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Abstract

Periodically collapsing bubbles, if they exist, induce asymmetric dynamics in asset prices. In

this paper, I show that unit root quantile autoregressive models can approximate such dynamics

by allowing the largest autoregressive root to take values below unity at low quantiles, which

correspond to price crashes, and above unity at upper quantiles, that correspond to bubble

expansions. On this basis, I employ two unit root tests based on quantile autoregressions to

detect bubbles. Monte Carlo simulations suggest that the two tests have good size and power

properties, and can outperform recursive least-squares based tests. The merits of the two tests

are further illustrated in three empirical applications that examine Bitcoin, U.S. equity and U.S.

housing markets. In the empirical applications, special attention is given to the issue of con-

trolling for economic fundamentals. The estimation results indicate the presence of asymmetric

dynamics that closely match those of the simulated bubble processes.

Keywords: rational bubbles; unit root quantile autoregressions; cryptocurrencies; U.S. house

prices; S&P 500

JEL Classification: C12, C22, G10, R30

∗For comments and suggestions, I am grateful to the two co-editors of the special issue, David Harvey and Steve
Leybourne, two anonymous referees, participants of the Workshop on Bubbles and Crashes held at the University of
Sheffield, and seminar participants at the University of Alicante and the University Carlos III of Madrid. E-mail:
e.pavlidis@lancaster.ac.uk

1



1 Introduction

Over the last decades, and especially after the financial crisis of 2007–09, a large literature has

emerged that deals with the development and application of econometric tests of speculative bub-

bles. Motivated by the theoretical predictions of rational expectation models, this literature has

mainly concentrated on testing for an explosive root in asset prices. In this vein, early studies

on bubble detection employed conventional integration tests based on ordinary least squares, such

as the standard Augmented Dickey Fuller (ADF). A major shortcoming of such tests is that they

frequently fail to detect explosive dynamics when bubbles periodically collapse (Evans, 1991; van

Norden, 1996). One of the reasons for this failure is that market crashes generate extreme realiza-

tions in the left tail of the conditional asset price distribution. Because the least-squares estimator

is highly sensitive to extreme values, conventional tests often indicate stationarity even though the

series under examination is inherently nonstationary.

In recent years, new econometric methodologies have been proposed that attempt to deal with

this shortcoming by allowing for time variation in persistence (Astill et al., 2023, 2018; Homm and

Breitung, 2012). Two tests that have gained substantial popularity are the supremum ADF (SADF)

of Phillips et al. (2011) and the generalized SADF (GSADF) derived by Phillips et al. (2015a,b).

To deal with the effect of market crashes on the test’s performance, the SADF and GSADF use

a recursive least-squares algorithm that estimates ADF regressions on subsamples of data and

retrieves the maximum ADF statistic. The SADF employs a forward expanding window, while its

extension, the GSADF, tests for exuberance using all possible subsamples of a time series given a

minimum window size. Between the two procedures, the GSADF is particularly attractive because

it minimizes the impact of previous boom-bust episodes on estimation and thereby is consistent

with multiple changes in regime. Since the seminal work of Phillips et al. (2011) and Phillips et al.

(2015a,b), numerous studies have contributed to the literature on recursive right-tailed unit root

testing (e.g., Harvey et al., 2015, 2020b, 2016; Phillips and Shi, 2018, 2019).1

The present paper proposes an alternative approach for bubble detection based on unit root

quantile autoregressive models (Galvao, 2009; Koenker, 2017; Koenker and Xiao, 2004, 2006). Com-

pared to ordinary least squares, quantile methods provide a more robust and efficient approach in

the presence of outliers and/or non-Gaussian error distributions. The main advantage of unit root

quantile autoregressions, however, is that they offer a mechanism for estimating the full range of

conditional quantile functions rather than relying on a single measure of conditional central ten-

dency. Thus, instead of examining variations in the degree of persistence over subsamples of data,

like the SADF and GSADF, unit root tests based on quantile regressions look at the full sample

1As pointed out by a referee, recent studies on bubble detection relate to the broad literature that emerged
following the influential paper of Perron (1989) on unit root testing in the presence of structural change. Similar to
the findings for bubble processes that display episodes of explosive dynamics followed by crashes, this body of work
has demonstrated that conventional integration tests cannot distinguish between a stationary time series with breaks
and a unit root process. From this perspective, flexible-window tests that allow deviations from the null hypothesis
to occur episodically offer natural solutions. In line with recent studies, the SADF and GSADF tests are chosen as
benchmarks due to their popularity.
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of data to explore the presence of heterogeneous dynamics across conditional quantiles. As shown

in Sections 4 and 5, allowing for asymmetric dynamics is crucial for bubble detection. Intuitively,

in the presence of periodically collapsing bubbles, autoregressive coefficient estimates increase with

the quantile, taking values below unity at low quantiles, that correspond to market crashes, and

above unity at upper quantiles, which correspond to bubble eruptions. Thus, researchers can test

for speculative bubbles by examining the unit root property at high quantiles.

Another way to motivate the use of quantile autoregressive models in the present context is

to note that they admit a conventional random-coefficient autoregressive representation. In their

random-coefficient representation, autoregressive parameters vary over time as functions of a single

random variable (Koenker and Xiao, 2006). Hence, even though unit root quantile autoregressive

models are estimated over the entire sample, they allow the degree of persistence of asset prices to

vary during boom-bust cycles, such as those generated by periodically collapsing bubbles.2

I employ two unit root tests based on quantile autoregressions for bubble detection. The first is

the coefficient-based Un test and the second is a right-sided version of the Kolmogorov-Smirnov type

QKSα test proposed by Koenker and Xiao (2004). Monte Carlo simulation experiments indicate

that both tests have good size properties under different sample sizes, error distributions and lag

length specifications. Moreover, the two tests outperform the SADF and GSADF in detecting Evans

(1991) periodically collapsing bubbles by, in many cases, a substantial margin. The superior power

properties of Un and QKSα can be attributed to the fact that, being full-sample tests, they use

information from all bubble episodes collectively. Whereas, the SADF and GSADF test statistics

are based on a single subsample of data which, in the presence of multiple relatively short-lived

bubble episodes, may not provide a sufficiently strong signal to reject the null hypothesis (see,

Phillips et al., 2011, Section 6.2).3

Although the primary focus of the paper is on rational, periodically collapsing bubbles, I also

examine the power properties of the tests under the widely adopted bubble process proposed by

Phillips et al. (2015a,b). This process alternates between a unit root, a mildly explosive, and a

collapse regime at fixed points in time. In line with the simulation results for periodically collapsing

bubbles, I find that the performance of QKSα is comparable to those of recursive least-squares based

tests when there is a single bubble episode and it is superior in the presence of multiple episodes,

especially when these episodes are short-lived. Furthermore, I show that, unlikely for GSADF, the

distance between bubble episodes does not have a substantial impact on the power of quantile-

regression based tests. As an implication, QKSα performs remarkably better when bubble episodes

occur close to each other.

2Due to their flexibility, quantile autoregressive models have been used in various applications. For instance,
Koenker and Xiao (2004) fit quantile autoregressions to short-term U.S. interest rates and find substantial differences
in persistence during expansions and recessions. In related work, Koenker and Xiao (2006) show that the U.S.
unemployment rate displays asymmetric dynamics across different parts of its conditional distribution, and Liu
(2020) provides evidence that the degree of persistence of real GDP growth rates differs between contractions and
expansions. Among other series, quantile autoregressions have also been applied to inflation rates, housing returns,
and real exchange rates (Gaglianone et al., 2018; Galvao Jr et al., 2013; Nikolaou, 2008).

3The fact that Un and QKSα are full-sample tests also implies that they do not come with an accompanying
date-stamping procedure. Section 8 provides a more detailed discussion of this issue.
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In addition to the Monte Carlo experiments, I employ unit root quantile autoregressions to

examine the presence of speculative dynamics in three distinct asset markets. The first empiri-

cal application deals with a leading cryptoasset known for its remarkably wild price fluctuations,

Bitcoin. The second examines the S&P 500 index, which is a key benchmark for U.S. equity per-

formance; and the final investigates U.S. housing, which constitutes a critical component of U.S.

household wealth and the U.S. economy as a whole. Depending on data availability, I account for

economic fundamental influences when testing for bubbles by adopting either a direct approach

based on observed measures (i.e., price-dividend and price-rent ratios) or/and a recently proposed

indirect approach based on futures prices (Pavlidis et al., 2017, 2018). The empirical applications

provide novel insights about the persistence properties of the time series. In summary, the results

for the unit root quantile autoregressive models suggest that there is substantial heterogeneity in

persistence across quantiles for all three assets, with the observed pattern of autoregressive coeffi-

cient estimates closely resembling that for periodically collapsing bubbles. Not surprisingly, among

the three assets, Bitcoin is found to be the most speculative.

The rest of the paper is structured as follows. Section 2 describes the theoretical asset pricing

framework. Section 3 provides an outline of unit root tests based on quantile autoregressions. Sec-

tions 4 and 5 demonstrate the applicability of quantile autoregression models for bubble detection

and investigate the finite-sample properties of unit root tests through Monte Carlo simulations.

Section 6 outlines the indirect approach adopted to account for market fundamentals. Section 7

presents the three empirical applications. Section 8 provides a discussion of date-stamping episodes

of exuberance, and the final section concludes.

2 Speculative Dynamics in Asset Prices

I consider rational expectation models in which the spot price of an asset, Pt, consists of an economic

fundamentals component, xt, and a speculative bubble component, Bt:

Pt = xt +Bt. (1)

There are many asset pricing models that take this general form. Among others, these include

the dividend-discount model for stocks (Campbell and Shiller, 1988), Pindyck’s (1993) model of

rational commodity pricing, the present-value relation for housing prices (Glaeser and Nathanson,

2015; Meese and Wallace, 1994), and the monetary model of exchange rate determination (Devereux

and Smith, 2021). In these theoretical formulations, the fundamental component of asset prices is

a function of dividends, convenience yields, housing rents, and relative money supplies and relative

income, respectively, and is typically assumed to follow a unit root process. On the contrary,

in empirical applications, the intrinsic value of an asset as well as its time series properties are

unknown. This gives rise to the well-known joint hypothesis problem, which states that econometric

tests for bubbles actually examine a composite hypothesis of no bubbles and the correct model for
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fundamentals. For simplicity, I assume for now that xt follows a random walk process:

xt = xt−1 + ϵt, ϵt ∼ iid(0, σ2
ϵ ), (2)

and return to the important issue of controlling for unobserved economic fundamentals in empirical

applications in Section 6.

With regard to the second component of the spot price, rational bubbles satisfy the condition

(see, Diba and Grossman, 1988)

Et(Bt+1) = (1 + r)Bt, (3)

where r is a positive constant derived from the structural model describing the economy and Et(·)
is the expectation operator. Aside from the linear AR(1), several nonlinear bubble processes have

been proposed that meet (3). These nonlinear processes appear more realistic in that they allow

the bubble to exhibit rich dynamics, growing exponentially in some periods and crashing in others

(Blanchard and Watson, 1982; Evans, 1991; Homm and Breitung, 2012). I adopt the widely used

periodically collapsing bubble process proposed by Evans (1991):

Bt+1 =

{
(1 + r)Btηt+1, if Bt ≤ b,[

λ+ 1
π (1 + r)ζt+1

(
Bt − 1

(1+r)λ
)]

ηt+1, if Bt > b,
(4)

where λ and b are positive constants that satisfy λ < (1 + r)b; ηt+1 = exp(κt+1 − σ2
κ/2) with

κt+1 ∼ N (0, σ2
κ) is a lognormal variable scaled to have a mean of unity; and ζt+1 is a Bernoulli

process that takes the value of one with probability π and the value of zero with probability 1− π.

By taking expectations of both sides, it is easy to verify that the expected gross growth rate of the

bubble is 1+r and thus the process satisfies the condition for a rational bubble. The bubble process

has also the appealing property that, conditional on a positive initial value B0, Bt remains positive

for all future time periods t > 0. Consider, for example, a bubble that starts below the threshold

b. The bubble initially grows exponentially at a constant expected rate of 1 + r. Eventually the

bubble exceeds b and its expected growth rate, conditional on the bubble not collapsing, increases

to (1 + r)/π. When the bubble collapses, it drops to a positive expected value of λ, and the cycle

begins again. Due to its rich dynamics and attractive properties, Equation (4) constitutes the

most popular rational bubble process and serves as a benchmark for evaluating bubble detection

tests (Chan and Santi, 2021; Morita et al., 2024; Otero et al., 2022; Phillips and Shi, forthcoming;

Phillips et al., 2015a).

A direct implication of condition (3) and Equation (1) is that, if bubbles are present in asset

markets, then the spot price will display explosive dynamics. Starting with the seminal paper of

Diba and Grossman (1988), a large literature has developed that employs right-tailed unit root tests

to examine the presence of speculative dynamics in asset markets on the basis of this implication.

This literature has mainly focused on least-squares unit root tests, leaving tests based on quantile

autoregressions unexplored.
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3 Unit Root Quantile Autoregressions

Consider the Augmented Dickey Fuller (ADF) regression equation,

yt = α0 + α1yt−1 +

q∑
j=1

αj+1∆yt−j + ut. (5)

Following Koenker and Xiao (2004, 2006), I adopt the corresponding unit root quantile autoregres-

sion (QAR) model given by4

Qyt(τ |yt−1,∆yt−1, . . . ,∆yt−q) = α0(τ) + α1(τ)yt−1 +

q∑
j=1

αj+1(τ)∆yt−j . (6)

In the above QAR model, the τth conditional quantile of yt, Qyt(τ |yt−1,∆yt−1, . . . ,∆yt−q), is a

linear function of the lagged value of the series and q lagged first differences. Notice that regression

parameter values are allowed to vary across quantiles. As an implication, the null hypothesis of a

unit root,

H0 : α1(τ) = 1, (7)

may be rejected in favour of the one-sided alternative of explosive dynamics in yt,

H1 : α1(τ) > 1, (8)

at some but not all quantiles.

Letting Ft denote the σ-field generated by {us, s ≤ t}, and defining xt = (1, yt−1,∆yt−1, . . . ,∆yt−q)
⊺

and α(τ) = (α0(τ), . . . , αq+1(τ))
⊺, Equation (6) can be written more compactly as

Qyt(τ |Ft−1) = x⊺tα(τ). (9)

For a selected value of τ , parameter estimation requires solving the minimization problem

min
α∈R

n∑
t=1

ρτ (yt − x⊺tα), (10)

where ρτ (u) = u(τ − I(u < 0)) is the check loss function of Koenker and Bassett Jr (1978). The

solution α̂(τ) for a given τ is called the τth autoregression quantile; while, viewed as a function of

τ , α̂(τ) is referred to as the QAR process.

4For a detailed exposition of the general unit root quantile autoregression with deterministic terms and covariates
see Galvao (2009). A limitation, not only of linear quantile autoregressions, but of all linear quantile regression
models is that at some point/s there will be ‘crossings’ of the conditional quantile functions. For this reason, these
models should be interpreted as useful local approximations to the true model over a specific region. Despite this
shortcoming, linear quantile autoregression models are very valuable due to their simplicity, interpretability, and the
important insights they can provide about the dynamics of economic series. Furthermore, as will be shown later,
they have advantages over methods based on recursive least squares in bubble detection.
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Koenker and Xiao (2004) propose several unit root tests based on (6). The two tests employed

in this paper are the coefficient-based Un(τ) (analogous to the coefficient-based ADF) and a right-

sided version of their Kolmogorov-Smirnov type test, QKSα. The latter examines the unit root

property over a range of quantiles, τ ∈ T , by exploiting the QAR process. The two test statistics

are given by

Un(τ) = n(α̂1(τ)− 1) and QKSα = sup
τ∈T

Un(τ). (11)

In practice, the Un(τ) statistic can be computed over a grid of values, and the QKSα statistic can

be obtained by taking the maximum value.

Under the null, both test statistics have nonstandard limiting distributions that depend on

nuisance parameters. Accurate finite-sample critical values can be computed, however, using the

following bootstrap unit root procedure:

1. Let ωt = ∆yt. Impose the null of a unit root and estimate the restricted regression

ωt =

q∑
j=1

ξjωt−j + vt,

by ordinary least squares to obtain the coefficient estimates ξ̂1, . . . , ξ̂q and the residuals v̂.

2. Generate bootstrap residuals, vbt , by sampling with replacement draws from the centered

residuals v̂t − 1/(n− q)
∑n

j=q+1 v̂j .

3. Use the bootstrap residuals and the estimated coefficients to recursively generate bootstrap

samples for first differences,

ωb
t =

q∑
j=1

ξ̂jω
b
t−j + vbt ,

and for levels,

ybt = ybt−1 + wb
t ,

with ωb
j = ∆yj for j = 1, . . . , q and yb1 = y1.

4. Estimate the quantile autoregression (6) and compute the coefficient-based and Kolmogorov-

Smirnov statistics, U b
n(τ) and QKSbα.

5. Repeat steps (2) to (4) N times to approximate the limiting distributions under the null, and

compute the bootstrap p-value as the percentage of times the simulated statistic is as or more

extreme than the original.

As discussed in Koenker and Xiao (2004), the validity of the above procedure derives from an

invariance principle, which concerns the weak convergence of the bootstrap partial sum process to

Brownian motion (Chang et al., 2006; Park, 2002).
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With regard to computational costs, Online Appendix A discusses the complexity of the quantile

regression and the recursive least-squares methods employed and evaluates their run-time perfor-

mance by conducting a simulation experiment. The results suggest that the computational costs

associated with estimating Un and QKSα are very low, which makes the quantile regression esti-

mation method well-suited for use with bootstrapping techniques.

4 Periodically Collapsing Bubbles and Quantile Autoregressions

To illustrate the applicability of unit root quantile autoregressions for bubble detection, I first

examine a single realization from the theoretical asset pricing model described by Equations (1),

(2), and (4). The sample size n is set equal to 200 observations and the values of the structural

parameters describing the economy are π = 0.5, r = 0.015, λ = 0.5, b = 1, σk = 0.05, σϵ = 0.7,

B0 = 0.5, and x0 = 30. Following previous studies, I scale up the bubble process by a factor of 20.

Figure 1 displays the simulated price and fundamental series. What stands out is the large

bubble eruption occurring before the middle of the sample period, with the asset price increasing

from less than 40 to almost 80 units in a short period of time. At the peak of the bubble, the

speculative component constitutes over half of the asset price. This remarkable market boom ends

at t = 93 with a dramatic market collapse that erases all capital gains. A second bubble eruption

takes place in the last part of the sample, but in this case the associated price rally is not substantial.

This is due to the fact that, on the one hand, the bubble eruption is smaller in magnitude and,

on the other, it coincides with a reduction in the value of fundamentals. Nonetheless, there is a

sizeable market crash at t =169 when the bubble pops and the asset price implodes by 26 percent.

Figure 1: Simulated price (black line) and economic fundamental (grey line) series.

The market booms and crashes are also apparent in Figure 2a. This figure presents the scatter

plot of the simulated price series against its lagged value. Superimposed on the plot are the fitted

quantile regression lines corresponding to τ = {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} and the fitted
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least-squares line. To facilitate the analysis, the accompanying Figure 2b shows the QAR slope

coefficient estimates against the same set of quantiles.

(a) Scatter Plot & Fitted Regression Lines (b) QAR Coefficient Estimate

Figure 2: Scatter plot of simulated Pt against Pt−1 with fitted quantile and least-squares
regression lines (left). Median regression (solid black line), quantile regressions at τ =
{0.05, 0.1, 0.25, 0.75, 0.9, 0.95} (dashed lines), and least-squares regression (solid grey line). QAR
coefficient estimates against τ (right).

Starting with the least-squares results, it is evident that, between the extreme observations

generated by market booms and market crashes, the latter have the largest influence on the re-

gression line. Specifically, the abrupt price declines drive the least-squares estimate far below unity

(α̂1 = 0.83), falsely indicating a stationary process. This finding highlights the sensitivity of stan-

dard unit root tests to outliers and is in accord with previous studies that show that such tests have

virtually no power to detect periodically collapsing bubbles (Evans, 1991; Franses and Haldrup,

1994; Harvey et al., 2001; Lucas, 1995; Phillips et al., 2011).

The quantile regression results, on the other hand, convey much richer information regarding

the properties of the simulated asset price series. As can be seen from Figures 2a and 2b, the

results suggest the presence of asymmetric dynamics, with the estimates for the autoregressive root

increasing in a nonlinear fashion as we move from low to high quantiles. Specifically, the curve

depicting the QAR process α̂1(τ) is relative flat in the central region, while it displays a steep

incline at the boundaries. At low quantiles, τ = {0.05, 0.1}, the autoregressive coefficient estimates

take small values, substantially below unity due to the market crashes. At τ = {0.25, 0.5, 0.75},
the estimates are close to unity. While, at the upper quantiles τ = {0.9, 0.95} that correspond to

bubble eruptions, they exceed unity, indicating that the time series exhibits explosive behaviour.

To generalize the above results, I now conduct a set of Monte Carlo experiments with 10,000

replications. For these experiments, the sample size n is set equal to 100, 200, 400, and 1,000

observations, and the probability π of the bubble not collapsing is set equal to 25, 50, 75 and 90

percent. The values for the remaining structural parameters are the same as in the previous exercise.

Figure 3 and Table 1 report mean α1 estimates for quantile and least-squares autoregressions of
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order one, respectively.

(a) n = 100 (b) n = 200

(c) n = 400 (d) n = 1, 000

Figure 3: Mean quantile estimates of the QAR coefficient for different sample sizes n and proba-
bilities of the bubble erupting π.

Several interesting conclusions emerge by visual inspection of Figure 3. The main conclusion is

that, irrespective of the sample size and of the probability of collapse, the autoregressive coefficient

estimates display a similar overall pattern: They monotonically increase with τ , always starting

from values below unity at low quantiles and exceeding unity at higher quantiles. A closer look

at the figure reveals that the range of mean α1 estimates is wide, from less than 0.4 at the fifth

quantile to almost 1.4 at the 95th quantile. Furthermore, it reveals that the quantile at which

mean estimates exceed unity heavily depends on the probability of the bubble not collapsing. Not

surprisingly, higher values of π are associated with lower quantiles. The curves corresponding to

lower πs, however, exhibit a steeper incline at upper quantiles and thus take large values near

the boundary (τ = 0.95). This last observation can be explained by the fact that the number of

sample periods characterized by a bubble erupting is positively related to π, while the intensity

of the bubble, as measured by (1 + r)/π, negatively. That is, lower values of π result in fewer

but more intense bubble eruptions, raising the autoregressive coefficient estimate more rapidly
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at upper quantiles. The main implication of the above observations is that researchers can test

for speculative bubbles by examining the null hypothesis of a unit root against the alternative of

explosive dynamics at sufficiently high quantiles.

Table 1: Mean least-squares α1 estimates in the presence of periodically collapsing bubbles

n = 100 n = 200 n = 400 n = 1, 000

π = 0.25 0.745 0.702 0.672 0.652
π = 0.50 0.753 0.722 0.705 0.694
π = 0.75 0.814 0.802 0.797 0.794
π = 0.90 0.885 0.883 0.887 0.890
Notes: n and π denote the sample size and the probability of the bubble erupting, respectively.

It is also interesting to look at the results for median (least absolute deviations) and least-

squares regressions. For median regressions, average α1(0.5) estimates are positively related to

the probability of the bubble erupting (see Figure 3). When this probability is high (i.e., π =

{0.75, 0.9}), they take values above unity. In contrast, the average least-squares estimates reported

in Table 1 are always below unity, with a minimum value of 0.652 (for π = 0.25, n = 1, 000),

and a maximum of 0.89 (for π = 0.9, n = 1, 000). Hence, unit root tests based on least absolute

deviations are expected to outperform their least-squares counterparts in detecting bubbles, but

perform worse compared to tests focusing on upper quantiles. I examine the performance of the

unit root tests next.

5 Monte Carlo Results: Empirical Size and Power

This section deals with the empirical size and power properties of Un(τ) and QKSα. For the

implementation of the former test, I set τ = {0.8, 0.85, 0.9, 0.95} and, for the latter, I adopt the

range T = [0.8, 0.95] and a step size of 0.01. This choice of quantiles strikes a balance between two

opposing effects. On the one hand, the fact that the autoregressive coefficient increases with the

quantile, exceeding unity at high quantiles, in the presence of bubbles; and, on the other, that the

estimation of extreme quantiles can suffer from higher variance and instability issues due to data

sparsity. In line with this latter point, simulation results reported in Online Appendix B suggest

that the examination of more extreme quantiles, such as the 99th, can have an adverse impact on

performance when the sample size is small.

In addition to Un(τ) and QKSα, I also present results for the standard ADF, the SADF of

Phillips et al. (2011) and the GSADF test of Phillips et al. (2015a). This allows a comprehensive

comparison of the full-sample quantile regression based tests against least-squares benchmarks

with varying degrees of flexibility. Furthermore, the SADF test serves as a useful benchmark for

evaluating the efficacy of the GSADF under different data generating processes. The least-squares

tests are described in Online Appendix C.

For all experiments, the number of Monte Carlo simulations is set equal to 1,000, the number

of bootstrap repetitions N is 2,000, and the nominal significance level is set equal to five percent.
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Unless specified otherwise, the sample size n is equal to 100, 200, 300 and 400.

5.1 Empirical Size

I conduct two sets of size experiments to examine the properties of the tests under different error

distributions and lag lengths. The data generating process is a driftless random walk,

yt = yt−1 + ut, (12)

where the error term, ut, is an i.i.d. random variable. Following Koenker and Xiao (2004), in the

first set of experiments, I consider the standard normal and two heavy-tailed distributions for ut:

the Student-t with three degrees of freedom, t3, and the Student-t with two degrees of freedom, t2.

In the latter case, errors have infinite variance.

Table 2: Size of unit root tests with N (0, 1), t3 and t2 errors

Un(0.5) Un(0.8) Un(0.85) Un(0.9) Un(0.95) QKSα ADF SADF GSADF

N (0, 1)

n =100 0.053 0.056 0.063 0.052 0.057 0.055 0.050 0.042 0.049
n =200 0.059 0.045 0.050 0.050 0.045 0.046 0.046 0.044 0.035
n =300 0.057 0.058 0.064 0.060 0.051 0.051 0.057 0.050 0.043
n =400 0.050 0.050 0.053 0.052 0.055 0.048 0.056 0.055 0.045

t3
n =100 0.055 0.047 0.048 0.057 0.050 0.044 0.056 0.064 0.085
n =200 0.056 0.058 0.050 0.046 0.037 0.043 0.040 0.060 0.089
n =300 0.061 0.064 0.060 0.063 0.051 0.043 0.055 0.052 0.094
n =400 0.064 0.057 0.068 0.061 0.051 0.044 0.052 0.053 0.116

t2
n =100 0.055 0.043 0.042 0.038 0.043 0.036 0.047 0.083 0.119
n =200 0.053 0.042 0.044 0.050 0.051 0.040 0.053 0.093 0.144
n =300 0.041 0.047 0.049 0.053 0.065 0.052 0.044 0.082 0.146
n =400 0.048 0.058 0.053 0.052 0.055 0.054 0.043 0.078 0.156

Notes: n denotes the sample size.

According to the results in Table 2, there are no substantial deviations of the empirical size

from the nominal significance level for Un(τ) and QKSα. Thus, quantile unit root tests perform well

for all sample sizes and distributions, even for the case of infinite-variance errors. These findings

complement the Monte Carlo results of Koenker and Xiao who do not focus on high quantiles, but

instead look at unit root tests based on median quantile autoregressions and examine a two-tailed

Kolmogorov-Smirnov type test with T = [0.1, 0.9]. Regarding the least-squares tests, the standard

ADF does not exhibit any significant size distortions and the SADF appears to be only slightly

oversized for t2 errors. The more flexible GSADF test, however, is slightly oversized for t3 and

moderately oversized for t2 errors, with the size distortions increasing with the sample size. The

maximum rejection rate of the GSADF is 15.6 percent for n = 400 and t2 errors. Hence, not

surprisingly, quantile regression based tests perform better than recursive least-squares tests in the
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presence of extremely heavy-tailed data.

Table 3: Size of unit root tests for different lag lengths

Un(0.5) Un(0.8) Un(0.85) Un(0.9) Un(0.95) QKSα ADF SADF GSADF

n = 100

q = 1 0.029 0.046 0.043 0.050 0.055 0.053 0.063 0.054 0.095
q = 3 0.025 0.044 0.051 0.061 0.053 0.061 0.047 0.099 0.252
q = 6 0.023 0.033 0.046 0.048 0.054 0.054 0.066 0.187 0.670

n = 200

q = 1 0.033 0.040 0.048 0.049 0.055 0.047 0.047 0.054 0.081
q = 3 0.033 0.032 0.037 0.037 0.050 0.042 0.051 0.084 0.190
q = 6 0.031 0.044 0.048 0.055 0.078 0.069 0.051 0.140 0.479

n = 300

q = 1 0.033 0.043 0.046 0.052 0.076 0.070 0.052 0.061 0.093
q = 3 0.033 0.043 0.054 0.059 0.060 0.062 0.068 0.087 0.208
q = 6 0.030 0.045 0.043 0.046 0.047 0.061 0.044 0.095 0.383

n = 400

q = 1 0.041 0.041 0.041 0.046 0.056 0.052 0.051 0.057 0.086
q = 3 0.036 0.041 0.045 0.040 0.051 0.057 0.048 0.060 0.172
q = 6 0.033 0.043 0.050 0.039 0.044 0.039 0.053 0.098 0.381

Notes: n and q denote the sample size and the lag length, respectively.

For the second set of size experiments, I focus on standard normal errors and consider lag

lengths q = 1, 3 and 6. Table 3 reports the simulation results. The Un(τ), QKSα and ADF tests

exhibit, again, good size properties with rejection rates close to the five percent level. The size

properties of SADF and GSADF under different lag settings have already been examined in Phillips

et al. (2015a). In line with the study of Phillips et al., the results in Table 3 indicate that the two

tests exhibit size distortions that increase with the lag length and decrease with the sample size.

The distortions are particularly severe for the GSADF test, reaching values as high as 67 percent.

As argued by Phillips et al., the greater distortions for the GSADF test can be attributed to the

smaller sample sizes in the flexible-window procedure for larger values of q. Due to this property,

the authors recommend selecting a very small lag length for empirical use of the SADF and GSADF

test procedures.

5.2 Empirical Power

Having examined the empirical size properties of the tests, I now evaluate their ability to detect

periodically-collapsing rational bubbles using the data generating process proposed by Evans (1991).

As an additional exercise, I consider the widely employed bubble process of Phillips et al. (2015a,b)

in the second part of this section.

5.2.1 Empirical Power: Evans (1991) Periodically Collapsing Bubbles

The design of the first set of power experiments is the same as that of Section 2 with the ex-

ception that the structural parameter r in Evans (1991) data generating process takes values in
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{0.01, 0.015, 0.02}. Thus, the experiments allow us to investigate the role of the following factors

in the performance of the tests: the sample size n, the probability of the bubble erupting π, the

structural parameter r, and, for Un(τ), the quantile τ . Rejection rates are reported in Table 4.

Overall, the results for the unit root tests based on quantile autoregressions are very encouraging.

Among these tests, the QKSα and Un(0.95) are found to perform best, with the former displaying

the same or slightly higher power than the latter. The two tests outperform the SADF and GSADF

for all simulation settings by, in many cases, a substantial margin. The mean relative difference

between the QKS and SADF (GSADF) is 39.7 (17.5) percent, and the mean absolute difference is

21 (9.5) percentage points. Interestingly, the largest differences in power between least-squares and

quantile regression based tests occur when the probability of the bubble erupting is low and thus

there are many bubble eruptions but of short duration. For the QKSα-SADF pair, the maximum

relative difference is 95.4 percent (r = 0.015, π = 0.25, n = 300) and, for the QKSα-GSADF pair,

it is 77.7 percent (r = 0.015, π = 0.25, n = 100). Thus, in the presence of many, short-lived bubble

episodes, it is much more informative to examine the persistence of asset prices at high quantiles

over the entire sample period, instead of evaluating the persistence in the mean over subsamples.

For large values of n and π, power differences remain substantial for the QKSα-SADF pair but they

become negligible for the QKSα-GSADF since both tests almost always detect bubbles.

Table 4: Power of unit root tests in the presence of periodically collapsing bubbles

Un(0.5) Un(0.8) Un(0.85) Un(0.9) Un(0.95) QKSα ADF SADF GSADF

r = 0.01, π = 0.25

n = 100 0.077 0.260 0.300 0.325 0.339 0.375 0.024 0.226 0.211

n = 200 0.079 0.349 0.429 0.489 0.513 0.583 0.011 0.301 0.348

n = 300 0.060 0.423 0.499 0.588 0.634 0.701 0.001 0.361 0.474

n = 400 0.064 0.441 0.514 0.610 0.664 0.727 0.000 0.407 0.570

r = 0.01, π = 0.50

n = 100 0.101 0.386 0.408 0.449 0.459 0.480 0.033 0.355 0.368

n = 200 0.113 0.540 0.609 0.665 0.692 0.729 0.014 0.490 0.593

n = 300 0.108 0.632 0.696 0.759 0.796 0.831 0.004 0.551 0.719

n = 400 0.120 0.675 0.736 0.791 0.833 0.866 0.003 0.622 0.813

r = 0.01, π = 0.75

n = 100 0.321 0.535 0.555 0.580 0.592 0.607 0.044 0.465 0.496

n = 200 0.452 0.743 0.779 0.816 0.831 0.844 0.013 0.654 0.751

n = 300 0.535 0.829 0.880 0.906 0.923 0.930 0.017 0.733 0.867

n = 400 0.592 0.890 0.915 0.939 0.962 0.969 0.007 0.787 0.937

r = 0.01, π = 0.90

n = 100 0.435 0.583 0.587 0.588 0.587 0.600 0.089 0.477 0.491

n = 200 0.651 0.820 0.829 0.852 0.842 0.863 0.038 0.690 0.777

n = 300 0.770 0.908 0.933 0.944 0.941 0.951 0.022 0.794 0.899
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n = 400 0.848 0.961 0.966 0.969 0.978 0.978 0.016 0.838 0.948

r = 0.015, π = 0.25

n = 100 0.091 0.350 0.392 0.432 0.479 0.535 0.007 0.335 0.351

n = 200 0.053 0.435 0.529 0.602 0.669 0.728 0.003 0.398 0.502

n = 300 0.057 0.475 0.569 0.673 0.762 0.813 0.000 0.447 0.617

n = 400 0.037 0.490 0.622 0.719 0.783 0.842 0.002 0.483 0.667

r = 0.015, π = 0.50

n = 100 0.123 0.528 0.571 0.616 0.641 0.676 0.012 0.512 0.538

n = 200 0.101 0.693 0.761 0.805 0.858 0.871 0.005 0.637 0.760

n = 300 0.110 0.772 0.823 0.869 0.914 0.942 0.003 0.671 0.877

n = 400 0.090 0.796 0.869 0.916 0.951 0.963 0.002 0.677 0.922

r = 0.015, π = 0.75

n = 100 0.441 0.702 0.735 0.767 0.795 0.800 0.029 0.643 0.704

n = 200 0.590 0.877 0.913 0.930 0.951 0.955 0.021 0.786 0.896

n = 300 0.709 0.954 0.963 0.981 0.986 0.989 0.011 0.813 0.964

n = 400 0.745 0.966 0.976 0.982 0.990 0.993 0.009 0.823 0.984

r = 0.015, π = 0.90

n = 100 0.639 0.787 0.800 0.814 0.801 0.813 0.074 0.700 0.733

n = 200 0.828 0.940 0.953 0.963 0.959 0.969 0.034 0.841 0.927

n = 300 0.921 0.987 0.992 0.991 0.993 0.993 0.030 0.886 0.980

n = 400 0.956 0.989 0.991 0.994 0.994 0.994 0.019 0.894 0.988

r = 0.02, π = 0.25

n = 100 0.077 0.390 0.459 0.527 0.564 0.630 0.005 0.405 0.435

n = 200 0.049 0.466 0.574 0.656 0.741 0.800 0.001 0.435 0.575

n = 300 0.039 0.497 0.624 0.730 0.796 0.858 0.000 0.439 0.643

n = 400 0.032 0.530 0.659 0.777 0.830 0.892 0.001 0.461 0.681

r = 0.02, π = 0.50

n = 100 0.112 0.619 0.666 0.725 0.756 0.784 0.015 0.599 0.661

n = 200 0.091 0.768 0.835 0.864 0.910 0.925 0.006 0.662 0.844

n = 300 0.089 0.841 0.878 0.923 0.943 0.957 0.002 0.672 0.916

n = 400 0.080 0.865 0.914 0.952 0.979 0.988 0.000 0.667 0.934

r = 0.02, π = 0.75

n = 100 0.544 0.817 0.837 0.872 0.889 0.900 0.025 0.753 0.831

n = 200 0.723 0.952 0.967 0.978 0.983 0.986 0.014 0.839 0.959

n = 300 0.811 0.984 0.993 0.992 0.993 0.996 0.008 0.857 0.983

n = 400 0.846 0.995 0.996 0.996 0.998 0.999 0.005 0.815 0.997

r = 0.02, π = 0.90

n = 100 0.781 0.889 0.901 0.904 0.903 0.919 0.087 0.815 0.864

n = 200 0.930 0.978 0.985 0.988 0.989 0.993 0.032 0.892 0.975
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n = 300 0.973 0.996 0.998 0.997 0.998 1.000 0.026 0.920 0.996

n = 400 0.986 1.000 1.000 1.000 1.000 1.000 0.016 0.917 0.999
Notes: n and π denote the sample size and the probability of the bubble erupting; r is a
structural parameter that determines the growth rate of the bubble process.

In addition to the superior performance of QKSα and Un(0.95) over their least-squares coun-

terparts, several other conclusions emerge from Table 4. Focusing on the Un(τ) tests with τ =

{0.80, 0.85, 0.9, 0.95}, rejection rates generally increase with the sample size n, the structural pa-

rameter r, the probability of the bubble erupting π, and the quantile τ . The positive relation

between power and sample size is intuitively obvious. The same is true for the structural parame-

ter r. This factor determines the value of the growth rate of the bubble process and, consequently,

the degree of explosiveness of the asset price. When its value increases, the asset price becomes

more explosive which raises power.

As far as the impact of the probability of the bubble erupting on the power of Un(τ) is concerned,

an increase in π has two effects that work in opposite directions. On the one hand, it lowers the

growth rate of the ongoing bubble, which ceteris paribus leads to lower power of unit root tests.

On the other, it increases the expected bubble duration which, in turn, raises power. This twofold

impact reflects the complex dynamics at play in the model. The simulation results indicate that,

at least for the simulation design used in this paper, the first effect outweighs the second so that

higher values of π lead to higher rejections rates.

Regarding the last factor, the finding that the power of Un(τ) generally increases with τ is in

line with the analysis of the previous section which shows that higher quantiles are associated with

larger autogressive root estimates. It should be noted, however, that the relationship between τ

and the power of Un(τ) depends on π and, for large values of π, it becomes flat. This observation

can be attributed to the fact that, as the probability of the bubble regime increases, the estimated

autoregressive roots exceed unity at lower quantiles (see Figure 3). Hence, the magnitude of

differences in power across quantiles declines. Furthermore, as mentioned at the beginning of the

section, the distribution of data is more sparse for upper quantiles, which may lead to less precise

estimates. As a consequence, increasing τ beyond a point may actually lead to a drop in power.

Turning to Un(0.5), the results of the previous section indicate that, for median regressions,

average α1 estimates are positively related to π, only exceeding unity when π is higher than 50

percent. Consistent with this result, the power of Un(0.5) is very low when π is at or below the 50

percent threshold, and abruptly increases as π changes from 50 to 75 percent. For large n, r and

π, Un(0.5) exhibits good power properties and, in a few cases, outperforms the SADF test, but not

the GSADF. In contrast, as expected, the standard ADF has virtually no power to detect bubbles

in all cases. Next, I consider the bubble process of Phillips et al. (2015a,b).

5.2.2 Empirical Power: Phillips et al. (2015a,b) Bubble Process

Phillips et al. (2015a,b) propose the following time-varying process that alternates between mildly
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explosive and martingale behaviour at fixed points in time,

yt = (yt−1 + ut)1{t ∈ TN
0 }+ (δnyt−1 + ut)1{t ∈ TB

i }

+
K∑
i=1

 t∑
l=ti,e+1

ul + y⋆ti,e

 1{t ∈ TN
i }. (13)

This process displays K bubble episodes that occur at TB
i = [ti,s, ti,e] with i = 1, . . . ,K. The

rate of expansion of the process during these episodes is given by δn = 1 + cn−α with c > 0 and

α ∈ (0, 1), and the termination of each episode is followed by a crash. When the series crashes,

its value drops to the last pre-bubble observation plus a small perturbation, y⋆ti,e = yti,s + y⋆i with

y⋆i = Op(1) for all i. During normal times when a bubble is neither erupting nor crashing (i.e., at

TN
0 = [1, t1,s), T

N
i = (ti,e, ti+1,s) with i = 1, . . . ,K − 1, and TN

K = (tK,e, n]), the process follows a

pure random walk.5

Figure 4: Simulated series with two bubble episodes from the data generating process of Phillips
et al. (2015a,b).

Simulating from (13) allows investigation of the effect of several factors on the power properties

of unit root tests. Among those, I consider the location, duration, and number of bubble episodes,

as well as the distance between episodes. Like Phillips et al. (2015a,b), I set the sample size n equal

to 100, the value of the initial observation y0 to 100, the standard deviation of the error term σu

to 6.79, the localizing parameter α to 0.6 and c to unity. The values of c, α and n correspond to

an autoregressive coefficient δn of 1.06. Figure 4 shows a typical series with two bubble episodes

simulated from (13) using these parameter values.

With respect to the effect of the location and duration of bubbles on power, Table 5 reports

5Equation (13) can be readily extended to allow for different values of the autoregressive coefficient δn during
mildly explosive intervals and different dynamics for market collapses, see, e.g., Phillips and Shi (2018).
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rejection rates when there is a single episode of mildly explosive dynamics that starts at t1,s =

{30, 60, 90} and lasts for dr = {5, 10} observations. It is evident from the results that duration

plays a crucial role in the ability of all tests to detect bubbles with the exception of the time-

invariant ADF. Specifically, as the length of the bubble episode increases from five to 10 percent of

the sample, rejection rates rise by a factor in excess of two.

Table 5: Phillips et al. (2015a,b) process with one bubble episode

(ts1, dr) Un(0.5) Un(0.8) Un(0.85) Un(0.9) Un(0.95) QKSα ADF SADF GSADF

(30,5) 0.067 0.167 0.182 0.198 0.202 0.217 0.018 0.191 0.175
(30,10) 0.334 0.539 0.557 0.561 0.480 0.572 0.004 0.593 0.577
(60,5) 0.070 0.161 0.176 0.220 0.230 0.233 0.011 0.128 0.162
(60,10) 0.421 0.592 0.591 0.605 0.545 0.624 0.001 0.501 0.605
(90,5) 0.087 0.232 0.234 0.255 0.236 0.241 0.005 0.115 0.221
(90,10) 0.403 0.555 0.581 0.578 0.514 0.591 0.001 0.428 0.598

Notes: ts1 and dr denote the start date and the duration of the bubble episode, respectively.

Turning to the impact of the location of the bubble episode, there is substantial heterogeneity

across tests. For the GSADF and for the best performing quantile-regression based test, which is

again the QKSα, location does not appear to have a dramatic effect. On the contrary, changing

the start date from the first part of the sample, t1,s = 30, to the second part, t1,s = 90, leads to

a major reduction in the power of SADF that equals 40 (29) percent for dr = 5 (dr = 10). This

finding is not surprising since the subsample of data used to obtain the SADF statistic runs from

the first observation to the peak of the bubble episode. Hence, as the value of t1,s increases, a

smaller fraction of the subsample displays mildly explosive dynamics and a larger fraction displays

random walk behaviour, which causes a decline in power. The reason that GSADF does not exhibit

such variations in power is that its estimation algorithm is more flexible, allowing both the start

and end dates of the subsample to change.

A comparison of the results in Table 5 for QKSα with those for the two recursive least-squares

tests reveals that, in the presence of a single bubble episode, QKSα outperforms the SADF test in

the vast majority of cases and displays very similar power with GSADF. The relative performance

of QKSα is particularly noteworthy given that the recursive least-squares procedures more closely

align with the data generating process (13) with K = 1. This is so because the SADF and GSADF

test statistics are obtained from the single subsample regression covering the most significant ex-

pansionary period. While, the quantile regression based tests exploit information from all bubble

episodes and, thus, are expected to perform better for K > 1.

To illustrate this point, I now extend the analysis to two and three bubble episodes that occur

at (t1,s, t2,s) = (30, 60) and (t1,s, t2,s, t3,s) = (30, 60, 90). Table 6 reports the estimated rejection

rates. To facilitate comparisons, the table also shows the results for a single bubble episode that

starts at t1,s = 30. The most striking result from this exercise is the sharp rise in the power of

QKSα compared to SADF and GSADF when K increases and the bubble duration is short. While

all three tests exhibit similar power for K = 1 and dr = 5, QKSα becomes 84 (34) percent more

powerful than SADF (GSADF) for K = 2, and 149 (50) percent more powerful for K = 3. The
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Table 6: Phillips et al. (2015a,b) process with one, two and three bubble episodes

(K, dr) Un(0.5) Un(0.8) Un(0.85) Un(0.9) Un(0.95) QKSα ADF SADF GSADF

(1,5) 0.067 0.167 0.182 0.198 0.202 0.217 0.018 0.191 0.175
(2,5) 0.068 0.279 0.327 0.349 0.340 0.391 0.003 0.212 0.292
(3,5) 0.158 0.478 0.493 0.504 0.475 0.557 0.002 0.224 0.371
(1,10) 0.334 0.539 0.557 0.561 0.480 0.572 0.004 0.593 0.577
(2,10) 0.650 0.798 0.795 0.781 0.736 0.824 0.000 0.662 0.769
(3,10) 0.785 0.855 0.851 0.823 0.770 0.867 0.000 0.654 0.835

Notes: K and dr denote the number and duration of the bubble episode(s), respectively.

QKSα test also outperforms the recursive least-squares tests for dr = 10 but the differences are

less striking. These results are in line with those for periodically-collapsing bubbles presented in

Section 5.2.1 which suggest that the largest differences in power between least-squares and quantile

regression based tests occur when the probability of the bubble erupting is low. That is, when

there are many bubble eruptions but of short duration.

Table 7: Phillips et al. (2015a,b) process with two bubble episodes ds periods apart

ds Un(0.5) Un(0.8) Un(0.85) Un(0.9) Un(0.95) QKSα ADF SADF GSADF

5 0.457 0.604 0.632 0.619 0.572 0.664 0.001 0.327 0.345
10 0.500 0.636 0.645 0.650 0.596 0.673 0.002 0.385 0.400
15 0.458 0.644 0.649 0.652 0.605 0.686 0.000 0.381 0.596
20 0.484 0.632 0.641 0.615 0.591 0.671 0.000 0.390 0.613

Notes: ds denotes the distance between the two bubble episodes. The duration of the first bubble
equals five observations and of the second 10 observations.

As a final exercise, I evaluate the properties of the tests in the presence of two bubble episodes

that occur close to each other. The first bubble episode starts at t1,s = 60 and is short, lasting five

observations. The second bubble episode originates ds = {5, 10, 15, 20} periods after the collapse of

the first and is longer, having a duration of 10 observations. The main conclusion that emerges from

looking at the results in Table 7 is that QKSα is superior to all other tests. Specifically, it displays

stable performance across different values of ds and higher power. The performance of GSADF, on

the other hand, crucially depends on the distance between bubbles. As ds takes smaller values, its

power deteriorates. This finding can be attributed to the fact that, as the distance between bubbles

grows shorter, there are fewer or no subsamples corresponding to the second bubble episode that

are not contaminated by the collapse of the first bubble. As a consequence, it becomes more likely

for the GSADF test to fail to detect the second and longer lasting bubble. A comparison of the

results for GSADF and QKSα suggests that, for the shortest distance considered, the rejection rate

of the recursive least-squares test is almost half of that of the quantile regression based test (34.5

percent versus 66.4 percent).

In summary, the simulation results indicate that the QKSα test can perform comparably to

recursive unit root tests in the case of a single bubble episode and displays superior performance

in the presence of multiple bubbles, especially when their duration is short and/or they occur close

to each other. Having examined the properties of the unit root tests, I now turn to the issue of
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controlling for economic fundamentals in empirical applications.

6 Controlling for Economic Fundamentals

Testing for speculative bubbles is confounded by the fact that the fundamental value of assets

is unobserved. Early studies have attempted to address this issue by utilizing observed variables

suggested by theory, such as dividends and rents. The main drawback of such direct approaches

is that they crucially depend on the highly unrealistic assumption that the true model for funda-

mentals is known. Model misspecification or omitted variables can lead to false inference in favour

of bubbles, rendering direct approaches invalid (Gürkaynak, 2008). The importance of appropri-

ately accounting for fundamental factors is highlighted by, among others, the early studies of Flood

and Garber (1980) and Hamilton and Whiteman (1985) in the context of testing for speculative

inflationary bubbles during the interwar German hyperinflation. Likewise, Basse et al. (2021) raise

concerns about the use of observed dividends for measuring the intrinsic value of a firm’s shares;

and Figuerola-Ferretti et al. (2015) show that the choice of fundamentals is crucial for assessing

whether observed explosive dynamics in the price of non-ferrous metals since 2000 are indicative of

bubbles.

To circumvent the above obstacle, recent studies have employed indirect approaches that exploit

information about market fundamentals incorporated in derivative prices or survey data (Pavlidis

et al., 2017, 2018). These studies show that, during the expansion phase of periodically collapsing

bubbles, actual realizations of future spot prices and market expectations diverge. Under general

conditions, this difference between actual prices and market expectations solely depends on the

bubble process. As an implication, instead of using observed fundamental to proxy for intrinsic

asset values, researchers can employ measures of market expectations.

To illustrate this most simply, consider the theoretical model of Section 2 and let Ft denote the

market forecast for the price of the asset one period ahead

Ft = Et(Pt+1) = Et(xt+1) + Et(Bt+1). (14)

It follows from (4) that, conditional on the bubble erupting, the market forecast for the speculative

component of the asset price is biased

Bt+1 − Et(Bt+1) = (1 + r)

(
1

π
ηt+1 − 1

)
Bt +

(
1− 1

π

)
ληt+1. (15)

This bias arises because rational agents at time t correctly attach a nonzero probability to the bubble

bursting at t + 1. As a consequence, the expected growth rate of the bubble component 1 + r is

lower than the actual rate (1 + r)/π. Being a function of Bt, the forecast error Bt+1 − Et(Bt+1)

displays explosive dynamics. This property is propagated to the cumulative demeaned forecast
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errors for the asset price

P f
t =

t∑
i=1

(νfi − ν̄f ), (16)

where νf = Pt+1 − Et(Pt+1) and ν̄f = 1/n
∑n

i=1 ν
f . Assuming that the forecast error for funda-

mentals is not explosive, researchers can test for bubbles by running unit root tests on P f
t .

6 The

main advantage of this approach is that, by exploiting the information incorporated in market ex-

pectations, it does not require the specification of market fundamentals and, thus, ameliorates the

joint hypothesis problem. In practice, market expectations can be approximated by futures prices

or survey data.

7 Empirical Applications

This section presents three empirical applications of the proposed bubble detection methods to

Bitcoin, U.S. equity, and U.S. housing markets. All of these markets have a rich history of price

run-ups and market crashes and, for this reason, they have attracted substantial attention by

academics, policy makers and the media.

The Bitcoin Market. For the first application, I employ monthly data on Bitcoin spot and

futures prices in U.S. dollars. The two series are downloaded from Bloomberg and span the pe-

riod December 2017 to June 2023. The start date of the data set is chosen to coincide with the

commencement of Bitcoin futures trading on the Chicago Mercantile Exchange.

(a) Bitcoin Price in U.S. Dollars (b) QAR coefficient estimates

Figure 5: Bitcoin price in U.S. dollars (Pt) from December 2017 to June 2023 (left). Point estimates

of the largest autoregressive root at different quantiles for Pt and P f
t (right).

6A wide range of processes for xt satisfy the condition that the forecast error xt+1 − Et(xt+1) does not grow
exponentially in-sample, including explosive linear AR models and nonlinear models, such as threshold and smooth
transition autoregressive.
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Figure 5a shows the evolution of the spot price over time. Evidently, the series exhibits wild

fluctuations within the sample. Starting at 10,706 dollars in September 2020, the price surged by

450 percent in a period of six months, reaching 58,960 dollars in March 2021. During the price surge,

on January 11, the UK Financial Conduct Authority issued a warning about the risks of investments

advertising high returns based on cryptoassets, highlighting that “If consumers invest in these types

of product, they should be prepared to lose all their money”.7 A few days earlier, on January 8,

Michael Hartnett, chief investment strategist at Bank of America Securities, referred to Bitcoin as

the “mother of all bubbles”. Consistent with these concerns, the Bitcoin price plummeted by 40

percent between March and June 2021 to 34,585 dollars. The cryptoasset experienced a notable

rebound in the subsequent months, hitting an all-time high of 60,975 dollars in October 2021. This

peak was, again, short-lived and by June 2022 Bitcoin had lost almost 70 percent of its value,

reaching a low of 18,731 dollars.

Aside from its remarkably turbulent behaviour, testing for speculative dynamics in the Bitcoin

market is interesting because, unlike other assets, cryptocurrencies lack traditional fundamental

valuation metrics. Indeed, a widely held view among academics and policy makers is that Bitcoin is

a purely speculative asset with an intrinsic value of zero (Benigno and Rosa, 2023). The following

quote from Fabio Panetta, member of the Executive Board of the European Central Bank, is

indicative of the prevailing view:8 “Unbacked cryptos lack any intrinsic value, too. They are

speculative assets. Investors buy them with the sole objective of selling them on at a higher

price. In fact, they are a gamble disguised as an investment asset.” On the contrary, those in

investment and entrepreneurial circles claim that the price of Bitcoin reflects fundamental factors,

such as the underlying blockchain technology (Pagnotta, 2022). In the absence of conventional

valuation metrics, accounting for possible fundamental influences using futures prices can offer

valuable insights.

As a preliminary exercise, I fit the unit root quantile autoregressive model (6) to Bitcoin Pt and

P f
t . In this and the remaining two empirical applications, I use the Akaike Information Criterion

(AIC) with a maximum lag order of six to choose the lag length q in non-recursive unit root

autoregressive models, and set q equal to zero for the SADF and GSADF tests following the

recommendation of Phillips et al. (2015a). Figure 5b displays the QAR process. The α1 estimates

indicate the presence of asymmetric dynamics in both series that closely resemble those of the

simulated bubbles of Section 4. Specifically, the values of α̂1 start far below unity at low quantiles,

they increase with τ and eventually exceed unity at τ ≥ 0.75, indicating that the two series exhibit

explosive behaviour at upper quantiles. The range of values of α̂1 is remarkably wide. For P f
t , the

lowest α1 estimate is below 0.6 at the fifth quantile and the highest above 1.4 at the 95th. For Pt,

the range is somewhat narrower, from close to 0.7 to slightly below 1.4.

To formally test for the presence of bubbles, I investigate the integration properties of the

two series. The unit root test results presented in Table 8 suggest that the null hypothesis can

7https://www.fca.org.uk/news/news-stories/fca-warns-consumers-risks-investments-advertising-hig

h-returns-based-cryptoassets
8https://www.ecb.europa.eu/press/blog/date/2023/html/ecb.blog230105~75d5aee900.es.html
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Table 8: Unit root test statistics for Bitcoin

q Un(0.5) Un(0.8) Un(0.85) Un(0.9) Un(0.95) QKSα ADF SADF GSADF

P 2 -1.084 10.695⋆ 18.557⋆ 19.998⋆ 21.724⋆ 22.337⋆ -1.378 6.589⋆ 7.639⋆

P f 0 -7.935 11.590⋆ 20.182⋆ 20.797⋆ 29.186⋆ 29.789⋆ -1.718 5.672⋆ 6.321⋆

Notes: ⋆ denotes significance at the five percent level, q is the lag length selected by AIC.

be rejected in favour of the alternative of explosive dynamics at the five percent level by the all

tests but two. Not surprisingly, the two tests that fail to reject the null are the standard ADF

and Un(0.5), i.e., those with the lowest empirical power. The finding that Bitcoin prices display

explosive dynamics is in accordance with the recent empirical literature on bubbles in cryptoassets

(Harvey et al., 2020b).9 Our study extends this literature by showing that P f
t also displays explosive

dynamics. By doing so, it provides novel evidence, based on an agnostic approach about market

fundamentals, in favor of speculative bubbles.

The U.S. Equity Market. As a second empirical application, I examine the behavior of the

Standard & Poor’s 500 (S&P 500) index. This index goes back to the 19th century and constitutes

a leading U.S. economic indicator as well as a benchmark for mutual and exchange-traded fund

performance. Due to its importance and long history, it is one of the most commonly examined

series for speculative dynamics.

I utilize two data sets that cover the recent period, following the launch of the E-mini S&P 500

futures contracts, from January 1998 to June 2023. Similar to Phillips et al. (2011) and Phillips et

al. (2015a), the first data set consists of the real stock price index and an observed stock market

fundamental series commonly used in the literature, namely real dividends. The second includes

S&P 500 spot and E-mini futures prices.10 The two data sets are downloaded from Robert Shiller’s

website and Bloomberg, respectively.

Figure 6a depicts the S&P 500 real price index. As can be seen from the figure, the period under

examination is characterized by several market rallies and crashes. (For a historical perspective,

see Shiller (2015).) The most notable include the dot-com bubble at the beginning of the sample

period and the subsequent market crash; the severe market collapse associated with the 2007-09

financial crisis; the market crash at the onset of the Covid pandemic in February and March of

2020; and, finally, the price rally of 2020-21 and the abrupt price reversal of 2022.

Figure 6b displays the quantile autoregressive coefficient estimates for the S&P 500 real price

index, Pt, the price-to-dividend ratio, Pt/Dt, and the price adjusted for fundamentals using informa-

tion from the futures market, P f
t . Like for Bitcoin, the results indicate the presence of asymmetric

dynamics with α̂1 increasing with the value of τ and exceeding unity at τ ≥ 0.75. The range of

9Harvey et al. (2020b) test for speculative bubbles in daily Bitcoin prices by running a novel sign-based recursive
unit root test that is robust to deterministically time-varying volatility. Because time-varying volatility may be a
feature of lower frequency data, as a robustness exercise, I run a wild-bootstrap version of the SADF and GSADF
tests on Pt and P f

t . The test statistics remain statistically significant at the five percent level.
10S&P 500 futures contracts expire four times a year in March, June, September, and December. Similarly to

Chernenko et al. (2004) and Pavlidis et al. (2017), I obtain regularly spaced futures prices by linear interpolation of
spot prices and near-term contracts.
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(a) S&P 500 Real Price (b) QAR model coefficient estimates

Figure 6: The S&P 500 real price index (Pt) from January 1998 to June 2023 (left). Point estimates

of the largest autoregressive root at different quantiles for Pt, Pt/Dt and P f
t (right).

estimates is, however, substantially narrower compared to Bitcoin. The minimum estimate is close

to 0.9 at τ = 0.05 and the maximum is slightly above 1.05 at τ = 0.95. This finding reflects the

highly speculative nature of the market for cryptocurrencies. It is also interesting to note that, like

for Bitcoin, the P f
t series displays a higher degree of asymmetry (as measured by the difference in

the degree of persistence near the extremes) compared to Pt. While, a comparison between Pt and

Pt/Dt provides mixed results. Specifically, the α1 estimates for Pt/Dt always lie below those for

Pt so that absolute deviations from unity are larger for the former series at low but not at high

quantiles.

Table 9: Unit root test statistics for S&P 500

q Un(0.5) Un(0.8) Un(0.85) Un(0.9) Un(0.95) QKSα ADF SADF GSADF

P 1 -0.269 7.439⋆ 11.570⋆ 12.031⋆ 15.205⋆ 15.205⋆ -0.120 2.155⋆ 2.397⋆

P/D 1 -9.742 0.715 8.386⋆ 8.174⋆ 5.121⋆ 11.925⋆ -1.971 0.571 2.701⋆

P f 2 -4.322 4.192⋆ 6.126⋆ 15.975⋆ 20.362⋆ 21.308⋆ -1.127 1.006 3.294⋆

Notes: ⋆ denotes significance at the five percent level, q is the lag length selected by AIC.

Table 9 presents the unit root test statistics for Pt, Pt/Dt, and P f
t . The GSADF, QKSα, and

Un(τ) tests with τ = {0.85, 0.9, 0.95} are consistent, indicating rejection of the null hypothesis

for all series at the five percent level. On the contrary, the ADF and Un(0.5) statistics are not

significant for any of the series, and the SADF statistic is only significant for Pt. Thus, in line with

previous studies, the statistical evidence in this paper favours the presence of speculative dynamics

in the S&P 500 (Homm and Breitung, 2012; Phillips et al., 2015a).

The U.S. Housing Market. The boom-bust episode in international housing markets from the

late 1990s to the late 2000s generated a vast interest in the dynamics of house prices. A view

shared by many academics and policy makers is that this episode was associated with house prices
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departing from their fundamental values, distorting investment decisions and leading to the 2008-

09 global recession. Since then, many studies have provided evidence supporting this conjecture

(Engsted et al., 2016; Greenaway-McGrevy and Phillips, 2016; Pavlidis et al., 2016; Shi, 2017; Shi

et al., 2016; Shi and Phillips, 2023).

(a) U.S. Real House Prices (b) QAR coefficient estimates

Figure 7: The U.S. real house price index (Pt) from 1983:Q1 to 2023:Q2 (left). Point estimates of
the largest autoregressive root at different quantiles for Pt and Pt/Rt (right).

As a final application, I re-examine the integration properties of U.S. real house prices, Pt, and

the U.S. house-price-to-rent ratio, Pt/Rt, using the quantile autoregressive model. The underlying

series are downloaded from the OECD database and span the period from the 1st quarter of

1983 to the 2nd quarter of 2023. Regarding derivative prices, the Chicago Mercantile Exchange

began trading housing futures contracts in May 2006 to allow investors to hedge against real estate

risks. Unfortunately, since their launch, these securities have not attracted substantial attention

by investors. Because the absence of sufficient liquidity can have a detrimental effect on the price

discovery process, I omit futures prices from the analysis.

Figure 7a shows the evolution of the real house price index over time. Aside from the episode

of the late 1990s/2000s, the U.S. housing market experienced a shorter and less intense boom-bust

episode in the late 1980s/early 1990s; and displayed an impressive price surge after the Covid-19

recession. The latter rally in house prices raised issues of affordability and concerns about another

U.S. housing bubble brewing, with the Federal Reserve Chairman Jerome Powell explicitly referring

to a “housing bubble” and “housing prices going up at very unsustainable levels and overheating”.11

Quantile autoregressive coefficient estimates and unit root test statistics are reported in Figure

7b and Table 10, respectively. Like for Bitcoin and S&P 500, there is a positive relationship between

α̂1 and τ . For house prices, the value of α̂1 starts close to 0.98 at τ = 0.05 and marginally exceeds

11Speech at the Brookings Institute Hutchins Center on Fiscal and Monetary Policy on 30th of November, 2022
https://www.brookings.edu/events/federal-reserve-chair-jerome-powell-the-economic-outlook-and-the

-labor-market/
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Table 10: Unit root test statistics for U.S. house prices

q Un(0.5) Un(0.8) Un(0.85) Un(0.9) Un(0.95) QKSα ADF SADF GSADF

P 4 -0.732 2.265⋆ 2.459⋆ 2.841⋆ 3.618⋆ 3.726⋆ 0.123⋆ 9.903⋆ 17.102⋆

P/R 4 -1.011 2.966⋆ 4.161⋆ 5.975⋆ 6.835⋆ 7.553⋆ -0.809 10.755⋆ 19.662⋆

Notes: ⋆ denotes significance at the five percent level, q is the lag length selected by AIC.

1.02 at τ = 0.95. While, for the house-price-to-rent ratio, the coefficient curve is steeper, with

a value of α̂1 slightly above 0.94 at τ = 0.05 and a value close to 1.04 at τ = 0.95. Turning to

the unit root test results, all statistics exceed their five percent critical value with the exception of

Un(0.5), that fails to reject the null for both series, and the ADF, that only rejects the null for Pt.

Thus, both recursive unit root tests and tests based on unit root quantile autoregressions detect

explosive dynamics in the U.S. housing market.

Taken together, the findings for the Bitcoin, U.S. equity and U.S. housing markets contribute to

a wider discussion and a long-standing debate on the existence of speculative bubbles.12 While many

prominent academics, investors, and policy makers believe that speculative bubbles are an inherent

characteristic of asset markets, others hold a diametrically opposed view (Barlevy et al., 2018;

Shiller, 2014). Most notably among the latter, Eugene F. Fama dismisses the notion that bubbles

constitute a main feature of asset price movements and questions the evidence provided in the

literature. Specifically, he argues that:13 “For bubbles, I want a systematic way of identifying them

. . . Statistically, people have not come up with ways of identifying bubbles.” The empirical approach

adopted in this paper to account for fundamental factors provides a systematic attempt to address

this criticism. Furthermore, it provides new insights on the properties of asset prices by showing

that, consistent with speculative bubbles, they exhibit heterogeneous dynamics across conditional

quantiles. Before concluding, some remarks are in order regarding date-stamping periods of market

exuberance.

8 Remarks on Date-Stamping Episodes of Exuberance

The increased popularity of econometric tests for bubble detection has been accompanied by a

growing interest in identifying periods of explosive behaviour. An attractive feature of recent least-

squares procedures, such as the GSADF, is that their recursive design inherently enables date-

stamping. As a result, these procedures can consistently estimate bubble origination and collapse

dates under various scenarios and work well in practice (Phillips et al., 2015b). From an empiri-

cal perspective, recursive procedures shed light on the functioning of asset markets by providing

information on the timing of regime shifts and can be used to enhance market surveillance.14

12This debate concerns both rational and irrational bubbles.
13Chicago Booth Review, June 30, 2016, http://review.chicagobooth.edu/economics/2016/video/are-marke

ts-efficient
14For instance, following the 2007-09 financial crisis, the Federal Reserve Bank of Dallas has been providing quarterly

releases of exuberance indicators for international housing markets. These indicators are estimated using the date-
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Analogous to recursive least-squares methodologies, one might consider a flexible-window unit

root quantile approach. However, such an approach would not yield a consistent dating strategy.

As shown in Sections 4 and 5, quantile methods have the distinctive advantage of detecting bubbles

even when market crashes occur within the sample period. This is so because bubble expansions

drive the value of the autoregressive coefficient above unity at high quantiles, while bubble collapses

drive it below unity at low quantiles. Therefore, given a substantial bubble expansion, a subsequent

market crash will not cause the autoregressive coefficient to fall below unity at upper quantiles.

Consequently, recursive quantile unit root tests will (correctly) continue to reject the null hypothesis

of no bubbles after the collapse date. Using the same rationale, recursive quantile methods will

also not identify subsequent bubble episodes.

A potential solution for researchers that are specifically interested in identifying periods of

exuberance is to adopt a two-stage procedure that exploits both the efficacy of quantile methods

in detecting bubbles and the effectiveness of recursive least-squares procedures in date-stamping.

In particular, one could test for overall exuberance using a full-sample quantile unit root test

and, conditional on rejection of the null hypothesis, utilize an off-the-shelf recursive least-squares

algorithm to date the exact periods of explosive dynamics (see, e.g., Harvey et al., 2020a; Shi and

Phillips, 2023).

9 Conclusion

This paper introduced a novel approach for testing for periodically collapsing bubbles using unit

root quantile autoregressions. The underlying idea is that, within a conditional quantile regres-

sion framework, bubble expansions drive the largest autoregressive root of asset price series above

unity at upper quantiles. From the different quantile autoregression unit root tests proposed in the

literature, I employed the coefficient-based Un and a modified version of the Kolmogorov-Smirnov

QKSα of Koenker and Xiao (2004) to examine this hypothesis. Monte Carlo experiments demon-

strated that the two tests have good finite-sample size and power properties, and can outperform

the popular recursive least-squares SADF and GSADF.

An application to Bitcoin, the S&P 500 index, and the U.S. housing market, showed that the

null of a unit root can be rejected at upper quantiles for all markets. Furthermore, it revealed

significant heterogeneity in persistence across quantiles, closely resembling the asymmetric dynam-

ics implied by periodically collapsing bubbles. This finding is robust to accounting for economic

fundamentals by using price-to-fundamental ratios and/or an indirect approach based on futures

prices. Overall, the Monte Carlo experiments and the empirical applications suggest that unit root

quantile autoregressions can provide new insights into the speculative dynamics characterizing asset

markets and, thus, are a useful addition to the bubble detection toolkit of applied researchers.

Future research could extend the analysis to a multivariate setting. One promising avenue

is to examine the relationship between asset prices and fundamentals under speculative bubbles

stamping algorithms of Phillips et al. (2011) and Phillips et al. (2015a,b). See https://www.dallasfed.org/resear

ch/international/houseprice#tab2 and Pavlidis et al. (2016).
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at different quantiles. Analogous to the least-squares PSY-IVX approach suggested by Shi and

Phillips (2023), which allows for different degrees of persistence in fundamentals, one could adopt

the IVX quantile regression method of Lee (2016). Another direction is to utilize spot and futures

prices or survey data and employ Fama-type IVX quantile regressions to test the null hypothesis

of no bubbles similar to Pavlidis et al. (2017, 2018). More broadly, a final direction for future work

could involve developing quantile based methodologies for testing Granger causality. The work by

Shi et al. (2018) and Shi et al. (2020) introduces innovative least-squares techniques that allow for

episodic Granger causality between time series. Adopting a quantile approach could offer greater

robustness to distributional assumptions and uncover new causal relationships.
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