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Abstract: This study aims to establish a novel framework for mixture design 49 

optimization of engineered cementitious composite (ECC) by first collecting two 50 

original datasets of ECC’s tensile stress and strain from the extensive and credible 51 

literature. The datasets comprise a wide range of variables including cementitious 52 

ingredients, 9 types of fiber and characteristics, admixtures, and experimental 53 

conditions. The data augmentation is then performed using a tuned constraints-modified 54 

Conditional Tabular Generative Adversarial Network (Tuned-CTGAN) to increase the 55 

model accuracy and generalizability. The fitness functions of tensile stress and strain 56 

are established based on four machine learning models with the hyperparameters tuned 57 

by the Hunger Games search (HGS) algorithm. After the data augmentation, the values 58 

of 𝑅𝑅2 in their test sets are increased from 0.874 to 0.925 and from 0.772 to 0.889, 59 

respectively. Subsequently, the third objective function (cost) is computed by 60 

polynomials and four classes of constraints (Min-max, volume, ratio, and fiber) are set 61 

up to define the variable’s search space. A non-dominated sorting genetic algorithm 62 

based on reference-point strategy (NSGA-III) is introduced to optimize the mixture 63 

proportions of ECC by simultaneously optimizing tensile stress, tensile strain, and cost. 64 

This paper combines the results of data augmentation, model prediction, and multi-65 

objective optimization for complex ECC design, which aims to provide a basis for 66 

practical application. 67 

Keywords: engineered cementitious composite; machine learning; generative 68 

adversarial network; multi-objective optimization 69 



1. Introduction 70 

Engineered Cementitious Composite (ECC) is a strain-hardening cementitious 71 

material recognized for its high tensile strength and ductility. When fibers are evenly 72 

dispersed in the composite matrix and their volume is kept below 2%, ECC exhibits 73 

strain-hardening behavior with multi-cracks under 100μm. ECC's tensile strength 74 

typically ranges from 4 to 20 MPa, with a tensile strain capacity between 3 and 12% 75 

[2]. The tensile properties of ECC are significantly influenced by the mixture design 76 

and fiber types. The choice of fibers such as polyethylene fiber (PE), polyvinyl alcohol 77 

fiber (PVA), polypropylene fiber (PP), and steel fiber (SF) and their specific properties 78 

(strength, diameter, length, Young’s modulus, oil coating) significantly affect ECC’s 79 

performance. For instance, PVA-ECC can reach a tensile strain of 5%, while PE-ECC 80 

may achieve up to 13% [2, 3]. Determining the optimal mix for ECC to meet specific 81 

tensile strength and strain poses a major challenge, mainly due to the dependence on 82 

trial-and-error methods. Moreover, classical micro-mechanical design theories for ECC 83 

can exhibit whether a mix exhibits strain hardening, while it fails to provide targeted 84 

parameters [4, 5].  85 

Nowadays, the rise of artificial intelligence (AI) and Machine Learning (ML) has 86 

revolutionized the design process. Advanced ML models, such as neural networks 87 

(ANN), support vector regression (SVR), and tree-based models, are now frequently 88 

used to accurately predict concrete properties [6-8]. For instance, Shariati, Armaghani, 89 

et al. (2021) [9] effectively used ANN and Extreme Learning Machine (ELM) to predict 90 

the strength of concrete containing additives, while Feng et al. (2020) [10] leveraged 91 

an adaptive boosting algorithm for greater predictive accuracy. The eXtreme Gradient 92 

Boosting (XGBoost) algorithm, developed by Chen and Guestrin, represents a 93 

significant advancement in the realm of gradient boosting machines [11]. It is 94 



particularly effective in mitigating overfitting while enhancing computational 95 

efficiency. Hunger Games Search (HGS) is an advanced meta-heuristic algorithm 96 

inspired by the concept of 'Hunger-Driven Motivational State Competition', as first 97 

introduced by Yang, Chen et al. [12]. In this study, the HGS algorithm is selected for 98 

ML hyperparameter adjustment. 99 

ML models in ECC design also suffer from limited generalization due to small 100 

databases, as evident in Huynh et al.'s 2020 study on predicting geopolymer concrete 101 

strength [13]. A potential solution is data augmentation using Generative Adversarial 102 

Networks (GAN), an advanced algorithm based on the theory of a two-player game 103 

(discriminator D and the generator G) [14]. While GANs have been extensively used 104 

in computer vision, particularly for image generation, their application in augmenting 105 

concrete datasets is still limited [15, 16]. Conditional Tabular GAN (CTGAN), a GAN-106 

based model, is particularly designed for synthesizing tabular data. CTGAN addresses 107 

data imbalance in databases by using variational Gaussian mixture models for 108 

continuous features and conditional generation for discrete ones. Therefore, the 109 

generalization and accuracy of ML models are predicted to be improved by introducing 110 

a Tuned-CTGAN model which is specifically designed for the ECC dataset. To 111 

optimize multiple objectives under highly nonlinear constraints, a non-dominated 112 

sorting genetic algorithm based on reference-point strategy (NSGA-III) was first 113 

introduced by Deb and Jain (2014) [17]. This study proposed NSGA-III to optimize the 114 

mixture proportions of ECC by simultaneously optimizing tensile stress, tensile strain, 115 

and cost. 116 

This study introduces a novel framework integrating Tuned-CTGAN for ECC data 117 

augmentation, HGS optimized ML models for performance prediction, and multi-118 

objective optimization via NSGA-III for ECC design optimization. Through enhancing 119 



model accuracy and enabling precise ECC mixture formulation, this study is expected 120 

to contribute to the application of AI techniques to ECC, providing valuable insights 121 

and practical tools for optimizing ECC mixtures with improved performance and cost-122 

effectiveness. 123 

2. Literature review and comparative analysis 124 

The adoption of AI techniques for predicting and optimizing the properties of ECC has 125 

been significantly developed. This literature review synthesizes key contributions 126 

between 2018-2024, highlighting the diverse approaches and outcomes in this domain, 127 

as shown in Table 1. It covers a diverse range of fiber materials, such as PVA, PE, and 128 

steel fibers, each selected for their potential to enhance specific aspects of ECC 129 

performance. The focus of ECC research has predominantly been on enhancing tensile 130 

strength and ductility [18-20]. The additional ECC properties such as self-healing 131 

capacity (SC), freeze-thaw resistance (FR), and chloride ion permeability (CP) are also 132 

gaining attention [21, 22]. 133 

Recent research has explored a variety of ML algorithms, including Random Forest 134 

(RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost). For 135 

instance, Uddin, Shanmugasundaram [23] employed multiple ML techniques to predict 136 

the compressive strength and tensile strain of ECC. The capability of ECC for self-137 

healing was modeled using ensemble ML algorithms by Alabduljabbar, Khan [24], 138 

showcasing the potential of AI in enhancing the durability aspects of ECC. The 139 

inclusion of hybrid and advanced ML models has also been noteworthy. Tanyildizi [25] 140 

utilized hybrid deep learning models to predict the compressive strength of nano-silica-141 

modified ECC under high temperatures. Moreover, invertible neural networks (INNs) 142 

was applied by Yu, Weng [5] for the performance-based design of ECC mixtures, 143 

illustrating a novel approach to ECC formulation that aligns with specific mechanical 144 



and sustainability requirements. However, only one group of mixture design can be 145 

obtained by one output. Besides, response surface methodology was also used to assess 146 

the importance of variables and optimize the mixture design of ECC [26-28].  147 

However, few studies focused on the data treatment before applying the ML or DL 148 

methods. According to the authors’ review, Mahjoubi, Barhemat [19] utilized a decision 149 

tree algorithm based on the isolated forest method to remove anomalous data. Guo, 150 

Meng [29] conducted the Principal Component Analysis and Semi-empirical model to 151 

enlarge the database. A commonly used method in other publications is data 152 

normalization, which indicates that the data treatment research is limited. Therefore, to 153 

fill this gap, this study attempted to introduce a tuned-CTGAN model specifically 154 

designed for ECC to enlarge the raw database, enabling the training of more generalized 155 

and robust models. This approach is novel within the ECC optimization domain and 156 

allows for a better understanding of ECC's complex behavior. Besides, the majority of 157 

the research concentrates on a limited range of fiber types, predominantly PVA and steel 158 

fibers, without extensive analysis across a broader spectrum. This study investigated 9 159 

different fiber types and collected around 400 data points for both tensile strength and 160 

tensile strain. 161 

In summary, while existing studies have laid a solid foundation in the application of AI 162 

for enhancing ECC's properties, this research introduces data augmentation method, 163 

optimization strategies, various fiber types, and large database that further the 164 

capabilities of AI in this field.  165 

Table 1. The literature review and comparative analysis of recent ECC researches 166 

Fiber type 
of ECC 

Investigated 
properties 
and data 
points 

Data 
treatment 

ML prediction 
Optimizati
on design 

Refer
ences 

Year 



9 fiber 
types (PP, 
PVA, etc.) 

TS (429), 
TSt (392) 

Tuned-
CTGAN 

HGS-XGBoost, 
Gradient Boosting 

Regressor, RF, 
SVR  

NSGA-III 
This 
study 

2024 

PVA, PE, 
PP, basal, 
glass fiber 

CS (180), 
TSt (105) 

- 

RF, SVM, 
XGBoost, light 

gradient boosting 
machine, 

CatBoost, natural 
gradient boosting, 

MEMD-ADE-
SVM 

- [23] 2024 

PVA fiber CS (100) - AE-ELM, AE-DT - [25] 2024 
Not 

specified 
SC (617) - AR, DT, BR - [24] 2023 

PE fiber 
TS (129), 
TSt (129) 

- ANN INNs [5] 2023 

Not 
specified 

SC (619) - 
SVM, XGBoost, 

RF 
- [30] 2023 

Steel fibers 
(twisted, 

hooked, and 
smooth 
fibers) 

TS (103), 
TSt (103) 

- ANN - [31] 2023 

Steel fibers 
(straight, 

hooked-end, 
and spiral 
geometric) 

Pull-out 
force and 
slip (382) 

- ANN - [32] 2023 

Not 
specified 

CS (182), 
TS (97), FS 

(50) 
- GEP - [20] 2023 

PVA fiber 

CS, TS, 
TSt, FS, 

EM, PR, DS 
(13) 

- RSM RSM [27] 2023 

Polyacrylon
itrile fiber 

FR, CP (36) - RSM NSGA-III [28] 2023 



PVA fiber SC (617) - 

LR, ANN, CART, 
SVM, ensemble 

methods 
(bagging, 

AdaBoost, and 
stacking) 

- [21] 2023 

Not 
specified 

SC (617) - BR, SR - [22] 2023 

PVA Fiber CS (89) - ANN - [33] 2022 

PVA fiber 
CS (79), TS 

(36) 
- ANN - [34] 2022 

PVA fiber 
CS (151), 
FS (76), 

TS-TSt (44) 
- ANN - [35] 2022 

PVA fiber 
CS, FS, TS, 

TC (16) 
- RSM RSM [26] 2021 

PVA, PP, 
PE, and 

steel fiber 

CS (264), 
TS (244), 
TSt (237) 

A decision 
tree 

algorithm 
based on the 

isolated 
forest method 

to remove 
anomalous 

data 

SVM, AR, 
XGBoost 

UNSGA-
III and 

NSGA-III 
[19] 2021 

10 fiber 
types (PP, 
PVA, etc.) 

TS (284), 
TSt (293), 
FS (189), 
FSt (166), 
CS (313), 

etc. 

- FDNN - [36] 2021 

Chopped 
fiber 

CS (387), 
TS (387), 
TSt (387) 

Principal 
Component 
Analysis + 

Semi-
empirical 

model 

ANN, SVM, 
CART, XGBoost 

- [29] 2021 

Steel fiber 
CS (220), 
FS (220) 

- 
9 ML (RF, AR, 

etc.) 
- [37] 2021 

PVA fiber 
TS (36), 
TSt (36) 

- ANN 
Numerical 
analysis 

[18] 2019 



PVA, steel 
fiber 

CS (24), TS 
(44), FS 
(47), TSc 

(54) 

- ANN - [38] 2018 

Note: the abbreviation is as follows: 167 

Algorithms: Random forest (RF), support vector machine (SVM), eXtreme Gradient 168 

Boosting (XGBoost), categorical gradient boosting (CatBoost), AdaBoost regressor 169 

(AR), decision tree (DT), bagging regressor (BR), Artificial neural networks (ANN), 170 

gene expression programming (GEP), response surface methodology (RSM), linear 171 

regression (LR), classification and regression tree (CART), stacking regressor (SR), 172 

forest deep neural network (FDNN), autoencoder (AE), extreme learning machine 173 

(ELM), multivariate empirical modal decomposition (MEMD), adaptive differential 174 

evolution (ADE), Invertible neural networks (INNs), Unified NSGA-III (UNSGA-III). 175 

Properties: compressive strength (CS), tensile strength (TS), tensile strain (TSt), 176 

flexural stress (FS), flexural strain (FSt), self-healing capacity (SC), elastic modulus 177 

(EM), Poisson’s ratio (PR), drying shrinkage (DS), Freeze−thaw resistance (FR), 178 

chloride ion permeability (CP). 179 

3. Database description 180 

To accurately predict the generalized properties of ECC, it is imperative to 181 

assemble a meticulously curated comprehensive database. This database must 182 

encompass a broad spectrum of key variables, reflecting a general distribution. Its 183 

establishment is grounded in the utilization of existing datasets coupled with an 184 

extensive review of contemporary literature. This process adheres to stringent criteria 185 

to ensure the reliability and relevance of the data included [3, 36, 39-92]:  186 

(1) The literature references the use of Ordinary Portland Cement in producing 187 

ECC; 188 



(2) For fine or coarse aggregates, natural aggregates with proper size distribution 189 

are chosen over types like lightweight aggregate; 190 

(3) To ensure data reliability, references are drawn from authoritative international 191 

journals; 192 

(4) The characteristics of fibers and other admixtures are clearly stated. 193 

The database comprehensively records 18 ECC features and 2 outputs, namely 194 

tensile stress and strain. The features fall into four main categories: main ingredients of 195 

mortar normalized to a total weight of 1, including elements like cement, water, and fly 196 

ash; fiber characteristics such as fiber type, volume proportion, and diameter; 197 

admixtures including superplasticizer, viscosity agent, and oiling agent; and 198 

experimental conditions covering aspects like temperature, water curing days, and air 199 

curing days. The distribution plots of these features and output are depicted in Figure 200 

1. 201 

The database encompasses a wide array of fiber reinforcements, such as PE, PVA, 202 

PP, basalt, steel, ultra-high molecular weight polyethylene fiber (UHMWPE), and 203 

hybrid fibers like PE-steel, PVA-calcium carbonate whiskers, and PVA-steel. Each of 204 

these selected features has been verified to significantly impact the strength and 205 

ductility of ECC [2]. The outputs of the dataset are the peak tensile stress (MPa) and 206 

peak tensile strain (%). A statistical analysis of ECC stress and strain datasets is 207 

summarized in Appendix 1 and Appendix 2. 208 



 209 

(a) 210 



 211 

(b) 212 

Figure 1. The distribution plots of each feature and output in (a) the tensile stress 213 

dataset and (b) the tensile strain dataset. 214 

4. Methodologies 215 

The methodology employed in this study consists of four progressive parts: ECC 216 

database collection, data augmentation, ML modelling, and optimization process. The 217 



database collection was demonstrated in Section 2 with 429 and 392 original tensile 218 

stress and tensile strain samples, respectively. The ECC database augmentation is 219 

achieved by combining the collected original data mentioned and the unsupervised 220 

learning algorithm - Tuned CTGAN. The primary objective of this part is to create more 221 

data to establish a robust machine learning model. The third part involves the 222 

development of the prediction model, wherein HGS based ML models are trained for 223 

ECC properties’ prediction using both the original and synthesized database. The last 224 

part focuses on the mixture design optimization of ECC. Four classes of constraints 225 

(min-max, volume, ratio, and fiber) were established to define the search space. Then, 226 

a cost function was defined and NSGA-III was introduced to tackle the problem. The 227 

above-mentioned framework is expected to be valuable in accurately predicting ECC 228 

properties and reversely optimizing mixture design, as exhibited in Figure 2. 229 

 230 

Figure 2. The flowchart of the ECC optimization framework comprising data 231 

collection, data augmentation, ML modelling, and optimization process 232 
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4.1 Data augmentation  233 

4.1.1 Concepts of Tuned-CTGAN 234 

Introduced by Xu, Skoularidou, et al. (2019) [93], Conditional Tabular GAN 235 

(CTGAN) is a GAN-based architecture tailored for synthesizing tabular data. It 236 

effectively tackles a major challenge in augmenting tabular data for continuous columns: 237 

handling non-Gaussian and multimodal distributions, an issue not adequately addressed 238 

by traditional GANs like TableGAN. While traditional GANs typically employ min-239 

max normalization to scale continuous values to a range from -1 to 1, CTGAN adopts 240 

a modality-specific normalization technique. This approach transforms continuous 241 

values into a bounded vector by independently modelling each continuous column 242 

using a Variational Gaussian Mixture (VGM) model. 243 

ℙ𝐶𝐶𝑖𝑖�𝑐𝑐𝑖𝑖,𝑗𝑗� = � 
𝑚𝑚𝑖𝑖

𝑘𝑘=1

𝜇𝜇𝑘𝑘𝒩𝒩�𝑐𝑐𝑖𝑖,𝑗𝑗; 𝜂𝜂𝑘𝑘 ,𝜙𝜙𝑘𝑘� 
(1) 

where 𝐶𝐶𝑖𝑖 and 𝑚𝑚𝑖𝑖 are the 𝑖𝑖th continuous column and the mode number in the VGM; 244 

in each mode, 𝜇𝜇𝑘𝑘, 𝜂𝜂𝑘𝑘, and 𝜙𝜙𝑘𝑘 are the respective weight, mean, and standard deviation. 245 

For each value 𝑐𝑐𝑖𝑖,𝑗𝑗 in 𝐶𝐶𝑖𝑖, the model calculates the probability of 𝑐𝑐𝑖𝑖,𝑗𝑗 from each mode 246 

in the VGM as: 247 

𝜌𝜌𝑘𝑘 = 𝜇𝜇𝑘𝑘𝒩𝒩�𝑐𝑐𝑖𝑖,𝑗𝑗; 𝜂𝜂𝑘𝑘 ,𝜙𝜙𝑘𝑘�, 𝑘𝑘 = 1,2, … ,𝑚𝑚 (2) 

    It is assumed that the mode 𝑘𝑘  with the highest probability is selected. This is 248 

followed by a normalization process which can be written as follows: 249 

𝛼𝛼𝑖𝑖,𝑗𝑗 =
𝑐𝑐𝑖𝑖,𝑗𝑗 − 𝜂𝜂𝑘𝑘

4𝜙𝜙𝑘𝑘
 (3) 

𝛽𝛽𝑖𝑖,𝑗𝑗 = [0,⋯ ,0,1,0,⋯ ,0] (4) 

where 𝛼𝛼𝑖𝑖,𝑗𝑗  is a normalized scalar within the range [-1, 1], and 𝛽𝛽𝑖𝑖,𝑗𝑗  is a one-hot 250 

encoding with the 𝑘𝑘th element set to 1 corresponding to the mode 𝑘𝑘. Thus, each value 251 



in a continuous column is represented by a combination of scalar 𝛼𝛼𝑖𝑖,𝑗𝑗  for the 252 

normalized value and a one-hot vector 𝛽𝛽𝑖𝑖,𝑗𝑗 to indicate the mode. This normalized data 253 

is then used as the input for the model. 254 

When augmenting data in discrete columns of a table, an imbalance present in 255 

these columns in the original dataset may result in a skewed distribution of discrete 256 

outputs, commonly known as mode collapse. To effectively counter this issue, two 257 

distinct strategies are implemented: the introduction of a conditional generator and the 258 

application of sampling training. Both are strategically designed to promote a balanced 259 

representation of all categories within the discrete columns. In the case of the 260 

conditional generator, it is specifically trained to synthesize data reflecting the 261 

conditions associated with a specific value 𝑘𝑘∗ in a specific column 𝐷𝐷𝑖𝑖∗. To represent 262 

this condition, a masking vector 𝑚𝑚𝑖𝑖 is defined in the following manner: 263 

𝑚𝑚𝑖𝑖
(𝑘𝑘) = {1     𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑖𝑖∗ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 = 𝑘𝑘∗

0     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒                   
       (5) 

    Equation 6 represents the 𝑐𝑐𝑜𝑜𝑎𝑎𝑎𝑎  vector which is introduced to concatenate 264 

different masking vectors for all discrete columns 𝐷𝐷1, … ,𝐷𝐷𝑁𝑁𝑑𝑑. 265 

𝑐𝑐𝑜𝑜𝑎𝑎𝑎𝑎 = 𝑚𝑚1 ⊕𝑚𝑚2 ⊕ ··· ⊕𝑚𝑚𝑁𝑁𝑑𝑑 
(6) 

The 𝑐𝑐𝑜𝑜𝑎𝑎𝑎𝑎  vector is designed to facilitate the conditioning of specific column 266 

values through one-hot encoding. Following this, the conditional generator 𝐺𝐺 operates 267 

by taking random noise along with the 𝑐𝑐𝑜𝑜𝑎𝑎𝑎𝑎 as its inputs. This setup compels 𝐺𝐺 to 268 

adhere to the specified conditions, achieving this through the minimization of 269 

conditional loss, specifically cross-entropy. 270 

4.1.2 Establishment of Tuned-CTGAN 271 

In the Tuned-CTGAN framework, the architecture integrates a conditional 272 

generator 𝐺𝐺 and a discriminator 𝐷𝐷. 𝐺𝐺 is structured with two fully connected layers, 273 



each layer being augmented with batch normalization and 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅  activation for 274 

enhanced performance. Following these layers, a mixed activation function is utilized 275 

to create synthetic row representations. Specifically, the continuous column values 𝛼𝛼𝑖𝑖 276 

are processed through a 𝑇𝑇𝑎𝑎𝑎𝑎ℎ activation, whereas the discrete column values 𝑎𝑎𝑖𝑖 and 277 

mode indicators  𝛽𝛽𝑖𝑖 undergo activation via 𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺𝑒𝑒𝐺𝐺 𝑆𝑆𝑜𝑜𝑖𝑖𝑜𝑜𝑚𝑚𝑎𝑎𝑆𝑆. The architecture also 278 

includes an 𝑒𝑒𝑚𝑚𝐺𝐺𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑒𝑒_𝑎𝑎𝑖𝑖𝑚𝑚 , a critical hyperparameter set at 32 to enrich the 279 

synthetic data generation with diversity. Furthermore, to optimize the training 280 

efficiency of Tuned-CTGAN, the batch size, number of epochs, and learning rate are 281 

carefully set to 50, 2000, and 2e-6, respectively. 282 

Within the discriminator 𝐷𝐷  of the Tuned-CTGAN model, a dual-layer fully 283 

connected structure is implemented. These layers are succeeded by a dropout layer, 284 

strategically designed to sporadically deactivate certain nodes, thereby addressing potential 285 

overfitting challenges. 𝑅𝑅𝑒𝑒𝑎𝑎𝑘𝑘𝑦𝑦𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅 is selected as the activation function, enhancing the 286 

model's capability to differentiate between data types. This is followed by another fully 287 

connected layer tasked with scoring the current batch. The discriminator's layer sizes, 288 

denoted as 𝑎𝑎𝑖𝑖𝑒𝑒𝑐𝑐𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑒𝑒_𝑎𝑎𝑖𝑖𝑚𝑚, are set to (512, 512), where the higher dimensionality of 289 

512 plays a pivotal role in accurately distinguishing between real and synthesized data. 290 

Additionally, the discriminator's learning rate is calibrated at 0.0005. Figure 3 visually 291 

depicts the Tuned-CTGAN's architecture and its training procedure. Notably, the 292 

𝑎𝑎𝑖𝑖𝑒𝑒𝑐𝑐𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑒𝑒_𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠𝑒𝑒 parameter is set to three, indicating that for every single update of 293 

the generator, the discriminator undergoes three update cycles. During data generation, the 294 

fiber parameters’ boundaries are set based on the original data. These fiber parameters are 295 

generated according to the normal distribution. This approach ensures a precise correlation 296 

between fiber types and their traits, improving the synthetic data's reliability. The 297 

pseudocode is shown in Figure 4. 298 



 299 

Figure 3. The training process and architecture of the Tuned-CTGAN model 300 

 301 

Figure 4. The pseudocode of fiber constraint 302 
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4.1.3 Evaluation metrics for CTGAN 304 
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Evaluating the quality of data generated by GANs poses a challenge due to the 305 

variability in outcomes produced by different evaluation metrics. This study proposes 306 

a comprehensive approach combining visual, statistical, and ML based metrics for 307 

assessing the quality of tabular data generation. The visual and statistical metrics are 308 

detailed below, while the ML based metrics are thoroughly elaborated in Section 4.2. 309 

(1) Visual based metrics: This approach involves using visualization techniques to 310 

intuitively compare real and synthetic data. In this study, three methods are introduced 311 

for visual evaluation: Distribution plot, Cumulative Sum, and Correlation table. The 312 

Distribution plot is used to assess the statistical properties and similarities of real and 313 

synthetic datasets. Cumulative Sum offers a column-by-column visual comparison, 314 

focusing on the distribution similarities. Lastly, the Correlation table is employed to 315 

analyze the interrelationships between table columns, thereby gauging the generator's 316 

efficacy in accurately modelling these relationships. 317 

(2) Statistical based metrics: In this research, two statistical tests, KSTest and 318 

CSTest are utilized for evaluation [94]. KSTest uses the empirical Cumulative 319 

Distribution Function (CDF) and the Kolmogorov–Smirnov test to assess continuous 320 

features' distributions, mainly focusing on the maximal divergence between the 321 

observed and expected CDF values. On the other hand, CSTest applies the Chi-squared 322 

test to evaluate discrete columns' distributions, with its p-value indicating the 323 

probability that values from two columns originate from the same distribution. 324 

4.2 Machine learning model establishment  325 

4.2.1 XGBOOST 326 

The technique of XGBoost is built on the “boosting” idea, which combines the 327 

prediction of weak learners with additive training approaches to build a powerful 328 

learner. Boosting tree algorithms are based on the decision tree, which is known as the 329 



classification and regression tree (CART). The structure of XGBoost is depicted in 330 

Figure 5. For regression tasks, CART divides the dataset into two subsets at each level 331 

according to the boundary for one variable until reaching the tree's maximum depth set 332 

by users. It can be described as below: 333 

𝑅𝑅1(𝑗𝑗, 𝑒𝑒) = {𝑆𝑆 ∣ 𝑆𝑆𝑗𝑗 ≤ 𝑒𝑒} 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅2(𝑗𝑗, 𝑒𝑒) = {𝑆𝑆 ∣ 𝑆𝑆𝑗𝑗 ≥ 𝑒𝑒} (7) 

Mean squared error of each leaf node is calculated: 334 

𝑀𝑀𝑆𝑆𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �  
𝑖𝑖∈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

(𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑦𝑦(𝑖𝑖))2 (8) 

𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
1

𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
�  

𝑖𝑖∈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑦𝑦(𝑖𝑖) (9) 

where 𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of instances in one node. The cost function for regression 335 

of CART can be expressed as: 336 

J(k, 𝑜𝑜𝑘𝑘) =
𝑚𝑚𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙

𝑚𝑚
𝑀𝑀𝑆𝑆𝐸𝐸𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙 +

𝑚𝑚𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑙𝑙

𝑚𝑚
𝑀𝑀𝑆𝑆𝐸𝐸𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑙𝑙 (10) 

The algorithm will search for the best solutions for boundaries of variables to 337 

minimize the cost function. The prediction is then the average target value of all 338 

instances in one subset. The mechanism of XGBoost is to keep adding and training new 339 

trees to fit residual errors of the last iteration as shown in Figure 5. A predicted value is 340 

assigned to each instance by adding all corresponding leaves' scores together: 341 

𝑦𝑦� = 𝜙𝜙(𝑆𝑆𝑖𝑖) = � 
𝐾𝐾

𝑘𝑘=𝑖𝑖

𝑖𝑖𝑘𝑘(𝑆𝑆𝑖𝑖) and𝑖𝑖𝑘𝑘(𝑆𝑆𝑖𝑖) = 𝑒𝑒𝑞𝑞(𝑥𝑥),𝑖𝑖𝑘𝑘 ∈ ℒ (11) 

where 𝐾𝐾 is the quantity of trees; 𝑖𝑖𝑘𝑘(𝑆𝑆𝑖𝑖) means the outcome of input 𝑆𝑆𝑖𝑖 for the 𝑘𝑘th 342 

tree; 𝑒𝑒𝑞𝑞(𝑥𝑥) is the score for each leaf node; 𝑞𝑞(𝑆𝑆) denotes the number of leaf nodes; ℒ 343 

represents an assemble of all corresponding functions 𝑖𝑖𝑘𝑘. 344 

The objective function of XGBoost contains two parts: the training error and the 345 

regularization, written as: 346 



obj(θ) = ∑L(θ) + ∑Ω(θ) (12) 

where L is the loss function measuring the deviation of the predicted values from the 347 

actual values. Ω is the regularization function measuring the complexity of the training 348 

model in order to avoid overfitting. 349 

Ω(𝜃𝜃) = 𝛾𝛾T +
1
2
𝜆𝜆 ∥ 𝜔𝜔 ∥2 (13) 

where T represents the total number of leaf nodes and 𝜔𝜔 is the score of each leaf 350 

node. 𝛾𝛾 and 𝜆𝜆 are controlling factors employed to avoid overfitting. 351 

When a new tree is created to fit residual errors of last iteration, the predicted score 352 

for the 𝑜𝑜th tree can be expressed as: 353 

𝑦𝑦𝚤𝚤�
(𝑙𝑙) = 𝑦𝑦𝚤𝚤�

(𝑙𝑙−1) + 𝑖𝑖𝑙𝑙(𝑆𝑆𝑖𝑖) (14) 

The objective function is thus written as: 354 

ℒ (𝑙𝑙) = � 
𝑛𝑛

𝑖𝑖=1

𝐺𝐺�𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�
(𝑙𝑙−1) + 𝑖𝑖𝑙𝑙(𝑆𝑆𝑖𝑖)) + Ω(𝑖𝑖𝑙𝑙) (15) 

An appropriate function, 𝑖𝑖𝑙𝑙, is replaced with the second-order Taylor polynomial 355 

of 𝑖𝑖𝑙𝑙 = 0. Accordingly, the objective function can be approximated as: 356 

ℒ (𝑙𝑙) ≈�  
𝑛𝑛

𝑖𝑖=1

�𝐺𝐺(𝑦𝑦𝑖𝑖,𝑦𝑦𝚤𝚤�
(𝑙𝑙−1)) + 𝑒𝑒𝑖𝑖𝑖𝑖𝑙𝑙(𝑆𝑆𝑖𝑖) +

1
2
ℎ𝑖𝑖𝑖𝑖𝑙𝑙2(𝑆𝑆𝑖𝑖)� + Ω(𝑖𝑖𝑙𝑙) (16) 

where 𝑒𝑒𝑖𝑖 is the first-order derivative and ℎ𝑖𝑖 denotes the second-order derivative: 357 

𝑒𝑒𝑖𝑖 = ∂𝑦𝑦�𝑖𝑖(𝑡𝑡−1)𝐺𝐺�𝑦𝑦𝑖𝑖, 𝑦𝑦�𝑖𝑖
(𝑙𝑙−1)� 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑖𝑖 = ∂

𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)

2 𝐺𝐺�𝑦𝑦𝑖𝑖,𝑦𝑦�𝑖𝑖
(𝑙𝑙−1)� (17) 

Since previous (𝑜𝑜 − 1) trees' residual errors (𝑦𝑦) have minimal influence on the 358 

modification of the objective function, Equation 15 is then simplified as: 359 

ℒ (𝑙𝑙)� = � 
𝑛𝑛

𝑖𝑖=1

�g𝑖𝑖𝑖𝑖𝑙𝑙(𝑆𝑆𝑖𝑖) +
1
2
ℎ𝑖𝑖𝑖𝑖𝑙𝑙2(𝑆𝑆𝑖𝑖)� + Ω(𝑖𝑖𝑙𝑙) (18) 



As each instance will finally be classified into one leaf node, all instances that 360 

belong to the same leaf node can be reassembled as: 361 

obj(𝑙𝑙) ≈� [(� 𝑒𝑒𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑗𝑗

)𝑒𝑒𝑗𝑗 +
1
2

(� ℎ𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑗𝑗

+ 𝜆𝜆)𝑒𝑒𝑗𝑗2]
𝑇𝑇

𝑗𝑗=1

+ 𝛾𝛾 (19) 

Therefore, the optimum 𝑒𝑒 and objective function obj are derived as: 362 

𝑒𝑒𝑗𝑗∗ = −
𝐺𝐺𝑗𝑗

H𝑗𝑗 + 𝜆𝜆
 and o𝐺𝐺𝑗𝑗 = −

1
2
� 
𝑙𝑙

𝑗𝑗=1

𝐺𝐺𝑗𝑗2

𝐻𝐻𝑗𝑗 + 𝜆𝜆
+ 𝛾𝛾T (20) 

 363 

Figure 5. The structure of XGBoost 364 

4.2.2 Other ML algorithms 365 

SVR is normally used to solve regression problems by constructing a model that 366 

attempts to fit the error within a certain threshold. Its main strategy involves finding a 367 

hyperplane in a high-dimensional space that best fits the data, with the flexibility to 368 

manage both linear and non-linear models through kernel tricks [95]. Gradient Boosting 369 

Regressor is another ML algorithm that builds sequential models, typically decision 370 

trees, where each tree corrects errors made by the previous ones [96]. It focuses on 371 

minimizing a loss function, iteratively adding trees that predict the residuals or errors 372 



of prior trees to improve accuracy. This method excels in predictive accuracy even with 373 

non-linear data and efficiently handles missing values. Random Forest is an ensemble 374 

learning method that constructs multiple decision trees during training and outputs the 375 

majority vote or average prediction of the trees for classification and regression tasks, 376 

respectively [97]. It effectively handles large datasets and high-dimensional spaces, 377 

offering robust performance and mitigating overfitting through its ensemble approach, 378 

making it highly versatile across diverse applications. To compare the HGS-XGBoost 379 

performance with other ML models, SVR, Gradient Boosting Regressor, and RF were 380 

also introduced in this study. 381 

4.2.3 Hunger games search 382 

Hunger Games search (HGS) is an advanced meta-heuristic algorithm that 383 

leverages strategies to discover diverse solution spaces to refine solutions towards 384 

optimality. It was first introduced by Yang, Chen et al. [12]. Each group of 385 

hyperparameters represents each individual and the fitness function is the loss function 386 

(RMSE) of the XGBoost. The objective is to identify the best individual that minimizes 387 

the RMSE when employing this group of hyperparameters for model training. “Hunger-388 

Driven Motivational State Competition” is the searching strategy of HGS. The key 389 

advantage of HGS lies in its ability to efficiently navigate the search space and converge 390 

rapidly to the optimal solution, thereby reducing computational time and resource usage 391 

significantly. Considering the sources of food and the motions of species, a logical game 392 

can be set up between various animals with the aim of winning the game and acquiring 393 

the food. Equation 21 illustrates the foraging behaviours of individuals based on self-394 

dependent spirit (𝐺𝐺𝑎𝑎𝑚𝑚𝑒𝑒1) or collaborative communication (𝐺𝐺𝑎𝑎𝑚𝑚𝑒𝑒2 and 𝐺𝐺𝑎𝑎𝑚𝑚𝑒𝑒3). 395 



𝑋𝑋(𝑜𝑜 + 1)�����������������⃗ = �
𝐺𝐺𝑎𝑎𝑚𝑚𝑒𝑒1:𝑋𝑋(𝑜𝑜)��������⃗ ⋅ (1 + 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1)), 𝑒𝑒1 < 𝐺𝐺

𝐺𝐺𝑎𝑎𝑚𝑚𝑒𝑒2:𝑊𝑊1�����⃗ ⋅ 𝑋𝑋𝑏𝑏����⃗ + 𝑅𝑅�⃗ ⋅ 𝑊𝑊2�����⃗ ⋅ �𝑋𝑋𝑏𝑏����⃗ − 𝑋𝑋(𝑜𝑜)��������⃗ �, 𝑒𝑒1 > 𝐺𝐺, 𝑒𝑒2 > 𝐸𝐸
𝐺𝐺𝑎𝑎𝑚𝑚𝑒𝑒3:𝑊𝑊1�����⃗ ∙ 𝑋𝑋𝑏𝑏����⃗ − 𝑅𝑅�⃗ ⋅ 𝑊𝑊2�����⃗ ∙ �𝑋𝑋𝑏𝑏����⃗ − 𝑋𝑋(𝑜𝑜)��������⃗ �, 𝑒𝑒1 > 𝐺𝐺, 𝑒𝑒2 < 𝐸𝐸

 (21) 

𝐸𝐸 = sech(|𝐹𝐹(𝑖𝑖) − 𝐵𝐵𝐹𝐹|) , 𝑖𝑖 = 1, 2, 3, … , 𝑎𝑎 (22) 

𝑅𝑅�⃗ = 2 × 𝑒𝑒ℎ𝑒𝑒𝑖𝑖𝑎𝑎𝑘𝑘 × 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑒𝑒ℎ𝑒𝑒𝑖𝑖𝑎𝑎𝑘𝑘 (23) 

𝑒𝑒ℎ𝑒𝑒𝑖𝑖𝑎𝑎𝑘𝑘 = 2 × (1 −
𝑜𝑜
𝑇𝑇

) (24) 

where 𝑅𝑅�⃗  is in the range of [-a, a]; 𝑒𝑒1 and 𝑒𝑒2 are random numbers between 0 to 1; 396 

𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1) is a random number following a standard normal distribution; 𝐺𝐺 is set as 397 

0.03 in this study; 𝑜𝑜 denotes the current iteration and 𝑇𝑇 is the maximum iterations; 398 

𝑊𝑊1�����⃗  and 𝑊𝑊2�����⃗  are two hunger weights; 𝑋𝑋𝑏𝑏����⃗  and 𝑋𝑋(𝑜𝑜)��������⃗  represent the locations of the best 399 

and other individuals, respectively; sech is a hyperbolic function; 𝐹𝐹(𝑖𝑖) denotes the 400 

fitness value of each individual and 𝐵𝐵𝐹𝐹 is the current best fitness value. 401 

Regarding the hunger role, 𝑊𝑊1�����⃗  and 𝑊𝑊2�����⃗  can be calculated as follows: 402 

𝑊𝑊1(𝚤𝚤)�����������⃗ = �ℎ𝐺𝐺𝑎𝑎𝑒𝑒𝑒𝑒𝑦𝑦(𝑖𝑖) ⋅
𝑁𝑁

𝑒𝑒𝐺𝐺𝑚𝑚(ℎ𝐺𝐺𝑎𝑎𝑒𝑒𝑒𝑒𝑦𝑦)
× 𝑒𝑒4, 𝑒𝑒3 < 𝐺𝐺

1, 𝑒𝑒3 > 𝐺𝐺
 (25) 

𝑊𝑊2(𝚤𝚤)�����������⃗ = (1 − exp (−|ℎ𝐺𝐺𝑎𝑎𝑒𝑒𝑒𝑒𝑦𝑦(𝑖𝑖) − 𝑒𝑒𝐺𝐺𝑚𝑚(ℎ𝐺𝐺𝑎𝑎𝑒𝑒𝑒𝑒𝑦𝑦)|)) × 𝑒𝑒5 × 2 (26) 

ℎ𝐺𝐺𝑎𝑎𝑒𝑒𝑒𝑒𝑦𝑦(𝑖𝑖) = �
0,𝐹𝐹(𝑖𝑖) == 𝐵𝐵𝐹𝐹

ℎ𝐺𝐺𝑎𝑎𝑒𝑒𝑒𝑒𝑦𝑦(𝑖𝑖) + 𝐻𝐻,𝐹𝐹(𝑖𝑖)! = 𝐵𝐵𝐹𝐹 (27) 

where ℎ𝐺𝐺𝑎𝑎𝑒𝑒𝑒𝑒𝑦𝑦(𝑖𝑖)  denotes the hunger degree of each individual; 𝑁𝑁  is the total 403 

number of individuals; 𝑒𝑒3, 𝑒𝑒4, and 𝑒𝑒5 are three random numbers from 0 to 1; 𝐹𝐹(𝑖𝑖) is 404 

the fitness value of each individual. Equation 27 means that the hunger degree is 0 for 405 

the best individual and a new hunger 𝐻𝐻 will be added for other individuals.  406 

𝑇𝑇𝐻𝐻 =
𝐹𝐹(𝑖𝑖) − 𝐵𝐵𝐹𝐹
𝑊𝑊𝐹𝐹 − 𝐵𝐵𝐹𝐹

× 𝑒𝑒6 × 2 × (𝑅𝑅𝐵𝐵 − 𝑅𝑅𝐵𝐵) (28) 



𝐻𝐻 = �𝑅𝑅𝐻𝐻 × (1 + 𝑒𝑒),𝑇𝑇𝐻𝐻 < 𝑅𝑅𝐻𝐻
𝑇𝑇𝐻𝐻,𝑇𝑇𝐻𝐻 ≥ 𝑅𝑅𝐻𝐻  (29) 

where 𝑊𝑊𝐹𝐹  is the worst fitness value in the current iteration; 𝑅𝑅𝐵𝐵  and 𝑅𝑅𝐵𝐵  are the 407 

upper and lower bounds of the feature space; 𝑅𝑅𝐻𝐻 is determined as the lower bound of 408 

the 𝐻𝐻 (100 in this study). The pseudocode of HGS is represented in Figure 6. 409 

 410 

Figure 6. The pseudocode of HGS 411 

4.2.4 Model establishment  412 

The ML models’ hyperparameters are tuned by HGS in this study. Since the final 413 

utilized model is XGBoost, the model establishment process of XGBoost is described 414 

instead of the other ML models. When training XGBoost, some hyperparameters are 415 

crucial to the model predictive performance comprising booster, objective, max_depth, 416 

eta, min_child_weight, subsample, colsample_bytree, learning_rate, 417 

num_parallel_tree, and n_estimators. In this study, ‘regression: linear’ was determined 418 

for the hyperparameter objective because it was a typical regression task. After the trial 419 

experiment, the hyperparameters of booster, eta, min_child_weight, subsample, 420 

colsample_bytree, num_parallel_tree were set as ‘gbtree’, ‘0.1’, ‘5’, ‘0.7’, ‘1’, ‘1’, 421 



respectively. Besides, max_depth, learning_rate, and n_estimators were automatically 422 

optimized using HGS algorithm with the initial boundaries of [1, 100], [0.01, 1], and 423 

[1, 100], respectively. This is because these three hyperparameters are most important 424 

which significantly affect the model complexity, convergence efficiency, and 425 

overfitting/underfitting balance. 426 

Once determining the hyperparameters, the XGBoost model was generated with 427 

the optimal values of max_depth, learning_rate, and n_estimators after 20 iterations on 428 

the training set (80% of the database). The fiber type, which is the eighth feature of the 429 

dataset, is transferred to one binary attribute using the One-hot-encoding function. Thus, 430 

the 18 features of the initial dataset were increased to 26 features. Subsequently, the 431 

optimal XGBoost model was tested on the test set (20% of the database) to ascertain its 432 

predictive efficacy. The XGBoost framework calculates the importance weight of each 433 

feature. If a certain feature is deemed to have minimal predictive significance, it is 434 

excluded in the subsequent training cycle. 435 

4.2.5 Performance evaluation 436 

In this study, three accompanying evaluating indicators aim to evaluate the 437 

precision of the ML model: correlation coefficient (R), mean absolute error (MAE), 438 

and root mean square error (RMSE). These indicators are calculated as follows [98]: 439 

𝑅𝑅 =
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where 𝑎𝑎 is the 𝑎𝑎 groups of data samples; 𝑦𝑦𝑖𝑖∗ and 𝑦𝑦𝑖𝑖 are the predicted and actual 440 

results; 𝑦𝑦∗��� and 𝑦𝑦� illustrate the mean values of the predicted and actual results. 441 

4.3 Multi-objective optimization 442 

4.3.1 Objective function establishment 443 

After the establishment of two XGBoost models, they are adopted as the objective 444 

functions for ECC’s tensile stress and tensile strain, respectively. The third objective 445 

function (cost) is computed by polynomials as follows: 446 

𝐶𝐶𝑜𝑜𝑒𝑒𝑜𝑜($/𝑚𝑚3) = 𝐶𝐶𝐶𝐶𝑄𝑄𝐶𝐶 + 𝐶𝐶𝑊𝑊𝑇𝑇𝑄𝑄𝑊𝑊𝑇𝑇 + 𝐶𝐶𝐴𝐴𝐴𝐴𝑄𝑄𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐹𝐹𝐴𝐴𝑄𝑄𝐹𝐹𝐴𝐴 + 𝐶𝐶𝑆𝑆𝐹𝐹𝑄𝑄𝑆𝑆𝐹𝐹

+ 𝐶𝐶𝐵𝐵𝐹𝐹𝑆𝑆𝑄𝑄𝐵𝐵𝐹𝐹𝑆𝑆 + 𝐶𝐶𝑆𝑆𝑄𝑄𝑆𝑆 + 𝐶𝐶𝐹𝐹𝑄𝑄𝐹𝐹 
(33) 

In Equation 33, 𝑄𝑄𝐶𝐶, 𝑄𝑄𝑊𝑊𝑇𝑇, 𝑄𝑄𝐴𝐴𝐴𝐴, 𝑄𝑄𝐹𝐹𝐴𝐴, 𝑄𝑄𝑆𝑆𝐹𝐹, 𝑄𝑄𝑐𝑐𝑐𝑐, 𝑄𝑄𝐵𝐵𝐹𝐹𝑆𝑆, 𝑄𝑄𝑆𝑆 and 𝑄𝑄𝐹𝐹 denote the 447 

unit weight (kg/m3) of cement, water, fine aggregate, fly ash, silica fume, blast furnace 448 

slag, superplasticiser, and fiber, respectively. Besides, 𝐶𝐶 means the unit price ($/kg) 449 

of each raw material of ECC, which is checked from Alibaba in China and summarised 450 

in Table 2. A simplified assumption was employed, utilizing the average cost of fiber, 451 

despite the recognition that fiber costs are influenced by parameters such as diameter, 452 

tensile strength, and elastic modulus, etc [99]. The fiber type, which is the eighth feature 453 

of the dataset, is transferred to one binary attribute using One-hot-encoding function. 454 

Therefore, the unit weight and cost of the specific fiber will be determined upon the 455 

fiber type selected.  456 

Table 2. The unit weight and cost of each variable of ECC 457 

Raw materials Notation Density (kg/m3) Notation Unit price ($/kg) 
Cement 𝑅𝑅𝐶𝐶 3100 𝐶𝐶𝐶𝐶 0.59 
Water 𝑅𝑅𝑊𝑊𝑇𝑇 1000 𝐶𝐶𝑊𝑊𝑇𝑇 0.0005 



Fine Aggregate 𝑅𝑅𝐴𝐴𝐴𝐴 2600 𝐶𝐶𝐴𝐴𝐴𝐴 0.009 
Fly ash 𝑅𝑅𝐹𝐹𝐴𝐴 2300 𝐶𝐶𝐹𝐹𝐴𝐴 0.027 

Silica Fume 𝑅𝑅𝐹𝐹𝐴𝐴 2220 𝐶𝐶𝑆𝑆𝐹𝐹 0.82 
blast furnace slag 𝑅𝑅𝐵𝐵𝐹𝐹𝑆𝑆 2900 𝐶𝐶𝐵𝐵𝐹𝐹𝑆𝑆 0.062 
Superplasticiser 𝑅𝑅𝑆𝑆 1100 𝐶𝐶𝑆𝑆 1.07 

Fiber type:     
Basalt 

𝑅𝑅𝐹𝐹 

2670 

𝐶𝐶𝐹𝐹 

3.42 
PE 970 15.04 

PE_Steel 4410 7.86 
PVA 1300 3.2 

PVA_Ca 1400 3.415 
PVA_Steel 4575 1.94 

PP 910 3.9 
Steel 7850 0.68 

UHMWPE 950 31.44 

4.3.2 Constraints  458 

In this study, the following four classes of constraints (Min-max, volume, ratio, 459 

and fiber) were set up to define the search space in the MOO problem. 460 

• Min-max constraint 461 

Constraints were introduced to specify the range within which each input variable 462 

can vary to avoid a covariate shift. The ranges of input features were limited to the 463 

minimum and maximum values according to the datasets, as follows: 464 

𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑎𝑎𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖𝑚𝑚𝑐𝑐𝑥𝑥 (34) 

where 𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛  and 𝑎𝑎𝑖𝑖𝑚𝑚𝑐𝑐𝑥𝑥  represent the lowest and highest value of the ith feature 465 

(Appendix 1 and 2).  466 

• Volume constraint 467 

In the ECC matrix, the cumulative volume of each component, coupled with 468 

inevitable air content for each blend, approximately equates to one cubic meter. 469 

Therefore, the design domain should be restricted to exclude mixes deviating 470 



significantly from a volume of one cubic meter. This was realized through a constraint 471 

that governs the volume of each mix design, termed the "volume constraint", as follows: 472 

𝑉𝑉𝑚𝑚 = �
𝑄𝑄𝐶𝐶
𝑅𝑅𝐶𝐶

+
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𝑅𝑅𝑊𝑊𝑇𝑇
+
𝑄𝑄𝐴𝐴𝐴𝐴
𝑅𝑅𝐴𝐴𝐴𝐴

+
𝑄𝑄𝐹𝐹𝐴𝐴
𝑅𝑅𝐹𝐹𝐴𝐴

+
𝑄𝑄𝑆𝑆𝐹𝐹
𝑅𝑅𝑆𝑆𝐹𝐹

+
𝑄𝑄𝐵𝐵𝐹𝐹𝑆𝑆
𝑅𝑅𝐵𝐵𝐹𝐹𝑆𝑆

+
𝑄𝑄𝑆𝑆
𝑅𝑅𝑆𝑆

+
𝑄𝑄𝐹𝐹
𝑅𝑅𝐹𝐹
� ∈ [𝛼𝛼𝑚𝑚𝑖𝑖𝑛𝑛,𝛼𝛼𝑚𝑚𝑐𝑐𝑥𝑥] (35) 

where 𝑅𝑅𝐶𝐶 , 𝑅𝑅𝑊𝑊𝑇𝑇 , 𝑅𝑅𝐴𝐴𝐴𝐴 , 𝑅𝑅𝐹𝐹𝐴𝐴 , 𝑅𝑅𝑆𝑆𝐹𝐹 , 𝑅𝑅𝐵𝐵𝐹𝐹𝑆𝑆 , 𝑅𝑅𝑆𝑆  and 𝑅𝑅𝐹𝐹  are the density of cement, 473 

water, fine aggregate, fly ash, silica fume, blast furnace slag, superplasticiser, and fiber, 474 

respectively, specified in Table 2; 𝛼𝛼𝑚𝑚𝑖𝑖𝑛𝑛  and 𝛼𝛼𝑚𝑚𝑐𝑐𝑥𝑥  were set to 0.96 and 1.04, 475 

considering the variations in air content and disparities in ingredient densities across 476 

different studies. 477 

• Ratio constraint 478 

To ensure consistency within the dataset and prevent undue variations in 479 

properties, two ratio constraints were established. These constraints are crucial to 480 

mitigate potential complications arising from extreme water-to-binder (W/B) ratios that 481 

lie outside the raw database's scope, potentially affecting the concrete's fresh state. 482 

Consequently, the water to binder ratio and the fine aggregate to binder ratio were 483 

delineated as follows. 484 

0.131 ≤
 Water 

 Cement +  Fly ash +  Silica fume + Blast furnace slag 
≤ 0.568 (36) 

0 ≤
 Fine aggregate 

 Cement +  Fly ash +  Silica fume + Blast furnace slag
≤ 1.667 (37) 

• Fiber constraint 485 

The type, diameter, length, tensile strength, and elastic modulus of fiber are crucial 486 

to the properties of ECC, simultaneously affecting the cost owing to totally different 487 

characteristics. They cannot be considered as unrelated features during the MOO 488 



solving process, otherwise the characteristics fail to match the specific fiber. Therefore, 489 

this study introduced the boundary constraints corresponding to each fiber category, as 490 

shown in Table 3. In this case, the diameter, length, tensile strength, and elastic modulus 491 

were constrained according to the one binary attribute of the feature ‘fiber type’ using 492 

the One-hot-encoding function. 493 

Table 3. The fiber constraints of ECC 494 

Fiber type 
F. Diameter 

(Micro-Meter) 
Fiber Length 

(mm) 
Fiber Tensile 

Strength (MPa) 
Fiber Elastic 

Modulus (GPa) 
Min Max Min Max Min Max Min Max 

Basalt 13 13 6 12 2600 2600 85 85 
PE 12 78 6 38 2400 5200 66 158 

PE_STEEL 54 279 8.9 34.5 1772 6360 115.8 379 
PVA 35 40 8 12 900 1620 23 43 

PVA_Ca 7.667 28.25 2.061 14.6 1929.6 4010.4 137.04 472.11 
PVA_STEEL 60 192.7 7.68 16.3 1633.3 2608 82.1 155.12 

PP 12 19.5 6 12 350 3700 4 6 
STEEL 150 550 6 30 2428 5000 200 360 

UHMWPE 18 25 12 13 3000 3000 100 114 
 495 

4.3.3 Construction of optimizer 496 

Regarding multi-objective optimization problems, an optimizer can seek within a 497 

set of compromise options in the objective space called the Pareto front to obtain the 498 

optimal solution [100]. The Pareto front implies the condition that one objective fails 499 

to be improved without worsening the other objectives. If 𝑀𝑀 represents the group of 500 

feasible solutions and 𝒙𝒙∗ ∈ 𝑀𝑀  is one of the Pareto optimal solutions, there is no 501 

existence of 𝑆𝑆 ∈ 𝑀𝑀 satisfy that: 502 

 𝑖𝑖𝑘𝑘(𝒙𝒙) ≤ 𝑖𝑖𝑘𝑘(𝒙𝒙∗) 𝑖𝑖𝑜𝑜𝑒𝑒 𝑘𝑘 =  1,2,3, … , 𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎  (38) 



𝑖𝑖𝑘𝑘(𝒙𝒙) < 𝑖𝑖𝑘𝑘(𝒙𝒙∗) 𝑖𝑖𝑜𝑜𝑒𝑒 𝑎𝑎𝑜𝑜 𝐺𝐺𝑒𝑒𝑎𝑎𝑒𝑒𝑜𝑜 𝑜𝑜𝑎𝑎𝑒𝑒 𝑘𝑘 (39) 

Deb and Jain [17] introduced NSGA-III by replacing the crowding distance to a 503 

reference point-based selection approach in NSGA II, significantly improving the 504 

convergence speed and population diversity. Therefore, this study proposed NSGA-III 505 

to acquire the above-mentioned Pareto front in a larger objective space. The procedure 506 

of the establishment of NSGA-III started by randomly generating an initial population 507 

(𝑃𝑃𝑙𝑙) of size 𝑁𝑁. The iteration process is described as follows: 508 

1. At 𝑜𝑜th iteration, an offspring population, denoted as 𝑄𝑄𝑙𝑙, is derived from the 509 

parent population 𝑃𝑃𝑙𝑙. This derivation employs techniques comprising simulated binary 510 

crossover (SBX), random selection (RS), and polynomial mutation (PM), as described 511 

in [17]. The population size for both 𝑃𝑃𝑙𝑙 and 𝑄𝑄𝑙𝑙 remains consistent at 𝑁𝑁. 512 

2. The populations 𝑃𝑃𝑙𝑙  and 𝑄𝑄𝑙𝑙 are amalgamated to form a new population, 513 

denoted as 𝑀𝑀𝑙𝑙 = 𝑃𝑃𝑙𝑙 ∪ 𝑄𝑄𝑙𝑙, which possesses a size of 2𝑁𝑁 . Subsequently, the top 𝑁𝑁 514 

individuals are chosen for the succeeding generation through a non-dominated sorting 515 

mechanism. This process categorizes the elements of 𝑀𝑀𝑙𝑙 into distinct non-domination 516 

levels, represented as 𝑅𝑅𝑧𝑧. 517 

3. A new population 𝐺𝐺𝑙𝑙 is constructed by sequentially incorporating elements 518 

from 𝑀𝑀𝑙𝑙 across 𝑅𝑅𝑧𝑧 levels until the population size either matches or surpasses 𝑁𝑁 for 519 

the first time, where the last level is called level 𝑧𝑧. The individuals from level 𝑧𝑧 to the 520 

end are excluded from consideration. 521 

4. If the element size of 𝐺𝐺𝑙𝑙 precisely matches 𝑁𝑁, all the individuals in the last 522 

level 𝑧𝑧  will be chosen for 𝑃𝑃𝑙𝑙+1 , followed by the next iteration. If the size of 𝐺𝐺𝑙𝑙 523 

exceeds 𝑁𝑁, the elements in the last level 𝑧𝑧 will be sorted and selected according to the 524 

reference point-based selection approach. By this approach, the size of 𝑃𝑃𝑙𝑙+1 maintains 525 

𝑁𝑁 and the population diversity is ascertained.  526 



Figure 7 depicts the environment selection of NSGA-III, showing non-dominated 527 

sorting and reference point-based selection in each iteration. 528 

 529 

Figure 7. The environment selection of NSGA-III 530 

5. Results and discussion 531 

5.1 Data augmentation 532 

The Tuned-CTGAN augmentation technique was used to increase the size of the 533 

original tensile stress and strain datasets from 429 and 392 data records to 5000 each. 534 

The performance of the Tuned-CTGAN augmentation on the tensile stress and strain 535 

databases is depicted in Figures 8 and 9, respectively, through three visualization plots: 536 

the cumulative sum plot, distribution plot, and correlation table. 537 

The cumulative plot for various features reveals a notable similarity between the 538 

original and synthesized datasets. For instance, the cumulative plot for the 'cement' 539 

feature exemplifies this similarity, as depicted in Figures 8a and 9a. While the curves 540 

representing the original (in blue) and the generated data (in red) are not identical, their 541 

close proximity reflects the performance in capturing the statistical characteristics of 542 



the original dataset. This phenomenon can be observed in the cumulative plots of the 543 

other variables. Meanwhile, the distribution plots of the variables also demonstrate a 544 

similarity in the probabilistic distribution of values between the original and 545 

synthesized datasets. This means that values frequently observed in the original dataset 546 

are generated with higher probability in the synthesized data, which is exhibited in 547 

Figures 8b and 9b. It indicates that the data generation process effectively captures and 548 

reproduces the underlying statistical tendencies of the original data. Besides, the 549 

distribution of the fiber type (the single discrete variable) is well simulated by the 550 

Tuned-CTGAN model. For instance, PE and PVA are the two most common categories 551 

in the original database, and this is also reflected in the generated fake dataset. However, 552 

the distribution of the fiber types is not strictly identical to the original database, mainly 553 

due to the characteristics of Tuned-CTGAN. As mentioned earlier, a conditional 554 

generator and sampling training applied in Tuned-CTGAN are used to tackle the 555 

problem of mode collapse. This technology simultaneously partly neglects the actual 556 

distribution of discrete features, increasing the sampling randomness and ultimately 557 

leading to no identical distribution. Additionally, the distribution plot and cumulative 558 

sum of the other fiber type related variables comprising fiber diameter, length, tensile 559 

strength, and elastic modulus are mainly determined by the fiber type. This leads to the 560 

same phenomenon of no identical distribution as that of fiber type. 561 

The correlation table evaluates the association between each column of the table 562 

as shown in Figures 8c and 9c. Apart from the relatively strong interdependency 563 

between fiber types and their associated parameters, dependencies among other 564 

parameters are comparatively weaker (below 0.25). This observation aligns with 565 

expectations, as the characteristics of fibers inherently determine their parameters. 566 

However, this strong interdependency may result in multicollinearity, reducing the 567 



predictive performance and influencing design accuracy. To reduce the influence 568 

caused by multicollinearity, the generator's output is specifically directed by imposing 569 

constraints based on the selected fiber type in the training of Tuned-CTGAN. 570 

Meanwhile, these constraints are also imposed during the NSGA-III optimization 571 

process as mentioned in the previous section. In addition, the correlation tables between 572 

the original database and synthetic database depict a similar pattern with a relatively 573 

minor difference (the maximum of 0.3) for both the tensile stress and strain database. 574 

Therefore, the generator’s performance in accurately modelling the relationships 575 

between columns has been assessed according to the visualization process. 576 
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Figure 8. The cumulative (a), distribution (b), and correlation plots (c) for eighteen 577 

features before and after Tuned-CTGAN augmentation based on the dataset of tensile 578 

stress 579 
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(c) 
Figure 9. The cumulative (a), distribution (b), and correlation plots (c) for eighteen 580 

features before and after Tuned-CTGAN augmentation based on the dataset of tensile 581 

strain 582 

The statistical based metrics (e.g., KSTest and CSTest) of the three data 583 

augmentation methods for both tensile stress and strain datasets are depicted in Table 4. 584 

The KSTest examines the distributions of continuous features, while the CSTest is used 585 

to evaluate distributions of discrete columns with the values depicted in Figure 10. For 586 

the KSTest, the results are expressed as 1 − 𝑐𝑐𝑎𝑎𝐺𝐺𝑐𝑐𝐺𝐺𝐺𝐺𝑎𝑎𝑜𝑜𝑒𝑒𝑎𝑎 𝑣𝑣𝑎𝑎𝐺𝐺𝐺𝐺𝑒𝑒, so that a result closer 587 

to 1 indicates a slighter discrepancy between the real and generated distributions. In 588 

Table 4, the KSTest values of most variables in both stress and strain datasets are over 589 

0.7, indicating a relatively reliable outcome using Tuned-CTGAN data augmentation. 590 

The average metric values of 18 continuous variables and one output are 0.7795 and 591 

0.7764 on stress and strain datasets, respectively. These results explained the reliable 592 

data augmentation performance of Tuned-CTGAN, further verifying the conclusions 593 

acquired from the visualization plots. 594 

Table 4. The statistical based metrics based on Tuned-CTGAN 595 

Variables and outcome Tensile stress dataset Tensile strain dataset 
Cement (C) 0.8892 0.8680 
Water (C) 0.8122 0.8955 

Fine Agg (C) 0.8687 0.8884 
Fly ash (C) 0.8030 0.7800 

Silica Fume (C) 0.7923 0.7836 
blast furnace slag (C) 0.6250 0.5918 
Superplasticiser (C) 0.8825 0.8664 



Fiber type (D) 0.8773 0.9243 
Fiber content (C) 0.6721 0.6677 
F. Diameter (C) 0.7962 0.7530 
F. Length (C) 0.7667 0.8047 

F. Tensile Strength (C) 0.7722 0.6685 
F. Elastic Modulus (C) 0.8299 0.6913 

HPMC (C) 0.5763 0.5752 
Oiling Agent (C) 0.9085 0.9687 
Temperature (C) 0.6549 0.6752 
Water Curing (C) 0.7169 0.7428 

Air Curing (C) 0.7159 0.7276 
Peak tensile stress (C) 0.8510 - 
Peak tensile strain (C) - 0.8785 

Average value 0.7795 0.7764 

 596 

Figure 10. The radar maps of Tuned-CTGAN on tensile stress and strain datasets 597 

5.2 Model prediction  598 

Figures 11 and 12 illustrate the scatter plots of four ML models before and after 599 

data augmentation with the x-axis denoting the actual values and the y-axis reflecting 600 

the predicted values. The diagonal line displays a comparison between the actual and 601 

predicted tensile stress or strain of ECC. The closeness of the data points to the diagonal 602 

line is indicative of the accuracy of the predictions. A data point located near the 603 

diagonal line indicates a minor difference between the real and predicted values, 604 

demonstrating the accuracy of the forecasting model. Besides, the corresponding 605 



evaluation indexes of four ML models before and after data augmentation are 606 

summarized in Tables 5 and 6, respectively. 607 

Before the data augmentation, the XGBoost model indicates the highest predictive 608 

accuracy in the stress dataset with the respective MAE, 𝑅𝑅2, and MSE values of 1.189, 609 

0.874, and 1.425, as shown in Table 5. Its performance in accurately predicting the ECC 610 

stress can be verified in Figure 11a showing few outliers. The Gradient Boosting 611 

Regressor and RF also demonstrate high predictive accuracy, achieving 𝑅𝑅2 values of 612 

0.847 and 0.846, respectively. In the strain dataset, RF model possesses the highest 613 

predictive accuracy (𝑅𝑅2=0.805), followed by the XGBoost (𝑅𝑅2=0.772) and Gradient 614 

Boosting Regressor (𝑅𝑅2=0.757), as shown in Table 6. Thus, the tensile strain prediction 615 

is observed to be more complex and challenging compared to the prediction of tensile 616 

stress. The SVR models exhibit poor generalization ability in predicting both stress and 617 

strain due to the low values of 𝑅𝑅2. 618 

The obtained results are derived from the optimized ML models using the HGS 619 

algorithm. After hyperparameters’ tune, max_depth, learning_rate, and n_estimators of 620 

XGBoost with the initial boundaries of [1, 100], [0.01, 1], and [1, 100], respectively are 621 

determined as 44, 0.856, and 47 (stress dataset) and 39, 0.793, and 25 (strain dataset). 622 

Besides, n_estimators and max_depth of Gradient Boosting Regressor in training stress 623 

and strain are 78, 7 and 70, 7, respectively. Regarding the RF model, the two parameters 624 

are set as 76, 11 and 94, 13, respectively. Besides, the kernel function used in the SVR 625 

model is the Radial Basis Function. 626 
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Figure 11. Training and testing accuracy of established stress prediction models 627 

before augmentation: (a) XGBoost (b) SVR (c) Gradient Boosting Regressor (d) RF 628 

and after augmentation: (e) XGBoost (f) SVR (g) Gradient Boosting Regressor (h) RF 629 

Table 5. The evaluation matric of varying ML models before and after tensile stress 630 

data augmentation 631 

 XGBoost SVR Gradient 
Boosting 
Regressor 

RF 

Before data augmentation 
RMSE 
(trainset/testset) 

1.667/1.425 2.871/2.216 0.352/1.534 0.593/1.539 

MAE 0.998/1.189 1.374/1.442 0.180/0.990 0.389/0.951 
R2 0.881/0.874 0.627/0.680 0.994/0.847 0.984/0.846 
After data augmentation 
RMSE 0.587/0.829 1.924/2.086 0.926/2.077 0.794/1.990 
MAE 0.545/0.737 1.378/1.558 0.742/1.579 0.620/1.527 
R2 0.966/0.925 0.566/0.499 0.895/0.756 0.926/0.544 

 632 



After the data augmentation, the tensile stress and strain data points are increased 633 

to 5,000. In Figures 11a and 12a, the XGBoost model exhibited significantly improved 634 

performance, especially in the strain dataset. The values of 𝑅𝑅2 in the stress and strain 635 

test sets are increased from 0.874 to 0.925 and from 0.772 to 0.889, respectively. The 636 

other two evaluation indexes (MAE and MSE), are correspondingly reduced which 637 

further verifies the efficacy of data augmentation. However, the evaluation indexes of 638 

other ML models are worse after the data augmentation, with SVR and RF being 639 

especially impacted. The possible reason is their poor capacity to resist overfitting when 640 

handling complex datasets characterized by high feature dimensions and large volumes 641 

of data. In contrast, XGBoost applies its regularization and optimization techniques to 642 

overcome the overfitting problems. 643 

It is acknowledged that the reliability of the proposed design hinges on the 644 

precision of the established ML models. Inaccuracies in the predictive capability can 645 

lead to considerable errors. The high values of 𝑅𝑅2 of XGBoost models in this study 646 

(0.925 and 0.889) on both tensile stress and strain datasets demonstrate the relatively 647 

reliable predictive ability. In conclusion, XGBoost is finally established based on 648 

CTGAN data augmentation and HGS hyperparameters’ optimization, which is used as 649 

the objective function in multi-objective optimization tasks. 650 

(a) (b) (c) 



(d) (e) (f) 

(g) (h) 

 

Figure 12. Training and testing accuracy of established strain prediction models 651 

before augmentation: (a) XGBoost (b) SVR (c) Gradient Boosting Regressor (d) RF 652 

and after augmentation: (e) XGBoost (f) SVR (g) Gradient Boosting Regressor (h) RF 653 

Table 6. The evaluation matric of varying ML models before and after tensile strain 654 

data augmentation 655 

 XGBoost SVR Gradient 
Boosting 
Regressor 

RF 

Before data augmentation 
RMSE 
(trainset/testset) 

1.612/1.414 1.513/1.628 0.286/1.296 0.528/1.160 

MAE 0.912/0.845 0.884/1.065 0.169/0.912 0.338/0.888 
R2 0.833/0.772 0.660/0.616 0.912/0.757 0.958/0.805 
After data augmentation 
RMSE 0.581/0.631 1.183/1.302 0.595/1.012 0.493/1.212 
MAE 0.640/0.546 0.877/1.006 0.482/0.920 0.398/0.958 
R2 0.936/0.889 0.411/0.292 0.850/0.726 0.897/0.386 

 656 

5.3 Multi-objective optimization 657 

When implementing NSGA-III for multi-objective optimization, the water and air 658 

curing ages are respectively set as 28 and 0 days to guarantee the same curing method 659 

and time. Besides, although the fiber content in the original database ranged from 0.003 660 

to 0.3, the actual dosage is usually below 0.03 [92]. When fiber content is low, the 661 



bridging stress is inadequate for supporting widespread crack propagation due to the 662 

scarcity of fibers within the mortar matrix. When the tensile stress across a given 663 

interface length falls beneath the matrix's cracking strength, this results in a reduction 664 

of interface number that is unfavorable for crack spread [40]. In contrast, exceeding a 665 

fiber content of 0.03 compromises the matrix's workability, causing issues like fiber 666 

clustering and a greater occurrence of sizable voids. These problems significantly 667 

detract from the composite's tensile strength [91]. Therefore, the upper limit of fiber 668 

content in this study is set as 0.03. 669 

Figure 13 depicts the multi-objective optimization (maximizing peak tensile stress, 670 

maximizing peak tensile strain, and minimizing cost) by NSGA-III for ECC 671 

incorporating each kind of fiber. In these figures, a total of 100 Pareto points are 672 

represented by dots and are widely distributed across the feasible objective space, 673 

showcasing a reasonable range of stress, strain, and cost values. The original dataset 674 

points are denoted by small crosses in the figures. By implementing constraints (Min-675 

max, volume, ratio, and fiber constraints), the obtained results are more practical and 676 

reasonable. This distribution serves as a testament to the efficacy of NSGA-III in 677 

addressing the complexities of multi-objective optimization problems. Within each plot, 678 

three points correspond to the maximum tensile strain, minimum cost, and maximum 679 

tensile stress among the Pareto points, where their corresponding mixture designs are 680 

presented in Tables 7 to 9. 681 

Compared to the other fibers, the largest tensile strain is observed in PE 682 

incorporated ECC with the largest strain value of 10.51%. The contents of cement, 683 

water, fine aggregate, fly ash, silica fume, slag, and superplasticiser are 0.23, 0.19, 0.25, 684 

0.25, 0.04, 0.06, and 0.01, respectively. The aggregate to binder ratio is 0.16 and the 685 

water to binder ratio is 0.32. The tensile strain of 10.51% is higher than PVA-ECC 686 



(6.45%) and is significantly higher than PP-ECC (2.73%) or Steel-ECC (2.08%). PE 687 

fibers are distinguished by their exceptional ductility and ability to withstand significant 688 

deformation without rupture [40]. This characteristic permits ECC incorporating PE 689 

fibers to demonstrate strain-hardening behavior when subjected to tensile stresses, thus 690 

improving tensile strain capacity. The inherent flexibility and toughness of PE fibers 691 

enhance crack bridging capacities, enabling a more effective distribution of stress and 692 

preserving structural integrity under loading conditions, resulting in a superior tensile 693 

strain performance relative to ECC reinforced with PP, steel, or PVA fibers [39]. While 694 

PP fibers exhibit flexibility, they lack the comprehensive elongation performance and 695 

adhesion properties with the cement matrix exhibited by PE fibers. Conversely, steel 696 

fibers offer reduced elongation capabilities despite their high tensile strength, 697 

constraining the composite’s ability to deform prior to failure. PVA fiber suffers from 698 

the poor dispersion which affects its strain capacity and durability under tensile loading. 699 

Apart from PE-ECC, the sum of binder content and values of water to cement ratio 700 

in ECC incorporated with other fibers are all higher than 0.6 and below 0.3, respectively, 701 

to achieve the highest peak tensile strain. It indicates that the high binder content and 702 

low water to cement ratio are essential in ECC which is consistent with the previous 703 

researches. When the binder content is low, the strength of the matrix decreases notably, 704 

resulting in weaker bonding strength at the fiber-matrix interface. At specific fiber 705 

concentrations, fibers may entirely detach from the matrix under tensile load, 706 

eliminating the potential for strain hardening. Additionally, maintaining a low water to 707 

cement ratio is crucial, primarily to ensure the mortar matrix remains dense. 708 

PE, steel, PE-Steel hybrid, and UHMWPE fibers are four types of reinforcement 709 

that enable ECC composites to reach peak tensile stress levels of approximately 15MPa. 710 

In contrast, the stress observed in ECC composites reinforced with other fibers is found 711 



to be approximately half that of ECC composites reinforced with PE, Steel, or 712 

UHMWPE fibers. This is mainly due to the properties of fiber and the fiber-matrix 713 

structure. Steel fibers possess high tensile strength and stiffness, significantly 714 

enhancing the composite's load-bearing capacity to facilitate the efficient stress transfer. 715 

PE and UHMWPE fibers exhibit excellent tensile strength and elongation at break, 716 

which are crucial for the composite's toughness, bond capabilities, and crack resistance. 717 

The incorporation of PE-Steel hybrid fibers leverages the high stiffness and strength of 718 

steel with the flexibility and toughness of PE, resulting in a composite that exhibits both 719 

high peak stress and enhanced ductility [89]. The largest peak tensile stress is found as 720 

15.25MPa for ECC incorporated with 1.5%vol PE_STEEL. The diameter, length, 721 

tensile strength, and elastic modulus of PE_STEEL are 127 micro-meter, 20mm, 722 

5481MPa, and 285GPa, respectively. However, these values are theoretical estimates, 723 

given that PE_STEEL is a composite material consisting of PE fiber and Steel fiber. It 724 

is assumed that these properties of a hybrid fiber can be estimated by averaging the 725 

characteristics of the individual fibers according to their proportions in the mixture. 726 

Within the 100 Pareto points, the mixture designs corresponding to the lowest cost 727 

are summarized in Table 10. The peak tensile strain and peak tensile stress are reduced 728 

with the reduction of cost. The lowest cost can be found as 105 $/m3 in Basalt-ECC 729 

with a fiber content of 0.4%. The corresponding tensile stress and strain are 3.79MPa 730 

and 0.89%, respectively. This variability in achievable properties allows for a range of 731 

options to be considered and selected by the decision-maker based on specific project 732 

requirements. Compared to Pareto points within multi-objective optimization, direct 733 

optimization for specific mixture proportions is more practical in actual situations. In 734 

generic multi-objective optimization tasks, the Pareto points are randomly generated 735 

until the end condition is reached. For specific engineering applications, this may result 736 



in numerous useless results that are not superior to the existing mixture design at all 737 

these three objectives. Therefore, this study conducts directed optimization for two 738 

samples of PE and PV (two typical fiber types). This can be achieved by setting up three 739 

additional objective constraints, namely the lower limit of tensile stress and tensile 740 

strain and the upper limit of cost. The actual and the optimized mixture designs are 741 

shown in Table 10. For instance, the strain, cost, and stress values of the chosen PVA-742 

ECC sample are 3.7%, 134.45$/m3, and 4.8MPa, respectively. After optimization, these 743 

objectives can be enhanced to 4.69%-122.58$/m3-7.53 MPa, 3.82%-123.89$/m3-5.41 744 

MPa, and 3.74%-115.42$/m3-7.22 MPa according to the established AI models and 745 

constraints. Similarly, this direct optimization can be found in PE-ECC samples. In 746 

cases of optimizing certain properties while keeping a strain or stress value constant, 747 

the performance bounds can be adjusted strictly. 748 

However, it is noted that the optimized designs represent local optima rather than 749 

global optima. This implies the existence of alternative mixture designs that could 750 

potentially yield equivalent or superior objective values. Besides, the optimized mixture 751 

designs derived in this study can offer guidance for practical projects to a certain extent. 752 

However, given that the data originate from literature, the model bias caused by 753 

incomplete data is inevitable. Therefore, in practical engineering applications, actual 754 

validation is required to ensure the reliability of the proposed designs. For attaining 755 

more precise and globally optimal design mixtures, it is essential to compile a more 756 

comprehensive database reflecting local materials and environmental conditions. 757 
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Figure 13. Multi-objective mixture designs of ECC for each fiber type from (a) to (i) 758 

 759 

Table 7. The multi-optimization of strain-cost-stress for each fiber type (Max peak 760 

tensile strain) 761 

Cemen
t (%W) 

Water 
(%W) 

Fine 
Agg 

(%W) 

Fly ash 
(%W) 

Silica 
Fume 
(%W) 

Slag 
(%W) 

Superp
lasticis

er 
(%W) 

Fiber types Fiber 
conten

t 
(100%
Vol) 

F. 
Diame

ter 
(Micro

-
Meter) 

Fiber 
Length 
(mm) 

Fiber 
Tensil

e 
Streng

th 
(Mpa) 

Fiber 
Elastic 
Modul

us 
(Gpa) 

HPMC 
(Visco

sity 
Agent) 

Oiling 
Agent/
coatin

g 

Tempe
rature 
(Celsi

us) 

Wate
r 

Curi
ng 

(days
) 

Air 
Curi
ng 

(day
s) 

Peak 
tensile 
strain 
(%) 

Cost
（$/m3） 

Peak 
tensile 
stress 
(Mpa) 

0.53  0.19  0.11  0.09  0.01  0.04  0.00  Basalt 0.018  13  10  2600  85  0 0 20 28 0 1.02  261.88  2.50  
0.23  0.19  0.25  0.25  0.04  0.06  0.01  PE 0.012  47  23  3645  135  0 0 20 28 0 10.51  295.95  6.05  
0.37  0.13  0.04  0.00  0.19  0.29  0.01  PE_STEEL 0.016  82  34  6248  152  0 0 20 28 0 7.24  1006.98  8.32  
0.46  0.19  0.14  0.22  0.01  0.00  0.00  PVA 0.023  40  11  1340  36  0 0 20 28 0 6.45  183.83  4.25  
0.13  0.17  0.20  0.46  0.00  0.00  0.00  PVA_Ca 0.020  22  14  2309  323  0 0 20 28 0 7.28  142.16  6.03  
0.18  0.19  0.13  0.44  0.03  0.00  0.00  PVA_STEEL 0.026  99  8  2306  97  0 0 20 28 0 3.05  328.67  5.16  
0.19  0.18  0.07  0.55  0.00  0.00  0.00  Poly 0.025  12  10  850  6  0 0 20 28 0 2.73  149.65  3.33  
0.59  0.12  0.01  0.05  0.06  0.13  0.03  STEEL 0.025  234  11  3310  377  0 0 20 28 0 2.08  402.91  9.61  
0.45  0.18  0.12  0.18  0.04  0.05  0.01  UHMWPE 0.021  21  13  3000  101  0 0 20 28 0 4.56  778.37  7.44  

 762 

Table 8. The multi-optimization of strain-cost-stress for each fiber type (Min Cost) 763 

Cemen
t (%W) 

Water 
(%W) 

Fine 
Agg 

(%W) 

Fly ash 
(%W) 

Silica 
Fume 
(%W) 

Slag 
(%W) 

Superp
lasticis

er 
(%W) 

Fiber types Fiber 
conten

t 
(100%
Vol) 

F. 
Diame

ter 
(Micro

-
Meter) 

Fiber 
Length 
(mm) 

Fiber 
Tensil

e 
Streng

th 
(Mpa) 

Fiber 
Elastic 
Modul

us 
(Gpa) 

HPMC 
(Visco

sity 
Agent) 

Oiling 
Agent/
coatin

g 

Tempe
rature 
(Celsi

us) 

Water 
Curing 
(days) 

Air 
Curing 
(days) 

Peak 
tensile 
strain 
(%) 

Cost
（$/m

3） 

Peak 
tensile 
stress 
(Mpa) 

0.49  0.20  0.27  0.03  0.00  0.02  0.00  Basalt 0.004  13  8  2600  85  0 0 20 28 0 0.89  105.48  3.79  
0.23  0.19  0.23  0.25  0.02  0.07  0.02  PE 0.010  28  36  4649  137  0 0 20 28 0 9.38  267.05  3.53  
0.48  0.11  0.34  0.00  0.02  0.03  0.01  PE_STEEL 0.007  221  33  5956  234  0 0 20 28 0 1.68  372.50  11.63  
0.19  0.17  0.27  0.37  0.01  0.00  0.00  PVA 0.013  39  11  1429  36  0 0 20 28 0 1.27  110.70  6.54  
0.13  0.17  0.21  0.48  0.00  0.00  0.00  PVA_Ca 0.020  28  12  2687  275  0 0 20 28 0 7.02  140.31  6.42  
0.23  0.18  0.16  0.42  0.00  0.00  0.00  PVA_STEEL 0.020  138  11  2183  102  0 0 20 28 0 2.22  236.69  5.23  
0.19  0.19  0.06  0.57  0.00  0.00  0.00  Poly 0.016  12  10  850  6  0 0 20 28 0 2.45  113.35  2.81  
0.45  0.25  0.01  0.05  0.05  0.16  0.01  STEEL 0.010  308  27  4626  326  0 0 20 28 0 1.38  237.77  4.68  
0.50  0.18  0.17  0.10  0.01  0.05  0.00  UHMWPE 0.016  18  13  3000  102  0 0 20 28 0 4.31  589.40  7.67  

 764 

Table 9. The multi-optimization of strain-cost-stress for each fiber type (Max peak 765 

tensile stress) 766 

Cemen
t (%W) 

Water 
(%W) 

Fine 
Agg 

(%W) 

Fly ash 
(%W) 

Silica 
Fume 
(%W) 

Slag 
(%W) 

Superp
lasticis

er 
(%W) 

Fiber types Fiber 
conten

t 
(100%
Vol) 

F. 
Diame

ter 
(Micro

-
Meter) 

Fiber 
Length 
(mm) 

Fiber 
Tensil

e 
Streng

th 
(Mpa) 

Fiber 
Elastic 
Modul

us 
(Gpa) 

HPMC 
(Visco

sity 
Agent) 

Oiling 
Agent/
coatin

g 

Tempe
rature 
(Celsi

us) 

Water 
Curing 
(days) 

Air 
Curing 
(days) 

Peak 
tensile 
strain 
(%) 

Cost
（$/m

3） 

Peak 
tensile 
stress 
(Mpa) 

0.45  0.19  0.21  0.07  0.06  0.01  0.00  Basalt 0.020  13  8  2600  85  0 0 20 28 0 0.84  343.83  6.99  
0.29  0.12  0.20  0.06  0.19  0.09  0.02  PE 0.012  44  8  3811  73  0 0 20 28 0 6.16  619.40  15.70  
0.55  0.12  0.24  0.00  0.03  0.02  0.03  PE_STEEL 0.015  127  20  5481  285  0 0 20 28 0 3.91  712.26  15.25  
0.27  0.12  0.27  0.28  0.02  0.00  0.00  PVA 0.013  35  8  1432  30  0 0 20 28 0 1.97  150.78  8.71  
0.17  0.17  0.21  0.47  0.00  0.00  0.00  PVA_Ca 0.028  14  14  2034  313  0 0 20 28 0 1.67  183.82  6.58  
0.25  0.16  0.24  0.35  0.01  0.00  0.00  PVA_STEEL 0.020  115  11  2326  94  0 0 20 28 0 2.51  255.13  7.24  
0.19  0.18  0.07  0.55  0.00  0.00  0.00  Poly 0.025  12  10  850  6  0 0 20 28 0 2.73  149.65  3.33  
0.41  0.12  0.14  0.05  0.05  0.16  0.03  STEEL 0.022  307  12  4602  383  0 0 20 28 0 2.04  359.37  15.80  
0.26  0.10  0.31  0.15  0.14  0.01  0.01  UHMWPE 0.018  24  13  3000  113  0 0 20 28 0 0.19  864.94  14.87  



 767 

Table 10. The direct optimization of strain-cost-stress for specific mixture design 768 

Cemen
t (%W) 

Water 
(%W) 

Fine 
Agg 

(%W) 

Fly ash 
(%W) 

Silica 
Fume 
(%W) 

Slag 
(%W) 

Superp
lasticis

er 
(%W) 

Fiber types Fiber 
conten

t 
(100%
Vol) 

F. 
Diame

ter 
(Micro

-
Meter) 

Fiber 
Length 
(mm) 

Fiber 
Tensil

e 
Streng

th 
(Mpa) 

Fiber 
Elastic 
Modul

us 
(Gpa) 

HPMC 
(Visco

sity 
Agent) 

Oiling 
Agent/
coatin

g 

Tempe
rature 
(Celsi

us) 

Water 
Curing 
(days) 

Air 
Curing 
(days) 

Peak 
tensile 
strain 
(%) 

Cost
（$/m

3） 

Peak 
tensile 
stress 
(Mpa) 

0.16  0.16  0.23  0.45  0.00  0.00  0.00  PVA 0.020  39  12  1620  43  0 0 20 28 0 3.70  134.45  4.80  
0.22  0.12  0.31  0.31  0.00  0.00  0.00  PVA 0.014  40  10  1152  28  0 0 20 28 0 4.69  122.58  7.53  
0.24  0.18  0.46  0.13  0.01  0.00  0.00  PVA 0.015  36  9  1155  26  0 0 20 28 0 3.82  123.89  5.41  
0.10  0.10  0.41  0.35  0.00  0.00  0.01  PVA 0.011  39  10  1240  33  0 0 20 28 0 3.74  115.42  7.22  
0.37  0.17  0.45  0.00  0.00  0.00  0.01  PVA 0.025  39  12  1620  43  1 1 20 28 0 4.59  182.94  5.00  
0.17  0.11  0.32  0.42  0.00  0.00  0.00  PVA 0.019  40  10  1238  43  1 1 20 28 0 4.93  136.58  6.52  
0.21  0.09  0.36  0.30  0.01  0.00  0.00  PVA 0.020  40  10  1410  42  1 1 20 28 0 4.61  151.58  6.68  
0.24  0.10  0.30  0.31  0.02  0.00  0.00  PVA 0.013  40  10  1609  27  1 1 20 28 0 4.80  143.20  8.87  
0.70  0.21  0.00  0.00  0.08  0.00  0.02  PE 0.018  70  22  4698  142  0 0 20 28 0 3.50  509.28  3.10  
0.32  0.15  0.15  0.29  0.06  0.04  0.00  PE 0.020  49  21  3405  122  0 0 20 28 0 5.80  462.16  5.31  
0.23  0.15  0.08  0.23  0.13  0.18  0.00  PE 0.015  61  24  4562  68  0 0 20 28 0 6.95  501.08  3.22  
0.32  0.15  0.15  0.30  0.06  0.04  0.00  PE 0.015  49  21  2822  122  0 0 20 28 0 6.09  389.84  4.47  
0.53  0.12  0.20  0.00  0.13  0.00  0.01  PE 0.020  24  18  3000  120  0 0 23 28 0 7.00  633.40  7.10  
0.44  0.12  0.12  0.12  0.09  0.11  0.00  PE 0.014  40  32  2528  114  0 0 20 28 0 7.96  449.44  7.88  
0.27  0.13  0.23  0.16  0.08  0.13  0.02  PE 0.016  24  28  3689  79  0 0 20 28 0 8.80  462.35  9.16  
0.29  0.11  0.13  0.07  0.06  0.30  0.02  PE 0.010  61  13  3078  123  0 0 20 28 0 7.35  400.36  10.55  

 769 

6. Conclusion 770 

ECC is a strain-hardening cementitious material with high tensile strength and 771 

ductility mainly due to the fiber micromechanical reinforcement. This study proposes 772 

a novel MOO framework to achieve a reliable and smart mixture design of ECC. The 773 

main conclusions are drawn as follows: 774 

(1) Data augmentation is performed using a Tuned-CTGAN on both tensile stress 775 

and strain datasets. As evidenced by its high KSTest and CSTest values for 18 features, 776 

the reliability of virtual data generation has been verified. 777 

(2) The HGS algorithm is applied to automatedly tune the hyperparameters of ML 778 

models. The XGBoost and RF show the highest predictive accuracy in tensile stress and 779 

strain datasets before the data augmentation, respectively. 780 

(3) After the data augmentation, the evaluation indexes of SVR and RF become 781 

worse. In contrast, the values of 𝑅𝑅2  of XGBoost in stress and strain test sets are 782 

increased from 0.874 to 0.925 and from 0.772 to 0.889, respectively.  783 

(4) The NSGA-III successfully generates the Pareto front for multi-objective 784 

(tensile stress, tensile strain, and cost) with four classes of constraints (Min-max, 785 

volume, ratio, and fiber). It depends on the decision-maker to select the multi-objective 786 



optimization solutions. Future research will conduct cost-based optimization, 787 

incorporating a cost formula that takes into account fiber parameters and regions. 788 

Future researches: Since the observed phenomenon showed a negative influence 789 

of data augmentation on SVR, RF, and GBR, the possible reason is they are not suitable 790 

to tackle big database tasks. The efficacy of data augmentation will be investigated on 791 

deep learning algorithms in the future. 792 

Declaration of Generative AI and AI-assisted technologies in the writing process 793 

During the preparation of this work, the authors used ChatGPT-4 in order to 794 

improve readability and language. After using this tool/service, the authors reviewed 795 
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Appendix  

Appendix 1. Statistical analysis of variables for the original 429 ECC stress data 

Variables Minimum Maximum Mean Std Dev Skewness Kurtosis 
Cement (%wt) 0.093 0.755 0.347 0.157 0.726 -0.142 
Water (%wt) 0.029 0.230 0.142 0.045 -0.230 -0.916 
Fine Agg (%wt) 0.0 0.541 0.228 0.119 -0.159 -0.115 
Fly ash (%wt) 0.0 0.646 0.170 0.201 0.631 -1.144 
Silica Fume (%wt) 0.0 0.246 0.048 0.054 0.887 0.172 
blast furnace slag (%wt) 0.0 0.439 0.040 0.100 2.373 4.044 
Superplasticiser (%wt) 0.0 0.028 0.009 0.008 0.897 -0.333 
Fiber content (100%vol) 0.003 0.200 0.023 0.019 7.393 61.218 
F. Diameter (micro-meter) 7.667 550.0 59.391 62.945 2.716 10.630 
F. Length (mm) 2.061 38.0 14.191 5.660 1.065 1.707 
F. Tensile Strength (MPa) 850.0 6360.0 2450.852 885.831 0.965 2.062 
F. Elastic Modulus (GPa) 6.0 472.11 104.209 74.905 1.970 5.361 
HPMC  0.0 1.0 0.090 0.280 2.910 6.610 
Oiling Agent 0.0 1.0 0.261 0.440 1.092 -0.812 
Temperature (Celsius) 0.0 500.0 35.634 46.911 5.590 41.424 
Water Curing (days) 0.0 91.0 20.186 14.505 1.287 5.359 
Air Curing (days) 0.0 112.0 5.375 13.061 4.110 24.052 
Peak tensile stress (MPa) 1.8 33.4 7.360 4.575 1.834 5.505 

 

Appendix 2. Statistical analysis of variables for the original 392 ECC strain data 

Variables Minimum Maximum Mean Std Dev Skewness Kurtosis 
Cement (%wt) 0.093 0.698 0.337 0.160 0.754 -0.136 
Water (%wt) 0.029 0.230 0.145 0.044 -0.373 -0.792 
Fine Agg (%wt) 0.0 0.541 0.231 0.123 -0.195 -0.283 
Fly ash (%wt) 0.0 0.646 0.191 0.210 0.427 -1.445 
Silica Fume (%wt) 0.0 0.246 0.042 0.052 0.970 0.269 
blast furnace slag (%wt) 0.0 0.384 0.028 0.085 3.010 7.562 
Superplasticiser (%wt) 0.0 0.028 0.009 0.008 0.882 -0.493 
Fiber content (100%vol) 0.003 0.200 0.023 0.020 7.117 56.303 
F. Diameter (micro-meter) 7.667 320.0 61.875 59.667 1.964 3.279 
F. Length (mm) 2.061 38.0 13.643 5.927 1.245 1.805 
F. Tensile Strength (MPa) 850.0 6360.0 2342.169 915.499 1.211 2.300 
F. Elastic Modulus (GPa) 6.0 472.11 99.956 78.215 1.941 4.836 
HPMC  0.0 1.0 0.107 0.306 2.576 4.691 
Oiling Agent 0.0 1.0 0.283 0.451 0.966 -1.072 
Temperature (Celsius) 0.0 500.0 35.872 48.463 5.517 39.609 
Water Curing (days) 0.0 91.0 19.209 14.912 1.493 5.530 
Air Curing (days) 0.0 112.0 7.168 17.291 3.467 13.527 



Peak tensile strain (%) 0.017 17.3 3.030 2.619 1.530 3.095 
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