkp−sm =

√∑
a

∣∣∣V a
kp − V̂ a

sm

∣∣∣2 +
∑

ab

∣∣∣V ab
kp − V̂ ab

sm

∣∣∣
The error between tracking moments in Schwarzschild coordinates then transforming

these into moments in Kruskal-Szekeres coordinates, compared to tracking moments

in Kruskal-Szekeres coordinates.

Table 5.1: The types of error the numerical testing generates. These errors show

the accuracy of both the moment tracking model and the coordinate transformations

by comparing the results to a particle tracking model. Figure 5.2 shows these errors

diagrammatically.
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Chapter 6

Constructing a charge and current

from a set of moments

6.1 Introduction

The differential equations for the moments are only one step of a PIC code using

moment tracking. The next step is to use a set of moments to find the charge and

current distributions of a macroparticle (figure 1.3). In this chapter, two different

methods will be presented to do this. The first method approximates the original

distribution function used to find the moments, then integrates this to find the charge

and current. The second method integrates the Ellis representation of the 7-current

over velocity space, to find the Ellis representation of the 4-current. Finding the

4-current needed to create this distributional 4-current gives another method to find

the charge and current from the distributional 7-current. The chapter is concluded

by numerically testing both methods to assess their accuracy, then discussing the

advantages and disadvantages of each method.
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6.2. Multi-index notation

6.2 Multi-index notation

The reconstruction method presented here can be generalised to arbitrary dimen-

sions, and using arbitrarily large order of multipoles. This requires a notation that

collects a set of quantities into a single column vector. These column vectors will

be defined by a symbol, representing a dimension and a maximum order.

Capitalised boldface Latin characters I,K denote a column vector of dimension 6

and maximum order 2, such that ξI is a column vector of length 28, given by

ξI =
(
1, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ1ξ1, ξ1ξ2, ξ1ξ3, ξ1ξ4, ξ1ξ5, ξ1ξ6, ξ2ξ2, ξ2ξ3, ξ2ξ4,

ξ2ξ5, ξ2ξ6, ξ3ξ3, ξ3ξ4, ξ3ξ5, ξ3ξ6, ξ4ξ4, ξ4ξ5, ξ4ξ6, ξ5ξ5, ξ5ξ6, ξ6ξ6
)T
. (6.2.1)

Capitalised boldface Greek characters Σ,Λ denote denote a column vector of

dimension 3 and maximum order 2, such that ξΣ is a column vector of length

10, given by

ξΣ =
(
1, ξ1, ξ2, ξ3, ξ1ξ1, ξ1ξ2, ξ1ξ3, ξ2ξ2, ξ2ξ3, ξ3ξ3

)T
. (6.2.2)

If the index is a superscript it represents a set of powers, as above. If the index is a

subscript this column vector is just a set of scalar fields, for example

ϕI = (ϕ∅, ϕ1, ϕ2, . . . , ϕ6, ϕ11, ϕ12, ϕ13, . . . , ϕ66)T (6.2.3)

Since the location of an index indicates whether it is a set of numbers or a list of

powers, summations over these indices are written explicitly. An example summation

over I is ∑
I

ξIϕI = ϕ∅ + ϕaξ
a + ϕabξ

aξb. (6.2.4)

By using this notation, multipoles can be collected into a single index, which is

useful for the reconstruction algorithms presented in this chapter.
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Chapter 6. Constructing a charge and current from a set of moments

6.3 The reconstruction algorithm

In this section, a method for reconstructing a distribution function from a set of

moments is proposed. This method was outlined in one dimension by Wright [99].

Consider a distribution function density f. This section shows how a distribution

function density f̂ that has the same moments as the initial f can be constructed.

The reconstructed distribution function density is defined as

f̂
(
ξ
)

=
∑
K

cKϕK

(
ξ
)

(6.3.1)

where ϕK are model densities, and cK are weighting coefficients. These model

densities are a set of scalar field densities that is used to approximate the original

distribution function f. Picking a model density is a choice, and will depend on the

situation. The simplest choice of model density is to use a top-hat function in every

dimension,

ϕK

(
ξ
)

= ξKϕ0 (6.3.2)

ϕ0 =

1 if ξ− < ξ < ξ+

0 otherwise
(6.3.3)

where ξ− and ξ+ give the width of the top-hat function. Appropriate values for ξ−

and ξ+ will depend on the original f being reconstructed. A top-hat function is not

the only choice. If the original distribution function is known to be a Gaussian, it

may make more sense to choose ϕ0 to be a Gaussian. The quadrupole moments can

be used to define the covariances needed for a multi-dimensional Gaussian. In this

thesis only top-hat model densities will be used.

Since f̂ is defined to have the same moments as f,∫
Σ

(ξ − η)I f d6ξ =

∫
Σ

(ξ − η)I f̂ d6ξ =
∑
K

∫
Σ

(ξ − η)I cK ϕK d
6ξ (6.3.4)

denoting the column-vector of moments on the left hand side as aI, and pulling the
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6.3. The reconstruction algorithm

cK coefficients out of the integral,

aI =
∑
K

cK

∫
Σ

(ξ − η)IϕKd
6ξ (6.3.5)

=
∑
K

cKBKI (6.3.6)

where

BKI =

∫
Σ

(ξ − η)IϕKd
6ξ (6.3.7)

so there is a linear system of equations which can be solved to find cK. This gives

the reconstructed f̂, which can then be used to find various physical quantities of

the plasma.

Physical quantities associated with the plasma (plasma moments) can be found by

integrating the reconstructed distribution function density over the velocity space,

the charge p and current Tµ are given by

p = q

∫
Ep
f d3u (6.3.8)

Tµ = q

∫
Ep

uµ

γ
f d3u (6.3.9)

where the charge and currents are scalar field densities, rather than just scalar fields,

and Ep denotes the integration bounds of velocity space (formally this is the fibre

associated with point p). Higher order plasma moments can also be found from this.

The pressure tensor of a plasma, tµν , is given by

tµν = q

∫
Ep

uµ

γ

uν

γ
fd3u. (6.3.10)

It does not make sense to construct a plasma moment of an order higher than the

moments used to reconstruct f̂. This is because there is no control over the high

order moments when finding f̂, so there is no guarantee they will be similar to the

original moments of f. The approximation to a plasma moment of the same order

as the highest moment tracked may not be accurate, as it is likely the truncation

will affect the accuracy of this reconstruction. The accuracy of this reconstruction

algorithm for higher order moments has not been studied, and is future work.
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6.3.1 A 1D example

To explain the multi-index notation used in this section, it is worth doing a simple

one-dimensional example of the reconstruction algorithm, as this will allow an

understanding of the notation, and some properties of the reconstruction algorithm

to be seen.

Consider f(x), where f is now a function of x ∈ R only. Taking moments around

some point x0 gives the moments

a =


q

V 1

V 11

 =


∫
R f dx∫

R (x− x0) f dx∫
R(x− x0)2 f dx

 . (6.3.11)

The model function reconstructing this, f̂, is given by

f̂(x) =
(
ϕ0(x) xϕ0(x) x2 ϕ0(x)

)
c∅

c1

c11

 . (6.3.12)

To take the moments of this, premultiply both sides by (x − x0)I, recalling that f̂

has the same moments as f, and integrate,

a =

∫
R


1

(x− x0)

(x− x0)2

(ϕ0 xϕ0 x2 ϕ0

)
c∅

c1

c11

 dx. (6.3.13)

Multiplying the first terms together to give a matrix, and pulling the integral into

the matrix as c are constants,

a =


∫
R ϕ0dx

∫
R xϕ0dx

∫
R x

2 ϕ0dx∫
R(x− x0)ϕ0dx

∫
R(x− x0)xϕ0dx

∫
R(x− x0)x2 ϕ0dx∫

R(x− x0)2 ϕ0dx
∫
R(x− x0)2 xϕ0dx

∫
R(x− x0)2 x2 ϕ0dx



c∅

c1

c11


(6.3.14)

giving the equation

a = Bc. (6.3.15)
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Solving this linear system of equations gives c, in turn giving f̂.

As a explicit example, consider the specific example of a parabola,

f =

ax
2 + bx+ c if x− ≤ x ≤ x+

0 otherwise
(6.3.16)

where x− and x+ are the two roots of the parabola (it shall be assumed these are

not repeating and are real). Taking the moments of f about x0 = 0 (for simplicity)

gives

a =


q

V 1

V 11

 =


∫
R(ax2 + bx+ c)dx∫

R(ax3 + bx2 + cx)dx∫
R(ax4 + bx3 + cx2)dx

 . (6.3.17)

Rearranging this into a matrix equation,

a =


∫
R 1 dx

∫
R x dx

∫
R x

2 dx∫
R x dx

∫
R x

2 dx
∫
R x

3 dx∫
R x

2 dx
∫
R x

3 dx
∫
R x

4 dx



c

b

a

 (6.3.18)

where terms have been rearranged into this order to compare to the reconstruction

formula. Assuming the model top-hat function ϕ0 has the same width as the support

of f, then comparing this to equation (6.3.14) gives

c =


c∅

c1

c11

 =


c

b

a

 (6.3.19)

so if the width of the model function matches the width of the parabola exactly,

then the reconstruction algorithm is exact for a parabola. This provides a useful

sanity check for verifying the model numerically in section 6.5.
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6.4 Using the Ellis representation of moments to

deposit charge and current

The method discussed for finding the 4-current using moments reconstructs the

entire distribution function f, then integrates this over velocity space. An alternative

method directly finds the 4-current from the moments in a single step. This is done

by creating a distributional 4-current, and finding a current that when squeezed, is

related to that distribution. By doing this, the integrals over velocity space can be

avoided.

The 7-current can be reduced to a 4-current Tµ by integrating across velocity space,

Tµ|p =

∫
Ep
Jµd3u. (6.4.1)

The choice to only take the spatial components of Ja is because these correspond

to the components of the 4-current. In section 8.5 it is shown through differential

geometry that the velocity components of the 7-current vanish when the 7-current

is projected from E onto the base spatial manifold.

The 4-current Tµ is the source term in Maxwell’s equations, although care must be

taken to check if the electric and magnetic fields are densities of weight 1 or densities

of weight 0. In this thesis the electric and magnetic fields are densities of weight 0.

This means that the 4-current must be divided by the measure Ω0 to be used in the

continuous Maxwell’s equations. Alternatively, it can be integrated across a cell.

This gives a discretised current, used in the finite difference Maxwell’s equations

(this process is discussed in more detail in section 7.3.4).
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Similarly, the Ellis representation of the 7-current can be reduced to the Ellis

representation of the 4-current, Iµ, by integrating over velocity space,

Iµ =

∫
Ep
J µd3u. (6.4.2)

This gives

Iµ =
1

2

∫
R
Ċµ V νρ

(
∂ν∂ρδ

(3)(x− C)
)
dt

−
∫
R
δµν X

νρ
(
∂ρδ

(3)(x− C)
)
dt−

∫
R
Ċµ V ν

(
∂νδ

(3)(x− C)
)
dt

+

∫
R
δµν X

ν δ(3)(x− C) dt+

∫
R
Ċµ q δ(3)(x− C) dt. (6.4.3)

where

δ(3)(x− C) = δ(x1 − C1) δ(x2 − C2) δ(x3 − C3). (6.4.4)

Proof. To calculate the integral over velocity space, note two properties of the Dirac

delta function, for some function of time only h(t),

∫
R
h(t)δ(x)dx = h(t),

∫
R
h(t)

d

dx
δ(x)dx = −

∫
R

∂h(t)

∂x
δ(x)dx = 0. (6.4.5)

Using these properties,

Iµ =
1

2

∫
R

∫
Ep
η̇µ V bc

(
∂b∂cδ

(6)(ξ − η)
)
d3u dt−

∫
R

∫
Ep
δµb X

bc
(
∂cδ

(6)(ξ − η)
)
d3u dt

−
∫
R

∫
Ep
η̇µ V b

(
∂bδ

(6)(ξ − η)
)
d3u dt+

∫
R

∫
Ep
δµb X

b δ(6)(ξ − η)d3u dt

+

∫
R

∫
Ep
η̇µ q δ(6)(ξ − η)d3u dt. (6.4.6)

Splitting V bc into V µν , 2V ν(ρ+3) (the factor of two is due to symmetry), and
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V (ν+3)(ρ+3); and splitting Xbc into Xbρ and Xb(ρ+3) gives

Iµ =
1

2

∫
R

∫
Ep
η̇µ V νρ

(
∂ν∂ρδ

(6)(ξ − η)
)
d3u dt

+

∫
R

∫
Ep
η̇µ V ν(ρ+3)

(
∂b∂ρ+3δ

(6)(ξ − η)
)
d3u dt

+
1

2

∫
R

∫
Ep
η̇µ V (ν+3)(ρ+3)

(
∂ν+3∂ρ+3δ

(6)(ξ − η)
)
d3v dt

−
∫
R

∫
Ep
δµb X

bρ
(
∂ρδ

(6)(ξ − η)
)
d3u dt−

∫
R

∫
Ep
δµb X

b(ρ+3)
(
∂ρ+3δ

(6)(ξ − η)
)
d3u dt

−
∫
R

∫
Ep
η̇µ V ν

(
∂νδ

(6)(ξ − η)
)
d3u dt−

∫
R

∫
Ep
η̇µ V ν+3

(
∂b+3δ

(6)(ξ − η)
)
d3u dt

+

∫
R

∫
Ep
δµb X

b δ(6)(ξ − η)d3u dt+

∫
R

∫
Ep
η̇µ q δ(6)(ξ − η)d3u dt. (6.4.7)

Performing all the integrals, using the Dirac delta function identities given in

equation (6.4.5), gives

Iµ =
1

2

∫
R
η̇µ V νρ

(
∂ν∂ρδ

(3)(x− C)
)
dt

−
∫
R
δµb X

bρ
(
∂ρδ

(3)(x− C)
)
dt−

∫
R
η̇µ V ν

(
∂νδ

(3)(x− C)
)
dt

+

∫
R
δµb X

b δ(3)(x− C) dt+

∫
R
η̇µ q δ(3)(x− C) dt (6.4.8)

since

δ(ξ1−η1) δ(ξ2−η2) δ(ξ3−η3) = δ(x1−C1) δ(x2−C2) δ(x3−C3) = δ(3)(x−C). (6.4.9)

Note that whilst terms of the form Xµ+3 are still present, it is impossible to extract

these components since the Kronecker delta upper index only ranges from 0 − 3.

Additionally, since η̇µ = Ċµ, this can also be rewritten. Combining these gives

equation (6.4.3).

This acts on test functions φµ(t, x), to give∫
M

Iµφµd4x =
1

2

∫
R
Ċµ V νρ∂ν∂ρφµ|C dt−

∫
R
Xνρ∂ρφν |C dt

−
∫
R
Ċµ V ν∂νφµ|C dt+

∫
R
Xµ φµ|C dt+

∫
R
Ċµ q φµ|C dt. (6.4.10)
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This distributional 4-current is the distributional version of the 4-current Tµ used

in Maxwell’s equations. This means that if there is a 4-current such that, when

squeezed, gives the same moments as I, this 4-current is the 4-current associated

with the macroparticle. This avoids having to create model functions in velocity

space.

Using the language of differential forms, the 4-current 3-form is given by T(t, x),

where x are the spatial coordinates. Through a process analogous to the squeezing

in section 4.2, there exists a one parameter family of smooth 3-forms adapted to the

time slicing,

Tε =
1

ε3
Tµ
(
t,
x− C
ε

)
iµdt ∧ dx1...3. (6.4.11)

This can be wedged this against a test form φ,

φ ∧ Tε =
1

ε3
Tµ
(
t,
x− C
ε

)
φµ(t, x)dt ∧ dx1...3. (6.4.12)

Similarly to the squeezed distribution function f in section 4.2,

φ ∧ Tε = Īµφµ +O(ε3) (6.4.13)

where

Īµ =
1

2

∫
R
Ċµ V̄ νρ

(
∂ν∂ρδ

(3)(ξ − η)
)
dt

−
∫
R
δµν X̄

νρ
(
∂ρδ

(3)(ξ − η)
)
dt−

∫
R
Ċµ V̄ ν

(
∂νδ

(3)(ξ − η)
)
dt

+

∫
R
δµν X̄

ν δ(3)(ξ − η) dt+

∫
R
Ċµ q δ(6)(ξ − η) dt. (6.4.14)

87



Chapter 6. Constructing a charge and current from a set of moments

The components of Īµ are given by

q =

∫
M

T0(t, x̂)d3x̂ (6.4.15a)

X̄µ + qĊµ =

∫
M

Tµ(t, x̂)d3x̂ (6.4.15b)

V̄ µ = ε

∫
M

T0(t, x̂) (x̂ν − Cν) d3x̂ (6.4.15c)

X̄µν + ĊµV̄ ν = ε

∫
M

Tµ(t, x̂) (x̂ν − Cν) d3x̂ (6.4.15d)

V̄ µν = ε2
∫
M

T0(t, x̂) (x̂ν − Cν) (x̂ρ − Cρ) d3x̂ (6.4.15e)

ĊµV̄ νρ = ε2
∫
M

Tµ(t, x̂) (x̂ν − Cν) (x̂ρ − Cρ) d3x̂. (6.4.15f)

whereM represents an integration over the spatial components of M .

Proof. Begin by introducing the substitution

x̂ =
x− C
ε

(6.4.16)

gives

Tε ∧ φ = Tµ(t, x̂)φµ(t, εx̂+ C)d4x̂. (6.4.17)

Now Taylor expand this about ε,

Tε ∧ φ = Tµ(t, x̂)φµ|Cd4x̂+ εTµ(t, x̂) (x̂ν − Cν)
∂φµ
∂xν

∣∣∣∣
C

d4x̂

+
1

2
ε2Tµ(t, x̂) (x̂ν − Cν) (x̂ρ − Cρ)

∂2φµ
∂xρ∂xν

∣∣∣∣
C

d4x̂. (6.4.18)

Integrating this, and splitting into the φ0 and φµ terms,∫
M

Tε ∧ φ =

∫
M

T0(t, x̂)φ0|Cd4x̂+

∫
M

Tµ(t, x̂)φµ|Cd4x̂

+ ε

∫
M

T0(t, x̂) (x̂ν − Cν)
∂φ0

∂xν

∣∣∣∣
C

d4x̂+ ε

∫
M

Tµ(t, x̂) (x̂ν − Cν)
∂φµ

∂xν

∣∣∣∣
C

d4x̂

+
1

2
ε2
∫
M

T0(t, x̂) (x̂ν − Cν) (x̂ρ − Cρ)
∂2φ0

∂xρ∂xν

∣∣∣∣
C

d4x̂

+
1

2
ε2
∫
M

Tµ(t, x̂) (x̂ν − Cν) (x̂ρ − Cρ)
∂2φµ

∂xρ∂xν

∣∣∣∣∣
C

d4x̂. (6.4.19)
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Splitting these integrals up into spatial and temporal terms∫
M

Tε ∧ φ =

∫
R

(∫
M

T0(t, x̂)d3x̂

)
φ0|Cdt+

∫
R

(∫
M

Tµ(t, x̂)d3x̂

)
φµ|Cdt

+

∫
R

(
ε

∫
M

T0(t, x̂) (x̂ν − Cν) d3x̂

)
∂φ0

∂xν

∣∣∣∣
C

dt

+

∫
R

(
ε

∫
M

Tµ(t, x̂) (x̂ν − Cν) d3x̂

)
∂φµ

∂xν

∣∣∣∣
C

dt

+
1

2

∫
R

(
ε2
∫
M

T0(t, x̂) (x̂ν − Cν) (x̂ρ − Cρ) d3x̂

)
∂2φ0

∂xρ∂xν

∣∣∣∣
C

dt

+
1

2

∫
R

(
ε2
∫
M

Tµ(t, x̂) (x̂ν − Cν) (x̂ρ − Cρ) d3x̂

)
∂2φµ

∂xρ∂xν

∣∣∣∣∣
C

dt. (6.4.20)

Comparing this to equation (6.4.10), noting Ċ0 = 1, gives equation (6.4.15), as

required.

This gives a method to find the 4-current, using each Tµ as a different test density,

without needing reconstruct over the velocity coordinates.

Let T̂µ be the reconstructed 4-current, where, similarly to the previous section, it is

defined as

T̂µ =
∑
Σ

cΣφ
µ
Σ. (6.4.21)

Taking the moments of this gives

aµΛ =
∑
Σ

(x− C)Σ

∫
M
cΣφ

µ
Σd

3x =
∑
Σ

cΣB
µ
ΣΛ (6.4.22)

where similarly to the previous section,

Bµ
ΣΛ =

∫
M

(x− C)ΛφµΣd
3x, (6.4.23)

and aµΛ is defined from equations (6.4.15), i.e.

a0
Λ =

(
q, V 1, V 2, V 3, V 11, V 12, V 13, V 22, V 23, V 33

)T (6.4.24)

a1
Λ =

(
X1 + qĊ1, X11 + Ċ1V 1, X12 + Ċ1V 2, X13 + Ċ1V 3,

Ċ1V 11, Ċ1V 12, Ċ1V 13, Ċ1V 22, Ċ1V 23, Ċ1V 33
)T (6.4.25)
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etc.

This gives 4 scalar fields that must be reconstructed to find the 4-current, in exchange

the lack of integration over the velocity space means the reconstruction requires half

the number of integrals. Additionally, by not integrating over velocity space, all

integrals can be calculated analytically. This is in contrast to the reconstruction

approach presented in section 6.3, where to find the current (equation (6.3.9)),

an integral had to be performed including a 1/γ term, which can only be solved

numerically.

In section 8.4, a more geometric approach to this deposition process will be shown,

where the current 3-form will be derived through a projection of the 7-current onto

the base spatial manifold.

6.5 Numerical validation of the moment reconstruc-

tion methods

To validate both methods of generating a 4-current from a set of moments, begin

with some distribution function density f. The moments of f can be taken, to give

J a. From here there are two possible ways to find the 4-current. Firstly, f̂ can be

reconstructed using the method in section 6.3, and then the 4-current found using

equation (6.3.9). This will be referred to as the reconstruction method. Alternatively,

the projection method presented in section 6.4 can be used, and then a 4-current

reconstructed from the distributional 4-current. This method will be referred to as

the projection method. Both of these methods can then be compared to the 4-current

found directly from using equation (6.3.9) with f, denoted as the direct method. This

testing procedure is explained pictorially in figure 6.1.
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f J a

Iµ f̂

Tdirect Tprojection Treconstruction

Take moments

Project down to M Reconstruct

Integrate f
across velocity space

Integrate f̂
across velocity space

Reconstruct

Error in
projection method

Error in reconstruction method

Figure 6.1: The different ways to calculate the 4-current from a set of moments

J a, which has moments generated by f. The error in the reconstruction method is the

difference between the 4-current generated by reconstructing f̂, compared to finding

the 4-current directly from f. The error in the projection method is the difference

between the 4-current found through projecting J a onto M , compared to finding the

4-current directly from f.

To reconstruct the functions, the algorithm was written in C++, so that it can be

combined with the moment tracking code developed in chapter 5 as part of a full PIC

code. The matrices and column vectors required for the reconstruction algorithms

were implemented using the external library Eigen3 [100]. The linear system of

equations was solved numerically using the LU factorisation method [97]. This

algorithm is numerically slow, but highly accurate, so it the best choice for testing

the accuracy of the reconstruction process. This is because errors in the results

will be due to issues with the reconstruction or projection methods, rather than the

numerical process used. Integrals over position space are solved analytically, whilst

integrals over velocity space are solved numerically, using Gaussian quadrature [97].
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Chapter 6. Constructing a charge and current from a set of moments

In all cases, the choice of model function will be the function

ϕ0 = ϕ0,x(x)ϕ0,y(y)ϕ0,z(z)ϕ0,ux(ux)ϕ0,uy(uy)ϕ0,uz(uz), (6.5.1)

where

ϕ0,x = 1 if 0 ≤ x ≤ 10, 0 otherwise

ϕ0,y = δ(y)

ϕ0,z = 1 if − 5 ≤ z ≤ 5, 0 otherwise

ϕ0,ux = 1 if − 3 ≤ ux ≤ 3, 0 otherwise

ϕ0,uy = δ(uy)

ϕ0,uz = 1 if 1 ≤ uz ≤ 5, 0 otherwise,

(6.5.2)

where δ(y) and δ(uy) represent Dirac delta functions. The projection method uses

the same model function without the velocity components. This corresponds to

a top-hat function in x, z, ux, and uz, and a Dirac delta function in y and uy.

Additionally to calculate Xµν , Xµ and Ċµ, it shall be assumed the particle is

travelling in a straight line along x = y = 0, ux = uy = 0, and uz = 3. The particles

will be travelling in flat space, so u0 = γ, the Lorentz factor. These assumptions

show how simple functions affect the accuracy of the projection and reconstruction

methods compared to the direct method.

First consider an f that has a support identical to the support of the top hat model

density. Figures 6.2 and 6.3 show the Tx and Tz components for a parabola and

a bump function respectively. The reconstruction method parabola matches the

direct method exactly. This is because when working up to quadrupole moments,

the reconstructed model function becomes a parabola. This was shown in section

6.3.1 in the 1D case. The bump function is modelled well by the reconstruction

method in the centre, and less well towards the edge. This is because a second

order Taylor expansion of an exponential function will accurately model the centre

of the bump function, but poorly model the edges of the bump function, when the
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6.5. Numerical validation of the moment reconstruction methods

importance of higher order terms is significant.

0 2 4 6 8 10
x
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0.0
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method

Projection
method

Direct
method

(a) Tx, the projection method and direct

method overlap.
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x

0

5

Tz

Reconstruction
method

Projection
method

Direct
method

(b) Tz, the reconstruction method and

direct method overlap.

Figure 6.2: The Tx and Tz components from an initial distribution function

f = −(x)(x − 10)ϕ0 through the direct method, the projection method, and the

reconstruction method.
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(a) Tx, the projection method and direct

method overlap.
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method
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(b) Tz

Figure 6.3: The Tx and Tz components from an initial distribution function

f = exp
(

1
x2−100

)
ϕ0 through the direct method, the projection method, and the

reconstruction method.

In figures 6.2a and 6.3a, the Tx current found through both the direct method and

projection method vanish. The reconstruction method Tx current is not zero, but

is incredibly small, so is only non-zero from numerical errors. This is the expected

result; the distribution function f is even in ux, so the integrand in the 4-current
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Figure 6.4: The Tz component of current from an initial distribution function

f = −(x + 3)(x − 7)ϕ0 if 0 ≤ x ≤ 7, 0 otherwise, through the direct method, the

projection method, and the reconstruction method.

equation (fux/γ) is odd, so the integral vanishes. The Tx component of 4-current

will not be considered for the other symmetric distribution functions being tested.

Figure 6.4 shows a function where the width of the parabola is less than the width

of the model function. In this case the reconstruction method fails to accurately

reconstruct the function. This is because the reconstruction and projection methods

assume the function they are approximating is spread across the whole width of the

model function. This means care must be taken to make sure that the width of the

model function is close to the width of the actual function. When choosing a model

function, consideration must be made about its width. This will be a significant issue

in a full PIC code, where the width of the original distribution function is unknown,

and will change over time. By assuming the original distribution is parabolic, it may

be possible to numerically approximate the width of the parabola. This is done by

using the moments to solve a non-linear system of equations to find the roots of the

quadratic equation used to create the parabola. By doing this, the top-hat model

function can always be guaranteed to be the correct width.
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Figure 6.5: The Tz component of current from an initial distribution function

f = −(uz − 1)(uz − 5)ϕ0, through the direct method, the projection method, and the

reconstruction method. The direct and reconstruction methods overlap.

In the case that the original function is a top-hat function in position, but some non-

flat function in the velocity coordinates, then the current will be constant, scaled

by the integral of uµ/γ. Figures 6.5 and 6.6 show this. Again the reconstruction

method correctly models this to within numerical precision, whilst the projection

method does not give an accurate current. In the case that the width of the original

distribution in velocity space is less than the width of the model function used in the

reconstruction method (figure 6.6), the reconstruction method is still accurate, at

least in the non-relativistic limit. This is because whilst the velocity function might

not be correctly reconstructed, the integral over velocity space is still the same (by

definition of the algorithm).

In all cases, the projection method is inaccurate compared to the reconstruction

method. The reason for this can be seen by considering the definition of the 4-

current,

T1
direct =

∫
Ep

u1

γ
f d3u. (6.5.3)
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Figure 6.6: The Tz component of current from an initial distribution function f =

−(ux−0.1)(ux+0.1)ϕ0 for −0.1 ≤ ux ≤ 0.1, 0 otherwise, through the direct method,

the projection method, and the reconstruction method. The direct and reconstruction

methods overlap.

Consider a case where γ ≈ 1, so that the factors of γ can be ignored. Integrating

this function over position spaceM,∫
M

T1
direct d

3x =

∫
Σ

u1f d3u d3x = V 4. (6.5.4)

Compare this to (6.4.15b), using Maple to find X1 in the case Ċ1 = 0, Ċ2 = 0, x =

0, y = 0, and γ ≈ 1 gives∫
M

T1
projection d

3x = X1 = V 4 − V 46uz, (6.5.5)

so there is a discrepancy between the two methods. Since the projection method

uses X1, this is an infinite series that has been truncated to the quadrupole level.

This means the effect of higher order moments will be significant. How higher order

moments affect the accuracy of the projection method is improved is outside the

scope of this thesis, and is future work.

It is important to stress that even though the projection method is less accurate, it

has significant computational benefits. As it does not involve any integrals over
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velocity space, there is no numerical integration required to integrate the uµ/γ

terms. Additionally, because there are no velocity integrals, the projection method

involves solving a system of 10 equations 4 times, compared to the reconstruction

method, which requires solving 28 simultaneous equations. Whilst this difference in

computational time is small at the quadrupole level, when this algorithm is extended

to higher order moments the effect will be significant. Additionally, since the error

in the projection method is due to the truncation, it may be reduced by increasing

the number of moments.
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Chapter 7

Creating an axially symmetric full

PIC code

7.1 Introduction

Having developed and numerically verified the theory for tracking moments and

reconstructing charge and current from these moments, a full PIC code using

moments can now be developed. Rather than simulating a full (3+3)D PIC code

(3 spatial dimensions + 3 velocity dimensions), a simpler case is to simulate a

‘1.5D’ PIC code. This 1.5D code models an axially symmetric system in cylindrical

coordinates. This represents the motion of particles through a straight section of a

particle accelerator, or an RF cavity. One particular application that is interesting to

simulate is that of a klystron. These are used for generating RF signals, and consist

of an electron gun, an RF cavity (the ‘buncher cavity’) to focus the electrons, and

then a decelerating cavity (the ‘catcher cavity’), where the RF signal is boosted due

to the decelerating electrons (figure 7.1).

This chapter presents an outline of the steps needed to implement, test, and optimise

a cylindrically symmetric 1.5D moment tracking PIC code. This chapter only

outlines the code and how it can be tested and improved. No numerical results
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7.2. The 1.5D coordinate system

Figure 7.1: The design principle of a klystron. An electron beam (the blue line) is

emitted from an electron gun. This beam passes through a bunching cavity followed by

a drift space, which longitudinally focusses the particles. They are then decelerated in

the catcher cavity, emitting radiation of an amplitude greater than the initial signal

used to accelerate the beam.

from a full 1.5D PIC code are presented. The structure of this chapter as follows:

Section 7.2 explains the 1.5D coordinate system used in the axially symmetric PIC

code, and explains how this reduces the amount of information in the PIC code.

Section 7.3 reviews existing techniques for updating the electromagnetic field, and

interpolating fields in PIC codes. This section also introduces the algorithms that

can be used for modelling the axially symmetric 1.5D PIC code. Section 7.4 explains

how this PIC code will be tested, and how existing issues with PIC codes will be

examined. Section 7.5 describes future work, outlining how features can be added

to the PIC code to allow more moments to be tracked; and how structure within a

macroparticle can be modelled.

7.2 The 1.5D coordinate system

The cylindrical coordinates will be denoted (r, φ, z). The 1.5D code models the

motion of a macroparticle restricted to the r = 0 axis, so the only parameters that

can be updated for the macroparticles motion are the z and uz components. As the

motion of the macroparticle is restricted to the z-direction, the value of the Lorentz
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Order of

moments tracked
Information known

Number of

differential equations

to solve

Number of

differential equations

to solve relative to

a standard macro-particle

Monopole (zeroth order) z, uz 2 1

Dipole (first order) z, uz, V a 6 3

Quadrupole (second order) z, uz, V a, V ab 16 8

Octopole (third order) z,uz, V a, V ab, V abc 36 18

Hexadecapole (fourth order) z, uz, V a, V ab, V abc, V abcd 71 35.5

Table 7.1: The amount of information in a macroparticle that also tracks moments

compared to a standard macroparticle in the 1.5D model. Note, whilst the number

of differential equations relative to a standard macroparticle (the fourth column) is

larger than in the 3D case (table 1.1), there are less equations overall (the third

column).

factor, γ is given by

u0 = γ =
√

1 + u2
z. (7.2.1)

The moments of the macroparticle will include both longitudinal and radial

components. The system is axially symmetric, so these macroparticles with their

moments can be thought of as representing ‘rings’ of charge. By excluding the axial

moments, there is less information each at time step, as outlined in table 7.1. Since

the angular components in sums can be ignored (due to the symmetry), they will

not be considered in sums in this chapter. This means that in this chapter, Latin

indices range over 1, 2, 3, 4 and Greek indices will range over 1, 2.

Since the beam being simulated is axially symmetric, the beam does not move in the

angular direction. This restriction means that only certain components of Maxwell’s

equations need to be considered. Since the beam cannot rotate in the angular plane,

there will not be an Eφ component of the electric field. Similarly, because of the

symmetry, there cannot be a radial or longitudinal magnetic field unless one is added

externally. Since the radial magnetic field is generated by dEφ/dz or dEz/dφ terms,
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and the longitudinal magnetic field is generated by dEφ/dr or dEr/dφ terms; all of

these terms vanish due to the axial symmetry. The Bz field will still be considered

in the model, as low energy RF accelerators often include a solenoid to stop the

beam diverging radially from space-charge effects.

There is a choice to be made in whether this 1.5D algorithm is constructed in 2

dimensions from the beginning, or if the axial coordinates are integrated out. These

formulations will only differ by a factor of 2π in the moments. Since densities are

used for all the integrations, this effect can be included. We shall choose to construct

the system in 2 dimensions initially, since integrating axial coordinates at r = 0 is

ill defined. This is due to the singularity axial coordinates have along the r = 0 axis.

7.3 The numerical methods needed for a full PIC

code

7.3.1 Taking the initial moments

The first step of a PIC code is to split the initial distribution of particles into

macroparticles (figures 1.1 and 1.3). In the case of a klystron, this initial distribution

is the beam from the electron gun. This beam will provide a constant stream

of particles in the z direction, and a distribution of particles in r, ur and uz.

It it will be assumed that these particles are distributed as a parabola, since,

as previously shown, this results in an accurate reconstruction of current. As

previously mentioned, splitting the beam longitudinally results in each macroparticle

representing a ‘ring’ of charge. An example of how these rings are shaped from the

moments is given in figure 7.2.

101



Chapter 7. Creating an axially symmetric full PIC code

Figure 7.2: An example of a ring represented by its moments. To picture this in 3

dimensions, the ring should be rotated around the z axis.

7.3.2 The particle and moment updating algorithms

In a particle-in-cell code in Cartesian coordinates, particles position and velocity are

updated by solving the Lorentz force,

dx

dt
=

u

γ
, (7.3.1)

du

dt
=

q

m

(
E +

u×B

γ

)
. (7.3.2)

Note, this is not the same as theW µ+3 terms in the Vlasov equation. This is because

the coordinate being updated is u, rather than v. As previously discussed, u is the

velocity coordinate as it moves the singularity from v = c = 1 to infinity, removing

the machine precision rounding error that occurs as a particle moves very close to

c.
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In most PIC codes, the position and velocity are solved using the Boris algorithm

[101]. This algorithm is a leapfrog algorithm, which means the position and velocity

are not updated at the same time. The position is updated, then the velocity, then

the position again. This improves the numerical stability. Whilst the PIC code

presented in this chapter will not use the standard leapfrog algorithm used in many

PIC codes, it is still possible to get the enhanced accuracy of the particle pusher

section of the PIC code.

Recall the cylindrical symmetry, and that the centre of the macroparticle will always

be along the r = 0 axis. This means only the z and uz components of the motion

need to be updated. Position is updated using the forward Euler algorithm,

zn+ 1
2 = zn−

1
2 +

uz
γ

∆t. (7.3.3)

Note these are at half time step positions, to get the stability from the leapfrog

algorithm. As there are no Br or Bφ fields along the axis (they must vanish along

the r-axis to be continuous), there will be no contribution to the motion of the

particles due to the magnetic field. This means the velocities can be updated using

a forward Euler method for the electric field,

un+1
z = unz +

q∆t

m
E
n+ 1

2
z (7.3.4)

where En+ 1
2

z is the electric field found at the half time step position.

Moments are updated using the Forward Euler method,

V a
n+1 = V a

n +
dV a

n

dt
∆t,

V ab
n+1 = V ab

n +
dV ab

n

dt
∆t.

(7.3.5)

Whilst this method is prone to numerical errors when using a large time step, chapter

5 showed the dominating error was the truncation error, rather than numerical finite

time step integration errors. In the case that the error from using the forward Euler
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method becomes significant, the integration can be improved by using algorithms

such as implicit Runge-Kutta, although these are very computationally expensive.

Alternatively, a multistep model such as Adams-Bashforth could be used. These

solve the differential equations using several previous time steps, and have less

computational complexity than Runge-Kutta, but require more memory [97].

Note that whilst the Er and magnetic fields do not contribution to the position and

velocity of the macroparticle, they do affect the motion of the moments, as well the

Ez field itself, and hence must be included.

7.3.3 Updating the electromagnetic fields

7.3.3.1 Discretisation of space

In PIC codes, rather than a continuous electromagnetic (EM) field defined

everywhere, the EM field is defined at discrete grid points. By discretising the

electromagnetic field, the fields between particles are not defined by the Coulomb

and Biot-Savart laws. Instead the current from a macroparticle is deposited onto

nearby grid points. This current is used to solve discretised Maxwell’s equations,

which then are interpolated to the particle’s position, to solve the Lorentz force.

Rather than defining all the components of the EM field at the same point, modern

PIC codes use a staggered grid. This grid was first proposed by Yee [102], and has

the advantage of ensuring that the divergence of the curl vanishes. By working in

cylindrical coordinates with an axial symmetry, it is possible to reduce the 3D grid

down to a 2D grid. This thesis uses the grid proposed in ref. [103]. By using a

2D grid the number of grid points scales as O(n2), rather than O(n3). This reduces

both the computational time it takes to update the grid, and the amount of memory

needed to store the grid points, without reducing the amount of information about

the electromagnetic fields. The grid used is shown in figure 7.3. Note that only

Bφ, Bz, Er, and jr are defined along the r = 0 axis. As previously mentioned, due
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to the axial symmetry Eφ, Br, and jφ vanish everywhere.

Figure 7.3: The grid used for discretising Maxwell’s equations, figure inspired by

[103]. Since the grid is axially symmetric, this can be converted to a 3D grid by

rotating the grid around the z axis. A black cross denotes the centre of a cell (the

point radius is at evaluated at in the field updating equations). Due to the axial

symmetry, the Eφ and Br fields will always vanish.

7.3.3.2 Updating the fields

Fields are updated by solving the dynamical Maxwell’s equations

dE

dt
=

1

c2
∇×B− 1

ε0

j, (7.3.6)

dB

dt
= −∇× E. (7.3.7)

There is no need to consider Gauss’ law

∇ · E =
ρ

ε0

(7.3.8)
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since differentiating both sides with respect to time,

d

dt
(∇ · E) =

d

dt

(
ρ

ε0

)
(7.3.9)

∇ · dE
dt

=
1

ε0

dρ

dt
. (7.3.10)

Using Ampère’s Law (equation (7.3.6)),

∇ ·
(
∇×B− 1

ε0

j

)
=

1

ε0

dρ

dt
(7.3.11)

∇ · (∇×B)− 1

ε0

∇ · j =
1

ε0

dρ

dt
(7.3.12)

∇ · j =
dρ

dt
(7.3.13)

so if the divergence of j vanishes, charge is conserved.

To solve the relevant Maxwell’s equations on a discretised grid, a finite-difference

time domain (FDTD) algorithm is used. These algorithms solve partial differential

equations that involve temporal and spatial derivatives by using the discretised

spatial coordinates. In cylindrical coordinates, it is possible to exploit the rotational

symmetry to simplify the FDTD equations, since the derivatives with respect to φ

can be ignored. From [103], the equations used to update the electric fields are

En+1
r (k, l) = En

r (k, l)−
(
Bn
φ(k, l)−Bn

φ(k, l − 1)

∆z

)
∆t− 1

ε0

Jnr (k, l)∆t (7.3.14)

En+1
z (k, l) = En

z (k, l) +

(
rkB

n
φ(k, l)− rk−1B

n
φ(k − 1, l)

rk− 1
2
∆r

)
∆t− 1

ε0

Jnr (k, l)∆t.

(7.3.15)

where (k, l) is used to refer to the field component in the (k, l) cell (as in figure 7.3).

The equations for updating the magnetic fields are

Bn+1
φ (k, l) = Bn

φ(k, l)−
(
En
r (k, l + 1)− En

r (k, l)

∆z

)
∆t

+

(
En
z (k + 1, l)− En

z (k, l)

∆r

)
∆t

(7.3.16)

Bn+1
z (k, l) = Bn

z (k, l). (7.3.17)
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7.3.3.3 Boundary conditions

To solve the EM field equations, it is not sufficient to just use Maxwell’s equations:

boundary conditions to describe how the field behaves at the edges of the simulation

must also be designed. There are several different options, depending on the physics

described by the system. One possibility are periodic boundary conditions, where

the edge of the simulation matches the opposite edge of the simulation [104]. For a

simulation where electromagnetic fields can escape the system, absorbing boundary

conditions must be used [105].

For an RF cavity, the most appropriate boundary conditions are metallic boundary

conditions. This means that the electric field components tangent to the boundaries

and the magnetic field components normal to the boundary vanish. Additionally,

it shall be assumed that the electromagnetic fields within the walls vanish. It shall

be the convention of this thesis that the boundaries of the cavities line up with the

centre of the cells (the location of the Bz, Er, and jr components). This choice gives

the boundary conditions as

Eφ(k, zmin) = Er(k, zmin) = Bz(k, zmin) = 0,

Eφ(k, zmax) = Er(k, zmax) = Bz(k, zmax) = 0,

Bφ(k, zmax) = Ez(k, zmax) = 0,

(7.3.18)

where the last line is due to assuming fields are zero within the cavity walls, and

the use of the staggered grid.

There are no boundary conditions for the rmax boundary because the quantities

defined at rmax (and not at the halfway point between the cells) are not zero on

the boundary. These are instead corrected by using different differential equations

to solve the boundaries. The simplest way to do this is to set the Ez(k + 1, l)

term in (7.3.16) to zero. This is unstable, as this equates to using the backwards

difference formula to calculate derivatives, which is not accurate. This is in contrast
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to the FDTD equations for the bulk of the media, which use a more stable central

difference formula. To update Bφ on the rmax boundary, use five points to calculate

the derivative at the rmax boundary, using the formulae

Bn+1
φ (rmax, l) = Bn

φ(rmax, l)−
(
En
r (k, l + 1)− En

r (k, l)

∆z

)
∆t

−
(

35

8∆x
Ez(rmax − 1, l) +

35

24∆x
Ez(rmax − 2, l)

− 21

40∆x
Ez(rmax − 3, l) +

5

56∆x
Ez(rmax − 4, l)

)
∆t. (7.3.19)

The numerical differentiation formula used to derive this is in appendix A.1.

To solve the fields along the r = 0 axis, use the cylindrical symmetry to note that

for fields to be continuous, Er(0, j) = 0, and Bφ(0, j) = 0. The only non-zero

field defined at a grid point along the axis is Bz. Since Bz is constant due to the

cylindrical symmetry, this term does not need to be updated.

To test the field updater is working, an electric field with Ez component

Ez = E0J0

(
2.405 r

a

)
(7.3.20)

can be modelled, where J0(r) is the zeroth Bessel function of the first kind, E0 is the

initial electromagnetic field strength and a is the radial width of the cavity. This

corresponds to the TM010 mode of an accelerating cavity (see reference [95] for a

derivation of this). Figure 7.4 shows the electric and magnetic fields for this cavity.

There is no gain in oscillation amplitude over time, and the fields are 90◦ out of

phase with each other, as is expected. This shows the electromagnetic field updater

works correctly without the addition of current sources.
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Figure 7.4: The maximum values of electric and magnetic fields of a TM010 mode

in a cylindrical cavity over time. The initial electric field is defined by equation

(7.3.20) where E0 = 1, and a = 1. The grid size simulated is 10× 10 with a uniform

spacing of 0.1, and a time step ∆t = 0.001.

7.3.4 Depositing current onto the grid points

Chapter 6 showed how to reconstruct the 4-current from a set of moments. These

currents need to be deposited onto the grid points in order to solve the discretised

Maxwell’s equations. This is done by integrating Tµ across the volume of the cell,

jµ(k, l) =

∫
cell

Tµd2x (7.3.21)

where
∫
cell represents integration over the area of the (k, l) cell, and the integration

is only over 2 dimensions since the grid is 2D.

The bounds of the cell used for integration are the nearest staggered grid points

adjacent to the grid point the current is defined at. These boundaries are shown

pictorially in figure 7.5. Special consideration needs to be taken for the bounds of

integration of the jr current component along all of the boundaries. For the r = 0

axis, this is because the cell is only half as wide as the other cells at this point. For

the other boundaries, this is because there is no current inside the cavity walls, so

these regions should not be included in the integration.
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(a) The jr grid cell boundaries for

depositing current to the grid. Since

there is no current inside the cavity walls,

these boundaries are only half cells.

(b) The jz grid cell boundaries for

depositing current to the grid. Since

there are no jz grid cells along the axis,

there are only 2× 2 grid points for the jz

to be evaluated on.

Figure 7.5: An example of the cell boundaries when integrating the current across

a 3 × 3 grid. The colours are used to distinguish cells. The diagonal striped region

represents the cavity walls, within which there is zero current. The leftmost grid

points represent the zmin cell.

Is is important to deposit over multiple grid cells, as this allows the structure from

the charge distribution to be reflected across the extent of the macroparticle. The

number of cells deposited across is determined by the width of the model function

used to find the current through either the reconstruction or projection methods

(equation (6.3.3)). The number of cells the current is deposited over covers the

whole support of the model function (figure 7.6).
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Figure 7.6: The number of grid cells (highlighted in green) the current is deposited

across. The number of grid cells the current is deposited across is determined by the

width of the model function (equation (6.3.3)). The number of grid cells deposited

across needs to cover the whole support of the model function (the blue lines).

7.3.5 Interpolating the fields

As previously shown, the electromagnetic fields are calculated at points on the grid.

To update the macroparticle’s position, velocity, and moments; the EM fields and

their derivatives must be interpolated to the current position of the macroparticle.

There are several existing methods for interpolation. The simplest interpolation

method is to linearly weight the field across the closest grid points [106]. This method

can be improved be weighting over several grid points [36, 37]. An alternative

method is to use splines to find a continuous function across the whole grid [107, 108].

Spline interpolation methods stitch together multiple low order polynomials to find

the field across the whole grid. This is more accurate, but is more computationally

intensive.

The linear weighting methods do not allow for the derivatives of the field to

be accurately calculated. One method to use linear weighting to calculate the

derivatives would be to find the derivatives at the grid points using numerical

differentiation, and linearly interpolate these to the macroparticles location. The
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spline methods use several polynomials, each of low order. This means that

derivatives above this order will not be accurately calculated by the splines. An

alternative method is to interpolate to the particles position by finding a polynomial

approximation to the field. Consider a function h(r, z), this can be approximated

as a polynomial

h(r, z) ≈
n∑
i=0

m∑
j=0

aijr
izj (7.3.22)

where n and m are the number of r and z points being used for finding the

interpolation polynomial. This allows a nm× nm square matrix of points,
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(7.3.23)

so by solving this system of equations, the coefficients ai,j, and the approximation

for h can be found. This also allows the derivatives of h to be found quickly, by

analytically differentiating the polynomial for h.

Replacing h with each component of the electromagnetic field gives a mechanism

for interpolating the electromagnetic field and its derivatives from the grid points

to the position of the macroparticle.

The number of points used for interpolating the function is something that will be

tested when the code is developed. Using too few points results in the derivatives

of the function being inaccurately calculated. Using too many points results in not
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only an increased computation time, but also less accurate results. This is because

the interpolation becomes overfitted to the number of points, no longer accurately

representing the fields between the grid points. This means there is an ideal number

of points to get the most accurate interpolation.

7.4 How to numerically validate the 1.5D PIC code

Once the simulation has been developed, initial testing will examine the basic

physical phenomena of a klystron, to ensure that the code works at a proof-of-

principle level. This will involve testing the accelerating cavities of the klystron,

to verify bunching occurs as expected. It is important to test the final cavity of

the klystron, where the particles are decelerated, to verify that they radiate the

electromagnetic radiation into the cavity as expected.

One aspect of the code that needs to be tested is how many macroparticles are

appropriate for modelling a bunch. For the moments to be accurately modelled, the

variation in the field across the extent the macroparticle represents (the width of the

model functions used for reconstructing charge and current) will need to be small

(figure 4.1). By increasing the number of macroparticles, each one will have a smaller

width in the z space, meaning the variation of the fields across each macroparticle

will be smaller. This will need to be balanced against the extra computational load

from tracking more macroparticles. Part of the initial testing will be to gain intuition

about the correct number of macroparticles. As the macroparticles represent rings

of charge, adding more macroparticles will not affect the accuracy of the moment

tracking in r space. This means that if there is a lot of variation in the radial fields,

the moment tracking method can only be improved by including more moments.
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It is difficult to check standard conserved quantities within the moment tracking

PIC code. In a standard PIC code, energy will be conserved. Whilst this PIC code

should conserve energy, it is difficult to verify this as it is unknown how to calculate

the energy of a set of moments. As previously shown, the moment tracking PIC

method should conserve emittance in the drift spaces of the klystron. It will not

conserve emittance whilst being accelerated and decelerated, as these forces are not

conservative, so Liouville’s theorem is not valid [94, 95].

No additional charge is added to a PIC code from tracking moments. This is

because when the charge and current is deposited to the grid, the reconstructed or

projected charge has the same monopole moment as the original distribution, which

corresponds to the same total charge. This does not mean charge is conserved in

total (in general PIC codes do not conserve charge), because of errors associated

with using a discretised grid. Whilst it is not known if the moment tracking

PIC code presented in this thesis will also suffer from this issue, it is suspected

it will. The extra charge created from the discretisation can be reduced through a

process called divergence cleaning [109]. In a standard PIC code using Cartesian

coordinates, it is possible to use shape functions devised by Villasenor and Buneman,

and later Esirkepov [110, 111] that conserve charge exactly. These do not exist in this

approach, since there are no shape functions for depositing charge. Despite this, for

modelling a PIC code in cylindrical coordinates, standard PIC codes cannot use these

charge conserving shape functions, since they do not work in curvilinear coordinates.

It is not known what the appropriate choice of grid size will be. The electromagnetic

field solver is limited by the Courant-Friedrichs-Lewy condition [112],

(∆t)2 ≤
(

1

(∆r)2
+

1

(∆z)2

)−1

. (7.4.1)

This limits the maximum time step used in a moment tracking PIC code, as the

FDTD algorithm is still being used to update the fields. In a typical plasma, the

maximum spatial grid size is typically given by the Debye length of the plasma

114



7.5. Future features

(the maximum width the electrons and ions oscillate from each other). It is not

known if the Debye length of the plasma will be the limiting factor for the spatial

resolution of a PIC code with moment tracking. The dominating source of error in

the moment tracking is when the field cannot be accurately modelled by a small

number of derivatives at the macroparticle centre. This means that one limit for

the cell size will be based on the density of grid points required to accurately find

the derivatives of the fields. Since the macroparticle has an internal structure, it

needs to span over several cells. This allows the extra structure from tracking the

moments to be reflected in the deposited charge and current. This is in contrast

to existing methods, which deposit over several cells to reduce numerical instability

[109, 113]. It may be that in cases where the fields can be approximated using a low

resolution grid (figure 4.1a), that it is possible for a single macroparticle to be larger

than the Debye length of the plasma. By tracking the moments, information about

the structure within the macroparticle is known, and this affects how the charge and

current will be deposited onto the grid points. By tracking moments, it may be that

the effects of instabilities generated from using a finite grid (aliasing instabilities)

[54, 109, 114, 115] are not as significant.

7.5 Future features

7.5.1 Considerations to be made when scaling the moment

tracking approach to higher order moments

The multipoles in this thesis have all been truncated at the quadrupole level. As

previously discussed, this can cause significant issues due to the truncation error.

It is likely a practical PIC code using moment tracking will want to operate at at

least the hexadecapole (fourth order) level. As shown in tables 1.1 and 7.1, this

creates substantially more ODE’s to solve each timestep for updating the moments,

as well as more variables to store in memory. These cannot be avoided, and are one
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of the expenses of using more moments in a PIC code. Optimisations can be made

however, by parallelising the code to allow multiple macroparticles to be updated

simultaneously.

To parallelise a standard PIC code, the grid is split between multiple CPU cores, with

each core updating the macroparticles within its section of the grid in parallel [37].

This approach might not work for the moment tracking PIC code method, since it is

required that each macroparticle spreads over several grid points. Instead, it might

be more practical to allocate different macroparticles to individual cores. In the

extreme case that there are only a small number of macroparticles, each with a very

large number of moments, then multiple cores can run on a single macroparticle. The

moment updating equations are all independent for each macroparticle, so can be run

in parallel. Additionally, depositing over each grid point can be run independently,

with different cores depositing the current onto different parts of the grid. Whilst the

updating and depositing can be parallelised, the linear system of equations needed

to solve both the projection and reconstruction methods have to be done on a single

core. It may be possible to optimise this step for certain model functions, such that

solving the linear system of equations can be avoided.

7.5.2 Modifying the transport equations to add internal

structure to a macroparticle

In a low velocity RF system, such as the early stages of a particle accelerator or

a klystron, space-charge effects within the bunch mean that the bunch blows itself

apart radially over time. In real systems, this is suppressed by surrounding the

system with a solenoid. This creates a constant Bz field through the cavity. This

field, combined with the small ur component, creates a angular velocity, causing the

particles to move in small circles. The net effect of this results in the average radial

position of the whole bunch oscillating over time. The effect of a bunch radially

oscillating is known as scalloping [116, 117]. It is not possible to simulate scalloping
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with the 1.5D model presented in this chapter. This is because the 1.5D model

assumes there is no motion in the angular direction, so the uφ component of the

Lorentz force is not calculated, therefore no scalloping from the solenoid can occur.

A full 3+3D PIC code would not have this issue, since angular forces are calculated.

In order to include scalloping in the 1.5D code, a modification to the transport

equations must be made, to allow for forces within a macroparticle to be included.

Consider the transport equation ∂aJ
a = 0, corresponding to the conservation of

charge. All that matters for the conservation of charge is the conservation of

the current across the spatial coordinates, rather than both spatial and velocity

coordinates. Therefore the 4-current Tµ(t, x) needs to be conserved, rather than

the full 7-current. This means that it is possible to create a more general transport

equation that allows internal structure within a macroparticle to be modelled. This

internal structure has already been modelled in previous moment tracking methods,

for the specific cases of muon cooling (reduction of the emittance of a muon beam)

[42], and space-charge [45]. By finding a general formula for effects that can be added

to the multipoles, it will be possible to add other effects to the macroparticles,

including scalloping. This section outlines how the transport equations can be

modified to include an the arbitrary field to simulate internal structure, but it does

not give any examples of testing these internal structures, as this is future work.

Given that only 4-current matters for conservation of charge, then the conservation

of charge becomes

∂µT
µ = 0 (7.5.1)

where the sums are only over 0, . . . , 3. This equation is the continuity equation in

electrodynamics, and follows from the definition of 4-current from the electromag-

netic field tensor Fµν ,

Tµ = ∂νF
µν (7.5.2)
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where Fµν is antisymmetric. This gives

∂µT
µ = ∂µ∂νF

µν = 0 (7.5.3)

because of the antisymmetry [118].

Using the definition of Tµ from Jµ gives

∂µ

∫
Ep
Jµd3u =

∫
Ep
∂µJ

µd3u = 0 (7.5.4)

since an integral over velocity space and differentiation over spatial coordinates

commute. For the velocity components, use Stoke’s theorem, and that the flux of

Jµ+3 through Ep is equal to Jµ+3 evaluated at the boundaries of Ep. Since Ja has

compact support from its definition (equation (2.3.1)), this vanishes, and, as such,∫
Ep
∂µ+3 J

µ+3 = 0. (7.5.5)

Combining equations (7.5.4) and (7.5.5) gives the the modified transport equation,

∂aJ
a = B,

∫
Ep
B d3u = 0, (7.5.6)

where B is some function chosen to add internal structure to the macroparticle.

By squeezing both sides, this can be promoted to the Ellis representation of a

distribution,

∂aJ a = B,
∫
Ep
B d3u = 0, (7.5.7)

where B is a distribution found by squeezing B. This can equivalently be defined

through the action on a test form λ,∫
E
J a∂aλ dt = B,

∫
Ep
B d3u = 0. (7.5.8)

This means that by suggesting some scalar field B containing extra terms to add to

the transport equation, and squeezing this into the distributional B, it is possible to
add internal dynamics into the moment tracking equations. Alternatively it may be

possible to suggest some B that is not derived through squeezing B, based on the

physical features one is aiming to simulate.
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Chapter 8

A geometric interpretation of the

multipole transport equations

In this chapter, the measure, the Vlasov equation, the transport equations, and

the coordinate transformations of multipoles are presented, using the language of

differential geometry and de Rham currents [68, 69]. Whilst several results necessary

to prove the differential equations for the moments are shown in this chapter, they

can be justified physically through the conservation of charge. Because of this, if a

reader is unfamiliar with the language of differential geometry, this section is not

necessary to understand the content of the thesis.

The language of differential geometry allows the measure and the conservation of

charge to be calculated on the tangent bundle, then these results pulled back onto

E . This is advantageous as the calculations required on the tangent bundle are much

simpler than those on E . By working on the tangent bundle it provides results that

are easier to calculate, and easier for the reader to understand.

By using the language of de Rham currents there is a clearer split between the

V a and Xab components. This split makes it simpler to isolate each term when

performing complex calculations that mix both terms, such as during coordinate
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transformations. It also means the evolution of the moments can be described in a

coordinate free way. This is in contrast to the integral representation of moments

(e.g. equation (3.1.7)), which is highly dependent on the coordinate system, in

particular the choice of time slicing. The Ellis method also requires a coordinate

system to define the action on a test form.

Rather than integrating over the velocity space, the projection can be defined

through the creation of a map from E to M . This map gives a geometric way

to explain the relationship between the 7-current and the 4-current. Additionally,

by working with differential forms instead of a set of scalar fields, it is clearer to see

why the velocity components of Ja and J a are not considered when projecting to

the base manifold.

8.1 Operations on the tangent bundle

Before finding quantities on the seven-dimensional time-phase space, the Vlasov

equation and the measure shall be derived on the tangent bundle. By finding the

measure on the tangent bundle, the measure on E can be derived. Additionally, in

order to prove the conservation of charge (equation (2.3.5)), it must be proven on

the tangent bundle first. This result is then pulled back onto E in section 8.2.

Consider a manifold M , with metric g and tangent bundle TM . The bundle of

p-forms on TM is written ΛpTM such that a specific p-form (field) is denoted as

α ∈ ΓΛpTM . A vector field is denoted as A ∈ ΓTTM . The coordinates on the

tangent bundle will be denoted (xµ, ẋµ).

A scalar lift is defined as

ḣ ∈ ΓΛ0(TM), ḣ|u˜ = u˜〈h〉 for u˜ ∈ TM, h ∈ ΓΛ0M (8.1.1)

where angled brackets represent the evaluation of a vector and a scalar field, and
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8.1. Operations on the tangent bundle

u˜ ∈ TM is a vector at a point. In terms of coordinates, this is given by

ḣ = ẋµ
∂h

∂xµ
. (8.1.2)

Let CTM : R → M , and be parameterised by τ , an affine parameter. The

prolongation of CTM onto TM , ηTM , gives a curve defined as

ηµTM(τ) = Cµ
TM(τ) = xµ|ηTM (τ), ηµ+4

TM(τ) = Ċµ
TM(τ) = ẋµ|ηTM (τ). (8.1.3)

Let WTM be the Vlasov vector field on TM . As on E , ηTM is an integral curve of

WTM , so

W µ
TM |ηTM

=
dCµ(τ)

dτ
, W µ+4

TM |ηTM
=
d2Cµ(τ)

dτ
. (8.1.4)

To solve these derivatives, note that since τ is affine, it solves the geodesic equation

with the Lorentz force,

∇Ċ Ċ =
q

m
ĩĊF , (8.1.5)

where ∇ĊĊ represents a covariant derivative with respect to a vector field, and a

tilde over a quantity represents the metric dual. This means

W µ
TM |ηTM

= ẋµ|ηTM
, W µ+4

TM |ηTM
= −

(
Γµνρẋ

ν ẋρ +
q

m
Fνρg

µν ẋρ
)
. (8.1.6)

Combining these gives the Vlasov equation on TM ,

WTM = ẋµ
∂

∂xµ
−
(

Γµνρẋ
ν ẋρ +

q

m
Fνρg

µν ẋρ
) ∂

∂ẋµ
. (8.1.7)

To find the natural measure on TM , begin by considering the cotangent bundle

T ∗M . The cotangent bundle has coordinates (xµ, pµ) where pµ are the conjugate

coordinates, and have the property

pµ|α = αµ (8.1.8)

where α = αµdx
µ ∈ ΓΛ1M . The canonical 1-form on the cotangent bundle is given

by

θ = pµdx
µ. (8.1.9)
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Chapter 8. A geometric interpretation of the multipole transport equations

The symplectic 2-form is given by

ω = dθ = dpµ ∧ dxµ. (8.1.10)

The measure on the cotangent bundle is given by the wedge product of the symplectic

2-form,

ΩT ∗M = ω4 = ω ∧ ω ∧ ω ∧ ω = (−1)dp0 ∧ . . . ∧ dp3 ∧ dx0 ∧ . . . ∧ dx3 (8.1.11)

where the factor of −1 comes from a choice of orientation such that the final measure

ΩTM will be a positive quantity (since the determinant of the metric is negative).

Let β : TM → T ∗M . For differential forms the pullback of β, β∗, is the metric dual.

The measure on TM is given by pulling back the measure on the cotangent bundle,

ΩTM = β∗(ΩT ∗M). (8.1.12)

In terms of coordinates, the measure on TM is given by

ΩTM = −det(g)dx0 ∧ . . . ∧ dx3 ∧ dẋ0 . . . ∧ dẋ3 = dx[0,1,2,3] ∧ dẋ[0,1,2,3] (8.1.13)

where

dx[0,1,2,3] = dx0 ∧ dx1 ∧ dx2 ∧ dx3. (8.1.14)

Proof. To calculate the pullback β∗, let V ∈ ΓTM = β∗(α), then

β∗(pµ|α) = β∗(αµ) (8.1.15)

(β∗pµ)|V = V νgµν (8.1.16)

β∗(pµ) = ẋνgµν (8.1.17)

where the last step follows from the definition of the scalar lift. Since the pullback

commutes with the exterior derivative, the pullback of dpµ is

β∗(dpµ) = dβ∗pµ = d(ẋνgµν) = gµνdẋ
ν + ẋν∂ρ(gµν)dx

ρ. (8.1.18)
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8.1. Operations on the tangent bundle

The pullback of dxµ is simply β∗(dxµ) = dxµ. Using these pullbacks, the measure

on TM can be found,

ΩTM = β∗(ΩT ∗M) = β∗(−dp0 ∧ . . . ∧ dp3 ∧ dx0 ∧ . . . ∧ dx3) (8.1.19)

= −β∗(dp0) ∧ . . . ∧ β∗(dp3) ∧ β∗(dx0) ∧ . . . ∧ β∗(dx3) (8.1.20)

= −gµ0dẋ
0 ∧ . . . ∧ gµ3dẋ

3 ∧ dx0 ∧ . . . ∧ dx3 (8.1.21)

= −gµ0 . . . gµ3dẋ
0 ∧ . . . ∧ dẋ3 ∧ dx0 ∧ . . . ∧ dx3. (8.1.22)

It is assumed that the order of the dẋ terms is increasing (if this is not assumed this

approach is still valid, but the signature of the permutations needed to order the

terms needs to be considered). This means that

gµ0 . . . gµ3dẋ
0 ∧ . . . ∧ dẋ3 = det(g)dẋ0 ∧ . . . ∧ dẋ3. (8.1.23)

The last step is to permute the dẋµ terms to the end of the wedge product, each

term is moved through four terms, and this is done four times, so

ΩTM = −det(g)dẋ0 ∧ . . . ∧ dẋ3 ∧ dx0 ∧ . . . ∧ dx3 (8.1.24)

= det(g)(−1)(−1)16dx0 ∧ . . . ∧ dx3 ∧ dẋ0 ∧ . . . ∧ dẋ3 (8.1.25)

= −det(g)dx0 ∧ . . . ∧ dx3 ∧ dẋ0 ∧ . . . ∧ dẋ3. (8.1.26)

as required.

Using this measure, it can be shown that on the tangent bundle,

LWTM
ΩTM = 0. (8.1.27)
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Chapter 8. A geometric interpretation of the multipole transport equations

Proof. Begin by considering Cartan’s identity, and that ΩTM is a top-form, so

LWTM
ΩTM = diWTM

ΩTM (8.1.28)

= −diWTM
det(g)dx[0,1,2,3] ∧ dẋ[0,1,2,3] (8.1.29)

= − dW µ
TMdet(g)iµdx

[0,1,2,3] ∧ dẋ[0,1,2,3]

− dW µ+4
TM det(g)dx[0,1,2,3] ∧ iµ+4dẋ

[0,1,2,3]

(8.1.30)

= − ∂µ(W µ
TMdet(g))dx[0,1,2,3] ∧ dẋ[0,1,2,3]

− ∂µ+4(W µ+4
TM det(g))dx[0,1,2,3] ∧ dẋ[0,1,2,3]

(8.1.31)

= −
(
∂µ(W µ

TMdet(g)) + det(g)∂µ+4(W µ+4
TM )

)
dx[0,1,2,3] ∧ dẋ[0,1,2,3].

(8.1.32)

Since W µ
TM = ẋµ,

∂µ(W µ
TMdet(g)) = W µ

TM∂µ(det(g)) = 2ẋµdet(g)Γνµν . (8.1.33)

For the velocity components of the Vlasov equations, it is clearer to split the field

into the electromagnetic part and the gravity part,

∂µ+4W
µ+4
TM,EM =

q

m
∂µ+4 (F µ

ν ẋ
ν) =

q

m
F µ

νδ
ν
µ =

q

m
F µ

µ = 0 (8.1.34)

since F is antisymmetric. For the gravity part,

det(g)∂µ+4W
µ+4
TM,grav = −det(g)∂µ+4

(
Γµνρẋ

ν ẋρ
)

= −2det(g)Γµνµẋ
ν (8.1.35)

summing these together shows LWTM
ΩTM = 0, as required.

In this section the Vlasov field is parameterised by τ , an affine parameter, such

that the motion of the world line C was described by the geodesic equation with

the Lorentz force (equation (8.1.5)). This is in contrast to the Vlasov equation

derived in section 2.2, which is parameterised by t, the global lab time coordinate.

A Vlasov equation parameterised by τ is chosen to make the calculations easier

to read, as there are less terms in this parameterisation. To go from a Vlasov field

parameterised by τ to one parameterised by t, there are two possibilities. The Vlasov
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8.2. Seven-dimensional time-phase space

field can be derived by considering the flow lines of ηTM , where the parameterisation

is changed to use t instead of τ . Alternatively, to make it clearer that the results

hold in both parameterisations, it is possible to calculate the Vlasov field between

two parameterisations directly, by considering it as a spray. Chapter 12 of reference

[119] explains this procedure. An explanation of this procedure is also available in

reference [120].

8.2 Seven-dimensional time-phase space

Consider a scalar field t ∈ ΓΛ0M , which represents a global time. The coordinate

time hypersurface is defined by this scalar field, defined such that

E = {Z ∈ TM | Z〈t〉 = 1} . (8.2.1)

As previously discussed, different time slicings will give different hypersurfaces.

Using the definition of scalar lifts, equation (8.2.1) is equivalent to the condition

ṫ = 1. The spatial coordinates (xµ) are always chosen such that x0 = t. Equation

(8.2.1) means the natural choice of velocity coordinates on E are (vµ). This is

because in this choice of coordinates,

ẋ0|η =
dC0

dt

∣∣∣∣
η

=
dt

dt

∣∣∣∣
η

= 1, (8.2.2)

as required.

To find the Vlasov equation on E , there are two possible ways to calculate it. The

first is to use the definition

iWEE∗(α) = E∗(iWTM
(α)), (8.2.3)

and the second is to calculate the prolongation of C directly on E . Both approaches

give the same result as the Vlasov equation calculated in section 2.2, with the second

option being identical to the approach in section 2.2.
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Chapter 8. A geometric interpretation of the multipole transport equations

As stated in section 2.1, all integrals must contain a measure. The measure on E is

found by pulling back the measure on TM ,

ΩE = E∗(iVΩTM) (8.2.4)

where V is the vertical vector field

V = ẋµ
∂

∂ẋµ
(8.2.5)

and E : E → TM . Equations (8.2.3) and (8.2.4) imply

LWEΩE = 0. (8.2.6)

Proof. The measure on E is given by

ΩE = E∗(iVΩTM). (8.2.7)

This means

LWEΩE = LWEE∗(iVΩTM). (8.2.8)

Using equation (8.2.3),

LWEΩE = E∗(LWTM
iVΩTM). (8.2.9)

Now using the identity

[LX , iY ] = i[X,Y ] (8.2.10)

for all vector fields X and Y ,

LWTM
iV = iVLWTM

− i[V,WTM ]. (8.2.11)

To calculate this Lie bracket, consider [V ,WTM ] acting on the scalar fields xµ and

ẋµ separately,

[V ,WTM ]〈xµ〉 = V〈WTM〈xµ〉〉 −WTM〈V〈xµ〉〉 (8.2.12)

= V〈ẋµ〉 − (0) (8.2.13)

= ẋµ (8.2.14)
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8.2. Seven-dimensional time-phase space

and acting on ẋµ,

[V ,WTM ]〈ẋµ〉 = V〈WTM〈ẋµ〉〉 −WTM〈V〈ẋµ〉〉 (8.2.15)

= V
〈 q
m
F µ

ν ẋ
ν − Γµνρẋ

ν ẋρ
〉
−WTM〈ẋµ〉 (8.2.16)

=
q

m
F µ

νV〈ẋν〉 − 2Γµνρẋ
νV〈ẋρ〉 −WTM〈ẋµ〉 (8.2.17)

=
q

m
F µ

ν ẋ
ν − 2Γµνρẋ

ν ẋρ −WTM〈ẋµ〉 (8.2.18)

=
q

m
F µ

ν ẋ
ν − 2Γµνρẋ

ν ẋρ − q

m
F µ

ν ẋ
ν + Γµνρẋ

ν ẋρ (8.2.19)

= −Γµνρẋ
ν ẋρ. (8.2.20)

Summing these together gives

[V ,WTM ] = ẋµ
∂

∂xµ
− Γµνρẋ

ν ẋρ
∂

∂ẋµ
= WTM |in absence of charges. (8.2.21)

This means

LWTM
iV = iVLWTM

− iWTM |in absence of charges . (8.2.22)

This gives

LWEΩE = E∗(LWTM
iVΩTM) (8.2.23)

= E∗(iVLWTM
ΩTM)− E∗(iWTM |in absence of chargesΩTM) (8.2.24)

= (0)− iWE |in absence of chargesE∗(ΩTM) (8.2.25)

= 0 (8.2.26)

since LWTM
ΩTM = 0, and the pullback of a form of higher degree than the manifold

the pullback it maps onto vanishes. This shows LWEΩE = 0, as required.

Equation (8.2.6) is the geometric equivalent to the condition ∂a(W
aΩ0) = 0

(equation (2.3.5)) corresponding to the conservation of charge used in deriving the

transport equations (section 2.3), and in showing the constancy of the monopole

(section 3.2).
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In terms of coordinates, defining the measure through equation (8.2.4) gives the

measure on E as

ΩE = −det(g)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dv1 ∧ dx2 ∧ dv3 = −det(g)dt ∧ dx[1,2,3] ∧ dv[1,2,3]

(8.2.27)

since

iVΩTM = −det(g)
(
ẋ0dx[0,1,2,3] ∧ dẋ[1,2,3] − ẋ1dx[0,1,2,3] ∧ dẋ[0,2,3]

+ẋ2dx[0,1,2,3] ∧ dẋ[0,1,3] − ẋ2dx[0,1,2,3] ∧ dẋ[0,1,2]
)

(8.2.28)

and x0 = t, and since, on E , ẋ0 = 1, E∗(dẋ0) = 0, and ẋµ = vµ. Combining these

gives equation (8.2.27). From here, a coordinate transformation from 3-velocity vµ

to 4-velocity uµ must be performed, because, as previously discussed, uµ is a more

suitable choice of velocity coordinates to perform numerical simulations in.

Recall the definition of uµ (equation (2.1.1)). Rearranging this gives

vµ =
uµ

u0
. (8.2.29)

This means that, in order to find the coordinate transformation from 3-velocity vµ

to 4-velocity uµ, du0 needs to be calculated. Consider the definition of u0, from

equation (2.1.2),

d(gµνu
µuν) = uµuνdgµν + 2uνgµνdu

µ (8.2.30)

= uµuν
∂gµν
∂xρ

dxρ + 2uνgµνdu
µ + 2uνg0νdu

0 (8.2.31)

since gµνuµuν = −1, the exterior derivative of this should vanish, so equation (8.2.31)

can be rearranged to find du0,

du0 = − 1

2uνg0ν

uµuν
∂gµν
∂xρ

dxρ − 1

uνg0ν

uνgµνdu
µ (8.2.32)

= − 1

2u0

uµuν
∂gµν
∂xρ

dxρ − 1

u0

uµdu
µ. (8.2.33)

Equations (8.2.27) and (8.2.33) imply

ΩE =
1

(u0)4u0

det(g)dt ∧ dx[1,2,3] ∧ du[1,2,3]. (8.2.34)
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Proof. Consider dvµ = d(uµ/u0), this gives

d

(
uµ

u0

)
=

1

u0
duµ − 1

(u0)2
uµdu0 (8.2.35)

=
1

u0
duµ +

1

(u0)2
uµ
(

1

2u0

uσuν
∂gσν
∂xρ

dxρ +
1

u0

uνdu
ν

)
(8.2.36)

=
1

u0
duµ +

1

(u0)2u0

uµuσuν
∂gσν
∂xρ

dxρ +
1

(u0)2u0

uµuνdu
ν (8.2.37)

=
1

(u0)2u0

(
u0u0δ

µ
ν + uµuν

)
duν +

1

(u0)2u0

uµuσuν
∂gσν
∂xρ

dxρ (8.2.38)

=
1

u0

(
δ
µ
ν +

uµuν
u0u0

)
duν +

1

(u0)2u0

uµuσuν
∂gσν
∂xρ

dxρ. (8.2.39)

Wedging these together, considering only the velocity parts (the spatial parts will

cancel out when the full measure is considered since they will all be terms of the

form dx1 ∧ dx1 = 0), and writing out all the terms in the sums

d

(
u1

u0

)
∧ . . . ∧ d

(
u3

u0

)
=

1

u0

(
δ1
ν +

u1uν
u0u0

)
duν ∧ . . . ∧ 1

u0

(
δ3
ρ +

u3uρ

u0u0

)
duρ

(8.2.40)

=
1

(u0)3

(
δ1
ν +

u1uν
u0u0

)
. . .

(
δ3
ν +

u3uν
u0u0

)
duν ∧ . . . ∧ duρ

(8.2.41)

=
1

(u0)3

∑
ν∈S3

ε(ν)

(
δ1
ν +

u1uν
u0u0

)
. . .

(
δ3
ν +

u3uν
u0u0

)
× du1 ∧ du2 ∧ du3

(8.2.42)

=
1

(u0)3
det(A) du[1,2,3] (8.2.43)

where Aµν = δ
µ
ν + uµuν/(u

0u0). To calculate this determinant, consider

A
µ
νuµ = uν + uµuνuµ =

(
1 +

uµuµ

u0u0

)
uν (8.2.44)

so uν is an eigenvalue of A. For all metrics considered in this thesis, the metric

is only defined along the diagonal, which means that A is symmetric. Since A is

symmetric, it must be diagonalisable, which means there is set of orthonormal basis
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vectors (uν , aν,1 . . . aν,3) that are the eigenvectors of A. Consider

A
µ
νaµ,1 = aν,1 + uµuνaµ,1 = aν,1 (8.2.45)

since uµaµ,1 = 0 (they are part of an orthonormal basis). This means aν,1, and the

remaining basis vectors, are eigenvectors with eigenvalue 1. This means that

det(A) = 1 +
uµuµ

u0u0

(8.2.46)

= 1 +
uµuµ
u0u0

− u0u0

u0u0

(8.2.47)

= − 1

u0u0

(8.2.48)

since uµuµ = −1. Using this in equation (8.2.43) gives equation (8.2.34), as required.

To find the measure on an individual hypersurface Σ, let Σ : Σ→ E , then

ΩΣ = Σ∗
(
i∂/∂tΩE

)
. (8.2.49)

In terms of coordinates this becomes

ΩΣ = Σ∗
(
i∂/∂t

1

(u0)4u0

det(g)dt ∧ dx[1,2,3] ∧ du[1,2,3]

)
(8.2.50)

= Σ∗
(

1

(u0)4u0

det(g) dx[1,2,3] ∧ du[1,2,3]

)
(8.2.51)

=

(
1

(u0)4u0

det(g)

)∣∣∣∣
t

dx[1,2,3] ∧ du[1,2,3] (8.2.52)

matching equation (2.1.7).

In this section the measure was calculated in four dimensions, however the

computational model discussed in chapter 7 is in three dimensions. This is not

an issue, as whenever an integration occurs (when first taking the moments, and

when depositing the current onto grid points), the integrand is a tensor density of

weight 1. This means by working with densities throughout this thesis, issues about

the correct measure when switching from four to three dimensions are avoided.
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8.2.1 The transport equations

By using the language of differential geometry, a more geometric approach to

understanding the origin of the transport equations can be found. The current

6-form J ∈ ΓΛ6E (where as J is a differential form, it is not a density) is given by

J = Jaiad
7ξ (8.2.53)

and conversely

Jad7ξ = J ∧ dξa (8.2.54)

where ia represents an internal contraction with respect to the vector field ∂/∂ξa.

Using equation (8.2.53), the current 6-form is related to the distribution function f

as

J = fW aiad
7ξ, (8.2.55)

and

f d7ξ = J ∧ dt (8.2.56)

since W 0 = 1. Recall the current 6-form J was the 6-form that was squeezed in

section 4.2 to show the relationship between distributional multipoles and moments.

To find the dynamics of multipoles defined through differential forms, the equivalent

of equations (4.3.1) and (4.3.2) for distributions are used,

dJ = 0, iWJ = 0, (8.2.57)

where W = W a∂a. The dJ = 0 condition corresponds to the conservation of charge,

and the iWJ condition says that the flow lines of J are the integral curves of the

Vlasov field. These equations are the same as equations (4.3.1) and (4.3.2), i.e. it

is equivalent to the Ellis representation.

131



Chapter 8. A geometric interpretation of the multipole transport equations

Proof. Using equation (8.2.53) and Cartan’s identity

dJ = d
(
Jaiad

7ξ
)

= d
(
Ja
)
∧ iad7ξ + JaLad

7ξ

= (∂bJ
a)dξb ∧ iad7ξ + (0) = (∂bJ

a)δbad
7ξ

= ∂aJ
ad7ξ. (8.2.58)

This is zero if, and only if, ∂aJa = 0, so dJ = 0 is equivalent to equation (4.3.1).

For the iWJ term,

iWJ = iW
(
Jaiad

7ξ
)

= JaW bibiad
7ξ

=
1

2

(
JaW b + JbW a

)
ibiad

7ξ +
1

2

(
JaW b − JbW a

)
ibiad

7ξ. (8.2.59)

Since ibia is antisymmetric, the symmetric part of JaW b contracting against it

vanishes, leaving

iWJ =
1

2

(
JaW b − JbW a

)
ibiad

7ξ. (8.2.60)

This is zero if, and only if, JaW b − JbW a = 0, so iWJ = 0 is equivalent to equation

(4.3.2).

8.3 De Rham current representation of multipoles

8.3.1 Introducing de Rham current distributions

In this section we will work in 7-dimensional time-phase space, but all results

generalise to an arbitrary dimension space. A distributional p-form is defined by

its action on a test (7 − p)-form φ ∈ ΓΛ7−pE , this is a (7 − p)-form with compact

support. Given η : R → E is a closed embedding parameterised by t, the de Rham

pushforward with respect to η of a p-form α ∈ ΓΛpR is given by the distribution

ης(α)[φ] =

∫
R
η∗(φ) ∧ α. (8.3.1)
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The definition of the wedge product, Lie derivatives, internal contractions and

exterior derivatives for an arbitrary distribution Ψ are defined as

(Ψ1 + Ψ2) [φ] = Ψ1[φ] + Ψ2[φ],

(β ∧Ψ) [φ] = Ψ[φ ∧ β],

iBΨ[φ] = −(−1)degφΨ[iBφ],

dΨ[φ] = −(−1)degφΨ[dφ],

LBΨ[φ] = −Ψ[LBφ]

(8.3.2)

where β ∈ ΓΛqE and B ∈ ΓTE . These properties are defined such that they agree

with regular distributions [68, 69]. The space of all relevant distributions we are

considering in this thesis are those that can be constructed from equation (8.3.1)

and a finite number of applications of equation (8.3.2).

The de Rham pushforward commutes with the exterior derivative,

dης(α) = ης(dα). (8.3.3)

Proof. Consider dης(α) acting on a test form φ,

dης(α)[φ] = −(−1)degφης(α)[dφ]

= −(−1)degφ
∫
R
η∗(dφ) ∧ α = −(−1)degφ

∫
R
dη∗(φ) ∧ α (8.3.4)

since the exterior derivative commutes with the pullback. Using the properties of

the external derivative,

dη∗(φ) ∧ α = d(η∗(φ) ∧ α)− (−1)degφφ ∧ dα. (8.3.5)

Integrating d(η∗(φ) ∧ α), and using Stoke’s theorem∫
R
d(η∗(φ) ∧ α) =

∫
∂R
η∗(φ) ∧ α = 0 (8.3.6)

where ∂R is the boundary of R, and the integral vanishes since φ has compact

support. This means

dη∗(φ) ∧ α = (−1)2(−1)2 degφ
∫
R
η∗(φ) ∧ dα = ης(dα)[φ] (8.3.7)

as required.
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Given two vector fields A ∈ ΓTR and B ∈ ΓTE , such that B = η∗(A), then

iBης(α) = ης(iAα). (8.3.8)

Proof. Consider iBης(α) acting on a test form φ,

iBης(α)[φ] = −(−1)degφης(α)[iBφ]

= −(−1)degφ
∫
R
η∗(iBφ) ∧ α = −(−1)degφ

∫
R
iAη

∗(φ) ∧ α. (8.3.9)

Consider

iAη
∗(φ) ∧ α = iA(η∗(φ) ∧ α)− (−1)degφη∗(φ) ∧ iAα. (8.3.10)

From the properties of the de Rham pushforward, the degree of iAη∗(φ)∧α = 1, the

dimension of R. This means that the degree of η∗(φ) ∧ α = 2, so vanishes. Thus

iBης(α)[φ] = (−1)2(−1)2degφ
∫
R
η∗(φ) ∧ iAα = ης(iAα)[φ] (8.3.11)

as required.

The integral curves of the Vlasov vector field are a specific example of this for the

case of η, with

iWης(α) = ης(i d
dt
α) (8.3.12)

since W is tangent to η.

Combining the rules for exterior derivatives and internal contractions, using Cartan’s

identity, gives the properties of Lie derivatives with the de Rham pushforward,

LBης(α) = diBης(α) + iBdης(α) = ης(diAα) + ης(iAdα) = ης(LAα). (8.3.13)

The degree of the distribution ης(α) is 6 + deg(α). Since R is a curve, the degree

of α is either 0 or 1, so the degree of ης(α) is either 6 or 7. Similarly to differential

forms, it can be shown that an internal contraction decreases the degree by one and

an exterior derivative increases the degree by one. Lie derivatives do not affect the

degree of a distribution.
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The order of a p-form distribution over η is defined as follows. If

Ψ[λk+1φ] = 0 for all φ ∈ ΓΛqE with compact support and

λ ∈ ΓΛ0E such that η∗(λ) = 0
(8.3.14)

where η∗ is the pullback, then the order of Ψ is at most k. Note that a quadrupole

(a distribution of order two) also includes the dipole and the monopole terms. It

can be shown that, using this definition, Lie derivatives and exterior derivatives can

both increase order of a distribution by one. Internal contractions do not affect the

order of a distribution.

A distribution Ψ of degree 6 is a semi-multipole of order at most l if

Ψ[λldµ] = 0 for all λ, µ ∈ ΓΛ0E such that η∗(λ) = η∗(µ) = 0. (8.3.15)

This work concerns the dynamics of a semi-quadrupole, which is a semi-multipole

J of order 2 and degree 6. In coordinates, this is denoted as

J =
1

2
LaLbης(V

ab)− iaLbης(Xabdt)− Laης(V a) + iaης(X
adt) + ης(q) (8.3.16)

where La is the Lie derivative with respect to ∂a, and ia is the internal contraction

with respect to ∂a. It is trivial to show this satisfies the definition of quadrupole

(equation (8.3.14) with k = 2), and the definition of a semi-quadrupole (equation

(8.3.15) with l = 2). Note in this representation of the semi-quadrupole, the Xab and

V a terms are easier to distinguish by the additional internal contraction, as opposed

to the Ellis representation (equation (4.1.1)), in which the separation between the

terms was not as clear.

Similarly to the relationship between the 7-current and current 6-form, the de Rham

current representation of a multipole can be related to the Ellis representation

through the relationship

J = J aiad
7ξ, (8.3.17)
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and conversely

J a = J ∧ dξa. (8.3.18)

In J , there is no term of the form iaLbLcης(X
abcdt) even though this contains two

Lie derivatives. Similarly, there is no Xabc term in the Ellis representation. This

term is included if J is a full quadrupole, as opposed to a semi-quadrupole. The

advantage of the coordinate free approach used in this section is that it can be shown

that the Xabc term vanishes in a coordinate system adapted to η, and hence J is a

semi-quadrupole in this adapted coordinate system. Since the definition of a semi-

multipole is coordinate free, J is a semi-quadrupole in every coordinate system.

The coordinate free semi-multipoles written in this form correspond to the electric

multipoles of ref. [68], and the semi-multipoles of ref. [69].

8.3.2 Dynamics of moments

Similarly to the Ellis representation, the dynamics for the de Rham current

representation of the quadrupole are found by considering the transport equations

for differential forms (equation (8.2.57)). Since they are linear, they can be directly

applied to the distributions. The equations are

dJ = 0, (8.3.19)

iWJ = 0. (8.3.20)

These are satisfied if, and only if,

dV ab

dt
= Xab +Xba,

dV a

dt
= Xa,

dq

dt
= 0, (8.3.21)

Xab = V bc∂cW
a, (8.3.22)

Xc = V b∂bW
c +

1

2
V ab∂a∂bW

c. (8.3.23)

Proof. Assume equation (8.3.21)

dJ =
1

2
LaLbης

(
dV ab

dt
dt

)
− LaLbης(Xabdt)− Laης

(
dV a

dt
dt

)
+ Laης(X

adt) + ης

(
dq

dt

)
. (8.3.24)
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Note that

LaLbης(X
abdt) =

1

2
LaLbης((X

ab +Xbadt). (8.3.25)

Inserting equation (8.3.21) gives dJ = 0.

Working in reverse, from equation (8.3.24), consider

dJ [λ], (8.3.26)

where λ ∈ Γ0Λ0E . Evaluating this gives

dJ [λ] =
1

2
ης

(
dV ab

dt
dt

)
[∂a∂bλ]− ης(Xabdt)[∂a∂bλ]− ης

(
dV a

dt
dt

)
[∂aλ]

+ ης(X
adt)[∂aλ] + ης

(
dq

dt

)
[λ]

(8.3.27)

=
1

2
ης

((
dV ab

dt
−Xab −Xba

)
dt

)
[∂a∂bλ]

+ ης

((
dV a

dt
−Xa

)
dt

)
[∂aλ] + ης

(
dq

dt
dt

)
[λ]

(8.3.28)

since λ can be any value, the only way this can vanish for all λ is if equation (8.3.21)

is true.

Moving onto iWΨ = 0, to calculate this proceed term by term through equation

(8.3.16), and use the relations

iWης(α) = ης(i0α), [La, iW ] = i[a,W ] (8.3.29)

giving

iWLaLbης(V
ab) = (LaiWLb − i[a,W ]Lb)ης(V

ab) (8.3.30)

= (LaLbiW − Lai[b,W ] − Lbi[a,W ] + i[b,[a,W ]])ης(V
ab) (8.3.31)

= (0)− Laicης(V ab∂bW
c)− Lbicης(V ab∂aW

c) + icης(V
ab∂a∂bW

c)

(8.3.32)

= −Laib(2V ac∂cW
b) + icης(V

ab∂a∂bW
c). (8.3.33)
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The sums over the W c terms range over 0, . . . , 6. Since the coordinate time frame

has W 0 = 1, the derivatives of this vanish, so

iWLaLbης(V
ab) = −Laib(2V ac∂cW

b) + icης(V
ab∂a∂bW

c). (8.3.34)

For brevity, in the remaining terms the step

i[a,W ] = ic∂aW
c = ic∂aW

c (8.3.35)

shall be done implicitly.

Moving onto the Xab term,

iW iaLbης(X
abdt) = −iaiWLbης(Xabdt) (8.3.36)

= −(iaLbiW − iai[b,W ])ης(X
abdt) (8.3.37)

= −iaLbiWης(Xabdt)− iaicης(Xab∂aW
cdt) (8.3.38)

= −iaLbης(Xab)− iaicης(Xab∂aW
cdt). (8.3.39)

The dipole terms,

−iWLaης(V a) + iW iaης(X
adt) = −LaiWης(V a) + i[a,W ]ης(V

a)− iaiWης(Xadt)

(8.3.40)

= (0)− icης(Xc − V a∂aW
c). (8.3.41)

Summing all these terms together gives

iWJ =
1

2
iWLaLbης(V

ab)− iW iaLbης(Xabdt)− iWLaης(V a) + iW iaης(X
adt)

= Laibης(X
ba − V ac∂cW

b) + icibης(X
ab∂aW

cdt)

+ icης(
1

2
V ab∂a∂bW

c + V a∂aW
c −Xc). (8.3.42)

Lastly, note ibic is antisymmetric, so taking the antisymmetric part of Xab∂aW
c,

iWJ = Laibης
(
Xba − V ac∂cW

b
)

+ icibης

(
1

2

(
Xab∂aW

c −Xac∂aW
b
)
dt

)
+ icης

(
1

2
V ab∂a∂bW

c + V b∂bW
a −Xc

)
. (8.3.43)
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Assume equations (8.3.23) and (8.3.22) are true. Inserting Xab and Xa into equation

(8.3.43) gives

iWJ = Laibης
(
V ac∂cW

b − V ac∂cW
b
)

+ icibης

(
1

2

(
V ad∂dW

b∂aW
c − V ad∂dW

c∂aW
b
)
dt

)
+ icης

(
1

2
V ab∂a∂bW

c + V b∂bW
a − V a∂aW

c − 1

2
V ac∂cW

b

)
= 0 (8.3.44)

since V ab is symmetric.

For the reverse, it is trivial to see that the only solution where the terms with only

one internal contraction vanish is if equations (8.3.23) and (8.3.22) are true. As

shown in equation (8.3.44), if equation (8.3.22) is true, then the term with two

internal contractions also vanishes, so equations (8.3.23) and (8.3.22) uniquely solve

iWJ = 0.

As previously discussed, since J is a semi-quadrupole, there is no term of the form

LaLbicης(X
abcdt). If J was a full quadrupole, then the Xabc term vanishes under

the iWJ condition anyway. Consider passing the internal contraction through the

Lie derivatives, giving

iW iaLbLcης(X
abcdt) = iaLbLcης(X

abc) + terms with one or fewer Lie derivatives.

(8.3.45)

Compare this to equation (8.3.43), where there are no terms containing two Lie

derivatives, this means that the Xabc term must vanish for the full quadrupole to

be subject to the transport equations. Hence, any full quadrupole subject to the

transport equations is a semi-quadrupole.
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8.3.3 Coordinate transformations of moments where the time

slicing is preserved

The coordinate transformations of the quadrupole can also be found using the

language of distributions. The coordinate transformations for internal contractions

are given by

iaα = Ab̂aib̂α = îb̂(A
b̂
aα). (8.3.46)

For Lie derivatives the coordinate transformations are

Laα = Ab̂aLb̂α = L̂b̂(A
b̂
aα)− α ∧ L̂b̂Ab̂a = L̂b̂(A

b̂
aα)− îb̂

(
dAb̂a ∧ α

)
(8.3.47)

where the hat over the Lie derivatives and internal contractions is to make it

clear that these are taken with respect to ∂̂â in the new coordinate system.

Note that similarly to the transformation of ∂a, the indices in the transformed

coordinate system run from (0, . . . , 6), whilst the original indices only ran from

(1, . . . , 6). By using the coordinate transformation rules for Lie derivatives and

internal contractions, the coordinate transformations for the semi-quadrupole can

be found. This is equivalent to the coordinate transformations found through the

Ellis representation, and is given by

Ĵ = J =
1

2
L̂âL̂b̂ης(Û

âb̂)− îâL̂b̂ης(Ŷ âb̂dt̂)− L̂âης(Û â) + îâης(Ŷ
âdt̂) + ης(q) (8.3.48)

where Û âb̂, Ŷ âb̂, Û â, and Ŷ â are given by equation (4.4.7).

Proof. Consider the de Rham representation of the semi-quadrupole,

J =
1

2
LaLbης(V

ab)− Laibης(Xabdt)− Laης(V a) + iaης(X
adt) + ης(q). (8.3.49)

Using equations (8.3.46) and (8.3.47) to calculate this coordinate transformation,

and proceed term by term. For the double Lie derivative term, use the standard

differential geometry result

LU(fg) = fLUg + gLUf ∀f, g ∈ ΓΛ0E , U ∈ ΓTE (8.3.50)
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to find

LaLbα = La

(
L̂d̂(A

d̂
b ∧ α)− îd̂(dAd̂b ∧ α)

)
(8.3.51)

= L̂ĉ

(
Aĉa ∧

(
L̂d̂(A

d̂
b ∧ α)− îd̂(dAd̂b ∧ α)

))
− îĉ

(
dAĉa ∧

(
L̂d̂(A

d̂
b ∧ α)− îd̂(dAd̂b ∧ α)

)) (8.3.52)

= L̂ĉL̂d̂

(
AĉaA

d̂
b ∧ α

)
− L̂ĉ

(
îd̂(dA

ĉ
a) ∧ Ad̂b ∧ α

)
− L̂ĉîd̂(Aĉa ∧ dAd̂b ∧ α)− îĉL̂d̂

(
dAĉa ∧ Ad̂b ∧ α

)
+ îĉ

(
(d̂id̂dA

ĉ
a) ∧ Ad̂b ∧ α

)
− îĉîd̂

(
dAĉa ∧ dAd̂b ∧ α

)
+ îĉ

(
îd̂dA

ĉ
a ∧ dAd̂b ∧ α

)
(8.3.53)

= L̂ĉL̂d̂

(
AĉaA

d̂
b ∧ α

)
− L̂ĉîd̂

(
d
(
AĉaA

d̂
b

)
∧ α
)
− L̂ĉ

(
∂̂d̂A

ĉ
a ∧ Ad̂b ∧ α

)
+ îĉ

(
d
(
∂̂d̂A

ĉ
a ∧ Ad̂b

)
∧ α
)
− îĉîd̂

(
dAĉa ∧ dAd̂b ∧ α

)
.

(8.3.54)

Using ∂d̂A
ĉ
a = Ae

d̂
Aĉab, and noting that the iĉid̂ term vanishes (as the term inside the

brackets is symmetric), gives

LaLbα = L̂ĉL̂d̂

(
AĉaA

d̂
b ∧ α

)
− L̂ĉîd̂

(
d
(
AĉaA

d̂
b

)
∧ α
)
− L̂ĉ

(
Aĉab ∧ α

)
+ îĉ

(
dAĉab ∧ α

)
.

(8.3.55)

This gives the coordinate transformation for the V ab term,

LaLbης(V
ab) = L̂ĉL̂d̂ης

(
AĉaA

d̂
bV

ab
)
− L̂ĉîd̂ης

(
d
(
AĉaA

d̂
b

)
∧ V ab

)
− L̂ĉης

(
AĉabV

ab
)

+ îĉης
(
dAĉab ∧ V ab

)
. (8.3.56)

For the Xab term,

iaLbης(X
abdt) = iaL̂ĉης(A

ĉ
b ∧Xabdt)− iaîĉ

(
ης(dA

ĉ
b ∧Xabdt)

)
(8.3.57)

= îd̂A
d̂
aL̂ĉης(A

ĉ
b ∧Xabdt) (8.3.58)

= îd̂L̂ĉης(A
d̂
aA

ĉ
b ∧Xabdt)− îd̂ης

(
L̂ĉ(A

d̂
a) ∧ Aĉb ∧Xabdt

)
(8.3.59)

= îd̂L̂ĉης(A
d̂
aA

ĉ
b ∧Xabdt)− îd̂ης(Ad̂ab ∧Xabdt) (8.3.60)

= îd̂L̂ĉης

(
Ad̂aA

ĉ
b ∧Xabdt

dt̂
dt̂

)
− îd̂ης

(
Ad̂ab ∧Xabdt

dt̂
dt̂

)
(8.3.61)
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where dAĉb ∧Xabdt = 0 is used. The V a and Xa terms are more straightforward,

Laης(V
a) = L̂b̂ης

(
Ab̂a ∧ V a

)
− îb̂ης

(
dAb̂a ∧ V a

)
(8.3.62)

iaης(X
adt) = îb̂ης

(
Ab̂aX

adt

dt̂
dt̂

)
. (8.3.63)

Summing these together (noting that the monopole term is invariant under

transformation), gives

J = Ĵ =
1

2
LaLbης(V

ab)− iaLbης(Xabdt)− Laης(V a) + iaης(X
adt) + ης(q)

=
1

2
L̂âL̂b̂ης(Û

âb̂)− îâL̂b̂ης(Ŷ âb̂dt̂)− L̂âης(Û â) + îâης(Ŷ
âdt̂) + ης(q). (8.3.64)

where Û âb̂ and Û â are defined by equation (4.4.7), and

Ŷ ĉd̂ = AĉaA
d̂
bX

abdt

dt̂
dt̂+

1

2
d
(
AĉaA

d̂
b

)
V ab (8.3.65)

Ŷ ĉ =
(
AĉaX

a + AĉabX
ab
) dt
dt̂
dt̂+ d(Aĉa)V

a + d(Aĉab)V
ab. (8.3.66)

By taking the external derivatives, these are equivalent to (4.4.7).

As before, the transformed quadrupole is still based on the original time slicing. In

this case the projections to the new time slicing are based on the internal contraction

and Lie derivatives along η. The projections are given by

i0 = iη̇ − η̇aia, L0 = Lη̇ − η̇aLa. (8.3.67)

Using these projections give the full coordinate transformation for the quadrupole,

Ĵ =
1

2
L̂âL̂b̂ης(V̂

âb̂)− îâL̂b̂ης(X̂ âb̂dt̂)− L̂âης(V̂ â) + îâης(X̂
âdt̂) + ης(q). (8.3.68)

where V̂ âb̂, V̂ â, X̂ âb̂, and X̂ â are defined by equations (4.4.22), (4.4.23), (4.4.26),

and (4.4.27) respectively.

Proof. The non-unique semi-quadrupole, where hats have been temporarily removed

to aid readability, is given by

J =
1

2
LaLbης(U

ab)− iaLbης(Y abdt)− Laης(Ua) + iaης(Y
adt) + ης(q). (8.3.69)

142



8.3. De Rham current representation of multipoles

To find the projections, proceed term by term, beginning with the LaLb term,

LaLbης(U
ab) = LaLbης(U

ab) + LaL0(Ua0) (8.3.70)

= LaLbης(U
ab) + LaLη̇(U

a0)− Laη̇bLbης(Ua0) (8.3.71)

= LaLbης(U
ab − η̇bUa0) + Laης

(
dUa0

dt

)
+ Laibης

(
Ua0dη̇b

)
. (8.3.72)

Projecting the La term,

LaLbης(U
ab) = LaLbης(U

ab − η̇bUa0) + LbLη̇ης(U
0b − η̇bU00)

− Lbη̇aLaης(U0b − η̇bU00) + Laης

(
dUa0

dt

)
+ Lη̇ης

(
dU00

dt

)
− η̇aLaης

(
dU00

dt

)
+ Laibης

(
Ua0dη̇b

)
+ ibLη̇ης

(
U00dη̇b

)
− ibη̇aLaης

(
U00dη̇b

)
. (8.3.73)

Simplifying this gives

LaLbης(U
ab) = LaLbης

(
Uab − η̇bUa0 − η̇aU b0 + η̇aη̇bU00

)
+ Lbiaης

(
(2U0b − 2η̇bU00)dη̇a

)
+ Laης

(
2
dUa0

dt
− η̇adU

00

dt
− d

dt

(
η̇aU00

))
+ iaης

(
dU00

dt
dη̇a +

d

dt

(
U00dη̇a

))
+ ης

(
d2U00

dt2

)
+ ibiaης

(
U00dη̇a ∧ dη̇b

)
(8.3.74)

and note the last term vanishes as R is only 1-dimensional. For the Laib term,

Lbiaης(Y
abdt) = Lbiaης(Y

abdt) + Laiη̇ης(Y
0bdt)− Laη̇bibης(Y 0bdt) (8.3.75)

= Lbiaης(Y
abdt− η̇aY 0bdt) + Lbης(Y

0b). (8.3.76)

Splitting the Lb term into L0 + Lb,

Lbiaης(Y
abdt) = Lbiaης(Y

abdt− η̇aY 0bdt) + L0iaης(Y
a0dt− η̇aY 00dt)

+ Lbης(Y
0b) + L0ης(Y

00). (8.3.77)

Projecting out the L0 term,

Lbiaης(Y
abdt) = Lbiaης(Y

abdt− η̇aY 0bdt) + Lη̇iaης(Y
a0dt− η̇aY 00dt)

− η̇bLbiaης(Y a0dt− η̇aY 00dt) + Lbης(Y
0b) + Lη̇ης(Y

00)− η̇aLaης(Y 00). (8.3.78)
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Simplifying,

Lbiaης(Y
abdt) = Lbiaης(Y

abdt− η̇aY 0bdt) + Lη̇iaης(Y
a0dt− η̇aY 00dt)

− Lbη̇biaης(Y a0dt− η̇aY 00dt) + Lbης(Y
0b) + Lη̇ης(Y

00)− Laη̇aης(Y 00)

+ iaης(Y
00dη̇a) + ibiaης

(
dη̇b ∧ (Y a0 − η̇Y 00)dt

)
. (8.3.79)

Noting that the iaib term vanishes since dηb ∧ dt = 0 (since the wedge product is on

a one-dimensional manifold),

Lbiaης(Y
abdt) = Lbiaης(Y

abdt− η̇aY 0bdt− η̇bY a0dt+ η̇aη̇bY 00dt)

+ Lbης(Y
0b − η̇bY 00) + iaης

(
dY a0

dt
dt− d

dt

(
η̇aY 00

)
dt+ Y 00dη̇a

)
+ ης

(
dY 00

dt

)
.

(8.3.80)

The Ua term,

Laης(U
a) = Laης(U

a) + Lη̇ης(U
0)− η̇aLaης(U0) (8.3.81)

= Laης(U
a − η̇aU0) + iaης(U

0dη̇a) + ης

(
dU0

dt

)
. (8.3.82)

Lastly the Y a term,

iaης(Y
adt) = iaης(Y

adt) + iη̇ης(Y
0dt)− iaη̇aης(Y 0dt) (8.3.83)

= iaης(Y
adt− η̇aY 0dt) + ης(Y

0). (8.3.84)

Summing these together,

J =
1

2
LaLbης

(
Uab − η̇bUa0 − η̇aU b0 + η̇aη̇bU00

)
− Lbiaης

(
Y abdt− η̇aY 0bdt− η̇bY a0dt+ η̇aη̇bY 00dt− (U0b − η̇bU00)dη̇a

)
− Laης(Ua − η̇aU0 + Y 0a − η̇aY 00)− 1

2
Laης

(
η̇a
dU00

dt
+
d

dt

(
η̇aU00

)
− 2

dUa0

dt

)
+ iaης

(
Y adt− η̇aY 0dt− dY a0

dt
dt− U0dη̇a +

d

dt

(
η̇aY 00

)
dt− Y 00dη̇a

)
+

1

2
iaης

(
dU00

dt
dη̇a +

d

dt

(
U00dη̇b

))
+

1

2
ης

(
d2U00

dt2

)
− ης

(
dY 00

dt

)
− ης

(
dU0

dt

)
+ ης(Y

0) + ης(q). (8.3.85)
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To simplify this, recall equation (8.3.21), and add hats back over quantities giving

Ĵ =
1

2
L̂âL̂b̂ης

(
Û âb̂ − ˙̂ηb̂Û â0̂ − ˙̂ηâÛ b̂0̂ + ˙̂ηâ ˙̂ηb̂Û 0̂0̂

)
− îâL̂b̂ης

(
Ŷ âb̂ − Ŷ â0̂ ˙̂ηb̂ − ˙̂ηâŶ 0̂b̂ + ˙̂ηâ ˙̂ηb̂Ŷ 0̂0̂ +

(
Û 0̂b̂ − ˙̂ηbÛ 0̂0̂

)
d ˙̂ηa
)

− L̂âης
(
Û â − Û 0̂ ˙̂ηâ +

1

2

d

dt̂

(
˙̂ηâÛ 0̂0̂

)
− Ŷ â0̂

)
+ îâης

(
Ŷ âdt− d

(
˙̂ηâÛ 0̂

)
− dŶ â0̂ +

1

2

d2

dt̂2

(
˙̂η
â
Û 0̂0̂
)
dt

)
+ ης(q). (8.3.86)

Inserting equation (4.4.7) into this and transforming the ˙̂ηa terms back into η̇a

using equation (4.4.3) gives equations (4.4.22), (4.4.23), (4.4.26), and (4.4.27), as

required.

These coordinate transformations are the same as those found through the Ellis

representation.

8.4 Reconstructing the current 3-form

8.4.1 The reconstruction method

Rather than reconstructing a function using model densities, one can instead

reconstruct a function using model forms. Similarly to using densities, this avoids

any issues with choosing the correct measure in the choice of model form. For

the projection method, using the language of differential geometry provides a

clearer geometric approach to the problem, which may be considered clearer to

understand compared to the Ellis representation projection, where it is less clear

why components of J a vanish when integrated over the fibres.

Recall J (equation (8.2.55)), the current 6-form associated with a given f. In this

approach, the current 6-form is the quantity that is reconstructed using model

differential forms. Let JΣ = Σ∗(J) be the current 6-form at a timeslice t.

aI =

∫
Σ

(ξ − η)IJΣ. (8.4.1)
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These moments are equivalent to those found by integrating f.

Proof. To calculate the pullback Σ∗(J), consider equation (8.2.55), and note that

Σ∗(dt) = 0, and Σ∗(dξa) = dξa, so

Σ∗(J) = Σ∗(fW aiad
7ξ) = fW 0i0d

7ξ. (8.4.2)

Since W 0 = 1,

Σ∗(J) = f d3x d3u (8.4.3)

and thus the moments taken in equation (8.4.1) are equivalent to those taken with

f.

The reconstructed 6-form, ĴΣ, is given by

ĴΣ =
∑
K

cKψK (8.4.4)

where ψK ∈ ΓΛ6Σ are model 6-forms. Similarly to working with densities, the

reconstructed form has the same moments,

aI =

∫
Σ

(ξ − η)IĴΣ (8.4.5)

=
∑
K

∫
Σ

(ξ − η)IcKψK (8.4.6)

=
∑
K

cK

∫
Σ

(ξ − η)IψK (8.4.7)

=
∑
K

cKBIK (8.4.8)

where

BIK =

∫
Σ

(ξ − η)IψK. (8.4.9)

By solving the linear system of equations, the model forms can be found.

In this case, the equivalent model 6-form to give the same result as using model

densities would be

ψ = ϕ0i0d
7ξ, (8.4.10)
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where ϕ0 is the model density from section 6.3. This definition follows from equation

(2.3.1) and (8.2.53).

The charge can be found by integrating JΣ over a fibre,

p =

∫
Ep
i1i2i3JΣ. (8.4.11)

The components of the 4-current scalar field can be found as

Tµ =

∫
Ep

uµ

γ
i1i2i3JΣ. (8.4.12)

A current 3-form, I, could be found from this, and would be given by

I = p dx1 ∧ dx2 ∧ dx3 + Tµiµ
(
dt ∧ dx1 ∧ dx2 ∧ dx3

)
. (8.4.13)

In the next subsection a method to directly retrieve the current 3-form from a

distribution is presented, using a projection operator.

8.4.2 The projection method

As with the Ellis representation, is it possible to reduce the de Rham representation

of 7-current to the 4-current onM . By doing this, the projection method for finding

the current from a set of moments can be found using the de Rham representation.

Additionally, by using differential geometry to define the projection through a de

Rham pushforward, is it clearer to see why the velocity components of the 7-current

vanish.

To find the distributional 4-current, a projection map, π, is introduced. The

projection π : E →M can be written in terms of coordinates,

π(t, x, u)→ (t, x). (8.4.14)

The pullback of this map, π∗, can be defined in terms of coordinates,

π∗(t) = t, π∗(x) = x. (8.4.15)
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The de Rham pushforward of π, πς : ΓΛnE → ΓΛn−3M is a map taking an n-form

on E onto an (n − 3)-form on M . In terms of distributions, the projection πς is

defined as

πς(Ψ)[φ] = Ψ[π∗(φ)]. (8.4.16)

For regular distributions, it can be shown that the projection can be written as

integrals over the fibre, for example

πς(fdu
1 ∧ du2 ∧ du3) =

∫
Ep
fdu1 ∧ du2 ∧ du3, (8.4.17)

πς(fdx
1 ∧ dx3 ∧ du1 ∧ du2 ∧ du3) = dx1 ∧ dx3

(∫
Ep
fdu1 ∧ du2 ∧ du3

)
, (8.4.18)

πς(dx
1 ∧ du2 ∧ du3) = 0 (8.4.19)

i.e. the pushforward integrates a form over the fibre if it contains all the du terms,

otherwise it vanishes.

The current 3-form, I ∈ ΓΛ3M , is given by

I = πς(J). (8.4.20)

The distributional 4-current, I, can be found equivalently, as

I = πς(J ). (8.4.21)

In terms of coordinates, I is given by

I = πςJ =
1

2
LµLνCς(V

µν)− iµLνCς(Xµνdt)− LµCς(V µ) + iµCς(X
µdt) + Cς(q).

(8.4.22)

Proof. To find πςJ , consider π∗ia, where a subscript asterisk represents the

pushforward. These pushforwards, for the projection map, are

π∗iµ = iµ, π∗iµ+3 = 0. (8.4.23)

This means that

πςia(α) = δ
µ
a iµπςα. (8.4.24)
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Using this gives πςJ ,

πςJ =
1

2
πςLaLbης(V

ab)− πςiaLbης(Xabdt)

− πςLaης(V a) + πςiaης(X
adt) + πςης(q)

(8.4.25)

=
1

2
LµLνπςης(V

µν)− iµLνπςης(Xµνdt)

− Lµπςης(V µ) + iµπςης(X
µdt) + πςης(q).

(8.4.26)

A sequence of two de Rham pushforwards combine to give

πςης(α) = (η ◦ π)ς(α) = Cς(α) (8.4.27)

where, since η is a prolongation of C, the projection of η gives C. These combine

to give equation (8.4.22) as required.

Hence by using the projection operator, it is clearer to see why the velocity

moments, corresponding to terms of the form V µ+3 etc., vanish compared to the

Ellis representation of the moments.

The de Rham representation of the 4-current found from the projection can be used

to find the charge and current through the projection method. Consider I acting

on a test form φ ∈ ΓΛ1M ,

I[φ] =
1

2

∫
R
V µνC∗(LµLνφ) +

∫
R
XµνC∗(Lνiµφ)dt+

∫
R
V µC∗(Lµφ)

+

∫
R
XµC∗(iµφ)dt+

∫
R
qC∗(φ). (8.4.28)

Comparing this to the squeezed current 3-form (equation (6.4.20)) gives the same

relationship between the components (equation (6.4.15)) as that found through the

Ellis representation when integrating over the fibres.

Proof. Writing φ as φµdxµ,

I[φ] =
1

2

∫
R
V µνC∗(LµLνφρdx

ρ) +

∫
R
XµνC∗(Lνiµφρdx

ρ)dt+

∫
R
V µC∗(Lµφρdx

ρ)

+

∫
R
XµC∗(iµφρdx

ρ)dt+

∫
R
qC∗(φρdx

ρ). (8.4.29)
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Performing the Lie derivatives and internal contractions,

I[φ] =
1

2

∫
R
V µνC∗(∂µ∂νφρdx

ρ) +

∫
R
XµνC∗(∂νφµ)dt+

∫
R
V µC∗(∂µφρdx

ρ)

+

∫
R
XµC∗(φµ)dt+

∫
R
qC∗(φρdx

ρ). (8.4.30)

Noting C∗(dxµ) = Ċµdt gives

I[φ] =
1

2

∫
R
V µνĊρ∂µ∂νφρ|Cdt+

∫
R
Xµν∂νφµ|Cdt+

∫
R
V µĊρ∂µφρ|Cdt

+

∫
R
Xµφµ|Cdt+

∫
R
qĊµφµ|Cdt. (8.4.31)

Splitting this into φ0 and φµ terms,

I[φ] =
1

2

∫
R
V µνĊ0∂µ∂νφ0|Cdt+

1

2

∫
R
V µνĊρ∂µ∂νφρ|Cdt

+

∫
R
Xµν∂νφµ|Cdt+

∫
R
V µĊ0∂µφ0|Cdt+

∫
R
V µĊρ∂µφρ|Cdt

+

∫
R
Xµφµ|Cdt+

∫
R
qĊµφµ|Cdt+

∫
R
qĊ0φ0|Cdt. (8.4.32)

Grouping terms together,

I[φ] =
1

2

∫
R
V µνĊ0∂µ∂νφ0|Cdt+

1

2

∫
R
V µνĊρ∂µ∂νφρ|Cdt

+

∫
R

(
Xµν + ĊµV ν

)
∂νφµ|Cdt+

∫
R
V µĊ0∂µφ0|Cdt

+

∫
R

(
Xµ + qĊµ

)
φµ|Cdt+

∫
R
qĊ0φ0|Cdt. (8.4.33)

Comparing this to equation (6.4.20) gives equations (6.4.15), as with the Ellis

representation.
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macroparticle

8.5 Future work: modifying the transport equations

to add internal structure to a macroparticle

As discussed in section 7.5.2, it may be that charge only needs to be conserved on

M , rather than on E . As with the Ellis representation, this means it may be possible

to add internal dynamics to the transport equations in the de Rham representation.

If charge is only conserved onM , then the conservation of charge condition becomes

dπςJ = 0. (8.5.1)

This means that internal structure can be added to the equations as a 7-form B ∈
ΓΛ7E , such that

dJ = B, πςB = 0. (8.5.2)

These equations can be applied to distributions, with some distribution B represent-

ing the internal structure of the macroparticle. The modified transport equations,

in terms of de Rham currents, become

dJ = B, iWJ = 0, πςB = 0. (8.5.3)
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Chapter 9

Conclusion

This thesis investigated a new type of particle-in-cell code, in which the moments of a

macroparticle are used. The dynamics of the moments obeying the Vlasov equation

were calculated (equation (4.3.7)). Two different methods to calculate the current

from a set of moments were presented. Combining the moment tracking and current

construction equations allows a full PIC code using moments to be developed. A

potential 1.5D full PIC code implementation, and the algorithms required for this,

was discussed.

The dynamics of the moments depend on the Vlasov field and its derivatives. The

focus of this thesis was on how the number of moments taken affects the accuracy

of the moment tracking. For a full PIC code, the derivatives of the Vlasov field

would also be important. If the electromagnetic or gravitational fields quickly vary

in space (i.e. the higher order derivatives of the fields are large, as in figure 4.1b),

then the moment tracking method will not work well. In this case, there are two

possible ways to improve it: use more moments, or use more macroparticles. By

using more moments, there are more derivatives to describe the electromagnetic

and gravitational fields, so the tracking will be more accurate. By using more

macroparticles, the extent each macroparticle represents in phase space will be

smaller, so the variation of the fields across this extent will also be smaller. Both

152



increasing the number of moments and increasing the number of macroparticles

will increase the computational load of the model. Future work will need to

establish intuition about the correct balance of the number of macroparticles and

the maximum order of moments taken.

The moment tracking model is likely to work well in situations where both the

distribution of particles represented by a macroparticle can be described by only a

small number of moments, and the variation in electromagnetic and gravitational

fields across the volume the macroparticle represents is small (figure 4.1a). This

corresponds to when the Vlasov field across the extent of the macroparticle can

be modelled by just the Vlasov field and a small number of its derivatives at

the macroparticle centre. Since numerically calculating the derivatives of the

electromagnetic field requires a high density grid, the moment tracking method may

also work in cases where a high resolution grid is already needed, such as laser-solid

interactions [121, 122]. In such cases, the moment tracking method will be able to

model much larger macroparticles, with less particles per cell, even if more cells are

needed to compensate for this.

By using the Ellis representation or the de Rham current representation of the

moments, coordinate transformations for the moments can be found between frames

that mix the space and time coordinates. This is an advantage of using the

distributional approach to define moments, as it cannot be done through the

standard integral approach.

Both the moment tracking and coordinate transformation results were validated

numerically for the case of particles orbiting a black hole. This was done by

transporting particles and moments in both Schwarzschild and Kruskal-Szekeres

coordinates and comparing results. The numerical results show that a large number

of particles can be successfully modelled by a single macroparticle with moments.
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This error scales with the order of moments, so for a full PIC code it is likely

moments will need to be calculated to an order larger than the quadrupole. The

modelling in this simulation was calculated at 10 Schwarzschild radii away from the

black hole. This was to model a stable accretion disc. In the development of the

theory, there were no assumptions that the macroparticle was far away from the

black hole. This means that there is nothing in the theory to stop a macroparticle

being close to the singularity. In practice, close to the Schwarzschild radius, the error

from only using a finite number of moments will become significant. There are two

reasons for this: firstly, the particles being represented by the macroparticle and its

moments will begin to undergo spaghettification, and this will cause the higher order

moments to become large. Secondly, close to the singularity, the Christoffel symbols

in Schwarzschild coordinates become very large, and their derivatives will become

even larger. This means the rate of change of the moments will be dominated by

the higher order moments which are being neglected in the code. Due to this, the

accuracy of the model is yet to be determined in the extreme environments close to

the Schwarzschild radius.

In addition to moment tracking, to create a full PIC code, it is necessary to use

the moments to find the current distribution, in order to solve Maxwell’s equations.

Two methods were presented for this. The reconstruction method approximates

the original distribution function in position+velocity time-phase space, and then

finds the current from this. The projection method uses the Ellis representation

of moments to find the charge and current directly. The reconstruction method is

more accurate than the projection method, but is more computationally intensive.

It is likely that including more moments will improve the accuracy of the projection

method.

Lastly, the algorithms needed to create a full 1.5D PIC code were discussed. The

main focus of future work will be on testing and evaluating this 1.5D code, to see
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if the moment tracking method works at a proof-of-principle level. Initial testing

will also be used to develop intuition about the correct balance of the number of

macroparticles and the maximum order of moments tracked.

9.1 Wider applications

The main focus of future work was discussed in chapter 7, in developing a full PIC

code. Other applications of the moment tracking and coordinate transformations

exist, and can also be investigated.

A potential application of the moment tracking method is to model inter-bunch

forces within particle accelerators. It is possible to calculate the Liénard-Wiechert

fields directly from the moments of a moving quadrupole [46]. By using this method

the electromagnetic field, and its derivatives, can be calculated without the need to

deposit the charge and current onto a grid. This is particularly useful for modelling

coherent synchrotron radiation in particle accelerators, where macroparticles are

close together compared to the radius of the beam pipe, such that the effects of

boundary conditions on the electromagnetic fields can be ignored.

The applications of the coordinate transformations in astrophysical scenarios are

wide. A particularly useful case is the transformation from the global time to the

backwards light cone frame. This is particularly useful in cases where black holes are

modelled in the fiducial observer (FIDO) frame, where the global time coordinate is

significantly different to the time coordinate in the backwards light cone frame. By

doing this the difficulty of calculating the backwards light cone through ray tracing

only needs to be done once, rather than at each time step. This transformation

would allow the moments seen by an observer, at a finite distance away from the

black hole, to be calculated.
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There are also applications of the coordinate transformation formulae in circular

particle accelerators. Results from accelerators are often calculated in Frenet-Serret

coordinates, where the parameter is the position along the beamline, rather than

time. By finding either the Vlasov equation in Frenet-Serret coordinates, or finding

the coordinate transformation between Cartesian and Frenet-Serret coordinate

systems for a given beamline, the moment tracking can be applied to circular

accelerators. Additionally, by using the spacetime coordinate transformations

presented in this article, the coordinate transformation into the frame of an

accelerating bunch can be found (figure 1.4b).

Lastly the use of the Vlasov equation to model the dynamics of moments may

be extended to modelling stress-energy-momentum quadrupoles as a source for

linearised gravity. In [66, 69] it was shown that the dynamics of stress-energy-

momentum quadrupoles contain a number of free components, known as constitutive

relations. In the case of a plasma, these constitutive relations may be determined

by the Vlasov equation. In this case, the dynamics will be governed by the

divergenceless of the stress-energy-momentum tensor combined, with the Vlasov

equation.
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Appendix A

Proofs

A.1 Deriving the equations for the field updater at

the boundaries

The formula for numerically differentiating a scalar field f(x) across n arbitrarily

spaced points, and then evaluating this differential at one of these points is given

by [97],
df

dx

∣∣∣∣
xj

=
n∑
k=0

f(xk)
dLk
dx

∣∣∣∣
xj

(A.1.1)

where Lk is the kth Lagrange polynomial for f at k = 1 . . . n, given by

Lk(x) =
n∏
i=0
i 6=k

(x− xi)
(xk − xi)

. (A.1.2)

To evaluate Maxwell’s equations at the grid boundaries, we choose to differentiate

over 5 different grid points. This ensures the derivatives are stable. The boundary

conditions require that at the cavity walls, certain components of the electromagnetic

field vanish. This means that rather than calculating the derivatives over 5 equally

spaced points, it is more accurate to calculate over 4 grid points, and half a grid cell

to the boundary.

157



Appendix A. Proofs

Explicitly calculating the L1 term to show how these terms are calculated,

L1 =
x− (xj)(

xj − ∆x
2

)
− (xj)

× x−
(
xj − 3∆x

2

)(
xj − ∆x

2

)
−
(
xj − 3∆x

2

)
× x−

(
xj − 5∆x

2

)(
xj − ∆x

2

)
−
(
xj − 5∆x

2

) × x−
(
xj − 7∆x

2

)(
xj − ∆x

2

)
−
(
xj − 7∆x

2

) . (A.1.3)

Simplifying the denominators gives

L1 =
(x− (xj))

−∆x
2

× x−
(
xj − 3∆x

2

)
∆x

× x−
(
xj − 5∆x

2

)
2∆x

× x−
(
xj − 7∆x

2

)
3∆x

. (A.1.4)

Differentiating this and evaluating at x = xj, noting that only the term where the

first term is differentiated will give a non-zero contribution,

dL1

dx

∣∣∣∣
x=xj=0

=
1
−∆x

2

×
3∆x

2

∆x
×

5∆x
2

2∆x
×

7∆x
2

3∆x
= − 35

8∆x
. (A.1.5)

Doing this for the remaining terms gives

dL0

dx

∣∣∣∣
xj

=
352

105∆x
,

dL1

dx

∣∣∣∣
xj

= − 35

8∆x
,

dL2

dx

∣∣∣∣
xj

=
35

24∆x

dL3

dx

∣∣∣∣
xj

= − 21

40∆x
,

dL4

dx

∣∣∣∣
xj

=
5

56∆x
.

(A.1.6)

Inserting these into equation (A.1.1), gives the interpolation polynomial,

df

dx

∣∣∣∣
xj

=
352

105∆x
f (xj)−

35

8∆x
f

(
xj −

∆x

2

)
+

35

24∆x
f

(
xj −

3∆x

2

)
− 21

40∆x
f

(
xj −

5∆x

2

)
+

5

56∆x
f

(
xj −

7∆x

2

)
. (A.1.7)
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