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Abstract

Threshold selection is a fundamental problem in any threshold-based extreme value
analysis. While models are asymptotically motivated, selecting an appropriate thresh-
old for finite samples is difficult and highly subjective through standard methods.
Inference for high quantiles can also be highly sensitive to the choice of threshold. Too
low a threshold choice leads to bias in the fit of the extreme value model, while too
high a choice leads to unnecessary additional uncertainty in the estimation of model
parameters. We develop a novel methodology for automated threshold selection that
directly tackles this bias-variance trade-off. We also develop a method to account for
the uncertainty in the threshold estimation and propagate this uncertainty through to
high quantile inference. Through a simulation study, we demonstrate the effectiveness
of our method for threshold selection and subsequent extreme quantile estimation, rel-
ative to the leading existing methods, and show how the method’s effectiveness is not
sensitive to the tuning parameters. We apply our method to the well-known, trouble-
some example of the River Nidd dataset.

Keywords: extreme values, generalised Pareto distribution, river flows, return level, threshold
selection, uncertainty quantification.
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1 Introduction

An inherent challenge in risk modelling is the estimation of high quantiles, known as re-

turn levels, beyond observed values. Such inference is important for designing policies or

protections against future extreme events, e.g., in finance or hydrology (Smith, 2003; Coles

et al., 2003). Extreme value methods achieve this extrapolation by using asymptotically

exact models to approximate the tail of a distribution above a high, within-sample, thresh-

old u. The choice of this threshold is fundamental in providing meaningful inference. Here,

we develop novel methods for automatic selection of the threshold and for propagating the

uncertainty in this selection into return level inferences.

Throughout, we assume that all data are realisations of an independent and identically-

distributed (iid) univariate continuous random variable X with unknown distribution func-

tion F , with upper endpoint xF := sup{x : F (x) < 1}. Under weak conditions, Pickands

(1975) shows that for X > u, with u < xF , the distribution of the rescaled excess Y = X−u,

converges to the generalised Pareto distribution (GPD) as u → xF . To use this limit result

in practice, a within-sample threshold u is chosen, above which this limit result is treated as

exact. Specifically, whatever the form of F , the excesses Y of u are modelled by the single

flexible GPD(σu, ξ) family, with distribution function

H(y;σu, ξ) = 1− (1 + ξy/σu)
−1/ξ
+ , (1)

with y > 0, w+ = max(w, 0), (σu, ξ) ∈ R+ × R being scale and shape parameters. The

exponential distribution arises when ξ = 0, i.e., as ξ → 0 in distribution (1), whereas for
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ξ > 0, the distribution tail decay is polynomial. For ξ < 0, X has a finite upper end-point at

u− σu/ξ but is unbounded above for ξ ≥ 0. To estimate the (1− p)th quantile, xp, of X, for

p < λu := P(X > u), we can solve F̂ (xp) = 1−p, where F̂ (xp) = 1− λ̂u[1−H(xp−u; σ̂u, ξ̂)],

λ̂u is the proportion of the realisations of X exceeding u and (σ̂u, ξ̂) are maximum likelihood

estimates (MLEs) obtained by using realisations of the threshold excesses. Davison and

Smith (1990) overview the properties of the GPD.

Threshold selection involves a bias-variance trade-off: too low a threshold is likely to violate

the asymptotic basis of the GPD, leading to bias, whilst too high a threshold results in very

few threshold excesses with which to fit the model, leading to large parameter and return

level uncertainty. Thus, we must choose as low a threshold as possible subject to the GPD

providing a reasonable fit to the data. There are a wide variety of methods aiming to tackle

this problem (Scarrott and MacDonald, 2012; Belzile et al., 2023) with the most commonly

used methods suffering from subjectivity and sensitivity to tuning parameters.

A novel automated approach to threshold selection is introduced by Varty et al. (2021)

specifically for modelling large, human-induced earthquakes. These data are complex due to

improvements in measurement equipment over time. The major implication of such change

is that data are missing-not-at-random, with the dataset appearing to be realisations of a

non-identically distributed variable, requiring a threshold u(t) which varies with time t, even

though the underlying process is believed to be identically distributed over t. Since excesses

of u(t) do not have the same GPD parameters over time, Varty et al. (2021) transform these

to a common standard exponential distribution via the probability integral transform, using

estimates of (u(t), σu(t), ξ). They then quantify the model fit using a metric based on a QQ-
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plot and select a time-varying threshold that optimizes this metric. The key novel aspect

of their assessment is the use of bootstrapping methods in the metric evaluation which fully

accounts for the uncertainty in the GPD fit, which varies across threshold choices.

Due to the lack of existing threshold selection methods designed for the context of Varty et al.

(2021), that paper focuses on the data analysis rather than investigating the performance

of the threshold selection method. We explore how their ideas can be best adapted to

threshold selection in a univariate, iid data context. We find that a variant of the Varty

et al. (2021) metric improves the performance and leads to substantially better results than

existing automated methods, including greater stability with respect to tuning parameters.

We differ from Varty et al. (2021) as we study both threshold selection and return level

estimation when the truth is known. We also address an entirely different problem of how to

incorporate the uncertainty resulting from threshold selection into return level estimation.

Existing methods typically treat the threshold, once it has been selected, as known, for

subsequent return level inference. The available data above candidate threshold choices are

often few and so inference can be highly sensitive to the chosen threshold. Reliance on a single

threshold leads to poor calibration of estimation uncertainty and as a result, can mislead

inference. In particular, we show that the resulting confidence intervals for such an approach

considerably under-estimate the intended coverage. We propose a novel and simple method,

based on a double-bootstrap procedure, that incorporates the uncertainty in the selected

threshold during inference. We show that the coverage probabilities of confidence intervals

from our approach are close to the required nominal levels, thus ensuring our inferences

provide meaningful information for design policies.
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Ultimately, our aim is to provide a threshold selection method that does not require any

user decisions to achieve adequate results. For example, the method should not be sensitive

to the choice of candidate threshold grid, it should not require the estimation of a mode

to select this grid, it should not have a limit on the number of candidate thresholds for a

given sample size, nor should it exclude the possibility that the available data have been

pre-processed, such as containing only the exceedances of some arbitrary level.

In Section 2, we illustrate problems with threshold selection and outline existing strategies.

Section 3 describes the core existing automated methods while Section 4 introduces our

procedure for the selection of a threshold, contrasting it with that of Varty et al. (2021).

Section 5 presents our proposed method for incorporating threshold uncertainty into return

level inference. In Section 6, the proposed methods are compared against existing methods

on simulated data. In Section 7, we apply our methodology to the widely studied troublesome

dataset of the River Nidd, first analysed by Davison and Smith (1990).

2 Background

The threshold stability property of the GPD is key in many threshold selection approaches:

if excesses of a threshold u follow a GPD then excesses of a higher threshold v (u < v < xF )

will also follow a GPD, with adjusted parameter values, i.e., if X−u|(X > u) ∼ GPD(σu, ξ),

then X − v|(X > v) ∼ GPD(σu + ξ(v − u), ξ), see supplementary material S:2.1. By this

property, the GPD shape parameter ξ should have the same value for all valid choices of

threshold. A modelling threshold can be selected as the lowest value for which this property

holds, accounting for the sampling variability in the estimates of ξ. The conventional method
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for this assessment is known as a parameter stability plot (Coles, 2001). This plot displays

the estimates of ξ and their associated confidence intervals (CIs) for a set of candidate

thresholds. The threshold is selected as the lowest value for which the estimate of ξ for that

level is consistent with estimates of ξ at all higher thresholds. Throughout the paper, we

use maximum likelihood estimation and parametric bootstrap-based CIs.

Figure 1 shows two parameter stability plots, with the left plot for a simulated dataset of

1000 values generated from the Case 4 distribution, described in Section 6, where excesses of

the threshold u = 1.0 follow a GPD(0.6, 0.1); and the right plot for 154 measurements from

the River Nidd. Each plot has 95% CIs of two types; the delta method and the bootstrap.

Profile log-likelihood based CIs were also evaluated but resulted in very similar intervals to

the bootstrap method, so they were omitted. The delta method gives narrower CIs, though

close to the bootstrap intervals for the larger dataset. Selecting an appropriate threshold

using this method is challenging and subjective as the parameter estimates are dependent

across threshold choices, there is a high level of uncertainty due to the small sample sizes that

characterise extreme value analyses, and the uncertainty increases with threshold choice.

For the Case 4 data, the plot shows that candidate thresholds above (below) 0.3 are possibly

appropriate (not appropriate) as CIs for higher candidate thresholds include (exclude) the

corresponding shape parameter estimates, and above 0.8 the point estimates appear more

stable. Here (u, ξ) = (1, 0.1), so we can see that candidates below 0.3 are not suitable as ξ

is outside their CIs, but the true threshold is higher than may be selected using this plot.

For the River Nidd, lower candidate threshold values imply a very heavy-tailed distribution

(ξ̂ ≈ 0.5), whilst high candidate thresholds imply a very short tail, with estimates (ξ̂ ≈ −0.5).
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As a result of this unusual behaviour, the Nidd data has become the primary example for

non-trivial threshold selection (Davison and Smith, 1990; Northrop and Coleman, 2014).

We apply our new method to this dataset in Section 7. Further examples of the problems

encountered when using parameter stability plots are given in supplementary material S:2.2.
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Figure 1: Examples of parameter stability plots with pointwise CIs using the delta-method
[dashed] and bootstrapping [dotted] for [left] a simulated dataset with true threshold u = 1.0
following Case 4 distribution [green-vertical] and [right] the River Nidd dataset.

Scarrott and MacDonald (2012) and Belzile et al. (2023) review the extensive literature that

aims to improve upon parameter stability plots. The latter characterises these methods, with

a core reference, as follows: penultimate models (Northrop and Coleman, 2014), goodness-of

fit diagnostics (Bader et al., 2018), sequential-changepoint approaches (Wadsworth, 2016),

predictive performance (Northrop et al., 2017), and mixture models (Naveau et al., 2016).

It also discusses semi-parametric inferences (Danielsson et al., 2001), but it excludes the

development by Danielsson et al. (2019), with similarities to the goodness-of-fit approaches.

In Section 3, we outline the key aspects of the core automated approaches with which we

compare our proposed method. Supplementary material S:2.3 and S:2.4 describe Northrop

and Coleman (2014) and Danielsson et al. (2001, 2019) respectively, finding that the former
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suffers from subjectivity of interpretation similar to the parameter stability plots. We do

not describe any mixture methods in this paper as although they benefit from accounting

for threshold uncertainty, their inferences are strongly dependent on the choice of model for

below the threshold, which we feel is inconsistent to the strategy of extreme value modelling

and is likely to induce bias in the threshold selection and subsequent quantile estimation.

3 Existing automated threshold selection methods

Automated threshold selection methods aim to remove subjectivity from the choice of thresh-

old by selecting an optimal threshold from a set of user-defined candidate thresholds based

on optimising some criterion. We outline and compare the approaches of Wadsworth (2016)

and Northrop et al. (2017), which we find to perform best of the considered existing methods.

Further details of these methods are given in supplementary material S:3.

Wadsworth (2016) addresses the dependence between MLEs of ξ, denoted by ξ̂, over candi-

date thresholds. Using asymptotic theory for the joint distribution of MLEs from overlapping

samples of data, ξ̂ are transformed to the vector ξ̂∗ of normalised increments between suc-

cessive ξ̂ values. For GPD data, asymptotically, ξ̂∗ would be iid realisations from a standard

normal distribution, whereas if the data above any candidate threshold were not from a GPD,

the associated elements of ξ̂∗ would be better approximated by a non-standard normal. This

changepoint behaviour is used to select the threshold. The underlying asymptotic arguments

can cause considerable threshold sensitivity and the failure of the method to converge. Both

issues are exacerbated by small samples and we identify systematic failures of the associated

open source software when ξ < 0. To reduce such problems, Wadsworth (2016, Table 1)
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provides guidance on the number of candidate thresholds for a given sample size.

Northrop et al. (2017) model data using the binomial-GPD (BGPD) model, which is GPD

above u, with λu = P(X > u) a model parameter, and an improper uniform density, of value

1 − λu, below u. They use Bayesian inference and, for each candidate threshold, assess the

predictive density of GPD fits above a fixed validation threshold v, where v is the largest

candidate threshold. The selected threshold maximises the predictive ability of this model,

above v, using leave-one-out cross-validation. The method is sensitive to the validation and

candidate threshold set and to the prior joint density of the BGPD parameters.

4 Novel metric-based constant threshold selection

4.1 Metric choice

We propose an adaptation of the Varty et al. (2021) approach to identify the threshold u

for which the sample excesses, arising from iid and non-missing realisations of a continuous

random variable, are most consistent with a GPD model. Both methods use a QQ-plot-based

metric to approximate the integrated absolute error (IAE) between the quantiles of the model

and the data-generating process. Our method, the expected quantile discrepancy (EQD), uses

the data on the original scale. In contrast, the method of Varty et al. (2021) transforms the

data to an Exponential(1) marginal scale and will be termed the Varty method.

The following makes the difference between the two methods precise. Let xu = (x1, . . . , xnu)

be the sample of nu excesses of candidate threshold u and q = {qi = (i − 1)/(nu − 1) : i =

1, . . . , nu} be the vector of probability plotting points corresponding to the sample size of xu.
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The sample quantile function Q(·;xu, q) : [0, 1] → R+ is defined as the linear interpolations

of the points
{
(qi, x

(i)
u ) : i = 1, . . . , nu

}
, with x

(i)
u denoting the ith order statistic of xu (in-

creasing with i), where any ties are handled similarly through linear interpolation. The trans-

formation to Exponential(1) margins is defined by T (x;σ, ξ) = F−1
Exp{H(x;σ, ξ)} where F−1

Exp

is the inverse distribution function of an Exponential(1) variable, H is the GPD function (1),

and let T (xu;σu, ξ) = {T (x1;σu, ξ), . . . , T (xnu ;σu, ξ)}. To incorporate the effect of sampling

variability in the data into the threshold choice, the expected (average) deviation over the

QQ-plot, calculated for the probabilities {pj = j/(m + 1) : j = 1, . . . ,m}, is calculated

across bootstrapped samples of xu, denoted xb
u for the bth bootstrap sample, b = 1, . . . , B.

For both methods, this results in the overall measure of fit d̂E(u) =
∑B

b=1 db(u)/B, where

db(u) =


1
m

m∑
j=1

| σ̂b
u

ξ̂bu
[(1− pj)

−ξ̂bu − 1]−Q(pj;x
b
u, q) | EQD

1
m

m∑
j=1

| − log(1− pj)−Q(pj; T̂ (x
b
u; σ̂

b
u, ξ̂

b
u), q) | Varty,

(2)

and (σ̂b
u, ξ̂

b
u) are the estimated GPD parameters fitted to the bootstrapped sample xb

u. The

selected threshold minimises the estimated IAE, d̂E, over a set of candidate thresholds. In

Sections 4.2 and 4.3 respectively, we justify the choices made in the formulation of the EQD

metric and discuss our recommendation for default values for the tuning parameters (B,m).

In supplementary material S:5.2, we compare the EQD and Varty methods through an ex-

tensive simulation study to assess which version of metric (2) performs better for threshold

selection and quantile estimation. For threshold selection, the methods perform similarly;

each method narrowly achieves the smallest root-mean-square error (RMSE) in two of Cases
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1-4, discussed in Section 6. However, for the estimation of high quantiles, the EQD outper-

forms the Varty method obtaining the lowest RMSE in the majority of cases and quantiles,

due to having the smaller variance of estimates. We ultimately aim to estimate high quan-

tiles accurately following threshold selection. Given that this study indicates that the EQD

should be preferred for this aim and to avoid unnecessary repetition, we omit the results for

the Varty method for the remainder of the paper.

4.2 Investigation of the EQD metric choice

For a given u, db(u) evaluates the mean-absolute deviation between the bth bootstrap sample

quantiles and the fitted model-based quantiles, i.e., the mean-absolute deviation from the

line of equality in a QQ-plot for that particular bootstrap sample. This type of assessment

by itself is not radical, as for any observed sample data, QQ-plots are the standard method

of assessing model fit (Coles, 2001). The novelty for assessing the validity of a candidate

threshold u comes from the way that the EQD metric is constructed.

There are a number of novel choices which we have made in the EQD metric that require

justification, in particular; the use of the mean-absolute deviation; the choice of quantiles and

their interpolation in the QQ-plot; the use of bootstrap samples; and that the observed data

are not explicitly used in the metric. We examine each of these features in the supplementary

material, through simulation studies involving the case studies of Section 6. For each feature,

we find positive evidence for our selections. Below, we explain why we made these choices

and outline how they performed relative to other alternative formulations.

We focus on the mean-absolute deviation on the QQ scale as Varty et al. (2021) found that
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this was more effective than using the mean-squared deviation on that scale and either metric

on the PP scale. Our simulation studies also found this to be a more robust measure of fit

than the maximum deviation, as proposed by Danielsson et al. (2019).

We choose to take {pj} to be equally-spaced and to weight contributions to db(u) equally

across the corresponding quantiles. Although higher (lower) sample quantiles exhibit greater

(less) sampling variability, equal weighting is appropriate when taking the {pj} values to

be equally-spaced because for any ξ > −1, the GPD density is monotonically decreasing.

This leads to dense evaluation for lower sample quantiles and more sparse evaluation in

the upper tail. The choice of equal weighting on this scale is motivated and supported

by empirical evidence in Varty et al. (2021). Our choice for pj is based on the expression

for plotting points in a QQ-plot assessment we use in previous research and the choice for

qi is the default option for the R quantile function. As these choices are subjective, we

also consider alternative definitions but find that there is no systematic ordering of the

performance over these definitions and any differences in RMSE for the thresholds selected

by the EQD are minimal, especially when compared to the differences between the EQD and

existing methods.

The average over bootstrapped samples in metric (2) is not a standard use of bootstrapping,

i.e., we utilise the bootstraps in a measure of fit rather than to describe the uncertainty in

some estimated quantity. Our aim in doing this is to account for the sampling variability

in the observed data, thus avoiding over-fitting of the GPD model to the observed dataset

which could lead to higher threshold choices than necessary, reduced numbers of exceedances,

and extra uncertainty in parameter and quantile estimates. To confirm this, we considered
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using only the observed sample values in the metric. This leads to higher and more variable

thresholds choices in a variety of cases and an overall performance which is either noticeably

worse or at best, comparable to our approach.

One may also be concerned that xu is not included directly in metric (2). To address this, we

additionally explored the effect of using Q(pj;xu, q) instead of Q(pj;x
b
u, q) within the EQD

metric, despite it being unconventional to compare sample quantiles to those of a model fitted

using a different (bootstrapped) sample. We found no benefit to doing so. Moreover, using

only xu to estimate the IAE ignores that this estimate would change for another realisation

of the same data generating process and that variability in this estimate increases with u.

Our approach utilises the bootstrap resamples in the measure of fit to provide more stability

in the threshold choice and allow us to account for the increasingly uncertain parameter and

quantile estimates as the threshold increases.

4.3 Choice of tuning parameters

An in-depth study in supplementary material S:5.3 demonstrates that the EQD method is

robust to the choice of the tuning parameters B and m. Consequently, we take (B,m) =

(100, 500) throughout the paper and in the supplementary material, unless stated otherwise.

The number of bootstrapped samples B controls the level of sampling variability that is

incorporated into the threshold choice and so we expect higher values of B to lead to more

stable threshold choices. The RMSE values for threshold estimation reflect this but also show

that computation time increases linearly with B. For a one-off analysis, there is certainly

merit in taking as large a value for B that is computationally feasible. For simulation studies,
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when the computational implications of the choice of B are more important, we find that

B = 100 balances accuracy and computation time sufficiently.

The tuning parameter m gives the number of equally-spaced evaluation probabilities used in

expression (2). The EQD metric aims to approximate the IAE between model quantiles and

quantiles of the data generating process (i.e., not for a particular sample) and a larger choice

of m improves this approximation. To compare fairly across a range of candidate thresholds,

we choose to keep the quality of the approximation of the IAE fixed across thresholds and

bootstraps by fixing the number m of points in the quantile interpolation grid.

For a particular bootstrap sample, this choice of fixed m can lead to under- or over-sampling

of the upper tail depending on whether m < nu or m > nu. We explore the sensitivity of

the EQD method to m with m = cn and m = cnu, with c = 0.5, 1, 2, 10. For both strategies,

we find that increasing m beyond 500 essentially wastes the increased computation time as

the RMSE values for threshold estimates showed little sensitivity to m. We also explore the

effect of the interpolation grid on the sampling distribution of db(u) values, over different

thresholds, when evaluated using m = 500 or m = nu. We find that there is little effect

from the choice of interpolation grid outside of the very highest candidate thresholds, but

these differences have no effect on the selected threshold in our examples. We conclude that

m = 500, is suitable as a default value in practice but we can see merits in also ensuring

that m ≥ max
u

(nu), where the maximisation is across all candidate thresholds.
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5 Accounting for parameter and threshold uncertainty

Even if the true threshold u is known, relying on point estimates for the GPD parameters

results in misleading inference (Coles and Pericchi, 2003). CIs are needed, but as standard

errors and profile likelihoods rely on asymptotic arguments, they are not ideal due to the

sparsity of threshold exceedances. We prefer parametric bootstrap methods which, as dis-

cussed in Section 2, perform similarly to the profile likelihood for large samples. Algorithm

1 details the bootstrapping procedure to account for GPD parameter uncertainty when u is

known. A GPD is fitted to the nu data excesses of u from a sample x of size n (n ≥ nu).

Using the fitted parameters, B1 parametric bootstrap samples above u are simulated, each

of size nu, and the GPD is re-estimated for each sample. A summary statistic, e.g., a return

level, s(u, λu, σu, ξ), may be computed for each of the B1 bootstrapped values for (σu, ξ).

This enables the construction of CIs for the GPD parameters and return levels.

Algorithm 1 Parameter uncertainty for known threshold

Require: (x, u, B1)
Find nu = #{i : xi > u}, set λ̂u = nu/n, and fit a GPD to x data above u to give (σ̂u, ξ̂u).
for b = 1, . . . , B1 do

Simulate sample yb
u consisting of nu excesses of u from GPD(σ̂u, ξ̂u).

Obtain parameter estimates (σ̂b, ξ̂b) for y
b
u and summary of interest s(u, λ̂u, σ̂b, ξ̂b).

end for
return A set of B1 bootstrapped estimates for the summary statistic of interest.

Algorithm 1 focuses on the uncertainty of the estimates of (σu, ξ). We incorporate the

additional uncertainty in the estimation of λu by replacing the fixed nu in the loop over b

with a random variate from a Bin(n, λ̂u) distribution for each bootstrap sample, with this

extension then referred to as Algorithm 1b.

GPD inferences are sensitive to the choice of threshold (Davison and Smith, 1990) but
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uncertainty about this choice is not represented in Algorithms 1 or 1b. This omission would

be important when return levels inform the design of hazard protection mechanisms, where

omitting this source of uncertainty could lead to over-confidence in the inference and have

dangerous consequences. Algorithm 2 provides a novel method to propagate both threshold

and parameter uncertainty through to return level estimation, using a double-bootstrap

procedure. To focus on the threshold uncertainty and to forgo the need for a parametric

model below the threshold, we employ a non-parametric bootstrap procedure on the original

dataset. We resample with replacement n values from the observed data B2 times, estimate a

threshold for each such bootstrap sample using the automated selection method of Section 4,

and fit a GPD to the excesses of this threshold. For each one of the B2 samples, we employ

Algorithm 1 to account for the subsequent uncertainty in the GPD parameters. Calculating

a summary statistic for each of the B1 ×B2 samples leads to a distribution of bootstrapped

estimates that accounts for uncertainty in the threshold selection as well as in the GPD and

threshold exceedance rate parameters. We use B1 = B2 = 200. To run this algorithm using

the EQD method for the threshold selection step (which itself has B bootstraps), it would

require B2(B + B1) bootstrap samples to be generated. Specifically, for the B2 samples

initially generated for Algorithm 2, we have B2 × B in selecting the threshold values and

B2 × B1 in capturing the GPD parameter uncertainty above these selected thresholds. this

can res In Section 6, we illustrate how using Algorithm 2 improves the coverage probability

of CIs, and in Section 7 how it widens CIs for return levels of the River Nidd.
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Algorithm 2 Parameter uncertainty for unknown threshold

Require: (x, n, B2, B1)
for b = 1, . . . , B2 do

Obtain sample xb of size n by sampling n times with replacement from x.
Estimate threshold ûb for xb and record number of excesses as nûb

.
Employ Algorithm 1 with inputs: (xb, ûb, B1).

end for
return A set of B1 ×B2 bootstrapped estimates for the summary statistic of interest.

6 Simulation study

6.1 Overview

We illustrate the performance of the EQD method against the Wadsworth (2016) and

Northrop et al. (2017) approaches, which we term the Wadsworth and Northrop methods re-

spectively. Danielsson et al. (2001, 2019) approaches perform considerably worse than all oth-

ers in threshold selection and quantile estimation; so results for these methods are only given

in supplementary material ??. We utilised the following R code for Wadsworth, Northrop

and EQD methods respectively: code given in the supplementary materials of Wadsworth

(2016), threshr (Northrop and Attalides, 2020), and https://github.com/conor-murphy4/

automated_threshold_selection (Murphy et al., 2023).

The performance of all of the methods depends somewhat on the choice of the set of candidate

thresholds which we denote by:

Cu = {ui, i = 1, . . . , k : u1 < . . . < uk}, (3)

where we restrict the ui to be sample quantiles evaluated at equally-spaced probabilities. The

range [u1, uk], the number of candidates k and the inter-threshold spacing are all potentially
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important in terms of how they affect the performance of the methods. As emphasised in

Section 1, we are aiming for an automated threshold selection method which can achieve

accurate results without any user inputs, so a key element of our study is to investigate how

these features of the set Cu impact on the methods’ relative performance. When fitting a

GPD with decreasing density (i.e., for ξ > −1), it would be inadvisable to use a threshold

which clearly lies below the mode of the distribution. As we want to avoid the requirement of

user estimation of the mode, our standard choice for the range of the candidate grid is [u1, uk]:

(u1, uk) = (0%, 95%) sample quantiles of all the data. However, we also explore several cases

where only the data lying above the mode are used with [u1, uk]: (u1, uk) = (0%, 95%)

now sample quantiles of the remaining data. To remove the uncertainty arising from the

choice of estimator of the mode, we use the true mode which has a unique value in our

simulated cases. Results in supplementary material ?? indicate that our original choice for

the candidate threshold set does not unfairly favour the EQD method in any way.

We consider two scenarios: Scenario 1 and Scenario 2 where the true threshold is known

and unknown respectively. Here, we present the results using a candidate threshold grid

across the whole distribution for Scenario 1 and above the sample median for Scenario 2,

with the latter chosen as the Wadsworth method fails when applied across the default range

in that setting. The Wadsworth method relies on asymptotic arguments, which limits how

large k can be relative to the sample size, n′, above the mode, with n′ ≤ n, where n is

the total sample size. To assess how the Wadsworth method performs as a fully automated

method, we apply the method despite the value of k not always aligning with the guidance

in Wadsworth (2016) about its size relative to n′.
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We assess the methods’ ability to estimate the true threshold (when it exists) and the

true return levels, using the RMSE to measure performance. The true quantiles and all

bias-variance components of RMSE, discussed in this section, are given in supplementary

materials S:4 and ?? respectively. We also investigate the merits of including the uncertainty

in threshold selection in our inference, as discussed in Section 5, in terms of how they improve

the coverage levels of CIs relative to their nominal values.

6.2 Scenario 1: True threshold for GPD tail

We consider Cases 0-8, with different properties above and below the true threshold of

u = 1.0 and various sample sizes. Case 0, where all of the data are from a GPD, is reported

in supplementary material ??, with the EQD performing notably better than the existing

methods. Here, we present detailed results for Cases 1-4, with Table 1 providing outline

model and sample size properties, with full details and density plots given in supplementary

material S:4. Cases 5-8 are considered briefly after discussing Cases 1-4 below.

Cases 1-3 all have a distinct changepoint in the density and density mode both at the

true threshold which should make all methods of threshold selection perform better than in

situations without either of these features. Cases 1 and 2 have the same distribution, with

ξ > 0, with Case 2 having a smaller sample size. We find that the Wadsworth method fails

to estimate a threshold in samples with ξ < −0.05 irrespective of sample size, so Case 3 is

selected near that boundary where the method works reasonably and has double the sample

size of Case 1. Case 4 provides a more difficult example with a continuous density and a

small number of exceedances of the true threshold. The data are derived from a partially

19



observed GPD, denoted GPDp, with data drawn from a GPD above 0 and rejected if less

than an independent realisation from a Beta(1,2) distribution.

For each case, the results are based on 500 replicated samples, for which we test the candidate

thresholds Cu, with k = 20, as given in (3), with the true threshold being the 16.67% quantile

for Cases 1-3 and the 72.10% quantile for Case 4.

Models Below threshold Sample size Above threshold Sample size
Case 1 U(0.5, 1.0) 200 GPD(0.5, 0.1) 1000
Case 2 U(0.5, 1.0) 80 GPD(0.5, 0.1) 400
Case 3 U(0.5, 1.0) 400 GPD(0.5,−0.05) 2000
Case 4 GPDp(0.5, 0.1) 721 GPD(0.6, 0.1) 279

Table 1: Model specifications for Cases 1-4.

Cases 1-4, Threshold recovery: Table 2 shows the RMSE of the chosen thresholds for

each method in Cases 1-4, with the EQD achieving RMSEs 1.2-7.7 (1-11.2) times smaller

than the Wadsworth (Northrop) method. The EQD has the lowest bias by a considerable

margin in Cases 1-3 and shows the lowest variance in threshold estimation in all cases. In

fact, the variance is reduced by a factor of at least 20 relative to both the Wadsworth and

Northrop methods (see Table ??). The very strong performance of the EQD relative to

both the Wadsworth and Northrop methods is particularly noteworthy in Cases 1-3, and is

also seen for Case 0 and later for Cases 5-7. We believe that the key reason for this is the

discontinuity in the density, a feature common to all of these cases, as that appears to lead

to a very small bias for the EQD method relative to the other methods. Specifically, the

variance penalty of the EQD metric seems to push the threshold as low as possible, but its

complementary goodness-of-fit measure almost entirely stops the threshold being selected

below the clear discontinuity in the density. For Case 4, which has a continuous density, the
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EQD achieves the smallest RMSE almost entirely due to it having the smallest variance but

with a bias component broadly comparable with the other methods.

EQD Wadsworth1 Northrop
Case 1 0.048 0.349 0.536
Case 2 0.060 0.461 0.507
Case 3 0.060 0.221 0.463
Case 4 0.526 0.628 0.543

Table 2: RMSE of the threshold choices for each method-case combination. The smallest
values for each case are highlighted in bold.

Cases 1-4, Quantile recovery: Table 3 presents the RMSEs for the (1 − pj,n)-quantiles

where pj,n = 1/(10jn) for j = 0, 1, 2 for sample size n, which ensures that extrapolation is

equally difficult over n for a given j. When j = 0, no extrapolation is required so the choice

of u should not be too important; the similar RMSEs across methods reflect this. As j

increases, all RMSEs increase and the differences between methods become clear. The EQD

method is best uniformly, followed by the Wadsworth and then the Northrop methods. This

pattern reflects the findings in Table 2, although here with differential performances sensitive

to j. However, in terms of quantile estimation, the EQD method does not retain the large

differential relative to the other methods which was seen for threshold selection in Cases 1-3.

In contrast, the differences between methods in Case 4 are now more apparent, as controlling

the variance is more important than any small differences in bias when we are concerned

with a RMSE assessment of quantiles which lie far into the tail. The EQD achieves the

lowest bias in the majority of cases and leads to quantile estimates with considerably less

variance in all cases, particularly as j increases.

Summary for Cases 5-8: Cases 5-8 are very similar in form to Cases 1-3 but with different

1Results for Wadsworth are calculated only on the samples where a threshold was estimated. It failed
estimate a threshold for 2.4%, 26.4%, 0%, 4.4% of the simulated samples in Cases 1-4, respectively.
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EQD Wadsworth1 Northrop EQD Wadsworth1 Northrop
j Case 1 Case 2
0 0.563 0.594 0.755 0.599 0.631 0.736
1 1.258 1.391 2.376 1.488 1.644 3.513
2 2.447 2.717 7.097 3.119 3.484 22.916

Case 3 Case 4
0 0.190 0.195 0.230 0.677 0.800 0.791
1 0.323 0.344 0.450 1.563 2.059 2.217
2 0.483 0.516 0.744 3.043 4.485 5.568

Table 3: RMSEs in the estimated quantiles in Cases 1-4 based on fitted GPD above chosen
threshold. The smallest RMSE for each quantile are highlighted in bold.

shape parameters and sample sizes. The results for these cases are presented in supplemen-

tary material ??, with a brief summary given here. Specifically, for Cases 5-7, we find

that the EQD exhibits the strongest performance and the Wadsworth method consistently

fails due to the small sample sizes or computational issues with numerical integration when

ξ < −0.05. Case 8 is parameterised similarly to Case 1 but with an unrealistic sample size of

n = 20000. Although the data in Case 8 are more suited to a method reliant on asymptotic

theory, the EQD performs comparably with the Wadsworth method, with both performing

better than the Northrop method.

Case 4, True quantile coverage: We apply Algorithms 1, 1b and 2 to data from Case 4,

the hardest case for threshold selection. Table 4 presents the coverage probabilities of the

nominal 80% and 95% CIs of the estimated (1−pj,n)-quantiles as well as the average ratio of

the CI widths (based on Alg 2 relative to Alg 1 ) over the 500 samples, termed CI ratio. Re-

sults for extra quantile levels, as well as coverage for the 50% CI, are given in supplementary

material ??. Overall, incorporating only parameter uncertainty (Alg 1 and Alg 1b) leads to

underestimation of interval widths and inadequate coverage of the true quantiles, especially

as we extrapolate further. The additional uncertainty, given in Alg 1b, by also accounting for
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uncertainty in the rate of threshold exceedance, typically makes a very small improvement in

coverage, and for some quantiles, this actually leads to a reduction in coverage due to Monte

Carlo variation in the simulations. In contrast, the inclusion of the additional threshold

uncertainty (Alg 2 ) leads to much more accurate coverage of the true quantiles across all

exceedance probabilities. The CI ratios show that this highly desirable coverage is achieved

with only 43-62% increase in the CI widths on average.

80% confidence 95% confidence
j 0 1 2 0 1 2

Alg 1 0.646 0.618 0.606 0.834 0.804 0.794
Alg 1b 0.656 0.638 0.612 0.830 0.814 0.794
Alg 2 0.798 0.772 0.758 0.954 0.948 0.944

CI ratio 1.430 1.452 1.475 1.484 1.546 1.621

Table 4: Coverage probabilities for estimated quantiles using Algorithms 1, 1b and 2 for 500
replicated samples from Case 4 with sample size of 1000. CI ratio gives the average ratio of
the CIs for Algorithm 2 relative to Algorithm 1 over the 500 samples.

6.3 Scenario 2: Gaussian data

In applications, there is no true or known value for the threshold above which excesses follow

a GPD, so we explore this case here. We select the standard Gaussian distribution as it has

very slow convergence towards an extreme value limit (Gomes, 1994), so threshold selection

is likely to be difficult. We assess threshold selection methods based on estimation of the true

quantiles Φ−1(1 − pj,n) where pj,n = 1/(10jn), for j = 0, 1, 2. We simulate 500 samples, for

n = 2000 and 20000, with Cu, given in (3), now having range [u1, uk] : (u1, uk) = (50%, 95%)

sample quantiles of the data and k = 10 and 91 (i.e., steps of 5% and 0.5%) for the two

choices of n respectively. As with Case 8 in Section 6.2, n = 20000 is unrealistic, but we

include it to illustrate the slow convergence.
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Quantile recovery: Table 5 shows the RMSEs of the estimated quantiles. For n = 2000,

the EQD method achieves the smallest RMSE with the Northrop method a close second,

with the reverse when n = 20000. The median and 95% CI of the chosen thresholds are

given in supplementary material ??. The Northrop method tends to choose slightly higher

thresholds than the EQD method, leading to a small reduction in bias, but for only the

smaller n is the additional variability relative to the EQD a disadvantage. The Wadsworth

method performs the worst, selecting lower thresholds and so incurring the most bias.

n = 2000 n = 20000
j EQD Wadsworth2 Northrop EQD Wadsworth Northrop
0 0.214 0.239 0.225 0.187 0.214 0.172
1 0.430 0.529 0.461 0.368 0.422 0.331
2 0.703 0.890 0.765 0.594 0.672 0.533

Table 5: RMSEs of estimated (1−pj,n)-quantiles for 500 replicated samples from a Gaussian
distribution for samples of size n. The smallest RMSE are highlighted in bold.

True quantile coverage: For assessing the coverage of true quantiles using Algorithms

1, 1b and 2 for Gaussian data, Table 6 presents the coverage probabilities of the nominal

80% and 95% CIs of the estimated quantiles, when n = 2000, as well as the average ratio

of the CI widths (again, of Alg 2 relative to Alg 1 ) over the 500 samples, with more results

given in supplementary material ??. Across the pj,n, both Alg 1 and 1b give very low

coverage probabilities in both cases, with performance deteriorating as j increases. The

added threshold uncertainty from Alg 2 results in large increases in coverage though still

somewhat less than required, with this achieved through increases in CI widths by 45-

66% on average. This weaker performance than we find in Section 6.2 suggests that no

sample threshold (for realistic sample sizes) is large enough to overcome bias in making

2Results for the Wadsworth method, which failed on 0.4% of the samples here, are calculated only for
samples where a threshold estimate was obtained.

24



extreme value approximations for Gaussian data, but the improvement in coverage using

Alg 2 demonstrates the importance of including the additional threshold uncertainty.

80% confidence 95% confidence
j 0 1 2 0 1 2

Alg 1 0.588 0.450 0.366 0.750 0.618 0.510
Alg 1b 0.592 0.442 0.364 0.746 0.620 0.508
Alg 2 0.718 0.598 0.492 0.866 0.814 0.756

CI ratio 1.457 1.480 1.509 1.495 1.576 1.665

Table 6: Coverage probabilities for estimated quantiles using Algorithms 1, 1b and 2 for 500
replicated samples from a Gaussian distribution with sample size of 2000. CI ratio gives the
average ratio of the CIs for Algorithm 2 relative to Algorithm 1 over the 500 samples.

7 Application to river flow data

The River Nidd dataset consists of 154 storm event peak daily river flow rates that exceeded

65 m3/s in the period 1934-1969, i.e., an average exceedance rate of 4.4 events per year.

Each observation can be deemed “extreme” and iid, though not necessarily well-described

by a GPD. Davison and Smith (1990) identify the difficulties these data present for threshold

selection and parameter uncertainty, which we reiterated in discussion of Figure 1. Given the

small sample size for the River Nidd, any increase in the threshold value is more significant

in terms of parameter uncertainty, than for larger datasets studied in Section 6.

Table 7 shows the selected thresholds of each of the methods for a range of candidate grids3.

The remarkable robustness of the EQD (evaluated with B = 200 bootstrap samples) across

grids stems from the method’s novel incorporation of data uncertainty. The Wadsworth

method fails to estimate a threshold unless the grid is made very coarse, and even then

3In marked cases, the Northrop method outputted a chosen threshold with some convergence warnings.

25



exhibits considerable sensitivity (varying between 0% and 90% sample quantiles) over grids

of equal size but different endpoints and increments. This is problematic as a coarse grid is

likely to remove the most appropriate threshold from consideration. The Northrop method

critically depends on the validation threshold, and we find that increasing this level above

the 90%-quantile leads to failure or convergence warnings. The thresholds selected by this

method are quite variable (between 0% and 80% sample quantiles) over the grids.

Estimated thresholds for the River Nidd dataset
Grid (% quantile) EQD Wadsworth Northrop

0 (1) 93 67.10 (3%) NA 68.453 (6%)
0 (1) 90 67.10 (3%) NA 65.08 (0%)
0 (1) 80 67.10 (3%) NA 100.28 (75%)
0 (20) 80 65.08 (0%) NA 109.08 (80%)
0 (30) 90 65.08 (0%) 149.10 (90%) 65.08 (0%)
0 (25) 75 65.08 (0%) 100.28 (75%) 81.53 (50%)

0, 10, 40, 70 65.08 (0%) 65.08 (0%) 69.74 (10%)

Table 7: River Nidd dataset selected thresholds (and quantile %) for each method for different
grids of candidate thresholds. The Grid column gives start (increment) end for each grid.

Comparing thresholds selected between the methods is complicated due to the sensitivity of

the Wadsworth and Northrop methods to the grid choice. For the EQD, it is natural to use

the densest and widest grid, giving û = 67.10. This threshold, which is lower than previously

found, gives far more data for the extreme value analysis. As all the River Nidd data are

“extreme”, we believe taking u so close to the lower endpoint of the data is not problematic,

and it may indicate that the pre-processing level used to produce these data was too high.

The first estimated threshold from the Wadsworth (Northrop) methods, without convergence

or warning issues, is û = 149.10 (û = 65.08). For these three threshold choices, the corre-

sponding GPD parameter estimates (and 95% CIs) are: σ̂u:EQD = 23.74 (17.78, 29.70) and

ξ̂ = 0.26 (0.06, 0.46) for the EQD; ξ̂ = −0.15 (−1.00, 0.70) for the Wadsworth method; and
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for the Northrop method, ξ̂ = 0.20 (0.02, 0.38), where we omit the latter two scale parame-

ter estimates as they are estimating different quantities which depend on the threshold, see

Section 2. Provided all estimated thresholds are high enough for the GPD to be appropriate,

the values of ξ̂ should be similar across methods, due to the threshold stability property (see

supplementary material S:2). The Wadsworth method leads to an extremely wide CI, which

results in meaningless inference. However, the EQD and Northrop findings about ξ are very

similar, but the sensitivity to the candidate grid is still a problem for the Northrop method.

Figure 2 shows a QQ-plot for the GPD model using the EQD estimate û = 67.10. The

tolerance bounds show a reasonable agreement between model and data. For û, Figure 2

also shows the T -year return level estimates, with 1 ≤ T ≤ 1000. The 95% CIs incorporate

parameter uncertainty alone and both parameter and threshold uncertainty via Algorithms 1

and 2 respectively, with an increase in uncertainty from the latter for larger T ; e.g., for

the 100- and 1000-year return levels, the CI width increases by a factor of 1.38 and 1.52

respectively. This reiterates how vital it is to incorporate threshold uncertainty into inference.
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Figure 2: River Nidd analysis: QQ-plot [left] showing model fit with 95% tolerance bounds
[shaded] and return level plot [right] based on EQD threshold choice with 95% CIs incorporat-
ing parameter uncertainty [dark-shaded] and additional threshold uncertainty [light-shaded].

8 Conclusion and discussion

We proposed two substantial developments to univariate extreme value analysis. Firstly, we

addressed the widely-studied problem of how to automatically select/estimate a threshold

above which an extreme value, generalised Pareto, model can be fitted. We presented a novel

and simple approach, which we termed the EQD method, that minimises an approximation

to the IAE of the model quantiles and quantiles of the data generating process. Secondly, we

proposed a new approach to improve the calibration of confidence intervals for high quantile

inference, addressing an important but under-studied problem. We achieve this through

an intuitively simple, but computationally intensive, double-bootstrapping technique which

propagates the uncertainty in the threshold estimation through to quantile inference.

Regarding the threshold selection component of the work, we compared the EQD method

to the leading existing threshold selection methods in terms of both threshold selection and
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consequent high quantile estimation. This was conducted using data from iid continuous

univariate random variables and the superiority of the EQD method was illustrated across

a range of examples using various metrics. Relative to existing approaches, we showed that

the EQD exhibits greater robustness to changes in the set of candidate thresholds, to tuning

parameters, and avoids a reliance on asymptotic theory in existing likelihood methods. The

EQD method is applicable for all data set sizes and for any set of candidate thresholds.

So why does the EQD method perform much better than the existing approaches? Our

analysis has identified two core reasons: the choice of a robust measure of goodness of fit for

a given (bootstrapped) sample, which controls bias; and the use of bootstrapped replicates,

which leads to reduced variance and also appears to reduce bias. Specifically, in comparison

to existing methods, the use of our goodness-of-fit measure, over simply exploiting the GPD

threshold stability property, ensures better model fits and hence better threshold selection,

and the bootstrapping removes the variation that arises if only the observed sample is used,

as that may not be a typical realisation from the underlying data generating process.

In assessing our suggested improvement for the calibration of confidence intervals, we com-

pared the coverage of true quantiles using our proposed approach and the widely-adopted

approach of incorporating the GPD parameter uncertainty alone in quantile inference once

a threshold has been selected. We showed that the coverage of the existing approach was

substantially less than the nominal confidence levels and our proposed approach led to much

more reliable confidence intervals without an undue increase in their width.

While this paper has demonstrated the effectiveness of both the EQD method and our pro-

posed approach for confidence interval construction in the univariate iid setting, we believe
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that the findings suggest that these approaches could have much wider utility. For example,

the Varty et al. (2021) method, which motivated the structure of the EQD method, was

originally developed for non-identically distributed data, with the transformation of excesses

of a time-varying threshold to a common marginal Exponential(1) distribution. As such

cases typically find that excesses have a common shape parameter ξ (Chavez-Demoulin and

Davison, 2005), we could use the EQD variant of Varty et al. (2021) by transforming instead

to a common GPD with parameters (1, ξ) given we have seen here that by retaining the

scale of the original data, the EQD out-performs the Varty et al. (2021) approach. We also

believe that the strategy of our new methods could be used to improve threshold estimation

in multivariate extremes, in cases of multivariate regular variation assumptions (Wan and

Davis, 2019) or for asymptotically independent variables (Heffernan and Tawn, 2004), and

allow for the uncertainty in this threshold estimation to be incorporated in the subsequent

joint tail inferences. Such developments would naturally have similar implications for spatial

extreme value modelling as the threshold selection in this context currently comes down to

a multivariate (at the data sites) threshold selection process.
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Supplementary Materials

The software to reproduce Figures 1 and 2 as well as Tables 5 and 7 is provided as separate

files in the online supplement. The online supplement also contains a PDF document which

provides further information to accompany the main paper including derivations of key

properties, further description of methods and additional simulation experiments.
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