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Summary: The problem of health and care of people is being revolutionized. An important component of that revolution
is disease prevention and health improvement from home. A natural approach to the health problem is monitoring changes
in people’s behaviour or activities. These changes can be indicators of potential health problems. However, due to a person’s
daily pattern, changes will be observed throughout each day, with, e.g., an increase of events around meal times and fewer
events during the night. We do not wish to detect such within-day changes but rather changes in the daily behaviour pattern
from one day to the next. To this end, we assume the set of event times within a given day as a single observation. We model
this observation as the realization of an inhomogeneous Poisson process where the rate function can vary with the time of
day. Then, we propose to detect changes in the sequence of inhomogeneous Poisson processes. This approach is appropriate
for many phenomena, particularly for home activity data. Our methodology is evaluated on simulated data. Overall, our
approach uses local change information to detect changes across days. At the same time, it allows us to visualize and interpret
the results, changes, and trends over time, allowing the detection of potential health decline.
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1. Introduction

This paper is part of a vision to revolutionize health and care in the community for 2050 (QUEST, 2024). When imagining the
community settings and homes of 2050, we envisage multiple sensors and media features in our smart environment. Data will
be collected on a large scale, at different frequencies (e.g., seconds or minutes), and from different sources; some of these are
being collected now. Statistical methods are required to analyze these complex and large datasets. There are several different
types of sensors and goals for statistical analysis of these sensors. Some recent work includes Wifi disturbances (Usman et al.,
2022), fatigue using RF sensing (Cooper et al., 2024), vital sign using radar (Elsayed et al., 2024), and changes in gait (Austin
et al., 2011) – all using passive sensing.

One type of data in the sensing context is a collection of random event times, known as temporal point process: N(t) =∑
j≥1 1{tj≤t}, where {tj} are the event times, and N(t) represents the total number of events up to time t (see, e.g., Baddeley,

2007). The most commonly used point process is the temporal Poisson process, which is characterized by the mean measure
λ(t) = d

dt
E{N(t)}, where λ(t) is known as the intensity function. Loosely speaking, λ(t) represents the probability that there

will be an event within a “small” time interval [t, t + dt]. If this function is not constant over t, then the Poisson process is
known as an inhomogeneous Poisson process (IHPP). Here, we propose a novel statistical methodology to detect changes in
event times using a new paradigm of data analysis. Specifically, we propose a changepoint methodology for a sequence {Ni(t)}
of IHPPs, where each Ni is defined on a specific period of time (e.g., 24 hours).

Our proposal is motivated by home activity data provided by Howz (2024). The company collects data on household
activities of older people. The dataset consists of a collection of times, representing activities performed by a household, e.g.,
using the kitchen, walking through the hallway, and opening the back door, see top left plot of Figure 1. The rate of events will
vary throughout each day due to a household’s daily pattern, with, e.g., fewer events during the night, and increases around
meal times. Notice that these within-day changes are part of the regular routines. We do not wish to detect such changes,
but rather changes in the daily behaviour pattern from one day to the next. For example, from the top left plot of figure 1,
we observe the same behaviour (no “change”) between day 1 and 2. In contrast, there appears to be a change between day 2
and 6. On day 6, activities start hours later than on day 2. Similarly, day 6 and day 36 vary. These across-day changes are
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more informative than the within-day changes in monitoring people’s health. To that end, we treat the set of event times on
a given day as a single observation. That is, for each day i, the process Ni(t), t ∈ [0, 24] is assumed to be a single observation
and represents the data for day i. We model this observation as a realization of an IHPP whose rate function can vary with
the time of day. Figure 1, top right plot, shows all realizations of Ni with the Howz data. We then wish to detect changes in
this sequence {Ni} of processes. Specifically, if Ni and Ni+1 are realizations of the same process, then there is no change. In
contrast, there will be a change if they are realizations from two different processes. This induces a segmentation of {Ni}, as
shown in the bottom plot of Figure 1, where each segment represents realizations of the same IHPP. Overall, our proposed
methodology uses a concept similar to functional data analysis.

To the best of our knowledge, this is the first paper to propose detecting changes in the sequence {Ni} of temporal processes.
Previous research studied changes on the IHPP defined on the total time interval where the events are observed, i.e., t ∈ [0, T ],
where T represents the total observation time (e.g., one month or one year). In the latter framework, Shen and Zhang (2012);
Chernoyarov et al. (2018); Ng and Murphy (2019) all propose methods with slight variations in assumptions or fitting methods.
Most of the research papers put changepoints within the intensity function λ(t). For example, for a single change point, it is
assumed that λ(t) has the form λ(t) = λ(1)(t)1{0 ≤ t ≤ τ1} +λ(2)(t)1{τ1 < t ≤ T}. That is, time is linear or a univariate
vector. However, in many phenomena, linear changes may not indicate a change in the process itself (noted above).

In summary, this paper proposes a new methodology for detecting changepoints in a sequence of IHPPs. We consider
each period (day) to be an observation from an IHPP. The corresponding intensity functions are modelled nonparametrically
using finite basis functions. Taking advantage of this low-rank representation, we use a penalized cost approach to detect
changepoints.

The remainder of our paper is organized as follows: In Section 2, we present our methodology and the changepoint model.
Then, in Section 3, we describe how to estimate the locations and the number of changepoints. Also, we describe how to model
and estimate the intensity functions. In Section 4, we conduct a simulation study to evaluate the performance of the proposed
methodology. We evaluate the accuracy of detecting changepoints and the accuracy of changepoint locations under different
simulation settings. In Section 5, we analyze sensor data of the daily activities of a household. In Section 6, we present some
discussion.
2. Methodology

In this section, we detail our proposed method to detect changepoints for event observations.

Figure 1: Example of our proposal with Howz data. The top left plot shows six periods of event times. The top right plot
shows the complete sequence of IHPPs. Finally, we seek to partition i into consecutive regions and obtain a segmentation of
{Ni}, as shown in the second row of the plot. Each segment should correspond to a specific intensity function.
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2.1 Preliminaries

Assume that we observe events at times 0 < t1, . . . , tl with t1 < . . . < tl < δ in the interval [0, δ], where δ represents the
duration of a specific period, e.g., 24 hours. We assume that the cumulative count events over time is a realization of an IHPP
with intensity function λ : [0, δ] → R+. That is, N(t) := max{j : tj ≤ t} is a realization of an IHPP on [0, δ]. With this
assumption, for each t ∈ [0, δ], N(t) is a random variable representing the random number of points observed in the interval
[0, t], and N(t) is Poisson distributed with mean

∫ t

0
λ(u)du.

Now, assume that we observe time events for several periods. Let n be the total number of periods (e.g., the total number
of days) for which we have data. Then, our data is the sequence of IHPPs {Ni(t) : t ∈ [0, δ], i = 1, . . . , n}, with corresponding
intensity functions {λi(t) : t ∈ [0, δ], i = 1, . . . , n}. Notice that the counting process Ni only represents events for period i.
Figure 1, top right, illustrates realizations of {Ni}.
2.2 Model definition

We now seek to partition i = 1, . . . , n into consecutive regions. Each segment will be represented by one intensity function.
This is, {Ni} will be grouped by assuming that they are realizations from the same underlying IHPP.

For i ≤ j, we denote by Ni:j the set of observed processes from index i to j, i.e., Ni:j = {Ni, . . . , Nj}, where Ni:i = {Ni}.
Our model contains m changepoints at positions τ1:m = (τ1, . . . , τm) with τ1 < τ2 < . . . < τm. The changepoint vector τ1:m
is a subset of (1, 2, . . . , n − 1). These m changepoints split the data into m + 1 segments. Let τ0 := 0 and τm+1 := n, the
kth segment contains the trajectory of the processes N(τk−1+1):τk , k = 1, . . . ,m+1. The statistical problem is estimating the
number of changepoints m and their locations.

For data that are scalars, several methods exist to estimate multiple changepoints. One approach is to combine a single
changepoint identification method with a binary search (Scott and Knott, 1974). This iteratively applies the method to
different subsets of the data. This has a cheap computational cost O(n logn) but does not guarantee to find the optimal
solution (Eckley et al., 2011). An alternative approach is to minimize a cost function for m changepoints. An exhaustive
search guarantees the optimal solution but involves considering 2n−1 solutions, which is computationally challenging. Recent
dynamic programming algorithms have been proposed to overcome this challenge, see, e.g., Killick et al. (2012), and Maidstone
et al. (2017). Here, we extend the exact search approach from (Killick et al., 2012), to the sequence of IHPPs {Ni}.
3. Estimation Method

To estimate the number and locations of changepoints, we have to specify the parameter space for the intensity functions, λi,
i = 1, . . . , n. We describe the estimation method for these before discussing how to estimate the number, m and locations, τ ,
of changepoints.
3.1 Model for the intensity function

To ensure that λi takes values in R+, we assume that λi(t) = exp{Wi(t)}, where Wi are elements of a space H of functions
defined on the compact interval [0, δ]. The functions λi describe how events occur in the time interval [0, δ], so we would
like to model them with minimal restrictions to capture any possible structure. We use a nonparametric approach. Notice
that λi (or Wi) are defined in an intrinsically infinite-dimensional space, making the estimation procedure challenging. To
overcome this challenge, we represent each unknown function Wi as a linear combination of known basis functions. Here, we
use cubic B-spline basis function because of its ability to represent local properties and their numeral properties, although
other basis functions could equally be used. The number of knots determines the number of the B-spline basis functions. Let
0 = t̃1 = · · · = t̃4 < t̃5 < . . . < t̃P < t̃P+1 = · · · = t̃P+4 = δ be the knots in [0, δ]. The number of basis functions will be P .
The knot placement will depend on the problem being studied, the most common approaches used are the quantile-based and
the equally-spaced knots (Ruppert et al., 2003). For our application, we use the quantile-based method, and this is fixed for
all i = 1, . . . , n. Let ψ(t) = (ψ1(t), . . . , ψP (t)) be the associated B-spline basis. Thus, we represent each function Wi as

Wi(t) =

P∑
p=1

wp,iψp(t) = w⊤
i ψ(t), (1)

where wi is the vector weights. This low-rank representation is widely used in many contexts, such as functional data analysis,
and it can represent complicated shapes of the intensity function. The vector weights wi are obtained using the maximum
likelihood estimation method by optimising (3) below. With the model (1) for a single period i, we consider how to discriminate
between different Ni across i = 1, . . . , n.
3.2 Penalized cost approach

The penalized cost approach has two components; a cost function C(Ni:j) associated with a segment of data Ni:j , i ≤ j, and
a penalty term β to prevent overfitting. In practice, the common cost functions used are the square-error-loss function (see,
eg, Lavielle and Moulines, 2000), cumulative sums (see, e.g., Inclán and Tiao, 1994), and minus twice the log-likelihood (see,
eg, Horvath, 1993). For β, the most common choices include Schwarz information criterion (SIC; Schwarz, 1978) and modified
Bayesian information criterion (MBIC; Zhang and Siegmund, 2007). Then, the penalized cost function for a segmentation is
defined as

Q(N1:n; τ1:m) =

m+1∑
k=1

{C(N(τk−1+1):τk ) + β}. (2)
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where β > 0 is the penalty by introducing a changepoint into the model.
Since {Ni} is a sequence of IHPPs, the negative log-likelihood is the cost function. In this case C(N(τk−1+1):τk ) =

−maxλ logL(N(τk−1+1):τk |λ), where L is the likelihood of the sequence N(τk−1+1):τk . For a segment, assume the processes Ni

within are independent and identically distributed. Then, C(N(τk−1+1):τk ) = minλ

∑τk
i=τk−1+1 γ(Ni; λ), where γ is minus the

log-likelihood of an IHPP defined in [0, δ].
Let λk be the intensity function of the underlying IHPP for the kth segment. Let us assume that Wi has the form (1).

Then,

γ(Ni; λk) =

∫ δ

0

exp

{
P∑

p=1

wp,kψp(t)

}
dt−

ni∑
j=1

P∑
p=1

wp,kψp(tij ), (3)

where ni is the number of events observed in [0, δ] for process Ni, and {ti1 , . . . , tini
} are the corresponding intraperiod times

where events are observed. Thus, the cost for segment k is obtained by minimizing the summation of (3) on the index
i = τk−1 + 1, . . . , τk. Explicitly,

C(N(τk−1+1):τk ) = (τk − τk−1)

∫ δ

0

exp

{
P∑

p=1

ŵp,kψp(t)

}
dt−

τk∑
i=τk−1+1

ni∑
j=1

P∑
p=1

ŵp,kψp(tij ), (4)

where ŵp,k is such that log λ̂k(t) = ŵ⊤
k ψ(t) is the intensity function that minimizes the sum of the loss functions for the kth

segment. Similarly, λ̂k(t) is the “best” intensity function that represents the data from segment k. So each segment has an

estimated intensity λ̂k(t).
To estimate the number and location of changepoints, we minimize (2):

min
1≤τ1<...<τm≤n−1

Q(N1:n; τ1:m) (5)

Note this minimization is over all possible changepoints and can be computationally challenging. We adopt the PELT method
to overcome this challenge, as described in the following.
3.3 Minimizing the penalized cost

To minimize the cost function (5), we adopt the PELT method (Killick et al., 2012); a modification of the optimal partitioning
(OP) procedure (Jackson et al., 2005).

The basis of OP method is a recursion for the minimum cost of segmenting the sequence of data N1:q, with q < n. Let
Sq = {τ : 0 = τ0 < τ1 < . . . < τm < τm+1 = q} be the set of all possible changepoint vectors for data N1:q. Let F (q) be the
associated cost of the solution of Q(N1:q, τ ), and define F (0) = −β. Then, we have that

F (q) = min
τ∈Sq

[
m∑

k=1

{
C(N(τk−1+1):τk ) + β

}]
= min

p : p<q
{F (p) + C(Np+1:q) + β} . (6)

Thus, to obtain the minimal cost for the data N1:q, one minimizes over all possible values for the most recent changepoint prior
to q. Although this recursion reduces the computational cost from O(2n) to O(n2), it is still challenging for large datasets.
To gain computational advantages, we adopt the PELT method whose key idea is to discard values of p that cannot never be
a minimum in (6). The condition of discarding a candidate changepoint is as follows.

Let p < q < r be three time points. Assume that C(N(p+1):q) + C(N(q+1):r) ≤ C(N(p+1):r). If

F (p) + C(N(p+1):q) ≥ F (q), (7)

the candidate p can never be the optimal last changepoint prior to r. Thus, if (7) holds, p is discarded in (6) for all indices
larger than q. This can reduce the computational cost significantly; if changepoints occur regularly the computational cost is
O(n).

Finally, the recursion (6) is solved using the pruning step for q = 1, . . . , n, and thus we obtain F (n), the minimum value
of (2). The set of changepoints at F (n) is the estimator of the changepoint positions within the data. Despite the pruning,
PELT remains an exact optimisation method. Thus an exhaustive search and PELT would return the same solution but PELT
would complete the optimization orders of magnitude faster (O(n) verses O(2n)).
3.4 Selecting P

Notice that P , number of basis functions, is fixed across all segments, and it is assumed to be known in all the above equations.
In practice, the value of P needs to be defined. This is a challenge, and it depends on the data. For some basis functions, it is
possible to set P = 1 and consider a constant basis function, implying that the Poisson process is homogeneous. One way to
select P is using AIC. For a given P , estimate individual intensity functions λi, i = 1, . . . , n, via maximum likelihood and (1).

Obtain the average AIC values over n, ÂIC(P ). Now, repeat this process, varying P , and set P̂ = minP ÂIC(P ). On average,
this should accurately represent the intensity functions. Then, estimate changepoints using P̂ .
4. Simulation Study

We investigate the performance of our proposed method, NHPP-PELT, under different scenarios. First, we assess the accuracy
of detecting the presence of changepoints; summarizing the results using the ROC curves. Second, we demonstrate the accuracy
of estimating the changepoint positions. For each scenario, we use cubic splines to represent the intensity function and we
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Figure 2: ROC curves for single changepoint detection. The diamond-shaped dots represent the values when using the SIC
penalty. The dotted vertical line represents the 0.05 FPr. For n ≥ 10 and for all distances (except d = 0.11 with n = 10), a
0.05 proportion of false positives corresponds to a proportion of true positives bigger than 0.8.

compute the average number of correctly estimated and falsely detected {τk}. Histograms of τ̂k values and boxplots of m̂
values are provided. Additional simulation results for data generated with an ETAS model can be found in the Web Appendix
B.2.
4.1 Simulation setting

We simulate data as a sequence of IHPPs withm changepoints:N1(t), . . . , Nτ1(t),Nτ1+1(t), . . . , Nτ2(t), . . . , Nτm+1(t), . . . , Nn(t),
t ∈ [0, 24]. The m changepoints represent changes in the intensity functions across days. Thus, we define m+1 intensity func-
tions {λ0(t), λ1(t), . . . , λm(t)}, and Nτk+1, . . . , Nτk+1 are simulated from the IHPP with intensity function λk, k = 0, 1, . . . ,m,
defined as

λk(t) = 20{ϕ(t;µk, 2) + ϕ(t;µk + 8,
√
8)}, t ∈ [0, 24]. (8)

Here ϕ(t;µk, σ) denotes the density of a normal random variable with mean µk and standard deviation σ. The different shapes
of this intensity function are visualized in Web Figure 1.

To quantify the performance of our method, we define the degree of change using the Hellinger distance, (see Reiss, 1993,
Chap. 3). This is convenient in this case of horizontal shift changes but other distances could be used, such as the L2 distance.
See Web Appendix B.1 for changes in the magnitude of the intensity functions. We are interested in the magnitude of change
of two consecutive segments, so focus on the distance between λk and λk+1.

The Hellinger distance is defined as d(λk, λk+1) = 1√
2

{∫
{λ̃1/2

k (t)− λ̃
1/2
k+1(t)}

2dt
}1/2

, where λ̃k(t) := λk(t)/ak, with ak =∫
λk(u)du. Notice that d(·, ·) takes values on [0, 1]. If d(λk, λk+1) ≈ 0, then λk ≈ λk+1 (small change). If d(λk, λk+1) = 1, then

λk and λk+1 have disjoint domains (large change). In our simulation, we consider different values of d, varying from small to
large magnitude changes (see Web Figure 1) alongside varying m and n.

To estimate the intensity functions for each simulation, we use the quantile-based method to place the knots and set P = 5
as the number of basis functions in (1). This value is selected based on the AIC criterion (Section 3.4). Each simulation set
is replicated 500 times.
4.2 Accuracy on detecting changepoints

We simulate data with a single changepoint to look at detection accuracy. We consider sample sizes n = 4, 10, 20. These
sample sizes are small to illustrate the performance of our method and results are expected to improve as n grows. For the
ROC curves (Figure 2), false positive rates (FPr) are calculated from no changepoint simulations and true positive rates
(TPr) from data with a single changepoint at n/2. ROC curves are obtained by varying the penalty (threshold) value for the
detection of a change.

For no changepoints, we simulate {Ni(t)} with intensity function λ0(t) (8) with µ0 = 3. For one changepoint, the first
segment N1:n/2 has intensity function λ0(t), and the second segment N(n/2+1):n has intensity function λ1(t), where µ1 =
4, 4.5, 5, 5.5, 6, 6.5, 7, 8. For these values of µ1, the distance d(λ0, λ1) is 0.11, 0.17, 0.22, 0.28, 0.32, 0.37, 0.42, 0.52, respectively.

The left panel of Figure 2 shows the results when the sample size is n = 4. Changes are accurately detected except for
d = 0.11 and 0.17. This is expected since the magnitude of change is small, coupled with a small sample size. Despite this,
we can conclude that for n = 4, our method has good overall performance. Increasing the sample size across periods improves
results for all change magnitudes. For example, for d = 0.11, for n = 10, a 0.05 FPr corresponds to a 0.52 TPr. Whereas for
n = 20, a 0.05 FPr corresponds to a 0.78 TPr.

In conclusion, for small change magnitudes (d = 0.11 or 0.17), our method performs well for n larger than 10. If the
magnitude of changes is moderate or large (d ≥ 0.22), the performance of our method is good even if the number of periods
is as small as n = 4.
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Table 1: Average number of true positives over 500 simulations. In parenthesis, the average segment length for each scenario
is indicated. Overall, as d or n grows, the result improves.

d = 0.17 d = 0.22 d = 0.28 d = 0.32 d = 0.37 d = 0.42

m = 2
n = 24 (8) 0.56 1.36 1.79 1.98 2.00 2.00
n = 50 (16) 1.41 1.80 1.94 2.00 2.00 2.00
n = 100 (33) 1.77 1.90 1.98 2.00 2.00 2.00
n = 200 (66) 1.68 1.86 1.96 2.00 2.00 2.00

m = 3
n = 24 (6) 1.29 1.69 2.29 2.67 2.94 3.00
n = 50 (12) 1.56 2.39 2.86 2.94 2.99 3.00
n = 100 (25) 1.57 2.67 2.87 2.96 3.00 3.00
n = 200 (50) 1.80 2.80 2.85 2.95 3.00 3.00

m = 6
n = 24 (3) 2.01 2.24 2.57 3.14 4.37 5.17
n = 50 (7) 2.23 3.38 4.34 5.40 5.98 6.00
n = 100 (14) 3.14 5.03 5.84 5.96 6.00 6.00
n = 200 (28) 4.79 5.47 5.80 5.94 6.00 6.00

m = 12
n = 24 (2) 1.16 3.10 3.94 4.16 4.77 5.45
n = 50 (3) 3.73 4.26 4.82 5.51 7.16 8.38
n = 100 (7) 4.35 5.37 6.64 8.23 10.94 11.56
n = 200 (15) 6.31 8.95 10.94 11.62 12.00 12.00

4.3 Accuracy of changepoint positions

Turning to estimated changepoint positions, we simulate data with n = 24, 50, 100, 200, and m = 2, 3, 6, 12 changepoints. For
each value of m, we define the changepoint locations τ1:m as fixed proportions (floors) of the number of periods n: (0.2, 0.6),
(0.6, 0.7, 0.8), (0.12, 0.25, 0.45, 0.6, 0.75, 0.9), and (0.09, 0.18, 0.23, 0.36, 0.4, 0.5, 0.57, 0.65, 0.72, 0.78, 0.83, 0.9) for m = 2, 3, 6,
and 12, respectively. These proportions contain a variety of short and long segments. The smallest segment has one data
point and corresponds to the case m = 12 and n = 24, the largest segment contains 120 points and corresponds to the
scenario m = 3 and n = 200. Given n and τ1:m, we simulate IHPPs {N1:τ1 , . . . ,Nτm−1:τm}, where the segment Nτk−1:τk

has intensity function λk. As before, we consider intensity functions such that d(λk−1, λk) is constant for all k = 1, . . . ,m.
We use d = 0.17, 0.22, 0.28, 0.32, 0.42 and for each value, we define {λ0, . . . , λm} using combinations of µk in (8), such that
d(λk−1, λk) = d, for k = 1, . . . ,m. For example, for m = 3 and d = 0.22, we define (µ0, µ1, µ2, µ3) = (6, 7.9, 9.8, 11.8). Then,
we estimate m and {τi}i=1,...,m̂ for each dataset simulated. The penalty β is defined as β = (P + 1) log(n) (SIC penalty).

We expect an increase in detection accuracy for larger d. Table 1 shows the average number of changepoints correctly
estimated, and Table 2 shows the average number of false positives.

For Table 1, we say that τk is correctly estimated if a changepoint is estimated in the interval (τk − logn, τk + logn),
k = 1, . . . ,m. This is a window width of 6.3, 7.8, 9.2, 10.5 for n = 24, 50, 100, 200 respectively. The log(n) choice is due to the
best theoretical rate for consistency of changepoint detection algorithms (Tickle et al., 2020). If one interval intersects another
interval, then the length of the intervals involved is reduced equally such that there is no longer intersection. If more than
one changepoint is estimated in the interval, one is a true positive, and the remainder false positives. Changepoints estimated
more than logn points from the closest true changepoint are counted as false positives. Table 2, summarises both types of
false positives (see Web Table 1 for the split values). In Table 1, we want m̂ to be close to m and observe that, as d and
n grow, the result improves for all values of m. Recall the use of small sample sizes here to demonstrate the limits of our
approach.

Let us analyze the result for each scenario in more detail. For m = 2, we observe that the true changepoints are correctly
estimated in almost all cases of different sample sizes and magnitude of changes, except for n = 24 with d = 0.17. The reason
may be the sample size of the first segment, which is four, since if the segment sample size increases to ten (n = 50), the result
gets better. We obtain the same conclusions for m = 3 and m = 6. If some of the segment sample sizes on the data are smaller
or equal to ten (e.g., m = 3 and n = 100), half of the true changepoints can be missed when the magnitude of change is
small, d = 0.17. The result improves if the segment sample sizes increase or if the magnitude of change increases. For example,
n = 200 and d = 0.22, the average number of correctly estimating the true changepoints when m = 3 is 2.80, and when m = 6
is 5.47. Now, let us analyze the scenario with m = 12 changepoints. In this case, the method has a poor performance when
n = 24 and 50; this is mainly because the segment sample sizes vary from 2 to 7. At n = 100, we have a good performance
with a magnitude of change d ≥ 0.38. Results improve when n = 200, e.g., on average 8.95 true changepoints are correctly
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Table 2: Average number of false positives over 500 simulations. In parenthesis, the average segment length for each scenario
is indicated. Overall, the method does not produce too many false positives.

d = 0.17 d = 0.22 d = 0.28 d = 0.32 d = 0.37 d = 0.42

m = 2
n = 24 (8) 0.04 0.02 0.05 0.07 0.13 0.14
n = 50 (16) 0.19 0.28 0.45 0.45 0.41 0.51
n = 100 (33) 0.85 1.34 1.72 1.57 1.48 1.66
n = 200 (66) 2.86 3.78 4.24 3.88 3.55 3.66

m = 3
n = 24 (6) 0.06 0.04 0.03 0.04 0.07 0.25
n = 50 (12) 0.50 0.24 0.33 0.35 0.40 0.67
n = 100 (25) 1.75 1.30 1.55 1.84 1.55 1.86
n = 200 (50) 4.62 3.81 4.27 5.09 4.07 4.12

m = 6
n = 24 (3) 0.00 0.01 0.00 0.00 0.00 0.01
n = 50 (7) 0.05 0.06 0.04 0.03 0.04 0.10
n = 100 (14) 0.34 0.32 0.27 0.25 0.33 0.69
n = 200 (28) 1.28 1.47 2.12 2.28 1.92 2.86

m = 12
n = 24 (2) 0.00 0.00 0.00 0.00 0.00 0.00
n = 50 (3) 0.00 0.00 0.00 0.00 0.00 0.01
n = 100 (7) 0.02 0.02 0.01 0.01 0.01 0.19
n = 200 (15) 0.78 0.32 0.19 0.56 0.30 1.12

estimated with magnitude of change d = 0.22 and 10.94 with d = 0.28. In the latter scenario, the smallest segment sample
size is 10.

To summarize Table 1, our method has good performance in all cases where the segment contains “enough” observations
for the size of change in each scenario. Based on our single changepoint simulation studies, that is, at least 10 observations
for each segment for small values of d (a complex scenario) and around 5 observations for medium values of d.

Now, let us analyze the results for Table 2. We describe the results according to the sample sizes. We have that, for n = 24
and 50, the average false positives are less than 0.67 for all distances and all values of m. Specifically, occasionally only one
false positive is observed.

For n = 100, we observe that, for m = 2 and 3, on average, between 0.85 and 1.86 false positives are observed. Specifically,
most of the time, we observed one false positive and sometimes two false positives for all distances. For m = 6 and 12, the
average number of false positives is less than one. Finally, for n = 200, for m = 2, 3, and 6, the average number of false
positives varies from 1.28 to 5.09, being m = 3 the scenario where more false positives are observed (on average 4 or 5). While
for m = 12, frequently only one and very occasionally two false positives are observed.

Overall, for sample sizes n = 24, 50, and 100, we observe 1 or 2 false positives on average for all values ofm and all distances.
Whereas for n = 200, we obtain around 3 to 5 false positives on average with m = 2 and m = 3, two on average with m = 6,
and around 1 with m = 12. Based on these results and given the complexity of the cases, we think that our method performs
well.

In addition, Web Figures 2 and 3 present boxplots of the values of m̂ histograms of the τ̂ values, respectively. Overall,
compared with the results from scalar data, the method is sensitive to small changes and does not produce too many FPs.
5. Data Application

In this section, we analyse sensor data measuring daily activity using the approach described in Section 3. In the following,
we only present the results for one person. Web Appendix C presents two more analyses of two different people.
5.1 Data description

Data are obtained from Howz (Howz, 2024), and they represent sensor activations by a single older person living in a house.
The sensors are triggered when any movement is detected, e.g., in the bedroom, hallway, kitchen, bathroom, and living room.
In addition, the sensors capture specific activities that are performed around the house, e.g., using a kettle, a toaster, and a
microwave, opening the fridge door, the back door, the front door, and the main door. These sensors record the time they
are activated for 61 days. Figure 1 (top left) shows six days of the raw data. We assume that there is no weekend effect. This
is reasonable as these are retired adults who have a similar routine every day of the week (see also Web Appendix C.2 for a
justification of this assumption).

Detecting changes is important since it allows us to detect potential health problems. In normal conditions, a person is
expected to perform their regular routines. For example, waking up, having breakfast, lunch, and dinner around the same
time every day. If one day the waking up is pushed back by 30 or 60 minutes, or if the person skips some regular routines, then
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this is a change. Depending on the change, it could be interpreted as an indicator of possible health problems, and our goal
is to detect these changes. This is challenging because of the inherent periodicity component of the data (24 hrs periodicity).
Taylor et al. (2021) assumes that data are Bernoulli time series and detects changes around the circular axis. Changes detected
are within period, e.g., wake-up times. These changes cannot be used as an indicator of possible health problems. Instead,
we consider identifying changes across days. To achieve this goal, we assume that the number of activities for each day is a
realization of an IHPP (top right plot of Figure 1). Note that the number of activities per day is variable; 29 is the minimum,
120 is the maximum, and 70.43 is the average. Since regular daily routines will have similar sensor activations, it is natural to
assume that they will have the same intensity function. Whereas if there is a change in the regular routines, the corresponding
intensity function should be different.
5.2 Model specifications

We assume the model specification as given in Section 2 with i = 1, . . . , 61 days, and t ∈ [0, 24]. For model diagnostic, see
Web Appendix C.1.

We segment this sequence according to its intensity functions. We represent the intensity functions as in (1), with {ψp(t)}
being cubic B-spline basis functions. We note that other basis functions could be used here. Based on the AIC criterion, we
set P = 5. Finally, we define β, the penalty incurred when introducing a changepoint, as β = 6 log(61) (SIC penalty). This
penalty considers the number of parameters to be estimated when introducing a new intensity function and the sample size.
Whilst this standard penalty works well for this application, it may not work in all applications. There are several approaches
to penalty selection within the changepoint literature with two common data-driven approaches. The first is the “elbow”
approach common in, e.g., choice of significant principal components, one plots the number of changepoints selected against
the penalty parameter and looks for the “elbow” in the curve (Lavielle, 2005). This approach works better for signals with a
larger number of changepoints to populate the curve. A second approach inspired by supervised clustering uses labelled data
(Hocking et al., 2020). Here, segments of data are labelled as “contains a changepoint” or “no changepoint,” and a penalty is
chosen which balances ensuring that the former segments contain a changepoint and the latter do not. Naturally, this requires
a sizeable set of labelled data to provide a sensible choice.
5.3 Results

Applying our method, we obtain m̂ = 2 changepoints at 5, and 35. That is, the segmentation is N1:5, N6:35, and N36:61.
Figure 1 shows the segmentation, and Figure 3 (first row) shows the three different intensity functions of the Poisson processes
for each segment.

The first difference we observe in the segments is the different number of activities throughout the day. In the first segment,
the person is much more active than in the second segment. The number of activities then increases again in the third segment.
These overall changes are clearly observed in the plots shown in Figure 3. Let us take a closer look at the difference between
two consecutive segments. For this, we present histograms in Figure 3 (second row), which show the proportion of daily events
within a segment and grouped per hour. We observed that activities are concentrated from 7 to 1 pm for segment one, with
peaks at 8 and 12. Thus, the maximum of λ̂0 is at around 11 am. Whereas for segment two, activities are concentrated from
7 am to 9 am and 12 pm. This gives the maximum of λ̂1 around 8.

The other significant difference between segment one and segment two is there are proportionately more activities around
10 o’clock in segment 1. We can conclude that, after five days, this person decreased their activity and also changed their
behaviour, specifically at hours 10am and 1pm. Now, let us compare segments two and three. In segment three, activities
increase again. In these two segments, the person has the same morning routine and changes after midday. In segment 2,
afternoon, the person’s activity decreases drastically and then remains relatively constant, with a slight peak at 5 and 10 pm.
In terms of the intensity function, this represents a steady slope after the maximum value is reached, as we can appreciate in
Figure 3 (first row, middle plot). On the other hand, in segment 3, we observe more of an increase in activity after 2 pm. This
remains relatively constant until 6 pm. This is a more uniform decline after the peak in the intensity function. For segments
two and 3, we conclude that the main difference is the activities in the afternoon. In segment 3, more activities are performed
from 2 pm to 6 pm than in segment 2.

Finally, we verified with Howz if these two detected changes are related to their findings. Upon visual inspection by Howz,
2 out of 4 other metrics that Howz uses would signal the first changepoint, with a further metric changing at the second
changepoint. More specifically, the second changepoint appears to be driven by a change in the time of their start-of-day
whilst the first is by a change in their end-of-day routines.

From a medical viewpoint, changes in daily activities may be related to e.g., memory loss or fatigue, since these may cause
a person to skip some daily routine activities. When a change is detected in the dataset, the company contacts the person to
ask some questions. If necessary, the person is advised to seek medical advice. In general, changepoint detection methods and
continuous monitoring of daily activities can help a person’s well-being and enhance care and support. It also supports the
older person’s ability to maintain an independent living.
6. Conclusion and Discussion

An important issue today is the development of new technologies and methodologies to support independent living and
healthy ageing of older people. In-home sensors are unobtrusive and future-oriented in collecting data that can be used to
study behavioural changes. Tracking behaviour changes provides a valuable monitoring tool. Along this line, we have proposed
a new approach to model and detect changes in sensor data measuring daily activity.
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Figure 3: First row: Intensity function of each segment. The maximum of λ̂0, λ̂1, and λ̂2 are attained around 11 am, 8 am,
and 9 am, respectively. Second row: Histograms of event times for the three segments. The number of activities are grouped
per hour.

Our approach assumes that changes within a day are part of a person’s daily routine and focuses on changes across daily
behaviour. We assume that the set of event times within a given day is a single observation. This observation is represented by
a continuous temporal process. Then, our changepoint model is defined on the sequence of temporal processes. Here, we used
B-spline basis functions to represent the daily processes. However, note that other basis functions (e.g., Fourier, wavelets)
could be used as appropriate for a given application, especially if continuity at the start/end of each day is desirable.

Our approach can be extended in different directions. For example, one can cluster the sequence of processes according
to different alarm levels (habitual behaviours, nonhabitual behaviour, etc.). Also, it allows us to focus on specific periods or
intervals of time –for example, daily, weekly or nighttime routines. If data is collected at different houses, we could also cluster
households using the individual intensity functions. Moreover, our approach can combine data from different sources and at
different resolutions. Another extension would be to use Cox processes or Hawkes processes instead of inhomogeneous Poisson
processes; one needs “only” to change the cost function, but this could involve computational challenges. Alternatively, we
could consider multivariate processes (including spatial structure). For example, each sensor can be modelled by a point
process, and then changes can be detected in the multivariate point process. Again, one could extend the proposed method
by modifying the cost function. All these possible extensions are left for future work.

A limitation of the method is that it requires observing a whole period. For example, if a period represents 24 hours, data
collected until mid-day cannot be used since we will not be able to estimate the intensity function. Another limitation is that
the proposed method requires a “large” sample size to detect small changes. For example, from Figure 2 with d = 0.11, a
sample size bigger than 20 is needed to accurately detect a changepoint with lower false positive rates. Although this is a
very small change (see Web Figure 1), and in this case, any method will require a large sample size to obtain accurate results.
A more realistic small change would be d = 0.17 (d = 0.22); in this case, the method requires a sample size bigger than 10
(6) to accurately detect a changepoint with a lower false positive rate (around 0.05). Thus, we recommend the user set the
minimum size of a segment according to the context (this is an argument in the R function that estimates m and τ ).

We conclude that our methodology presents a valuable alternative to detect change points when data are a sequence of
point processes. The corresponding R code to estimate the changepoints will be available as part of the changepoint R package
(Killick et al., 2022). Alternatively, R code can be found on the author’s GitHub.
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