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Abstract—With the gradually integration of Internet of Vehi-
cles (IoV) and Artificial Intelligence (AI), Artificial Intelligence
of Vehicles (AIoV) is emerging as a novel paradigm with ad-
vanced capability for information gathering and decision-making.
Leveraging massive traffic information facilitated by vehicle-
road coordination in AIoV, path planning has the potential
to effectively mitigate existing traffic problems, such as road
congestion, improving traffic performance. However, the dynamic
nature of traffic flow and the complexity of road networks
increase the difficulty of path planning, posing a serious threat
to road safety. In response to this challenge, a reinforcement
learning based path planning scheme with traffic flow prediction,
named RPFP, is proposed. RPFP consists of two fundamental
components: precise traffic flow prediction and intelligent path
planning. Specifically, the temporal convolutional network (TCN)
is innovatively integrated into the spatiotemporal graph neural
network (STGNN), providing accurate traffic flow prediction
by comprehensively capturing spatial and temporal patterns.
Informed by predicted traffic congestion, a path planning method
utilizing dueling double deep q-network (D3QN) algorithm is
employed to navigate within complex road networks. Eventually,
RPFP was evaluated for its effectiveness through comprehensive
experiments conducted on real traffic datasets. The superiority of
RPFP was further substantiated via comparisons with multiple
baseline schemes.

Index Terms—Path planning, Traffic flow prediction, Vehicle-
road cooperation, AIoV, Reinforcement learning.

I. INTRODUCTION

THE learning, perception, and decision-making capabili-
ties in artificial intelligence (AI) systems and involvement

of human cognitive abilities, endowing AI with the ability to
execute complex thought processes with high accuracy [1],
[2]. As an AI-integrated system designed to provide intel-
ligent traffic management, intelligent transportation dystems
(ITS) benefit from AI in information gathering and smart
traffic decision-making. The Internet of Vehicles (IoV), as a
significant component of ITS, undergoes further development
propelled by advanced technologies such as edge computing,
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wireless communication, and sensor technologies [3]–[5]. Due
to AI’s capability to significantly enhance the efficiency of
massive data collection and decision-making intelligence, it
is gradually converging with IoV to create a new paradigm
known as Artificial Intelligence of Vehicles (AIoV) [6]. In
AIoV, data originating from diverse sensors with varying
sources and types can undergo efficient and unified processing,
thereby fostering enhanced collaboration between vehicles
and the road infrastructure. Relying on broader vehicular-
road coordination, AIoV plays an increasingly significant role
in ITS, providing intelligent services for vehicles, such as
advanced detection of road congestion and intelligent path
planning [7].

Traffic congestion is becoming an increasingly severe global
issue, primarily due to the continuous growth of vehicles
worldwide and significant increase in travel frequency [8].
Mega-cities like Beijing, New York, Tokyo, London, and
others experience particularly severe congestion, significantly
impacting residents’ satisfaction. Statistical data indicates that
the annual global economic losses attributable to traffic con-
gestion amount to several hundred billion dollars. In pursuit
of congestion alleviation, improved traffic performance, and
enhanced traffic safety, various smart traffic control meth-
ods ndergo extensive research. These encompass intelligent
traffic signal optimization (ITSO), intelligent parking systems
(IPS), and intelligent lane management (ILM) [9], [10]. Path
planning, incorporating real-time traffic conditions, empowers
vehicles to proactively evade congested segments, thereby
averting congestion escalation. This approach is recognized
as a viable solution to effectively address traffic congestion
issues and enhance driving efficiency [11].

Relying on vehicle-road cooperation, vehicles can obtain
road conditions, such as traffic flow, from roadside units
(RSUs) during path planning, employing this information
as the theoretical foundation for planning decision. How-
ever, only depending exclusively on real-time traffic flow
for planned paths, to be traversed in the future, may pose
challenges in achieving comprehensive and efficacious avoid-
ance of traffic congestion. Therefore, accurate prediction of
future traffic flow becomes imperative [12]. n consideration
of the attributes of road networks, the prediction of traffic
flow can be conducted along two dimensions: temporal and
spatial. Deep learning prediction models, such as Recurrent
Neural Networks (RNN), Long Short-Term Memory (LSTM),
and Gated Recurrent Unit (GRU), demonstrate proficiency in
time-series modeling of traffic flow [13]. Leveraging historical
traffic flow data as training data, these models effectively
capture time-series features inherent in traffic flow. Concur-
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rently, Graph Neural Networks (GNN) model the topological
structure of intricate road networks, accounting for the mutual
influence between roads. Through iterative information ag-
gregation between adjacent nodes, GNNs can adeptly capture
spatial features integral to understanding traffic flow [14].

Following the prediction of future traffic flow, congestion-
aware path planning within complex road networks can be
executed based on the prediction results [11]. Dependent
solely on manual path planning by drivers for departure and
destination points or centralized path planning by dispatchers,
however, entails substantial resource consumption and encoun-
ters challenges in efficiently avoiding congested segments. In-
telligent path planning methods grounded in machine learning
(ML) and deep learning (DL) find extensive application in
addressing this issue. Algorithms, including A-Star Search
Algorithm (A*), ant colony optimization (ACO), simulated
annealing, genetic algorithms, particle swarm optimization,
among others, have been employed in intelligent path planning
endeavors and have demonstrated effectiveness [15]–[17].

While numerous traffic flow prediction schemes exist, it re-
mains crucial to account for both spatial and temporal features
to ensure accurate predictions in complex road networks. Fur-
thermore, the dynamic and intricate nature of traffic conditions
presents challenges for conventional path planning algorithms,
including the imperative need for real-time responsiveness and
environmental adaptability. So, a congestion-aware intelligent
path planning scheme with vehicle-road Cooperation in AIoV
is proposed in this paper. The main contributions of our work
are as follows:

• The path planning model, facilitated by vehicle-road
cooperation, is constructed under AIoV environment.

• By innovatively incorporating temporal convolutional net-
works (TCN) into spatiotemporal graph neural networks
(STGNN), accurate prediction of complex traffic flow in
road networks is achieved.

• By employing dueling double deep q-network (D3QN)
algorithm, congestion-aware intelligent path planning
which superiors in adapting to dynamic environments is
accomplished.

• Conducting comprehensive experiments on real traffic
datasets and comparative analysis to prove the efficiency
and superiority of the proposed scheme.

The remainder of the paper is organized as follows. In
section II, the related researches is elaborated and summarized.
Then, system framework and travel consumption model are
formulated, followed by the definition of the problem to be
addressed. The path planning scheme in AIoV is elaborated,
including traffic flow prediction and D3QN based path plan-
ning, in section IV. In section V, experimental results are
presented and analyzed. Finally, the conclusions are presented
in section VI.

II. RELATED WORK

In this section, the existing researches related to our work
are reviewed from the aspect of Artificial Intelligence for
vehicle-road collaboration, traffic flow prediction and route
planning.

Development of Artificial Intelligence technologies, includ-
ing deep learning (DL) and reinforcement learning (RL),
promotes popularization of intelligent services. Also, vehicle-
road collaboration connects vehicles with intelligent roadside
units, improving insufficiency of on-board computing power
and providing extra environmental information for vehicles. To
this end, combination of Artificial Intelligence and vehicle-
road collaboration has attracted great attention to provide
delay-sensitive Internet of Vehicles (IoV) services. To help
emergency vehicles arrive faster, Ding et al. [18] proposed a
learning-based cooperative vehicle-road scheduling framework
named LEVID. In LEVID, a real-time route planning module
was designed based on the artificial potential field method
and a traffic signal control module was designed using graph
attention RL. The two modules interacted with each other and
made decisions iteratively. Chen et al. [19] proposed vehicle-
infrastructure cooperation based approach to detect road haz-
ards. They generalized vital features from few road hazard
data through a meta-learning paradigm, designed a lightweight
detection model to adapt to vehicles’ low computing power,
and used knowledge distillation to reduce complexity of model
and data. The proposed approach remarkably improves the
accuracy and traffic flow prediction. Cui et al. [20] presented
a data-driven Cloud-Fog-Edge Collaborative Driver-Vehicle-
Road framework to provide high-quality intelligent trans-
portation system services while protecting customers’ privacy.
Cao et al. [21] reduced delay of IoV services by accurately
determining vehicle network conditions based on the fuzzy
theory and effectively offloading service requests based on RL.

As a key part of intelligent transport system, accurate
traffic flow prediction makes great contributions on mitigating
congestion and making safer and cost-efficient travel. Ma
et al. [22] developed a novel traffic flow prediction model
to further improve the accuracy of short-term traffic flow
prediction. They obtained a stable time series as input of
model by conducting time series analysis as well as smoothing
and standardization processing on traffic flow data, and estab-
lished an improved long short-term memory network (LSTM)
model based on LSTM and bidirectional LSTM. Li et al.
[23] developed a novel multisensor data correlation graph
convolution network model, called MDCGCN, to improve
traffic flow prediction accuracy. Compared with existing work,
MDCGCN enables to conduct medium and long-term traffic
prediction through analyzing the complex and changeable
spatial–temporal correlation among roads. Different from for-
mer studies mainly focused on flow forecasting in a regular
grid region, Ali et al. [24] designed a deep hybrid spatio-
temporal dynamic networks, called DHSTNet, to forecast both
the inflow and outflow of irregular grid regions at the same
time. They also developed and integrated graph convolutional
network with DHSTNet model to concurrently capture all
dependencies in the irregular grid regions. Wang et al. [25]
proposed an accurate locality-sensitive hashing-based traffic
flow prediction approach to ensure high-accuracy and time-
efficient traffic flow prediction while protecting customers’
privacy.

As another significant part of intelligent transport system,
reasonable route planning can help minimise logistics and
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tour costs. Teng et al. [26] provided a detailed overview
and discussion of the latest motion planning methods for
autonomous vehicles. These methods contribute to enhancing
the convenience of autonomous vehicles and further promoting
their global proliferation. In [27], the problems caused by
traffic congestion are thoroughly analyzed, highlighting the
effectiveness of traffic control, including path planning, in
addressing these issues. Additionally, [27] introduced path
planning in mixed traffic environments. Lin et al. [28] pro-
posed a distributed-learning-based vehicle routing decision
algorithm using multi-agent RL to alleviate the traffic con-
gestion. The proposed algorithm not only greatly shorten
decision delay but also effectively reduces waiting time of
vehicles on the road. Liang et al. [29] designed a preserving-
privacy route planning scheme in vehicular ad-hoc network
based on oblivious transfer. In the scheme, vehicles deduce
information of RSUs with the help of the certification authority
who does not know the source of deduced information. After
fast authentication is achieved between vehicles and RSUs,
communication between adjacent vehicles is established. The
scheme provides fast route planning for vehicles while well
preserving customers’ privacy. In order to optimize route
planning in the air-ground integrated network, Cai et al. [30]
proposed an optimization strategy of accompanying graph
navigation for unmanned devices. The proposed strategy helps
reduce the power consumption and CO2 gas emissions of
unmanned devices. Aiming at minimizing the earliness and
tardiness of a specified delivery time while minimizing the
total completion time, Nishida et al. [31] developed a heuristic
solution procedure to derive a conflict-free routing problem
through which earliness and tardiness penalties are minimized
while the total completion time of each task is also minimized
under dynamic task arrivals.

Although extensive research has been conducted on path
planning within IoV, only a limited number of studies have
considered harnessing the powerful vehicle-road collaboration.
Furthermore, most path planning schemes rely solely on real-
time road conditions, making it challenging to adapt to future
traffic congestion. Therefore, to further enhance path planning
effectiveness and improve driver satisfaction, it is necessary
to conduct future traffic flow predictions based path planning
with vehicle-road collaboration.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Framework

The Vehicle-Road Cooperative System utilizes advanced
wireless communication and IoV technologies to achieve
dynamic real-time bidirectional interaction between vehicles
and roads. Base stations (BSs) and RSUs utilize collected
road information and employ Artificial Intelligence to provide
intelligent services such as route planning to vehicles. Fig. 1
illustrates the framework of Vehicle-Road Cooperative System
(VRCS). Table I enumerates the primary notations utilized in
this paper.

In VRCS, intelligent vehicles equipped with wireless com-
munication capabilities to communicate with infrastructure at
the roadside. The RSUs are distributed along the sides of the

TABLE I
SUMMARY OF NOTATIONS

Notation Description
G The road network
V The set of road nodes
E The set of edges in road network
N The number of road nodes
S The matrix recording speed information of roads
M The number of edges
A The adjacency matrix recording the road connectivity

< o, p, d > The triplet represents the origin point, current location
and destination

wk The kth possible route between origin point and
destination

si The allowing speed of vi ∈ V at current
li The length of vi ∈ V
ci The time consumption for traveling through vi at si
αk
i The variable that indicates whether vi belongs wk

ρk The total travel time for wk

σk The total distance of the route wk

ηi The congestion level of vi
γk The overall congestion level wk

G The spatial prediction function
St The state space
Ac The action space
Po The state transition probability
Re The reward function

road and communicate with vehicles within their coverage
area through wireless links. BS is situated in an open area
and is connected to multiple RSUs through wired links,
facilitating real-time data exchange between them. Due to
the specific geographical characteristics, the road network can
be modeled as G = {V,E}. V is the set of road nodes,
V = {v1, . . . , vi, . . . , vN}, vi represents the ith node in G
and N is the number of nodes. E = {e1, . . . , ej , . . . , eM} is
the set of edges between nodes in G and M is the number
of edges. Taking into account practical factors, i.e., the nodes
within G are not necessarily interconnected, the introduction
of the adjacency matrix A is necessary. A ∈ RN×N and the
value of Ai,j is based on the following equation that

Ai,j =

{
1, vi connects to vj
0, otherwise

. (1)

The matrix A contains only 0s and 1s, making A an N -
dimensional Boolean matrix. Due to the non-complete con-
nectivity of nodes in G, it is evident that M ≤ N2.

B. Travel Consumption Model

Vehicles traveling on the road have information such as the
origin, destination, and current location. Therefore, the travel
information of a vehicle can be represented using a triplet
< o, p, d >, where o is the origin point, p and d are the current
location and destination, respectively. As shown in Fig. 1, dur-
ing the process of traveling from the origin to the destination,
there may be multiple routes. W = {w1, . . . , wk, . . . , wK} is
adopted to represent the set of all possible routes, where wk is
a list containing the roads traversed on the kth possible route.
The objective of this scheme is to identify the most suitable
route from numerous possibilities, taking into account factors
such as total travel time and total travel distance.

Traffic speed is chosen as the traffic information for roads,
as traffic congestion levels and other information related to
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Fig. 1. The framework of vehicle road cooperation system in AIoV.

traffic flow can be inferred from traffic speed. The speed
information of roads is recorded using the matrix S ∈ RN×T ,
where N is the number of nodes and T is the time span
of the recorded data. So, si is the speed of vi during the
current time period. 1 Since the planned routes will be executed
in future time intervals, accurate prediction of future traffic
speeds can be achieved by utilizing historical traffic speed data.
This approach aims to enhance road planning effectiveness by
relying on future traffic speed. The prediction process can be
represented by the following equation that

si = f([sT−t
i , . . . , sTi ]), (2)

where f is the prediction function and will be detailed in
section IV. The length of the roads is recorded in the set L =
{l1, . . . , li, . . . , lN}, where li is the length of vi. Therefore,
the time consumption for traveling through vi on route wk

can be calculated using equation (3) that

ci =
li
si
. (3)

Therefore, the total travel time for wk can be calculated using
the following equation that

ρk =

N∑
i=1

ci × αk
i , (4)

where
αk
i =

{
1, vi ∈ wk

0, otherwise
. (5)

It is worth noting that unexpected events, such as traffic
accidents, are not accounted for as additional waiting time for
vehicles. Total distance of the route can be calculated using
the following equation that

σk =

N∑
i=1

li × αk
i . (6)

1In this manuscript, according to the definition of the road network G,
during time period t, “node speed” is equivalent to the traffic speed of the
corresponding road segment, as well as “node length”.

Another equally important factor is the congestion level of
the road, which often significantly influences the driving
experience of the driver. The congestion level of the vi can be
calculated based on the following equation that

ηi = 1− si
s
′
i

, (7)

where s
′

i is the theoretical speed of vi. When there are no
vehicles on the road, vi is the maximum speed at which a
vehicle can travel on that road. This equation signifies that as
the actual speed si of vi becomes smaller than the theoretical
speed s

′

i, the congestion level ηi of vi increases. The overall
congestion level of wk is determined by the following equation
that

γk =

N∑
i=1

li × ηi × αk
i

N∑
i=1

li × αk
i

. (8)

This not only takes into consideration the congestion level of
the road but also includes the length of the road as a weight
in the calculation. This aligns more with reality, as roads with
higher congestion levels and greater lengths tend to have a
more significant impact on reducing the driving experience
for the driver.

C. Problem Definition

After accurately modeling the three most critical factors
in the path planning process, namely driving time, driving
distance, and road congestion level, the objective of optimal
path planning becomes evident. It is to select the path that
minimizes the overall combination of these three factors from
numerous possible routes. The comprehensive value of the
three factors for route wk can be calculated through a weighted
sum, as outlined in the following equation that

Γk = w1ρk + w2σk + w3γk, (9)

where w1, w2, w3 are adjustable parameters used to control
the importance of different factors.

Hence, the formalized problem is given as

minΓk, k ∈ [1,K], (10)

s.t. |wk| ≤ N, (11)

where |wk| representsthe number of roads included in route
wk and |wk| ≤ N restricts that the number of roads in route
wk must be less than the total number of roads in G.

IV. OPTIMAL PATH PLANNING SCHEME IN AIOV

This section provides a detailed presentation of the proposed
scheme RPFP to address the optimization problem modeled
in section III. The section is divided into two parts. The first
part focuses on precise prediction of traffic flow using spatio-
temporal graph neural networks. And the second part involves
optimal path planning with reinforcement learning.
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A. Traffic Flow Prediction using STGNN

The efficacy of STGNN lies in its capacity to concurrently
address interdependencies within spatial and temporal dimen-
sions, rendering it well-suited for intricate traffic network
configurations, thereby garnering considerable attention in the
field of traffic flow prediction. The graph neural network
integrated into STGNN adeptly captures the spatial intricacies
of road networks by assimilating information from proximate
nodes. Concurrently, the time series prediction module metic-
ulously explores the temporal dynamics intrinsic to the model.

It can be inferred from section III that the traffic flow record
embedding vectors of graph G is S ∈ RN×T , so the embed-
ding vectors of graph G at time t is St = [st1, . . . , s

t
i, . . . , s

t
N ],

as illustrated on the left side of Fig. 2. Utilizing GNNs enables
the aggregation of flow information between different nodes
through the spatial connectivity of the graph G. The specific
process is illustrated as follows.

S
′

t = G(St)

= G([st1, . . . , sti, . . . , stN ]),
(12)

where G is the objective function and is depicted as the
spatial prediction module in Fig. 2. The more detailed process
of information updating between nodes is defined by the
following equations.

sti
′

=
∑

j∈ϱ(i)

G(sti, e(i,j), stj), (13)

where ϱ(i) is the set of all neighbor nodes of ei and e(i,j)
is the importance of the features of node ej to ei, indicating
the connectivity between roads in the proposed traffic flow
prediction scenario. It is noteworthy that e(i,j) is usually
̸= e(j,i), which implies that the influence between node ej
and node ei is asymmetrical, signifying a difference in their
mutual impact on each other. This is due to certain roads being
one-way streets, a real-world constraint that determines this
characteristic.

To mitigate challenges such as gradient explosion or van-
ishing gradients frequently encountered in the training process
of traditional sequential prediction networks like RNNs and
LSTMs, this scheme creatively employs TCN as the means for
temporal prediction. TCN utilizes convolutional operations in-
stead of recursive operations to process input data and employs
dilated causal convolutional layers to expand the receptive
field. The specific prediction function can be referenced from
the temporal prediction module in Fig. 2. Its mathematical
form is as follows:

Ŝ
′
t = F(w ∗ S

′

t−d + b) (14)

where F is the activation function, w is the convolutional ker-
nel and b represents the bias term. To attain a comprehensive
insight into the Dilated Causal Convolution operation, one is
encouraged to consult the ensuing equation that

Ŝ
′
t =

k−1∑
i=0

wi ∗ S
′

t−di. (15)

Here, k denotes the dimension of the convolutional kernel,
while d signifies the dilation factor.
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Fig. 2. Traffic flow prediction using STGNN integrated with TCN.

Utilizing the STGNN, a method for predicting traffic flow
that concurrently addresses both spatial and temporal dimen-
sions has been developed. The integration of TCN as the
temporal prediction model effectively mitigates the challenge
of vanishing gradients. For comprehensive details regarding
the proposed scheme, kindly refer to Algorithm 1.

Algorithm 1: Traffic Flow Prediction using STGNN
Input: Historical traffic flow data S, road adjacency

matrix A and the length of roads L.
Output: Traffic flow prediction result

Ŝ
′
T = [ŝ

′
1, . . . , ŝ

′
t, . . . , ŝ

′
T ]

1 Construct an undirected graph G = (V,E) based on
A; for each episode do

2 for (i = 1; i <= N ; i++) do
3 for ej ∈ ϱ(i) do
4 Computing the influence of node ej on ei

with respect to lj and li;
5 end
6 Aggregating spatial information from

neighboring nodes by equation (13) that
sti

′
=

∑
j∈ϱ(i)

G(sti, e(i,j), stj);

7 Leveraging the temporal dimension’s
information aggregation, as delineated by
equation (15) that Ŝ′

t =
∑k−1

i=0 wi ∗ S
′

t−di.
8 end
9 Obtain the prediction result Ŝ′

t .
10 end
11 Return the traffic flow prediction results;

B. Congestion-Aware Path Planning in AIoV

This section furnishes an elaborate introduction to the
path planning scheme, segmented into distinct sections: the
definition of markov decision process (MDP), and the path
planning scheme based on D3QN.

1) Definition of MDP: The primary aim of reinforce-
ment learning algorithms is to iteratively train the agent
through interactions with the environment, empowering it to
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autonomously make decisions that lead to the maximization
of cumulative rewards. In the context of path planning, these
algorithms engage in experiential learning by interacting with
the environment, considering factors such as the current road
distance to the destination and the fundamental conditions of
roads connected to the current road. The ultimate objective is
to cultivate the agent’s capability to select paths characterized
by shorter distances, reduced time requirements, and lower
congestion levels as the planned route.

The Markov Decision Process (MDP) serves as a funda-
mental model widely utilized in reinforcement learning, with
prevalent applications in disciplines like economics and oper-
ations research. Key components of an MDP consist of four
essential elements: state space (St), action space (Ac), state
transition probabilities (Po), and reward function (Re), suc-
cinctly represented as M = (St,Ac, Po,Re). Subsequently,
detailed explanations for the aforementioned four elements in
the context of path planning will be presented.

• State Space: Throughout the vehicle’s trajectory, the evo-
lution of the state space is contingent upon alterations in
the occupied road segment. Consequently, the definition
of the state space is intricately linked to the current road
segment. The precise delineation is articulated as follows:

St(i) = {[ei], [Cg(i)], [Ds(i)], [d]}, (16)

where ei signifies the present road. Cg(i) denotes the
congestion level of the road linked to ei, while roads
not connected to ei are regarded as having an infinite
congestion level. Ds(i) represents the length of the
road associated with ei, with roads not connected to
ei considered to have an infinite length. The variable d
signifies the destination of the ongoing journey.

• Action Space: In the domain of path planning, the agent’s
actions align with the count of roads linked to the cur-
rent road segment. Generating distinct numerical outputs
signifies the road that the agent intends to navigate to in
the subsequent step. Ac is used to represent the action
space.

• State Transition Probabilities: The state transition prob-
abilities pertains to the probability of transitioning from
the current state St(i) to the next state St(i+1), contin-
gent on the actions output by the agent. The intricate
computational process will be elucidated through the
following equations.

Pb = (St(i+ 1)|St(i), ac(i)), (17)

where ac(i) is the action.
• Rewards Mechanism: As the agent iteratively refines

its path planning strategy, the output action at each step
plays a pivotal role in reward calculation. Opting for a
road segment that is shorter in distance, exhibits lower
congestion, and brings the agent closer to the destination
results in a positive increase in the reward. The specific
calculation process is outlined as follows:

Re = ζ ∗Ds(i) + τ ∗ Cg(i) + χ. (18)

In the above equation, parameters ζ and τ are employed
to modulate the reward and can be adjusted according to
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Fig. 3. Path planning scheme based on D3QN.

distinct scenarios. Additionally, χ symbolizes the reward
penalty, exhibiting a positive value when the subsequent
road is closer to the destination and a negative value when
it is farther away from the destination.

2) The Path Planning Scheme based on D3QN: DQN is a
reinforcement learning algorithm adept at effectively tackling
problems characterized by discrete action spaces, utilizing
deep neural networks to navigate high-dimensional spaces.
Nevertheless, the application of DQN often encounters the
challenge of ”maximization bias.” In response to this, Double
DQN was introduced, successfully alleviating the issue by
modifying the calculation method for target values. Analo-
gous to Double DQN, Dueling DQN represents an enhanced
iteration of DQN. Through the introduction of the ”dueling”
architecture, Dueling DQN decomposes the Q-value function
into two functions: the state value of the given state and the
advantage values for each action. By enhancing the modeling
of state values and action advantages, Dueling DQN notably
enhances the performance and learning efficiency of DQN.

The scheme implemented herein leverages the Dueling Dou-
ble Deep Q Network (D3QN), amalgamating key principles
from both the Double DQN and Dueling DQN algorithms.
This amalgamation is designed to augment learning stability
and mitigate the challenge of overestimation, rendering it
particularly efficacious in reinforcement learning tasks marked
by heightened uncertainty and complexity. This rationale un-
derscores the selection of D3QN for path planning in this
scheme.

• Environment of Path Planning: As illustrated in Fig. 3,
RSUs collect the environment data essential for reinforce-
ment learning from the trajectories of vehicles within
their designated coverage areas. These RSUs furnish the
requisite tuples to the agent during the training phase.
Initially, the agent initializes network parameters and
an experience replay memory. Subsequently, guided by
the environment, the agent performs actions, calculates
rewards, and observes state transitions. The acquired
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training experiences are stored in the memory. Upon
reaching its capacity limit, training samples are randomly
extracted from the memory to train the two networks.

• Training of Networks in D3QN: Within the framework
of D3QN, the training objective for the Critic network
is to acquire an approximation of the state-action value
function, endeavoring to align its output Q-values closely
with the actual optimal Q-values. The loss function of the
primary critic network is calculated by

L(θC) =
1

N

N∑
k=1

[Q(Stk(i), Ack(i); θ
c)− yk]

2
,

Q(s, a; θ) = V (s; θ) +A(s, a; θ)− 1

|A|
∑
a′

A(s, a′; θ),

(19)
where θc is the parameters of critic network, N is the
size of the sample batch.Q(Stk(i), Ack(i); θ

c) denotes
the output of the Critic network, signifying the Q-value
obtained by selecting action Ack(i) in state Stk(i). The
target value is calculated by

yk = rk(i) + γmax
a′

Q(Stk+1(i), a
′; θT ), (20)

where a′ represents any action that can be taken in the
next state Stk+1(i). And rk(i) is the reward in the current
state, γ represents the discount factor.

• Network Parameters Updating: In D3QN, the Critic
network is updated using the gradient descent method.
Iteratively, the network parameters are adjusted based
on the computed loss value, employing a predetermined
learning rate until the model converges.

θC
∗
← θC − α∇θCL(θC). (21)

Equation (21) elucidates the process of updating the
parameters of the critic network, with the parameters of
the target network being copied from the critic network
after several training steps.

Algorithm 2 shows the details of the path planning scheme in
IoV.

The complexity of Algorithm 2 is O(E×T ×f(N)), where
E represents the number of episodes, T represents the number
of time steps, and f(N) denotes the forward propagation
complexity of the neural network with N being the number
of parameters. The above offers an intricate elucidation of the
path planning scheme.

V. EXPERIMENT AND ANALYSIS

Experimental setup and comparative experiments are pre-
sented. The efficacy and superiority of the proposed approach
are inferred through the analysis of experimental results.

A. Experimental Setup

Two datasets are employed for the evaluation of traffic flow
prediction. Without loss of generality, the dataset utilized is
the traffic flow dataset.

1) SZ-taxi. This dataset was collected from taxi trajectories
in Shenzhen over a period of 31 days, from Jan.1 to

Algorithm 2: Path Planning based on D3QN
Input: Space of state St, Space of action Ac and the

network of D3QN.
Output: Strategies for path planning

1 Initialize network parameters and the buffer memory;
2 Size of buffer memory π = 0;
3 for each episode do
4 Reset the reinforcement learning environment;
5 for t in episode do
6 The critic network outputs the action;
7 Compute the reward using equation (18);
8 if π reaches the preset value then
9 Sample from buffer memory for training;

10 Compute yk using
yk = rk(i) + γmaxa′ Q(Stk+1(i), a

′; θT );
11 Getting the loss as L(θC) =

1

N

∑N
k=1 [Q(Stk(i), Ack(i); θ

c)− yk]
2;

12 Updating the network parameters with
θC

∗ ← θC − α∇θCL(θC);
13 Updating θT after several steps with

θT ← θC .
14 end
15 end
16 end
17 Return θT , θC and the network of D3QN;
18 Output the strategies for path planning.

Jan.31, 2015. The data comprises traffic flow informa-
tion collected at fixed time intervals for roads within
the region. The included adjacency matrix delineates the
connectivity between roads.

2) Los-loop. This dataset is obtained from detection sensors
on Los Angeles highways, covering the period from
Mar.1 to Mar.7, 2012. Similar to the SZ-taxi dataset,
it also incorporates an adjacency matrix illustrating the
connectivity between roads.

In the experiments, 70% of each dataset is utilized as the train-
ing dataset, with the remaining 30% serving as the validation
dataset. Experiments are implemented in python 3.10, Pytorch
2.0 and conducted on the server with Intel i7-8700 CPU (3.2
GHz, 6 cores), 32-GB DRAM, and NVIDIA RTX 3090 GPU.

B. Analysis of the Prediction Performance

To precisely capture the spatial and temporal characteristics
of road traffic flow, this approach employs STGNN-TCN.
Furthermore, to assess the effectiveness and superiority of
the proposed method in traffic flow prediction, four distinct
schemes have been implemented. The particulars of each
comparative approach are outlined as follows.

• Traffic Flow Prediction with TCN (TCN)
The scheme utilizes TCN as the traffic flow prediction
model, employing one-dimensional convolutional layers
with dilated kernels to extract temporal features from
time-series data [32]. This configuration enables accurate
prediction of traffic flow.
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• Traffic Flow Prediction with GRU (GRU)
GRU, as an enhanced iteration of RNN, adeptly tack-
les challenges such as gradient explosion or vanishing
gradients [33]. Its proficiency in long-term time series
prediction renders it suitable for applications like traffic
flow prediction.

• Traffic Flow Prediction with GNN (GNN)
GNN exhibits proficiency in handling data with a graph
structure, enabling exploration of mutual influences be-
tween roads within complex road networks. This capa-
bility is particularly well-suited for scenarios involving
traffic flow prediction.

• Traffic Flow Prediction with RNN integrating TCN
(RNN-TCN)
RNN, a fundamental neural network architecture, is com-
monly employed for inferring and predicting time series
data. Through integration with TCN, RNN can achieve
enhanced training efficiency and improved performance
in traffic flow prediction.

• Traffic Flow Prediction with STGNN incorporating GRU
(STGNN-GRU)
STGNN excels at concurrently capturing features from
both spatial and temporal dimensions, rendering it par-
ticularly suitable for intricate road scenarios with spatial
distribution characteristics. In the STGNN employed in
this scheme, GRU serves as the temporal prediction
model.
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Fig. 4. Traffic flow prediction with different schemes.

Fig. 4 portrays the predictive performance of various
schemes over ten time intervals, with the red solid line
denoting the original traffic flow data. The graph clearly
indicates that STGNN-TCN demonstrates superior predictive
performance, closely aligning with the trends and values of
the original data. STGNN-GRU exhibits some adherence to the
trends, but it deviates notably from the actual data, with only a
few data points matching. Conversely, methods focusing solely
on a single dimension face challenges in accurately capturing
the evolving patterns in traffic flow.

To further illustrate the performance of different schemes in
traffic flow prediction tasks, we leverage more intuitive data
and employ various evaluation metrics. The specific details are
outlined below.

• Mean Absolute Error (MAE)
MAE is the average of the absolute errors, providing
a better reflection of the actual prediction value errors.
MAE is calculated as

MAE =
1

n

n∑
i=1

|ŷi − yi|. (22)

• Mean Absolute Percentage Error (MAPE)
MAPE represents an enhancement over MAE, as it com-
putes the percentage error between actual and predicted
values. This mitigates the influence of data range, pro-
viding a more robust evaluation metric. The calculation
equation is shown as

MAPE =
100%

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ . (23)

• Root Mean Square Error (RMSE)
RMSE quantifies the average deviation between predicted
and actual values, sharing the same unit as the target
values. The calculation equation of RMSE is that

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2. (24)

The performance of the mentioned schemes under various
evaluation metrics is presented in the table II. Observing Table
II, it is evident that across various metrics, STGNN-TCN
demonstrates the best performance, followed by STGNN-
GRU. A preliminary analysis attributes this trend to the con-
sideration of features in both temporal and spatial dimensions
exclusively in these two schemes among the five experimental
setups. The other three schemes, focusing solely on features in
a single dimension, exhibit comparatively poorer performance,
ranked from best to worst as TCN, RNN-TCN, GCN, and
GRU. Furthermore, through joint validation on two datasets,
the proposed traffic flow prediction scheme consistently attains
optimal results.

C. Analysis of the Path Planning Performance

To attain superior path planning results, we propose a path
planning strategy grounded in the reinforcement learning algo-
rithm D3QN. In an effort to identify the optimal reinforcement
learning algorithm for discrete action problems and to compare
the effectiveness of the reinforcement learning-based path
planning strategy with other approaches, we further implement
the following strategies.

• Path Planning Scheme Based on DQN (DQN)
This scheme is rooted in the classical reinforcement learn-
ing algorithm DQN, which amalgamates Q-learning with
deep neural networks, rendering it effective for addressing
discrete action problems in deep reinforcement learning.

• Path Planning Scheme Based on DDQN (DDQN)
Double DQN (DDQN) represents an improvement over
DQN, employing two Q networks: one for action se-
lection and the other for estimating the value of that
action [34]. This architecture is designed to address the
overestimation problem.
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TABLE II
THE DIFFERENT METRIC VALUES OF DIFFERENT SCHEMES

SZ-taxi Los-loop

MAE MAPE RMSE MAE MAPE RMSE

GRU 5.02 0.24 6.51 5.89 0.11 8.66

GCN 5.39 0.27 6.82 5.47 0.10 7.84

RNN-TCN 3.92 0.18 5.42 5.87 0.11 8.67

TCN 3.87 0.18 5.32 5.81 0.10 7.55

STGNN-GRU 3.57 0.16 4.98 5.25 0.10 7.76

STGNN-TCN 3.04 0.13 4.52 4.85 0.09 6.59

• Path Planning Scheme Based on Dijkstra (Dijkstra)
Dijkstra is a greedy search algorithm that iteratively
expands the most promising path at each step, ensuring
optimality in finding the shortest path within a weighted
graph.

• Path Planning Scheme Based on ACO (ACO)
Swarm intelligence, inspired by the foraging behavior of
ants, utilizes a probabilistic approach to simultaneously
explore multiple paths. However, it does not guarantee
the discovery of the absolute optimal path; instead, it can
only find statistically good solutions.

In reinforcement learning, the intricacies of the environment
present challenges for a single-layer network in the path
planning scheme. Therefore, a critical initial step involves
determining the appropriate number of network layers. Fig.
5 below illustrates the variations in rewards and variance
for D3QN with different network layer configurations in a
complex environment.
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Fig. 5. The rewards and variances of D3QN with different network layers.

From the Fig. 5, it is evident that when the network has only
two layers, D3QN obtains rewards with significant oscillations
and high variance. As the number of layers increases to three,
the oscillation amplitude of the rewards decreases, and the
variance reduces, but the ideal performance is not yet achieved.
D3QN with four and five layers shows better performance
in terms of reward trends and variance, with little difference
between them. Considering that a higher number of network

layers would incur more time and resource consumption
during training, after analysis, it is determined that D3QN
requires a four-layer network for executing the path planning
task.

After determining the appropriate number of network layers,
the subsequent step involves comparing reinforcement learning
algorithms. Three distinct reinforcement learning algorithms
are utilized with the same number of network layers and
training rounds. From Fig. 6, it is evident that under three
different routes (30, 60, 90), the average rewards achieved
by D3QN are higher than those of DQN and DDQN. This
suggests that D3QN is the most suitable for executing path
planning tasks. As shown in Fig. 7, with an increase in
the number of routes, the variance of all three strategies
gradually decreases. Moreover, D3QN exhibits the smallest
reward variance, indicating that its performance is more stable.
D3QN demonstrates a reduction in variance by 36% compared
to DQN and 8.4% compared to DDQN. Considering both
Fig. 6 and 7, D3QN outperforms the other two reinforcement
learning algorithms across the three different routes.

 D3QN

Fig. 6. The reward of DQN, DDQN, D3QN under different routes.

We conducted a comparison between Dijkstra and ACO
with the path planning scheme proposed in this paper, uti-
lizing criteria such as the distance of the path and the time
taken to traverse it. Five pairs of start and destination points
were randomly selected as test paths. As depicted in Fig.
8, D3QN outperforms in terms of planning path distance,
selecting the shortest path. ACO performs well, while Dijkstra
shows the poorest performance. Concerning distance, D3QN
demonstrates reductions of 12.6% and 4.63% in comparison
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 D3QN

Fig. 7. The variance of DQN, DDQN, D3QN under different routes.

 ACO

Fig. 8. The distance of planned path under D3QN, Dijkstra, ACO.

to Dijkstra and ACO, respectively. The analysis concludes that
the poor performance of Dijkstra is attributed to its tendency
to reach local optimal solutions in large-scale maps or long
path planning scenarios.

 ACO

Fig. 9. The time consumption of planned path under D3QN, Dijkstra, ACO.

Fig. 9 illustrates the time consumption for five test paths
under three different path planning schemes. It can be observed
that in most cases, D3QN performs well, ACO occasionally
matches the time spent by D3QN, and Dijkstra remains the
least efficient. Concerning travel time, D3QN demonstrates
reductions of 16.9% and 21% in comparison to Dijkstra and
ACO, respectively.

VI. CONCLUSION

In addressing the challenges of achieving high-quality path
planning in complex road networks and enhancing the driving
experience, a vehicle-road cooperation framework is pro-
posed in AIoV. Additionally, a congestion-aware path planning
scheme, named RPFP, has been formulated. RPFP utilizes
STGNN-TCN for efficient and accurate traffic flow prediction,
serving as the decision foundation for path planning. The path
planning algorithm based on D3QN can achieve targeted path
planning in complex decision environments. In future work,
we will focus on the collaborative control strategy of signal
lights in traffic flow optimization in coordination with the
present study.
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