
Fully-Distributed Byzantine Agreement in Sparse Networks

John Augustine * Fabien Dufoulon † Gopal Pandurangan ‡

Byzantine agreement is a fundamental problem in fault-tolerant distributed networks that has been stud-
ied intensively for the last four decades. Most of these works designed protocols for complete networks. A
key goal in Byzantine protocols is to tolerate as many Byzantine nodes as possible — up to O(n) Byzantine
nodes (n is the total network size).

The work of Dwork, Peleg, Pippenger, and Upfal [STOC 1986, SICOMP 1988] was the first to address
the Byzantine agreement problem in sparse, bounded degree networks and presented a protocol that achieved
almost-everywhere agreement among honest nodes. In such networks, all known Byzantine agreement pro-
tocols (e.g., Dwork, Peleg, Pippenger, and Upfal, STOC 1986; Upfal, PODC 1992; King, Saia, Sanwalani,
and Vee, FOCS 2006) that tolerated a large number of Byzantine nodes had a major drawback that they were
not fully-distributed — in those protocols, nodes are required to have initial knowledge of the entire network
topology. This drawback makes such protocols inapplicable to real-world communication networks such as
peer-to-peer (P2P) networks, which are typically sparse and bounded degree and where nodes initially have
only local knowledge of themselves and their neighbors. Indeed, a fundamental open question raised by the
above works is whether one can design Byzantine protocols that tolerate a large number of Byzantine nodes
in sparse networks that work with only local knowledge, i.e., fully-distributed protocols. The work of Au-
gustine, Pandurangan, and Robinson [PODC 2013] presented the first fully-distributed Byzantine agreement
protocol that works in sparse networks, but it tolerated only up to O(

√
n/polylog n) Byzantine nodes.

We present fully-distributed Byzantine agreement protocols for sparse, bounded degree networks that
tolerate significantly more Byzantine nodes, answering the earlier open question. Our protocols work under
the powerful full information model where the Byzantine nodes can behave arbitrarily and maliciously,
have knowledge about the entire state of the network at every round, including random choices made by
the nodes up to (and including) the current round, have unlimited computational power, and may collude
among themselves. We first present a protocol that tolerates up to o(n

logn) Byzantine nodes and with high
probability1, solves almost-everywhere agreement where all except o(n) honest nodes reach agreement. The
protocol runs in Õ(n2) rounds. We then present a faster protocol that runs in nearly linear (i.e., Õ(n)) rounds
and tolerates up to o(n

log2 n
) Byzantine nodes. Both protocols are communication-efficient in the sense that

honest nodes send only polylog n bits per edge per round.

*Department of Computer Science and Engineering, Indian Institute of Technology at Madras, Chennai, Tamil Nadu, 600036,
India. Email: augustine@iitm.ac.in. Supported in part by an Extra-Mural Research Grant (file number EMR/2016/003016)
funded by the Science and Engineering Research Board, Department of Science and Technology, Government of India.

†School of Computing and Communications, Lancaster University, Lancaster, UK. Email:
f.dufoulon@lancaster.ac.uk.

‡Department of Computer Science, University of Houston, Houston, TX 77204, USA. Email: gopal@cs.uh.edu. Supported
in part by ARO Grant W911NF-231-0191 and NSF grant CCF-2402837.

1Throughout, “with high probability (whp)” means with probability at least 1− 1
nc , where c ≥ 1 is a fixed constant.

mailto: augustine@iitm.ac.in
mailto: f.dufoulon@lancaster.ac.uk
mailto: gopal@cs.uh.edu

1 Introduction

Distributed computation in the presence of faulty and malicious nodes (also called Byzantine nodes) is a
central problem in distributed network algorithms. The Byzantine agreement problem can be stated as
follows.

Definition 1 (Byzantine Agreement (BA)). Let P be a protocol on a distributed network of n nodes in which
each node v starts with an input bit value bv. A Byzantine adversary controls up to t nodes, which are called
Byzantine (or faulty), which can deviate arbitrarily from P . Protocol P solves Byzantine agreement if each
(honest) node v running P terminates and outputs a value ov at the end of P such that:
Agreement: For any two honest nodes u and v, ou = ov.
Validity: If the input value for all nodes is b, the output value for all honest nodes should be b.

Much of the work in distributed Byzantine protocols has focused on complete networks, starting from the
classical work of Pease, Shostak and Lamport [38] on Byzantine agreement in the early 1980s and followed
by several others in the last four decades, see e.g., [40, 8, 20, 23, 10, 29, 28, 2]. However, as pointed
out over 35 years ago in a seminal paper by Dwork, Peleg, Pippenger, and Upfal [19], such protocols on
complete networks do not directly apply to real-world networks, which are typically sparse and of bounded
degree.2 For example, the Bitcoin Peer-to-Peer (P2P) network allows eight outgoing connections and up to
125 incoming connections [34].

The Dwork et al. [19] paper was the first to study the fundamental Byzantine agreement problem in
sparse, bounded degree networks and presented the first Byzantine agreement protocol that achieved almost-
everywhere agreement among honest nodes, where agreement is guaranteed on most (but not all) honest
nodes. More formally, in the Almost-Everywhere (binary) Byzantine Agreement (AEBA) problem, each
node starts with binary input values (as in the Byzantine agreement defined above) and must output binary
output values satisfying: (1) almost-everywhere agreement, that is, all honest nodes except O(t) of them
output the same value3, and (2) validity, that is, if all honest nodes have the same input value, then all
honest nodes except O(t) of them output that value. In bounded degree networks, since an adversary can
always isolate some number of honest nodes, almost-everywhere agreement is the best one can hope for.
Furthermore, it must be pointed out that there is a somewhat stringent condition that the network has to
have Ω(t) connectivity to reach everywhere agreement under t Byzantine nodes [16, 24]. Thus, for sparse
networks, one has to relax the notion of everywhere agreement to almost-everywhere agreement.

The work of Dwork et al. [19] showed how one can achieve almost-everywhere Byzantine agreement
in a d-regular expander graph (d is a constant). Their protocol can tolerate up to O(n1−ε) Byzantine nodes
(throughout n denotes the total number of nodes in the network), for some small constant ε (that depends
on d) and achieves agreement among all but O(n1−ε) honest nodes. They also show that by superimposing
a butterfly network with an expander graph, they can tolerate up to O(n

logn) Byzantine nodes and achieve
agreement among all but O(n

logn) honest nodes. This work was improved in subsequent papers [13, 12, 41].
In particular, Upfal [41] presented an almost-everywhere Byzantine agreement protocol that can tolerate up
to linear, i.e., ϵn (for a sufficiently small ϵ > 0), Byzantine nodes in a constant-degree expander network.

A major drawback of the above protocols is that they require initial knowledge of the global topology4,
since at the start, nodes need to have this information “hardcoded.” Another drawback of the above results

2In this work, by “bounded degree”, we mean that the maximum degree is bounded by some fixed constant. However, our
protocol and results can be easily extended to apply if the degree is bounded by a slow-growing function of n, say, polylog (n),
where n is the number of nodes in the network.

3The protocol in this paper allows slightly more honest nodes to disagree: it achieves agreement among all honest nodes except
o(n) of them for t = o(n/ logn) or t = o(n/ log2 n) Byzantine nodes.

4Also in some cases, specific network designs such as butterfly are assumed which are infeasible in large-scale decentralized
networks.

1

[19, 41, 12, 13] is that they require each node to use Ω(n2) number of bits in communication. Thus, in a
sparse network and in the CONGEST model of communication, where only polylog (n) bits of communi-
cation are allowed per edge per round [39], these protocols take Ω̃(n2) time. An additional drawback of
Upfal’s protocol [41] is that the local computation required by each processor is exponential.

The work of King, Saia, Sanwalani, and Vee [30] was the first to study scalable algorithms for Byzan-
tine almost-everywhere agreement and leader election in sparse networks. By “scalable”, it is meant that
the total number of bits that any honest node communicates and processes throughout the protocol is at
most polylog(n). This protocol tolerated up to (13 − ϵ)n Byzantine nodes (where ϵ > 0 is any constant)
and achieved agreement among 1 − O(1/ lnn) fraction of honest nodes. This work also requires that the
nodes have global topological knowledge, i.e., hardcoded information on the network topology to begin
with. Thus, the protocol of Dwork et al. and several subsequent protocols including that of King et al. had
the major drawback that they are not fully-distributed in the sense that nodes are required to have initial
knowledge of the global network topology. This drawback makes such protocols not applicable to real-world
communication networks such as Peer-to-Peer (P2P) networks, which are typically sparse and dynamic, with
nodes having only local initial knowledge of only themselves and their neighbors. A fundamental question
left open by the works of [30, 41, 19] is whether one can design Byzantine protocols in sparse networks
that work with only local knowledge, i.e., fully-distributed protocols. In fact, Dwork et al. [19] pose the
following open question in their paper (a similar question is also posed in King et al. [30]):

“The algorithms presented in this work (i.e., [19]) assume that all the processors know
the topology of the communication network and the communication schemes used by all
other processors. Is this requirement essential for achieving almost-everywhere agree-
ment?”

The work of Augustine, Pandurangan, and Robinson [4] gave the first-known fully-distributed Byzantine
agreement protocol that worked in sparse networks.5 However, a drawback of this protocol is that it could
tolerate only

√
n/ polylog n Byzantine nodes.

In this paper, we present fully-distributed Byzantine agreement protocols for sparse bounded-degree
networks that tolerate significantly more Byzantine nodes, up to o(n

logn) Byzantine nodes.

1.1 Model

Network Model. We assume an arbitrary d-regular expander graph G, where d is a constant.6 Expander
graphs [26] have conductance at least a constant (independent of n, the network size). We note that this is
the same graph model used in the work of Dwork et al. [19] discussed earlier.7 Note that the above graph
model is quite general in the sense that we only assume that the topology is an expander graph; no other
special properties are assumed. Indeed, expander graphs have been used extensively as candidates to solve
the Byzantine agreement and related problems in sparse graphs in prior works [19, 27, 28, 29, 41]; the high
expansion is crucial in these results, in particular, for tolerating a large number of Byzantine nodes. Expander
graphs have also been used extensively to model P2P networks8 (see e.g., [32, 37, 21, 14, 33, 7, 4, 5, 3]).

5In fact, this protocol could also handle churn and work in dynamic networks.
6Our protocol can be easily extended to work with non-constant d (say, polylogn) as well. The regularity assumption can also

be relaxed as long as the degrees are within a small (say, constant or polylogn) factor of each other.
7Dwork et al. [19] actually assume a d-regular random graph which is an expander with high probability. Furthermore, since

their result holds with high probability on a random d-regular graph, they claim that their result holds for “almost all” d-regular
graphs. We use the same model in this paper, and hence, the same remark applies to our result as well, although we tolerate a higher
number of Byzantine nodes.

8In particular, the real-world Bitcoin P2P network, constructed by allowing each node to choose eight random (outgoing)
connections ([34]) is likely an expander network if the connections are chosen (reasonably) uniformly at random [36].

2

Local Knowledge. An important assumption in sparse networks is that nodes at the beginning have only
local knowledge, i.e., they have knowledge of only themselves and their neighbors in G. In particular,
they do not know the global topology or the identities of other nodes (except those of their neighbors)
in the network. Thus, we seek fully-distributed protocols where nodes start with only local knowledge.
However, as common in distributed computing literature (see e.g., [39, 31]), we do assume that nodes have a
knowledge of global parameters such as the network size n (or a good, say constant-factor, approximation of
it) as well as the conductance of the expander which is a constant (a constant lower bound of the conductance
is enough — this gives an upper bound on the mixing time which is O(log n) that is used in the protocol.)

Full Information Model. We assume the powerful full-information model (e.g., see [10, 9, 22]) that has
been studied extensively. In this model, the Byzantine nodes (controlled by an adversary) can behave arbi-
trarily and maliciously and have knowledge about the entire state of the network at every round, including
random choices made by all the nodes up to and including the current round (this is also called rushing
adversary), have unlimited computational power, and may collude among themselves (hence, cryptographic
techniques are not applicable in this setting). We assume a static Byzantine adversary where the nodes that
are corrupted are chosen before the start of the protocol.

Communication Model. Communication is synchronous and occurs via message passing, i.e., communi-
cation proceeds in discrete rounds by exchanging messages on the edges of G, i.e., each node (including
Byzantine nodes) can exchange messages only with its neighbors in G. By our protocol design, honest nodes
will only send O(polylog n) bits per edge per round. Note that Byzantine nodes don’t have any such limit
and can send as many bits as they want. (Our protocol is designed in such a way that crucially handles this
extra power given to Byzantine nodes, without limiting in any way the bandwidth capacity of the edges.) As
is standard in Byzantine algorithms (see, e.g., Lamport et al. [38]), we assume that the receiver of a message
across an edge in G knows the identity of the sender, i.e., if u sends a message to v across edge (u, v), then
v knows the identity of u; also the message sent across an edge is delivered correctly and in order.

1.2 Our Contributions

Our main contributions are fully-distributed Byzantine agreement protocols for sparse, bounded-degree net-
works that tolerate a large number of Byzantine nodes in the full information model. We first present a
protocol that tolerates up to o(n

logn) Byzantine nodes (where n is the total number of nodes). The proto-
col, with high probability9, solves almost-everywhere agreement where all except o(n) honest nodes reach
agreement. The protocol requires honest nodes to send only polylog n bits per edge per round. The protocol
takes Õ(n2) rounds. We then present a faster (somewhat more complicated) protocol that runs in nearly
linear (i.e., Õ(n)) rounds and tolerates slightly less Byzantine nodes — up to o(n

log2 n
) Byzantine nodes.

Our protocols are a significant improvement over previous Byzantine protocols in sparse (expander)
networks [19, 41, 30] in that it requires only local (initial) knowledge and answers the open question raised
in Dwork et al. [19] of whether such a protocol is possible. Our first protocol’s run time is comparable to
the protocols of Dwork et al. and Upfal [41] — as these also take Ω̃(n2) rounds under polylog n bandwidth
constraint. Our second protocol’s run time of Õ(n) rounds is significantly faster while tolerating up to
o(n

log2 n
) Byzantine nodes. We note that the Dwork et al. protocol tolerates O(n1−ε) Byzantine nodes and

the protocol of Upfal tolerates εn nodes (cf. Section 1).
The protocol of King et al. [30] is much faster, taking O(polylog n) rounds10 and tolerates up to (13−ϵ)n

Byzantine nodes, but, as pointed out earlier, this protocol needs initial knowledge of the global expander
topology and, hence is not fully-distributed, unlike our protocol. As mentioned in 1, being fully-distributed

9Throughout, “with high probability (whp)” means with probability at least 1− 1
nc , where c ≥ 1 is a fixed constant.

10Although the exact power of logn is not explicitly specified in the paper, it is a somewhat large constant.

3

is crucial for implementation in real-world networks such as P2P networks, which are sparse and bounded-
degree with nodes having only local initial knowledge of themselves and their neighbors.

Our protocols improve upon the fault-tolerance of the Byzantine agreement protocol of Augustine
et al.[4] that, while being fully-distributed and fast (running in O(log3 n) rounds), could tolerate only√
n/ polylog n Byzantine nodes. Designing a fully-distributed agreement protocol that tolerates signifi-

cantly more Byzantine nodes (say, up to O(n/ polylog n)) while keeping an extremely fast runtime (say, in
polylog n rounds) is an important open problem (cf. Section 6).

Our tools and techniques (discussed in the next section) are likely to be of independent interest and
can be useful for designing fully-distributed Byzantine protocols for other important problems, such as
leader and committee elections, in the more challenging setting of sparse networks. In particular, we define
and present two primitives, namely Almost-Everywhere Reliable Information Dissemination (AERID) (cf.
Section 3) and Eventual Almost-Everywhere Common Coin (EAECC) (cf. Section 4). The former allows
most honest nodes to correctly disseminate information to most other honest nodes, even under the presence
of a large number of Byzantine nodes, in a fully-distributed fashion. Our AERID protocols both take Õ(n)
rounds, which is (essentially) optimal in a bounded degree network. We then show how to use AERID
to design a protocol to implement an eventual almost everywhere common coin (EAECC), allowing most
honest nodes to agree on a random common coin value eventually. We give two protocols for EAECC, one
for each AERID protocol. The first EAECC protocol takes Õ(n2) rounds under the presence of o(n/ log n)
Byzantine nodes, and the second takes Õ(n) rounds under the presence of o(n/ log2 n) Byzantine nodes.

1.3 Prior Work and Challenges

Prior Work. At a high level, we take a different approach to designing Byzantine protocols compared to
previous works, including Dwork et al. [19], Upfal [41], and King et al. [30]. Unlike these prior protocols,
our protocol is fully-distributed (i.e., works with only local initial knowledge). To see the contrast, we briefly
discuss the protocol scheme of Dwork et al. for the Byzantine agreement. (A similar scheme is also used
in [41, 12, 13]). The main idea of this scheme is to simulate a Byzantine agreement protocol designed for a
complete network in a sparse network G. This simulation is done by specifying a transmission scheme that
ensures reliable communication between most honest processors; this communication is accomplished by
sending a message over multiple paths in G between two nodes (the paths are different for different pairs of
nodes). For the transmission scheme to work, each (or most) honest node(s) should know their respective
communication paths to other nodes. This requires that all honest nodes know the topology of G.

King et al. [30] design a (specific) expander network with polylogarithmic degree whose topology needs
to be known by all honest nodes for efficient and reliable communication. They raise the question of whether
one can design a scalable and robust protocol that works correctly on any sparse network with sufficiently
good expansion. Our result gives such protocols that work in any sparse expander graph.

Augustine et al. [4] presented the first-known fully-distributed Byzantine agreement protocol for a sparse
constant-degree (regular) expander network. This protocol also worked under a dynamic churn setting.
The protocol is based on implementing the following random sampling algorithm which is first stated for
a complete network. In each round, each node samples two random nodes uniformly at random in the
network and takes the majority of its value and the two sampled values. It can be shown [4, 15] that this
protocol converges to a common value in O(log n) rounds provided that the number of Byzantine nodes is
O(
√
n). The protocol’s advantage is that the total number of random samples requested by any honest node

is O(log n). The novelty of the protocol of Augustine et al. is to implement the above randomized sampling
algorithm efficiently in a sparse constant degree expander. The main technical tool used is random walks,
which is also used in the current paper (though there are significant differences on how and why they are
used, as discussed below). They present a result called the Byzantine Sampling Theorem that characterizes
random walks on expander networks in the presence of a large number (up to O(

√
n/polylog n) Byzantine

4

nodes). It shows that despite the presence of a large number of Byzantine nodes, most random mix rapidly
and reach the uniform stationary distribution. This allows most honest nodes to sample two honest nodes
almost uniformly at random. Using this result, one can implement the majority agreement protocol described
earlier in a sparse network and show that it converges in polylog n rounds. It is crucial to note that the
majority agreement fails if the number of Byzantine nodes is somewhat larger, say, n1/2+ϵ for any small
constant ϵ. In this case, the agreement protocol can take exponential (in n) number of rounds. Thus,
tolerating a much larger number of Byzantine nodes via a fully-distributed protocol in reasonable (say,
polynomial number of rounds) remained an open problem.

The Advantage of Random Walks. Before we give a high-level idea of our approach, we give an intuition
as to why random walks work well in a sparse network (unlike broadcast, for example). Random walks are
lightweight (and local) and allow us to bound the number of messages sent by Byzantine nodes. Byzantine
nodes need not follow the random walk protocol and can send a lot of messages, but once these messages
reach honest nodes, their influence becomes limited. We give a protocol called the Byzantine Random
Walk Protocol (cf. Algorithm 1) and prove a key result called “The Byzantine Random Walk Theorem” (cf.
Theorem 2) that shows how the protocol can implement random walks in bounded-degree networks with a
large number of Byzantine nodes. This theorem shows precisely how the Byzantine Random Walk Protocol
controls the messages sent by Byzantine nodes and how their influence can be limited for most random
walks initiated by most honest nodes. Though the Byzantine Random Walk Theorem (Theorem 2) of the
current paper is similar in spirit to the Byzantine Sampling Theorem of [1], it is stronger in the sense that it
explicitly specifies the subgraph of G, called the core graph which is itself an expander and establishes the
mixing of (most of) the random walks on this core graph. A big advantage of the Byzantine Random Walk
Protocol is that it can be used to achieve Almost-Everywhere Reliable Information Dissemination (AERID)
(see Section 3) even under a large number of Byzantine nodes. This guarantees that most honest nodes will
be able to broadcast the data item they possess correctly to most other honest nodes in near-linear, i.e., Õ(n),
rounds, which is optimal in a constant degree network.11

We note that random walk techniques inherently cannot tolerate Ω(n/ log n) Byzantine nodes and churn,
since the mixing time needed in a sparse expander network is at least Θ(log n). If there is a linear number
of Byzantine nodes, then most random walks will go through a Byzantine node, and the Byzantine Random
Walk Theorem does not work. We conjecture that no fully-distributed algorithm may tolerate ω(n/ log n)
Byzantine nodes and churn in a sparse dynamic network. Our first protocol reaches close to this limit, i.e.,
it can tolerate up to o(n/ log n) Byzantine nodes.

Almost-Everywhere Relaxations. A basic difficulty that we have to overcome when the communication
graph is a sparse (d-regular) expander, and there exists a Byzantine adversary controlling some t ≥ d
nodes, is that the Byzantine adversary can disconnect up to O(t/d) honest nodes. As a result, many basic
distributed primitives (such as leader election, broadcast, spanning tree construction, etc.) are impossible to
solve in their traditional formulations. Instead, we aim for almost-everywhere relaxations of these problems,
which build on the following fact. For the Byzantine adversary, controlling up to O(n/ polylog n) nodes,
the adversary can partition the honest nodes into a large “core” subset of n− o(n) (honest) nodes and many
possibly disconnected small subgraphs of up to o(n) nodes each. Because of the expander nature of the
communication graph, it can be shown that there exists such a core subset of size n − o(n) nodes, which
is a giant component, but also, most importantly, it itself is an expander. As a result, when we adapt the
traditional formulation to an almost-everywhere formulation, we mean solving the traditional problem only
on the large core of honest nodes. The Byzantine Random Walk Theorem also exploits this to show that the
random walks mix well in a large core subset.

11 Ω(n) rounds are needed for AERID, since each node from a set of n− o(n) nodes has to receive information from n− o(n)
nodes, and since the degree is bounded, any honest node can send/receive only polylogn bits of information in a round.

5

1.4 A High-level Overview of our Approach

We show that in sparse bounded-degree networks, Almost-Everywhere Byzantine Agreement (AEBA) can
be solved by fully-distributed protocols in the full information model. We present two protocols, both of
which follow the same approach. The first tolerates up to o(n/ log n) Byzantine nodes and runs in Õ(n2)
rounds, while the second tolerates slightly less number of Byzantine nodes — o(n/ log2 n) — but runs faster
in Õ(n) rounds.
Rabin’s Scheme. The high-level idea of our approach is conceptually simple and is based on the well-
known randomized agreement scheme of Rabin [40] that has been used to obtain efficient protocols (running
in polylog n rounds) in complete networks (see e.g., [20, 10, 23]). However, it is non-trivial to implement
this scheme in a sparse (bounded-degree) network, which is what this work accomplishes. The basic idea of
this scheme, as described for a complete network, is as follows. For convenience, we assume that the number
of Byzantine nodes t is o(n) (although in a complete network, it works for up to n/3 Byzantine nodes in
the full information model). Each node v holds a binary decision variable bv ∈ {0, 1}, whose initial value
is given as input. The protocol operates in phases. In each phase, node v checks whether a strong majority
(say, at least a 0.9 fraction) exists, i.e., whether almost all nodes have the same value in {0, 1}. (This is done
by having all nodes broadcast their bv values.) If such a value exists, then v changes its decision variable
to that value. (Note that there can be only one such value due to the strong majority.) Otherwise, it sets
its value to the value given by a global (shared) common coin. (A common coin takes both 1 and 0 with
constant probability.) It can be shown that this protocol converges in O(log n) phases with high probability.
The main challenge in Rabin’s protocol is implementing the global common coin efficiently. Rabin’s paper
assumed that the common coin is given to all nodes by a trusted third party. The works of [10, 23] showed
how a common coin can be generated efficiently (in O(log n) rounds) by the honest nodes themselves in a
complete network in the full-information model.
Implementing Rabin’s Scheme in a Sparse Network. There are two main challenges in efficiently imple-
menting Rabin’s scheme in a sparse network in a fully-distributed manner. First, how do nodes compute
whether a strong majority exists in a sparse network? Indeed, unlike in a complete network, a node’s neigh-
bors are only a small fraction of the network. Second, how does one implement a global common coin
(without Byzantine agreement) in a sparse network in the full information model? (Note that cryptographic
tools cannot be used in this setting.)

We detect a strong majority (say, at least a 0.9 fraction) by doing random sampling. Each honest node
samples polylog n random nodes by performing random walks. The random walks are implemented by
following the Byzantine random walk protocol. The protocol guarantees that most honest random walks
mix in the core subgraph C and sample close to the stationary distribution of C. Since the core is of size
n − o(n), there is super majority among the core subset which will be detected by most (n − o(n)) of the
honest nodes in the core. More importantly, most honest nodes in core will never disagree on the super
majority. It is possible that some may detect the super majority, but others may not. Then, the latter honest
nodes will end up using the common coin flip. Rabin’s protocol ensures that after O(log n) common coin
flips, all honest nodes will converge to AEBA.
Almost-Everywhere Reliable Information Dissemination (AERID). Implementing a global common
coin is more involved. It uses a key primitive called Almost-Everywhere Reliable Information Dissemi-
nation (cf. Section 3). We show that AERID can be done in Õ(n) rounds, which is essentially optimal (cf.
Footnote 11). As mentioned earlier, AERID is implemented by using the Byzantine Random Walk Proto-
col (cf. Algorithm 1). The two protocols differ in how the walks are implemented. In the first protocol,
each node initiates Õ(n) random walks (each token contains the source ID and other data from the source
node, say, its bit value). As per the Byzantine Random Walk Protocol, these Õ(n) random walks are sent in
batches (phases) of Θ(log3 n) tokens each; each token walks for Θ(log n) steps in a phase. The Byzantine
Random Walk Protocol ensures that in each phase, almost all the tokens from almost all the nodes reach

6

their destinations despite the actions of the Byzantine nodes. The following intuition helps understand how
the Byzantine nodes’ actions are contained. Consider the core subgraph C of G consisting of only honest
nodes. The core is a giant component of size n − o(n) and is an expander itself. Hence a walk started
in the core mixes fast (in Θ(log n) rounds) if the walk stays in the core. It is easy to show that most of
the walks started in the core nodes walk only in C and thus mix well in the core. What about the tokens
sent by Byzantine nodes? After all, they may not follow the protocol and can send arbitrarily many tokens.
However, the behavior of Byzantine nodes is limited, thanks to the good nodes at the boundary of the core
(i.e., core nodes with Byzantine neighbors) which act as “guards” and effectively control the rate of tokens
sent by Byzantine nodes. Nevertheless, the Byzantine nodes can try to fake the tokens of some good nodes,
but only o(n) of them are affected. Since each phase takes only O(log n) steps, it can be shown (cf. proof
of Theorem 2) that the protocol can tolerate up to o(n/ log n) Byzantine nodes; the high-level intuition is
that the bad tokens can be limited to o(n/ log n) ·O(log n) = o(n).

The second protocol is a bit more complicated and implements AERID in a different way. This protocol
works in Θ(log n) stages. In the first stage, each node initiates Θ(log3+2ε n) tokens for some arbitrarily
small constant ε > 0 (where the token contain the source ID and other data). These tokens do random walks
for Θ(log n) (or core mixing time) steps. In each successive stage, each node that was a destination for
a token from a particular source initiates a new random walk token per received token. Thus, the number
of tokens from each source doubles in each stage. By a careful load balancing argument, it can be shown
that at the end of each stage the tokens from each source node are distributed almost uniformly at random
among the (destination) nodes. This is crucial to bound the effect of Byzantine nodes which can send too
many tokens. We show that in O(log n) stages, most of the honest nodes’ data is disseminated to (almost)
all nodes. And intuitively, since tokens walk O(log n) steps over O(log n) stages, the number of Byzantine
nodes tolerated is o(n/ log2 n). Both protocols implement AERID in Õ(n) rounds, but the advantage of the
second protocol (though it tolerates slightly fewer Byzantine nodes) is that the broadcast time from a single
source node is Õ(1) rounds in contrast to the Õ(n) rounds for the first protocol. This advantage can be used
to implement a common coin much faster than the first, as outlined below.

Eventual Almost-Everywhere Common Coin (EAECC). A main novelty of the protocols lies in the imple-
mentation of a (weak variant of) a common coin in a sparse network with up to (essentially) n/ log n Byzan-
tine nodes. Instead of a common coin, we define and use what is called an Eventual Almost-Everywhere
Common Coin (EAECC). The high-level idea is as follows. Each node, in turn, chooses to generate a ran-
dom coin value (0 or 1 with equal probability) and broadcasts it to the network. The turn is decided by the
rank of the node: an integer chosen uniformly at random in [1, n] by each honest node. The main challenge
in implementing this idea lies in making sure an honest node’s turn (or coin flip) is not corrupted by Byzan-
tine nodes. Indeed, the Byzantine nodes may try to broadcast arbitrary values and confuse a large portion of
the honest nodes about the turn’s random coin value. We handle this in the following way by crucially using
AERID as a preprocessing step.

In both versions of the AERID protocols (cf. Section 3), we use the Byzantine Random Walk Theorem
to prove that when honest nodes start sufficiently many random walks, most of these walks are completely
unaffected by the Byzantine nodes. In both versions, the honest nodes compute these random walks simul-
taneously as a preprocessing step where the paths taken by the tokens are recorded by the nodes. More
precisely, each node records the source ID of the token it receives, the token ID (identifying that token
among all others with the same source ID), the random walk step number (number of steps taken by the
random walk till now) when it receives the token, the incoming edge through which the token arrived and
the forwarding edge of the token (if the current node is not the destination). Thus, effectively, the paths
taken by each token from the source to the destination is recorded by the nodes through which the token
traversed.

These recorded paths are crucially reused to broadcast a common coin value from a particular source

7

(containing the source ID and the random bit). During the broadcast, in each round, only tokens that conform
to the recorded paths from this particular source node for this round are allowed. Honest nodes at the
boundary of the core will enforce the recorded paths and ignore all other messages that do not correspond
to these recorded random walks, which is the key to strongly limiting the negative impact Byzantine nodes
can have on most broadcasts.

The above set up allows us to implement an EAECC. Indeed, recall that Rabin’s protocol succeeds with
high probability after O(log n) random coin flips. But in sparse networks even in the worst case, Byzantine
nodes can target only the common coin flips of the first n/ log n ranked honest nodes. Eventually, there are
enough uncorrupted common coin flips that the honest nodes (almost-everywhere) agree, or in other words,
the protocol converges.

1.5 Additional Related Work

The literature on Byzantine agreement is vast (especially, on complete networks), and we limit ourselves to
those that are most relevant to this work, mainly focusing on sparse networks.

Most prior works on Byzantine protocols on sparse networks assume an underlying expander graph,
where the expansion properties prove crucial in solving fundamental problems such as agreement and leader
election, see, e.g., [19, 41, 30]. The protocol of [30] builds an underlying communication mechanism
where messages can be relayed with only polylog (n) overhead. The issue with all the above protocols,
as mentioned earlier, is that they assume that nodes have global knowledge of the network topology to
begin with. Such an assumption does not work where nodes start with local knowledge of only themselves
and their immediate neighbors, as is common in real-world P2P networks (including those that implement
cryptocurrencies and blockchains) which are bounded degree and sparse.

Berman and Garay [13, 12] improved on the efficiency of Dwork et al [19]. Their main result is an algo-
rithm that achieves consensus in the butterfly network using O(t+lnn ln lnn) one-bit parallel transmission
steps while tolerating t = O(n/ lnn) corrupted processors and having O(t ln t) confused processors (i.e.,
uncorrupted processors that have decided on the incorrect bit). The number of rounds, corrupted processors
that can be tolerated, and confused processors in this result are all asymptotically optimal for the butterfly
network. Ben-Or and Ron designed a bounded degree network and an almost-everywhere agreement al-
gorithm that is fully polynomial and tolerates a linear number of faults with high probability if the faulty
processors are randomly located throughout the network [11]. King et al. [29] describe protocols for Leader
Election and Byzantine Agreement that take polylogarithmic rounds and require each processor to send and
process a polylogarithmic number of bits. These protocols only run on complete networks and do not apply
to sparse networks.

The work of [4] presented a fully-distributed algorithm for Byzantine agreement in the presence of
Byzantine nodes and high adversarial churn. The algorithm could tolerate (only) up to

√
n/ polylog (n)

Byzantine nodes and up to
√
n/ polylog (n) churn per round and took a O(polylog (n)) number of rounds.

The work of [5] used the Byzantine agreement protocol of [4] and designed a fully-distributed algorithm for
Byzantine leader election that could tolerate up to O(n

1
2
−ϵ) Byzantine nodes (for any fixed positive constant

ϵ) and up to
√
n/polylog (n) churn per round and took a polylog (n) number of rounds.

The work of Augustine et al. [1] constructs a Distributed Hash Table (DHT) in a Peer-to-Peer (P2P)
network in the presence of a large number (up to n/ polylog n) of Byzantine nodes. The model used in this
paper assumes a reconfigurable network (where a node can add or drop edges to other nodes whose identifier
it knows). This paper assumes private channels, which is significantly weaker than the full information
model, since it assumes that communications between honest nodes are unknown to Byzantine nodes.

8

2 Byzantine Random Walk Protocol and Theorem

Generating random walks from all nodes, such that the walks mix yet only few ever visit a Byzantine
node (and get corrupted), is a core primitive for fully-distributed Byzantine-tolerant algorithms in sparse
(expander) networks. Such a primitive allows to reliably sample the graph, or to set up communication
between nodes (e.g., for almost-everywhere reliable information dissemination, see Section 3). We present
a protocol for this primitive, the Byzantine random walk protocol, and its properties are captured by the
“Byzantine Random Walk Theorem” (see Theorem 2). The protocol and its analysis could be of independent
interest.

2.1 Definitions and Core

We consider a network graph G = (V,E) with |V | = n and |E| = m, such that at most |B| = o(n/ log n)
nodes are Byzantine. The graph G is assumed to be (1) a regular graph with fixed degree d, and (2) an
expander graph with constant conductance ϕG and mixing time τ = O(log n). Here, the mixing time is
defined as τ = argmint(||Atπ − u||∞ ≤ 1/n3), where A is the adjacency matrix of G, π is any arbitrary
probability distribution over V , and u is the stationary distribution over V . Note that since G is regular, the
stationary distribution u is uniform, otherwise the stationary probability of a node u would be degG(u)/2m
instead, where degG(u) is the degree of u in G. As mentioned in Section 1.1, we assume that nodes have
knowledge of n and the conductance (and hence, the mixing time) of G.

Now, if one considers only the honest nodes of G then it is known that a subset of them induces an
expander subgraph. More concretely, for a d-regular expander G = (V,E) with d a sufficiently large
constant, and at most |B| = o(n) Byzantine nodes, Lemma 3 in [6] states that for any chosen constant
c < 1, there exists a subgraph C in G \ B that is of size n − |B|(1 + 1

ϕG(1−c)) = n − O(|B|) and that
has constant conductance ϕC = cϕG. This expander subgraph of G is called the core of G, and denoted by
C = (VC , EC). Note that the core C consists of only good nodes, and it need not be a regular graph: i.e.,
for any u ∈ VC , 1 ≤ degC(u) ≤ d, where degC(u) is the degree of u restricted to C. Moreover, since C
is an expander, a random walk restricted to C will have mixing time τC = b log n for some suitably large
constant b (depending on ϕC). Note that τC = argmint(||At

Cπ−u||∞ ≤ 1/n3), where AC is the adjacency
matrix of core C, π is any arbitrary probability distribution over VC , and u is the stationary distribution over
C, defined in Lemma 3. To distinguish τ and τC , we refer to τC as the core mixing time.

Lemma 1. Let µ = |B|/|C|. Then, |C|/2 ≤ (1−O(µ))d|C|/2 ≤ |EC | ≤ d|C|/2.

Proof. The core consists of at least |C| − O(|B|) nodes. Since each node is incident to at most d edges
in G, G starts with d|C|/2 edges and at most O(d|B|) edges are removed to get the core. The statement
follows.

The core subgraph C plays a key role in this section. Indeed, we are particularly interested in the random
walks that walk only in this core during our primitive. After all, such walks do not visit any Byzantine nodes,
and are likely to mix (rapidly) within the core. Additionally, the core also exhibits interesting properties in
the subsequent Byzantine agreement protocol. Indeed, this protocol will guarantee (with high probability)
that almost all nodes in the core reach agreement. It is important to note that (honest) nodes themselves do
not know whether they belong to C.

2.2 Byzantine Random Walk Protocol

We next present a distributed protocol to do random walks in a sparse network under the presence of a
large number of Byzantine nodes. Our Byzantine Random Walk protocol is presented in Algorithm 1.

9

The protocol addresses the situation where each (honest) node in the network seeks to initiate a number of
independent random walks, up to a maximum of total random walks per node. (Note that we allow different
nodes to initiate different amounts of random walks to allow for a wider range of applications, in particular
for those in Subsection 3.2.) The protocol operates in phases of 2f = O(log n) rounds each. Each node
generates (up to) cap = a log3 n tokens per phase (for a large enough constant a ≥ 12 c · b2, where c is the
exponent of the whp guarantee and b characterizes the mixing time τC of the core) and these tokens perform
independent random walks on G. Thus, the protocol will require O(total/cap) phases (or more precisely,
⌈total/cap⌉) to complete the process.

Importantly, each honest node locally regulates the rate at which the tokens flow in and out of it. Specifi-
cally, at most cap tokens are allowed to enter/exit the node through each of its incident edges per round. We
employ a FIFO buffer at each incident edge to hold tokens that could not be sent in the current round. As a
result, a token may be held back at multiple buffers during the phase. Nevertheless, we show in Theorem 1
that all the random walks that only walk on the core C (called “good” random walks) will make at least f
random steps (or in other words, can only be held back during f rounds) whp. Then, it follows that if we
choose f to be the mixing time of the core τC = b log n then this will ensure the mixing of those walks
in C. We then show that most random walks initiated by nodes in C will walk only in C (see Lemma 4).
This implies our Byzantine Random Walk Theorem (see Theorem 2), which says that most random walks
initiated in the core C walk only in C and mix rapidly, at which point they reach the stationary distribution
over C.

Algorithm 1 Byzantine Random Walk Protocol for node v

Require:
total ▷ Maximum (total) number of tokens to be initiated at v.
cap = a log3 n (for large enough constant a > 0) ▷ Number of tokens allowed through an edge in one
round.
rwLength = 2f ▷ Length of each phase to ensure good random walks make f steps.
Outboxu for each neighbor u ▷ FIFO token buffers stored at v, one for each neighbor u.

1: numPhases = ⌈total/cap⌉
2: for phaseNum← 1 to numPhases do
3: Create d · cap tokens. Record ID of v as starting vertex.
4: for all tokens w that were created do
5: Pick a neighbor u uniformly and independently at random.
6: Push w into Outboxu.
7: for stepNum← 1 to rwLength do
8: for each neighbor u do
9: Dequeue up to cap tokens from Outboxu (which is a FIFO queue).

10: Record u as the next vertex in the walk taken by each of those tokens.
11: Send each dequeued token to u.
12: Receive up to cap tokens sent by each neighbor and store them in a set M .

▷ Any neighbor that sends > cap tokens is blacklisted and heretofore ignored.
13: for each w in M do
14: Pick a neighbor u uniformly and independently at random.
15: Enqueue w into Outboxu.

Let us begin by establishing the round complexity of Algorithm 1.

Lemma 2. The overall running time of Algorithm 1 is O(f · total/cap) rounds.

10

Proof. The algorithm runs for total/cap phases. As each phase takes 2f rounds, the algorithm takes O(f ·
total/cap) rounds.

Next, we focus on the random walks initiated by all nodes in the core C (defined in Subsection 2.1) and
that walk only on this subgraph. We show that if we start many independent random walks from each node
in G as per Algorithm 1, then the random walks that walk only on C will walk at least f = τC steps (the
core mixing time).

Theorem 1. Let C be the core of G (consisting of honest nodes only). All random walks initiated at the
start of each phase, and that walk only on C, will walk at least f = τC steps (whp) and hence will mix in C.

Proof. Consider a random walk w that walk only in C, or more precisely, that walks on nodes u1, u2, . . . , ui,
. . . , ut during the phase, with u1 being the node that initiated w and ut being the node where it terminated.
When the walk enters each ui, there are at most d · cap random walks that are allowed to enter (from all
incident edges) because ui will discard any excess walks and blacklist any neighbor having sent more than
cap tokens.

Then, w is placed on Outboxui+1 that was chosen randomly by ui. Of course, every other walk (regard-
less of whether it was initiated by an honest node or a Byzantine node) is also placed randomly in one of the
d outboxes. Therefore, even assuming the full set of d · cap walks arrived at ui along with (and including)
w, the number of walks placed into Outboxui+1 is a binomial random variable with parameters d · cap and
1/d, thus having a mean of cap. Importantly, when cap is a log3 n, the probability that the number of walks
placed into Outboxui+1 will exceed a log3 n+ (a/2b) log2 n = (1 + 1/(2b log n)) · a log3 n is at most

e−(a log3 n)·(1/(4b2 log2 n))/3 = n−a/(12b2)

by Chernoff bounds (see Theorem 4.4 in [35]). (Note that since b ≥ 1, 1/(2b log n) ≤ 1 for any n ≥ 2.) As
a result, with probability at most n−a/(12b2), the excess number of random walks placed into Outboxui+1

(i.e., in addition to the mean cap) is at most (a/2b) log2 n per round. With rwLength = 2f = 2b log n, the
number of such excess walks placed in Outboxui+1 in the whole phase is at most 2b log n · (a/2b) log2 n =

cap with probability at most n−a/(12b2), or in other words, whp for a constant a chosen large enough
compared to b.

With the excess smaller or equal to cap (whp), the walk w will buffer at Outboxui+1 for at most one
round before moving on to ui+1. Thus, even if w were unlucky and took two rounds at each node, in 2f
steps, it would have taken the requisite f random walk steps to ensure mixing. Thus, we can ensure that all
random walks that only walked in C for 2f rounds will take at least f random walk steps.

Moreover, the random walks that walk only in the core C satisfy the following property: their stationary
probability at any node v ∈ C is within a constant factor of the uniform distribution on C.

Lemma 3 (Random walk conditioned on walking in C). Consider, for any core node v ∈ C, any random
walk that starts at v and walks only through the nodes of C for (core mixing time) τC steps. Then, the
probability that the walk is at node u ∈ C after τC steps (or more) is p≥τC (u) = degC(u)

2|EC | ±
1
n3 = Θ(1/|C|) =

Θ(1/n).

Proof. Consider a walk that starts at a node v ∈ C and walks only on nodes in C. Conditioning that the
walk only uses edges in C, then it holds that at any node in C, the walk chose a uniform random outgoing
edge among edges in C. Hence, the conditioned random walk is a standard random walk on C. Since C is
an expander, or more precisely C has constant conductance ϕC , the (conditioned) random walk on C mixes
in τC steps and reaches close to the stationary distribution in C (up to 1/n3 error, as we have defined in
Subsection 2.1). In particular, the stationary probability of node u ∈ C is degC(u)/(2|EC |). Now, we can

11

apply Theorem 1 where C is the honest subset of nodes and f = τC = b log n is the mixing time of C. As
a result, the probability that the walk ends up at a node u ∈ C is proportional to its degree degC(u) (where
1 ≤ degC(u) ≤ d) divided by the number of edges in C (and up to 1/n3 error) which is Θ(d|C|/2) = Θ(n)
(by Lemma 1, and as |B| = o(n) and |C| = n − O(|B|) = Θ(n)). Hence, the probability that the walk
ends at u is Θ(1/n).

We next show that with high probability, most of the random walks initiated by nodes in C satisfy the
conditioning of the above lemma: i.e., with high probability, most walks will walk within C.

Lemma 4. Let κ = (|B| log n)/|C|, and let R(C) denote the total number of tokens initiated by the nodes
in the core C. Recall that each (honest) node initiates a maximum of total (good) tokens in Algorithm 1.
Then, at most O(κ|C|total) tokens enter or leave C, and at least R(C)−O(κ|C|total) tokens walk only in
C (i.e., are good). Moreover, these good tokens walk at least τC steps whp.

Proof. First, we upper bound the number of tokens that enter or leave C in a phasei.e., during the course of
the b log n random walk steps of Algorithm 1. To do so, we examine the cut between C and V − C. The
number of edges crossing this cut is O(|B|). Hence, the number of tokens entering or leaving C during
any one round is O(|B| log3 n), since the maximum number of tokens that can go through an edge (from
an honest sender or to an honest sender) in any round is cap = a log3 n. Thus, over a phase consisting
of 2b log n rounds, the number of tokens entering or leaving C is O(|B|b log n · cap) = O(κ|C| cap) for
κ = (|B| log n)/|C|. Over all total/cap phases, the number of tokens entering or leaving C is O(κ|C|total).

Recall that R(C) denotes the total number of tokens initiated by the nodes in the core C. Thus, from
the above, R(C) − O(κ|C|total) tokens walk only in C. By the definition of Algorithm 1 and Theorem 1,
all of these good tokens (walking only in C) complete τC = b log n steps in 2τC rounds, whp.

Theorem 1 and Lemmas 2, 3 and 4 together imply the following theorem.

Theorem 2 (Byzantine Random Walk Theorem). Let G be an expander graph with n nodes, out of which
some o(n/ log n)-sized subset B of nodes are Byzantine. Let C be the core of G, defined in Subsection 2.1,
with a mixing time of τC = b log n. Let each (good) node in G (and hence C) initiate at most total tokens
and send them in batches of cap = Θ(log3 n) via (independent) random walks for rwLength = 2τC rounds
using Algorithm 1. Let R(C) denote the total number of tokens initiated by the nodes in the core C. Then
the following statements hold whp:

1. At most O(κ · total |C|) tokens enter or leave the core.

2. At least R(C)−O(κ·total |C|) tokens walk only in the core C, where κ = (|B| log n)/|C|. Moreover,
all of these tokens walk at least τC steps whp, and they finish their walks in at most O(total

cap τC) =

O(total/ log2 n) rounds.

3. Additionally, the probability that each such token ends at any given node u ∈ C is degC(u)
2|EC | ±

1
n3 =

Θ(1/|C|) = Θ(1/n), where degC(u) is the degree of node u restricted to the core subgraph C and
EC is the edge set of C.

Note that in the Byzantine Random Walk Theorem, κ = (|B| log n)/|C| stands as an upper bound on
the fraction of tokens walking out of, or coming into, the core among the (maximum number of) tokens
generated by the core. For some applications, it suffices to have κ = o(1), or in other words, |B| =
o(n/ log n). For others, κ should be even smaller. Indeed, in Subsection 3.2, we use κ = o(1/ log n).

12

3 Almost-Everywhere Reliable Information Dissemination

Reliable communication between honest nodes is key to the design of Byzantine-tolerant algorithms, and
generally amounts to some variant of reliable broadcast. However, as we have mentioned previously, it
is impossible to solve broadcast in sparse networks since Byzantine nodes may isolate a certain number
of honest nodes. This motivates us to consider to relax the idea of reliable communication. The relaxed
reliable communication is the almost-everywhere broadcast primitive, which ensures a node successfully
communicates its message to at least n− o(n) honest nodes. A formal definition is given below.

Definition 2 (Almost-everywhere broadcast). Let G = (V,E) be a graph on |V | = n nodes out of which up
to o(n) nodes can be Byzantine. Let some (honest) node v ∈ V have a piece of data (say a bit) that it wants
to reliably disseminate to all other nodes. A protocol solves Almost-Everywhere Broadcast if there exists a
large enough (receiving) subset R ⊆ V with |R| = n − o(n), such that for any node u ∈ R, u is able to
reliably receive the message that originated at v (and associates it with the ID of v).

Rather than a single honest node, it may be the case that many (or all) honest nodes attempt to almost-
everywhere broadcast (simultaneously or not). In which case, reliable communication amounts to Almost-
Everywhere to Almost-Everywhere Reliable Information Dissemination (AERID): that is, most honest nodes
(called broadcasting nodes) can reliably transmit their messages to most honest nodes (called receiving
nodes). Interestingly, we do not require that nodes know whether they are part of the broadcasting or
receiving subsets. We formally define the AERID primitive below.

Definition 3 (Almost-Everywhere to Almost-Everywhere Reliable Information Dissemination (AERID)).
Let G = (V,E) be a graph on |V | = n nodes out of which up to o(n) nodes can be Byzantine. Each
(honest) node in G has a piece of data (say a bit) that it wants to reliably disseminate to all other nodes. A
protocol solves Almost-Everywhere to Almost-Everywhere Reliable Information Dissemination (AERID)
if there exists a large enough (broadcasting) subset V ′ ⊆ V with |V ′| = n − o(n), and a large enough
(receiving) subset R ⊆ V with |R| = n− o(n), such that for any two nodes u ∈ R and v ∈ V ′, u is able to
reliably receive the message that originated at v (and associates it with the ID of v).

Note that in the above definition, multiple pieces of data from different nodes can transit through the
network simultaneously. In some applications, it is important that a single node’s piece of data transits
around the network at a time. One such example is our eventual almost-everywhere common coin primitive
in Section 4. In fact, in Section 4, we show that our AERID primitives can serve as a preprocessing step, after
which nodes can, one at a time, (attempt to) almost-everywhere broadcast. Crucially, they do so by reusing
the communication done during the preprocessing step. And as a result, although not all honest nodes are
guaranteed to almost-everywhere broadcast successfully, at least n − o(n) succeed in almost-everywhere
broadcasting.

Subsection 3.1 presents an AERID protocol with Õ(n) runtime and tolerating up to |B| = o(n/ log n)
Byzantine nodes. This AERID protocol leads to a costly Õ(n) runtime for each almost-everywhere broad-
cast, mainly due to congestion issues, resulting in Õ(n) runtime for the coin flips in Section 4 and thus
to an Õ(n2) runtime for the corresponding almost-everywhere Byzantine agreement (AEBA) protocol (see
Section 5). On the other hand, Subsection 3.2 gives an AERID protocol with Õ(n) runtime and tolerating
only up to |B| = o(n/ log2 n) Byzantine nodes, but improves on the first protocol because it leads to Õ(1)
runtime for the coin flips in Section 4 and thus to an Õ(n) runtime for the corresponding AEBA protocol.

3.1 Fully-Distributed Reliable Information Dissemination

We start with a relatively simple AERID protocol. It is, in essence, the Byzantine Random Walk protocol
(see Algorithm 1) with some slight modifications. In more detail, each node initiates Θ(n log n) tokens,

13

which contain (unlike Algorithm 1) its ID and the information to broadcast. Each token executes some
Θ(log n) length random walks (as indicated by Algorithm 1). Once the algorithm is done, each (honest)
node u takes the message broadcast by some node v to be the majority information over all tokens with v’s
ID received by u.

The correctness of this AERID protocol builds upon the following intuition. Say all (honest) nodes
initiates total = Ω(n log n) tokens. and these tokens are distributed according to Algorithm 1. Recall that
there exists a core expander subgraph C of G (see Subsection 2.1) containing only honest nodes, and that
walks (or tokens) in Algorithm 1 are said to be good if they start and walk only in C. Then the Byzantine
Random Walk Theorem (see Theorem 2) ensures that most of the tokens (executing random walks of length
Θ(τC) = Θ(log n)) initiated by good nodes in C remain and mix in the core C. As a result of never visiting
any Byzantine node, their content (i.e., ID and information to broadcast) is never corrupted. Additionally,
the mixing and the choice of total ensures that these good tokens (initiated by nodes in C and walking only
in C) will evenly spread (and the uncorrupted information they contain) out through C in good enough
quantities. On the other hand, because there are far fewer bad tokens (i.e., tokens that exit or enter C) than
good tokens, Byzantine nodes cannot spread out (bad) information in the same quantities to as many nodes
in C. Next, we give a formal statement (Theorem 3) capturing the above intuitions.

Theorem 3. With high probability there exists two large enough subsets, a broadcasting subset Cb ⊆ C
with |Cb| = |C|−o(|C|), and a receiving subset Cr ⊆ C with |Cr| = |C|−o(|C|), such that for any v ∈ Cb

and u ∈ Cr, u receives Θ(log n) good tokens initiated by v and o(log n) bad tokens originating supposedly
from v.

Proof. We build up to the theorem’s statement by showing the following two claims.

Claim 1. With high probability there exists a large enough (broadcasting) subset C ′ ⊆ C, with |C ′| =
|C| − o(|C|), such that for any node v ∈ C ′, every node u ∈ C receives Θ(log n) good tokens initiated by
v.

Proof. By a simple counting argument and Item (2) of Theorem 2 (with κ = o(1)), there exist a set C ′, with
|C ′| = |C| − o(|C|), such that for each node v ∈ C ′, at least n log n− o(n log n) of the tokens originating
at v walk only in C. Now, by Item (3) of Theorem 2, each such walk will end at any given node u ∈ C with
probability Θ(1/|C|) = Θ(1/n). Hence, any given node u receives Θ((n log n−o(n log n))/n) = Θ(log n)
tokens from each node v ∈ C ′ in expectation. Since the random walks are independent, standard Chernoff
bounds (see Theorem 4.4 in [35]) imply that with high probability, for any node v ∈ C ′ and any node u ∈ C,
u receives Θ(log n) tokens initiated by v.

Claim 2. With high probability there exists two large enough subsets, a broadcasting subset Cb ⊆ C with
|Cb| = |C| − o(|C|), and a receiving subset Cr ⊆ C with |Cr| = |C| − o(|C|), such that for any v ∈ Cb

and u ∈ Cr, u receives o(log n) bad tokens originating supposedly from v.

Proof. By Item (1) of Theorem 2 at most O(κ(n log n)|C|) tokens enter (or leave) C during the algorithm,
where κ = (|B| log n)/|C|. Next, recall that |B| = o(n/ log n). Thus, o((n log n)|C|) bad tokens enter C
during the algorithm.

Finally, a counting argument suffices to obtain the claim statement. We now describe this argument in
detail. Let us fix a (broadcasting) subset Cb ⊆ C with |Cb| = |C| − o(|C|). We will show that there exists
a (receiving) subset Cr ⊆ C with |Cr| = |C| − o(|C|), such that for any v ∈ Cb and u ∈ Cr, u receives
o(log n) bad tokens originating (supposedly) from v. Consider a subset Ĉr of C where each node u ∈ Ĉr

receives at least Ω(log n) bad tokens (supposedly) from some node v ∈ Cb. We show by contradiction
that Ĉr = o(|C|) and hence the subset Cr can be taken to be C − Ĉr. Suppose not, let Ĉr = Θ(|C|).
Then, by the above assumption, in total at least

∑
u∈Ĉr,v∈Cb

Ω(log n) = Ω((log n)((|C| − o(|C|))|C|)) =

14

Ω((n log n)|C|) bad tokens are received by nodes in Ĉr. (Recall that |C| ≥ n − O(|B|) = n − o(n).)
However, only o((n log n)|C|) bad tokens enter C, leading to a contradiction.

By Claim 2, with high probability there exists two large enough subsets, a broadcasting subset Cb ⊆ C
with |Cb = |C| − o(|C|), and a receiving subset Cr ⊆ C with |Cr = |C| − o(|C|), such that for any v ∈ Cb

and u ∈ Cr, u receives o(log n) bad tokens originating (supposedly) from v. Moreover, by Claim 1, there
exists with high probability a large enough (broadcasting) subset C ′′ ⊆ C, with |C ′′| = |C| − o(|C|), such
that for any node v ∈ C ′′, every node u ∈ C receives Θ(log n) good tokens originating in v. Then, there
exists a large enough (broadcasting) subset C∗ = Cb ∩ C ′′, with |C∗| = |C| − o(|C|), and a large enough
(receiving) subset Cr, such that for any v ∈ C∗ and u ∈ Cr, u receives Θ(log n) good tokens and o(log n)
bad tokens originating (supposedly) from v.

The correctness and runtime of this simple AERID protocol is captured by the below theorem; the
correctness follows from Theorem 3 and the Θ̃(n) runtime from Theorem 2.

Theorem 4. AERID can be solved with high probability in an n-node d-regular expander network with up
to |B| = o(n/ log n) Byzantine nodes in Õ(n) rounds.

Once again, we point out that nodes do not need to to know if they are part of the broadcasting or
receiving subsets to solve the AERID primitive. And in fact, in the presented AERID protocol, all nodes
”attempt” to be in both subsets, and those who fail are not aware of it.

A major disadvantage of the presented AERID protocol lies in its congestion issues, even when we
consider only the Θ(n log n) good tokens that contain any given node’s ID. Indeed, all honest nodes generate
Θ(n log n) random walks (or communication paths) but are only incident to O(1) edges. Therefore, the
congestion of the good tokens on these edges is Θ(n log n). This leads to a significant Θ(n log n) slowdown
caused by congestion when this protocol is used in our common coin primitive, in Section 4.

3.2 Low-Congestion Reliable Information Dissemination

We now present a more sophisticated AERID protocol, which tolerates less Byzantine nodes but takes care
of the congestion issues encountered in the previous AERID protocol. Let us give the intuition underlying
this protocol. In it, each honest node will be the ”origin” of Θ(n log n) tokens, but only Θ̃(1) are initially
generated by the node. These then execute random walks and reach some randomly chosen (honest) nodes
(for most tokens), at which point they are duplicated, say twice. All tokens then once again execute random
walks, and get duplicated again, and so on. After roughly log n stages, the tokens ”originating” at any
one node will have grown to Θ(n log n) and spread around the network, similarly to the previous protocol.
However, unlike the case where all Θ(n log n) ”originating” from a node are generated by the same node,
here these tokens are generated by all of the nodes, in an almost uniform fashion, and this ensures that no
edge will ensure the transit of too many tokens with the same ”origin” in any one stage.

More formally, the protocol runs in O(log n) stages. Each stage i ≥ 1 consists of running the random
walk protocol, such that each node initiates at most total(i) = λ(2(1 + δ))i for any arbitrarily chosen small
0 ≤ ε ≤ 1 and some well-chosen constants λ = Θ(log3+2ε n) and δ = Θ(1/ log1+ε n). Note that this
means that stages will run for increasingly longer times, and importantly, the constants are set such that for
the last stage i∗, total(i∗) = Θ(n log n) (and thus the stage will take Õ(1) rounds). Initially, each node v
holds total(0) = λ tokens, containing the node’s ID, the message mv that node v is seeking to disseminate,
and some auxiliary stage-tracking and step-tracking counters set to 0. Note that no honest node will ever
modify the ID or message contained in a token. We call that ID the token’s source ID. Next, consider a
given stage i ≥ 1. In it, each node v first considers the tokens it held at the end of the previous stage (or
initially if i = 1). If v holds more than (1 + δ)total(i − 1) tokens (not necessarily with the same source

15

ID), then v keeps only (1 + δ)total(i− 1) arbitrarily chosen ones and deletes the rest. The stage counter of
each kept token is changed to i, and its step counter reset to 0, after which the token is duplicated twice and
the original token is then discarded (this simply makes some of the definitions easier). In other words, the
tokens held by nodes are now doubled. Finally, all of these duplicate tokens are sent out via the Byzantine
Random Walk protocol; whenever a token moves, its step counter is updated accordingly.

For the analysis, we start by proving the correctness and runtime of the AERID protocol. First, we extend
the definition of a good token, given in the previous subsection, in a natural way for this analysis. Indeed,
we say here that a token is good if it walks only in C and its parent token (from which it was duplicated)
was also good. Moreover, a good token is said to be low-congestion in stage i ≥ 1 if its parent token (from
which it was duplicated) was low-congestion and if any edge it traverses during the jth step of its random
walk of stage i (for any step j ≥ 1, j ≤ 2τC = O(log n)) is traversed by at most O(λ/δ) = O(log4+3ε n)
other tokens (whether good or bad) with the same source ID during that same step within that same stage.

Next, note that the duplication of tokens done at the start of every stage in this protocol (unlike the
previous one) increases the number of good tokens in every stage. We start by upper bounding the growth
of the number of good tokens with a given source ID over the multiple stages. Note that by definition of a
good token, the source ID must be from C.

Lemma 5. For any stage i ≥ 1, there are O(λ2i) good tokens with a given source ID both when the stage
starts (after duplication) and when the stage ends.

Proof. A simple induction on i suffices. Indeed, after the first stage’s duplication there are 2λ tokens for
any given source ID from C. After which, each stage leads to tokens being discarded or becoming bad, after
which the tokens that remain good are duplicated twice. The statement follows.

We can also upper bound the number of good tokens with a given source ID that start or end some stage
at any one given node by Õ(1). Note that the same upper bound holds regardless of the stage counter.

Lemma 6. For any stage i ≥ 1 and any node v ∈ C, with high probability, any node u ∈ C starts the stage
with O(λ) good tokens with the source ID of v and ends the stage with O(log n) tokens with the source ID
of v.

Proof. We first show the later half of the statement. Note that by Lemma 5, for any stage i ≥ 1, there are
O(λ2i) good tokens with a given source ID both when the stage starts (after duplication) and when the stage
ends. Those tokens that start and remain good throughout stage i by definition walk only in C. By Theorem
2, each such random walk mixes in C, or more precisely, ends up at some node u ∈ C with probability
Θ(1/n). Now, let Xu,v denote the number of tokens received by some node u ∈ C and that hold the ID of
some v ∈ C as a source ID. Recall that how the total number of stages is defined, O(λ2i) = O(n log n) for
any stage i ≥ 1. Then, the expectation E[Xu,v] can be upper bound by some k = Θ(log n), and since these
tokens execute independent random walks, we can use Chernoff bounds modified to use an upper bound on
the expectation (see [18]):

Pr[Xu,v ≥ (1 + 1/2)k] ≤ e−k·(1/2)2/3

This implies that any node u ∈ C receives O(log n) tokens with a given source ID whp when any stage
i ≥ 1 ends.

As for the first half of the statement, it is now straightforwardly obtained. For the first stage, note that
every node u ∈ C starts the first stage (after duplication) with at most O(λ) good tokens with a given source
ID (from C). (In fact, only the node with that ID starts with that many tokens, all others start with none.) As
for the later stages i > 1, the second half of the lemma statement implies that every node u ∈ C starts any
stage i > 1 (after duplication) with at most 2k = Θ(log n) good tokens with a given source ID whp.

16

As a result, for any given stage, few good tokens traverse the same edge during the jth step of the random
walk they execute in that stage. In other words, if all tokens in the network were good, then these tokens
would all also be low-congestion.

Lemma 7. For any stage i ≥ 1, any step j and for any node v ∈ C, with high probability any given edge
in G is traversed at most O(λ) times by good tokens with the source ID of v (or more precisely, good at the
time of traversal).

Proof. By Lemma 6, every node u ∈ C starts the stage (after duplication) with at most k′ = Θ(λ) good
tokens with a given source ID (from C). Let Xj

u,e (respectively, Y j
u,e) be the number of tokens node u sends

(resp., receives) on any edge e among its d incident edges (including those leading outside the core) for the
token’s jth step, that are still good (i.e, have walked only in the core up to, and including, step j of stage i)
and contain the source ID of some node v ∈ C. Then, it is easy to see that E[Xj

u,e] and E[Y j
u,e] are upper

bounded by k′/d = Θ(λ) for any node u ∈ C, incident edge e and step j. The number of good tokens (i.e.,
good during traversal) traversing edge e in their jth step (with the source ID of v) is Xj

u,e + Y j
u,e and its

expectation is upper bounded by 2k′/d = Θ(λ) = Ω(log3 n). Using Chernoff bounds modified to use an
upper bound on the expectation (see [18]), we can show that:

Pr[Xj
u,e + Y j

u,e ≥ (1 + 1/2)(2k′/d)] ≤ e−(2k′/d)·(1/2)2/3

Therefore, we get that with high probability, at most O(λ) good tokens (with the source ID of a given node
in C) traverse any given edge in their j step during the ith stage’s random walk (or at least tokens that are
still good when traversing that edge for the j step). The lemma follows.

Now, if all tokens remained good (i.e., did not walk out of the core), and no token was discarded due to
overcapacity (i.e., when there are more than (1 + δ)total(i − 1) tokens at a given node at the start of stage
i), the upper bound of Lemma 5 would be tight for all source IDs. And once again, if all tokens remained
good, then all these good tokens would be low-congestion. This may not hold but we can show a slightly
weaker statement (see Lemma 9). To do so, we must first show that throughout the protocol, there always
are sufficiently many good tokens whp (see Lemma 8 below).

Lemma 8. Recall that δ = Θ(1/ log1+ε n), and let κ = (|B| log n)/|C|. Let η = κ + δ. Then, for any
stage i ≥ 1, the nodes of the core start the stage (after duplication) with at least (1 − O(η) · i)|C|total(i)
good and low-congestion tokens whp, and end the stage with at least (1 − O(η) · (i + 1))|C|total(i) good
and low-congestion tokens whp (where the O notation hides constants that are independent of i).

Proof. We prove the first half of the statement by induction on i ≥ 1. (The second half can be obtained in
a similar fashion.) The base case for stage i = 1 is straightforward: initially, each node in the core holds
total(0) good and low-congestion tokens, by definition. Each of these tokens is duplicated twice. The result
is that 2 total(0) = total(1)/(1+δ) = (1−O(δ))total(1) tokens are held by the core nodes after duplication
in the first stage, and these tokens remained good and low-congestion.

As for the induction step, suppose i > 1 and consider stage i − 1 after the duplication. Then, by the
induction hypothesis for i − 1, it holds that at least (1 − O(κ + δ)(i − 1))|C|total(i − 1) good and low-
congestion tokens are held by the nodes in the core. We aim to upper bound, among these tokens, how many
(a) exit the core (and thus become bad), (b) are discarded because of overcapacity at a given node, or (c) are
no longer low-congestion. Part (a) is easy to bound, as by Item (1) of Theorem 2, at most O(κ|C|total(i−1))
of all tokens originating in C exit C.

On the other hand, part (b) is slightly more involved. Indeed, a node may hold more than (1+δ)total(i−
1) tokens because it holds many bad tokens (i.e., bad tokens entering C during stage i − 1) but also due to
purely probabilistic considerations (i.e., too many random walks end at the same node). We first upper bound

17

the good tokens being discarded in favor of bad tokens. For this, it suffices to notice that any one bad token
leads to at most one good token being discarded. By Item (1) of Theorem 2, at most O(κ|C|total(i − 1))
bad tokens enter C during stage i−1. Then, these bad tokens force at most O(κ|C|total(i−1)) good tokens
to be discarded in the core.

It remains to upper bound the number of good tokens being discarded in favor of good tokens. Note that
there are at most |C|total(i−1) good tokens in stage i−1, and those that remain good throughout stage i−1
execute independent random walks within C only, by definition. By Theorem 2, each such random walk
mixes in C, or more precisely, ends up at some node u ∈ C with at most probability degC(u)/(2|EC |) +
1/n3. By Lemma 1, this probability is at most 1/((1 − O(µ))|C|) + 1/n3 = (1 + O(µ))/|C| + 1/n3 for
µ = |B|/|C| = o(1/ log n). Hence, the expected number of good tokens received by any node in C is at
most (1+O(µ)+1/n2)total(i−1) = (1+O(µ))total(i−1). Moreover, the random walks are independent
so we can use Chernoff bounds (modified to use an upper bound on the expectation, see [18]). We show that
the number of tokens X received by any node in C satisfies

Pr[X ≥ (1 + δ)(1 +O(µ))total(i− 1)] ≤ e−(1+O(µ))total(i−1)·δ2/3

Given that total(i − 1) ≥ λ = Θ(log3+2ε n) for any i > 1 and δ2 = Θ(1/ log2+2ε n), it holds that
(1 + O(µ))total(i − 1) · δ2/3 = Ω(log n). To sum up, any node in C receives at most (1 + O(µ) +
O(δ))total(i− 1) good tokens whp. As a result, (O(µ+ δ))total(i− 1) = (o(κ) +O(δ))total(i− 1) good
tokens are discarded (due to good tokens) whp.

Finally, we need to upper bound how many of the good and low-congestion tokens do not remain low-
congestion throughout the stage. By Lemma 7, for any step j and for any node v ∈ C, any given edge in
G is traversed at most O(λ) times by good tokens with the source ID of v (or more precisely, good at the
time of traversal) during stage i − 1. Consider, for some edge, all O(λ) good tokens that take that same
edge in step j. Then, these good tokens may fail to be low-congestion in step j only if at least Ω(λ/δ)
tokens (and thus bad tokens) take that edge in step j. Now, Item (1) of Theorem 2 implies that at most
O(κ|C|total(i − 1)) = o(|C|total(i − 1)) bad tokens walk within C during stage i − 1. Altogether, they
can over-congest at most o(δ|C|total(i − 1)) good tokens for any step j (or in other words, make it so that
the good token is not low-congestion in step j), and thus o(δ|C|total(i− 1)) good tokens over all steps j of
stage i− 1.

In total, at least (1−O(η)(i− 1))|C|total(i− 1)−O(η)|C|total(i− 1) ≥ (1−O(η) · i)|C|total(i− 1)
good tokens are held by nodes in the core at the end of stage i−1. (Note here that the constants hidden by the
big O notation are crucially independent of i.) Finally, during the duplication in stage i, each (good) token is
duplicated twice and thus afterwards at least (1−O(η) · i)|C|2 total(i−1) = (1−O(η) · i)|C|total(i)/(1+
δ) = (1−O(η) · i)|C|total(i) tokens are good whp, or in other words, the induction step follows.

Choosing κ low enough (and since δ = o(1/ log n)), we get the following corollary from the above
lemma. In essence, if there are o(n/ log2 n) Byzantine nodes, most of the tokens (starting and ending) in
the core are good and low-congestion in all stages.

Corollary 1. Let κ = (|B| log n)/|C| = o(1/ log n). Then, for any stage i ≥ 1, the nodes of the core start
the stage (after duplication) with at least (1 − o(1))|C|total(i) good and low-congestion tokens whp, and
end the stage also with at least (1 − o(1))|C|total(i) good and low-congestion tokens whp (where the o
notation hides constants that are independent of i).

Now that we have a lower bound on the number of good and low-congestion tokens over all possible
source IDs in every stage, we can prove that there exists many source IDs for which there are many good
and low-congestion tokens in every stage.

18

Lemma 9. Let κ = (|B| log n)/|C| = o(1/ log n). Then, with high probability, there exists a large enough
subset C ′ ⊆ C, with |C ′| = |C| − o(|C|), such that for any stage i ≥ 1, there are Θ(λ2i) good and low-
congestion tokens with a given source ID (from a node in C ′) both when the stage starts (after duplication)
and when the stage ends.

Proof. By Lemma 5, we know that the number of good tokens with a given source ID (by definition from a
node in C) is O(λ2i) for any stage i ≥ 1, and this number can only decrease throughout stage i. Of these,
there can only be less that are also low-congestion.

Next, note that by Corollary 1, for any stage i ≥ 1, the nodes of the core start the stage (after duplication)
with at least (1− o(1))|C|total(i) good and low-congestion tokens whp, and end the stage also with at least
(1−o(1))|C|total(i) good and low-congestion tokens tokens whp. As total(i) = λ2i(1+δ)i and (1+δ)i =
ei ln(1+δ) = ei(δ+o(δ)) = 1+o(1) for δ = o(1/ log n) and i = O(log n), we get that (1−o(1))|C|total(i) =
(1 − o(1))|C|λ2i. However, this contradicts the existence of some Cbad ⊆ C with |Cbad| = Ω(|C|) such
that the number of good and low-congestion tokens with a source ID in Cbad is o(λ2i). Hence, for any stage
i, there exists a large enough subset C ′(i) ⊆ C, with |C ′(i)| = |C| − o(|C|), such that there are Θ(λ2i)
good and low-congestion tokens with a given source ID (from a node in C ′(i)) both when the stage starts
(after duplication) and when the stage ends.

Finally, first note that if the number of good and low-congestion tokens with a given source ID (by
definition from a node in C) is o(λ2i) for some stage i ≥ 1, then there are (at most) o(λ2i

′
) good and

low-congestion tokens with the same source ID for any later stages i′ > i′ since the number of good (and
low-congestion) tokens with the same source ID increases by at most λ per stage. As a result, we can
consider the claim shown at the end of the above paragraph, and take the large enough subset C ′ satisfying
the claim for the last stage. It follows that for any stage i ≥ 1, there are Θ(λ2i) good and low-congestion
tokens with a given source ID (from a node in C ′) both when the stage starts (after duplication) and when
the stage ends.

Having set up the previous lemmas on the amount of good and low-congestion tokens moving around
the core in every stage, both overall as well as from any given source ID, we can now prove the correctness
of the presented AERID protocol (see Theorem 5 below). In particular, this proves correctness even when
we consider only the good and low-congestion tokens, rather than all good tokens.

Theorem 5. Let κ = (|B| log n)/|C| = o(1/ log n). Then with high probability there exists two large
enough subsets, a broadcasting subset Cb ⊆ C with |Cb| = |C| − o(|C|), and a receiving subset Cr ⊆ C
with |Cr| = |C| − o(|C|), such that in the last stage, node v ∈ Cb and u ∈ Cr, u receives Θ(log n) good
and low-congestion tokens with the source ID of v, and o(log n) also with that source ID.

Proof. This proof follows along the lines of that of Theorem 3. We start by showing the following claims.

Claim 3. Let κ = (|B| log n)/|C| = o(1/ log n). Then with high probability there exists a large enough
subset C ′ ⊆ C, with |C ′| = |C| − o(|C|), such that every node u ∈ C ends the last stage with Θ(log n)
good and low-congestion tokens with the source ID of v.

Proof. By Lemma 9, there exists a large enough subset C ′ ⊆ C, with |C ′| = |C| − o(|C|), such that for
the last stage, there are Θ(n log n) good and low-congestion tokens with a given source ID (from some
node v ∈ C ′) both when the stage starts (after duplication) and when it ends. Those tokens that start and
remain good throughout the last stage by definition walk only in C. By Item (3) of Theorem 2, each such
random walk mixes in C, or more precisely, ends up at some node u ∈ C with probability Θ(1/n). Now,
let Xu,v denote the number of (good and low-congestion) tokens received by some node u ∈ C that hold
the ID of v ∈ C ′ as a source ID. Then, the expectation E[Xu,v] = Θ(log n) and since these tokens execute
independent random walks, we can use standard Chernoff bounds (see Theorem 4.4 in [35]) to prove that

19

for any node v ∈ C ′, every node u ∈ C receives Θ(log n) good and low-congestion tokens with the source
ID of v when the last stage ends.

Claim 4. Let κ = (|B| log n)/|C| = o(1/ log n). Then with high probability there exists two large enough
subsets, a broadcasting subset Cb ⊆ C with |Cb| = |C| − o(|C|), and a receiving subset Cr ⊆ C with
|Cr| = |C| − o(|C|), such that in the last stage, node v ∈ Cb and u ∈ Cr, u receives o(log n) bad tokens
with the source ID of v.

Proof. In the last stage i∗, total(i∗) = Θ(n log n) and thus nodes in the core initiate (at most) |C|total(i∗) =
Θ(|C|(n log n)). Of these, by Corollary 1, at most o(|C|total(i∗)) are bad tokens. Additionally, by Item (1)
of Theorem 2, at most O(κ|C|total(i∗)) = o(|C|total(i∗)) tokens enter C during stage i∗. Adding the two
together, at most o((n log n)|C|) bad tokens end stage i∗ at a node in the core.

Finally, a counting argument (similarly to Claim 2) suffices to obtain the lemma statement. More con-
cretely, let us fix a (broadcasting) subset Cb ⊆ C with |Cb| = |C| − o(|C|). We will show that there exists
a (receiving) subset Cr ⊆ C with |Cr| = |C| − o(|C|), such that for any v ∈ Cb and u ∈ Cr, u receives
o(log n) bad tokens originating (supposedly) from v. Consider a subset Ĉr of C where each node u ∈ Ĉr

receives at least Ω(log n) bad tokens with the source ID of some node v ∈ Cb. We show by contradiction
that Ĉr = o(|C|) and hence the subset Cr can be taken to be C − Ĉr. Suppose not, let Ĉr = Θ(|C|).
Then, by the above assumption, in total at least

∑
u∈Ĉr,v∈Cb

Ω(log n) = Ω((log n)((|C| − o(|C|))|C|)) =
Ω((n log n)|C|) bad tokens are received by nodes in Ĉr. (Recall that |C| ≥ n − O(|B|) = n − o(n).)
However, only o((n log n)|C|) bad tokens enter C, leading to a contradiction.

By Claim 4, with high probability there exists two large enough subsets, a broadcasting subset Cb ⊆ C
with |Cb = |C|− o(|C|), and a receiving subset Cr ⊆ C with |Cr = |C|− o(|C|), such that in the last stage
for any v ∈ Cb and u ∈ Cr, u receives o(log n) bad tokens with the source ID of v. Moreover, by Claim 3,
there exists with high probability a large enough (broadcasting) subset C ′′ ⊆ C, with |C ′′| = |C| − o(|C|),
such that for any node v ∈ C ′′, every node u ∈ C receives Θ(log n) good and low-congestion tokens
with the source ID of v. Then, there exists a large enough (broadcasting) subset C∗ = Cb ∩ C ′′, with
|C∗| = |C| − o(|C|), and a large enough (receiving) subset Cr, such that for any v ∈ C∗ and u ∈ Cr, u
receives Θ(log n) good and low-congestion tokens with the source ID of v, and o(log n) bad tokens that
also have the source ID of v.

Now, we can show that the presented protocol solves AERID. Moreover, it does so even if we discard
all good tokens that are not low-congestion (and their contained information). This additional property is
crucial for our faster eventual almost-everywhere common coin primitive.

Theorem 6. AERID can be solved with high probability in an n-node d-regular expander network with up
to |B| = o(n/ log2 n) Byzantine nodes in Õ(n) rounds. Moreover this holds even if all good tokens (and
thus the information they carry) except the low-congestion good tokens are discarded.

Proof. The correctness (and the later half of the statement) follows from Theorem 5. On the other hand, the
runtime on the other hand follows from applying Item (2) of Theorem 2 to each stage. More concretely, each
node runs the Byzantine Random Walk protocol in every phase i ≥ 1, initiating up to total(i) = Θ(λ2in)
tokens and thus taking Õ(total(i)) rounds. Since total(i) = Õ(n) for all phases, the runtime is Õ(n).

4 Eventual Almost-Everywhere Common Coin

Common coin primitives lie at the heart of many Byzantine agreement primitives. They allow all nodes to
generate a common random bit. In this section, we design an eventual almost-everywhere common coin

20

(EAECC) primitive. By almost-everywhere (common), we mean to say that almost all honest nodes (i.e.,
at least n − o(n) honest nodes) agree on the random bit. Whereas by eventual, we mean to say that within
n coin flips (i.e., calls to this primitive), at least one flip will be random (i.e., it is 0 or 1 each with equal
probability).

We leverage the two AERID primitives from Section 3 to design two eventual, almost-everywhere ran-
dom coin primitives The first coin primitive, described in Subsection 4.1, builds upon the first AERID prim-
itive from Subsection 3.1. It tolerates up to o(n/ log n) Byzantine nodes, but has a slow runtime. Whereas
the second coin primitive, described in Subsection 4.2 and building upon the second AERID primitive from
Subsection 3.2, tolerates only up to o(n/ log2 n) Byzantine nodes but is significantly faster (by a linear in n
factor in fact).

4.1 Eventual Almost-Everywhere Common Coin with o(n/ log n) Tolerance

First, we give a brief high-level description of this common coin primitive. Nodes first initialize the random
coin by running the AERID primitive from Subsection 3.1. More precisely, each node initiates Θ(n log n)
random walks (or tokens) and each walk is stored separately in a distributed fashion. The remainder of the
random coin primitive — the coin flipping component — is split into phases. In each phase, some designated
senders transmit a random bit using the previously-computed random walks only. This desired behavior is
enforced by the honest nodes; the honest nodes ensure that only messages travelling along the random walk
paths are retransmitted, whereas other (incorrect) messages are ignored. At the end of the phase, nodes take
the majority bit among all received messages’ random bits as their local random coin output.

Next, we give some intuition for the common coin primitive’s correctness. To start with, reusing the
random walks for the coin flipping component ensures that for significantly many phases out of any n
successive phases, almost all of the honest nodes receive more good messages, having visited only honest
nodes and containing a random bit that originates from a designated sender, than bad messages, originating
at or tampered by Byzantine nodes. Moreover, for a constant fraction of these phases, it holds that there is a
unique designated sender and thus that almost all honest nodes agree on a random bit.

Detailed Primitive Description. First, the (eventual almost-everywhere) common coin must be initial-
ized. Once that is done, the primitive can be invoked to produce a coin flip. Nodes keep a counter i of how
many (coin flip) calls have been executed until now. From a more technical perspective, the initialization
is done by calling an InitCoin() function and the ith coin flip by calling a CoinF lip(i) function, for any
integer i ≥ 1.

When initializing, all nodes randomly select an integer (or rank) in [1, n]. Then, nodes run the AERID
primitive described in Subsection 3.1 (with the slight modification that tokens contain the initiating node’s
rank in addition to all the other information). In more detail, recall that in the AERID primitive, each node
initializes Θ(n log n) (random walk) tokens, each taking O(log n) steps. Moreover, each token is uniquely
identified by the combination of the originator node’s ID and rank as well as a token counter (distinguishing
different tokens originating at the same node). Each node that is visited by a token stores the incoming and
outgoing edge, the token’s originator ID, rank and counter, as well as the number of steps taken by the token.
Storing this information allows us, after the initialization and in particular during the coin flipping phases,
to send messages along specifically chosen random walks — in particular, along walks taken by messages
with a given rank — and ensure that all other messages (i.e., not following such a pattern) are ignored.

When the ith coin flip is invoked (i.e., the ith coin flipping phase), the nodes with rank i mod n (and
only they) are the designated senders. They each flip a coin (i.e., pick 0 or 1 with probability 1/2 each) and
then almost-everywhere broadcast these bits, using the previously computed random walks. More precisely,
let rv be the random bit of designated sender node v. Then v almost-everywhere broadcasts rv by generating
Θ(n log n) different messages — containing the random bit rv, the rank of v and a unique token counter

21

corresponding to one used by v during the initialization — and sending these messages along the Θ(n log n)
random walks starting at v. Other (honest) nodes ensure that only messages corresponding to tokens with
rank i are transmitted (and know over which edges to forward the message using the information they stored
during the initialization). All tokens reach their destination after Θ̃(n) rounds — even though the walks
have length O(log n) — which is due to congestion (from the Θ(n log n) different messages with the same
rank). After which, all nodes take among all messages received via random walks, the majority bit as the bit
transmitted by this phase’s designated sender.

Analysis. To start with, we show that there exist sufficiently many phases for which there exist a single
honest designated sender — see Lemma 10 below.

Lemma 10. Consider only the honest nodes. For large enough n, it holds with high probability that at least
n
8 ranks are chosen by exactly one honest node.

Proof. Let us analyze the number of ranks chosen by exactly one honest node. We model this as a balls-
and-bins scenario, in which the H = n− o(n) honest nodes each throw one ball into the n slots (i.e., bins),
and use the Poisson approximation approach.

Let X(H)
1 , . . . , X

(H)
n be the number of balls thrown in the first to nth bins under this balls-and-bins

scenario. Let Y (H)
1 , . . . , Y

(H)
n be independent Poisson random variables with mean µP = H/n = 1− o(1),

where a Poisson random variable X with parameter µ is a discrete random variable taking values in N
with distribution Pr[X = k] = µke−µ

k! . Let f(Y (H)
1 , . . . , Y

(H)
n) be the number of bins (under the Poisson

distribution) with exactly one ball. Then, it is well-known that for any indicator function f(x1, . . . , xn),

Pr[f(X
(m)
1 , . . . , X(m)

n)] ≤ e
√
mPr[f(Y

(m)
1 , . . . , Y (m)

n)]

Now, let f(Y (H)
1 , . . . , Y

(H)
n) =

∑n
i=1 1[Y

(H)
i = 1] where 1[E] is the indicator function for event E.

Note that for any 1 ≤ i ≤ n, 1[Y (H)
i = 1] is a Bernoulli random variable with parameter p = µP e

−µP .
Hence, E[

∑n
i=1 1[Y

(H)
i = 1]] = nµP e−µP = He−µP . Moreover, using standard Chernoff bounds (see

Theorem 4.4 in [35]), we get Pr[f(Y (H)
1 , . . . , Y

(H)
n)−He−µP | ≥ 1

2He−µP] ≤ 2e−
He−µP

12 . Since He−µP =

(n − o(n))e1−o(1), He−µP ≥ n
2
√
e
≥ n

4 for large enough n. Thus, f(Y (H)
1 , . . . , Y

(H)
n) is greater than n

8

with high probability (for large enough n). And as a result, by the above (Poisson approximation approach)
inequality, f(X(H)

1 , . . . , X
(H)
n) is greater than n

8 with high probability for large enough n, and the lemma
statement follows.

Next, we say a phase i ∈ [1, n] (or coin flip) is good if there is exactly one honest designated sender for
phase i (i.e., a single honest node chose i), and that sender successfully (almost-everywhere) broadcasted
during initialization. Then, we show next that there are sufficiently many good phases within any n succes-
sive phases, and that any good phase terminates with a random bit (0 or 1 with probability 1/2 each) being
shared by almost all nodes.

Lemma 11. At least n/8− o(n) phases are good with high probability.

Proof. To start with, Lemma 10 states that for large enough n, it holds with high probability that at least
n/8 ranks are chosen by exactly one honest node. Next, by Theorem 4 (and the definition of AERID), it
holds with high probability that n − o(n) honest node succeed in almost-everywhere broadcasting during
the initialization, or in other words, at most o(n) honest nodes fail in almost-everywhere broadcasting. The
lemma statement follows from these two points.

22

Lemma 12. When any good phase i ≥ 1 terminates, at least n − o(n) honest nodes agree on a common
binary value. Moreover, this value is 0 with probability 1/2, and 1 with probability 1/2.

Proof. Consider some good phase i ≥ 1. By definition, there is a single honest designated sender v,
and v chooses a random binary value uniformly at random. Moreover, v must have succeeded in almost-
everywhere broadcasting in the initialization part. Now, in phase i, v transmits its random bit via the random
walks computed during initialization. Recall that messages corresponding to these random walks are trans-
mitted by honest nodes, whereas messages that do not correspond to these walks are ignored by honest
nodes, which implies that v also almost-everywhere broadcasts in phase i. More concretely, by Theorem 3
at least n − o(n) honest nodes receive Θ(log n) good tokens (that only visit honest nodes in the core and
thus contain the random bit of v) and o(log n) bad tokens (having possibly visited Byzantine nodes and that
may have the opposite random bit). Thus, these n − o(n) honest nodes obtain v’s random bit after taking
the majority bit out of its received messages. The lemma statement follows.

Lemma 13. The proposed primitive correctly implements an eventual almost-everywhere common coin
(EAECC) tolerating up to |B| = o(n/ log n) Byzantine nodes. The initialization takes Õ(n) rounds and
each coin flip takes Õ(n) rounds.

Proof. The correctness follows from Lemmas 11 and 12. As for the runtime, that of the initialization phase
follows from Theorem 4 whereas that of the coin flips follows from the Õ(n) congestion incurred by the
messages (Õ(n) of them per phase) travelling along the O(log n) length random walks.

4.2 Faster Eventual Almost-Everywhere Common Coin

This second eventual almost-everywhere common coin (EAECC) primitive follows the same schema as that
of the previous subsection. The main difference lies in our use of the second AERID primitive (see Sub-
section 4.2) for the initialization. Although the paths computed during the initialization are more complex,
they have nicer congestion properties and we use this to speed up the coin flips compared to the previous
subsection.

In more detail, the coin is initialized by executing the AERID primitive described in Subsection 4.2. This
primitive also generates Θ(n log n) tokens per node, but in a more gradual and indirect fashion. Indeed, each
node does not directly generate these tokens, but only sends Θ̃(log3+2ε n) random walks (or tokens) (for
any arbitrarily chosen small ε > 0). The tokens generated by some node v are said to have the source ID
of v. They take Θ(log n) steps, before getting duplicated twice; this possibly, or in fact likely, happens at
some other node u but without changing the source ID (which remains that of v). The process is repeated
until we have Θ(n log n) tokens with the source ID of v. The fact that these tokens get duplicated (mostly)
at nodes beside v greatly helps out in reducing the congestion when the token’s paths are reused for the
coin flips. In fact, we will show that the edge congestion is Õ(1), which should be compared with the Θ̃(n)
edge congestion within the coin flips in the previous subsection. Note that here again, we use the AERID
primitive with a slight modification: tokens contain the source ID’s rank, in addition to the source ID and
a token counter. The latter can be a pair where the first element is a stage number and the second element
a unique ID for all tokens with the same source duplicated at a given node when that stage starts, such
that the pair uniquely determines all tokens with a given source ID. Each node that is visited by a token
stores the incoming and outgoing edge, the token’s source ID, rank and counter as well as both the stage
and steps during which the visit happens. Once again, storing this information allows us to send, during the
coin flipping phases, messages along specifically chosen random walks (e.g., corresponding to a given rank)
while ensuring messages that diverge from the stored walk are ignored.

Next, we detail how, within the ith coin flip, a designated sender v almost-everywhere broadcasts its
randomly chosen bit rv. This is done as follows. Node v generates, for each of the Θ(log3+2ε n) tokens

23

of the initialization, exactly as many (i.e., Θ(log3+2ε n)) messages that contain the random bit rv, the rank
of v and the corresponding (unique) token counter (which, as mentioned previously, is a pair here). These
messages walk along the Θ(log n) steps taken by the corresponding token. Each such step takes some
O(log4+3ε n) rounds and any message that cannot be transmitted because of edge overcongestion is simply
discarded. (However, the AERID primitive we use ensures that for most ranks, no message fails to be trans-
mitted due to edge overcongestion.) At the message’s destination (i.e., the destination of the corresponding
token during the first stage of the AERID primitive), the message is duplicated as many times as the cor-
responding token was, and the associated information (in particular the token counter) is updated to match
the initialization phase. This repeats until the messages reach the last node reached by their corresponding
tokens (at the end of the AERID primitive). Throughout this process, honest nodes ensure only messages
with the rank i are transmitted (and know how to forward the messages along the walks due to the informa-
tion stored during the initialization). Crucially, the properties of the second AERID primitive ensures that
the almost-everywhere broadcast fails for o(n) ranks only, whether it is because too many tokens visited a
Byzantine node during the initialization (and thus the random bit may get corrupted during the coin flip) or
because too many messages take the same edge for a given step.

Analysis. Since ranks are chosen here exactly as in the previous EAECC primitive, Lemma 10 also applies
here. Recall that we say that a phase i ∈ [1, n] (or coin flip) is good if there is exactly one honest designated
sender for phase i (i.e., a single honest node chose i) and that sender successfully (almost-everywhere)
broadcasted during initialization. Here, we say that a good phase i is additionally low-congestion if the
sender successfully (almost-everywhere) broadcasted during initialization without incurring high edge con-
gestion, or more concretely, if even if it successfully (almost-everywhere) broadcasted even if good tokens
except the low-congestion good tokens are discarded. Then, we show that there are sufficiently many good
and low-congestion phases within any n successive phases.

Lemma 14. At least n/8− o(n) phases are good and low-congestion with high probability.

Proof. To start with, Lemma 10 states that for large enough n, it holds with high probability that at least
n/8 ranks are chosen by exactly one honest node. Next, by Theorem 6 (and the definition of AERID), it
holds with high probability that n−o(n) honest node succeed in almost-everywhere broadcasting during the
initialization even if good tokens except the low-congestion good tokens are discarded. Or in other words,
at most o(n) honest nodes fail in almost-everywhere broadcasting even if when the coin flip is executed, all
walks are allowed only O(log4 n) rounds per step. The lemma statement follows from these two points.

Lemma 15. When any good and low-congestion phase i ≥ 1 terminates, at least n − o(n) honest nodes
agree on a common binary value. Moreover, this value is 0 with probability 1/2, and 1 with probability 1/2.

Proof. Consider some good phase i ≥ 1. By definition, there is a single honest designated sender v,
and v chooses a random binary value uniformly at random. Moreover, v must have succeeded in almost-
everywhere broadcasting in the initialization part, even if good tokens except the low-congestion good to-
kens are discarded. Now, in phase i, v transmits its random bit via the random walks computed during
initialization. Recall that messages corresponding to these random walks are transmitted by honest nodes,
whereas messages that do not correspond to these walks are ignored by honest nodes. Moreover, at most
O(log4+3ε n) rounds are allowed for each step and stage of these random walks, which allows at most
O(log4+3ε n) messages to transit through this edge in that step and that stage. Since low-congestion tokens
(see Subsection 3.2) by definition transit through edges with at most O(log4+3ε n) congestion per step and
stage, this implies that v also almost-everywhere broadcasts in phase i (despite the fact that some messages
may be discarded due to runtime limitations). More concretely, by Theorem 5 at least n−o(n) honest nodes
receive Θ(log n) good and low-congestion tokens (that only visit honest nodes in the core and thus contain

24

the random bit of v, and never transit through an over-congested edge) and o(log n) bad tokens (having
possibly visited Byzantine nodes and that may have the opposite random bit) with the source ID of v during
the initialization. Thus, during the ith coin flip these n − o(n) honest nodes obtain v’s random bit after
taking the majority bit out of its received messages. The lemma statement follows.

Lemma 16. The proposed primitive correctly implements an eventual almost-everywhere common coin
(EAECC) tolerating up to |B| = o(n/ log2 n) Byzantine nodes. The initialization takes Õ(n) rounds and
each coin flip takes Õ(1) rounds.

Proof. The correctness follows from Lemmas 14 and 15. As for the runtime, that of the initialization
follows from Theorem 6 whereas that of the coin flips follows from the fact that during a coin flip, each step
is allowed Õ(1) rounds only, and messages take at most O(log2 n) steps (as there are O(log n) steps per
stage in the AERID primitive, and O(log n) stages), so the coin flip takes Õ(1) rounds.

5 Fully-Distributed Byzantine Agreement Protocol

In this section, we present our main result: a fully-distributed almost-everywhere Byzantine agreement al-
gorithm (Algorithm 2). This algorithm is based on Rabin’s algorithm [40] and the main difficulty lies in
implementing a random common coin primitive in a fully-distributed fashion. Due to the fully-distributed
constraint, we settle on implementing an eventual almost-everywhere common coin (or EAECC, see Sec-
tion 4), and we show that this suffices to solve almost-everywhere Byzantine agreement but with a slower
runtime.

First, we give a high-level description of Algorithm 2. The algorithm runs for p = Θ(n log n) phases
(of either Õ(n) or Õ(1) rounds, depending on the EAECC protocol used) and terminates afterward. Nodes
start with their vote set to their input value. In each phase, nodes check if there already exists a strong
majority of nodes (i.e., 0.9 of them) that agree on some vote. If so, nodes change their vote accordingly, to
that majority vote. Otherwise, nodes flip the eventual almost-everywhere common coin and set their vote to
the coin’s output. Note that while Rabin’s algorithm terminates in an expected constant number of phases,
or terminates with high probability within O(log n) phases, Algorithm 2 requires significantly more phases
because we use a weaker common coin.

Next, we give a more precise description of Algorithm 2. The algorithm starts by initializing the eventual
almost-everywhere common coin (using InitCoin(), see Section 4). After which, the algorithm runs p
phases, each decomposed into two subphases. Consider phase i ∈ [1, p]. In the first subphase, all nodes
run the Byzantine Random Walk protocol (Algorithm 1) from Section 2 for Õ(1) rounds. More concretely,
each node initiates some total = Θ(log3 n) tokens that contain the node’s vote and execute a random walk
of O(log n) length. Doing so guarantees that almost all nodes sample with good precision the proportion
of both votes, and thus allows almost all nodes to detect if there exists a strong majority. In the second
subphase, nodes flip the EAECC (by calling CoinF lip(i), see Section 4). If the first EAECC primitive is
used, then this takes Õ(n) rounds but tolerates up to |B| = o(n/ log n) Byzantine nodes. Whereas if the
second EAECC primitive is used, this takes Õ(1) rounds but tolerates up up to |B| = o(n/ log2 n) Byzantine
nodes only. Once the two subphases are done, each node v first checks if it detected a strong majority in the
first subphase. If so, v changes its vote (if different) to that majority vote. Otherwise, v changes its vote to
the coin’s output obtained during the second subphase. Finally, once all p phases are done, nodes terminate
with their current vote.

Now, we analyze the behavior of Algorithm 2. We remind that good tokens are tokens only ever visit
good nodes (and in particular the core subgraph) and thus remain uncorrupted. Other tokens, which we call
bad, may be corrupted (i.e., their vote changed) when visiting a Byzantine node.

25

Algorithm 2 Byzantine Agreement Algorithm for honest node v with input bv
1: votev := bv
2: InitCoin()
3: for phase i = 1 to p do
4: samplesv are the tokens obtained by running Algorithm 1 with total = Θ(log3 n)
5: majv := the majority vote among the votes in samplesv
6: tallyv := the number of majority votes in samplesv divided by n
7: bitv := CoinF lip(i)
8: if tallyv > 0.9 then
9: votev := majv ▷ Set to majority vote

10: else
11: votev := bitv ▷ Set to EAECC flip

Lemma 17. Consider some phase i ∈ [1, p]. During the sampling subphase, each (honest) node sends out
total = Θ(log3 n) tokens via the Byzantine Random Walk protocol. Let f be the fraction of some vote m
held by honest nodes. Then there exists a large enough subset R ⊆ C of honest nodes of size |R| = n−o(n)
such that for any node u ∈ R, node u receives (f ± o(1))total good tokens with vote m and o(total) bad
tokens.

Proof. The sampling phase executes the Byzantine Random Walk protocol with total = Θ(log3 n). Recall
that f is the fraction of the vote m held by honest nodes. This implies that there are (f ± o(1))|C| core
nodes with vote m, and these core nodes generate (f ± o(1))|C|total tokens containing the vote m.

We show that most of these tokens disseminate uniformly throughout the core and obey concentration
bounds. First, by Item (1) and (2) of Theorem 2, at least (f±o(1))|C|total−o(|C|total) = (f±o(1))|C|total
of these tokens are good, i.e., they walk only in C (for κ = o(1)). Hence, each such walk mixes in the core,
and ends at some node u ∈ C with probability p(u) = degC(u)/(2|EC |)±1/n3, by Item (3) of Theorem 2.
By Lemma 1 where µ = |B|/|C| = o(1), (1 − o(1))d|C|/2 ≤ |EC | ≤ d|C|/2 (for µ = |B|/|C| = o(1)).
As a result, 1/|C| − 1/n3 ≤ p(u) ≤ (1 + o(1))/|C| + 1/n3. Therefore, any node u ∈ C receives in
expectation (f ± o(1))total good tokens containing vote m. Since the good tokens execute independent
random walks, and total = Θ(log3 n), we can use standard Chernoff bounds (see Theorem 4.4 in [35]) to
prove that any node u ∈ C receives (f ± o(1))total good tokens containing vote m whp.

Finally, by Item (1) of Theorem 2, at most o(|C|total) bad tokens enter and end in C (for κ = o(1)).
This implies that there exists a large enough subset C ′ ⊂ C with |C ′| = |C| − o(|C|), such that any node
u ∈ C ′ ends with o(total) bad tokens. Combined with the above claim, we get the lemma statement.

Lemma 18. Consider some phase i ∈ [1, p]. If at least an f = 1 − o(1) fraction of the honest nodes start
the phase with the same vote, then with high probability at least a 1− o(1) fraction of the honest nodes end
the phase with that vote.

Proof. At least n− o(n) honest nodes start the phase with the same vote, denoted by m, which implies that
vote m is held by a fraction f = 1− o(1) of honest nodes. Thus, by Lemma 17, with high probability there
exists a subset R of n − o(n) nodes that receive (1 − o(1))total good tokens with vote m, o(total) good
tokens with the other vote and o(total) bad tokens. By the algorithm description, all nodes in R detect that
m is in a strong majority and thus end the phase with vote m.

Lemma 19. Consider some phase i ∈ [1, p]. If the ith coin flip (phase) is good, then almost-everywhere
agreement is reached at the end of the phase with probability 1/2− o(1).

26

Proof. First, note that either (a) at least n−o(n) nodes do not detect a strong majority (i.e., have both tallies
smaller than 0.9), or (b) Ω(n) nodes detect a strong majority (i.e., have one of the two tallies strictly greater
than 0.9). For the simpler case (a), at least n−o(n) nodes set their vote to the coin’s value by the description
of Algorithm 2, thus reaching (almost-everywhere) agreement.

As for case (b), it implies that out of the two votes, Ω(n) honest nodes consider one of the two, say
m without loss of generality, to be a strong majority. Note that this does not rule out, for now, Ω(n) other
honest nodes considering the other vote to be a strong majority as well. However, we next prove that in fact,
at least n − o(n) honest nodes agree on m as the majority vote. Indeed, by Lemma 17, at least 0.9 − o(1)
honest nodes started the phase with vote m. However, this in turn implies that m starts the phase as a
majority vote held by at least 0.9− o(1) honest nodes. Thus, by Lemma 17, at least n− o(n) honest nodes
agree on m as the majority vote (but not necessarily as a strong majority).

We next show that with probability 1/2, the honest nodes that agree on m as a majority vote but did not
detect a strong majority set their vote to m by the end of the phase. Indeed, Lemma 12 implies that during the
second subphase, at least n− o(n) honest nodes agree on a common value b, which is 0 with probability 1/2
and 1 with probability 1/2. Moreover, this value is chosen independently of maj, as maj is fixed (possibly
influenced by the Byzantine adversary) by the end of the first subphase of phase i whereas the coin flip
happens later, in the second subphase. (Thus even a full information Byzantine adversary cannot deduce the
output of that coin flip during the first subphase.) Hence, Pr[b = maj] = 1/2. As a result, at least n− o(n)
honest nodes set their vote to b with probability 1/2− o(1). The lemma statement follows.

Theorem 7. Let G be an expander graph having n nodes out of which a subset of |B| = o(n/ log n)
nodes are Byzantine. Then, there exists a fully-distributed algorithm solving almost-everywhere Byzantine
agreement (AEBA) with high probability. Moreover, it does so in Õ(n2) rounds.

Proof. We start by the correctness. First, note that once almost-everywhere agreement is reached in some
phase i ∈ [1, p], then nodes maintain almost-everywhere agreement for all subsequent phases i′ > i (by
Lemma 18). Hence, it suffices to show that nodes reach almost-everywhere agreement in at least one phase
with high probability. By Lemma 11, within any successive n coin flips, at least one coin flip (phase) is
good. Thus within the p = Θ(n log n) phases, at least Ω(log n) of the coin flips are good. Moreover,
independently for each such phase, almost-everywhere agreement is reached at the end of the phase with
probability at least 1/2−o(1) (by Lemma 19). Hence, nodes reach almost-everywhere agreement in at least
one phase with high probability and Algorithm 2 solves almost-everywhere Byzantine agreement with high
probability.

Next, we consider the round complexity. First, setting up the coin primitive takes Õ(n) rounds by
Lemma 13. As for the p phases, the sampling subphase takes Õ(1) rounds (by Theorem 2) whereas the coin
flip subphase takes Õ(n) rounds (by Lemma 13). Hence, Algorithm 2 takes Õ(n2) rounds.

Theorem 8. Let G be an expander graph having n nodes out of which a subset of |B| = o(n/ log2 n)
nodes are Byzantine. Then, there exists a fully-distributed algorithm solving almost-everywhere Byzantine
agreement (AEBA) with high probability. Moreover, it does so in Õ(n) rounds.

Proof. The correctness and runtime can be shown following the proof of Theorem 7. For the latter, note that
the coin flip subphase takes Õ(1) rounds (by Lemma 16) and thus Algorithm 2 takes Õ(n) rounds only.

6 Conclusion and Open Problems

We address the fundamental Byzantine agreement problem in sparse (bounded-degree) networks, a prac-
tically relevant setting to real-world networks, especially modern P2P networks that underlie blockchains
and cryptocurrencies. In these networks, it is crucial to develop efficient fully-distributed protocols which

27

operate with only local (initial) knowledge. In this work, we develop fully-distributed protocols that tolerate
a large number of Byzantine nodes — up to o(n/ log n). This answers open questions raised in previous
works [19, 30] whether such algorithms are possible.

Several key questions remain. Our protocols run in a polynomial number of rounds. In particular, one of
our protocols runs in near-linear Õ(n) rounds while tolerating o(n/ log2 n) Byzantine nodes. It is not clear
whether this is the best possible round complexity for tolerating a nearly linear number of Byzantine nodes or
whether significantly faster (say, polylog n round) algorithms are possible. Unlike complete networks where
there are well-established message lower bounds12 (e.g., [17, 25]) we are not aware of message or time
lower bounds on the run time of Almost-Everywhere Byzantine Agreement (AEBA) in sparse networks.
Since we require only almost-everywhere agreement and Byzantine nodes can only communicate through
the graph edges, the power of the adversary is somewhat reduced (compared to complete networks), and
it is not clear how to show lower bounds in sparse networks. In particular, there is a striking contrast
between the two settings. In complete networks, it is known that Ω(nt) messages are necessary even for
randomized algorithms [25]. However, in sparse networks, for t =

√
n/ polylog n, there is a O(log3 n)

round algorithm[4]. Is it the case that the Ω(nt) message lower bound holds in the sparse setting for higher
values of t, in particular when t is near-linear in n? If so, then since the degree is bounded, the Ω(nt)
message lower bound will imply that Ω(t) is a lower bound on the round complexity of AEBA protocols
(under bandwidth constraint) that tolerate up to t Byzantine nodes. If this is true, then our second protocol
will be nearly-optimal.

References

[1] John Augustine, Soumyottam Chatterjee, and Gopal Pandurangan. A fully-distributed scalable peer-
to-peer protocol for byzantine-resilient distributed hash tables. In Kunal Agrawal and I-Ting An-
gelina Lee, editors, SPAA ’22: 34th ACM Symposium on Parallelism in Algorithms and Architectures,
Philadelphia, PA, USA, July 11 - 14, 2022, pages 87–98. ACM, 2022. doi:10.1145/3490148.
3538588.

[2] John Augustine, Valerie King, Anisur Rahaman Molla, Gopal Pandurangan, and Jared Saia. Scal-
able and secure computation among strangers: Message-competitive byzantine protocols. In Hagit
Attiya, editor, 34th International Symposium on Distributed Computing (DISC 2020), volume 179
of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:19, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.
de/opus/volltexte/2020/13109, doi:10.4230/LIPIcs.DISC.2020.31.

[3] John Augustine, Anisur Rahaman Molla, Ehab Morsy, Gopal Pandurangan, Peter Robinson, and Eli
Upfal. Storage and search in dynamic peer-to-peer networks. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, pages 53–62, New York,
NY, USA, 2013. ACM. URL: http://doi.acm.org/10.1145/2486159.2486170, doi:
10.1145/2486159.2486170.

[4] John Augustine, Gopal Pandurangan, and Peter Robinson. Fast byzantine agreement in dynamic net-
works. In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, PODC
’13, pages 74–83, New York, NY, USA, 2013. ACM. URL: http://doi.acm.org/10.1145/
2484239.2484275, doi:10.1145/2484239.2484275.

12Note that there are fast O(logn)-round algorithms for BA in complete networks that tolerate even up to nearly n/3 Byzantine
nodes, but these take at least quadratic messages [10, 23].

28

https://doi.org/10.1145/3490148.3538588
https://doi.org/10.1145/3490148.3538588
https://drops.dagstuhl.de/opus/volltexte/2020/13109
https://drops.dagstuhl.de/opus/volltexte/2020/13109
https://doi.org/10.4230/LIPIcs.DISC.2020.31
http://doi.acm.org/10.1145/2486159.2486170
https://doi.org/10.1145/2486159.2486170
https://doi.org/10.1145/2486159.2486170
http://doi.acm.org/10.1145/2484239.2484275
http://doi.acm.org/10.1145/2484239.2484275
https://doi.org/10.1145/2484239.2484275

[5] John Augustine, Gopal Pandurangan, and Peter Robinson. Fast byzantine leader election in dynamic
networks. In Proceedings of the 29th International Symposium on Distributed Computing - Volume
9363, DISC 2015, pages 276–291, New York, NY, USA, 2015. Springer-Verlag New York, Inc. doi:
10.1007/978-3-662-48653-5_19.

[6] John Augustine, Gopal Pandurangan, Peter Robinson, Scott Roche, and Eli Upfal. Enabling robust
and efficient distributed computation in dynamic peer-to-peer networks. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS ’15, pages 350–369, October 2015. doi:
10.1109/FOCS.2015.29.

[7] John Augustine, Gopal Pandurangan, Peter Robinson, and Eli Upfal. Towards robust and efficient
computation in dynamic peer-to-peer networks. In Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’12, pages 551–569, Philadelphia, PA, USA, 2012.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=2095116.2095163.

[8] Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous
agreement protocols. In Proceedings of the Second Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983. Association for Computing
Machinery. doi:10.1145/800221.806707.

[9] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and minima of
banzhaf values. In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon,
USA, 21-23 October 1985, pages 408–416. IEEE Computer Society, 1985. doi:10.1109/SFCS.
1985.15.

[10] Michael Ben-Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine agreement in the full-information
model in O(log n) rounds. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory
of Computing, STOC ’06, pages 179–186, New York, NY, USA, 2006. ACM. URL: http://doi.
acm.org/10.1145/1132516.1132543, doi:10.1145/1132516.1132543.

[11] Michael Ben-Or and Dana Ron. Agreement in the presence of faults, on networks of bounded degree.
Inf. Process. Lett., 57(6):329–334, 1996. doi:10.1016/0020-0190(96)00015-4.

[12] Piotr Berman and Juan A. Garay. Cloture votes: (n4)-Resilient distributed consensus in (t+1) rounds.
Mathematical Systems Theory, 26(1):3–19, 1993. doi:10.1007/BF01187072.

[13] Piotr Berman and Juan A. Garay. Fast consensus in networks of bounded degree. Distributed Comput-
ing, 7(2):67–73, December 1993. doi:10.1007/BF02280836.

[14] Colin Cooper, Martin Dyer, and Catherine Greenhill. Sampling regular graphs and a peer-to-peer
network. Combinatorics, Probability, and Computing, 16(4):557–593, July 2007. doi:10.1017/
S0963548306007978.

[15] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and Christian Scheideler.
Stabilizing consensus with the power of two choices. In Rajmohan Rajaraman and Friedhelm Meyer
auf der Heide, editors, SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism
in Algorithms and Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011),
pages 149–158. ACM, 2011.

[16] Danny Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982. doi:10.1016/
0196-6774(82)90004-9.

29

https://doi.org/10.1007/978-3-662-48653-5_19
https://doi.org/10.1007/978-3-662-48653-5_19
https://doi.org/10.1109/FOCS.2015.29
https://doi.org/10.1109/FOCS.2015.29
http://dl.acm.org/citation.cfm?id=2095116.2095163
http://dl.acm.org/citation.cfm?id=2095116.2095163
https://doi.org/10.1145/800221.806707
https://doi.org/10.1109/SFCS.1985.15
https://doi.org/10.1109/SFCS.1985.15
http://doi.acm.org/10.1145/1132516.1132543
http://doi.acm.org/10.1145/1132516.1132543
https://doi.org/10.1145/1132516.1132543
https://doi.org/10.1016/0020-0190(96)00015-4
https://doi.org/10.1007/BF01187072
https://doi.org/10.1007/BF02280836
https://doi.org/10.1017/S0963548306007978
https://doi.org/10.1017/S0963548306007978
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1016/0196-6774(82)90004-9

[17] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. J.
ACM, 32(1):191–204, 1985. doi:10.1145/2455.214112.

[18] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, 2009.

[19] Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance in networks of
bounded degree. SIAM Journal on Computing, 17(5):975–988, 1988. Conference version in STOC
1986. arXiv:https://doi.org/10.1137/0217061, doi:10.1137/0217061.

[20] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzan-
tine agreement. SIAM Journal on Computing, 26(4):873–933, August 1997. doi:10.1137/
S0097539790187084.

[21] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in peer-to-peer net-
works: Algorithms and evaluation. Performance Evaluation, 63(3):241–263, 2006. P2P Com-
puting Systems. URL: https://www.sciencedirect.com/science/article/pii/
S0166531605000179, doi:https://doi.org/10.1016/j.peva.2005.01.002.

[22] Oded Goldreich, Shafi Goldwasser, and Nathan Linial. Fault-tolerant computation in the full informa-
tion model. SIAM J. Comput., 27(2):506–544, 1998. doi:10.1137/S0097539793246689.

[23] Shafi Goldwasser, Elan Pavlov, and Vinod Vaikuntanathan. Fault-tolerant distributed computing in full-
information networks. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 15–26, October 2006. doi:10.1109/FOCS.2006.30.

[24] Vassos Hadzilacos. Issues of fault tolerance in concurrent computations. PhD thesis, Harvard Univer-
sity, Cambridge, MA, 1984.

[25] Vassos Hadzilacos and Joseph Y. Halpern. Message-optimal protocols for byzantine agreement. Math.
Syst. Theory, 26(1):41–102, 1993. doi:10.1007/BF01187074.

[26] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43(4):439–561, 2006.

[27] Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani. Fast asyn-
chronous byzantine agreement and leader election with full information. ACM Transactions on Algo-
rithms, 6(4):68:1–68:28, September 2010. URL: http://doi.acm.org/10.1145/1824777.
1824788, doi:10.1145/1824777.1824788.

[28] Valerie King and Jared Saia. Breaking the O(n2) bit barrier: Scalable byzantine agreement with an
adaptive adversary. Journal of the ACM, 58(4):18:1–18:24, July 2011. URL: http://doi.acm.
org/10.1145/1989727.1989732, doi:10.1145/1989727.1989732.

[29] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’06, pages 990–
999, Philadelphia, PA, USA, 2006. Society for Industrial and Applied Mathematics. URL: http:
//dl.acm.org/citation.cfm?id=1109557.1109667.

[30] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable computation
in peer-to-peer networks. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 87–98, October 2006. doi:10.1109/FOCS.2006.77.

30

https://doi.org/10.1145/2455.214112
http://arxiv.org/abs/https://doi.org/10.1137/0217061
https://doi.org/10.1137/0217061
https://doi.org/10.1137/S0097539790187084
https://doi.org/10.1137/S0097539790187084
https://www.sciencedirect.com/science/article/pii/S0166531605000179
https://www.sciencedirect.com/science/article/pii/S0166531605000179
https://doi.org/https://doi.org/10.1016/j.peva.2005.01.002
https://doi.org/10.1137/S0097539793246689
https://doi.org/10.1109/FOCS.2006.30
https://doi.org/10.1007/BF01187074
http://doi.acm.org/10.1145/1824777.1824788
http://doi.acm.org/10.1145/1824777.1824788
https://doi.org/10.1145/1824777.1824788
http://doi.acm.org/10.1145/1989727.1989732
http://doi.acm.org/10.1145/1989727.1989732
https://doi.org/10.1145/1989727.1989732
http://dl.acm.org/citation.cfm?id=1109557.1109667
http://dl.acm.org/citation.cfm?id=1109557.1109667
https://doi.org/10.1109/FOCS.2006.77

[31] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. Sublinear
bounds for randomized leader election. Theoretical Computer Science, 561:134–143, 2015. Special
Issue on Distributed Computing and Networking. URL: https://www.sciencedirect.com/
science/article/pii/S0304397514001029, doi:https://doi.org/10.1016/j.
tcs.2014.02.009.

[32] Ching Law and Kai-Yeung Siu. Distributed construction of random expander networks. In IEEE
INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications
Societies (IEEE Cat. No.03CH37428), volume 3, pages 2133–2143 vol.3, March 2003. doi:10.
1109/INFCOM.2003.1209234.

[33] Peter Mahlmann and Christian Schindelhauer. Distributed random digraph transformations for peer-to-
peer networks. In Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’06, pages 308–317, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1148109.1148162.

[34] Yifan Mao, Soubhik Deb, Shaileshh Bojja Venkatakrishnan, Sreeram Kannan, and Kannan Srinivasan.
Perigee: Efficient peer-to-peer network design for blockchains. In Proceedings of the 39th Symposium
on Principles of Distributed Computing, PODC ’20, pages 428–437, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3382734.3405704.

[35] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press, Cambridge CB2 8BS, United Kingdom, 2nd edition,
2017.

[36] Edgar M. Palmer. Graphical Evolution: An Introduction to the Theory of Random Graphs. John Wiley
& Sons, Inc., USA, 1985.

[37] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-diameter peer-to-peer net-
works. IEEE Journal on Selected Areas in Communications, 21(6):995–1002, August 2003. Con-
ference version: IEEE Symposium on the Foundations of Computer Science (FOCS), 2001. doi:
10.1109/JSAC.2003.814666.

[38] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport:. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228–234, April 1980. doi:10.1145/322186.322188.

[39] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Indus-
trial and Applied Mathematics, 2000. URL: https://epubs.siam.org/doi/abs/10.
1137/1.9780898719772, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.
9780898719772, doi:10.1137/1.9780898719772.

[40] Michael O. Rabin. Randomized byzantine generals. In Proceedings of the 24th Annual Symposium on
Foundations of Computer Science, SFCS ’83, pages 403–409, USA, 1983. IEEE Computer Society.
doi:10.1109/SFCS.1983.48.

[41] Eli Upfal. Tolerating a linear number of faults in networks of bounded degree. Information and
Computation, 115(2):312–320, 1994. URL: http://www.sciencedirect.com/science/
article/pii/S0890540184710996, doi:https://doi.org/10.1006/inco.1994.
1099.

31

https://www.sciencedirect.com/science/article/pii/S0304397514001029
https://www.sciencedirect.com/science/article/pii/S0304397514001029
https://doi.org/https://doi.org/10.1016/j.tcs.2014.02.009
https://doi.org/https://doi.org/10.1016/j.tcs.2014.02.009
https://doi.org/10.1109/INFCOM.2003.1209234
https://doi.org/10.1109/INFCOM.2003.1209234
https://doi.org/10.1145/1148109.1148162
https://doi.org/10.1145/3382734.3405704
https://doi.org/10.1109/JSAC.2003.814666
https://doi.org/10.1109/JSAC.2003.814666
https://doi.org/10.1145/322186.322188
https://epubs.siam.org/doi/abs/10.1137/1.9780898719772
https://epubs.siam.org/doi/abs/10.1137/1.9780898719772
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898719772
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898719772
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1109/SFCS.1983.48
http://www.sciencedirect.com/science/article/pii/S0890540184710996
http://www.sciencedirect.com/science/article/pii/S0890540184710996
https://doi.org/https://doi.org/10.1006/inco.1994.1099
https://doi.org/https://doi.org/10.1006/inco.1994.1099

	Introduction
	Model
	Our Contributions
	Prior Work and Challenges
	A High-level Overview of our Approach
	Additional Related Work

	Byzantine Random Walk Protocol and Theorem
	Definitions and Core
	Byzantine Random Walk Protocol

	Almost-Everywhere Reliable Information Dissemination
	Fully-Distributed Reliable Information Dissemination
	Low-Congestion Reliable Information Dissemination

	Eventual Almost-Everywhere Common Coin
	Eventual Almost-Everywhere Common Coin with o(n/logn) Tolerance
	Faster Eventual Almost-Everywhere Common Coin

	Fully-Distributed Byzantine Agreement Protocol
	Conclusion and Open Problems

