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Abstract
It is no secret that statistical modelling often involves making simplifying assumptions when at‐
tempting to study complex stochastic phenomena. Spatial modelling of extreme values is no
exception, with one of the most common such assumptions being stationarity in the marginal
and/or dependence features. If non‐stationarity has been detected in the marginal distributions, it
is tempting to try to model this while assuming stationarity in the dependence, without necessar‐
ily putting this latter assumption through thorough testing. However, margins and dependence are
often intricately connected and the detection of non‐stationarity in one feature might affect the de‐
tection of non‐stationarity in the other. This work is an in‐depth case study of this interrelationship,
with a particular focus on a spatio‐temporal environmental application exhibiting well‐documented
marginal non‐stationarity. Specifically, we compare and contrast four different marginal detrending
approaches in terms of our post‐detrending ability to detect temporal non‐stationarity in the spa‐
tial extremal dependence structure of a sea surface temperature dataset from the Red Sea.
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1 INTRODUCTION

In environmental applications it is not uncommon to observe non‐stationary behaviour in the extreme values of a random variable. However,
extreme value modelling often relies on a simplifying assumption of stationarity. In practice, non‐stationarity may be present in different aspects
of the data generating process; the more aspects it affects, the greater the degree of modelling complexity. Marginal non‐stationarity refers to the
situation where realisations of a univariate random variable are non‐identically distributed. In environmental data, this varying behaviour typically
depends on time, although other covariates, that themselves evolve with time, are normally the drivers of change. Various methods for modelling
marginal non‐stationarity of extremes have been well explored in the literature. One of the main approaches is to incorporate covariates directly
into the parameters of univariate models for extreme value analysis. Typically this will be the generalised Pareto model for excesses of a high
threshold: see for example Davison & Smith (1990), Chavez‐Demoulin & Davison (2005) and Youngman (2019). Section 2.1 contains further details
on these and other methods for modelling non‐stationarity.

Non‐stationarity may also be encountered in the extremal dependence structure of a random vector. That is, the extremal dependence between
two or more components of a random vector may change with covariates. In such instances, it is common in analyses of multivariate or spatial
extremes to handle marginal and dependence modelling as a two‐step procedure, implementing marginal detrending methods first and then ap‐
plying non‐stationary methods for dependence modelling to the marginally detrended data. Although alternative methods that model marginal
and copula behaviour jointly in a single step exist, they are not as numerous and their application in extreme value modelling is scarce in prac‐
tice. One reason for this is that univariate extreme value distributions are suited to marginal upper tails, while multivariate extremal dependence
models rely on potentially different upper tail definitions. A mismatch between marginal and copula support impedes joint modelling considera‐
tions. When the multivariate definition of extremity follows as a direct generalisation of the univariate one, as in the case of modelling maxima,
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Padoan et al. (2010) and Ribatet et al. (2012) develop such joint modelling procedures for max‐stable processes, in a frequentist and Bayesian
realm respectively. In a similar manner, multivariate generalised Pareto distributions (Rootzén & Tajvidi, 2006; Rootzén et al., 2018) allow for joint
marginal‐dependence modelling, which could be extended to cover non‐stationarity, while similar ideas could potentially be applied to spatial gen‐
eralised Pareto processes (Buishand et al., 2008; Ferreira & de Haan, 2014). However, both max‐stable and generalised Pareto processes yield very
restrictive dependence structures and are therefore unlikely to capture the complex dependence features often present in environmental applica‐
tions (Huser & Wadsworth, 2022). Even putting these issues aside, pursuing joint marginal‐copula modelling brings about another important risk,
even in the stationary case, that misspecification in one form — the margins or dependence — can affect the other. Such spillover is likely wors‐
ened when non‐stationarity is present. In this paper, we adopt the more established two‐stage approach, thus making the task of disentangling
the relationship between margins and dependence, which is the focus of this work, as clear and straightforward as possible.

Available methods for non‐stationary dependence modelling include the following. In a bivariate setting, de Carvalho & Davison (2014) develop
a semi‐parametric model which incorporates covariates into the modelling of the so‐called spectral density, thus capturing the effect of explanatory
variables on joint extremes. In a multivariate setting, Castro‐Camilo et al. (2018) and Mhalla, de Carvalho, & Chavez‐Demoulin (2019) also focus
on spectral density functions with the former developing non‐parametric regression‐based methods and the latter building a vector generalised
additive model to capture covariate‐varying extremal dependence. Lee et al. (2024) model covariate(time)‐varying extremal dependence in various
summary statistics. Murphy‐Barltrop &Wadsworth (2024) model temporally varying extremal dependence in a bivariate setting via non‐stationary
extensions of the so‐called angular dependence function and return curves, while Mhalla, Opitz, & Chavez‐Demoulin (2019) also make use of non‐
stationary angular dependence functions to account for covariate influence.

In a spatial setting, modelling changes in extremal dependence using space‐related covariates, which may be expected when the spatial domain
is large or morphologically diverse, has received the most attention; see for example Huser & Genton (2016), Blanchet & Davison (2011), Richards
& Wadsworth (2021). Much less attention has been dedicated, however, to time‐related covariates which, given the ongoing climate crisis, may
have considerable effects on the spatial extremal dependence structure over time, especially in applications spanning a large temporal domain.
A noteworthy exception of research in this direction is that of Healy et al. (2024+) who model temporal non‐stationarity in both marginal and
dependence features. They combine information on Irish temperatures from both observational and climate‐model sources and consider time‐
varying dependence via the framework of r‐Pareto processes (Dombry & Ribatet, 2015).

Of the aforementioned examples, Healy et al. (2024+) is the only one dealing with spatial aspects of time‐varying extremal dependence; the
remaining do so in a multivariate setting. To the best of our knowledge, there is no other contribution where this problem is tackled in a fully spatial
context available in the literature. What is more, Healy et al. (2024+) focus on a class of models that can only accommodate a particular type of
dependence, namely asymptotic dependence (see Section 2.2 for details) which, although appropriate for their application, is often unrealistic for
similar spatial environmental datasets.

It is this lack of available literature that provided the initial motivation for the present work. Our study is focused on a dataset with well
documented marginal non‐stationarities (Huser & Genton, 2016), which was also believed to showcase non‐stationary behaviour in its spatial
extremal dependence structure. The data comprise daily sea surface temperature values from the Gulf of Suez spanning across 31 years (1985 to
2015 inclusive). As is common in analyses of extremes, we focused our attention on the summer data (July‐August‐September) from that period,
to reduce the degree of seasonality to be modelled, while considering the period of highest temperatures. The original data are available for the
whole of the Red Sea, on a daily basis and a very fine resolution grid of 0.05◦ × 0.05◦ (Donlon et al., 2012). Initial analysis of spatial dependence
changes over time for this dataset suggested the need for adapting spatial dependence models to account for time‐varying dependence (see top
left plot of Figure 3).

However, following our initial exploratory analysis, we tested various approaches tomodellingmarginal non‐stationarity, finding that subsequent
results concerning changes in spatial extremal dependence were highly sensitive to the marginal model used. We thus came to the conclusion that
the deciding factor behind whether or not temporal non‐stationarity is detectable in the spatial extremal dependence structure of the data critically
relies on the marginal detrending approach pursued and that any resultant analysis is, in our case, extremely sensitive to marginal modelling choices.
As such, instead of focusing on adapting existing models to accommodate changes in spatial dependence over time, the aim of this paper is to
serve as a cautionary tale of the misleading effects the marginal and dependence structure interrelationship can have on analyses of extremes. Our
main objective is to investigate the effects of four different marginal detrending approaches on spatial extremal dependence. In particular, we use
graphical tools to assess whether the apparent spatial extremal dependence changes over time under each marginal detrending procedure. We
note here that the dataset in question displays strong autocorrelation; such a feature will remain after modelling trends in the data, but can affect
visual assessment of stationarity. Graphical tools should therefore be interpreted with some degree of caution. We further assess the impact of
each marginal model on the spatial extremal dependence under a (potentially false) assumption of temporal stationarity by applying the conditional
spatial extremes model (Wadsworth & Tawn, 2022) to all four marginally treated versions of the Gulf of Suez dataset and comparing model‐based
dependence features. This particular spatial model was selected because of its computational and modelling flexibility, which allow for increased
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scalability (in terms of the number of spatial locations that can be handled) compared to most alternative models available, as well as simpler
characterisation/modelling of different types of extremal dependence.

The remainder of the paper is outlined as follows. Section 2 provides background information for our statistical approach. Section 3 describes
the four marginal detrending methods employed. Section 4 is dedicated to the analysis of the Gulf of Suez data. Finally, we conclude in Section 5
with a short discussion.

2 STATISTICAL BACKGROUND

2.1 Marginal modelling of extremes

Marginal modelling in extremes concerns the study of univariate extreme values which appear either in isolation, or as components of a higher
dimensional random vector. When studying a random variable X, asymptotic theory dictates that the distribution of threshold exceedances X – u |
X > u of a sufficiently high threshold u can usually be approximated by the limiting formG in (1), known as the generalized Pareto distribution (GPD):

G(x) =

1 – (1 + ξx/σu)
–1/ξ
+ , for ξ ̸= 0,σu > 0, x > 0,

1 – exp (–x/σu) , for ξ → 0,σu > 0, x > 0,
(1)

for a+ = max(a, 0); we write X–u | X > u ∼ GPD(σu, ξ). The GPDmodel is suitable for capturing the tail behaviour of stationary processes. When
marginal non‐stationarity is present, Davison & Smith (1990) proposed incorporating covariates into the parameters of the GPD. That is, given
a marginally non‐stationary process {Xt} with associated covariates Zt, one can model (Xt – u | Xt > u,Zt = zt) ∼ GPD (σu(zt), ξ(zt)) for a high
enough threshold u. Note that covariate modelling here is performed according to the principles of generalised linear models, where typically we
set logσu(zt) = βT

σzt, ξ(zt) = βT
ξzt. Subsequent work has considered more flexible covariate formulations, such as those provided by generalised

additive models (GAMs); see, for example, Chavez‐Demoulin & Davison (2005) and Youngman (2019).
One problem with such techniques is that their definition of extremity often depends on a constant threshold, but under non‐stationarity, the

extremes are suitably defined through the corresponding covariate levels as well. To address this issue, Northrop & Jonathan (2011) and Jonathan
et al. (2013) define covariate‐varying thresholds. Another concern is that these techniques focus on modelling non‐stationary behaviour only in
the tail of a process. However, it is often of interest to model non‐stationarity in the body of the data as well, since extremes across components
of a random vector do not necessarily occur simultaneously. That is, we may observe extremity in one component but moderate levels of another.
If marginal non‐stationarity in the body of the distribution is neglected, then we cannot model this dependence appropriately.

To overcome these issues, Eastoe & Tawn (2009) borrow techniques from time‐series modelling. They introduce a two‐step procedure com‐
prising a pre‐processing step, aiming to remove most of the non‐stationarity present in the body of the data, and a non‐stationary GPD step, to
remove any leftover trends in the tails. The pre‐processing step consists of applying a Box‐Cox location‐scale transformation of the form

Xλ(zt)
t – 1

λ(zt)
= µ(zt) + σ(zt)Rt (2)

to the marginally non‐stationary process {Xt}, where {Rt} is approximately stationary and λ, µ and log(σ) are linear functions of covariates zt. The
process {Rt} is assigned a Gaussian distribution, so that specification (2) has a likelihood that is maximised to provide parameter estimates. This
is then followed by a non‐stationary GPD fit to the residual process {Rt}, using the methodology of Davison & Smith (1990). If any trends are
identified in the scale and shape parameters, σu(zt) and ξ(zt) respectively, they are removed via the probability integral transformation, using a
semi‐parametric approach to estimation of the distribution of Rt (Coles & Tawn, 1991). This consists of a rank transform for data below a high
marginal threshold, u, which are now assumed stationary, and the GPD cumulative distribution function for values above u. To make things more
explicit, let r1, . . . , rn be observations from the process {Rt} at times 1, . . . , n, and define

F̂Rt (r | Zt = zt) =


Σn

t=11(rt ≤ r)/(n+ 1), r ≤ u

1 – (1 – u)
[
1 + ξ̂(zt)(r – u)/σ̂u(zt)

]–1/ξ̂(zt)
+

, r > u,

where σ̂u(zt) and ξ̂(zt) are the maximum likelihood estimates of the scale and shape parameters respectively, which are estimated by the non‐
stationary GPD step. Applying F̂Rt to themarginal process {Rt} achieves standardisation to a standard uniform scale. Finally, we note that somemore
recent work replaces Eastoe & Tawn (2009)’s pre‐processing step with a more elaborate one which, instead of assuming linear parametric forms
for the covariate functions, makes use of the GAM framework to allow parameters µ(zt),σ(zt) of (2) and σu, ξ of the non‐stationary version of (1)
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to vary smoothly with covariates (Murphy‐Barltrop & Wadsworth, 2024). This extra flexibility is desirable when the observed non‐stationarities
are too complicated to be adequately captured by parametric forms.

2.2 Measures of extremal dependence

A key endeavour of many multivariate analyses is to characterise the extremal dependence between D ≥ 2 random variables. Apart from the
obvious exploratory benefits of understanding the data better by uncovering its dependence structure before attempting any modelling, another
reason why such a task is of importance is that many of the available models — and their underpinning assumptions — can only accommodate data
that fall under a single category of dependence classes. Hence, D‐variate measures of extremal dependence are often examined for dependence‐
class assessment and categorisation in multivariate analyses. In the spatial case however, one can often assume that bivariate distributions (D = 2)
of the spatial process at location pairs are very informative and, thus, looking at bivariate versions of extremal dependence measures for different
pairs is all one needs to characterise the extremal dependence of the process at given distances.

A widely used dependence measure in practice is the so‐called tail dependence coefficient, typically denoted by χ. Let {Y(s) : s ∈ S ⊂ R2} be a
stationary and isotropic spatial random field and (Y(s1), . . . , Y(sD)) the D‐dimensional random vector comprised of the realisations of {Y(s)} at the
observed spatial locations si, i = 1, . . . ,D. Letting Y(si) ∼ F denote the common marginal distribution, the coefficient of tail dependence χ(hjk) is
given by χ(hjk) = limu→1 χu(hjk), with

χu(hjk) = Pr
{
F(Y(sj)) > u | F(Y(sk)) > u

}
, u ∈ [0, 1], (3)

where hjk = ∥sj – sk∥ is the distance between sites j and k
(
j ̸= k, j, k ∈ {1, . . . ,D}

)
; we will take this to be the Euclidean distance for the remainder

of the paper. The quantity χ(hjk) is the limiting probability of the process being extreme at location sj given that it is also extreme at location sk
and characterises the extremal dependence between the pair (j, k) at distance hjk apart. A process is said to be asymptotically dependent (AD) in the
spatial domain S if χ(hjk) > 0 for all hjk, j, k ∈ {1, . . . ,D}. In practical terms, asymptotic dependence (AD) means that the variables, or realisations
of the spatial process at different locations, can take their most extreme values simultaneously. Conversely, the case where χ(hjk) = 0 for all hjk,
j, k ∈ {1, . . . ,D}, defines an asymptotically independent (AI) process in the spatial domain S, which means that the spatial extent of the extremes
becomes more and more localised as the level of extremity increases. In such cases, the measure χ(hjk) does not give us any additional information
on the joint tail dependence. A complementary statistic to χ(hjk) that is more informative under asymptotic independence (AI) is the residual tail
dependence coefficient, η(hjk) ∈ (0, 1], of Ledford & Tawn (1996), which may be defined through the relation

Pr
{
F(Y(sj)) > u, F(Y(sk)) > u

}
= L(1 – u)(1 – u)1/η(hjk), u → 1, (4)

where L is a slowly varying function such that L(cr)/L(r) → 1 as r → 0 for all positive constants c. Note that relation (4) implies η(hjk) =

limu→1 ηu(hjk), with

ηu(hjk) =
log(1 – u)

log
(
Pr

{
F(Y(sj)) > u, F(Y(sk)) > u

}) , u ∈ [0, 1], (5)

j ̸= k, j, k ∈ {1, . . . ,D}. The boundary case η(hjk) = 1 corresponds to χ(hjk) = limu→1 L(1 – u). Hence, when η(hjk) = 1 for all hjk, j, k ∈ {1, . . . ,D},
and L(1 – u) ̸→ 0 as u → 1 we get χ(hjk) > 0 for all hjk, j, k ∈ {1, . . . ,D}; that is, the process is AD in the spatial domain S. The more interesting
case where either η(hjk) < 1 for all hjk, j, k ∈ {1, . . . ,D}, or η(hjk) = 1 for all hjk, j, k ∈ {1, . . . ,D}, and L(1 – u) → 0 as u → 1, leads to χ(hjk) = 0

for all hjk, j, k ∈ {1, . . . ,D}, and signifies that the process is AI in S, which can be further categorised into negative extremal association when
η(hjk) ∈ (0, 1/2), near independence when η(hjk) = 1/2 and positive extremal association when η(hjk) ∈ (1/2, 1]. The latter case is of particular
interest to environmental applications which usually exhibit positive dependence over space. Because we cannot typically estimate the limiting
quantities (χ(hjk), η(hjk)), the behaviour of (χu(hjk), ηu(hjk)) as u → 1 is used instead to help inform us about the extremal dependence structure
of the process.

As already mentioned, distinguishing between extremal dependence classes is important for modelling. Doing so in practice, however, is a non‐
trivial task. With spatial data, for example, we might have χu(hjk) > 0 at all observable high quantiles, u, and pairs of sites, but χu ↘ 0 as u ↗ 1.
It is frequently encountered in practice that the dependence of environmental processes weakens as events become more extreme with the very
severe extreme events becoming more spatially localised (Huser & Wadsworth, 2022). One might also observe that the dependence class of the
process is not the same for all distances, but changes from AD to AI after a distance∆, or with respect to other covariates. This creates additional
modelling difficulties and highlights the importance of thorough exploratory investigation of the dependence structure as a first step to overcoming
said difficulties.
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2.3 Conditional spatial extremes model

So‐called conditional extremes methods for extremal dependence modelling were first developed in a multivariate setting by Heffernan & Tawn
(2004) and further studied by Heffernan & Resnick (2007). In contrast to previously existing methods that relied on the limiting behaviour of a D‐
dimensional randomvectorwhen all of its components become simultaneously extreme at the same rate, the authors developed novelmethodology
based on a limiting assumption on the joint tail of a vector given that one of its components is extreme. This alternate limiting assumption of the
Heffernan & Tawn (2004) model is much less restrictive, allowing for increased flexibility both in dependence modelling and in fitting scalability.
With these benefits in mind, Wadsworth & Tawn (2022) extended the work of Heffernan & Tawn (2004) and Heffernan & Resnick (2007) to a
spatial setting, termed the conditional spatial extremes (CSE) model.

Let {Y(s) : s ∈ S ⊂ R2} be a stationary and isotropic spatial random field with exponential‐tailed margins, i.e. Pr(Y(sj) > x) ∼ ce–x, c > 0, as
x → ∞; a typical marginal choice is standard Laplace, which we also adopt in our subsequent analyses. For a high marginal threshold t, Wadsworth
& Tawn (2022) show that for many dependence structures, a reasonable assumption is

{
Y(s) | Y(s0) > t : s ∈ S

} d
≈

{
as–s0 (Y(s0)) + bs–s0 (Y(s0)) Z0(s) : s ∈ S

}
, (6)

which can be used to model the behaviour of the process {Y(s)} given an extreme value has occurred at some location s0. Specifying functional
forms for as–s0 and bs–s0 , where as–s0 : R → R, a0(y) = y, and bs–s0 : R → (0,∞), s ∈ S, and a distributional form for the so‐called residual
process {Z0} — satisfying the condition Z0(s0) = 0 — completes the model. The dependence structure of the residual process {Z0} is assumed to
be Gaussian in nature, while its margins are modelled via the so‐called delta‐Laplace distribution. Inference for the model in (6) is performed based
on a composite likelihood scheme, combining likelihood contributions stemming from different conditioning locations (all or a subset of available
locations can be selected), thus overcoming the problem of choice of conditioning location which is often not obvious in applications. Additional
details on the CSE model are given in Appendix A.

3 MARGINAL DETRENDINGMETHODS

In Sections 3.1 – 3.4 we outline four approaches considered for capturing marginal non‐stationarities in our dataset. In each case, our objective is
to transform the data to follow a stationary standard Laplace distribution, i.e. with distribution function

FL(x) =

0.5 exp{x}, x ≤ 0,

1 – 0.5 exp{–x}, x > 0,

enabling subsequent application of the CSE model. We do this in two steps. We first transform our data to the standard uniform scale by imple‐
menting each detrending procedure outlined below. Then, assuming all trends have been successfully removed and that, therefore, our data are
now stationary, we apply F–1L , the Laplace inverse cumulative distribution function, to the uniform data to bring them to the required marginal
scale. Figure 2 displays the data on Laplace margins following each of the four processing techniques. As noted in Section 1, strong temporal de‐
pendence between observations within a year can hinder visual assessment of stationarity from such plots. All marginal detrending procedures are
implemented site‐wise.

3.1 Margins A

The first marginal detrending approach considered comes from the simple but crude assumption that data are stationary within a year — facilitated
by considering data only from a single season — but that their distribution may change over the years. It consists of a simple rank transform
applied in yearly blocks, whereby data corresponding to the same year are grouped, rank‐transformed together, and collated post‐transformation.
Implementing this transformation separately for each year allows for long term and inter‐annual trends — which, according to Figure 1, both seem
to be present for the Gulf of Suez dataset — without the need to explicitly specify the form of such trends.

The main merit of such an approach lies precisely in its simplicity, which in turn leads to very fast and straightforward implementation. On the
other hand, performing the rank operation yearly could lead to cruder empirical approximations of the underlying marginal distributions — given
only 92 data points per year are available in our case — and introduces the repeated values that can be seen in the top‐left panel of Figure 2 across
the full, transformed time series.
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F I GUR E 1 Time series plot at location s35 on the original marginal scale.

3.2 Margins B

The Eastoe & Tawn (2009) approach has been widely used in applications to achieve data detrending at a marginal level (e.g. Winter et al. (2016),
Winter et al. (2017)). We employ this, in particular its more flexible GAM extension, as our second detrending technique. As evidenced in Figure
1, the Gulf of Suez dataset is characterised by strong temporal trends of both cyclical (short‐term) and linear (long‐term) nature. We endeavour to
remove such trends site‐wise, via the GAM modelling framework of Wood (2017), as implemented in Murphy‐Barltrop & Wadsworth (2024).

To be precise, let us denote the temperature process by {Yt(s)}, t = 1, . . . , T. We are interested in applying detrending methods to all marginal
time series Yi,t = Yt(si), for all i ∈ {1, . . . ,D}. For every Yi,t, we allow the location, µi, and scale, σi, parameters of (2) to vary smoothly with covariates
zt = {1, gmtt, dt}, where gmtt denotes global mean temperature anomalies† at time t and dt = {1, . . . , 92} denotes the day index of the process
at time t. The reason gmtt is chosen instead of t is that we found it explained more of the observed trends than simply t. Moreover, its use has
been advocated by others (e.g. D’Arcy et al. (2022), Healy et al. (2024+)) for better capturing long‐term trends in environmental applications. Note
that we do not include a Box‐Cox parameter in this procedure for simplicity, as there is no obvious need for a changing shape parameter. Aiming
to capture the long‐term linear trend, a thin plate regression spline is fitted for the covariate gmtt, while a cubic regression spline of dimension 92

— found to result in the most stationary‐looking data amongst a number of different choices examined — is used to capture the seasonal trends
through the covariate dt. The µi and σi parameters are estimated by means of the R package mgcv (Wood, 2003, 2011) and subsequently removed,
resulting in residual time series Ri,t = (Yi,t – µi(zt))/σi(zt) for all i. We then proceed by applying a non‐stationary GPD to Ri,t using a constant 90%
marginal threshold, thus aiming to remove any remaining trends in the tails. A likelihood ratio test is used to determine whether no, linear, seasonal
or both trends should be added to the scale parameter of the GPD for each site si. The shape parameter in all margins is assumed to be invariant
to temporal trends. The detrended data are visualised on the standard Laplace scale in the top right plot of Figure 2.

3.3 Margins C

The third marginal detrending method examined is motivated by the unsatisfactory degree of detrending achieved in margins B. In particular, there
seems to be an inconsistency in the number of exceedances of a fixed high threshold observed per year, with some years experiencing multiple
exceedances and some very few, if any. It appears therefore that the detrending method described in Section 3.2 fails to capture the full structural
complexity of the margins, resulting in leftover marginal “irregularities” manifesting as inter‐year variability. Eastoe (2019) and Clarkson et al.
(2023) have reported similar findings in their analyses of a river flow and a U.S. temperature dataset, respectively. To account for leftover inter‐
year variability they develop a random‐effects‐based methodology. Inspired by their method, we introduce an additional intermediate step to the
aforementioned margins B procedure, acting as a crude approximation of the Eastoe (2019) approach.

† Data form part of the HadCRUT5 dataset (Morice et al., 2021).
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F I GUR E 2 Time series for location s35 in standard Laplacemargins. [Left to right and top to bottom:] A‐B‐C‐Dmargins. Detrending is performed
based on a 90% constant marginal threshold for margins A‐C, while for margins D an 83% threshold was automatically selected for this location.

Let Yk denote the set of time points t corresponding to year k, where k = {1, . . . , 31}. Since each year is comprised of 92 summer‐month
observations, Y1 = {1, . . . , 92}, Y2 = {93, . . . , 184}, etc. The residual process {Ri,t} is then adapted as follows:

{Ri,t}t∈Yk –mk

sk
, (7)

wheremk is the yearly mean and sk is the yearly standard deviation. Both quantities are estimated over all locations i ∈ {1, . . . ,D} and using all data
points corresponding to time t ∈ Yk. The transformation in (7) is applied to each i ∈ {1, . . . ,D}. This intermediate step is then followed by the final
GPD step, for which we introduce a high but constant 90% marginal threshold, similar to our approach for margins B.

3.4 Margins D

Our final detrending scheme builds upon themethodology formargins C, replacing the constant highmarginal threshold featurewith the automated
threshold selection routine of Murphy et al. (2024), thus allowing for a different marginal threshold for each spatial location si, i ∈ {1, . . . ,D}.

The Murphy et al. (2024) method is aimed at addressing the bias‐variance trade‐off that is inherent to the problem of threshold choice for GPD
model fitting; namely that too low a threshold is likely to violate the assumptions upon which asymptotic justification for the model is based —
thus introducing bias in the GPD model fit — while too high a threshold can lead to fewer excesses being used to fit the GPD model — hence
contributing to higher parameter uncertainty. The method focuses on selecting a constant threshold for independent and identically distributed
univariate time series. Threshold selection is performed based on an algorithm that minimises the so‐called expected quantile discrepancy between
the sample quantiles and the fitted GPD model quantiles. For more details, we refer the interested reader to the original paper.
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We use code provided as supplementary material to the Murphy et al. (2024) paper to apply their method to the pre‐whitened and yearly
adjusted series in (7) used in margins C. A histogram of the resulting thresholds across all D locations is given in Appendix B. These thresholds are
subsequently used for the implementation of the final GPD step, in accordance with all the aforementioned marginal procedures. We note that
neither the independence nor the identical distribution assumptions of theMurphy et al. (2024) method are likely to hold in our case. The former is
violated by the presence of temporal dependence mentioned in Section 1, while in the case of the latter, we allow for its possible violation, should
the likelihood ratio test — performed as part of the GPD fitting step — deem a non‐stationary fit appropriate. However, given the dimensionality
of our data and the fact that few, if any, alternative automated approaches for appropriate threshold selection exist, we treat margins D and their
subsequent analysis as a sensitivity experiment of the effect threshold choice may have on marginal features. Visualisation of the resulting time
series in standard Laplace margins (bottom right plot of Figure 2) suggests potentially little effect of threshold sensitivity given the similarity of the
series to the respective one for margins C (bottom left plot of Figure 2).

4 SPATIAL ANALYSIS OF THE GULF OF SUEZ DATASET

The Red Sea temperature dataset introduced in Section 1 has been analysed in numerous other studies including Huser & Genton (2016), Simpson
&Wadsworth (2021) and Simpson et al. (2023). In agreementwith those studies, we found in exploratory analysis that thewhole dataset showcases
non‐trivial non‐stationarity in its spatial extremal dependence across space, with the Gulf of Suez having a slightly different behaviour to the north
part of the Red Sea (latitude > 21.3◦), which in turn is significantly different to the south part of the Red Sea (latitude < 21.3◦). Hence the decision to
focus on the Gulf of Suez where the assumption of stationarity in spatial extremal dependence over space seems reasonable. This smaller dataset
now comprises a total of D = 510 spatial locations, for which marginal time series consisting of T = 2852 data points (92 per year) are available.

Having obtained marginally detrended versions of the dataset, as described in Sections 3.1 – 3.4, we perform exploratory investigations of the
spatial extremal dependence structure.We focus on two keymeasures to assess changing spatial extremal dependence over time. The first measure
examined is an average version of the χu and ηu measures defined in (3) and (5) respectively. To be precise, we define χ̃u(sk) = 1

D–1
∑

j ̸=k χu(hjk)
and η̃u(sk) = 1

D–1
∑

j ̸=k ηu(hjk). Note that sk is the conditioning site from the definition of χu(hjk) in (3), and is therefore included as an argument
in the definition of χ̃u(sk) and η̃u(sk) to highlight that averaging is performed for each conditioning location separately. These quantities allow
us to assess average changes in the extremal dependence of the entire spatial domain over time when computed over and contrasted against
different time periods. For example, Figure 3 shows differences in χ̃u(sk) between periods 1985 – 1989 and 2011 – 2015, i.e. χ̃u,(1985–1989)(sk) –
χ̃u,(2011–2015)(sk)where χ̃u,(A–B)(sk) represents the measure χ̃u(sk) calculated using data in the time period A–B. The quantity χ̃u,(1985–1989)(sk)–
χ̃u,(2011–2015)(sk) is calculated empirically for all spatial locations sk, k = {1, . . . ,D}, using u = 0.95. A similar plot is obtained respectively for
the quantity η̃u,(1985–1989)(sk) – η̃u,(2011–2015)(sk) and is available in Figure C2 of Appendix C. The second measure we look at is pairwise χu(hjk)
estimates from (3). We compute those empirically for the same two periods and threshold level (u = 0.95) and plot them against distance, thus
assessing how the extremal dependence of our dataset changes with respect to distance and over time. These estimates are grouped in ten
equidistant distance blocks and visualised via boxplots in Figure 4 for better clarity of representation.

It is important to note the considerably different messages Figures 3 and 4 convey concerning the change in dependence over time: when
χ̃u,(1985–1989) – χ̃u,(2011–2015) is computed using margins A (top left plot of Figure 3), a weakening in spatial extremal dependence is suggested,
with χ̃u’s being smaller for the later period, 2011 – 2015, compared to the earlier period, 1985 – 1989, across all available locations. The opposite
however is suggested by the plot corresponding to margins B (top right plot of Figure 3), with a sign reversal in χ̃u suggesting a strengthening of
spatial extremal dependence over time. Finally, plots based on margins C and D (bottom left and right plots of Figure 3 respectively) suggest little to
no change over time. The same conclusion holds when examining η̃u,(1985–1989) – η̃u,(2011–2015) values (see Figure C2), or plots of χu over distance
shown in Figure 4.

Given the non‐negligible discrepancies between detrending procedures, we aim to quantify what repercussions these might have on a more
practical level by fitting the same spatial model to the four datasets presented in Section 3. In doing so we are not attempting to model potential
non‐stationarity in the spatial dependence, but rather to highlight the different conclusions obtained concerning spatial extremal dependence from
the different marginal models. In practice, this feature is not usually considered in extremal analyses of spatial processes. We fit the CSE model
of Wadsworth & Tawn (2022), introduced in Section 2.3 and detailed in Appendix A. Parameter estimation is achieved via a composite maximum
likelihood scheme — information from all locations acting as the conditioning site was allowed to contribute to the inference procedure — using
code provided as supplementary material from Wadsworth & Tawn (2022). The resulting estimates are presented in Table 1. A constant high
threshold corresponding to the 95% quantile of the standard Laplace distribution was used to obtain these results.

Combined parameter estimates from the CSE model are not immediately interpretable in terms of the strength of spatial dependence. We
therefore assess this by simulating from the fitted models to obtain model‐based estimates of χu(h), which we compare graphically in the left
plot of Figure 5. Additionally, the right hand plot of Figure 5 provides percentages of conditional threshold exceedances obtained from our model
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F I GUR E 3 Differences in χ̃0.95(sk) between periods (1985‐1989) – (2011‐2015) for all spatial locations sk, k ∈ {1, . . . ,D}. [Left to right and top
to bottom:] A‐B‐C‐D margins.

Margins κ̂ λ̂ β̂ ϕ̂Z µ̂Z δ̂ ν̂Z σ̂Z

A 2.00 1.02 0.68 76.1 –8.51 1.03 1.34 5.21
B 0.901 3.23 1.000 85.2 –163 1.04 1.64 7.28
C 0.975 1.63 1.000 15.4 –7.81 0.829 1.64 1.84
D 0.968 2.26 1.000 15.9 –11.4 0.982 1.57 1.80

TAB L E 1 Table of CSE model coefficients. Parameters κ and λ relate to the function as–s0 (·), parameter β relates to the function bs–s0 (·), and
parameters ϕZ, µZ, δ, νZ and σZ relate to the structure of the process Z0; see Appendix A as well as Wadsworth & Tawn (2022) for more details.

simulations. That is, conditional on a single location s0 (selected to lie approximately in the centre of the spatial domain) being extreme, the
percentage of exceedances of the 95% quantile observed in the remaining locations was calculated. Both plots once again succeed in conveying
the disagreement between the same spatial analysis of differently detrended datasets, with the weakest overall dependence for margins A and
the strongest for margins B, and highlight the important influence marginal considerations can inflict on dependence features and vice versa. Note
that these summaries do not include the effects of parameter uncertainty in the model fits, so may be interpreted with some caution. Uncertainty
quantification could potentially be obtained by block bootstrap, but is both computationally intensive and difficult to do appropriately given the
likely non‐stationary nature of some of the margins. Therefore this is not performed for this investigative analysis.
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F I GUR E 4 Boxplots of χu(hjk) estimates grouped in 10 equidistant distance blocks. Boxplots in red are based on χu(hjk) values for the period
1985 – 1989, while boxplots in blue are based on χu(hjk) values for years 2011 – 2015. All estimates are calculated using u = 0.95. [Left to right and
top to bottom:] A‐B‐C‐D margins.

5 DISCUSSION

The focus of this paper has primarily been on unpicking the margins‐dependence interrelationship in the analysis of spatial extremes. By exam‐
ining four different marginal detrending techniques, each with different merits and drawbacks, and comparing their effects on the dependence
characteristics of the correspondingly detrended datasets we have established two key findings.

Our first message is that margins and dependence are intricately connected. Their interaction affects both apparent non‐stationarity in spatial
extremal dependence over time, as well as spatial extremal dependence estimates in model fits assuming temporal stationarity. This is highlighted
both by visual exploratory tools such as the ones presented in Figures 3, C2 and 4 and model fits like the ones implemented in Section 4 and
summarised in Table 1 and Figure 5. The high sensitivity of conclusions to the marginal model is something we should be aware of when performing
similar analyses.

Our second finding is that the task of marginal detrending itself can be a very difficult undertaking in practice. One reason is that there is no
single approach to marginal modelling. We strive for the most stationary data possible, but it is difficult to guarantee that this has been achieved
to an acceptable level, especially with a large number of sites (in this case > 500) to consider. Another reason is that, when attempting to analyse
a dataset in practice, there is usually no way of knowing a priori the level of its underlying complexity and therefore making an informed decision
on the best detrending approach to adopt. One has to rely on exploratory — principally graphical — tools which might not straightforwardly reveal
the existence and extent of non‐stationarity in the dataset and can be plagued by other complicating factors unrelated to non‐stationarity, such
as temporal dependence discussed in Section 1.
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F I GUR E 5 [Left:] Model χu(h) estimates for u = 0.95 plotted over distance. Lines correspond to mean χu(h) estimates. [Right:] Boxplots of
model simulated conditional exceedances. All estimates are obtained based on 200 simulations of 104 random fields each.
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APPENDIX

A ADDITIONAL INFORMATION ON THE CSE MODEL
Let {Y(s) : s ∈ S ⊂ R2} be a stationary and isotropic spatial random field with exponential‐tailed (typically standard Laplace) margins. Then, as
mentioned in Section 2.3 of the main text, the CSE model takes the expression

{
Y(s) | Y(s0) > t : s ∈ S

} d
≈

{
as–s0 (Y(s0)) + bs–s0 (Y(s0)) Z0(s) : s ∈ S

}
,

where as–s0 : R → R and bs–s0 : R → (0,∞), s ∈ S.
The authors take as–s0 (y) = yα(s – s0), with a0(y) = y, allowing α(·) to be a powered‐exponential correlation function of distance. That is,

α(s – s0) =

1, ∥s – s0∥ < ∆,

exp
{
– (∥s – s0∥ –∆)κ /λ

}
, ∥s – s0∥ > ∆,

(A1)

where κ ∈ (0, 2], λ > 0 and∆ ≥ 0. The above specification allows formodelling of asymptotic dependence up to a distance∆ from the conditioning
site and asymptotic independence beyond that point, with exponentially decreasing strength of dependence. As for the function bs–s0 the authors
propose three different parametric forms, each achieving different modelling requirements. We adopt the form bs–s0 (x) = 1 + as–s0 (x)β , β > 0,
which is advocated by the authors as the most flexible of the three options recommended. This choice is suitable for AI data (i.e.∆ = 0 in (A1)) but
also allows for the possibility that the process {Y(s)} is independent of Y(s0) when ∥s – s0∥ is large. For details on this matter we refer the reader
to the original paper.

The residual process {Z0(s)} must satisfy the constraint Z0(s0) = 0. To ensure this is achieved, we let {ZG(s)} be a stationary Gaussian process
with mean µZ and covariance function Cov(s, s + h) = σ2

Z exp
{
– (h/ϕZ)

νZ
}
, where σZ > 0, ϕZ > 0, νZ > 0, and h is the spatial lag. We then take

{Z0(s)} to have the same dependence structure as {ZG(s) | ZG(s0) = 0}. This modelling choice is also provided by the authors. Finally, the delta‐
Laplace distribution is used for the marginal modelling of {Z0(s)}, which includes both Gaussian (δ = 2) and Laplace (δ = 1) distributions as special
cases and is more flexible than either owing to the “transition” parameter δ. The density of the delta‐Laplace distribution is

fδL(z) =
δ

2σδLΓ(1/δ)
exp

{
–
∣∣(z – µδL)/σδL

∣∣δ} , δ > 0,µδL ∈ R,σδL > 0.

For a more detailed account on the CSE model we refer the reader to the original Wadsworth & Tawn (2022) paper.

B SUPPLEMENTARY FIGURES FOR SECTION 3.4
Figure B1 displays a histogram of the automatically selected marginal thresholds for margins D, obtained by implementing the methodology of
Murphy et al. (2024).

F I GUR E B1 Histogram of automatically selected thresholds used in margins D.
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C SUPPLEMENTARY FIGURES FOR SECTION 4
Figure C2 shows differences in η̃u(sk) between periods 1985 – 1989 and 2011 – 2015, i.e. η̃u,(1985–1989)(sk) – η̃u,(2011–2015)(sk), where η̃u,(A–B)(sk)
represents the measure η̃u(sk) calculated using data in the time period A – B. The quantity η̃u,(1985–1989)(sk) – η̃u,(2011–2015)(sk) is calculated
empirically for all spatial locations sk, k = {1, . . . ,D}, using u = 0.95.

F I GUR E C2 Differences in η̃0.95(sk) between periods (1985 – 1989) – (2011 – 2015) for all spatial locations sk, k ∈ {1, . . . ,D}. [Left to right and
top to bottom:] A‐B‐C‐D margins.
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