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Abstract. We show that there exists c > 0 such that any subset of {1, . . . , N}
of density at least (log logN)−c contains a nontrivial progression of the form
x, x+y, x+y2. This is the first quantitatively effective version of the Bergelson–
Leibman polynomial Szemerédi theorem for a progression involving polynomials
of differing degrees. Our key innovation is an inverse theorem characterising sets
for which the number of configurations x, x + y, x + y2 deviates substantially
from the expected value. In proving this, we develop the first effective instance
of a concatenation theorem of Tao and Ziegler, with polynomial bounds.
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1. Introduction

Gowers [Gow01a, Problem 11.4] has posed the problem of obtaining quantitative
bounds in the polynomial Szemerédi theorem of Bergelson and Leibman [BL96].
This states that given P1, . . . , Pm ∈ Z[y] all having zero constant term, any subset
of {1, 2, . . . , N} lacking the polynomial progression

(1.1) x, x+ P1(y), . . . , x+ Pm(y) (y ∈ Z \ {0})
has size o(N). Hitherto, all effective versions of this result have been restricted
to two-term progressions [Sár78a, Sár78b, PSS88, BPPS94, Sli03, Luc06, Ric19],
arithmetic progressions with common difference equal to a perfect power [Gow98,
Gow01b, Pre17], or are concerned with the analogous question over finite fields
[BC17, Pel18, DLS20, Pel19]. In this paper, we obtain the first bound over the
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and NSF grant DMS-2401117.
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integers for a progression of length greater than two and involving polynomials of
differing degrees.

Theorem 1.1. There exists c > 0 such that if A ⊂ {1, 2, . . . , N} contains no
progression of the form1

(1.2) x, x+ y, x+ y2 (y 6= 0),

then2

(1.3) |A| � N(log logN)−c.

Remark. Keeping track of exponents in our proof, c = 1/2150 is admissible.

Our proof of Theorem 1.1 adapts a strategy of the first author [Pel19] from finite
fields to the integer setting. There are multiple issues with applying these ideas in
the integers, so the proof of Theorem 1.1 requires several significant modifications
and additions. The key insight of [Pel19] is that if one can control the count of an
affine independent polynomial progression by the Gowers U s-norm, then one can
use this and an understanding of shorter progressions to prove control of the count
by the U s−1-norm. Thus, if one understands shorter progressions and can show
control by any U s-norm, then one can deduce control by the U1-seminorm. As the
U1-seminorm measures correlation with constant functions, this is very powerful
information.

Over the integers there are certain ‘local’ issues that preclude effective control by
the global U1-seminorm. Instead, we control our counting operator by an average
of U1-seminorms, each localised to a progression of length N1/2 and small common
difference.

Theorem 1.2 (Inverse theorem for nonlinear Roth). Let f : Z→ C be a 1-bounded
function supported in the interval [N ] := {1, . . . , N} and let δ > 0. Suppose that∣∣∣∣∣∣

∑
x∈Z

∑
y∈[N1/2]

f(x)f(x+ y)f(x+ y2)

∣∣∣∣∣∣ ≥ δN
3
2 .

Then either N � δ−O(1) or there exist positive integers q � δ−O(1) and N ′ �
δO(1)N1/2 such that

(1.4)
∑
x∈Z

∣∣∣∣∣∣
∑
y∈[N ′]

f(x+ qy)

∣∣∣∣∣∣� δO(1)NN ′.

To derive our density bound (Theorem 1.1), we use our inverse theorem (Theo-
rem 1.2) to prove that sets lacking the nonlinear Roth configuration have a density
increment on a progression with small common difference. In a sequel [PP20] we
further bootstrap our inverse theorem (Theorem 1.2) to obtain a larger density
increment, and thereby replace the double logarithm in (1.3) with a single loga-
rithm. This bootstrapping procedure follows the (now standard) energy increment
procedure of Heath–Brown and Szemerédi [HB87, Sze90], and to avoid obfuscat-
ing our argument with further technicalities, we delegate this improvement to a
subsequent paper.

1We call this the nonlinear Roth configuration, after Bourgain and Chang [BC17].
2See §1.1 for our conventions regarding asymptotic notation such as ‘�’.
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A variety of perspectives, both ergodic and combinatorial, can be used to es-
tablish that the count of nonlinear Roth configurations is controlled by a U1-
seminorm, in a qualitative sense. The novelty of Theorem 1.2 is that this is demon-
strated in a quantitatively effective manner, with polynomial bounds, by avoiding
standard tools of higher order Fourier analysis (which give poorer bounds). In-
deed, whilst Gowers norms of high degree such as the U5-norm play a role in
our argument, we completely avoid using the inverse theorem for these norms,
the equidistribution theory of nilsequences, or any version of the arithmetic reg-
ularity lemma, requiring only Fourier analysis and numerous applications of the
Cauchy–Schwarz inequality.

Perhaps the biggest difficulty in adapting the argument of [Pel19] to the inte-
ger setting is in first showing that the count of nonlinear Roth configurations is
controlled by some global U s-norm. While this is not too difficult to accomplish
in finite fields using Bergelson and Leibman’s PET induction scheme3 [BL96], in
the integers such an argument yields control in terms of an average of certain con-
strained Gowers norms. We must then show, with quantitative bounds, that this
average of constrained Gowers norms is controlled by a genuine global U s-norm.
Such ‘concatenation’ results have been proved by Tao and Ziegler [TZ16]; however
the quantitative dependence in their argument is (at best) tower-type. We offer
a different proof of an instance of their concatenation theorem, one that yields
polynomial bounds.

This paper is organised as follows. In §1.2 we give a more detailed outline of
the proof of Theorem 1.1. In §2 we derive Theorem 1.1 from a density incre-
ment lemma, whose proof is deduced from a generalisation of our inverse theorem
(Theorem 1.2) in §8. This generalised inverse theorem (Theorem 7.1) is proved
in §7. In §3 we show that our counting operator is controlled by an average of
constrained Gowers norms, and in §5 we show that these constrained averages are
controlled by a single global Gowers norm of higher degree. This ‘concatenation’
argument uses an arithmetic variant of the box norm inverse theorem, which we
state and prove in §4. Finally in §6 we describe our degree lowering procedure,
showing how global control of our configuration by the U s-norm implies global
control by the U s−1-norm.

Acknowledgements. We thank Mariusz Mirek, Ashwin Sah, Mehtaab Sawhney,
and the referee for helpful comments and suggestions.

1.1. Notation.

1.1.1. Standard conventions. We use N to denote the positive integers. For real
X ≥ 1, write [X] = {1, 2, . . . , bXc}. A complex-valued function is 1-bounded if
the modulus of the function does not exceed 1.

We use counting measure on Z, so that for f, g : Z→ C we have

〈f, g〉 :=
∑
x

f(x)g(x) and ‖f‖Lp :=

(∑
x

|f(x)|p
) 1

p

.

3PET stands for either polynomial ergodic theorem or polynomial exhaustion technique in
various works of Bergelson and Leibman.
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Any sum of the form
∑

x is to be interpreted as a sum over Z. We use Haar
probability measure on T := R/Z, so that for measurable F : T→ C we have

‖F‖Lp :=

(∫
T
|F (α)|pdα

) 1
p

=

(∫ 1

0

|F (α)|pdα
) 1

p

For α ∈ T we write ‖α‖ for the distance to the nearest integer.
For a finite set S and function f : S → C, denote the average of f over S by

Es∈Sf(s) :=
1

|S|
∑
s∈S

f(s).

Given functions f, g : G → C on an additive group with measure µG we define
their convolution by

(1.5) (f ∗ g)(x) :=

∫
G

f(x− y)g(y)dµG,

when this makes sense.
We define the Fourier transform of f : Z→ C by

(1.6) f̂(α) :=
∑
x

f(x)e(αx) (α ∈ T),

again, when this makes sense. Here e(α) stands for e2πiα.
The difference function of f : Z→ C is the function ∆hf : Z→ C given by

(1.7) ∆hf(x) = f(x)f(x+ h).

Iterating, we set

∆h1,...,hsf := ∆h1 . . .∆hsf.

This allows us to define the Gowers U s-norm

(1.8) ‖f‖Us :=

( ∑
x,h1,...,hs

∆h1,...,hsf(x)

)1/2s

.

When S ⊂ Z we define the localised Gowers U s-norm

(1.9) ‖f‖Us(S) := ‖f1S‖Us .

Notice that the left-hand side of (1.4) is equal to∑
x

‖f‖U1(x+q·[N ′]) .

For a function f and positive-valued function g, we write f � g or f = O(g) if
there exists a constant C such that |f(x)| ≤ Cg(x) for all x. We write f = Ω(g)
if f � g. We sometimes opt for a more explicit approach, using C to denote a
large absolute constant, and c to denote a small positive absolute constant. The
values of C and c may change from line to line.
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1.1.2. Local conventions. Up to normalisation, all of the above are well-used in the
literature. Next we list notation specific to our paper. We have tried to minimise
this in order to aid the casual reader.

The quantity (N/q)1/2 appears repeatedly in our arguments, where q is an in-
teger fixed throughout the majority of our paper. Unless otherwise specified, we
therefore adopt the convention that

(1.10) M :=
⌊√

N/q
⌋
.

Define the counting operator on the functions fi : Z→ C by

(1.11) Λq(f0, f1, f2) :=
∑
x∈Z

∑
y∈N

f0(x)f1(x+ y)f2(x+ qy2).

When the fi all equal f we simply write Λq(f).
For a real parameter H ≥ 1, we use µH : Z → [0, 1] to represent the following

normalised Fejér kernel

(1.12) µH(h) :=
1

bHc

(
1− |h|
bHc

)
+

=
(1[H] ∗ 1[H])(h)

bHc2
.

For a multidimensional vector h ∈ Zd we write

(1.13) µH(h) := µH(h1) · · ·µH(hd).

We observe that this is a probability measure on Zd with support in the box
(−H,H)d.

1.2. An outline of our argument.

1.2.1. The density increment. Our proof proceeds via a density increment ar-
gument, the same method of proof used by Roth [Rot53] and Gowers [Gow98,
Gow01b] to bound the size of sets lacking arithmetic progressions. In Gowers’ for-
mulation, if A ⊂ [N ] has density δ := |A|/N and lacks (say) a 4-term arithmetic
progression, then either N � δ−O(1) or there exists a progression P = a+ q · [N ′]
of length N ′ � N δO(1)

on which A has increased density |A ∩ P |/|P | ≥ δ + δO(1).
Consider the rescaled version A′ ⊂ [N ′] of A ∩ P defined by

(1.14) A′ := {n ∈ [N ′] : a+ qn ∈ A ∩ P} ,
and note that A′ also lacks 4-term arithmetic progressions. We then repeat this
process with A′ in place of A. This iteration cannot continue indefinitely; indeed
since the density cannot exceed one, the procedure must terminate in O(δ−O(1))
steps. The only explanation for termination is that the the length N ′′ of the
interval at the final stage of our iteration is too short, N ′′ � δ−O(1), and since

N ′′ ≥ N exp(−δO(1)), this allows us to extract a bound on δ.
The success of the above argument relies crucially on the fact that 4-term arith-

metic progressions are preserved under translation and scaling, and similarly the
argument in [Pre17] relies on the fact that arithmetic progressions with common
difference equal to a perfect dth power are preserved under translation and scaling
by a perfect dth power. These are very special properties lacked by the vast major-
ity of polynomial progressions, including the nonlinear Roth configuration (1.2).

Indeed, if A ⊂ [N ] has no nontrivial configurations of the form (1.2), then the
rescaled set A′ ⊂ [N ′] defined as in (1.14) has no nontrivial configurations of the
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form x, x+ y, x+ qy2. But if q > N ′, then every subset of [N ′] has this property
because x and x + qy2 cannot both lie in [N ′] when y 6= 0, and thus there is no
hope of continuing the density increment argument in this case. In contrast, the
largeness of q > N ′ does not affect the arguments of [Rot53, Gow98, Gow01b],
because these papers consider progressions that are preserved under scaling by q
(or qd in the case of [Pre17]).

To deal with the poor behavior of the nonlinear Roth configuration under scal-
ing, we prove a stronger density increment lemma that ensures that the arithmetic
progression on which we find a density increment has very small step size. Our
methods show that if A ⊂ [N ] has density δ := |A|/N and lacks nontrivial con-
figurations of the form (1.2), then there exists a progression P = a+ q · [N ′] with
common difference q � δ−O(1) and length N ′ � δO(1)N1/2 such that we have the
density increment

(1.15)
|A ∩ P |
|P |

≥ δ + δO(1).

Defining A′ ⊂ [N ′] to be the rescaled set as in (1.14), we thus see that A′ has
increased density in [N ′] and lacks nontrivial configurations of the form

(1.16) x, x+ y, x+ qy2.

The coefficient q is sufficiently small that the methods employed to treat our
original configuration (1.2) still apply to the new configuration (1.16), allowing us
to prove a similar density increment result for sets lacking (1.16). We can thus
continue the density increment iteration, which terminates in at most O(δ−O(1))
steps. Such an argument yields a density bound of the form

δ � (log logN)−c

for some small absolute constant c > 0.
Our general density increment result is stated in Lemma 2.1 and concerns the

configuration (1.16). It is a simple deduction from our inverse theorem (Theorem
1.2), or more precisely a generalisation (Theorem 7.1) of our inverse theorem, ex-
tending from the nonlinear Roth configuration (1.2) to its dilated analogue (1.16).
In the remainder of this section we describe the ideas behind our inverse theorem,
Theorem 1.2.

1.2.2. Quantitative concatenation. To prove Theorem 1.2, we first prove that our
counting operator

(1.17) Ex∈[N ]Ey∈[M ]f0(x)f1(x+ y)f2(x+ y2)

is controlled by the U5-norm of f2. The purpose of this subsection is to sketch
how we do this with polynomial bounds.

By repeatedly applying both the Cauchy–Schwarz inequality and the van der
Corput inequality, we show in §3 that, when f0, f1, f2 : Z → C are 1-bounded
functions supported in the interval [N ], largeness of the counting operator (1.17)
implies largeness of (a weighted version of) the sum

(1.18)
∑

a,b∈[N1/2]

∑
h1,h2,h3∈[N1/2]

∑
x

∆ah1,bh2,(a+b)h3f2(x),
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which is always real and nonnegative by [GT10, Appendix B]. This deduction is
made following the PET induction scheme of Bergelson and Leibman [BL96]. The
gain in working with the counting operator (1.18) over (1.17) is that univariate
polynomials such as y2, whose image constitutes a sparse set, have been replaced
by bilinear forms such as ah1, whose image is much denser.

In §§4–5, we show that largeness of (1.18) implies largeness of ‖f2‖U5 . If there
were no dependence between the coefficients of the hi in (1.18), then it would be
easy to bound (1.18) in terms of ‖f2‖Us for some s� 1. We illustrate why this is
the case for the sum

(1.19)
∑

a,b,c∈[N1/2]

∑
h1,h2,h3∈[N1/2]

∑
x

∆ah1,bh2,ch3f2(x).

The following fact, the formal version of which is Lemma 5.3, is key.

Claim 1.3. If
∑

a,h∈[N1/2]

∑
x

∆ahf(x) is large then so is ‖f‖U2.

Sketch proof. Apply the Cauchy–Schwarz inequality to double the a and h vari-
ables, yielding a bound in terms of

(1.20)
∑

a,a′∈[N1/2]

∑
h,h′∈[N1/2]

∑
x

∆ah−a′h′f(x).

For a random choice of a, a′ ∈ [N1/2], the progression a · [N1/2]− a′ · [N1/2] covers
a large portion of the interval (−N,N) relatively smoothly. One can make this
intuition rigorous using a bit of Fourier analysis and thus deduce largeness of the
sum

∑
k∈(−N,N)

∑
x ∆kf(x)e(αk) for some α ∈ T. Largeness of ‖f‖U2 then follows

by another application of the Cauchy–Schwarz inequality. �

Applying Claim 1.3 three times yields largeness of ‖f2‖U6 .
The problem remains of how to handle the dependency between the differencing

parameters in (1.18). If we were not concerned with quantitative bounds, we could
apply a ‘concatenation’ theorem of Tao and Ziegler [TZ16, Theorem 1.24] to obtain
largeness of the U9-norm of f2. However, the qualitative nature of their result
means that it cannot be used to obtain bounds in the nonlinear Roth theorem.
In its place we prove Theorem 5.6, which is a special case of [TZ16, Theorem
1.24], using a very different argument that gives polynomial bounds. We spend
the remainder of this subsection sketching the argument.

We begin by viewing (1.18) as the average

(1.21)
∑

a,h1∈[N1/2]

‖∆ah1f2‖a ,

where

(1.22) ‖f‖4a :=
∑

b∈[N1/2]

∑
h2,h3∈[N1/2]

∑
x

∆bh2,(a+b)h3f(x).

One can view this as an average of 2-dimensional Gowers box norms where, for
fixed b, the inner sum corresponds to a box norm in the ‘directions’ b and a + b.
Note that if we could bound the quantity ‖∆ah1f2‖a in terms of the U4-norm of
∆ah1f2 for many pairs (a, h1), then by Claim 1.3 we deduce largeness of the U5-
norm of f2. We show that, on average, one can indeed control ‖ · ‖a in terms of
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‖ · ‖U4 , with polynomial bounds. The following can be extracted from the proof
of (the more general) Theorem 5.6.

Lemma 1.4. For each a ∈ [N1/2] let fa : Z→ C be a 1-bounded function supported
in the interval [N ]. Suppose that

Ea∈[N1/2]‖fa‖4a ≥ δ
∥∥1[N ]

∥∥4
a
.

Then
Ea∈[N1/2]‖fa‖16U4 � δO(1)

∥∥1[N ]

∥∥16
U4 .

To finish this subsection, we briefly discuss the proof of this key lemma. For
most choices of a, b ∈ [N1/2], the ‘directions’ b and a+ b of the box norm

(1.23)
∑

h2,h3∈[N1/2]

∑
x

∆bh2,(a+b)h3fa(x)

are close to ‘independent’, in the sense that at least one of the directions b and
a+ b is large and together they have small greatest common divisor. The proof of
Lemma 1.4 thus begins by viewing ‖ · ‖a as an average of box norms

(1.24) ‖f‖4�(X,Y ) :=
∑

x1,x2∈X,y1,y2∈Y

f(x1, y1)f(x1, y2)f(x2, y1)f(x2, y2).

It is easy to show that largeness of ‖f‖�(X,Y ) implies that f correlates with a
function of the form (x, y) 7→ l(x)r(y). We show, analogously, that provided b
and a + b are not too small and have greatest common divisor not too large,
then largeness of the arithmetic box norm (1.23) implies that fa correlates with a
product gbha+b of 1-bounded functions, where gb is b-periodic and ha+b is almost
periodic under shifts by integer multiples of a + b. As a consequence, for most
a ∈ [N1/2], largeness of ‖fa‖a implies largeness of

(1.25)
∑

b∈[N1/2]

∑
x

fa(x)gb(x)ha+b(x).

In fact, an application of the Cauchy–Schwarz inequality allows us to give an
explicit description of ha+b in terms of fa, namely we may take it to be of the form

(1.26) ha+b(x) = Ek∈[N1/2]fa(x+ (a+ b)k)gb(x+ (a+ b)k).

This presentation makes apparent the almost periodicity of ha+b.

Claim 1.5. Largeness of (1.25) implies that ha+b has large U3-norm on average
over b ∈ [N1/2].

Let us first show why Claim 1.5 in turn implies that fa has large U4-norm,
completing our sketch proof of Lemma 1.4. The expression (1.26) and the triangle
inequality for Gowers norms together imply that largeness of Eb∈[N1/2]‖ha+b‖U3

implies largeness of Eb∈[N1/2]‖fagb‖U3 . Utilising the b-periodicity of gb we have

(1.27) ‖fagb‖U3 = Ek∈[N1/2]‖fa(·)gb(·+ bk)‖U3 .

The product fa(·)gb(·+bk) resembles a difference function in the direction b. Indeed
the Gowers–Cauchy–Schwarz inequality (see [Tao12, Exercise 1.3.19]) shows that
if (1.27) is large on average over b ∈ [N1/2] then so is

Eb,k∈[N1/2]‖∆bkfa‖U3
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Largeness of ‖fa‖U4 then follows from Claim 1.3.
Finally we sketch the proof of Claim 1.5. The Cauchy–Schwarz inequality allows

us to remove the weight fa(x) from (1.25) and deduce largeness of∑
x

∑
b,b′∈[N1/2]

gb(x)ha+b(x)gb′(x)ha+b′(x).

Using the periodicity properties of gb, gb′ and ha+b, this is approximately equal to∑
x

∑
b,b′∈[N1/2]

k1,k2,k3∈[N1/2]

gb(x− bk1)ha+b(x− (a+ b)k2)gb′(x− b′k3)ha+b′(x).

Changing variables in x, we obtain largeness of the sum∑
x

∑
b,b′∈[N1/2]

k1,k2,k3∈[N1/2]

gb(x+ (a+ b)k2 + b′k3)ha+b(x+ bk1 + b′k3)

gb′(x+ bk1 + (a+ b)k2)ha+b′(x+ bk1 + (a+ b)k2 + b′k3).

The point here is that all but the last function have arguments depending on at
most two of the bilinear forms bk1, (a+ b)k2 and b′k′1. This enables us to employ
the Gowers–Cauchy–Schwarz inequality (in the form of Lemma A.4) to deduce
largeness of a sum similar to∑

x

∑
b,b′∈[N1/2]

k1,k2,k3∈[N1/2]

∆bk1, (a+b)k2, b′k3ha+b′(x).

The utility of this expression is that the directions of the differencing param-
eters are all ‘independent’ of the direction of periodicity of ha+b′ . Indeed the
approximate (a+ b′)-periodicity of ha+b′ means that one can replace ∆yha+b′ with
Ek∆y+(a+b′)kha+b′ at the cost of a small error. We thereby obtain largeness of

(1.28)
∑
x

∑
b,b′∈[N1/2]

∑
k1,k2,k3∈[N1/2]

k′1,k
′
2,k
′
3∈[N1/2]

∆bk1+(a+b′)k′1, (a+b)k2+(a+b′)k′2, b
′k3+(a+b′)k′3

ha+b′(x).

For a random triple (a, b, b′) ∈ [N1/2] the greatest common divisor of the pairs
(b, a + b′), (a + b, a + b′) and (b′, a + b′) are all small, and these are the pairs
appearing in the differencing parameters of (1.28). The argument used to treat
(1.20) may therefore be employed to replace (1.28) with∑

x

∑
b′∈[N1/2]

∑
k1,k2,k3∈[N ]

∆k1,k2,k3ha+b′(x),

and thereby yield Claim 1.5.

1.2.3. Degree lowering. After we have shown that the counting operator (1.17)
is controlled by the U5-norm of f2, we carry out a ‘degree lowering’ argument.
This technique originated in the work [Pel19] in finite fields. The basic idea is
that, under certain conditions, one can combine U s-control with understanding of
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two-term progressions to deduce U s−1-control. Repeating this gives a sequence of
implications

U5-control =⇒ U4-control =⇒ U3-control =⇒ U2-control =⇒ U1-control.

Despite the appearance of the U5-norm, U4-norm, and U3-norm, the degree low-
ering argument, both in [Pel19] and here, does not require the U s-inverse theorem
for any s ≥ 3. Instead it relies on Fourier analysis in the place of these inverse
theorems.

As was mentioned in §1, adapting the degree lowering argument of [Pel19] to the
integer setting requires several significant modifications. The first modification is
that the U s-control described above is control in terms of the U s-norm of the dual
function4

(1.29) F (x) := Ey∈[N1/2]f0(x− y2)f1(x+ y − y2).

Thus, to begin the degree lowering argument, we must show that the counting
operator (1.17) is controlled by the U5-norm of the dual ‖F‖U5 . To do this, we
use the fact that the counting operator is controlled by ‖f2‖U5 together with a
simple application of the Cauchy–Schwarz inequality; for details see §7.

We illustrate our degree lowering procedure by sketching how U3-control of the
dual (1.29) implies U2-control, starting from the assumption that

‖F‖8U3 ≥ δ
∥∥1[N ]

∥∥8
U3 .

Using the fact that ‖F‖8U3 =
∑

h ‖∆hF‖4U2 and applying the U2-inverse theorem,
we deduce the existence of a function φ : Z → T such that, for at least � δN
choices of differencing parameter h, we have

(1.30)

∣∣∣∣∣∣
∑
x∈[N ]

∆hF (x)e(φ(h)x)

∣∣∣∣∣∣� δN.

Note that if, in the above inequality, we could replace the function φ(h) by a
constant β ∈ T not depending on h, then we could easily deduce largeness of
‖F‖U2 . Indeed, writing g(h) for the conjugate phase of the sum inside absolute
values, this would give∑

x,h

g(h)F (x+ h)F (x)e(βx)� δO(1)N3,

and the usual argument5 showing U2-control of the equation x + y = z implies
that ‖F‖4U2 � δO(1)

∥∥1[N ]

∥∥
U2 . It thus remains to show that such a β exists.

Expanding the definition of the difference and dual functions in (1.30) and
using the Cauchy–Schwarz inequality (as is done in greater generality in the proof
of Lemma 6.3), one can show that there exists h′ such that for many h satisfying

4This terminology comes from the fact that the counting operator (1.17) equals the inner
product of f2 with F .

5One can either use orthogonality and extraction of a large Fourier coefficient, as in the proof
of Lemma A.1, or use two applications of the Cauchy–Schwarz inequality.
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(1.30) we have∣∣∣∣∣∣
∑
x

∑
y∈[N1/2]

∆h−h′f0(x)∆h−h′f1(x+ y)e([φ(h)− φ(h′)][x+ y2])

∣∣∣∣∣∣� δO(1)N3/2

Further application of the Cauchy–Schwarz inequality allows us to remove the
difference functions from the above inequality and deduce largeness of the expo-
nential sum ∑

z∈[N1/2]

∣∣∣∣∣∣
∑

y∈[N1/2]

e(2[φ(h)− φ(h′)] yz)

∣∣∣∣∣∣ .
Summing the inner geometric progression and using a Vinogradov-type lemma
then shows that φ(h)− φ(h′) is major arc. There are very few major arcs, so the
pigeonhole principle gives the existence of β0 ∈ T such that φ(h) − φ(h′) is very
close to β0 for many h ∈ (−N,N) that also satisfy (1.30). We may therefore take
β = β0 + φ(h′) in the argument following (1.30).

2. The density increment

In this section we prove Theorem 1.1 using the following lemma, which is derived
from our inverse theorem in §8.

Lemma 2.1 (Density increment). Suppose that A ⊂ [N ] satisfies |A| ≥ δN and
lacks the configuration

(2.1) x, x+ y, x+ qy2 (y 6= 0).

Then either N � q4δ−O(1) or there exists q′ � δ−O(1) and N ′ � δO(1)q−3/2N1/2

such that

(2.2) |A ∩ (a+ qq′ · [N ′])| ≥
(
δ + Ω

(
δO(1)

))
N ′.

Proof of Theorem 1.1 given Lemma 2.1. Note first that if A lacks the configura-
tion (2.1), then the set

{x : a+ qq′x ∈ A}
lacks configurations of the form

x, x+ y, x+ q2q′y2 (y 6= 0).

Let A ⊂ [N ] have size δN and lack (1.2). Setting A0 := A, N0 := N and q0 = 1,
let us suppose we have a sequence of tuples (Ai, Ni, qi) for i = 0, 1, . . . , n that each
satisfy the following:

(i) Ai lacks configurations of the form

x, x+ y, x+ q2
i

0 q
2i−1

1 · · · q2i−1qiy2 (y 6= 0).

(ii) qi � δ−O(1);
(iii) Ai ⊂ [Ni] and for i ≥ 1 we have

|Ai|
Ni

≥ δ + Ω
(
iδO(1)

)
;

(iv) for i ≥ 1 we have the lower bound

Ni � δO(1)
(
q2

i−1

0 · · · qi−1
)−3/2

N
1/2
i−1.
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By Lemma 2.1, at stage n we either have

(2.3) Nn �
(
q2

n

0 q
2n−1

1 · · · q2n−1qn
)4
δ−O(1)

and the process terminates, or we obtain (An+1, Nn+1, qn+1) satisfying conditions
(i)–(iv).

The density of An on [Nn] cannot exceed 1, so the process must terminate at
some n � δ−O(1). At the point of termination, the smallness assumption (2.3)
must hold, so that

Nn ≤ O(1/δ)O(2n) ≤ exp exp
(
O
(
δ−O(1)

))
.

On the other hand, iteratively applying the lower bound (iv), we have

Nn ≥
N

1/2
n−1(

q2
n−1

0 · · · qn−1
)3/2

δ−O(1)

≥ N1/2n
[(
q2

n−1

0 · · · qn−1
)3/2

δ−O(1)

]−(1+ 1
2
+ 1

4
+···+21−n)

≥ exp
(
logN exp

(
−O
(
δ−O(1)

)))
exp exp

(
−O
(
δ−O(1)

))
.

Taking logarithms and comparing upper and lower bounds for Nn yields the bound
claimed in Theorem 1.1. �

3. PET induction

We prove Lemma 2.1 over the course of §§3–8. We begin in §§3–5 by showing
how the counting operator Λq(f0, f1, f2), as defined in (1.11), is controlled by the
U5-norm of f2. This argument starts with the PET induction scheme of Bergelson–
Leibman [BL96], which ‘linearises’ a polynomial progression, replacing univariate
polynomials such as y2 with bilinear forms ah. The outcome of this procedure is
Lemma 3.2.

For the following, we recall our definition (1.12) of the Fejér kernel µH and our
definition (1.7) of the difference operator ∆h.

Lemma 3.1 (van der Corput inequality). Let f : Z→ C and 1 ≤ H ≤M . Then
we have the estimate∣∣∣∣ ∑

y∈[M ]

f(y)

∣∣∣∣2 ≤ (M +H)
∑
h

µH(h)
∑

y∈[M ]∩([M ]−h)

∆hf(y).

Proof. This is standard, see for instance [Pre17, Lemma 3.1]. �

Before embarking on the following, we remind the reader of our conventions
(1.10), (1.11), and (1.13) regardingM , Λq, and the multivariate Fejér kernel µH(h).

Lemma 3.2 (Linearisation). Let fi : Z→ C be 1-bounded functions with support
in [N ]. Then for any 1 ≤ H1, H2 ≤M we have∣∣∣∣Λq(f0, f1, f2)

NM

∣∣∣∣32 � E|a|,|b|<H1

∑
h∈Z3

µH2(h)Ex∈[N ]∆2q(a+b)h1, 2qbh2, 2qah3f2(x)+
H1 +H2

M
.
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Proof. We repeatedly apply the Cauchy–Schwarz inequality followed by van der
Corput’s inequality and a change of variables. We note that for y ∈ N, if
f0(x)f1(x+y)f2(x+qy2) 6= 0 for some x, then y ∈ [M ], since qy2 = (x+qy2)−x ∈
[N ]− [N ]. A first application of this procedure gives∣∣∣∣Λq(f0, f1, f2)

NM

∣∣∣∣2 �
1

NM

∑
a

µH1(a)
∑
x

∑
y∈[M ]∩([M ]−a)

∆af1(x)f2
(
x+ qy2 − y

)
f2
(
x+ q(y + a)2 − y

)
.

Extending the sum over y ∈ [M ] ∩ ([M ]− a) to one over all of [M ] introduces an
error of size

� 1

M

∑
a

µH1(a)|a| � H1

M
.

Thus,∣∣∣∣ 1

NM
Λq(f0, f1, f2)

∣∣∣∣2 �
H1

M
+

1

NM

∑
a

µH1(a)
∑
x

∑
y∈[M ]

∆af1(x)f2
(
x+ qy2 − y

)
f2
(
x+ q(y + a)2 − y

)
.

A second application then gives that
∣∣ 1
NM

Λq(f0, f1, f2)
∣∣4 is

� H1

M
+

1

NM
E|a|<H1

∑
b

µH1(b)
∑
x

∑
y∈[M ]

f2(x)f2
(
x+ 2qay + qa2

)
f2
(
x+ 2qby + qb2 − b

)
f2
(
x+ 2q(a+ b)y + q(a+ b)2 − b

)
,

where we have used that ‖µH1‖2L2 ≤ H−11 .
Now that we have linearised y2, we switch to shifting y by integers of size at

most H2. A third application therefore gives that
∣∣ 1
NM

Λq(f0, f1, f2)
∣∣8 is

� H1 +H2

M
+

1

NM
E|a|,|b|<H1

∑
h1

µH2(h1)
∑
x

∑
y∈[M ]

∆2qah1f2
(
x+ qa2

)
∆2qbh1f2

(
x+ 2q(b− a)y + qb2 − b

)
∆2q(a+b)h1f2

(
x+ 2qby + q(a+ b)2 − b

)
,

a fourth application that
∣∣ 1
NM

Λq(f0, f1, f2)
∣∣16 is

� H1 +H2

M
+

1

NM
E|a|,|b|<H1

∑
h1,h2

µH2(h1)µH2(h2)
∑
x

∑
y∈[M ]

∆2qbh1,2q(b−a)h2f2
(
x+ qb2 − b

)
∆2q(a+b)h1,2qbh2f2

(
x+ 2qay + q(a+ b)2 − b

)
,

and a final application that
∣∣ 1
NM

Λq(f0, f1, f2)
∣∣32 is

� H1 +H2

M
+

1

N
E|a|,|b|<H1

∑
h∈Z3

µH2(h)
∑
x

∆2q(a+b)h1,2qbh2,2qah3f2
(
x
)
,
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after making the change of variables x 7→ x− 2qay− q(a+ b)2− b. Recalling that
f2 is supported on [N ] completes the proof. �

4. An inverse theorem for the arithmetic box norm

The objective in this section is to characterise those 1-bounded functions f :
Z→ C with support in [N ] for which the quantity

(4.1)
∑
h∈Z2

∑
x

µH(h)∆ah1,bh2f(x)

is large. One can think of this as an arithmetic analogue of the two-dimensional
‘box norm’ (1.24), with differencing parameters pointing in the ‘directions’ a and
b. In our eventual application we are able to ensure that a and b are a generic pair
of integers from the interval [N1/2]. In particular, at least one of them has size
proportional to N1/2 and their greatest common divisor is small. One may think
of this as a proxy for linear independence.

We begin by characterising largeness of (4.1) when the directions are coprime.

Lemma 4.1 (Inverse theorem for the arithmetic box norm). Let a, b be positive
integers with gcd(a, b) = 1. Suppose that f : Z → C is 1-bounded with support in
the interval [N ] and satisfies

(4.2)
∑
h∈Z2

∑
x

µH(h)∆ah1,bh2f(x) ≥ δN.

Then there exist 1-bounded functions g, h : Z→ C such that

• g is a-periodic, in the sense that g(x+ a) = g(x) for all x;
• h is approximately b-periodic, in the sense that for any ε > 0 we have

#{x ∈ [N ] : h(x+ by) 6= h(x) for some |y| ≤ εN/b} ≤
(
1 + 2εN

b

) (
1 + N

a

)
;

and furthermore

(4.3)

∣∣∣∣∑
x

f(x)g(x)h(x)

∣∣∣∣ ≥ δbHc2 − 2
(
H
a

+ Hb
N

)
bHc2 .

Remark. In parsing the above inequalities, it may be helpful to keep in mind
that in our application a, b and H are of order

√
N , with H smaller than δa, in

which case the lower bound in (4.3) becomes Ω(δH2).

Proof. The majority of our proof is concerned with manipulating (4.2) until we can
interpret it as a genuine box norm (1.24), and thereby apply the box norm inverse
theorem. The essential observation is that, since gcd(a, b) = 1, every integer x can
be uniquely represented in the form

x = ay + bz (y ∈ Z, z ∈ [a]).

We note that if x ∈ [N ] then the constraint on z forces y to lie in the range
−b < y < N/a.

Defining F : Z × Z → C by F (y, z) := f(ay + bz), the left-hand side of (4.2)
becomes ∑

y,y′∈Z

∑
z∈[a]
z′∈Z

F (y, z)F (y′, z)F (y, z′)F (y′, z′)µH(y′ − y)µH(z′ − z).
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If z′ and z contribute to the above sum then z′ ∈ z+ (−H,H) ⊂ (−H+ 1, a+H).
Hence we can restrict the range of summation of z′ to [a], at the cost of perturbing
the sum by at most 2bHc (N

a
+ b). It follows that∣∣∣∣∑

y,y′

∑
z,z′∈[a]

F (y, z)F (y′, z)F (y, z′)F (y′, z′)µH(y′ − y)µH(z′ − z)

∣∣∣∣
≥ δN − 2bHc

(
N
a

+ b
)
.

We remove the Fejér kernels by Fourier expansion:∑
y,y′

z,z′∈[a]

F (y, z)F (y′, z)F (y, z′)F (y′, z′)µH(y′ − y)µH(z′ − z) =

∫
T2

∑
y,y′

z,z′∈[a]

F (y, z)F (y′, z)F (y, z′)F (y′, z′)µ̂H(α)µ̂H(β)e(α(y′ − y) + β(z′ − z))dαdβ

≤
(∫

T
|µ̂H(α)|dα

)2

sup
α,β∈T

∣∣∣∣ ∑
y,y′

z,z′∈[a]

F (y, z)F2(y′, z)F3(y, z′)F4(y
′, z′)

∣∣∣∣,
where F2(y

′, z) := F (y′, z)e(βz), F3(y, z
′) := F (y, z′)e(αy), and F4(y

′, z′) :=
F (y′, z′)e(αy′ + βz′).

We observe that µ̂H(α) = |1̂[H](α)|2/bHc2, which implies that
∫
T |µ̂H(α)|dα =

bHc−1. Therefore

(4.4)

∣∣∣∣ ∑
y,y′

z,z′∈[a]

F (y, z)F2(y′, z)F3(y, z′)F4(y
′, z′)

∣∣∣∣ ≥ δbHc2N − 2bHc3
(
N
a

+ b
)
,

for 1-bounded functions Fi : Z× [a]→ C of the form Fi(y, z) = f(ay+ bz)e(α1y+
α2z). Since f is supported on [N ], there are at most N pairs (y′, z′) ∈ Z × [a]
for which F4(y

′, z′) 6= 0. Thus, by pigeonholing in y′ and z′ in (4.4) and setting

L(y) := F3(y, z′) and R(z) := F2(y′, z)F4(y
′, z′), we get that∣∣∣∣∑

y

∑
z∈[a]

F (y, z)L(y)R(z)

∣∣∣∣ ≥ δbHc2 − 2bHc3
(
1
a

+ b
N

)
.

For each x ∈ Z, define l(x) ∈ Z and r(x) ∈ [a] by x = al(x) + br(x), and set
g(x) := R ◦ r(x) and h(x) := L ◦ l(x). Then it remains to check the invariance
properties of g and h. To see that g(x) = g(x+ ay) for all x, y ∈ Z, just note that
r(x) = r(x+ ay) for every x, y ∈ Z.

Finally we establish that, for most x ∈ [N ], we have h(x) = h(x + bz) when
|z| ≤ εN/b. First note that l(x) = l(x + bz) whenever εN/b < r(x) ≤ a − εN/b.
Hence for this to fail, x must lie in one of at most 1 + 2εN/b congruence classes
modulo a. The number of such x lying in the interval [N ] is at most(

1 +
2εN

b

)(
1 +

N

a

)
.

�
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The lemma also yields a result in the situation in which gcd(a, b) > 1. In proving
this we take the opportunity to smooth out the b-invariance of the h function,
whilst also giving an explicit description of h in terms of f . More concretely, we
replace h with a projection of fg onto cosets of b · Z.

Lemma 4.2. There exists an absolute constant c > 0 such that on assuming
1 ≤ H ≤ cδ3N1/2 and 1 ≤ K ≤ cδ2H2N−1/2 the following holds. Let a, b ∈
[−N1/2, N1/2] with gcd(a, b) ≤ δ−1 and |a| ≥ δN1/2. Suppose that f : Z → C is
1-bounded, supported on the interval [N ], and satisfies∣∣∣∣∑

h∈Z2

∑
x

µH(h)∆ah1,bh2f(x)

∣∣∣∣ ≥ δN.

Then there exists a 1-bounded a-periodic function g such that

(4.5)
∑
x

f(x)g(x)
∑
k

µK(k)f(x+ bk)g(x+ bk)� δ2H4/N.

Proof. Since (4.2) and (4.5) are invariant under the transformations a 7→ −a and
b 7→ −b, we may assume that both a and b are positive. Set q := gcd(a, b) ≤ δ−1.
For each u ∈ [q], define a 1-bounded function fu : Z → C by fu(x) := f(u + qx),
and let Iu := {x : u+ qx ∈ [N ]} denote the interval on which fu is supported. By
the pigeon-hole principle, for some u we have∑

x,h1,h2

µH(h1)µH(h2)∆a
q
h1,

b
q
h2
fu(x) ≥ δ|Iu|.

Note that gcd(a/q, b/q) = 1, so by the previous lemma, there exist 1-bounded
functions gu, hu : Z→ C such that∣∣∣∣∑

x

fu(x)gu(x)hu(x)

∣∣∣∣ ≥ δbHc2 − 2
(
Hq
a

+ Hb
q|Iu|

)
bHc2 � δH2.

Furthermore, gu is (a/q)-periodic and

#{x ∈ Iu : hu(x) 6= hu(x+ yb/q) for some |y| ≤ ε|Iu|q/b}

≤
(

1 + 2qε|Iu|
b

)(
1 + q|Iu|

a

)
� N

a
+ εN2

ab
.

Defining gu′ and hu′ to be identically zero when u′ 6= u, we set g(u′+qx) := gu′(x)
and h(u′ + qx) := hu′(x). One can then check that g is a-invariant, that∣∣∣∣∑

x

f(x)g(x)h(x)

∣∣∣∣� δH2,

and that

#{x ∈ [N ] : h(x) 6= h(x+ by) for some |y| ≤ εN/b} � N
a

+ εN2

ab
.

Taking ε := Kb/N , we may use the latter property to show that, provided
K ≥ 1, we have∣∣∣∣∑

x

f(x)g(x)h(x)−
∑
x

h(x)Ey∈[K]g(x+ by)f(x+ by)

∣∣∣∣� NK
a
.
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Provided that K ≤ cδ2H2N−1/2 we deduce that∣∣∣∣∑
x

h(x)Ey∈[K]g(x+ by)f(x+ by)

∣∣∣∣� δH2.

One can check that, as a function of x, the inner expectation has support contained
in [−2N, 2N ]. Applying the Cauchy–Schwarz inequality and changing variables
then gives (4.5). �

Finally we observe that a function of the form

(4.6) h(x) :=
∑
k

µK(k)f(x+ bk)

has nice b-periodicity properties.

Lemma 4.3. If h is defined as in (4.6) for some 1-bounded f , then h is O(K−1)-
Lipschitz along b ·Z, in that for any x, y ∈ Z we have h(x+by) = h(x)+O(|y|/K).

Proof. Recalling the definition (1.12), note that µK is bKc−2-Lipschitz, in that
|µK(k + y)− µK(k)| ≤ |y|/bKc2 for all k, y ∈ Z. Hence, for |y| ≤ K, a change of
variables gives

|h(x+ by)− h(x)| ≤
∑
k

|µK(k − y)− µK(k)| ≤ |y|
bKc2

∑
|k|<2bKc

1.

�

5. Quantitative concatenation: control by a global Gowers norm

The endpoint of this section is to show how our counting operator (1.11) is
controlled by the U5-norm. We begin with four technical lemmas. The first says
that convolving Fejér kernels along progressions of coprime common difference
covers a substantial portion of an interval in a somewhat regular manner, a fact
that can be interpreted Fourier analytically in the following.

Lemma 5.1. Let K,L ≥ 1 and let a, b be integers satisfying |a| ≥ δL, |b| ≥ δK
and gcd(a, b) ≤ δ−1. Then∫

T

∣∣µ̂K(aβ)
∣∣∣∣µ̂L(bβ)

∣∣dβ � δ−4

bKc bLc
.

Proof. Taking complex conjugates inside the absolute values, we may assume that
a and b are positive. Expanding Fourier transforms, one can check that∫

T

∣∣µ̂K(aβ)
∣∣∣∣µ̂L(bβ)

∣∣dβ
= bKc−2 bLc−2 #

{
(x, y) ∈ [K]2 × [L]2 : a(x1 − x2) = b(y1 − y2)

}
.

Writing d := gcd(a, b), the number of solutions to the equation is at most

bKc bLc
(
bKc
b/d

+ 1
)(

bLc
a/d

+ 1
)
.

�
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Our next lemma allows us to discard pairs of integers a, b which are not suffi-
ciently coprime. We exploit this repeatedly.

Lemma 5.2. For fixed integers |a1|, |a2| ≤M , the number of pairs (b, c) of integers
|b|, |c| ≤M such that gcd(a1 + b, a2 + c) > δ−1 is � δM2.

Proof. Notice that if d = gcd(a1 + b, a2 + c) then d ≤ 2M . Hence∑
|b|,|c|≤M

gcd(a1+b,a2+c)>δ−1

1 ≤
∑

δ−1<d≤2M

( ∑
|m|≤2M, d|m

1

)2

≤
∑

δ−1<d≤2M

(
4M

d
+ 1

)2

�M2
∑
d>δ−1

1

d2
� δM2.

�

The following lemma says that, as a and h range over [N1/2], the difference
function ∆ahf behaves like ∆kf with k ∈ [N ], at least on average.

Lemma 5.3. Let f : Z → C be a 1-bounded function with support in [N ] and
s ≥ 1. Suppose that δN1/2 ≤ H ≤ N1/2 and

E|a|≤N1/2

∑
h

µH(h)‖∆ahf‖2
s

Us ≥ δ
∥∥1[N ]

∥∥2s
Us .

Then
‖f‖2

s+1

Us+1 � δ10
∥∥1[N ]

∥∥2s+1

Us+1 .

Proof. Expanding the definition of the U s-norm

E|a|≤N1/2

∑
h

µH(h)‖∆ahf‖2
s

Us

=
∑

h1,...,hs,x

∆h1,...,hsf(x)E|a|≤N1/2

∑
h

µH(h)∆h1,...,hsf(x+ ah).

Employing the Cauchy–Schwarz inequality to double the a and h variables gives

E|a|,|a′|≤N1/2

∑
h1,...,hs

∑
x

∑
h,h′

µH(h)µH(h′)∆h1,...,hs,ah−a′h′f(x)� δ2N s+1.

By Lemma 5.2 and the pigeon-hole principle, we deduce the existence of |a|, |a′| �
δ2N1/2 with gcd(a, a′)� δ−2 such that∑

ah−a′h′=hs+1

µH(h)µH(h′)
∑

h1,...,hs

∑
x

∆h1,...,hs,hs+1f(x)� δ2N s+1.

We use orthogonality to replace the constraint ah − a′h′ = hs+1 with a Fourier
integral, then extract a large Fourier coefficient to conclude that there exists α ∈ T
such that the left-hand side above is at most∫

T
|µ̂H(aβ)| |µ̂H(a′β)| dβ

∣∣∣∣ ∑
h1,...,hs+1

∑
x

∆h1,...,hs,hs+1f(x)e(αhs+1)

∣∣∣∣.
The result follows on employing Lemma 5.1 and Lemma A.3. �

We now prove a similar lemma, but with ∆ahf replaced by fga where ga is
a-periodic. The moral is that these are similar quantities (on average).
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Lemma 5.4. Let f, ga : Z→ C be 1-bounded functions such that ga is a-periodic
and supp(f) ⊂ [N ]. Suppose that

E|a|≤N1/2‖fga‖2
s

Us ≥ δ
∥∥1[N ]

∥∥2s
Us .

Then
‖f‖2

s+1

Us+1 � δ24
∥∥1[N ]

∥∥2s+1

Us+1 .

Proof. Fix |a| ≤ N1/2. By the periodicity of ga and a change of variables, we have∑
h1,...,hs

∑
x

∆h1,...,hsga(x)∆h1,...,hsf(x) =
∑

h1,...,hs

∑
x

∆h1,...,hsga(x)Ey∈[N1/2]∆h1,...,hsf(x+ay).

Notice that the sum over x is non-zero only if |x|, |hi| < N , hence by the Cauchy–
Schwarz inequality and a change of variables(

E|a|≤N1/2‖fga‖2
s

Us

)2

� N s+1E|a|≤N1/2

∑
h1,...,hs

∑
x

∑
y

µN1/2(y)∆h1,...,hs,ayf(x)

= N s+1E|a|≤N1/2

∑
y

µN1/2(y)‖∆ayf‖2
s

Us

The result follows on employing Lemma 5.3. �

We are now ready to give the technical heart of this section. The (somewhat
lengthy) assumptions come from our eventual application of Lemma 4.2.

Lemma 5.5. Fix a ∈ Z and let δN1/2 ≤ K ≤ N1/2. For each b let f, gb, hb : Z→ C
be 1-bounded functions such that supp(f), supp(hb) ⊂ [N ] and gb is b-periodic. Set

(5.1) h̃b(x) :=
∑
k

µK(k)hb(x+ (a+ b)k)

and suppose that ∑
δ
√
N≤|b|≤

√
N

gcd(a,b)≤δ−1

∑
x

f(x)gb(x)h̃b(x) ≥ δN3/2.

Then
E|b|≤N1/2

∥∥hb∥∥8U3 � δO(1)
∥∥1[N ]

∥∥8
U3 .

Proof. We apply the Cauchy–Schwarz inequality to remove the weight f(x) and
double the b variable, yielding∑

δ
√
N≤|b|,|b′|≤

√
N

gcd(a,b),gcd(a,b′)≤δ−1

∑
x

gb(x)h̃b(x)gb′(x)h̃b′(x) ≥ δ2N2.

Employing Lemma 5.2, we may discard those b, b′ for which one of gcd(b′, a+ b) or
gcd(a + b′, a + b) is greater than Cδ−2. We may also discard those b, b′ for which

either |a+b| ≤ cδ2
√
N or |a+b′| ≤ cδ2

√
N . On combining this with the popularity

principle, we deduce the existence of B ⊂ [−N1/2, N1/2] of size |B| � δ2N1/2 such

that for each b ∈ B there exists |b′| ≤
√
N with all of |b|, |b′|, |a+b|, |a+b′| � δ2

√
N

and all of gcd(b, a+b), gcd(b′, a+b), gcd(a+b′, a+b) at most O(δ−2) and satisfying

(5.2)
∑
x

gb(x)h̃b′(x)gb′(x)h̃b(x)� δ2N.
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Expanding the definition of h̃b′ , using the invariance of gb and changing variables
gives∑

x

Ek1,k3∈[K]

∑
k2

µK(k2)gb(x+ (a+ b′)k2 + b′k3)hb′(x+ bk1 + b′k3)

gb′(x+ bk1 + (a+ b′)k2) h̃b(x+ bk1 + (a+ b′)k2 + b′k3)� δ2N.

Since hb′ is supported on [N ] and |b|, |b′|, K ≤ N1/2, there are at most O(N) values
of x that contribute to the above sum. Applying Hölder’s inequality then gives∑

x

(
Ek1,k3∈[K]

∑
k2

µK(k2)gb(x+ (a+ b′)k2 + b′k3)hb′(x+ bk1 + b′k3)

gb′(x+ bk1 + (a+ b′)k2) h̃b(x+ bk1 + (a+ b′)k2 + b′k3)

)8

� δ16N.

The sum inside the 8th power corresponds to an integral with respect to three
probability measures on Z, with integrand amenable to Lemma A.4. Combining
this with a change of variables gives∑

x

∑
k1,k2,k3

µK(k1)νK(k2)µK(k3)∆bk1,(a+b′)k2,b′k3 h̃b(x)� δ16N,

where we set

νK(k) :=
∑

k1−k2=k

µK(k1)µK(k2).

By Lemma 4.3 and the definition (5.1), each h̃b is O(K−1)-Lipschitz along (a+
b) · Z. Hence, if li ∈ [L], a telescoping identity shows that∣∣∣∆h1+(a+b)l1,h2+(a+b)l2,h3+(a+b)l3h̃b(x)−∆h1,h2,h3h̃b(x)

∣∣∣� L/K.

Taking L := cδ16K we obtain∑
x

∑
k1,k2,k3

µK(k1)νK(k2)µK(k3)El1,l2,l3∈[L]

∆bk1+(a+b)l1, (a+b′)k2+(a+b)l2, b′k3+(a+b)l3 h̃b(x)� δ16N.

We may replace the uniform measure on the li by Fejér kernels at the cost of three
applications of the Cauchy–Schwarz inequality; this gives∑

x

∑
k1,k2,k3
l1,l2,l3

µK(k1)νK(k2)µK(k3)µL(l1)µL(l2)µL(l3)

∆bk1+(a+b)l1, (a+b′)k2+(a+b)l2, b′k3+(a+b)l3 h̃b(x)� δO(1)N.

Write

λ1(h) :=
∑

bk+(a+b)l=h

µK(k)µL(l), λ2(h) :=
∑

(a+b′)k+(a+b)l=h

νK(k)µL(l),

λ3(h) :=
∑

b′k+(a+b)l=h

µK(k)µL(l).
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Then ∑
x

∑
h1,h2,h3

λ1(h1)λ2(h2)λ3(h3)∆h1,h2,h3 h̃b(x)� δO(1)N.

By Fourier inversion and extraction of a large Fourier coefficient, there exist
αi ∈ T such that∣∣∣∣∑

x

∑
h1,h2,h3

∆h1,h2,h3 h̃b(x)e(α · h)

∣∣∣∣ 3∏
i=1

∫
T

∣∣λ̂i(β)
∣∣dβ � δO(1)N.

By our choice of b, b′ (see the paragraph preceding (5.2)), together with Lemma
5.1, for each i we have

(5.3)

∫
T

∣∣λ̂i(α)
∣∣dα� δ−8

KL
� δ−O(1)

N
,

the latter following from the fact that L� cδ16K and K ≥ δN1/2. On combining
this with Lemma A.3 we obtain∥∥h̃b∥∥8U3 � δO(1)N4.

Since h̃b is an average of translates of hb, we may apply the triangle inequality for
the U3-norm, together with the fact that Gowers norms are translation invariant,
and conclude that ‖hb‖8U3 � δO(1)N4. Summing over b ∈ B gives our final bound.

�

Finally we synthesise Lemmas 3.2, 4.2 and 5.5.

Theorem 5.6 (Global U5-control). Let g0, g1, f : Z→ C be 1-bounded functions,
each supported in [N ]. Suppose that∣∣∣∣∣∑

x∈Z

∑
y∈N

g0(x)g1(x+ y)f(x+ qy2)

∣∣∣∣∣ ≥ δ
∑
x∈Z

∑
y∈N

1[N ](x)1[N ](x+ y)1[N ](x+ qy2).

Then either N � q or∑
u∈[q]

‖f‖2
5

U5(u+qZ) � δO(1)
∑
u∈[q]

∥∥1[N ]

∥∥25
U5(u+qZ) .

Proof. We recall our conventions (1.10) and (1.11) regarding M and Λq, and note
that Λq(1[N ]) � NM unless N � q. We begin by applying the linearisation
procedure (Lemma 3.2) to deduce that∑

a,b∈(−2M,2M)

∣∣∣∣∑
h∈Z3

µH(h)
∑
x

∆q(a+b)h1,qbh2,qah3f(x)

∣∣∣∣� δ32NM2

provided that H � δ32M . Applying Lemma 5.2 we may discard those a, b for
which either gcd(a, b) > Cδ−32 or |b| < cδ32M . Partitioning the sum over x into
congruence classes u mod q, the popularity principle gives:

• at least Ω(δ32q) residues u ∈ [q];
• for each of which there is a subset of h3 ∈ (−H,H) of µH-measure6 at least

Ω(δ32);
• for each of which there exist Ω(δ32M) values of a ∈ (−2M, 2M);

6i.e.
∑

h3∈H µH(h3)� δ32.
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• for each of which there are Ω(δ32M) values of b ∈ (−2M, 2M) satisfying
gcd(a, b)� δ−32 and |b| � δ32M ;

and together these satisfy∣∣∣∣∑
h1,h2

µH(h1, h2)
∑
x

∆(a+b)h1,bh2,ah3f(qx− u)

∣∣∣∣� δ32M2.

For fixed u, h3, a write f̃(x) := ∆ah3f(qx − u), so that f̃ has support in the
interval [(2M)2] and∣∣∣∣∑

h1,h2

µH(h1, h2)
∑
x

∆(a+b)h1,bh2 f̃(x)

∣∣∣∣� δ32M2.

Set

(5.4) H := cδ96M and K := c3δ256M,

with c sufficiently small to ensure that we may apply Lemma 4.2. This gives the
existence of a 1-bounded b-periodic function gb such that on setting

(5.5) h̃b(x) :=
∑
k

µK(k)f̃(x+ (a+ b)k)gb(x+ (a+ b)k)

we have ∑
x

f̃(x)gb(x)h̃b(x)� δ448M2.

Setting η := cδ480 for some small absolute constant c > 0, we may sum over our
set of permissible b (taking gb to be zero if b is not permissible) to deduce that∑

ηM≤|b|≤2M
gcd(a,b)≤η−1

∑
x

f̃(x)gb(x)hb(x) ≥ ηM3.

The hypotheses of Lemma 5.5 having been met, we conclude that

E|b|≤2M
∥∥f̃ gb∥∥8U3 � δO(1)

∥∥1[M2]

∥∥8
U3 .

Applying Lemma 5.4 then gives∥∥f̃∥∥16
U4 � δO(1)

∥∥1[M2]

∥∥16
U4 .

Recalling that f̃(x) = ∆ah3fu(x) where fu(x) := f(qx − u), we may integrate
over the set of permissible h3 and a, utilising positivity to extend the range of
summation, and deduce that

E|a|≤2M
∑
h

µH(h3)
∥∥∆ah3fu

∥∥16
U4 � δO(1)

∥∥1[M2]

∥∥16
U4

Using Lemma 5.3 and summing over the permissible range of u we get that

Eu∈[q]‖fu‖32U5 � δO(1)
∥∥1[M2]

∥∥32
U5 ,

and the result follows. �
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6. Degree lowering

So far, we have shown that Λq(f0, f1, f2) is controlled by Eu∈[q]‖f2‖2
5

U5(u+qZ) when-

ever f0, f1, and f2 are 1-bounded complex-valued functions supported on the in-
terval [N ]. The next step in our argument is to bound Λq(f0, f1, f2) in terms of
the U5(u+ qZ)-norm of the dual function

(6.1) F (x) := Ey∈[M ]f0(x− qy2)f1(x+ y − qy2).

We postpone this deduction until §7. In this section we show how U5-control of
the dual implies U2-control.

Our argument combines three simple lemmas: Weyl’s inequality; what we call
‘dual–difference interchange’, which allows us to replace the difference function of
the dual by the dual of the difference functions; and the fact that a function whose
difference functions correlate with ‘low rank’ Fourier coefficients must have a large
uniformity norm of lower degree.

The following log-free variant of Weyl’s inequality can be found in [GT08,
Lemma A.11].

Lemma 6.1 (Weyl’s inequality). Let α, β ∈ T, δ ∈ (0, 1) and let I ⊂ Z be an
interval. Suppose that ∣∣Ey∈Ie(αy2 + βy)

∣∣ ≥ δ.

Then either |I| � δ−O(1) or there exists a positive integer q � δ−O(1) such that

‖qα‖ � δ−O(1)|I|−2.

This has the following consequence, which does not necessarily assume our con-
vention (1.10) regarding M .

Lemma 6.2. Suppose that for α ∈ T there are 1-bounded functions g0, g1 : Z→ C
supported on the interval [N ] such that∣∣∣∣∣∣

∑
x

∑
y∈[M ]

g0(qx)g1(qx+ y)e(αy2)

∣∣∣∣∣∣ ≥ δMN/q.

Then either M � qδ−O(1) or there exists a positive integer q′ � δ−O(1) such that
‖q′q2α‖ � δ−O(1)q2/M2.

Proof. We split the sum over y ∈ [M ] into arithmetic progressions modulo q and
split the sum over x into intervals of length M/q. Hence, by the pigeon-hole
principle, there exists u ∈ [q] and an integer m such that on rounding the sum
over y we have∣∣∣∣∣∣

∑
x,y∈[M/q]

g0(q(m+ x))g1(u+ q(m+ x+ y))e
(
α(u+ qy)2

)∣∣∣∣∣∣ � δ(M/q)2.

Define the functions

h0(x) := g0(q(m+ x))1[M/q](x), h1(x) := g1(u+ q(m+ x))1[2M/q],

h2(x) := e
(
α(u+ qx)2

)
1[M/q](x)
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Then by orthogonality, extraction of a large Fourier coefficient and Parseval’s
identity we have

δM2/q2 �
∣∣∣∣∑
x,y

h0(x)h1(x+ y)h2(y)

∣∣∣∣ =

∣∣∣∣∫
T
ĥ0(β)ĥ1(−β)ĥ2(β)dβ

∣∣∣∣
�
∥∥ĥ2∥∥∞∥∥ĥ0∥∥L2

∥∥ĥ1∥∥L2 �
∥∥ĥ2∥∥∞M/q.

It follows that there exists β ∈ T such that∣∣∣∣∣∣
∑

x∈[M/q]

e
(
α(u+ qx)2 + βx

)∣∣∣∣∣∣� δM/q.

Applying Weyl’s inequality, we deduce the existence of q′ � δ−O(1) such that
‖q′q2α‖ � δ−O(1)/(M/q)2 = δ−O(1)q2/M . �

Lemma 6.3 (Dual–difference interchange). For each y ∈ [M ], let Fy : Z→ C be
a 1-bounded function, all with support contained in the same interval of length N .
Set

F (x) := Ey∈[M ]Fy(x).

Then for any function φ : Zs → T and finite set H ⊂ Zs we haveN−s−1∑
h∈H

∣∣∣∣∣∑
x

∆hF (x)e
(
φ(h)x

)∣∣∣∣∣
2s

�s

N−2s−1
∑

h0,h1∈H

∣∣∣∣∣∑
x

Ey∈[M ]∆h0−h1Fy(x)e
(
φ(h0;h1)x

)∣∣∣∣∣ ,
where

φ(h0;h1) :=
∑

ω∈{0,1}s
(−1)|ω|φ(hω) and hω := (hω1

1 , . . . , h
ωs
s ).

Proof. We proceed by induction on s ≥ 0, the base case being an identity. Suppose
then that s ≥ 1. For h ∈ Zs−1 and h ∈ Z, we note that

(6.2) ∆(h,h)F (x) = ∆h

(
Ey,y′∈[M ]Fy(x)Fy′(x+ h)

)
.

Furthermore, if (h, h) ∈ H contributes a non-zero expression of the form (6.2) then
(h, h) ∈ (−N,N)s, since the support of F is contained in an interval of length N .
Hence by the induction hypothesisN−s−1∑

h

∑
h

(h,h)∈H

∣∣∣∣∣∑
x

∆(h,h)F (x)e
(
φ(h)x

)∣∣∣∣∣


2s

�s

N−2s∑
h

∑
h0,h1

(hi,h)∈H

∣∣∣∣∣∑
x

Ey,y′∈[M ]∆h0−h1Fy(x)∆h0−h1Fy′(x+ h)e
(
φ(h0;h1;h)x

)∣∣∣∣∣


2

,
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where

φ(h0;h1;h) :=
∑

ω∈{0,1}s−1

(−1)|ω|φ(hω, h).

Letting e(ψ(h0;h1;h)) denote the conjugate phase of the inner absolute value, we
take the sum over h inside and apply the Cauchy–Schwarz inequality to obtain ∑
h0,h1,x

Ey,y′∈[M ]

∑
h

(hi,h)∈H

∆h0−h1Fy(x)∆h0−h1Fy′(x+ h)e
(
φ(h0;h1;h)x+ ψ(h0;h1;h)

)
2

�s N
2s−1

∑
h0,h1

∑
h0,h1

(hi,hj)∈H∣∣∣∣∣∑
x

Ey∈[M ]∆h0−h1Fy(x)∆h0−h1Fy(x+ h0 − h1)e
((
φ(h0;h1;h0)− φ(h0;h1;h1)

)
x
)∣∣∣∣∣ .

The result follows. �

If φ(h1, . . . , hs−1) is a function of s−1 variables we write φ(h1, . . . , ĥi, . . . , hs) :=
φ(h1, . . . , hi−1, hi+1, . . . , hs). We say that φ(h1, . . . , hs) is low rank if there exist
functions φi(h1, . . . , hs−1) such that

φ(h1, . . . , hs) =
s∑
i=1

φi(h1, . . . , ĥi, . . . , hs).

From the definition of the Gowers norm together with the U2-inverse theorem
(Lemma A.1), one can show that largeness of the U s+2-norm is equivalent to the
existence of φ : Zs → T such that

∑
h1,...,hs

∣∣∣∣∣∑
x

∆hf(x)e(φ(h)x)

∣∣∣∣∣� N s+1.

The following lemma says that if φ is low-rank, then the U s+1-norm must also be
large.

Lemma 6.4 (Low rank correlation implies lower degree). Let f : Z → C be a
1-bounded function with support in [N ]. Then for φ1, . . . , φm : Zs−1 → T with
m ≤ s we have
(6.3)

1

N s+1

∑
h1,...,hs

∣∣∣∣∣∑
x

∆hf(x)e

(
m∑
i=1

φi(h1, . . . , ĥi, . . . , hs)x

)∣∣∣∣∣ �s

(
‖f‖2

s+1

Us+1

N s+2

)2−m−1

.

Proof. We proceed by induction on m ≥ 0, the base case corresponding to the
Cauchy–Schwarz inequality. Suppose then that m ≥ 1 and the result is true for
smaller values of m. Letting e(ψ(h)) denote the conjugate phase of the inner-most
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sum, the left-hand side of (6.3) is equal to

1

N s+1

∑
h2,...,hs,x

∆h2,...,hsf(x)e(φ1(h2, . . . , hs))
∑
h1

∆h2,...,hsf(x+ h1)

e

(
m∑
i=2

φi(h1, . . . , ĥi, . . . , hs)x+ ψ(h1, . . . , hs)

)
.

By the Cauchy–Schwarz inequality, the square of this is at most

�s
1

N s+2

∑
h2,...,hs

∑
h1,h′1∈(−N,N)∣∣∣∣∣∑

x

∆h1−h′1,h2,...,hsf(x)e

(
m∑
i=2

(
φi(h1, . . . , ĥi, . . . , hs)− φi(h′1, . . . , ĥi, . . . , hs)

)
x

)∣∣∣∣∣ .
Taking a maximum over h′1 ∈ (−N,N) and changing variables in h1, the latter is
at most an absolute constant times

1

N s+1

∑
h1,h2,...,hs

∣∣∣∣∣∑
x

∆h1,h2,...,hsf(x)

e

(
m∑
i=2

(
φi(h1 + h′1, h2 . . . , ĥi, . . . , hs)− φi(h′1, h2 . . . , ĥi, . . . , hs)

)
x

)∣∣∣∣∣.
This phase has lower rank than the original, hence we may apply the induction
hypothesis to yield the lemma. �

Lemma 6.5 (Degree lowering). Let f0, f1 : Z → C be 1-bounded functions with

support in [N ] and, writing M := b
√
N/qc, define the dual function

F (x) := Ey∈[M ]f0(x− qy2)f1(x+ y − qy2).

If, for s ≥ 3, we have∑
u∈[q]

‖F‖2
s

Us(u+q·Z) ≥ δ
∑
u∈[q]

∥∥1[N ]

∥∥2s
Us(u+q·Z) ,

then either N �s q
4δ−Os(1) or∑

u∈[q]

‖F‖2
s−1

Us−1(u+q·Z) �s δ
Os(1)

∑
u∈[q]

∥∥1[N ]

∥∥2s−1

Us−1(u+q·Z) .

Proof. Given u ∈ [q] set Fu(x) := F (u + qx), a function with support in the
interval [2N/q]. Applying the popularity principle, there exists a set of Ωs(δq)

residues u ∈ [q] for which ‖Fu‖2
s

Us �s δ(N/q)
s+1. Expanding the definition of the

U s-norm (1.8) we have∑
h1,...,hs−2

∥∥∆h1,...,hs−2Fu
∥∥4
U2 �s δ(N/q)

s+1.

Applying the U2-inverse theorem (Lemma A.1), there existsH ⊂ (−2N/q, 2N/q)s−2

of size |H| �s δ(N/q)
s−2 and a function φ : Zs−2 → T such that for every h ∈ H
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we have

(6.4)

∣∣∣∣∣∑
x

∆hFu(x)e
(
φ(h)x

)∣∣∣∣∣�s δN/q.

Set T := dCsδ−1N/qe, with Cs an absolute constant taken sufficiently large to
ensure that, on rounding φ(h) to the nearest fraction of the form t/T , the validity
of (6.4) remains. Summing over h ∈ H and applying Lemma 6.3, we deduce that∑

h0,h1∈H

∣∣∣∣∑
x

Ey∈[M ]∆h0−h1f0(u+ qx− qy2)∆h0−h1f1(u+ qx+ y − qy2)

e
(
φ(h0;h1)x

)∣∣∣∣�s δ
Os(1)(N/q)2s−3.

Applying the pigeon-hole and popularity principle, there exists H′ ⊂ H of size
�s δ

Os(1)(N/q)s−2 and h1 ∈ H such that for every h0 ∈ H′ we have∣∣∣∣∣∣
∑
x

∑
y∈[M ]

∆h0−h1f0(u+ qx− qy2)∆h0−h1f1(u+ qx+ y − qy2)e
(
φ(h0, h1)x

)∣∣∣∣∣∣
�s δ

Os(1)MN/q.

By Lemma 6.2, for each h0 ∈ H′ there exists q′ � δ−Os(1) such that∥∥q′q2φ(h0, h1)
∥∥� δ−Os(1)q3/N.

Notice that q2φ(h0, h1) is an element of the additive group {t/T : t ∈ [T ]} ⊂ T.
Moreover, for any Q we have the inclusion{

α ∈ T : ∃q′ ≤ Q with ‖q′α‖ ≤ Qq3/N
}
⊂

⋃
1≤a≤q′≤Q

[
a

q′
− q3Q

N
,
a

q′
+
q3Q

N

]
.

By a volume packing argument, the number of t/T lying in this union of intervals

is at most Q2(1 + 2q3QT
N

). When Q�s δ
−Os(1), we have Q2(1 + 2q3QT

N
)�s δ

−Os(1)

(unless N �s q
4δ−Os(1), which we are permitted to assume does not happen). It

therefore follows from the pigeon-hole principle that there exists H′′ ⊂ H′ of size
�s δ

Os(1)(N/q)s−2 and t0 ∈ [T ] such that for any h0 ∈ H′′ we have φ(h0, h1) =
t0/T . In particular, when restricted to the set H′′, the function φ satisfies

φ(h0) = t0/T −
∑

ω∈{0,1}s−2\{0}

(−1)|ω|φ(hω).

The right-hand side of this identity is low rank according to the terminology
preceding Lemma 6.4.

Summing over h ∈ H′′ in (6.4), we deduce the existence of a low rank function
ψ : Zs−2 → T such that∑

h

∣∣∣∣∣∑
x

∆hFu(x)e
(
ψ(h)x

)∣∣∣∣∣�s δ
Os(1)(N/q)s−1.

Employing Lemma 6.4 then gives

‖Fu‖2
s−1

Us−1 �s δ
Os(1)(N/q)s.
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Summing over permissible u, then extending to the full sum over u ∈ [q] by
positivity, we obtain the bound claimed in the lemma. �

7. The inverse theorem for our counting operator

In this section we show how U5-control of the final function in our counting
operator, as proved in Theorem 5.6, also yields U5-control of the dual function.
Combining this with the degree lowering of §6, we deduce that the dual is con-
trolled by the U1-norm. This allows us to deduce the following key inverse theorem
for our counting operator.

Theorem 7.1 (Inverse theorem for nonlinear Roth). Let f0, f1, f2 : Z → C be
1-bounded functions, each with support in [N ]. Suppose that∣∣∣∣∣∑

x∈Z

∑
y∈N

f0(x)f1(x+ y)f2(x+ qy2)

∣∣∣∣∣ ≥ δ
∑
x∈Z

∑
y∈N

1[N ](x)1[N ](x+ y)1[N ](x+ qy2).

Then either N � q4δ−O(1), or there exists q′ � δ−O(1) such that for each i = 0, 1, 2
there exists a 1-bounded function φi : Z → C that is � δ−O(1)q3/2N−1/2 Lipschitz
along q′q · Z, in that

(7.1) |φi(x+ q′qy)− φi(x)| � δ−O(1)q3/2N−1/2|y| (∀x, y ∈ Z),

and for which ∣∣∣∣∣∑
x

fi(x)φi(x)

∣∣∣∣∣� δO(1)N.

Remark. Inspection of the following proof reveals that for i = 1 one can in fact
ensure that the function φ1 is � δ−O(1)q1/2N−1/2 Lipschitz along q′ · Z. This
stronger property is not needed in our present application.

Proof. Define the dual function

(7.2) F2(x) := Ey∈[M ]f0(x− qy2)f1(x+ y − qy2).
Either N � q or we have

δNM � |Λq(f0, f1, f2)| = M

∣∣∣∣∣∑
x

F2(x)f2(x)

∣∣∣∣∣ .
Since f2 is supported on [N ], the Cauchy–Schwarz inequality gives

Λq(f0, f1, F2) = M
∑
x

F2(x)F2(x)� δ2NM.

Since the functions f0, f1, F2 all have support contained in [2N ], we may apply
Theorem 5.6 to deduce that∑

u∈[q]

‖F2‖2
5

U5(u+q·Z) � δO(1)
∑
u∈[q]

∥∥1[2N ]

∥∥25
U5(u+q·Z) .

We now apply Lemma 6.5 three times to obtain∑
u∈[q]

‖F2‖4U2(u+q·Z) � δO(1)
∑
u∈[q]

∥∥1[2N ]

∥∥4
U2(u+q·Z) .
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By the popularity principle, there are at least � δO(1)q values of u ∈ [q] for

which ‖F2‖4U2(u+q·Z) � δO(1)
∥∥1[2N ]

∥∥4
U2(u+q·Z). The inverse theorem for the U2-norm

then gives the existence of φ(u) ∈ T for which

(7.3)

∣∣∣∣∣∑
x

F2(u+ qx)e(φ(u)x)

∣∣∣∣∣� δO(1)N/q.

Set T :=
⌈
Cδ−CN/q

⌉
, with C an absolute constant taken sufficiently large to

ensure that, on rounding φ(u) to the nearest fraction of the form t/T , the inequality
(7.3) remains valid.

By Lemma 6.2, for each u satisfying (7.3), there exists a positive integer q′ �
δ−O(1) such that ‖q′q2φ(u)‖ � δ−O(1)q3/N . By a volume packing argument similar
to that given in the proof of Lemma 6.5, the function φ is constant on a proportion
of at least � δO(1) of the residues u ∈ [q] satisfying (7.3). Summing over these u,
then extending the sum to all of [q], we deduce the existence of α ∈ T such that

(7.4)
∑
u∈[q]

∣∣∣∣∣∑
x

F2(u+ qx)e(αx)

∣∣∣∣∣� δO(1)N.

Expanding the dual function, there is a 1-bounded function ψ(u mod q) such
that the left-hand side of the above is equal to

(7.5)
∑
u∈[q]

ψ(u mod q)
∑
x≡u(q)

Ey∈[M ]f0(x− qy2)f1(x+ y − qy2)e(αx/q)

=
∑
x

f0(x)ψ(x mod q)e(αx/q)Ey∈[M ]f1(x+ y)e(αy2).

Applying Lemma 6.2 with q = 1, there exists q′ � δ−O(1) such that ‖q′α‖ �
δ−O(1)/M2 = δ−O(1)q/N .

Using this, let us demonstrate the correlation of f0 with a suitably Lipschitz
function; the case of f1 is similar (in fact simpler) and the case of f2 is dealt with
shortly. Setting

φ0(x) := ψ(x mod q)e(αx/q)Ey∈[M ]f1(x+ y)e(αy2),

we have
∑

x f0(x)φ0(x)� δO(1)N . Our aim is to show that φ0 is� δ−O(1)q3/2N−1/2

Lipschitz along q′q · Z.
For any x, z ∈ Z we have

|φ0(x)− φ0(x+ q′qz)| ≤ |1− e(αq′z)|
+
∣∣Ey∈[M ]f1(x+ y)e(αy2)− Ey∈[M ]f1(x+ y + q′qz)e(αy2)

∣∣ .
The first term satisfies

|1− e(αq′z)| � ‖q′α‖ |z| � δ−O(1)q|z|/N � δ−O(1)q3/2N−1/2|z|.



30 SARAH PELUSE AND SEAN PRENDIVILLE

Changing variables in y, the second term is at most

q′q|z|M−1+
∣∣Ey∈[M ]g(x+ y)e(αy2)− Ey∈[M ]g(x+ y)e(α(y − q′qz)2)

∣∣
� q′q|z|M−1 + Ey∈[M ]

∣∣e(αy2)− e(α(y − q′qz)2)
∣∣

� q′q|z|M−1 +
∥∥α(q′qz)2

∥∥+ Ey∈[M ]‖α2yq′qz‖
� δ−O(1)q3/2|z|N−1/2 + δ−O(1)q3|z|2N−1.

We thereby obtain the required Lipschitz inequality (7.1) in the case that |z| ≤
N1/2q−3/2. In the remaining case the Lipschitz inequality is trivial, since φ0 is
1-bounded.

Having proved the inverse theorem for f0 and f1, we now focus on f2. As before,
define the dual function

F1(x) := 1[N ](x)Ey∈[M ]f0(x− y)f2(x+ qy2 − y),

so that ∣∣∣∣∣∑
x

F1(x)f1(x)

∣∣∣∣∣� δN.

Applying the Cauchy–Schwarz inequality gives

Λq(f0, F 1, f2) = M
∑
x

F2(x)F2(x)� δ2NM,

and the inverse theorem then yields q1 � δ−O(1) such that there exists a 1-bounded
function φ1 : Z → C which is � δ−O(1)q3/2N−1/2 Lipschitz along q1q · Z and for
which

|Λq(f0, φ1, f2)| =
∣∣Λq(f0, φ11[N ], f2)

∣∣ = M

∣∣∣∣∣∑
x

F1(x)φ1(x)

∣∣∣∣∣� δO(1)NM.

Repeating the above procedure, we obtain q0 � δ−O(1) such that there exists a
1-bounded function φ0 : Z→ C which is� δ−O(1)q3/2N−1/2 Lipschitz along q0q ·Z
and for which ∣∣Λq(φ01[N ], φ1, f2)

∣∣� δO(1)NM.

We may replace 1[N ] in the above by a continuous function ψ which is 1 on
[cδCN, (1 − cδC)N ], 0 on Z \ [N ] and linear everywhere else. Since the linear
parts have gradient� δ−O(1)/N , we deduce that ψ is� δ−O(1)/N Lipschitz along
Z. As a consequence, the product φ0ψ is� δ−O(1)q3/2/N1/2 Lipschitz along q0q ·Z.
Finally, we observe that

δO(1)N � max
y∈[M ]

∣∣∣∣∣∑
x

(φ0ψ)(x− qy2)φ1(x+ y − qy2)f2(x)

∣∣∣∣∣ ,
and the the function x 7→ (φ0ψ)(x − qy2)φ1(x + y − qy2) is � δ−O(1)q3/2/N1/2

Lipschitz along q0q1q · Z. �

Corollary 7.2 (Local correlation with constant functions). Let f0, f1, f2 : Z→ C
be 1-bounded functions, each with support in [N ]. Suppose that∣∣∣∣∣∑

x∈Z

∑
y∈N

f0(x)f1(x+ y)f2(x+ qy2)

∣∣∣∣∣ ≥ δ
∑
x∈Z

∑
y∈N

1[N ](x)1[N ](x+ y)1[N ](x+ qy2).
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Then either N � q34δ−O(1), or there exists q′ � δ−O(1) and N ′ � δO(1)q−3/2N1/2

such that for each i = 0, 1, 2 we have

∑
x∈Z

∣∣∣∣∣∣
∑
y∈[N ′]

fi(x+ q′qy)

∣∣∣∣∣∣� δO(1)NN ′.

Proof. Let φi denote the function guaranteed by Theorem 7.1. By the Lipschitz
property of φi we have∣∣φi(x)− Ey∈[N ′]φi(x+ q′qy)

∣∣� δ−O(1)q3/2N ′N−1/2.

Hence taking N ′ = cδCN1/2q−3/2 for c > 0 sufficiently small and C sufficiently
large, we deduce that∣∣∣∣∣∑

x

fi(x)Ey∈[N ′]φi(x+ q′qy)

∣∣∣∣∣� δO(1)N.

Changing variables in x and applying the triangle inequality yields the result.
�

8. The density increment lemma

In this section we prove Lemma 2.1.

Proof of Lemma 2.1. We either have N � q or∑
x∈Z

∑
y∈N

1[N ](x)1[N ](x+ y)1[N ](x+ qy2)� N3/2q−1/2.

Therefore∣∣∣∣∣∑
x∈Z

∑
y∈N

1A(x)1A(x+ y)1A(x+ qy2)− δ31[N ](x)1[N ](x+ y)1[N ](x+ qy2)

∣∣∣∣∣
� δ3N3/2q−1/2.

By a telescoping identity, there exist 1-bounded functions f0, f1, f2 : Z→ R all
with support in [N ] and at least one of which is equal to 1A − δ1[N ] such that∣∣∣∣∣∑

x∈Z

∑
y∈N

f0(x)f1(x+ y)f2(x+ qy2)

∣∣∣∣∣� δ3N3/2q−1/2.

Applying our inverse theorem (Corollary 7.2) we deduce that there exists q′ �
δ−O(1) and N ′ � δO(1)q−3/2N1/2 such that

∑
x∈Z

∣∣∣∣∣∣
∑
y∈[N ′]

(
1A − δ1[N ]

)
(x+ q′qy)

∣∣∣∣∣∣� δO(1)NN ′.

Since the corresponding sum without absolute values is equal to zero, we are able
to find x such that ∑

y∈[N ′]

(
1A − δ1[N ]

)
(x+ q′qy)� δO(1)N ′.
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Writing x1+q
′q·[N1] for [N ]∩(x+q′q·[N ′]) we have N1 � δO(1)N ′ � δO(1)q−3/2N1/2

and

|A ∩ (x1 + q′q · [N1])| ≥
(
δ + Ω

(
δO(1)

))
N1.

�

Appendix A. Basic theory of the Gowers norms

Lemma A.1 (Inverse theorem for the U2-norm). Let f : Z → C be a 1-bounded
function with support in [N ]. Then there exists α ∈ T such that

‖f‖4U2 ≤ N

∣∣∣∣∣∑
x

f(x)e(αx)

∣∣∣∣∣
2

.

Proof. Using the definition of the Fourier transform (1.6), together with orthogo-
nality of additive characters, we have

‖f‖4U2 =

∫
T

∣∣f̂(α)
∣∣4dα ≤ ∥∥f̂∥∥2∞ ∫

T

∣∣f̂(α)
∣∣2dα ≤ ∥∥f̂∥∥2∞N.

�

For each ω ∈ {0, 1}s, let fω : Z→ C be a function with finite support. Then we
define the Gowers inner product by

[fω]Us :=
∑

x,h1,...,hs

∏
ω∈{0,1}s

C|ω|fω(x+ ω · h).

Here C denotes the operation of complex conjugation. Notice that [f ]Us = ‖f‖2
s

Us .

Lemma A.2 (Gowers–Cauchy–Schwarz inequality). For each ω ∈ {0, 1}s, let
fω : Z→ C be a function with finite support. Then we have

[fω]Us ≤
∏

ω∈{0,1}s
‖fω‖Us .

Proof. See [Tao12, Exercise 1.3.19]. �

Lemma A.3 (Phase invariance for s ≥ 2). Let L ∈ R[x, h1, . . . , hs] be a linear
form, with s ≥ 2 and let f : Z→ C. Then∣∣∣∣ ∑

x,h1,...,hs

∆h1,...,hsf(x)e(L(x, h1, . . . , hs))

∣∣∣∣ ≤ ‖f‖2sUs .

Proof. The linear form may be written as

L(x, h1, . . . , hs) = αx+ β1(x+ h1) + · · ·+ βs(x+ hs),

for some real α and βi. Write f0(x) := f(x)e(αx), fei(x) := f(x)e(−βix) for
i = 1, . . . , s, and for ω ∈ {0, 1}s \ {0, e1, . . . , es} set fω := f . Then by Gowers–
Cauchy–Schwarz we have∣∣∣∣ ∑

x,h1,...,hs

∆h1,...,hsf(x)e(L(x, h1, . . . , hs))

∣∣∣∣ ≤∏
ω

‖fω‖Us .
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It therefore suffice to prove that for a phase function eα : x 7→ e(αx) we have
‖feα‖Us = ‖f‖Us . The latter follows on observing that

∆h1,...,hs(feα) = (∆h1,...,hsf) (∆h1,...,hseα) ,

and for any x, h1, . . . , hs with s ≥ 2 we have ∆h1,...,hseα(x) = 1. �

Lemma A.4 (Box Gowers–Cauchy–Schwarz). Let µ1, µ2, µ3 be probability mea-
sures on Z with the discrete sigma algebra. If F1, F2, F3 are 1-bounded function on
Z2 and F is a 1-bounded function on Z3 then∣∣∣∣∣∑

x∈Z3

F1(x2, x3)F2(x1, x3)F3(x1, x2)F (x1, x2, x3)µ1(x1)µ2(x2)µ3(x3)

∣∣∣∣∣
8

≤
∑

x0,x1∈Z3

∏
ω∈{0,1}3

C|ω|F (xω1
1 , x

ω2
2 , x

ω3
3 )µ1(x

0
1)µ1(x

1
1)µ2(x

0
2)µ2(x

1
2)µ3(x

0
3)µ3(x

1
3).

Proof. This follows from three applications of the Cauchy–Schwarz inequality, each
application doubling one of the variables xi. �
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[Gow98] W. T. Gowers. A new proof of Szemerédi’s theorem for arithmetic progressions of length
four. Geom. Funct. Anal., 8(3):529–551, 1998. ↑1, ↑5, ↑6

[Gow01a] W. T. Gowers. Arithmetic progressions in sparse sets. In Current developments in mathe-
matics, 2000, pages 149–196. Int. Press, Somerville, MA, 2001. ↑1
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