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Designing a Soil Health Index for Sustainable Agricultural Systems. 

 

Munisath J Khandoker 

 

Thesis Abstract 

 

Soil health is vital for agriculture and agro-ecosystems. Healthy soils act as a reservoir and 

cycling system for water, air, organic matter, and nutrients essential for crop growth and as a 

habitat for a diverse array of organisms, including bacteria, fungi, insects, and worms, 

contributing towards ecosystem stability and resilience. However, soil health cannot be 

directly measured effectively with one indicator. Instead, soil health assessments typically 

rely on a range of measurements of essential biological, physical, and chemical indicators. 

Due to the complexity and highly integrative nature of soils, it is difficult to develop general 

soil health indices.  

 

The main goal of this thesis was to develop a soil health index that was able to quantify soil 

health for different agricultural land uses and soil textures across the UK. With the aid of 

Rothamsted Research’s long-term experiments of known history and land management, we 

aimed to collect measurements of crucial physical, biological, and chemical soil health 

indicators using traditional methods. Then, using structural equation modelling (SEM), we 

hoped to create a robust soil health assessment. When designing a soil health index, 

selecting the most informative indicators of soil health is essential. To achieve this, we 

initially focused on enhancing existing soil monitoring methodologies and exploring novel 

technologies that can streamline this process. In Chapter 2, we evaluated the SLAKES 

smartphone application as a tool for measuring soil stability. Results from the SLAKES 

application were compared with the established Le Bissonnais method. Results showed 

SLAKES could differentiate between different management types on clayey soil, but were 

less sensitive when tested with sandy soil. Despite this lower sensitivity, we conclude that 

the SLAKES app can be a legitimate method to measure aggregate stability, providing a faster 

and easier method for researchers and land managers compared to conventional methods.  
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In Chapter 3, we evaluated the use of extracellular enzymes, N-acetyl-β-glucosaminidase 

(NAG), acid phosphatase (PHO) and β-glucosidase (GLU), as promising soil health indicators. 

The objective was to investigate which of these soil enzymes, if any, could be used as a 

comprehensive biological indicator for soil health by examining the relationships between 

microbial enzyme activity in a range of soils with contrasting chemical and physical 

properties. We observed that grass treatments relative to all other plots showed increased 

levels of enzymatic activity, followed by arable and fallow, respectively. Furthermore, 

enzyme activity correlated with other observed soil health indicators.  

 
Using learnings from the previous two chapters, the Chapter 4 study aimed to create 

meaningful metrics for soil health that influence agricultural production and other 

ecosystem services. We included a range of soil measurements relevant to soil health, 

including physical, chemical, and biological soil indicators under contrasting agricultural land 

uses and soil types. We found that SEM allows for a comprehensive understanding of the 

complex relationships within the soil health system. It was particularly beneficial when 

dealing with multiple indicators and latent variables that contribute to overall soil health. 

Based on our results, we believe soil scientists can leverage SEM to refine soil health 

assessment models and improve the accuracy of their measurements, as well as understand 

the effects of agricultural management practices on soil health. 

 

From selecting the most informative soil health indicators to carefully considering the 

measurement methods used for these indicators, this study demonstrates the multifaceted 

nature of designing a soil health index.  
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1 Introduction 

 

A typical topsoil is composed of around 45% minerals, 5% organic matter, and 50% water 

and air. However, these percentages are broad approximations as soils are highly intricate 

and dynamic, and their composition can vary daily, influenced by factors like water 

availability, land management, and soil type (Spork et al., 2002). This layer, supported by the 

subsoil below, serves as a foundational element for our food system. It holds essential 

nutrients necessary for plant growth, functions as a water reservoir, and supports diverse 

ecosystems. As a natural water filter, soil plays a crucial role in providing drinking water and 

serves as a foundation for construction. Additionally, it serves as the Earth's primary 

terrestrial carbon (C) storage system, contributing significantly to climate regulation (Jónsson 

et al., 2016). Carbon stored in soil worldwide (1200–2400 Pg) exceeds that stored in the 

atmosphere (720–750 Pg) and terrestrial plants (550–835 Pg) combined (Batjes. 1996; 

Scharlemann et al., 2014). 

 

Despite its vital role in sustaining life, soil is facing a crisis globally. Intensive agriculture, 

coupled with the impact of a growing population, has led to significant shifts in land use and 

soil contamination. Remarkably, it is estimated that only 3 cm of topsoil is generated every 

1,000 years (UN FAO, 2019); however, in England and Wales, an alarming 2.9 million tonnes 

of topsoil are eroded annually. According to the Environment Agency (2019), the majority of 

soils in England fall under the classifications of either 'degraded' or 'very degraded.' Land 

degradation has far-reaching consequences, affecting food security, water availability, and 

ecosystem health, directly impacting half of the global population. This degradation results 

in an annual loss of approximately US$40 trillion worth of ecosystem services, which 

accounts for nearly half of the global GDP in 2021 (United Nations, 2022). 

 

Furthermore, once the soil reaches a degraded state, it has the potential to emit greenhouse 

gases, such as carbon dioxide, methane, and nitrous oxide, and suffer from loss of organic 

matter, contamination, compaction, increased salinity, and other detrimental effects (UN 

FAO, 2019; European Commission, 2023). This degradation can be abrupt, but oftentimes, 

degradation is a more gradual process, impacting agricultural production and the broader 
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environment over time. In response, research has focused on developing measures to assess 

soil health, aiming to monitor its condition and guide management practices to prevent 

degradation. This has sparked debates around the fundamental question: “What is soil 

health?” 

 

In the agricultural context, soil health can be defined as a soil's ability to respond to 

agricultural interventions. This definition aligns closely with 'soil quality,' which pertains to a 

soil's condition and properties relative to the requirements of one or more species, including 

humans (Kibblewhite et al., 2007). Soil quality also underscores the dynamic nature of soil, 

reflecting properties influenced by land management practices. However, these definitions 

might oversimplify soil health by focusing solely on its benefits for agricultural productivity 

and neglect the temporal and geographical scales over which soil influences entire 

ecosystems. It also fails to acknowledge the integrated nature of the biological, physical, and 

chemical qualities inherent in soil. Thus, a better understanding of soil components and their 

connections with each other would lead to a more holistic approach to characterising soil 

functioning; such approaches have been used to define the health of soils.  

 

1.1 Historical Perspectives of Soil Health  

Across history, humans have formed perceptions of soil functionality, which are evident as 

far back as 2070 BCE when ancient Chinese texts discussed assessing soil suitability for crop 

growth (Bünemann et al., 2018). It is reasonable to assume that even our hunter-gatherer 

ancestors recognised variations in soil productivity, noting that certain areas were more 

adept at producing certain plants (Feeney, 2019). As societies transitioned to settled living, 

villages and later cities tended to emerge in areas where land could sustain the population's 

food needs. The recent expansive growth of cities has adversely affected global food 

security, as particularly productive land is lost. Hillel (1992) contends that the decline of 

some ancient civilisations can be linked to their inability to preserve essential soil properties 

and functions vital for food production.  
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The term "soil fertility" (SF) has traditionally referred to the ability of specific soils to aid the 

growth of crops (Patzel et al., 2009). However, the broader ecosystem functions of soils and 

the importance of non-agricultural lands, such as forests or savannahs, were not well 

recognised during this time. Consequently, this term has inherent limitations in capturing 

the full spectrum of soil's roles and functions. Even within agriculture, soil fertility was 

commonly interpreted as focusing exclusively on the availability of crop nutrients, possibly 

overlooking other crucial soil properties. 

 

"Soil quality" (SQ) is commonly attributed to a 1977 conference paper by Warkentin and 

Fletcher. However, Bünemann et al. (2018) reference an earlier work by Mausel (1971), 

which discussed the suitability of different soils for growing crops in Illinois, USA. Here, 

Mausel (1971) describes SQ as the capacity of soils to produce crops such as corn, soybeans, 

and wheat under conditions of intensive management, where the selection of crops as an 

indicator of soil quality is attributed to their significant economic dominance in the 

agricultural sector.  

 

During the 1980s and 1990s, the term experienced a significant surge in popularity and 

widespread acceptance. During this period, a conceptual framework for the term was 

developed, reflecting the growing awareness among land managers about the crucial role of 

soil in delivering ecosystem services. Another perceived advantage of the term SQ was its 

accessibility to non-specialists. The belief was that the concept could be more easily grasped 

by a broader audience, including politicians and policymakers, compared to a more technical 

description of specific soil properties or functions. This was particularly relevant as the term 

"quality" was increasingly employed to describe the attributes of water and air. 

 

Doran et al. (1994) noted that the current concept of SQ was limited due to its emphasis on 

agriculture and production. They advocated for a definition of SQ that highlighted the 

primary concerns associated with soil use. They incorporated into their definition that in 

addition to productivity, soils have the capacity to contribute towards environmental quality 

and promote plant, animal, and even human health (Bunemann et al., 2018). 
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The concept of a healthy soil initially emerged during the early twentieth century in Europe 

when organic farming rose in popularity amongst farmers. However, in the last 20 years, we 

have seen the widespread use of the term “soil health” (SH) gradually overtaking SQ (Figure 

1). There is debate as to whether the terms SH and SQ are synonymous, which Bünermann 

et al. (2018) discuss in some detail. Some scientists argue that SH captures the biological 

aspects of the soil better and is a more comprehensive term. However, this might be just a 

matter of definition, as some soil quality assessments incorporate biological properties into 

their framework.  

 

The 25-Year Environment Plan of the UK government, as outlined by DEFRA (2018), explicitly 

addresses SH. It contains sections dedicated to "Improving soil health" and "Developing 

better information on soil health", as well as a commitment to formulate a Soil Health Index 

(SHI). Similarly, the Government of India introduced Soil Health Management as part of the 

National Mission for Sustainable Agriculture in 2014 (Government of India, 2023). Here, 

farmers are provided with laboratory analyses and soil health cards, with funding from the 

government on national or regional levels. Some tests include pH, electrical conductivity, 

organic C, and plant-available nutrients. While this set of analyses would have been referred 

to as an SF assessment fifty years ago, a deliberate decision was made to use the term SH for 

effective communication with farmers. Similarly, in the UK, the agricultural consultancy 

group ADAS employs the term SH to communicate its soil management activities with 

farmers.  

 

There are two main ways to approach SH (Kibblewhite et al., 2007). The reductionist method 

estimates the condition of the soil using physical, chemical, and biological properties of the 

soil. In contrast, the integrated approach assumes that SH is more complex than just the 

soil’s physical, chemical, and biological components and allows for emergent properties 

resulting from interactions of these processes and properties in the soil (Kibblewhite et al., 

2007). Our working definition of SH is derived from a combination of approaches, assuming 

that soil health in relation to agricultural soils is a state that can support sufficient food and 

fibre production whilst delivering essential ecosystem services.  
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Whilst the concept of SH has become widely accepted, a new debate arose as to whether SH 

could be quantified in a meaningful way. Karlen et al. (1997) were some of the first to 

promote the quantification of SH. This was followed by significant opposition, namely by 

Sojka et al. (1999), who argued that SH should not be quantified into a numerical value. 

Whilst some thought that a soil health index (SHI) was a useful way to summarise data, 

others claimed that informed management decisions primarily rely on only a few soil 

properties. As a result, an SHI would generalise information and would not allow land 

managers to understand the cause of a low SH. For example, fertiliser inputs would need to 

be applied to correct for low nutrient levels. This would not be readily known if SH was 

generalised into a single numerical number.   

 

Despite this, several attempts were made to quantify SH into a single value. Stockdale et al. 

(2003) combined various soil properties but found that doing so would be 

counterproductive. They found that soil use changes our working definition of SH. For 

example, soils intended for cultivating horticultural crops typically require a neutral or 

alkaline pH and high nutrient concentrations. In comparison, soils chosen for growing 

coniferous trees generally need an acidic pH and lower nutrient levels (Shi et al., 2008). Soil 

scientists should, therefore, exercise caution against over-complicating the subject of SH. 

The term SH is meaningless unless it is linked to a function or specified use. Especially when 

making informed land management decisions, measurements of specific soil properties are 

of paramount importance.  

 

Figure 1: Changes in the perspectives of soil health over time. 

 

 

In summary, SH may be defined as “the capacity of a specific kind of soil to function, within 

natural or managed ecosystem boundaries, to sustain plant and animal productivity, 

maintain or enhance water and air quality, and support human health and habitation” 

(Doran et al., 2000). SH can be affected by soil use and management approaches (Bunemann 
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et al., 2018). Thus, knowledge of the effects of different soil management practices and land 

uses on soil functions is needed in order to develop a working SHI that accounts for these 

complex interactions (Morrow et al., 2016).  

 

1.2 Ecosystem Services  
 

While the function of soil was recognised long ago, the importance of conservation and 

enhancement of ecosystem services (ES) rendered by the soil has only been realised more 

recently.  ES refers to the various benefits soils provide to ecosystems and human well-being 

(Pereira et al., 2018). These services are essential for maintaining ecological functions, 

supporting biodiversity, sustaining agricultural productivity, and natural resources. There are 

currently several frameworks that classify ES, such as the Common Classification of 

Ecosystem Services (CICES). The CICES provide a standardised and consistent way of 

describing ES. It offers a systematic approach to understanding the different ways 

ecosystems contribute towards human well-being.  

 

CICES was developed by the European Environment Agency (EEA) and has been widely 

adopted in environmental and ecological research. The hierarchical classification organises 

ES into main classes, divisions, groups, and classes (CICES, 2024; Maes et al., 2020). The main 

classes include services that are involved in the provision of products directly from 

ecosystems, such as food and water, services that regulate and maintain environmental 

processes, for example, disease and climate regulation, and supporting services that are 

necessary for other ES, including soil formation and nutrient cycling. The hierarchical 

structure of CICES allows for a detailed and standardised classification of ES, providing a 

common language for researchers, policymakers, and practitioners. This framework helps in 

systematically analysing and communicating the contributions of ecosystems and has been 

applied in various studies and assessments to assess the state of ecosystems, monitor 

changes, and inform sustainable management practices. 

 

Climate change and human activity are placing increasing pressure on our soils and their 

functions to maintain and regulate ES. As a result, when soils become degraded, so do ES, 

threatening essential resources of future generations. Moreover, land management has 
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significant consequences on the capacity and quality of ES provided. The provision, 

regulation, and value of soil ES are especially threatened in intensely managed lands. Thus, 

sustainable practices are crucial in restoring soil ES. 

1.3 Factors Affecting Soil Health and Ecosystem Services 
 

Soils are formed through a series of complex processes. The parent material forms the basis 

of the soil, which weathers to smaller particles, releasing essential plant nutrients in the 

process. Minerals within the parent material combine with organic matter (OM) in the 

surface layers, shaping the physical and biotic structure and functioning of the soil (Nordin, 

2020). The combination of all these factors leads to the formation of soil profiles with 

distinct horizons. The layering reflects the numerous processes and interactions that have 

formed the soil over time and is used to define the soil type.  

 

Soil type influences the physical, chemical, and biological properties of soil that collectively 

determine the soil’s ability to support plant growth and sustain ecosystems. Typically, soil 

type is determined by the proportions of sand, silt, and clay particles, known as soil texture. 

Clay refers to particles of <2 µm in diameter, silt particles are typically 2 to 50-63 µm, and 

sand particles are 50-63 µm to 2 mm in diameter (the threshold diameter between ‘sand’ 

and ‘silt’ differs between different classification schemes) (Breemen et al., 2002). The 

differences in soil texture influence several factors that contribute towards soil health. For 

example, sandy soils tend to have larger particles and may have good drainage but lower 

water and nutrient retention. In contrast, clayey soils have smaller particles, providing higher 

nutrient retention but potentially poor drainage. Loamy soils, with a balanced mixture of 

sand, silt, and clay, are often considered ideal for healthy plant development (Tahir et al., 

2016). Moreover, different soil types may harbour distinct microbial communities, which 

play a crucial role in nutrient cycling, organic matter (OM) decomposition, and overall soil 

fertility (Zhang et al., 2023). Soil type, therefore, plays a vital role in determining several 

properties that collectively define soil health. Farmers and land managers must consider soil 

type when implementing practices to enhance soil fertility, prevent erosion, and sustain 

healthy ecosystems.  
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A combination of climate and fixed properties, such as soil texture and stone content, 

support specific conditions for soil habitats. Variable abiotic factors, such as compaction and 

pH, then influence the state of these habitats. Biotic factors, including C substrate availability 

and microbial biomass, interact with fixed and variable abiotic properties to establish the 

overall condition and health of the soil ecosystem (Kibblewhite et al., 2008). Previous land 

management can significantly alter the health of our soils. For example, salinisation due to 

poor irrigation systems and the loss of SOM from monoculture cropping all contribute to the 

degradation of surface horizons. Agricultural practices and land management can alter the 

soil's physical, chemical, and biological properties, thus controlling soil health. Not all such 

practices are harmful to all aspects of soil health. For example, the application of fertiliser 

can increase soil fertility, whilst cultivation can create a seedbed optimal for seed 

germination. 

 

SOM refers to the organic materials present in the soil, primarily originating from the 

decomposition of plant and animal residues as well as microbial biomass, while soil organic 

C (SOC) specifically refers to the C component of SOM (Blanco-Canqui et al., 2013). As a 

generalisation, approximately 58% of SOM is SOC (the van Bemmelen factor), but this can 

vary greatly depending on the source of the SOM (Batjes et al., 1996). SOC drives soil 

systems for their integral role in transferring energy. SOC reacts with clay and minerals to 

form various organic complexes and can form and stabilise soil aggregates due to its high 

surface area and charge density (Lal, 2016). Several mechanisms stabilise and protect SOC, 

including the physical protection mechanisms of adsorption to surfaces or occlusion within 

aggregates and biochemical composition, which can affect the ease with which SOM can be 

decomposed. For example, the formation of microaggregates captures SOC and can store 

SOC deep in the soil away from environmental and human interference for millennia (Six et 

al., 2000). Aromatic and double-bond hydrocarbons can also coat stable aggregates, 

providing another layer of protection. Furthermore, microorganisms are involved in SOC 

transfer and can release substances that inhibit decomposer organisms and enzymes that 

would otherwise use SOC (Dungait et al., 2012).  

 

Current SOC models predict C pools and C turnover rates. For instance, rapid C turnover 

provides immediate sources of energy, whilst slower rates indicate lasting C energy 
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reservoirs that can support soil systems and provide structural soil stability over time (Lal, 

2004). Thus, the abundance of different OM fractions may indicate the state of the local soil 

ecosystem and its functions. Moreover, the dynamics of SOC also impact atmospheric 

chemistry and C-cycling (Scharlemann et al., 2014). Increasing global SOC to deeper soil 

horizons would cause a significant drawdown of atmospheric CO2 below ground. Therefore, 

it is vital to understand the intricate functions and role of SOC, especially in mitigating global 

climate change, providing ES, and supporting food security and soil health. We should also 

note that SOC models are not always based on measurable C pools, nor can they be 

explicitly used to describe the ecological functioning of soils. As a result, the use of SOC 

models to assess soil health is restricted. 

 

After SOC, nitrogen (N) and phosphorus (P) cycling affect soil system dynamics and delivery 

of ES. While many argue that C substrates are the primary limiting factor for microbial 

activity, increasing evidence suggests that microbes are frequently restricted by N availability 

instead (Schimel, 2005). Thus, in N-stress conditions, the functional capacity of soil 

ecosystems is strongly impacted by N supply. The same is true for P, which often limits plant 

growth if not supplied and is particularly important for biological N fixation in free-living and 

symbiotic organisms. 

 

Agriculture has been manipulating nutrient supplies through fertiliser additions for 

centuries. Crops require large amounts of N for crop growth, development, and yield. Thus, 

farmers regularly apply N fertilisers to fulfil the demand for crop production (Anas et al., 

2020). In natural, undisturbed soils, there are typically low atmospheric N inputs, and small 

N losses due to leaching and emissions are observed as microorganisms quickly assimilate 

mineral N due to high N demand. In contrast, we see a significant increase in N losses 

through leaching and the atmosphere in disturbed soils and due to greater OM 

decomposition rates. Soil health can decline as a result of this, as N-dependent organisms 

that are vital in supporting soil functions and crop growth are restricted due to reduced N 

availability in the soil. Sustainable agricultural practices propose to counter nutrient losses 

during crop production using organic amendments (OA) in order to restore and sustain soil 

health. Despite this, our understanding of the impact of nutrient additions on the condition 

of soil biota and soil functioning is limited.  
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1.4 Assessing Soil Health  
 

Assessing soil health across different soil types, climatic zones, and agricultural systems 

offers many scientific and policy challenges. Soils are multifaceted systems; thus, complex 

debate arises when discussing appropriate methods to assess soil health. A single indicator 

cannot describe all properties of soil health, and it would not be realistic to measure every 

potential soil health indicator.  

 

Proposals for soil tests are often linked with legal frameworks to protect our soils at national 

and even international scales (DEFRA, 2020). The Environment Agency (2019), in their ‘State 

of the Environment’ review, states that 2 million hectares of soil are threatened by erosion in 

England and Wales. According to figures from 2020, the consequences of soil compaction 

and erosion are costing the UK economy over £1.2 billion per year, increasing flood risk and 

threatening biodiversity and soil fertility (DEFRA, 2023).  

 

Furthermore, the European Commission has authorised a new Soil Monitoring Law, in line 

with the EU Zero Pollution ambition; this would be the first EU legislation on soils (European 

Commission, 2023). The ultimate goal is to attain healthy EU soils by 2050 and address key 

soil risks such as erosion, loss of SOM, contamination, compaction and soil biodiversity 

losses. The proposal offers a comprehensive soil monitoring framework and a consistent soil 

health definition. These initiatives provide vital knowledge on the current state of the soil. 

However, a further consolidative framework is needed to identify soil health indicators and 

relate previous data to soil health. 

 

There are many practical issues when assessing soil health, as soils are multifunctional and 

can deliver many integrated functions and services. Thus, a full evaluation of soil status 

demands extensive testing. Moreover, soils constantly interact with external factors, such as 

temperature and rainfall, and these interactions are variable and hard to control. Hence, 

assessments of soil systems need long-term monitoring or multiple readings over time as 

soils do not respond instantly to environmental changes.  
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Laboratory tests provide helpful information on soil responses within controlled 

experimental conditions; however, they are not fully indicative of the natural soil ecosystem 

performance. In contrast, field assessments may require complex, long-term experiments 

that cannot be achieved on every land. Whole system assessments are often too expensive 

or virtually impossible to conduct. As a result, using laboratory tests and field assessments 

are not always feasible or representative of the soil environment. So, while diagnostic tests 

or testing certain parameters of the soil can provide enough information to describe soil 

health, it is important to acknowledge that such assessments may not fully capture the 

complexity of real soil conditions. 

 

Crucial soil functions, such as C transformations, nutrient cycling, soil structure maintenance, 

and regulation of microbial populations, all have existing methods for assessing their 

performance. These are based on specific processes linked to these functions and reveal the 

current activity that supports ES. Individual functions are related within a network of 

interactions; thus, soil health tests require a more integrated approach. Soil health 

assessments can be instead measured by a series of diagnostic tests, separated into 

chemical, biological and physical measurements. 

 

Soil assessments also need to incorporate soil types within their assessments. Such an 

approach would be more representative of whole soil systems across particular soil types. 

From here, we can calculate ranges and trends within each system and see if there are any 

grounds for comparison between different soil types. Overall, analysing trends and changes 

in soil conditions allows us to weigh the impact of farming practices and climate change on 

soil health and ES. However, it is crucial to include soil health indicators that are 

comprehensive and can describe systems effectively in these assessments. 

 

1.5 Soil Health Indicators  
 

Soils play a crucial role in fulfilling multiple functions simultaneously. These functions are 

complex and interdependent, making soil health and sustainability vital considerations 

(McBratney et al., 2014). While the quantification of soil functions is currently an active area 

of research, it presents a significant challenge. Although machines and sensors can make 
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predictions, they are unable to measure soil functions directly due to the soils elusive nature 

(Marchant. 2021). Rather, these functions are viewed as complex properties that arise from 

the intricate interplay of physical, chemical, and biological processes within the soil. 

Therefore, when evaluating soil functions, we must rely on measurable soil properties (Vogel 

et al., 2018) representing a wide range of soil functions. A quantitative assessment of our 

soils is crucial for informing policies and ensuring their continued productivity. It can also be 

used to create models that predict the effects of external influences from agriculture and 

climate change. Addressing this challenge is currently one of the most critical tasks in the 

field of soil science (Vogel et al., 2019).   

Soil health depends on different physical, chemical, and biological attributes of the soil that 

are important for ecosystem services. Concepts for understanding the chemical and physical 

properties of soils have been largely accepted by the agricultural community. With 

significant progress in assessing and managing biological functioning in soils, we are better 

able to choose the relevant indicators to assess soil health. 

Chemical indicators of soil health play a major role in providing nutrients for plants. Some of 

the most commonly used chemical attributes in soil health assessments are soil pH, cation 

exchange capacity (CEC), and SOM (Kelly et al., 2009). These are also correlated with crop 

yields and thus can be easily interpreted and measured. These chemical attributes are also 

involved in maintaining SOM, plant biomass, and nutrient cycling (Smith et al., 2000).  

Idowu et al. (2008) selected 39 soil health parameters and correlated them with crop 

growth and yield in soils under different soil management practices in the US. They 

concluded that the most important chemical properties describing soil health are soil pH, 

phosphorus (P), potassium (K), copper (Cu), zinc (Zn), iron (Fe) and manganese (Mn). Soil pH 

influences the availability of essential nutrients and correlates directly with plant-available 

nutrients and microbial activity. P is a critical nutrient for plant growth, involved in energy 

transfer and various metabolic processes, while K is involved in enzyme activation, water 

regulation, and plant stress resistance. Cu participates in various biochemical processes 

necessary for plant growth and development, and Zn is a micronutrient required for enzyme 

activity and essential for various metabolic processes in plants, ensuring soil fertility. 
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Furthermore, Fe is essential for chlorophyll synthesis and electron transport in plants, while 

Mn is involved in photosynthesis, N metabolism, and enzyme activation (Osman. 2012).  

Maintaining optimal nutrient levels supports plant growth, development, and health and 

contributes to the overall resilience of plants against environmental stress (Jouran et al., 

2017).  While these chemical properties provide valuable information about soil fertility and 

potential nutrient imbalances, regional variations and specific crop requirements may 

influence the choice of chemical soil health indicators. 

As described previously, SOC concentration is another important attribute of soil as it 

affects important functional processes, such as N storage, water holding capacity, and 

aggregate stability, and it also affects microbial activity (Bennet et al., 2010; Silva et al., 

2007). SOC largely contributes towards soil fertility; however, SOC can also have some 

negative effects on soil health. For example, high SOC can reduce pesticide efficiency, thus 

increasing the frequency of applications. This occurs when soluble SOC aggregates together 

to form different organic fractions that facilitate the transport of pesticides through the soil 

(Spark et al., 2002; Sojka et al., 1999).  

N is key to plant growth and is considered the most limiting plant nutrient in most natural 

systems (Lines-Kelly et al., 1998; Cantarella, 2007). Mineral N, such as nitrate or ammonium, 

organic N and potentially mineralisable N in SOM, are all different ways to store soil N. N-

availability in the soil changes rapidly when influenced by the weather, physical soil 

conditions, microbial activity, and the availability of SOM. Furthermore, N availability can 

differ greatly depending on the time when samples are taken (Hu et al., 2014). Thus, soil 

health assessments use models in collaboration with soil tests to analyse the real availability 

of soil N (Cantarella, 2007).  

Like N, P is also a key nutrient for crops and is widely assessed in soil health tests. P helps by 

stimulating root and plant growth (Lines-Kelly et al., 1998). Soil P is generally available as 

orthophosphates. However, microbial P and organic P can also become readily available in 

the soil (Zhang et al., 2006).  
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SOC, pH and plant-available nutrients are the most common chemical parameters currently 

being used in soil health assessments (Jurandy et al., 2013). However, soil health tests that 

include chemical indicators alone cannot provide a representative view of soil health. 

Instead, the integration of chemical, biological and physical indicators is the most suitable 

approach when assessing soil health. 

Measuring the physical attributes of soil largely consists of simple, low-cost methods. 

Furthermore, physical indicators of soil health, such as aggregate stability, bulk density, and 

porosity, can be correlated to hydrological processes such as erosion, water holding capacity 

and infiltration rates (Meij et al., 2018). Low infiltration rates, high surface runoff, and low 

root density are considered traits of poor soil physical health as they favour soil erosion and 

impede plant growth (Dexter et al., 2004).  

Soil texture is a crucial factor that affects the balance between water and air in the soil and is 

generally unaffected by soil management. Consequently, total porosity and bulk density are 

better indicators for assessing the effects of soil use and management (Yolvubal et al., 2004). 

Total porosity can be influenced by structural factors (macro/microstructure) and is 

indirectly related to the soil's texture (proportion of soil particles). Soil management 

practices can significantly affect structural porosity, particularly macropores, which in turn 

may alter the soil water retention curve (Dexter, 2004). 

Soil is composed of soil particles: sand, silt, and clay. The arrangement of primary soil 

particles into larger aggregates of varying sizes and shapes, together with the surrounding 

pore network, determines the soil structure. Dexter (2004) noted that plant growth favours 

a granular soil structure, as there is a balance between the water and air proportions 

controlled by micro- and macropores. Soil structure is related to other physical attributes of 

soil, such as bulk density, porosity, and water infiltration. Moreover, Bini et al. (2013) 

observed that soil structure is affected by SOM. SOM plays a crucial role in aggregating soil 

particles together to form stable soil structures. Thus, if soil structure is affected by SOM, 

then other physical characteristics will also be affected.   

Microaggregates are primary aggregated units of soil particles typically between 25-250 µm 

in diameter, whereas macroaggregates are much larger, and may in fact consist of multiple 



 30 

microaggregates. Microaggregates are generally more stable and are thus less affected by 

soil management practices; they are also responsible primarily for stabilising SOC (Six et al., 

2004). Soils with high levels of SOM have increased aggregate stability, which also results in 

increased microbial activity. According to Spaccini et al. (2014), soil carbohydrates account 

for up to 25% of SOM and act as stabilisers for soil aggregates. Thus, soil aggregates disperse 

more under more intensive management practices in soils with lower inputs of OM (Qin et 

al., 2010). Reduced soil aggregates also reduce the number of macropores in the soil. This, 

in turn, impairs the access of decomposing microbes to SOM (Chodak et al., 2011). 

Moreover, soil aggregates not only affect nutrient cycling, permeability, and aeration but 

also harbour microbes. Secretions, cell lysates and mucus produced by organisms, such as 

earthworms and fungi, act to stick soil aggregates together, further stabilising the soil 

(Preston et al., 2011). Microbial activity and SOM, therefore, influence the soil structure 

and, thus, the hydrological processes such as erosion and infiltration rate.  

Furthermore, Geisseler et al. (2011) found a correlation between microbial activity and 

water availability (Geisseler et al., 2011). Thus, reduced microbial activity due to lack of 

water can lead to degradation of soil functions, such as nutrient cycling and mineralisation 

of SOM. However, water restrictions affect microbes differently. For instance, fungi prefer 

drier conditions that allow their hyphae to infiltrate air-filled macropores, whereas bacteria 

generally prefer moist soil conditions for better movement (Wong et al., 1976; Smith et al., 

2017). As a result, soil microbial communities and physical attributes of soil impact each 

other, and both are affected by SOM (Degen et al., 2000). In addition to physical factors, 

such as porosity and soil texture, water availability is also dependent on chemical 

properties, such as SOC.  

Microbial activity and diversity play a key role in maintaining essential soil functions, such as 

C and nutrient cycling. Microbial indicators are more susceptible and responsive to 

environmental changes like soil management practices compared to physical and chemical 

indicators (Masto et al., 2009). The soil microbial biomass mineralises the SOM to provide 

nutrients to the plant through rapid cycling (Sicardi et al., 2004). Furthermore, Kennedy 

(2013) describes soils with high microbial diversity as more resilient to environmental 

disturbances due to their functional redundancy.  



 31 

Soil respiration is a widely used biological indicator of soil health. C sources and nutrients 

from (S)OM will be mineralised to carbon dioxide (CO2) and other nutrients through 

microbial activity (Kennedy et al., 2013). The metabolic quotient is an index used to assess 

the metabolic activity or efficiency of soil microbes. It provides insights into how efficiently 

soil microorganisms utilise C for their metabolic processes. The metabolic quotient is often 

calculated by dividing the rate of CO2 production by the microbial biomass in the soil, 

whereby a higher index indicates stressful conditions (Anderson et al., 2007). However, 

higher index values can also account for easily degradable SOC that stimulates microbial 

activity. Thus, the quantity and quality of SOM will also determine the mineralisation of C 

(Babujua et al., 2010). Moreover, soils with high microbial diversity can ensure ecological 

processes continue after disturbances, making the soil more resilient to change.  

Soil enzymes are proteins produced by microorganisms, plants, and other organisms in the 

soil. These enzymes catalyse biochemical reactions involved in C and nutrient cycling and 

represent the metabolic level of microbial groups in the soil. Thus, the activity of soil 

enzymes can provide insights into the functional status and health of the soil ecosystem and 

can, therefore, be useful indicators of soil health. Soil enzymes can be released by cells into 

the soil after cell lysis or can be free in the soil as extracellular enzymes (Nayak et al., 2017). 

Soil enzyme activity is expected to change under different soil management practices (Lines-

Kelly et al., 1998). For example, P fertilisers can inhibit phosphatase enzymes in a feedback 

effect, whereas increased cellulase activities are generally seen in soils with high SOC in the 

topsoil (Peixoto et al., 2010). Thus, soil microbial communities are affected by soil 

management, as soil disturbances and additional inputs can change the availability and 

activity of soil enzymes. 

Invertebrates that live in the soil play a key role in establishing relationships with different 

levels of microbes (Brown et al., 2009). Microorganisms break down and transform SOM 

into plant-available nutrients; however, this process is made more effective when the SOM 

is pre-transformed and made more accessible to microbes (Vince et al., 2018). For example, 

earthworms promote SOM movement across soil horizons, distributing the SOM to different 

microbial communities (Kostina et al., 2011). The presence or absence of a specific species 

can be crucial for ecosystem functioning (Schjonning et al., 2004). In cases where 
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earthworm species have decreased in the soil, plant residues accumulated on the soil 

surface and were not fully integrated across the soil layers. This happened despite the 

presence of other functionally similar organisms which were not as proficient in distributing 

OM as earthworms (Hoogerkamp et al., 1983). Thus, the activity of individual species can 

limit specific soil processes. As a result, we should consider the species richness index in soil 

health assessments. Moreover, increased aggregate stability has been seen in soils with 

higher microbial and earthworm activity (Mader et al., 2002). The movement of these 

organisms mixes soil particles and produces pores, channels, and other biological 

compartments that allow the air and water to flow better, which further stimulates 

microbial activity (Drewry et al., 2008). 

Huge variability between different climates and geographical locations can be observed 

when using biological attributes as indicators for soil health. Therefore, simple indices based 

on biological parameters do not fully describe soil health or the complexity of soil systems. 

Taking measurements across different time points and conditions or using statistical 

methods to account for variability must be considered when conducting soil health tests. 

Constant monitoring and evaluations of the following physical, chemical, and biological 

indicators are needed in order to measure soil health reliably. Failure to do so would result in 

a measurement that does not fully represent the complexities of soil systems. Furthermore, 

by studying the origins of natural processes, we can better understand the multifaceted 

connections between the chemical, physical, and biological parameters of the soil. For 

instance, photosynthesis, which is arguably our most important biological process, allows 

plants to transform C to carbohydrates for the food web. Plant and animal debris are 

deposited in the soil, allowing organic C and minerals to be recycled and utilised by other 

organisms. Biological processes are, therefore, integral for recycling above and below ground 

C and nutrient mineralisation. Healthy soils have the capacity to maintain these processes 

sustainably over time.  

 

1.6 Impact of Agricultural Practices on Soil Health. 
 

Farmers employ a range of agricultural practices and inputs to maximise food and fibre 

production. This includes the use of a range of inputs, thus distorting the natural balance of 

the soil ecosystem and potentially compromising ecosystem services. As a result, 
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governments are continuously promoting new legislation and incentives to promote 

sustainable practices, and one approach is to relate soil functions to natural capital. 

Sustainable agriculture aims to reduce the detrimental effects of farming by ensuring 

agricultural production without compromising ecosystem services  (Kibblewhite et al., 2007).  

 

Human intervention has altered the natural state of soils, leading to a loss of ecosystem 

functions. Continuous cultivation and deforestation to create agricultural lands have 

changed the soil properties that describe soil health. In particular, global SOM losses from 

land use changes have been increasingly documented over recent years (Beillouin et al., 

2021). SOM losses are also correlated with reduced cation exchange capacity, further 

exacerbating the soil’s ability to retain nutrients. Depleted nutrient levels in the soils have 

considerable effects on the capacity of the soil to deliver ecosystem services. SOM must, 

therefore, be maintained or preferably enhanced through organic amendment where 

necessary to restore soil health and thus restore the soil's ability to deliver ecosystem 

services. 

 

Common agricultural practices artificially mimic natural processes. However, the scale of 

these actions can significantly affect soil health. For example, the application of pesticides 

replaces natural biological pest and pathogen control, whilst inorganic fertilisers substitute 

nutrient cycling. Due to the integrated properties of soils, agricultural practices that aim to 

replace or modify biological functions will also have indirect effects on other soil functions. 

 

Tillage disturbs the soil with a range of tools to create a suitable seedbed for crops. The 

process allows crop residues and OM on the soil surface to be incorporated, thereby 

contributing to increased levels of nutrient cycling. However, as a result of the mechanical 

disturbance, a decline in SOC and greater N mineralisation and a decline in macrofauna 

populations (especially earthworms) are observed under tillage systems. Therefore, losses of 

SOC can be reversed by reducing tillage. Furthermore, Six et al. (1999) noted improved 

aggregate formation and greater C retention in no-till systems, although others have 

reported that tillage practices affect the depth distribution of SOC rather than overall stocks. 

So, while tillage can negatively impact ecosystem services, the effects can be reversed and, 

in some cases, can even improve crop production. Overall, agricultural intensification 
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through tillage has facilitated economic savings by increasing efficiency and reducing human 

labour. However, in recent years, we have begun to understand the long-term effects of 

tillage on soil ecosystem functioning. As a result, there has been a considerable return to 

reduced or even no-till practices.  

 

The same can be said when considering the impact of pesticides and fertilisers on soil 

functioning, particularly when used in excessive quantities. According to Beauchamp (1991), 

high fertiliser inputs have been correlated with reduced OM quality, and high ammonium 

concentrations inhibit N fixation and stimulate nitrification, which in turn affects soil 

microorganisms. Excess N fertiliser application can also contaminate aquatic ecosystems and 

drinking water and lead to increased nitrous oxide production. A combination of these 

effects leads to considerable changes in global N cycling. Nitrous oxide has a global warming 

potential of about 300 times that of carbon dioxide.   

 

Inorganic fertilisers can increase SOM degradation rates by enhancing microbial 

decomposers that were previously nutrient-limited. As a result, we may see greater SOM 

decomposition rates as inorganic fertiliser inputs increase (Li et al., 2017). However, many 

studies have noted an inverse effect. Riggs et al. (2015) observed an inhibitory effect on 

SOM degradation when inorganic N was added to low N soils. What is more, inorganic 

fertiliser usually increases the SOM input into soils because it increases plant production and 

hence results in greater returns of residues to the soil. These conflicting results show the 

complexity of inorganic fertiliser inputs on C transformations, soil interactions and, thus, soil 

health.  

 

The unprecedented degradation of our soil health caused by agriculture has led us to 

question the longevity of current farming practices. Scientists have, therefore, introduced 

the term ‘sustainable agriculture’ to safeguard agro-ecosystems whilst ensuring sufficient 

food production. Previously, agriculture was seen to provide a single service, namely the 

delivery of food and fibre. However, in light of climate change, society requires that all soil 

functions must be maintained, and this has been echoed by governments across the globe. 

As a result, current perceptions of agriculture encompass more than just food production 

but include associated ecosystem services such as water quality and disease control.   
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Finally, we have to be aware that soil is a finite resource. We must maintain and improve our 

soils, which will, in turn, increase crop productivity and preserve agricultural systems, which 

are crucial goals of sustainable agriculture. Present strategies to achieve this include 

increasing SOM and reducing soil erosion by improving crop diversity and reducing tillage 

where possible. As our need to increase food production to feed an ever-growing population 

continues, our agricultural soils must be used intensively but sustainably. The global need for 

not only improving and restoring soil health but also having metrics to monitor soil health 

will undoubtedly enhance our understanding of factors that contribute towards sustainable 

agriculture. By improving the soil’s chemical, physical and biological properties and by 

repairing historical damage, we can ensure agricultural soils can still provide for us in the 

long term. 

 

1.7 Aims and Objectives 
 

1.7.1 Aim 

The main aim of this thesis was to develop a soil health index that was able to quantify soil 

health for different agricultural land uses and soil textures with the aid of Rothamsted 

Research’s long-term experiments of known history and land management, thereby 

providing a robust framework for assessing and monitoring soil health in agricultural 

ecosystems. To achieve this, three main objectives were outlined. 

 

1.7.2 Objective 1 

Assess new innovative ways to measure soil health indicators, in particular aggregate 

stability, and review existing lab methods and evaluate their requirements and functions. 

Objective 1 is addressed in Chapter 2, where we evaluate the SLAKES application, which is a 

new method for measuring aggregate stability across different soil types and land 

management practices.  
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1.7.3 Objective 2 

Investigate the potential of extracellular enzymes as reliable indicators of soil health based 

on relevance, sensitivity, practicality, and applicability in diverse agricultural contexts. 

Chapter 3 explores the utility of candidate soil enzymes across various environmental 

conditions and management practices, with the aim of understanding their role in assessing 

soil biological activity and functionality within agricultural ecosystems.  

 
1.7.4 Objective 3 

Investigate the feasibility of utilising structural equation modelling (SEM), a statistical 

technique used to test and estimate complex relationships between variables, in the 

development of a comprehensive soil health index. We aimed to elucidate the complex 

relationships among soil health indicators and environmental factors, which were discussed 

in Chapter 4. Chapter 4 also aimed to quantify soil health using SEM to help inform land 

managers and policymakers about the health of their soils. 

 

1.8 Thesis Structure  
 

Chapter 1: A literature review of the history and concepts of soil health and ways of 

assessing soil health, as well as discussing the impact of agricultural practices on soil health. 

 

Chapter 2: An experimental study evaluating the use of the SLAKES smartphone application 

to measure aggregate stability. The chapter compares results from the SLAKES application 

with the established Le Bissonnais method to understand the sensitivity of the SLAKES 

application. Here, we aimed to assess the reliability of SLAKES as a method for measuring 

aggregate stability, to evaluate SLAKES' sensitivity to different land uses and soil types, and 

to compare SLAKES with the traditional Le Bissonnais method in terms of effectiveness and 

accuracy. 

 

Chapter 3: An experimental study looking at the use of extracellular enzymes, N-acetyl-β-

glucosaminidase (NAG), acid phosphatase (PHO) and β-glucosidase (GLU), as a promising soil 

health indicator. Also, we provide a validation of which of these soil enzymes, if any, could be 

used as a comprehensive biological indicator for soil health by examining the relationships 

between microbial enzyme activity in a range of soils with contrasting chemical and physical 
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properties. Here, we aimed to understand the importance of extracellular enzymes in 

monitoring soil health and shortlist and justify the use of particular candidate enzymes (GLU, 

NAG, and PHO) by comparing enzyme activity within different agricultural systems. 

 

Chapter 4: An experimental study to develop an integrative soil health index by taking 

measurements of soil properties relevant to soil health, including the physical, chemical, and 

biological indicators of the soil under contrasting agricultural land uses and soil types. 

Chapter 4 outlines a framework to develop a soil health index using structural equation 

modelling incorporating key indicators of soil health and considers the dynamic interactions 

within agricultural ecosystems, with the ultimate goal of providing actionable insights for 

optimising soil management practices. 

 

Chapter 5: A summary and discussion of the key findings from both the experimental and 

analytical chapters of this thesis are provided, reflecting on the current research, discussing 

its broader implications, and offering recommendations for future research endeavours. 
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2 Validation of the SLAKES Smartphone Application Against the Le 

Bissonnais Method Using Long-Term Experiments. 

 

2.1 Abstract 
 

Aggregate stability describes the ability of soil aggregates to remain stable against external 

forces such as rapid wetting and raindrop impact. Stable aggregates are an indicator of good 

soil structure, which in turn improves water-holding capacity and protects soil organic 

matter. Aggregate stability is, therefore, an important physical indicator of soil health. 

Current methods to measure aggregate stability often involve disrupting soil aggregates in 

distilled water. These tests are time-consuming, require specialised equipment and are 

usually done in laboratories.  

 

The Soil Aggregate Stability (SLAKES) smartphone application, developed by the University of 

Sydney, Australia, quantifies aggregate stability by measuring how quickly soil aggregates 

disintegrate once submerged in water. The SLAKES application requires three soil aggregates 

between 2-15 mm in diameter to be placed in a petri dish. Water is added, and the SLAKES 

app provides a measurement of aggregate stability within 10 minutes using the camera.  

 

To determine the sensitivity of the SLAKES app, we compared its aggregate stability 

measurements with that of the established “Le Bissonnais” method. Soil samples were taken 

from fields under fallow, continuous arable cropping, and permanent grass management at 

two experimental sites with different soil types and different stabilities. The SLAKES app's 

results were similar to those achieved with the standard Le Bissonnais method. The SLAKES 

app could differentiate between different management types on clayey soil but was less 

sensitive when tested with sandy soil. Despite this, we conclude that the SLAKES app is a 

legitimate, reliable method to measure aggregate stability. The app offers a simple, fast, and 

cheap alternative to standard laboratory methods, allowing land managers and non-

scientists to test the aggregate stability of their soils for themselves.  
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2.2 Introduction 
 

Aggregate stability is a major physical soil health indicator related to the stability of soil 

structure – the system of soil solids arranged into aggregates with internal and surrounding 

pore space (Amézketa 1999). It describes the ability of soil aggregates to remain stable 

against external forces such as rapid wetting and raindrop impact. While soil structure refers 

to the heterogenous arrangement of soil in space at a given time, aggregate stability 

describes the stability of the soil under physical stress and across time (Abivena et al., 2009). 

Soils with good soil structure can store more water and air, cycle nutrients more efficiently, 

and reduce the risk of soil erosion. A recent study by Neal et al. (2020) showed that an 

increase in connected pores supports favourable microbial communities and functions. 

These microbes process plant and animal residues before incorporating them into the soil 

organic matter (SOM) pool, which in turn enhances soil structure. The maintenance of good 

soil structure is, therefore, imperative for sustainable agriculture and the provision of 

ecosystem services.  

 

Despite aggregate stability being a physical soil property, chemical and biological influences, 

such as exchangeable cations, microorganisms, and earthworms, play an important role in 

forming soil aggregates. SOM is also directly related to aggregate stability, as soils are more 

stable if roots and fungal hyphae living on SOM hold aggregates together. Therefore, soil 

management practices that increase SOM and support soil organisms can significantly 

impact aggregate stability. Furthermore, crops and crop rotations that cover the soil surface 

as much as possible throughout the year protect the soil structure, particularly in surface 

horizons (FAO, 2003). As a result, land management practices can greatly impact aggregate 

stability and, therefore, soil health.  

 

Quantifying aggregate stability can, therefore, provide insight into soil structure and inform 

soil management decisions for land managers and policymakers. Current conventional 

methods to measure aggregate stability by wet sieving often involve measuring the 

aggregate size distribution and stability after disrupting soil aggregates in water. Many 

alternative methodologies have been developed for this purpose, making the comparison of 

results between different procedures difficult. Although there is no universal method to 
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measure aggregate stability, the “Le Bissonnais” method (Le Bissonnais, 1996) is as close to a 

unifying standard as possible as it is accepted by the International Organization for 

Standardization and its results can be included in soil erosion models (Borrellia et al., 2021; 

ISO, 2012). The full method combines three treatments of differing wetting conditions and 

energies: fast wetting, slow wetting, and stirring after pre-wetting, representing the different 

mechanisms of aggregate disruption, followed by measuring the resulting aggregate size 

distribution after each treatment. Previous work at Rothamsted Research has proven the 

fast-wetting treatment to be the most sensitive to separate different soils and different 

managements (Redmile-Gordon et al., 2020), which has therefore been chosen for this 

study.  

 

Although the Le Bissonnais method is a standard method producing reliable results, it has its 

disadvantages. It is very labour-intensive, requiring at least three overnight drying sessions 

in an oven, uses highly flammable chemicals and a stack of 2-mm to 50-μm aperture sieves. 

This makes this lab-based technique expensive and time-consuming. It also requires 

specialised equipment and training, making it an unreasonable method for land managers to 

use themselves. As a result, a range of studies have tested alternative methods, including 

the recent development of a phone application (app) called SLAKES (Fajardo & McBratney, 

2019; Fajardo et al., 2016). SLAKES is a free smartphone app designed by the University of 

Sydney that quantifies aggregate stability by measuring how quickly soil aggregates 

disintegrate once submerged in water. The test itself uses a smartphone, phone stand, Petri 

dish and tap water and requires very limited training as the application offers simple step-by-

step instructions and a video tutorial.  

 

Therefore, the SLAKES app promises to be a viable method for land managers to measure 

the aggregate stability of their soils themselves. By increasing the availability of quantitative 

soil structure measurements, this technology could contribute to a better understanding of 

our global soil resources. But to fulfil this promise, it is essential that the new measurement 

technique is accurate and reproducible and that the application of the method can be 

standardised.  
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Flynn et al. (2020) evaluated the SLAKES app's effectiveness in detecting variations between 

conventional tillage, no-tillage, and perennial grass management practices, comparing its 

performance to the Cornell wet aggregate stability test (CWAST). Their results indicated that 

SLAKES was more sensitive in distinguishing tillage practices than CWAST. Similarly, Rieke et 

al. (2022) compared the SLAKES app with three other aggregate stability tests. They found 

that SLAKES had weaker correlations with these tests and limited ability to detect differences 

in aggregate stability across treatments. Although several studies have compared and 

evaluated the SLAKES app, its methodology has not been comprehensively tested and 

compared to other standard aggregate stability measurements. 

 

The aim of this study was to determine whether SLAKES was a valid method for quantifying 

aggregate stability by comparing its measurements with the established Le Bissonnais 

laboratory method. We also wanted to assess the limitations of the SLAKES app by using 

smartphones with differing camera pixel resolutions. We hypothesised that a newer phone 

with better camera pixel resolution and greater phone memory would perform more 

consistently during tests and be able to differentiate between field treatments. Furthermore, 

we also aimed to investigate whether variations in aggregate shape had an impact on the 

outcomes generated by the SLAKES app. We predicted that results from irregularly shaped 

aggregates would show significant differences from spherical, regular-shaped aggregates. 

 

2.3 Methods 
 

2.3.1 Long-Term Experiments  
 

We focussed on two long-term field experiments: Highfield Ley-Arable, located at the 

Rothamsted Farm, Harpenden, Hertfordshire, and Woburn Ley-Arable, located at Woburn 

Experimental Farm at Woburn, Bedfordshire, both in the southeast of England. The soil at 

Rothamsted is a silty clay loam developed on London clay-with-flint over chalk, and the soil 

at Woburn is a sandy loam developed on Lower Greensand. Basic site and soil properties are 

given in Table 1. 
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Table 1: Basic site and soil details. 

Site Highfield Ley-Arable Woburn Ley-Arable 

Location Rothamsted, 
Hertfordshire, UK 

Woburn, Bedfordshire, 
UK 

Global position (latitude; longitude) 
(°) 

51.8028; –0.3660 51.9991; –0.6167 

Altitude (GB Ordnance Datum) (m) 130 99 

Maximum annual temperature (°C) a 14.0 14.5 

Minimum annual temperature (°C) a 6.4 6.1 

Average annual temperature (°C) a 10.2 10.3 

Mean annual rainfall (mm) a 764 671 

Soil   

Soil type (SSEW Soil subgroup) b stagnogleyic paleo-argillic 
brown earth 

typical brown sand 

Soil series (SSEW) c Batcombe Cottenham 

Soil type (WRB Reference Soil 
Group) d 

Chromic Luvisol Cambic Arenosol 

Sand (g kg–1) 150 e 708 f 

Silt (g kg–1) 590 e 176 f 

Clay (g kg–1) 260 e 116 f 

Soil texture b silty clay loam sandy loam 
 

a 1991–2020 average (Rothamsted Research, 2023) 
b Soil Survey of England & Wales (Avery, 1980) 
c Soil Survey of England & Wales (Clayden & Hollis, 1984) 
d World Reference Base for Soil Resources (IUSS Working Group WRB, 2022) 

e Avery & Catt, 1995 
f Catt et al., 1980 

 

Highfield Ley-Arable Experiment  

 

The Highfield Ley-Arable experiment started in 1948 in a field which had been under 

permanent pasture since 1838 (Lawes & Gilbert, 1885). Some plots stayed under permanent 

pasture; others went into continuous arable or ley-arable rotation cropping (Jenkinson, 

1991) in a randomised complete block design with four replicate blocks. An adjacent long-

term bare-fallow area was established in 1959 (Highfield Bare Fallow and the Geescroft Soil 

Mine), where all vegetation is constantly removed by ploughing 4-6 times a year (Appendix 

A). We collected soil samples from four blocks (8 plots) from the continuous long-term grass 

(dominated by perennial rye grass (Lolium perenne L.) and clover (Trifolium spp.)), and 

permanent arable (winter wheat (Triticum aestivum L.)) treatments in the main Ley-Arable 
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experiment, and we added to this with 5 plots established on the adjacent bare fallow 

treatments for this research. Hereafter we refer to these treatments as ‘grass’, ‘arable’ and 

‘fallow’, respectively. 

 

Woburn Ley-Arable Experiment 

 

The Woburn Ley-Arable experiment began in 1938 (Johnston, 1972), and has had a varied 

history (Johnston et al., 2022). The current version of the experiment has, technically, eight 

5-year crop rotation treatments, comprising of three years in ‘treatment’ crops followed by 

two years under ‘test’ crops. Four of the treatments have an arable rotation treatment 

phase comprising winter rye (Secale cereale L.) – winter barley (Hordeum vulgare L.) - winter 

oats (Avena sativa L.) in years 1, 2 and 3, respectively. The other four treatments are grass 

leys, either perennial rye grass (Lolium perenne L.) with N fertiliser (two treatments) or 

perennial rye grass – white clover (Trifolium repens L.) with no N fertiliser (two treatments). 

The particular treatments differ, technically, because of their past history (Johnston et al., 

2022). Following either the 3-year arable rotation or the 3 years under grass ley, all 

treatments are then under two years of test crops - winter wheat and winter rye in years 4 

and 5, respectively. The treatments are established in paired plots within a block (16 plots 

for the 8 treatments). There are then 5 blocks representing each year of the 5-year  crop 

rotations in any particular year (80 plots in total) (Appendix A). 

 

 We collected soil samples from two blocks (32 plots), one in year 3 of the treatment phase 

(i.e., plots under winter oats or grass leys), and the other one in year 5 under an arable test 

crop (winter rye).  For the purposes of this study, we grouped all eight arable rotation 

treatments together, and all eight grass ley treatments together.  

 

Soil Sampling 

 

Soil samples were collected from the top 23 cm of the profile using a spade, transferred in a 

plastic bag and then transported to the lab on the same day. Soil samples were then stored 

in a dark, cold room at 5 °C until analysis. Three samples were taken from each plot and 

treated as internal replicates and analysed independently. The Highfield Ley-Arable 

experiment involved a total of 39 measurements distributed across the 13 plots outlined 
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above (5 plots under fallow, 4 plots under arable, and 4 plots under grass), with each plot 

having three replicates. A further 96 measurements, obtained from 32 plots (8 plots each 

under arable rotation treatment (year 3), grass leys treatment (year 3), test crop following 

grass leys treatment (year 5) and test crop following arable rotation treatment (year 5)), with 

3 replicates were recorded for the Woburn Ley-Arable experiment. 

 

2.3.2 SLAKES Aggregate Stability Test  
 

The “SLAKES: Soil Aggregate Stability” smartphone app (Fajardo & McBratney, 2019) is 

available to both Android and Apple users and can be downloaded from the Google Play 

Store and App Store, respectively. The SLAKES app can analyse the stability of soil aggregates 

by using image recognition software. First, a reference image of selected soil aggregates is 

taken. Then, water is added and the app started. The app will measure the area the soil 

aggregates take up over time and then calculate the aggregate stability.  

 

Soil samples collected from field sites were hand-crumbled to release aggregates 3 to 5 mm 

in diameter, which were then air-dried for 48 hours. Three spherical aggregates were 

selected to introduce some uniformity amongst all the aggregate shapes that could be 

selected. The app recommends selecting spherical soil aggregates as changes in orientation 

after capturing a reference image may affect results.  

 

Phones were suspended on a ring stand at a height that allowed the camera to capture the 

whole Petri dish (about 20 cm above the petri dish). Lighting included the laboratory’s 

overhead fluorescent lights and natural light from an adjacent window. The Petri dish was 

also placed on a white background. Good light and high contrast between the soil 

aggregates and the background are needed when using the app; otherwise, the SLAKES app 

mistakes shadows and the background as the soil aggregate. There was also no lighting 

directly over the Petri dish, as glares in the water could register as a soil aggregate. 

 

For each measurement, three soil aggregates from the same sample were placed in an 

empty Petri dish. Following the SLAKES app instructions, we then captured a reference 

image. The aggregates were removed, and the Petri dish was filled with tap water. Tap water 
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was used to replicate the conditions of the natural environment and is readily available to 

land managers. The soil aggregates were then transferred back into the water-filled Petri 

dish, with careful consideration to place the aggregates in a similar position and orientation 

as the reference image. We pressed the start button, and after 10 minutes, a Slaking Index 

(SI) value was displayed on the screen. The dispersion of soil aggregates (expressed as the SI) 

is represented by a Gompertz function that has been fitted to the dissolution data (Equation 

1).  

 

Equation 1:  

    𝑆𝐼 =  𝑎𝑒−𝑏𝑒[1−𝑐.𝑙𝑜𝑔(𝑡)]
   

 

The Gompertz function is defined by three coefficients: a, b, and c, where coefficient a 

denotes the maximum predicted dispersion of a soil aggregate, b characterises the initial 

slaking, and c represents the ongoing rate of change (Fajardo et al., 2016; Flynn et al., 2020). 

The SI value observed after the 10-minute imaging period (t) is an average of coefficient a 

for all three soil aggregates in the fitted Gompertz function (Flynn et al., 2020).  

 

SLAKES recommends the use of spherical aggregates. However, this may not represent the 

diversity of soil aggregates present. To test if irregularly shaped (non-spherical) aggregates 

influenced results, we selected three irregularly shaped aggregates and three regular 

(spherical) shaped aggregates from each plot for a comparative analysis. We defined 

regularly shaped aggregates as roughly spherical and relatively round in shape, and 

irregularly shaped aggregates (rectangular, longer than wide), varying in size and shape.  

 

To test if camera pixel resolution influenced results, four smartphones with differing cameras 

were used in our study (Table 2). SLAKES was downloaded onto Phone 1 and Phone 3 with a 

12-megapixel and 5-megapixel rear camera, respectively. We also used older phone models 

to test whether the app was compatible and worked effectively on various smartphones 

(Table 2). All smartphones were reset to their original factory settings before downloading 

the SLAKES app. Each phone measured soil aggregates collected from each plot selected 

from the Highfield Ley-Arable and Woburn Ley-Arable Experiments. We also examined the 
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frequency of Not Applicable (NA) and outlier results (SI above 20) for each measurement of 

aggregate shapes from Phone 1, with samples taken from the Highfield Ley-Arable 

experiment only. Furthermore, that SLAKES data collected from Phone 1 were used when 

comparing results from the SLAKES app with the Le Bissonnais method. 

 

Table 2: List of smartphones used in this study. 

Phone 

model 

Code Phone 

type 

Year of 

purchase 

Camera 

Mega-Pixel 

Internal phone 

memory (Giga-

Bites) 

iPhone 11 Phone 1 iOS 2019 12 128 

iPhone 7 Phone 2 iOS 2017 12 32 

J3 Phone 3 Android 2015  5 8 

Galaxy S6 Phone 4 Android 2017 16 64 

 

We repeated the test for each soil sample three times, so that nine aggregates were 

measured from each plot. 

 

2.3.3 Le Bissonnais Aggregate Stability Test  
 

We used the fast-wetting component of the Le Bissonnais method to represent the 

mechanisms of aggregate disruption by slaking, and then measured the resulting aggregate 

size distribution (Le Bissonnais, 1996).  

 

Soil samples collected from the field were hand-crumbled along existing pores and cracks 

over a single sieve stack with apertures of 5 mm and 3 mm. Soil aggregates collected in the 

lower 3 mm sieve (3-5 mm diameter) were then carefully transferred to a drying tin, 

removing any stones, and placed in the oven at 40 °C overnight. A subsample of 5 g of oven-

dried aggregates was weighed and then transferred to a glass beaker filled with 50 mL of 

deionised water, leaving them to immerse. After 10 minutes, we carefully poured the water, 

trying to avoid losing any soil or further disruption. This step is not part of the standard Le 
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Bissonnais method but follows the procedure used by colleagues at Rothamsted Research. 

Using a wash bottle containing methylated spirits (also known as denatured alcohol), we 

gently transferred the wet aggregates from the beaker to a 50 µm sieve submerged in a bowl 

of methylated spirits. The sieve was gently twisted ten times. The sieve containing > 50-µm 

stable aggregates was then removed from the methylated spirit bowl and left to air dry in 

the fume cabinet for 2 hours. Once air-dried, we brushed the > 50 µm aggregates onto a 

drying tin, before placing the drying tin in the oven at 40 °C overnight.  

 

The following day, we made a sieve stack comprising the following sieves from top to 

bottom: 2-mm, 1-mm, 500-µm, 200-µm, 100-µm, 50-µm, and receiver. We removed the 

dried > 50 µm aggregates from the oven, transferred the sample to the sieve stack and put a 

lid on. The sieve stack was gently shaken in a rotary motion for 30 seconds. We then 

weighed the aggregates remaining in each sieve. Then all > 50 µm aggregate fractions were 

placed into separate bottles containing sodium hexametaphosphate dispersing solution (2 g 

L–1) to separate out the sand-sized (> 50-µm) primary particles (Kemper & Rosenau, 1986). 

After 4 hours of shaking, we assumed that all soil particles were fully dispersed. We 

thoroughly rinsed the remaining particles over a 50-µm sieve in a sink and transferred the > 

50-µm sand-sized particles to a drying tin, which was placed in the oven at 40 °C overnight.  

 

After removing the dried > 50 µm sand particles from the oven, we tipped the sand particles 

into the same sieve stack described above and put a lid on before gently shaking for 30 

seconds. We then weighed the sand particles retained on each sieve. All soil weights were 

determined to 2 decimal places (0.00 g). The stable aggregate size distribution was then 

calculated using Equation 2, which can be described by the conventional mean weight 

diameter (MWD) calculation, having accounted for sand-sized primary particles in each size 

class: 
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Equation 2:   
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where: =MWD mean weight diameter (mm) 

 =i mean aggregate diameter in size class i (mm) 

 =
+ )( pai

a oven-dry weight of soil (aggregates and sand particles) in size class i (g) 

=
i

p oven-dry weight of sand particles in size class i (g) 

=da total oven-dry weight of soil (aggregates and sand particles) (g) 

 
 

2.3.4 Statistical Analysis  
 

Slaking Index (SI) and aggregate size distribution data were analysed by fitting Linear Mixed 

Models (LLM). Block was assigned as a random factor, treatment as the explanatory variable, 

and SI and MWD as a response. Analytical pseudo-replicates were treated as random effects 

to account for the correlation between measurements from the same sample. We then 

extracted a corresponding analysis of variance (ANOVA) table. Datasets were log-

transformed if the residuals were not normally distributed. If the probability (p) of the 

ANOVA variance ratio statistic (F) was < 0.05, we could conclude that treatment would have 

a significant effect over the response (SI or MWD). A post hoc test (Tukey HSD) was used to 

explore where these differences lie. Similarly, ANOVA was performed to see if there were 

significant differences between phone types and aggregate shape on SI scores. Residuals 

were plotted against the fitted model values to check for an unequal variance between 

groups, and a normal quantile–quantile plot was used to check for the normality of the 

residuals. Linear regression was also used to compare SI with aggregate size distribution. All 

statistical analysis was conducted in R version 4.3.2 (R Core Team, 2023). 

 

 

 

 

 



 49 

2.4 Results  
 

2.4.1 SLAKES vs. Le Bissonnais 
 

Analysis of MWD on Highfield Ley-Arable soils shows that the Le Bissonnais method was able 

to detect differences between all treatments. Soil aggregates under grass treatments were 

significantly more stable than those under arable and fallow treatments (p <0.001), whilst 

there was only a small but statistically significant difference in soil stability between arable 

and fallow treatments (p= 0.006) (Figure 2A). Whilst the SLAKES app successfully separated 

the grass treatment with highly stable aggregates from the arable and fallow treatments 

with less stable aggregates, it was not able to further separate, statistically, the arable and 

fallow treatments in the way that the Le Bissonnais method could (Figure 2B). The values of 

the Le Bissonnais method and the SLAKES method are inverse because of the method of 

calculation. A greater MWD (Le Bissonnais method) and a smaller SI (SLAKES) both indicate 

soil aggregates of greater stability. 
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Figure 2: Back transformed treatment means with 95% confidence intervals bar of aggregate 

stability indices for the A) Le Bissonnais method (mean weight diameter), and B) SLAKES 

application (SI score) under Grass, Arable and Fallow treatments from the Highfield Ley-

Arable long-term experiment.  
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Figure 3: Back transformed treatment means with 95% confidence intervals bar of aggregate 

stability indices for the A) Le Bissonnais method (mean weight diameter), and B) SLAKES 

application (SI score) under two crop rotation treatments at two phases: Grass (year 3 – 

grass ley treatment), Arable (year 3 – arable rotation treatment) and Test Arable and Test 

Grass (year 5 in test crop following 3 years under arable and grass treatments, respectively) 

treatments from the Woburn Ley-Arable long-term experiment. 
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Results showed that the SLAKES application could differentiate between only grass and 

arable treatments in sandy soils and showed greater variation and spread of data (Figure 3) 

compared to the clayey soil in the Highfield experiment (Figure 2). Another interesting 

feature of the Woburn Ley-Arable experiment is that whilst the ‘Test Grass’ shows some loss 

of stability in the two years under arable (i.e., compared with ‘Grass’), it still remains more 

stable than treatments which are always under arable crops (comparing with ‘Arable’ and 

‘Test Arable’).  

 

We also performed a correlation test on log-transformed variables to see if results from the 

Le Bissonnais method and SLAKES were correlated (Figure 4). The correlation was significant 

(p-value = <0.001, t=64.12), with a negative slope (-0.51).  

 

 

Figure 4: Correlation looking at the SLAKES (Slaking Index score, log-transformed) against the 

Le Bissonnais method (mean weight diameter, log-transformed) for the Woburn Ley-Arable 

experiment.  
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2.4.2 Phone Types and Aggregate Shape 

 

We also ran the SLAKES app on different phones (Phone 1 to 4, see Table 2) with different 

camera qualities and internal memories and found no significant difference in results 

between phone types (p value>0.05). However, it is worth noting that Phone 4 could better 

outline the soil aggregates than Phone 2 (Figure 5). Here, we placed three soil aggregates on 

a Petri dish under different orientations. Whilst Phone 4 could consistently outline the soil 

aggregates, Phone 2 was less accurate. We occasionally noted similar issues with Phone 3; 

however, we observed no such issues with Phone 1. Phone 2’s camera lens frequently had 

issues focusing on the soil aggregates, resulting in a blurry image, which was also the case 

with Phone 3. Moreover, we found that all phones tended to ‘crash’ more often after long 

use. This was more prevalent in older phones such as Phone 2 and Phone 3. 

 

 

Figure 5: SLAKES reference image of three soil aggregates on a: A) Phone 4 and: B) Phone 2. 

Each soil aggregate was placed under different orientations. Whilst Phone 4 could accurately 

outline the soil aggregates, Phone 2 struggled to do so.  

 

We found no significant differences between irregularly shaped aggregates and spherical 

aggregate shapes. However, we identified irregularly shaped aggregates as a factor that 

increased the frequency of extreme value, NA results and phone ‘crashes’ (Table 3). 
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Table 3: Average frequency of outlier results and phone crashes during SLAKES 

measurements from the Highfield Ley-Arable experiment for both regularly shaped and 

irregularly shaped aggregates, taken on Phone 1. 

 

 Regular shaped aggregates Irregularly shaped aggregates 

NA  5 11 

Phone crashes  2 9 

 

2.5 Discussion 

2.5.1 Differences in stability between land use treatments and the ability of 

SLAKES and Le Bissonnais method to detect them. 
 

 Organic matter is closely related to aggregate stability (Tisdall & Oades, 1982), and 

crops and crop rotations that cover the soil surface can protect soil structure, particularly in 

surface horizons (Li et al., 2021). Therefore, soil management practices that increase soil 

organic matter and support soil organisms can greatly impact aggregate stability. As a result, 

aggregates are more stable under pasture grass treatments and less stable under bare 

fallow, which has been confirmed by the results of the Le Bissonnais method and the SLAKES 

app (Dexter et al., 2008). The difference in aggregate stability between arable and 

permanent fallow are much smaller and could only be detected by the Le Bissonnais 

method. Similarly, the effect of a previous grass treatment on the aggregate stability of the 

following test crop treatment could only be detected significantly by the Le Bissonnais 

method. 

 Organic matter acts as a binding agent, promoting aggregation and enhancing soil 

structure stability (Eden et al., 2020). Clay soils generally have greater organic matter 

content than sandy soils. Thus, sandy soils with smaller organic matter content have fewer 

binding agents that hold soil particles together, resulting in weaker soil aggregates (Djajadi et 

al., 2012). This is confirmed by our findings from the Woburn Ley-Arable experiment, where 

the soil is characterised by a greater sand content and lower stability. Whilst the SLAKES 

application was able to differentiate between the grass and arable treatments on clayey soils 

(Figure 2), it was less sensitive on sandy soils compared to the Le Bissonnais method (Figure 
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3), suggesting that soil type plays a significant role in the SLAKES app functionality. Thus, we 

suggest that the SLAKES application could be used as an alternative to conventional lab-

based wet-sieving techniques when used on fine-textured clayey soils, but operators should 

be more cautious when using the application on coarse-textured sandier soils due to the 

losses in sensitivity. But overall, SLAKES was still able to distinguish the effects of most of the 

different land management treatments in both soil types. Similarly, Adetsu (2021) observed 

variability in the SLAKES method’s sensitivity in detecting changes in soil aggregate stability 

attributed to soil management practices. Notably, they found that SLAKES demonstrated 

heightened sensitivity to impacts from manuring and variations in soil types. Our results also 

followed a similar trend, with soil under grass being the most stable, followed by arable and 

then fallow treatments (Figure 2).  

 Results from the SLAKES app are expressed as a slaking index coefficient (SI value), 

where values <3, 3-7, and >7, indicating high, moderate, and low stability, respectively 

(Fajardo & McBratney, 2019). All samples taken from grass treatments scored an SI under 3. 

While samples from arable treatments generally scored under 7, the average SI score was 

7.9 for fallow treatments. Our results, therefore, validate this scoring system as our soil 

samples taken from different land management followed this trend. 

 

 Flynn et al. (2020) also tested the sensitivity of the SLAKES application to detect 

differences between conventional tillage, no-tillage, and perennial grass management 

practices and compared the results with the Cornell Wet Aggregate Stability Test (CWAST). 

The CWAST quantifies the proportion of dried aggregates that break apart during a 

controlled simulated rainfall event, mimicking the energy of vigorous spring rain (Flynn et al., 

2020). They found that the SLAKES app quantified the aggregate stability decreasing in the 

order of perennial grass (strongest), no-tillage, and conventional tillage (weakest) practices. 

Furthermore, Flynn et al. (2020) noted that SLAKES could differentiate among tillage 

management practices at a greater sensitivity than the CWAST. In contrast, we found that 

our lab-based method was more sensitive in detecting differences between land 

management compared to SLAKES. It is worth highlighting that the mechanisms triggering 

disaggregation in these tests vary, which could potentially help explain the differences in 

results (Flynn et al., 2020). Moreover, soil aggregates were subjected to two different 

degrees of drying. Aggregates intended for the SLAKES app were air-dried, whereas those for 
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the Le Bissonnais method were oven-dried (but only at 40 °C). This distinction in drying 

methods may account for the difference in sensitivity observed between the two methods. 

 Another study by Rieke et al. (2022) compared the SLAKES app with three other 

aggregate stability tests. They found that SLAKES was correlated the least with other 

aggregate stability tests and found that the SLAKES app did not effectively find differences in 

the aggregate stability across different treatments. However, our results found that SLAKES 

and the Le Bissonnais method were significantly correlated (Figure 4).   

 

2.5.2 Frequency of outlier and what might influence them  

 We also observed many outlier values from the SLAKES app, which were 

predominantly seen in unstable soils under the fallow and arable treatments, with values as 

high as 14,000. We initially did not remove any outliers from our analyses as one aim of this 

study was to identify whether the SLAKES app could be used by non-scientists, and we 

argued that land managers might not be able to interpret outlier values correctly. However, 

we recommend removing values above 20 and repeating the analysis in these cases. 

Another option to increase the precision of the mean would be to increase the number of 

measurements. However, in our study, we already conducted 24 individual measurements, 

which is possibly close to what would be feasible for a field. 

 The analysis of the frequency of outliers identified irregularly shaped aggregates as a 

factor that increased the frequency of these extreme results (Table 3). Irregular-shaped 

aggregates are not symmetrical, so more care is needed when placing the aggregate back 

into the Petri dish of water at the same angle after taking a reference image. This is 

important as the surface area outlined could be reduced after the reference image is 

captured, which can lead to a result with a very high number, an error message (NA) or the 

application crashing. Moreover, it is important to place the aggregate in the same 

orientation as the reference image to avoid a misleading SI. This is evident in Figure 5, where 

the same three soil aggregates were placed in different orientations. Note that soil 

aggregates should always be removed from the Petri dish before adding water; this is 

because the soil aggregates may shift out of the frame or move too close together even if 

water is carefully added. Once this happens, any attempts to move the soil aggregates into 

their original position will affect the results.  
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 We also found that outlier results could be due to one or more soil aggregates not 

being recognised when the app is running after taking the initial reference image, which in 

turn influences the final SI. For example, if the app recognises a shadow as an aggregate 

whilst the app is running, this can lead to an outlier result. The SI is calculated by averaging 

all aggregates in each measurement. So, if one aggregate is captured incorrectly, the SI is 

skewed for all aggregates in the test as a result. Using image recognition R code, users can 

view the area (pixels) of individual aggregates over time and potentially exclude individual 

aggregate readings that are inconsistent within each measurement (Fajardo et al., 2016). 

Nonetheless, doing so would require knowledge and some level of expertise in R studio, 

which we argue not all land managers will have.  

 Furthermore, the occurrence of these outlier values and phone ‘crashes’ (NA) 

increased with phone use over time. We believe this is due to each SLAKES measurement 

requiring 5 to 6 GB of physical memory, depending on the aggregate size and shape (Fajardo 

et al., 2016). Initially, we took concurrent measurements, but after observing an increased 

frequency of outlier and NA results, phone crashes, and overheated phones, we decided it 

was best to leave up to 10-minute gaps between each measurement. This could further 

explain why we observed better SLAKES performance in phones with higher memory and 

CPUs, such as Phone 1 (Table 3).  

 Sometimes, it was difficult to focus the camera on the soil aggregates (Figure 5), 

which seemed to be largely due to inadequate lighting. When using a ring light, the camera 

lens was able to focus on the soil aggregates better but then had issues with shadows and 

glares. Obour et al. (2023) conducted a comparison between the SLAKES application and the 

dry aggregate stability (DAS) method. They also noted instances where the SLAKES method 

had difficulties in accurately detecting soil aggregates and effectively capturing the 

disaggregation process during stability measurements.  

 Therefore, the user should first establish a good equipment set-up to realise the 

benefits of the SLAKES method as a quick and easy method for evaluating soil aggregate 

stability. So, whilst the SLAKES app can be operated outside of the lab, proper setup 

conditions are still required. Good lighting, a stable, flat surface, and a white high-contrast 

background are needed for best results. Consequently, we do not recommend the SLAKES 

app as an in-field method, and we highly recommend its use indoors to minimise the effects 

of interfering factors. 
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2.6 Conclusions  
 

In summary, the SLAKES app can identify stable and unstable soil aggregates and 

differentiate between management types. However, it is less sensitive and less precise than 

the Le Bissonnais method. As expected, SLAKES was able to identify pasture grass as the 

management producing the most stable aggregates but was not able to differentiate 

between arable and bare fallow treatments. It was also less able to differentiate between 

treatments in a sandy soil compared to a clayey soil. However, the method did produce 

reasonable average values that could allow a simple quantitative evaluation of aggregate 

stability. Thus, allowing us to take a higher number of measurements from the same sites.   

 

We found that the app was particularly sensitive to light. It can mistake shadows and light 

glares on the water as aggregates. As a result, if the experiment is performed without 

adequate lighting and a high-contrast background, the application will fail. We also 

discovered that there was a lot of variation across each reading. This was largely found when 

aggregates were not spherical and were irregular in shape. Careful consideration is therefore 

needed when selecting the soil aggregates. However, this may introduce an additional layer 

of bias, as we deliberately choose specific aggregates, potentially leading to non-

representative measurements. 

 

We believe the SLAKES app is a legitimate and reliable method for measuring aggregate 

stability. The SLAKES app offers a simple, fast, and cheap alternative to standard 

conventional laboratory methods, allowing non-scientists to test the quality of their soils 

themselves. Also, by increasing the availability of quantitative soil structure measurements, 

this technology could contribute to a better understanding of our soils. 
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3 Extracellular Enzymes as Promising Soil Health Indicators: Assessing 

Extracellular Enzyme Response to Different Land Uses, Organic 

Amendment Additions and Soil Textures Using Long-Term Experiments.   

 

3.1 Abstract  
 

Extracellular enzymes (EE) play a crucial role in soil organic matter (SOM) decomposition and 

nutrient cycling and are known indicators of soil health. However, it is poorly understood 

how these enzymes respond to different land uses, and their relationships to other soil 

properties have not been extensively researched.  

 

Long-term experiments at Rothamsted’s Woburn and Harpenden sites in the UK were used 

to evaluate how different management practices affect enzyme activity involved in carbon 

(C), nitrogen (N) and phosphorus (P) cycling in the soil. Samples were collected from soils 

with different organic treatments such as straw, farmyard manure (FYM), compost additions, 

cover crops and permanent grass cover, and assessed for the activities of three soil enzymes: 

N-acetyl-β-glucosaminidase (NAG), acid phosphatase (PHO) and β-glucosidase (GLU).  

 

Our objective in this paper was to provide a validation of which soil enzymes, if any, could be 

used as a comprehensive biological indicator for soil health by examining the relationships 

between microbial enzyme activity in a range of soils with contrasting chemical and physical 

properties. Furthermore, we wanted to understand the effects of land use and organic 

amendments on the enzymatic activity of NAG, GLU and PHO in the soil. Our results show 

that land uses with the least amount of soil disturbances had greater biological activity. 

Grass treatments relative to all other plots showed the greatest levels of enzymatic activity, 

followed by arable and fallow, respectively. Soil EE activity correlated with other observed 

soil health indicators. In particular, NAG and GLU showed a positive correlation with total C 

and total N, whereas PHO was correlated with inorganic-P (PO4-P) levels.   

 

Investigating the interactions of important enzymes with soil characteristics and SOC can 

help us to better understand the health of our soils. Studies on long-term experiments with 

known histories and large datasets can help us. SOC tends to decrease during land use 
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changes from natural ecosystems to agricultural systems. Therefore, it is imperative that 

agricultural lands find ways to increase and/or maintain SOM in the soil.  

 
3.2 Introduction 
 

We are seeing an unprecedented demand for food and fibre as our population continues to 

grow. Nearly all potential arable land is already in production (FAO, 2020). Maintaining and 

improving the productive capacity of our soils is essential for human survival. Therefore, 

healthy soils remain an essential element of agriculture (FAO, 2020). The topsoil, typically 

the top 15 to 30 cm, is rich in soil organic matter (SOM), nutrients, and microorganisms, 

making it the most fertile layer of the soil (Kunlanit et al., 2020). In this layer, 

microorganisms and fauna are primary agents, driving all dynamic processes in soil 

ecosystems. Microorganisms closely interact with their surroundings due to their high 

surface area-to-volume ratio. As a result, they can respond quickly to environmental 

changes, especially when compared to higher organisms. In some cases, changes in 

microbial activity can cause chemical and physical changes in the soil. Microorganisms can, 

therefore, give an integrated measure of soil health and provide early signs of soil 

degradation or, indeed, improvement (Pankhurst et al., 1995). Furthermore, some chemicals 

that directly impact soil health depend on microbial activities; as a result, soil enzymes can 

act as important soil health indicators. 

 

Soil enzymes are vital for many biogeochemical processes that influence the overall health 

of our soils. Extracellular enzymes (EE) are secreted by microorganisms and plant roots and 

can be found especially in the rhizosphere, the soil zone intimately surrounding and directly 

influenced by plant roots. They can also be found in pores between soil aggregates, around 

decaying SOM and on microbial cell surfaces. EE are vital to nutrient cycling and SOM 

decomposition by catabolising highly complex and diverse organic compounds into readily 

available nutrients that facilitate plant growth and microbial activity (Burns., 1979). The 

different types of EE found in the soil are influenced by the content and composition of 

SOM, which varies with soil type and land management, and can alter soil metabolic 

processes (Keller et al., 2023). EE can, therefore, indicate microbial community diversity and 

metabolic activities and help maintain beneficial physical and chemical properties of the soil, 
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as well as soil fertility, ecology, and health (Gessner et al., 2010). Given their role in 

mineralising carbon (C), nitrogen (N) and phosphorus (P), as well as stabilising SOM, EE 

activities are promising indicators of soil health.  

 

SOM decomposition is an essential process in soil ecosystems with implications for C 

sequestration and nutrient cycling; EE involved in SOM decomposition is, therefore, of 

particular interest. Cellulase enzymes catalyse the breakdown of glycosidic bonds in 

cellulose, the main component of plant cell walls. At least three enzymes are needed to 

degrade cellulose completely into glucose: endo-β-1,4-glucanase, exo-β-1,4-glucanase, and 

β-glucosidase (Uzuner et al., 2019). Endoglucanase randomly cleaves internal glycosidic 

bonds within the crystalline structure of cellulose, producing non-reducing ends of 

carbohydrate chains. Oligosaccharides, such as cellobiose, are removed from these non-

reducing chains by exoglucanase. Finally, β-glucosidase (GLU) hydrolyses these 

oligosaccharides into glucose (Wu et al., 2018).  

 

GLU is a common soil enzyme that catalyses the hydrolysis and decomposition of plant 

debris in the soil ecosystem (Martinez et al., 1997). GLU regulates the supply of glucose, a 

necessary C energy source for the activity and growth of many soil microorganisms, and a 

rate-limiting step in cellulose degradation (Turner et al., 2002). As a result, GLU is a 

promising soil health indicator as it can provide information on SOM degradation, biological 

activity, and the effects of land management on the soil. Furthermore, according to Acosta 

et al. (2000), GLU is sensitive to pH changes, allowing the enzyme to be used as a 

biochemical indicator for environmental changes resulting from soil acidification (Ali et al., 

2019). A better understanding of GLU and other properties that influence them will 

undoubtedly contribute towards our understanding of soil health.  

 

Chitin is the main component in fungal cell walls and the exoskeletons of arthropods, 

providing rigidity, strength, and structural support. After cellulose, chitin is the most 

abundant polysaccharide in nature and contributes towards the organic N found in the soil 

(Paul et al., 1996). This N-containing polymer is comprised of linear chains of N-

acetylglucosamine units linked together by β-1,4-glycosidic bonds (Chen et al., 2010). The 

main enzymes involved in the complete breakdown of chitin are endo-chitinase, chitobiase 
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and N-acetyl-β-glucosaminidase. Endo-chitinase cleaves glycosidic bonds within the chitin 

polymer to release acetyl-glucosamine. Chitobiase hydrolyses the non-reducing end of chito-

oligosaccharides to release chitobiose. N-acetyl-β-glucosaminidase (NAG) hydrolyses 

adjacent N-acetylglucosamine units from the non-reducing ends in chito-oligosaccharides 

(Lee et al., 2021; Parham et al., 2000). Therefore, NAG is an essential enzyme released by 

plants and microorganisms that is of great importance in agricultural systems (Deshpande, 

1986). Its presence has demonstrated effectiveness in controlling many soil-borne diseases 

by degrading the cell walls of pathogenic fungi (Singh et al., 2013). Previous research has 

identified the application of NAG in combating pests and pathogens to increase crop yields 

and plant growth and, therefore, maintain soil health. However, the role of NAG as a 

potential indicator of soil health has been widely overlooked.  

 

In soil ecosystems, phosphatases are a group of enzymes that play critical roles in P-cycling. 

There are two main types of soil phosphatases. Alkaline and acid phosphatases (PHO) work 

optimally under alkaline or acidic conditions, respectively. Karthikeyan et al. (2002) state that 

PHO affects plant growth and development by directly influencing the availability of P during 

low P conditions. Plant roots increase the secretion of the enzymes when signalling indicates 

P deficiency in the soil. These enzymes then hydrolyse phosphate ester bonds to release 

inorganic-P from organic-P compounds, increasing the abundance of P. The low substrate 

specificity of the enzyme allows it to act on a range of structurally related substrates (Alef et 

al., 1995). Thus, phosphatase enzymes are correlated to plant growth and P-stress and play 

an active role in P-cycling.  

 

The activities of soil PHO are influenced by soil pH, microbial activity, and the availability of 

organic P compounds. Understanding these factors could help farmers actively manage P 

inputs to contribute towards sustainable soil management practices in agricultural systems. 

Furthermore, understanding the dynamics of enzyme activities in soil ecosystems is crucial 

for predicting their interactions with nutrient uptake and plant growth and, therefore, soil 

health.  

 

This overview indicates that EE are sensitive to changes in the environment (Gomez et al., 

2020). Monitoring the EE activities in soils can provide valuable insights into the effects of 
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land use practices, climate change and agriculture on soil ecosystems. Understanding soil 

enzyme dynamics is important for sustainable agriculture as it could allow land managers to 

assess soil health, make informed decisions about nutrient management, and develop 

strategies for mitigating the impact of environmental changes on soil ecosystems. But how 

soil enzymes respond to different land uses and organic amendments in agricultural systems 

is not fully understood. Therefore, our objective in this study was to understand the effects 

of land use and organic amendments on the enzymatic activity of NAG, GLU and PHO in the 

soil. We also examined the relationships between microbial enzyme activity in a range of 

soils with contrasting chemical and physical properties, which would further aid our 

understanding of soil enzyme performances in relation to soil health. Furthermore, using our 

findings we then assessed which soil enzymes could be used as candidate biological 

indicators for soil health. 

 
3.3 Methods 
 

3.3.1 Site Locations and Experimental Design 
 

Highfield Ley-Arable Experiment 

 

The Highfield Ley-Arable long-term experiment located at Rothamsted Research in 

Harpenden, UK (geolocation: 51.802777, -0.366025), started in 1948 in a field that had been 

in permanent grass since 1838 (e-RA, 2023). In all, six treatments were established in a 

randomised complete block design with four replicate blocks. The treatments included 

permanent grass (i.e., continuation of the former land use), arable rotations, and alternating 

grass ley-arable rotations. In 1959, an area adjacent to the Highfield Ley-Arable experiment 

at Rothamsted was ploughed and maintained bare since through cultivation; this is the 

Highfield Bare Fallow. A similar area of long-term bare fallow (the ‘Geescroft Soil Mine’) is 

located adjacent to the Highfield Bare Fallow. We focused on the plots under long-term 

(since 1948 or 1959) grass, arable, and bare fallow treatments from these three 

experimental areas for this research. These treatments are all continuous with no rotation 

(‘arable’ is continuous winter wheat since 2008). There were four replicate plots each of the 

grass and arable treatments on the Highfield Ley-Arable experiment, and three and two 
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replicate plots of fallow on the Highfield Bare Fallow and Geescroft Soil Mine areas, 

respectively, totalling 13 plots in total. 

 

Table 4: Current treatment components in the Highfield Ley-Arable (HL-A), Highfield Bare 

Fallow (HBF) and Geescroft Soil Mine (GSM) experiments at Rothamsted Research, 

Harpenden, which were sampled for this study. 

 

Treatment Description of treatment 

Grass HL-A: Grass/clover ley since before 1948; continuous 

Arable HL-A: Arable since 1948; continuous winter wheat since 2008 

Fallow HBF and GSM: Permanent bare fallow since 1959; continuous 

 

Woburn Organic Manuring Experiment  

 

The Woburn Organic Manuring Experiment started in 1964 on a sandy loam soil at the 

Woburn Experimental Farm in Bedfordshire, UK (geolocation: 51.999805, -0.616036) to test 

the effects of different types of organic matter (OM) inputs on SOM and crop yields. The 

experiment has had three distinct phases of OM input, always with 8 treatments in a 

randomised complete block design with four replicate blocks (32 plots in all). Initially, six 

organic treatments (FYM, peat, straw, green manure and two grass leys) were compared 

with two mineral-fertilizer-only treatments. In 2003, the third and current treatment phase 

started, with 8 treatments (Table 5). An arable rotation (winter rye, spring barley, winter 

beans, winter wheat, forage maize) was started on seven treatments; the eighth treatment 

was sown to a grass/clover ley. The seven treatments under the arable rotation are split into 

6 split plots to receive 6 levels of inorganic N inputs (except for the winter beans phase, 

which does not receive inorganic N), which rotates annually. In a seven-year period 

(accounting for the year of no N under winter beans), each split plot will have received the 

same amount of mineral N, and soil sampling conventionally is done across the whole main 

plot area to capture a representative sample across all split plots. 
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Table 5: Current treatment components (since 2003) in the Woburn Organic Manuring 

experiment. Note that there are two control (F) treatments – one is a long-term 

inorganically-fertilised treatment, and the other has previously received organic amendment 

in a previous phase of the experiment. 

 

Treatments since 2003 

Code Treatment  

Control (two treatments) Inorganic fertiliser only (no organic 

amendment)  

Straw Chopped straw at 7.5 t ha–1 

Cover crop Cover crop (white mustard) when under 

a spring crop 

Compost Compost at 40 t ha–1 

FYM10 (DG10) Farmyard manure (FYM) at 10 t ha-1 

FYM25 (DG25) FYM at 25 t ha-1 

Grass Grass/clover leys 

 

3.3.2 Sample Collection  
 

Soil samples were taken mid-season 2022, 2 months after organic amendment application. 

An auger was used to collect four topsoil samples (0 to 25 cm) from each plot (13 plots in 

the Highfield Ley-Arable, Highfield Bare Fallow and Geescroft Soil Mine experiments, and 32 

plots in the Woburn Organic Manuring experiment). The auger was sterilised between each 

plot using 70% ethanol. The four samples from each plot were then homogenised, resulting 

in one sample per plot (45 samples in total).  

 

For the enzyme assays, a subset of the homogenised soil sample from each plot was placed 

into a sterile vial (50 mL) and stored at 4 °C overnight before being stored at -80 °C until the 

day of analysis. Samples were allowed to defrost before conducting the enzyme assay. For 

the chemical analysis, the remaining homogenised soil sample were air-dried for 2 days, and 

sieved to 2 mm followed by measuring total C, total N, inorganic-P (P-PO4) and pH.  
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3.3.3 Chemical Soil Analysis  
 

Total C and Total N 

The LECO TruMac Combustion Analyser (LECO Corporation, St. Joseph, MI, USA) is a fully 

automatic instrument used for the determination of total N and C in soils and plant material, 

based on a modified version of the `Dumas' digestion method (Dumas, 1831). 

 

Samples were weighed into ceramic `boats' or tin foil cups and placed on an auto-sampler. 

The sample then entered the combustion chamber, where the furnace and flow of oxygen 

gas caused the sample to combust. The combustion process converts any elemental C, S, and 

N to CO2, SO2, N2, and NOx. These gasses are then passed through two anhydrone tubes to 

remove H2O, a particle filter, and collected in a ballast tank. The gas was left to equilibrate 

before being released into an aliquot loop and through the infrared cells, where carbon was 

detected. Gas passed from the aliquot loop to the catalyst heater where NOx was reduced to 

N2, then through Lecosorb to remove CO2 and anhydrone to remove H2O. The remaining 

N2 and helium carrier gas flowed through a thermal conductivity cell where the nitrogen was 

measured. 

 

PO4-P 

Olsen P measurements as an indicator of soil P availability were determined in extractions 

from 5 g of air-dried, <2-mm soil with 0.5 M sodium bicarbonate at pH = 8.5. Soil samples 

were shaken for 30 min on an orbital shaker (120 rpm, 20 °C) and filtered through Whatman 

42 filter paper. Phosphorus in the bicarbonate solution was determined by a phospho-

molybdenum blue method on the Skalar SANPLUS System (Skalar Analytical B.V., Breda, The 

Netherlands), a continuous colourimetric flow analysis. Refer to Blitz et al. (1948) for a more 

detailed methodology.  

 

pH 

Soil pH is a measure of the hydrogen ion activity in soil solution (pH = − log10[𝐻+]). The 

electrometric pH reading is a product of complex electrode interactions between the 

electrode and the soil suspension; differences in soil:water extraction ratio, electrolyte 
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concentration of the soil suspension, and spatial placement of the electrode can all affect 

this reading (Mclean 1982). 

 

Two subsamples (15 g each) of a sieved (<2 mm) soil sample are placed into replicate 

centrifuge tubes. Tubes were capped to avoid moisture loss and, as necessary, stored in the 

refrigerator (5 °C) until ready for analysis within a day. Using a pipet dispenser or graduated 

cylinder, 30 mL deionised water was added to each tube to achieve a soil: water ratio of 1:2. 

Tubes were capped and shaken for a few seconds; the cap was then removed, and the slurry 

was allowed to equilibrate with atmospheric CO2 and warmed to room temperature for at 

least 30 minutes. The electrode of a pH meter, standardised at pH 7 and 4, was placed into 

the solution while gently swirling the slurry in the tube. pH was measured to the nearest 

0.01. Between samples, the electrode was rinsed with deionised water. 

 

3.3.4 Enzyme Assays 
 

We used an extract-based fluorimetric microplate assay with methylumbelliferone (MUB) as 

a fluorescence indicator to measure the activities of β-Glucosidase (GLU), N-acetyl-β-

glucosaminidase (NAG) and acid phosphatase (PHO) using the substrates 4-MUB-β-D-

Glucoside, 4-MUB-N-acetyl-β-glucosaminidase, and 4-MUB-phosphate, respectively (Criquet 

et al., 1999). 

 

Table 6: Summary of the roles of soil extracellular enzymes that were used in our study.  
 

Enzyme Type Enzyme 

Reaction 

Enzyme name Enzyme 

notation 

Function of 

enzyme 

β-glucosidase Cellobiose 

hydrolysis 

β-glucosidase GLU C-cycling 

Chitinase  

 

Chitin hydrolysis N-acetyl-β-

glucosaminidase 

NAG C-cycling 

N-cycling 

Phosphatase Mineralises 

organic 

phosphate 

Acid phosphatase PHO P-cycling 
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For the EE extraction, 3 g fresh soil was added to 50 mL of extraction solution (22.2 g CaCl2, 

20 g polyvinylpolypyrrolidone and 0.5 mL Tween 80 in 1 L dH2O) and shaken at 150 

oscillations min-1 for 1.5 hours. The samples were then centrifuged at 10,000 rpm for 10 

minutes at 4 °C, and the supernatant was filtered through 1.2 µm filters (WhatmannTM GF/C) 

and dialysed for 12 hours using cellulose dialysis tubes (10-12 kDa cut-off) coated in 

polyethylene glycol (PEG). Following dialysis, the enzymes were recovered in 10 mL 

phosphate buffer (0.378 g Na2HPO4, 6.9 g KH2PO4 in 800 mL of dH2O; pH 5.6), and the 

solution was separated into two 5 mL aliquots. One aliquot (live sample) was stored at 4 °C, 

and the second aliquot was pasteurised for 3 hours at 100 °C to deactivate enzymes, 

creating a positive control.  

 

Assays were conducted in 96-well black microplates using 38 μL extract and 250 μL substrate 

(200 μM dilution). For each sample, eight wells (four analytical replicates each for live and 

control solutions) were filled, and the plates were incubated for 3 hours at 25 °C. 

Fluorescence was determined on a microplate reader (Fluostar Omega, BMG Labtech, 

Ortenberg, Germany) at 355 excitation, 460 emission and 975 gain.  

 

A calibration curve was established from nine concentrations of MUB diluted in dH2O (0-11.5 

μmol L-1, eight wells per concentration), read at the same settings. For each sample, the 

mean ‘control’ fluorescence was subtracted from the mean ‘live’ fluorescence and the 

resulting value (F) was then converted to activity (nmol h-1 g-1) following Equation 3.  

 

Equation 3:  

Enzyme activity = 
(𝐹/𝑉)

𝑐  𝑡  𝑀  𝐷 
 

 

Where F is the corrected mean fluorescence value for a given sample, V is the assay well 

volume (288 μL), c is the R2 value of the calibration curve, t is the incubation time in hours, 

M is the sample mass in g dry weight, and D is the dilution coefficient 0.2 (50 mL initial 

extract volume concentrated to 10 mL final volume). 
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3.3.5 Statistical Analysis  
 

Enzymatic activities of NAG, PHO and GLU were analysed by Type II ANOVA on the linear 

mixed-effects model using the Kenward-Roger method for computing degrees of freedom to 

assess the significance of the fixed effects in a mixed-effects model. Correlation coefficients 

were also used to compare the EE activities with the chemical properties of the soil. 

Residuals were plotted against the fitted model values to check for an unequal variance for 

both the linear model and the ANOVAs, and a normal quantile–quantile plot was used to 

check for normality of the residuals. EE data was log-transformed. All statistical analysis was 

conducted on R Studio (Version 4.0.4). 

 

3.4 Results 
 

3.4.1 Land Use Change and EE Activity  
 

Samples taken from the Highfield Ley-Arable long-term experiment were used to understand 

how sensitive each of our chosen EE activities was to differentiate between each land use 

(grass, arable and fallow). We expected greater soil health in plots with the least amount of 

soil disturbances. Uncultivated soils under perennial vegetations and soils that receive 

organic amendments would show increased levels of enzymatic activity compared with soils 

that are cultivated in annual crop systems and soils that receive only inorganic amendments. 

We predict that soil EE activity would correlate with other observed soil health indicators. In 

particular, NAG and GLU would show a positive correlation with total C and potentially with 

total N, whereas PHO would positively correlate with inorganic-P (PO4-P) levels.   

 

Our results show that NAG activity was affected by land use, as there were clear differences 

between each treatment (Figure 6). The NAG activity showed significant differences 

between the grass and the other treatments (F value: 12.932, p-value 0.0017) but was not 

able to statistically differentiate between arable and fallow. Likewise, PHO activity was 

greatest under grass treatments and lowest in fallow treatments (Figure 7). Whilst clear 

groupings were observed between each treatment, PHO activity was only significantly 

greater under grass (F value 9.271, p-value 0.00000317), and there were no significant 

differences between the arable and fallow treatments. Finally, our results show that GLU 
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activity was most sensitive to land uses, and we were able to detect significant differences 

between all three treatments (F value: 83.142, p-value 5.874e-07), with grass having the 

largest GLU activity (Figure 8). Thus, GLU was the most sensitive to land use, whilst PHO and 

NAG activities could not significantly distinguish between arable and fallow land use. 

 

Overall, NAG, PHO and GLU showed the greatest activity levels under grass, followed by 

arable, and then fallow. The results show that NAG, PHO and GLU activities were always 

significantly different between grass and the other land use treatments. Differences in EE 

activity between arable and fallow land uses showed a consistent trend (arable > fallow) but 

were not always significantly different.  
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Figure 6: Boxplot showing the range of N-acetyl-β-glucosaminidase (NAG) activity (nmol.h-

1g-1) under three different land management: Grass, Arable and Fallow treatments from the 

Highfield Ley-Arable long-term experiment. The box represents the interquartile range 

(IQR), with the median indicated by the line within the box. The whiskers represent the 

range of data outside the IQR, and outliers are plotted as individual points beyond the 

whiskers.  
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Figure 7: Acid phosphatase (PHO) activity (nmol.h-1g-1) under three different land 

management: Grass, Arable and Fallow treatments from the Highfield Ley-Arable long-term 

experiment. The box represents the interquartile range (IQR), with the median indicated by 

the line within the box. The whiskers represent the range of data outside the IQR, and 

outliers are plotted as individual points beyond the whiskers. 
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Figure 8: β-glucosidase (GLU) activity (nmol.h-1g-1) under three different land 

management: Grass, Arable and Fallow treatments from the Highfield Ley-Arable long-term 

experiment. The box represents the interquartile range (IQR), with the median indicated by 

the line within the box. The whiskers represent the range of data outside the IQR, and 

outliers are plotted as individual points beyond the whiskers. 
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3.4.2 Organic Amendment Additions and EE Activity 
 
The Woburn Organic Manuring experiment was used to understand if our chosen enzymes 

had different activities under certain organic amendment additions and understand how 

these were affected by other soil attributes. The results show that GLU, NAG, and PHO 

activities were significantly different under certain amendments. GLU activity was especially 

sensitive to amendment type and showed significant differences for the treatments: cover 

crop, FYM at 10 t ha–1 (DG10), and no additions (p<0.000342). In comparison with the other 

EE tested, GLU could distinguish between the highest number of amendments. PHO activity 

differed significantly only for treatments: FYM at 25 t ha–1 (DG25) and no additions 

(p<0.00887), whereas NAG activity could only statistically separate the grass ley treatment 

(p<0.0215).  

 

We found that whilst GLU, PHO, and NAG could not separate all amendments, clear 

groupings could be seen in the activity data, as shown in Figures 9, 10, and 11. NAG, PHO 

and GLU all showed the smallest activity levels in soil with no additions (control). However, 

NAG showed the greatest activity in grass treatments, whilst PHO showed the greatest 

activity in the DG25 treatment. GLU showed the greatest activities in both the grass and the 

DG25 treatments.  
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Figure 9: N-acetyl-β-glucosaminidase (NAG) activity (nmol.h-1g-1) under different organic 

amendment additions (compost, cover crop, farmyard manure under two concentrations 

(DG10 and DG25), grass, straw, and no additions) from the Woburn Organic Manuring 

experiment. The box represents the interquartile range (IQR), with the median indicated by 

the line within the box. The whiskers represent the range of data outside the IQR, and 

outliers are plotted as individual points beyond the whiskers. 
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Figure 10: Acid phosphatase (PHO) activity (nmol.h-1g-1) under different organic amendment 

additions (compost, cover crop, farmyard manure under two concentrations (DG10 and 

DG25), grass, straw, and no additions) from the Woburn Organic Manuring experiment. The 

box represents the interquartile range (IQR), with the median indicated by the line within 

the box. The whiskers represent the range of data outside the IQR, and outliers are plotted 

as individual points beyond the whiskers. 
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Figure 11: β-glucosidase (GLU) activity (nmol.h-1g-1) under different organic amendment 

additions (compost, cover crop, farmyard manure under two concentrations (DG10 and 

DG25), grass, straw, and no additions) from the Woburn Organic Manuring experiment. The 

box represents the interquartile range (IQR), with the median indicated by the line within 

the box. The whiskers represent the range of data outside the IQR, and outliers are plotted 

as individual points beyond the whiskers. 

 
 

3.4.3 Soil Type and EE Activity  
 
Another objective of this study was to see if enzyme activity was affected by soil texture. The 

soil at Highfield is a silty clay loam, whilst Woburn is a sandy loam. We only compared long-

term grass and arable treatments at Highfield with arable and grass treatments with no 

organic additions at Woburn. Only GLU had significantly different activities under different 

soil textures, with greater activity levels under the silty clay loam (Figure 14). In contrast, 

PHO and NAG activities were not significantly different, as shown in Figures 12 and 13, 

respectively. Thus, our study indicates that GLU activity was the most significantly affected 

by soil type and texture.  
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Figure 12: Predicted means with average LSD (5%) bar for N-acetyl-β-glucosaminidase (NAG) 

activity (nmol.h-1g-1) under different soil textures (silty clay loam and sandy loam) from 

Highfield Ley-Arable long-term experiment and Woburn Organic Manuring experiment. 

Overlap of the LSD bars shows that the differences between the means for NAG activity for 

each soil texture were not statistically significant. 

 

 
 

Figure 13: Predicted means with average LSD (5%) bar for acid phosphatase (PHO) activity 

(nmol.h-1g-1) under different soil textures (silty clay loam and sandy loam) from Highfield Ley-

Arable long-term experiment and Woburn Organic Manuring experiment. Overlap of the LSD 

bars shows that the differences between the means for PHO activity for each soil texture 

were not statistically significant. 
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Figure 14: Predicted means with average LSD (5%) bar for β-glucosidase (GLU) activity 

(nmol.h-1g-1) under different soil textures (silty clay loam and sandy loam) from Highfield Ley-

Arable long-term experiment and Woburn Organic Manuring experiment. No overlap of the 

LSD bars shows that the differences between the means for GLU activity for each soil texture 

were statistically significant. 

 
 

3.4.4  Correlation Between EE Activity and Selected Soil Characteristics  
 
 

To evaluate the ability of EEs to be used as a soil health indicator, we compared NAG, GLU, 

and PHO activities with important chemical indicators of the soil, such as organic carbon, 

total N, inorganic-P, and pH, under our full dataset from Highfield and Woburn experiments.  

 

The results show that GLU activity was positively correlated with total C and total N but 

otherwise showed no or weak correlations with pH and inorganic P, respectively. Similar 

results were seen with NAG; however, NAG also showed a negative correlation with pH. In 

contrast, PHO activity was negatively correlated with inorganic-P levels but showed a 

positive correlation with pH. Overall, all three enzymes showed correlations with most 

chemical indicators, GLU showed stronger correlations with organic carbon and total 

nitrogen compared to NAG and PHO. Whilst NAG and PHO showed correlations with pH, 

only PHO was able to show a relationship with inorganic-P.   
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Figure 15: Correlation plot illustrating the pairwise correlations between enzyme activities 

for β-glucosidase (GLU), acid phosphatase (PHO), and N-acetyl-β-glucosaminidase (NAG), 

and chemical soil health indicators (pH, inorganic phosphorus (PO4-P), Total Nitrogen (N), 

and Total Carbon (C)). The ellipses represent the strength and direction of the correlations, 

with darker shading indicating stronger correlations.  
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3.5 Discussion  
 

3.5.1 Effect of Land Use on EE Activity  
 

Farming practices can alter soil environments to facilitate plant growth by implementing 

conditions through the addition of fertiliser, pesticide, tillage, crop rotations and irrigation. 

Previous studies have shown how agricultural practices influence soil characteristics to affect 

nutrient turnover and microbial activity. These practices may affect soil enzymes and 

microbial activities differently (Curci et al., 1997; Schaeffer, 2021), and land use changes can 

affect soil ecosystems (Perring et al., 2015). In our study, land converted from grass to arable 

or fallow showed a significant change in EE activity. GLU, NAG, and PHO activity decreased 

under arable and fallow compared to grass treatments (Figures 6 to 8). However, we could 

not see a significant difference in NAG and PHO activities between arable and fallow 

treatments, and only GLU exhibited significantly different activities under all three 

treatments (Figure 8). Land use type alters the amount and composition of SOM, with 

permanent grass often showing considerably greater SOM concentrations (Haghighi et al., 

2010). Therefore, it seems logical that we noted clear differences in enzyme activity 

between perennial (grass) and annually cultivated (arable and fallow) systems, with only GLU 

detecting the smaller differences between arable and fallow uses.  

 

Disturbances in the soil can positively and negatively impact soil health and the 

environment. Arable and bare fallow treatments at the Highfield Ley-Arable experiment 

were ploughed. Whilst ploughing under arable lands can favour initial crop growth, it can 

also lead to OM losses and soil erosion (Kuipers. 1991). Moreover, ploughing affects the 

distribution of OM in the soil profile and, thereby, nutrient availability. As soil aggregates are 

broken and air is incorporated into the soil, labile SOM is exposed to microorganisms, which 

escalates the decomposition of SOM and crop residues. SOM decomposition releases 

nutrients, which in turn improves crop growth (Lv et al., 2023). Therefore, we could expect 

to see greater EE activity under arable treatments.  

 

Overall, our results revealed that NAG, PHO and GLU had the greatest activity levels under 

grass, followed by arable, and then bare fallow, but only GLU had statistically different 



 82 

activities under each treatment (Figure 8), which mirrors the general perception of soil 

health in these treatments (Neal et al., 2020). Ekenler et al. (2003) found that the most 

sensitive enzymes that reflect soil management practices were GLU and NAG. Similar 

findings were also reported by Madejon et al. (2007), who found that GLU activity levels 

were greatest under undisturbed systems. Furthermore, Pandey et al. (2014) showed 

greater GLU activities and increased levels of C and N, as well as microbial biomass with 

decreased soil disturbances. This was explained by increased substrate availability for 

microbial functioning and less soil disturbance, causing no further losses in OM (Monreal et 

al., 2000).  

 

Green et al. (2007) noted greater PHO activity in undisturbed systems and suggested that 

PHO can detect changes in SOM under different soil management. Our results also showed 

greater PHO activity in undisturbed soils (Figure 7). Greater PHO activity in undisturbed 

treatments suggests better P cycling and soil structure. Organic P mineralisation, catalysed 

by PHO, provides P for plant uptake and growth. The ability of PHO, NAG, and GLU to detect 

changes in soil management and their strong interactions with SOM highlights their 

importance in acting as robust indicators of soil health.  

 

3.5.2  Effect of Organic Amendments on EE Activity  
 

Conventional agriculture can reduce soil fertility and SOM. Sustainable agricultural 

management practices must, therefore, be employed to ensure the future health of soils 

(Edmeades, 2003). The effects of organic amendments, including straw, compost, FYM, cover 

crops, and grass leys, in comparison with inorganic control treatment, on EE activity were 

examined. We found that compost and FYM treatments had the greatest PHO and GLU 

activity. We also discovered that NAG, PHO and GLU activity were all greater under FYM and 

compost additions (Figures 9 to 11). Similarly, Chang et al. (2007) found that PHO, NAG, GLU, 

and other biological factors were significantly greater in soils receiving compost compared to 

chemically fertilised soils. Compost and FYM improve soil health by increasing SOM and 

stimulating the chemical and biological properties of the soil (Saha et al., 2008). Further to 

this, Acosta-Martinez et al. (1999) found that GLU and NAG activities increased with leaf and 

N fertilisers.  
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Our results showed no significant changes in EE activity with straw additions, although NAG 

showed particularly great activity (Figure 9). However, Zheng et al. (2019) found that straw 

was the most effective amendment in increasing EE activity. NAG facilitates the breakdown 

of chitin, releasing N in the form of N-acetylglucosamine. This is then broken down into 

further N sources, such as ammonium and nitrate, which are essential nutrients for plant 

growth. Straw typically contains relatively low levels of N, and is generally C-rich rather than 

N-rich, which could explain the low levels of NAG activitity in our results.  

 

Variations in OM inputs have been demonstrated to impact EE activity (Hernández et al., 

2010). Hernández et al. (2010) observed greater NAG activity upon the addition of chitin as a 

result of OM additions, indicating that certain enzymes may be stimulated by the presence 

of the substrate they degrade. We also found that soils under cover crop and high OM see 

an increase in NAG activity.  

 

Monokrousos et al. (2006) noted that changing from conventional to organic farming causes 

different responses in EE activities. In particular, the transitional period influences soil 

biological and chemical properties, where PHO was seen to increase under organic 

management over time. Most literature agrees that greater EE activities, particularly GLU 

and PHO, are seen under organic management systems, and chemical fertilisers cause a 

reduction in SOM and microbial activity in soils (Bandick et al., 1999; Pahalvi et al., 2021).  

 

Furthermore, amendments such as FYM and compost showed great PHO activity (Figure 10), 

which can be attributed to the enrichment of SOM and microbial growth. Increased PHO 

activities are also likely due to enhanced P mineralisation following manure application (Sun 

et al., 2020). Additionally, Kalembasa et al. (2012) discovered that a combination of mineral 

N fertilisers and compost improved PHO activity, and the addition of P fertiliser to soils low 

in SOM also increased PHO activity. However, there was no significant PHO change when P 

fertiliser was added to soils of greater SOM. Thus, PHO synthesis and activity can be 

impacted by the addition of N and P fertilisers, particularly in soils of low SOM (Kalembasa et 

al., 2012; Saha et al., 2008). Moreover, Fließbach et al. (2007), who investigated SOM and 

biological soil quality indicators under organic and conventional farming, found that PHO 
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activities were greater in organically fertilised soils, suggesting that PHO was directly related 

to SOM content and was affected by farming practices. Thus, PHO activity can provide a 

good indication of SOM in soils. 

 

3.5.3 Effect of Soil Characteristics on EE Activity  
 

To serve as an effective indicator of soil health, EE must demonstrate evident relationships 

with soil functions and other indicators of soil health. We observed that PHO activity and 

total N had a positive correlation. However, our results found no correlation between PHO 

activity and total C (Figure 15). Kalembasa et al. (2012) studied the EE activity of soils after 

applying organic and mineral fertilisers. They also found that PHO activity increased relative 

to N amounts, suggesting that N fertilisers influenced PHO activity.  

 

Furthermore, we noted a positive correlation between GLU and NAG activity with total C. 

This can be attributed to several factors related to microbial activity, SOM decomposition, 

and nutrient cycling. Total C in the soil is a key component of SOM, which serves as a 

substrate for microbial activity and provides a source of energy and nutrients for 

microorganisms. NAG activity is associated with the decomposition of chitin, which is often 

present in fungal biomass (Ekenler et al., 2003). The decomposition of chitin contributes to 

the release of C and N compounds, influencing the total C content and nutrient cycling in the 

soil, leading to a positive correlation between NAG activity and total C. We also recorded a 

positive correlation between NAG activity and total N. This finding was also consistent with 

Sotomayor-Ramírez et al. (2009), who recorded a positive correlation between NAG activity 

and total C and N values together with N mineralisation, suggesting that NAG could be a 

rate-limiting step in N mineralisation. Thus, NAG could be used to describe N cycling in the 

soil.   

 

The positive correlation between GLU activity and total C in the soil is often observed and 

can be explained by the role of GLU in SOM decomposition and nutrient cycling. GLU 

hydrolyses glycosidic bonds, breaking down complex organic C-compounds into simpler 

sugars, contributing to the pool of soluble organic C in the soil. GLU activity is part of the 

broader spectrum of enzymes involved in nutrient cycling. As GLU breaks down SOM, it 
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releases not only C but also other nutrients such as N and P. This explains why we observed a 

positive correlation between GLU activity with total C and total N. Furthermore, whilst we 

did not find any correlation between GLU and inorganic-P, we found that PHO inhibition was 

correlated to greater PO4 levels (Figure 15). According to Dick. (1997), P may inhibit PHO 

synthesis, and orthophosphate is a competitive inhibitor of PHO activity. This explains why 

our high PHO activity was negatively correlated with inorganic-P levels.  

 

Soil pH influences PHO synthesis, release, and stability (Devau et al., 2009). Moreover, PHO 

typically exhibits optimal activity under acidic conditions, you would therefore expect that as 

the soil pH decreases, PHO activity would increase (Devau et al., 2009). However, we 

observed a positive correlation between pH and PHO activity. Soil pH can influence the 

decomposition of OM (Yan et al., 1996). Acidic soils may have greater SOM content, and the 

breakdown of organic P-compounds could contribute to increased PHO activity. The release 

of P from organic sources in acidic conditions may stimulate the activity of PHO, thus leading 

to a positive correlation (Gatiboni et al., 2018). Whilst we found no correlation between GLU 

activity and pH, Kim et al. (2021) discovered that as the soil pH increased from 4.5 to 8.5, 

GLU activity was seen to decrease. EE sensitivity to pH can aid in our ability to assess the 

effects of soil acidification, thus serving as a reliable biochemical indicator of soil health.  

 

While our study highlights the potential for soil enzymes to be recognised as indicators of 

soil health due to their involvement in key biochemical processes, caution is warranted in 

making definitive conclusions about their practical use in soil health monitoring. The study 

presented here, conducted on a limited range of soil types and two long-term experiments, 

indicates that enzyme activity can reflect soil biological activity and management impacts. 

However, the extent to which these enzymes can serve as robust, practical indicators of soil 

health across broader soil types and conditions requires further investigation. 

 

From a practical perspective, incorporating soil enzyme measurements into routine soil 

health assessments poses several challenges. Soil enzyme assays can be more time-

consuming and technically demanding compared to traditional soil tests for physical and 

chemical properties, such as soil carbon and nitrogen. These traditional indicators are not 

only easier to measure but are also well-established proxies for soil health, particularly in 
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terms of nutrient cycling and organic matter content. The additional benefit of including 

enzyme activity in soil health assessments should be carefully considered, especially in terms 

of cost, complexity, and the incremental value they provide over more easily measured 

properties like soil C and N. 

 

Given the limitations of the current study, further research is needed to validate the 

usefulness of soil enzymes as reliable indicators across a wider range of soil types and 

management systems. More comparative studies that assess the correlation between 

enzyme activity and other key soil health indicators would provide valuable insights. 

Additionally, investigating whether enzymes can offer unique information that other simpler 

soil properties do not capture will be crucial for their inclusion in practical soil health 

frameworks. 

 

3.5.4 Effect of EE Activity Under Different Soil Textures 
 

GLU was the only enzyme that had significantly different activities under different soil 

textures, with considerably greater activity under a silty clay loam (Figure 14). This shows 

that GLU activity was the most sensitive to soil type and texture. This could be explained by 

the differing nutrient and C levels in each soil. The ability of GLU activity to respond to 

different OA and soil types makes GLU an effective soil health indicator.  Furthermore, GLU 

activity is integrated with SOM, microbial biomass, and C transformation and can provide 

early insights into the effects of agricultural management practices before other chemical 

and physical measurements. These features allow GLU to be used as an indicator of soil 

health. However, more knowledge is needed to show the intricate dynamics and factors 

influencing GLU activity. This will, in turn, enhance our understanding of agricultural 

management practices on soil fertility and soil health.  

 

Whilst no single enzyme can describe the whole metabolic activity of the soil, certain soil 

enzymes are particularly important in SOM degradation. Of all the enzymes involved in 

cellulose hydrolysis, GLU is the most abundant in the soil. GLU, which catalyses cellulose 

degradation into glucose, plays a vital role in SOM decomposition. It provides an early 

indication of SOM turnover and can reflect the impact of changes in land management. Our 
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study found that GLU was the most sensitive to land use changes and correlated with more 

chemical soil health indicators compared to NAG and PHO. Furthermore, GLU is rarely 

substrate-limited and is easily detected. Due to this, we would recommend using GLU to aid 

in monitoring soil health. It is important to note that soil processes are complex, and the 

relationship between enzyme activity and soil properties can be influenced by various 

factors, including soil type, climate, land management practices, and the composition of the 

microbial community. Field studies and experiments, along with detailed soil analyses, 

should often be conducted to understand these relationships in specific ecosystems. 

 

3.6 Conclusion  
 

The use of EEs as a biological indicator of soil health has seen growing interest in recent 

years due to their significance in soil ecosystems. Research has previously shown the 

importance of EEs in nutrient cycling. Moreover, the existence and activity of EEs are heavily 

influenced by agricultural practices. Changes in the physical and chemical properties of the 

soil also provoke changes in EE activity; this shows that indicators of soil health are 

associated with each other. Organic applications, fertilisers, and land use affect nutrient 

cycling and microbial activity, as shown in our study. Significant variations in soil enzyme 

activities can be explained by the natural variability in environmental conditions and soil 

characteristics, which coincide with agricultural practices. Regardless, EE activity reveals 

changes in soil conditions and, therefore, soil health. However, site-specific evaluations need 

to be developed to accurately use EE activity as a soil health indicator as we identified 

differences between two soils of differing textures.   

Our study found that EE activity was negatively correlated with soil disturbance, as EE 

activity was most significant under perennial grass, followed by annually cultivated arable 

and fallow treatments. Furthermore, EE activities provide valuable information on the 

effects of organic amendments in agroecosystems and can potentially predict SOM 

dynamics. Selecting specific enzymes as biological indicators for soil health depends on how 

they relate to crop yields and key soil parameters. Our study shows that GLU was associated 

with the most soil properties, followed by PHO and NAG, respectively. For this reason, we 

conclude that GLU activities would be the ideal candidate to describe soil health. However, 



 88 

whilst soil enzymes are integral to soil health, for an accurate assessment, they need to be 

considered along with other physical, chemical, and biological indicators of soil health.  

Moreover, the findings of this research suggest that soil enzymes hold potential as indicators 

of soil health, but conclusions must be tempered given the scope of this study. The evidence, 

drawn from a limited number of soil types and long-term experiments, highlights the need 

for further research to establish whether enzyme measurements provide significant added 

value beyond conventional soil properties like C and N, especially as our results show 

relatively strong correlations between soil EE activity and key chemical properties. Caution is 

therefore advised when proposing soil enzymes as standalone indicators, and their use 

should be considered complementary to traditional soil health metrics rather than as 

primary indicators. 
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4 Designing a Soil Health Index for Sustainable Agricultural 
Systems. 

 

4.1  Abstract  
 
Healthy soil acts as a reservoir and cycling system for nutrients essential for crop growth and 

hosts a diverse range of organisms, including bacteria, fungi, insects, and worms, 

contributing towards ecosystem stability and resilience. However, soil health cannot be 

directly measured. Instead, soil health assessments typically rely on a range of 

measurements from essential biological, physical, and chemical indicators. But due to the 

highly integrative nature of soil, it is difficult to develop general soil health indices.  

 

Structural equation modelling (SEM) is one method to address the challenges associated 

with characterising soil health. It works by developing a structural model that outlines the 

relationships between different components of soil health, including physical, chemical, and 

biological indicators such as soil structure, nutrient levels, and microbial activity, and 

defining how each variable influences or is influenced by other variables. Path analysis 

within the SEM framework estimates the direct and indirect effects of variables on each 

other, helping to understand the causal relationships among different aspects of soil health. 

Model fit indices, such as the chi-square statistic, can then be used to assess how well the 

model aligns with the observed data.  

 

Using Rothamsted Research’s long-term experiments in the UK, we took measurements 

from essential soil health indicators with the aim of using SEM to design a soil health index 

that can describe soil health across different land management and soil types. Overall, we 

found SEM allows for a comprehensive understanding of observed indicators and latent 

variables that contribute to overall soil health. However, our proposed model proved to be 

unsuitable for application across all soil types and land management practices. Instead, its 

effectiveness was most apparent when applied to specific land uses and soil types; however, 

larger sample sizes are necessary to gain a comprehensive understanding. Nonetheless, 

based on our results, we believe soil scientists can leverage SEM to refine soil health 

assessment models and improve the accuracy of their measurements, as well as understand 

the effects of agricultural management practices on soil health. 
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4.2  Introduction  
 

Healthy soils are crucial for ensuring food security across the globe. But soils are not just an 

important medium for growing crops; they are essential in providing important ecosystem 

services such as carbon sequestration, nutrient cycling, and water purification (Bunemann et 

al., 2018). This is supported by complex physical, chemical, and biological soil processes that 

all interact. Thus, a better understanding of soil components and the relationship between 

them should lead to a holistic approach to characterising soil functioning; such approaches 

have been used to define the health and quality of soils. Soil health is defined as “the 

capacity of a specific soil to function, within natural or managed ecosystem boundaries, to 

sustain plant and animal productivity, maintain or enhance water and air quality, and 

support human health and habitation” (Doran and Zeiss, 2000). Soil health can be affected 

by soil use and management approaches (Bunemann et al., 2018). Thus, knowledge of the 

effects of different soil management practices and land uses on soil function is needed in 

order to develop a working soil health index that accounts for these complex interactions 

(Morrow et al., 2016).  

 

To develop indices to assess soil health, appropriate biological, chemical, and physical 

indicators and their interactions must be selected to provide a holistic overview of soil 

health (Haney, 2012). A multi-indicator index can comprehensively classify the full spectrum 

of soils and assess the effectiveness of land management approaches for degraded lands. 

Since the 1990s, major national soil assessment approaches have been implemented 

worldwide. Applied soil health tests were based on the relationship between the measured 

indicator and soil threats, functions, or ecosystem services; however, these relations were 

generally not quantitively tested (Bunemann et al., 2018). Furthermore, a review of two 

commonly used soil health tests in the US, the Cornell and Heaney soil health tests, 

concluded that neither test was able to correlate a soil health score with yields or 

differentiate between agricultural management approaches (Van ES et al., 2019). Overall, 

focusing on a particular soil threat, function, or ecosystem service does not provide enough 

information to indicate the holistic status of the soil. Thus, it seems that indices focusing on 

soil productivity over short growing periods do not capture the sustainability of soil systems 

in the long term.  
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4.2.1 Selection of Soil Health Indicators   
 

The assessment of soil health involves three main steps: 1: Selection and measurement of 

soil health indicators; 2: Quantification of soil health indicators through direct measurement 

and assigning an appropriate score; 3: Integration of scored attributes to construct the final 

index by providing criteria for defining the weight of each indicator.  

 

Selection of the most relevant indicators of soil health is a critical step, as they form the 

foundation for the soil health index (Cordoso et al., 2013). Correlation between indicators 

should be examined to minimise the number of measurements needed; this can be done 

using statistical tools such as Minimum Data Set (MDS) and Analysis of Variance (ANOVA) 

(Andrews et al., 2001). By doing this, we can exclude indicators that do not add additional or 

new information on the response to different crop and soil conditions.  

 

Fine et al. (2017) suggest that indices based on a larger number of indicators (more than 5) 

are more informative. An index based on a smaller number of indicators was proposed by 

Haney (2012), who established a soil health index based on three biological attributes: soil 

respiration, dissolved organic nitrogen and dissolved organic carbon. Haney’s index suggests 

that microbial activity and nutrient availability are the main factors describing soil health. A 

broader index developed at Cornell University included 39 different indicators, such as: 

physical (e.g. aggregate stability, penetration resistance, water holding capacity), chemical 

(pH, organic matter content, P, K) and biological parameters (soil pathogens, soil respiration) 

(Gugino et al., 2009). The additional soil health parameters were able to underline the 

overall status of soil and made the index more robust but were not able to provide more 

detail, unlike indices that used fewer parameters but focused on a particular soil attribute.  

 

Moncada et al. (2014) assessed soil health by morphological classification using Visual Soil 

Assessment (VSA) and used decision trees based on predetermined thresholds. In contrast, 

Andrews et al. (2004) created a set of decision rules to select each indicator. The selection 

process was based on soil function, the management goals for each site, crop tolerance, 

climate conditions, and soil taxonomy, amongst other things. Each indicator could only be 

selected if it satisfied a unique combination of different criteria. Consequently, this decision 
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process was very complex and could be easily manipulated. Overall, decision-based 

frameworks used to select soil health indicators with many rules and criteria may increase 

the number of degrees of freedom for the statistical model used, thus weakening the 

relationship between soil properties and soil functions. Therefore, selecting a soil health 

indicator for the soil health index could be simplified by using statistical methods rather than 

a decision-based framework; this would also reduce the possibility of biases (Andrew et al., 

2004). 

 

Using an expert-based system, which is generally based on the accumulated knowledge of 

scholars, could be another tool when selecting soil health indicators. Ritz et al. (2009) used 

an experts-based framework to select biological soil health parameters for monitoring soil 

health on a national scale. Attributes selected by stakeholders and experts in the field should 

also adhere to current policy requirements and combine socio-economic and political factors 

associated with a specific soil health indicator. The expert-based approach assumes that a 

given expert understands the complexity of the mechanisms studied and that their 

knowledge can be translated accurately into the model. Thus, expert-based systems, at this 

selection stage, may differ when interpreting data gathered from different regions, land uses 

and points of view of the relevant experts. In contrast, Svoray et al. (2012) found that 

statistical models provided better predictive abilities compared to expert-based models. 

Moreover, complex expert-based systems may lack simplicity, which is crucial in allowing the 

application of minimum dataset selection, especially across a wide range of environments 

(Bunemann et al., 2018; Rinot et al., 2019).  

 

4.2.2 Quantification of Soil Health Indicators via Direct Measurements and 

Scoring  
 

Soil health indicators can be divided into quantitative or qualitative attributes (Amacher et 

al., 2007). The measured value of an indicator can be converted into a quantitative or 

qualitative unitless grade using calibration curves. These curves are generally based on a 

broad range of data with defined threshold values, and this provides appropriate scoring 

functions. The threshold can be defined from expert opinion, thresholds taken from 

literature, statistical models, or by considering observed values (Andrews et al., 2001).   
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Linear scoring functions are determined by dividing the measured value by the threshold 

value. The threshold value could be the minimum, maximum, or optimum value (Sharma et 

al., 2014). The score may be dependent on the variance of the specific soil health indicator; 

therefore, extreme outlier values may cause bias in the calculated scores. Moreover, linear 

scoring may not represent the current agronomic or environmental status of some 

attributes. Non-linear scoring usually assumes a normal distribution of the measured 

indicator and depends on non-linear patterns of response (Andrews et al., 2001). Andrews et 

al. (2001) identified that non-linear functions can better represent soil system attributes and 

thus are better suited for scoring functions compared to linear scoring functions. 

Furthermore, different functional transformations for each soil health indicator can be 

applied to different soil types, climate zones, and soil usages, allowing us to account for soil 

texture or other soil characteristics and functions when using non-linear scoring functions 

(Lilburne et al., 2004).  

 

In contrast, when designing an SHI, some methods use raw values to construct the entire 

index and do not use a conversion step such as functional transformations, threshold values, 

or calibration curves. In Haney’s test, the soil health index was developed using constructive 

functions. Also, the partial least squares (PLS) method used raw data for each soil health 

indicator to create a maximum explained variability of the model. According to Obade et al. 

(2016), PLS has great potential for predicting crop yields by selecting soil parameters, such as 

bulk density, soil organic carbon and electrical conductivity, and by considering the different 

soil types and soil management approaches. According to this approach, both qualitative 

and quantitative data can be utilised to construct the PLS model. When using this approach 

to construct the soil health index, no conversion step is required. However, this approach 

may be very challenging since a reliable definition and measurement of target values is 

essential.  

 

4.2.3 Integration of Scored Attributes to Construct the Final Index 
 

Current soil health indices typically rely on selected and representative soil attributes that 

specifically mirror a certain soil function or ecosystem service. Certain indices have 
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undergone testing to demonstrate their ability to see changes in soil functioning, while 

others have been validated against provisioning ecosystem services and productivity. These 

indices were discovered to overlook other crucial soil ecosystem services that are crucial for 

ensuring sustainable soil functioning for future generations. 

 

Multivariate techniques such as principal component analysis (PCA) capture the maximum 

variance in the data with a smaller number of variables (principal components), thus 

providing a more concise representation of the original dataset. This reduction in 

dimensionality is useful for visualisation, noise reduction, and extracting meaningful 

patterns from the data. Whereas the PLS regression approach is adept at computing an 

index by considering the interrelationships among indicators and response variables like 

crop productivity (Vargas et al., 1999). 

 

On the other hand, structural equation modelling (SEM) is a collection of multivariate 

statistical techniques employed to measure unobserved variables through sets of measured 

indicators by analysing the structural relationships between observed and unobserved 

variables (Maaz et al., 2023). Scientists have previously employed SEM to investigate 

intricate relationships in nutrient cycling and cropping systems in soils. However, its use in 

soil health indices has been relatively unused (Gama-Rodrigues et al., 2014). Compared to 

conventional methods used to assess soil health, SEM can simultaneously assess multiple 

soil health indicators and incorporate measurement errors in observed variables, accounting 

for measurement unreliability, thus ensuring a more accurate representation of the true 

underlying variables in the analysis. Furthermore, the use of a diverse range of soil health 

indicators serves to assess individual parameters and overall model fit, involving an 

examination of the disparities between the observed and model-implied covariance 

matrices, among other measures (Maaz et al., 2023). 

 

In agricultural applications, SEM has been utilised primarily to examine the relationships 

between soil management practices, soil properties, and crop yield. Studies often focus on 

how variables, such as soil organic matter, nutrient availability, microbial activity, and 

physical structure influence soil health and productivity. SEM allows researchers to model 

these interactions, identifying pathways through which management practices directly or 
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indirectly affect soil properties and crop performance. However, SEM has not been widely 

utilised in soil science, unlike in the broader field of ecology, where it has been extensively 

applied to investigate how soil properties interact with other ecosystem components (Fan et 

al., 2016). For instance, SEM has been commonly used to identify the drivers of soil 

microbial communities, nutrient cycling, and organic matter decomposition. These factors 

are often influenced by both direct environmental drivers, such as temperature and 

moisture, and indirect factors, such as plant diversity. SEM enables researchers to 

disentangle these complex relationships by revealing how seemingly unrelated processes are 

interconnected, providing a more complete picture of ecosystem functioning. 

 

As previous ecological literature demonstrates, SEM’s ability to model direct and indirect 

drivers of soil properties makes it invaluable for addressing complex, system-wide questions 

in soil science and beyond (Eisenhauer et al., 2015). Future research in soil science could 

benefit from expanding SEM use to address non-agricultural ecosystems, particularly in the 

context of climate change, land degradation, and ecosystem restoration. By integrating data 

from diverse environmental variables and biotic interactions, SEM could play a crucial role in 

developing more comprehensive soil health indicators and improving our understanding of 

soil's role in maintaining ecosystem services. 

 

Recent research has highlighted the potential of SEM as a valuable tool for understanding 

the complex interactions between soil properties, management practices, and ecosystem 

functions (Maaz et al., 2023). While SEM has been extensively applied in ecological studies 

to identify direct and indirect drivers of ecosystem properties, its use in soil science has been 

relatively limited. Maaz et al. (2023) further emphasise the importance of integrating SEM 

into soil health studies, particularly for exploring how soil properties interact with biological 

communities and external environmental factors. This study highlights the need to expand 

the use of SEM in soil research to provide a more nuanced understanding of soil health 

dynamics and ecosystem services. 

 

The current global status of provisioning and regulating services reveals a substantial decline 

in key regulating services, including soil structure and water availability. (MEA, 2005). 

Nevertheless, over the last decade, there has been a notable surge in food production from 
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crops and livestock from agricultural intensification. Current literature on soil health 

assessments advocates for a more holistic approach that encompasses all parts of the soil 

ecosystem services. Moreover, in addition to provisioning services, the quantification of 

regulating and supporting services is essential. 

 

The increased pressure on land resources, which subsequently results in accelerated land 

degradation coupled with reduced ecosystem services, highlights the urgent need to protect 

and maintain soil health. Soil serves as a multifunctional, dynamic, and complex ecosystem 

supporting three main ecosystem services: provisioning, regulating, and supporting services. 

A multivariate-complex soil health approach is needed whereby all three pillars of soil 

ecosystem services are quantitatively included in the assessment process of soil functioning. 

This approach will lead to the development of a new soil health index based on quantifying 

the relationship between soil health indicators and ecosystem services. Such an index would 

make a major contribution towards facilitating our understanding of the connection 

between the need for securing food for the world's growing population and the threat of 

expanding land degradation. 

 

In this study, we aim to review and identify meaningful metrics for soil health that influence 

agricultural production and other ecosystem services. We also aim to use measurements of 

soil properties relevant to soil health, including the physical, chemical, and biological 

indicators of the soil under contrasting agricultural land uses and soil types in order to 

develop an integrative soil health index, allowing land managers to actively monitor the 

health of their soils.  

 

4.3  Methods 
 
We collected 96 samples across two sites and four experiments: Fosters Organic 

Amendment and Highfield Ley-Arable at Harpenden, UK and Woburn Ley-Arable and 

Woburn Organic Manuring Experiments at Woburn, UK (see Appendix A). These sites utilise 

several organic amendments and cover different land uses. Multiple samples were collected 

from the topsoil layer (0 to 23 cm depth) and homogenised for each plot per site. For the 

most part, samples were stored at 5 °C, except for the enzyme assays, where samples were 
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stored at -80 °C until sample analysis. Based on existing literature and expert-based 

opinions, we shortlisted several soil health indicators, which we split into different 

parameter groups (Table 1). Our chosen soil health indicators fall under soil chemical 

attributes: pH, total carbon (C), total nitrogen (N), inorganic phosphate (PO4-P); physical: 

aggregate stability, bulk density, compaction; and biological: enzyme activity of N-acetyl-β-

glucosaminidase (NAG), acid phosphatase (PHO) and β-glucosidase (GLU). Other indicators 

were also measured but were removed from our analysis because they were not complete 

and/or had great variability within plots.  

 

4.3.1  Developing Soil Health Model Using SEM 
 
SEM is a statistical tool that is increasingly applied in soil science to examine and model 

complex relationships among observed and latent variables. Here, we used SEM to quantify 

the latent variable “soil health” by examining the interactions and connections between 

different soil properties, environmental factors, and biological components. First, we 

identified key indicators that contribute to soil health, as detailed in Table 7. We 

hypothesised that environmental and management factors drive changes in biological, 

physical, and chemical soil properties. Together, these three key levers affect overall soil 

health. These hypotheses were represented as pathways in our model (Figure 16). We 

identified several key indicators of each of our hypothesised latent variables and selected 

the most appropriate methods for measuring each. We collected data through field 

measurements, laboratory analyses, or from existing studies. 
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Figure 16: Structural equation meta-model of soil health. Latent variables are shown as 

rounded boxes, with their observed indicators listed in rectangular boxes of the same colour. 

 

Understanding the SEM Components 

Observed variables are the actual measurements we collected (e.g., Sand, Soil Moisture, 

Temperature, Organic Amendment, Grass, Arable, Chem1, Chem2, Bio1, Phys1, etc.). They 

are represented by square boxes in Figure 16. Latent variables are the unobserved variables 

inferred from observed variables. In our model, they represent broader constructs such as 

‘Environment’, ‘Management’, ‘Chemical’, ‘Biological’, ‘Physical’, and ‘Soil Health’. They are 

represented by rounded boxes. Loadings are the numbers associated with the arrows 

pointing from latent variables to observed variables. They show how strongly each observed 

variable is associated with its corresponding latent variable. Higher loadings indicate that the 

observed variable is more strongly related to the latent construct. Regression coefficients are 

the numbers on the arrows between latent variables. They show the strength and direction 

of the relationship between different latent variables. For example, a coefficient of -0.23* 

between ‘Chemical’ and ‘Soil Health’ indicates a weak but statistically significant negative 

relationship. 

 

We scaled all numerical data and created dummy variables for categorical data. We fitted 

our model using the sem function of the {lavaan} package (Rosseel, 2012) in R (R Core Team, 
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2023). We report standardised coefficients to allow for simple comparison of different 

pathways. We assessed model fit with a chi-squared test of the hypothesis that observed 

and estimated covariance matrices are equal (P values < 0.05 indicate the model is a poor fit 

to the data).  

 

Model Identification 

 

Despite a large number of samples (n=96), our original proposed model was overidentified 

due to the complexity of the model (large number of parameters compared to the sample 

size, Portney 1988) and high multicollinearity (Variance Inflation Factor (VIF) >5) of our 

observed variables. To resolve these issues, we used Principal Component Analysis (PCA) to 

produce a smaller number of independent non-correlated variables as indicators for each of 

our physical, chemical, and biological latent variables (Table 7). We used the prcomp 

function in R (R core team) on our standardised and centred soil variables. The principal 

components identified in these analyses were then used as measurement variables in our 

SEM, replacing the observed indicators of biological, physical, and chemical (Table 8). As only 

one principal component was identified for physical, this was used directly in the regression 

models of our SEM in order to reduce parameterisation requirements and was not 

considered as part of a latent variable.  
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Table 7: Shortlisted soil health indicators summarised in each principal component used for 

the proposed soil health index. 

 

Soil health indicator  Principle Components Latent Variable 

pH Chem1, Chem2, Chem3 Chemical 

PO4-P Chem1, Chem2, Chem3 Chemical 

Major and minor trace elements 

(Al, Ca, Fe, K, Na, Mg, Mn) 

Chem1, Chem2, Chem3 Chemical 

β-glucosidase (GLU) Bio1, Bio2 Biological 

β-glucosaminidase (NAG) Bio1, Bio2 Biological 

Acid phosphatase (PHO) Bio1, Bio2 Biological 

Aggregate stability  Phys1 Physical  

Penetration resistance  Phys1 Physical 

Bulk density Phys1 Physical 

 

Table 8: Definitions of each latent variable used in our proposed model.  

Latent variable Observed variable 

Soil Health  Yield + Total Carbon + Total Nitrogen 

Biological  Bio1 + Bio2 

Chemical Chem1 + Chem2 + Chem 3 

Physical (Phys1) Phys1 

Management  Treatment + Amendment  

Environment  Soil Type + Temperature + Soil Moisture 

 

Using SEM to Quantify Soil Health  

 

We used global estimation to fit our SEM using Maximum Likelihood. This works to find the 

best global solution for our specified structural equations so that the covariance matrix of 

the solution best matches that of the observed data. Latent variables (soil health, biological, 

chemical, physical, management, and environment in our model) are constructs that do not 

exist in the data. They are defined by the indicators (observed variables) shown in Table 1. 

The model estimation adjusts the loadings for each indicator. Simultaneously, regression 
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coefficients are estimated for each structural equation (directional links between latent 

variables). Here, we report standardised coefficients and loadings to aid the interpretation of 

our soil health index. Standardised coefficients allow us to observe the relative strength and 

direction of relationships between variables of different units. Soil health scores ranged from 

+1 to -1.  

 

4.3.2 Physical Soil Tests 
 

Aggregate Stability 

  

We used the fast-wetting component of the Le Bissonnais method to represent the 

mechanisms of aggregate disruption by slaking, and then measured the resulting aggregate 

size distribution (Le Bissonnais, 1996).  

 

Soil samples collected from the field were hand-crumbled along existing pores and cracks 

over a single sieve stack with apertures of 5 mm and 3 mm. Soil aggregates collected in the 

lower 3 mm sieve (3-5 mm diameter) were then carefully transferred to a drying tin, 

removing any stones, and placed in the oven at 40 °C overnight. A subsample of 5 g of oven-

dried aggregates were weighed and then transferred to a glass beaker filled with 50 mL of 

deionised water, leaving them to immerse. After 10 minutes, we carefully poured the water, 

trying to avoid losing any soil or further disruption. This step is not part of the standard Le 

Bissonnais method but follows the procedure used by colleagues at Rothamsted Research. 

Using a wash bottle containing methylated spirits (also known as denatured alcohol), we 

gently transferred the wet aggregates from the beaker to a 50 µm sieve submerged in a bowl 

of methylated spirits. The sieve was gently twisted ten times. The sieve containing > 50-µm 

stable aggregates were then removed from the methylated spirit bowl and left to air dry in 

the fume cabinet for 2 hours. Once air-dried, we brushed the > 50 µm aggregates onto a 

drying tin before placing the drying tin in the oven at 40 °C overnight.  

 

The following day, we made a sieve stack comprising the following sieves from top to 

bottom: 2-mm, 1-mm, 500-µm, 200-µm, 100-µm, 50-µm, and receiver. We removed the 

dried > 50 µm aggregates from the oven, transferred the sample to the sieve stack and put a 

lid on. The sieve stack was gently shaken in a rotary motion for 30 seconds. We then 
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weighed the aggregates remaining in each sieve. Then, all > 50 µm aggregate fractions were 

placed into separate bottles containing sodium hexametaphosphate dispersing solution (2 g 

L–1) to separate out the sand-sized (> 50-µm) primary particles (Kemper and Rosenau, 1986). 

After 4 hours of shaking, we assumed that all soil particles were fully dispersed. We 

thoroughly rinsed the remaining particles over a 50-µm sieve in a sink and transferred the > 

50-µm sand-sized particles to a drying tin, which were then placed in the oven at 40 °C 

overnight.  

 

After removing the dried > 50 µm sand particles from the oven, we tipped the sand particles 

into the same sieve stack described above and put a lid on before gently shaking for 30 

seconds. We then weighed the sand particles retained on each sieve. All soil weights were 

determined to 2 decimal places (0.00 g). The stable aggregate size distribution was then 

calculated, which can be described by the conventional mean weight diameter (MWD) 

calculation, having accounted for sand-sized primary particles in each size class: 

 

Equation 4:  
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where: =MWD mean weight diameter (mm) 

 =i mean aggregate diameter in size class i (mm) 

 =
+ )( pai

a oven-dry weight of soil (aggregates and sand particles) in size class i (g) 

=
i

p oven-dry weight of sand particles in size class i (g) 

=da total oven-dry weight of soil (aggregates and sand particles) (g) 

 

Bulk Density 

 

We collected intact soil cores from the desired depth increments using a soil core sampler 

(5×5 cm, diameter × height), ensuring that the soil core was undisturbed during collection to 

preserve its natural structure. The exterior of each soil core was cleaned to remove any 

adhering debris or organic material that may affect the accuracy of bulk density 
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measurements. The soil core was then extracted from the soil core sampler. The weight of 

each soil core before and after oven-drying at a temperature of 105°C was recorded. The 

difference in mass represents the moisture content of the soil core. 

 

The bulk density of soil (Db, g/cm3) is calculated from the mass of oven-dry soil (Md, g) and 

its field volume (V, cm3), using the formula below: 

 

Equation 5: 

𝐷𝑏 =  
𝑀𝑑

𝑉
 

 

Total porosity (St, %) was calculated assuming a particle density of 2.65 g/cm3 using the 

following equation. 

 

Equation 6:  

𝑆𝑡(%) = (1 −
𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
) × 100  

 

Penetration Resistance  

 

Penetration resistance was measured using a penetrometer to assess soil density and 

strength. The penetrometer was positioned vertically over the soil surface at the sampling 

site, and the penetrometer probe was carefully inserted into the soil at a depth of 750 cm. 

The penetrometer probe recorded the resistance encountered as the probe penetrated the 

soil, taking measurements at every 1cm depth intervals throughout the soil profile. The 

average penetrometer resistance for each 10 cm depth increment was then calculated for 

each sample. Three repeat measurements were taken to confirm the results and address 

outliers. The penetrometer was calibrated according to manufacturer specifications. 
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Soil Moisture 

 

The WET sensor (Delta-T Devices Ltd., Burwell, UK) measures three vital soil properties 

directly within the soil: water content, electrical conductivity (EC) and temperature. The WET 

sensor probe was calibrated to the manufacturer settings. Soil readings cannot be taken at 

any time throughout the day as readings will differ significantly if samples are taken during 

the morning vs. the afternoon as the soil dries as the temperature increases. As a result, we 

decided to take soil measurements during the morning.  

 

To take soil moisture measurements, we pushed the WET Sensor into the soil. If the ground 

was hard or stony, we used an insertion tool to make guide holes first. Results appeared on 

the screen of a hand-held meter, which were then saved. The WET sensor was rinsed in tap 

water and wiped off after each use. Using the measuring tape, we took 12 readings evenly 

distributed throughout each plot. These values were then averaged to obtain one reading 

per plot.  

 

4.3.4 Chemical Soil Tests  
 

Total Carbon and Total Nitrogen 

 

The LECO TruMac Combustion Analyser (LECO Corporation, St. Joseph, MI, USA) is a fully 

automatic instrument used for the determination of total N and C in soils and plant material, 

based on a modified version of the `Dumas' digestion method (Dumas, 1831). 

 

Samples were weighed into ceramic `boats' or tin foil cups and placed on an auto-sampler. 

The sample then entered the combustion chamber, where the furnace and flow of oxygen 

gas caused the sample to combust. The combustion process converts any elemental C, S, and 

N to CO2, SO2, N2, and NOx. These gasses are then passed through two anhydrone tubes to 

remove H2O, a particle filter, and collected in a ballast tank. The gas was left to equilibrate 

before being released into an aliquot loop and through the infrared cells, where carbon was 

detected. Gas passed from the aliquot loop to the catalyst heater where NOx was reduced to 

N2, then through Lecosorb to remove CO2 and anhydrone to remove H2O. The remaining 
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N2 and helium carrier gas flowed through a thermal conductivity cell where the nitrogen was 

measured. 

 

PO4-P 

 

Olsen P measurements as an indicator of soil P availability were determined in extractions 

from 5 g of air-dried, <2-mm soil with 0.5 M sodium bicarbonate at pH = 8.5. Soil samples 

were shaken for 30 min on an orbital shaker (120 rpm, 20 °C) and filtered through Whatman 

42 filter paper. Phosphorus in the bicarbonate solution was determined by a phospho-

molybdenum blue method on the Skalar SANPLUS System (Skalar Analytical B.V., Breda, The 

Netherlands), a continuous colourimetric flow analysis. Refer to Blitz et al. (1948) for a more 

detailed methodology.  

 

pH 

 

Soil pH is a measure of the hydrogen ion activity in soil solution (pH = − log10[𝐻+]). The 

electrometric pH reading is a product of complex electrode interactions between the 

electrode and the soil suspension; differences in soil:water extraction ratio, electrolyte 

concentration of the soil suspension, and spatial placement of the electrode can all affect 

this reading (Mclean 1982). 

 

Two subsamples (15 g each) of a sieved (<2 mm) soil sample were placed into replicate 

centrifuge tubes. Tubes were capped to avoid moisture loss and, as necessary, stored in the 

refrigerator (5 °C) until ready for analysis within a day. Using a pipet dispenser or graduated 

cylinder, 30 mL deionised water was added to each tube to achieve a soil: water ratio of 1:2. 

Tubes were capped and shaken for a few seconds; the cap was then removed, and the slurry 

was allowed to equilibrate with atmospheric CO2 and warm to room temperature for at least 

30 minutes. The electrode of a pH meter, standardised at pH 7 and 4, was placed into the 

solution while gently swirling the slurry in the tube. pH was measured to the nearest 0.01. 

Between samples, the electrode was rinsed with deionised water. 
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Major and Minor Trace Elements 

 

For analysis of major and trace elements, soil samples were digested in aqua regia 

(hydrochloric acid:nitric acid; 80:20 V/V) in open tube digestion blocks or digestion hot 

plates. The acids were removed by volatilisation, and the residue was dissolved in nitric acid 

(5% V/V) and filtered through a Whatman 40 filter paper. Primar (or equivalent) grade acids 

and 18 MΩ H2O were used throughout. 

Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) was used to 

quantitatively determine trace elements. ICP-OES consists of a sample introduction system 

(autosampler, pump, nebuliser and spray chamber), a torch for plasma formation, transfer 

optics and an echelle polychromator with a solid state segmented array charged coupled 

detector (SCD). The sample introduction system brings the sample solution (in the form of 

an aerosol) to the plasma. The plasma is a highly ionised, very hot gas, which is stable and 

chemically inert with temperatures near 10,000 degrees K. The plasma excites the elements 

in the sample, causing them to emit light. Each element emits specific wavelengths of light 

and the light intensity corresponds to its concentration. Light passing through an entrance 

slit is dispersed by an echelle diffraction grating (selecting a wavelength) and then separated 

into visible and UV channels, which are detected by the SCD and converted to 

photoelectrons. Photoelectrons stored as electrical charge are transferred to the signal 

processing electronics, and the computerised data system converts the digital information 

into element concentrations. 

 

All performance was strictly monitored using certified external standards alongside 

Rothamsted Research’s in-house standard materials. Standards and check samples were 

monitored and recorded using Shewhart Control Graphs and computer-based quality 

control packages. 
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4.3.5 Biological Soil Tests 
 

Enzyme Assays 

 

We used an extract-based fluorimetric microplate assay with methylumbelliferone (MUB) as 

a fluorescence indicator to measure the activities of β-Glucosidase (GLU), N-acetyl-β-

glucosaminidase (NAG) and acid phosphatase (PHO) using the substrates 4-MUB-β-D-

Glucoside, 4-MUB-N-acetyl-β-glucosaminidase, and 4-MUB-phosphate, respectively (Criquet 

et al., 1999). 

 

Table 9: Summary of the roles of soil extracellular enzymes that were used in our study.  

 

Enzyme Type Enzyme 

Reaction 

Enzyme name Enzyme 

notation 

Function of 

enzyme 

β-glucosidase Cellobiose 

hydrolysis 

β-glucosidase GLU C-cycling 

Chitinase  

 

Chitin hydrolysis N-acetyl-β-

glucosaminidase 

NAG C-cycling 

N-cycling 

Phosphatase Mineralises 

organic 

phosphate 

Acid phosphatase PHO P-cycling 

 

For the enzyme extraction, 3 g fresh soil was added to 50 mL of extraction solution (22.2 g 

CaCl2, 20 g polyvinylpolypyrrolidone and 0.5 mL Tween 80 in 1 L dH2O) and shaken at 150 

oscillations min-1 for 1.5 hours. The samples were then centrifuged at 10,000 rpm for 10 

minutes at 4 °C, and the supernatant was filtered through 1.2 µm filters (WhatmannTM GF/C) 

and dialysed for 12 hours using cellulose dialysis tubes (10-12 kDa cut-off) coated in 

polyethylene glycol (PEG). Following dialysis, the enzymes were recovered in 10 mL 

phosphate buffer (0.378 g Na2HPO4, 6.9 g KH2PO4 in 800 mL of dH2O; pH 5.6), and the 

solution was separated into two 5 mL aliquots. One aliquot (live sample) was stored at 4 °C, 

and the second aliquot was pasteurised for 3 hours at 100 °C to deactivate enzymes, 

creating a positive control.  
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Assays were conducted in 96-well black microplates using 38 μL extract and 250 μL substrate 

(200 μM dilution). For each sample, eight wells (four analytical replicates each for live and 

control solutions) were filled, and the plates were incubated for 3 hours at 25 °C. 

Fluorescence was determined on a microplate reader (Fluostar Omega, BMG Labtech, 

Ortenberg, Germany) at 355 excitation, 460 emission and 975 gain.  

 

A calibration curve was established from nine concentrations of MUB diluted in dH2O (0-11.5 

μmol L-1, eight wells per concentration), read at the same settings. For each sample, the 

mean ‘control’ fluorescence was subtracted from the mean ‘live’ fluorescence and the 

resulting value (F) was then converted to activity (nmol h-1 g-1) following Equation 4.  

 

Equation 7:  

Enzyme activity = 
(𝐹/𝑉)

𝑐  𝑡  𝑀  𝐷 
 

 

Where F is the corrected mean fluorescence value for a given sample, V is the assay well 

volume (288 μL), c is the R2 value of the calibration curve, t is the incubation time in hours, 

M is the sample mass in g dry weight, and D is the dilution coefficient 0.2 (50 mL initial 

extract volume concentrated to 10 mL final volume). 

 

4.3.6 Yield Data 
 

Farm staff collected crop samples at the time of harvest or cutting. Arable cereal crops were 

harvested using a Haldrup C-85 2m cereal plot combine (Haldrup GmbH, Ilshofen, Germany) 

with a 2-m cutting width across the full length of each plot. For grass crops, cuts were made 

with an Amazone Groundkeeper Smart Cut - GHS Drive 1500 flail mower collector 

(AMAZONE Ltd., Doncaster, UK; modified by Trials Equipment UK, Braintree, UK) with a 1.5-

m cutting width across the full length of each plot. Two cuts of treatments under grass were 

made each year (mid-June and mid- to late-October). Dry matter content of grain or grass at 

harvest or cutting was calculated following oven-drying for 16 hours at 105 and 80 °C, 

respectively. Yields were then calculated as tonnes-per-hectare (Mg ha–1) adjusted to 85% 

dry matter by convention for arable cereal crops, or as simply oven-dried basis for grass 

crops. 
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4.4 Results 
 

Our main goal was to create a model that can generate a soil health score based on different 

land use histories and soil types, ensuring it can accurately capture the diverse conditions 

and variations observed across UK soils. Overall, most of our chosen soil health indicators 

(aggregate stability, bulk density, total organic carbon, total nitrogen, N-acetyl-β-

glucosaminidase (NAG), acid phosphatase (PHO) and β-glucosidase (GLU), manganese (Mn), 

and inorganic phosphorous (PO4-P)) showed differences between soil type, with the 

exception of pH, penetration resistance, and some trace elements (Al, Ca, Fe, K, Mg, Na) 

(Table 10). Whilst NAG, PHO, GLU, aggregate stability, bulk density, penetration resistance, 

total organic carbon, total nitrogen, PO4-P, Ca, Na, and Mn showed significant differences 

between land management practices (Table 11), not all indicators were able to distinguish 

across all organic amendments. 

 

Table 10: Statistics for each of our chosen soil health indicators across soil types (silty clay 

loam and sandy loam), including average values (mean) and standard deviation (sd), from all 

four long-term experiments (Highfield and Woburn Ley-arable and Fosters and Woburn 

Organic Amendment field experiments).  

 

Soil type Aggregate stability*  Bulk density* Penetration 

Resistance 

Mean  Sd Mean Sd Mean Sd 

Silty lay 

loam 

0.997 0.066 1.425 0.011 1366.05 371.846 

Sandy loam 0.562 0.161 1.252 0.068 1873.89 234.626 

 Total Organic 

Carbon* 

Total Nitrogen*  Inorganic 

phosphorous* 

Mean  Sd Mean Sd Mean Sd 

Silty clay 

loam 

1.550 0.126 0.153 0.010 29.075 6.757 

Sandy loam 0.925 0.202 0.087 0.018 52.814 7.897 
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 β-glucosidase* N-acetyl-β-

glucosaminidase* 

Acid phosphatase* 

Mean  Sd Mean Sd Mean Sd 

Silty clay 

loam 

393.273 202.55 452.134 154.87 997.109 599.693 

Sandy loam 1013.930 201.359 1158.55 337.41 3096.58 1135.01

2 

 pH Aluminium Calcium 

Mean  Sd Mean Sd Mean Sd 

Silty clay 

loam 

6.958 0.277 0.248 0.224 1835.53 332.867 

Sandy loam 6.718 0.465 0.072 0.031 1420.53 394.25 

 Iron Potassium Magnesium 

Mean  Sd Mean Sd Mean Sd 

Silty clay 

loam 

0.067 0.038 201.900 77.483 76.917 16.554 

Sandy loam 0.066 0.054 225.416 49.944 87.312 27.364 

 Manganese* Sodium 

Mean  Sd Mean Sd 

Silty clay 

loam 

20.582 10.664 8.881 4.967 

Sandy loam 4.443 2.941 3.971 1.666 

 

*Refers to soil health indicators that showed significant differences across soil types. 
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Table 11: Statistics for each of our chosen soil health indicators across land management 

(grass, arable and fallow), including average values (mean) and standard deviation (sd) from 

the Highfield Ley-arable field experiment).  

 

Land 

management 

Aggregate stability*  Bulk density* Penetration 

Resistance* 

Mean  Sd Mean Sd Mean Sd 

Grass 1.163 
 

0.204 1.471 
 

0.010 
 

1974.984 
 

299.376 
 

Arable 0.977 0.036 
 

1.457 
 

0.008 
 

1445.418 
 

306.670 
 

Fallow 0.841 0.041 
 

1.359 
 

0.011 
 

932.276 
 

177.097 
 

 Total Organic 

Carbon* 

Total Nitrogen*  Inorganic 

phosphorous* 

Mean  Sd Mean Sd Mean Sd 

Grass 3.742 
 

0.328 
 

0.322 
 

0.023 
 

74.840 
 

6.560 
 

Arable 1.648 
 

0.074 
 

0.161 
 

0.006 
 

32.960 
 

1.479 
 

Fallow 0.933 
 

0.113 
 

0.087 
 

0.008 
 

18.652 
 

2.257 
 

 β-glucosidase* N-acetyl-β-

glucosaminidase* 

Acid phosphatase* 

Mean  Sd Mean Sd Mean Sd 

Grass  523.706 
 

224.984 
 

343.592 
 

204.576 
 

367.242 
 

322.001 
 

Arable 176.958 
 

58.441 
 

100.587 
 

87.277 
 

89.926 
 

49.283 
 

Fallow 241.863 
 

22.322 
 

31.725 
 

17.943 
 

29.678 
 

13.774 
 

 pH Aluminium Calcium* 

Mean  Sd Mean Sd Mean Sd 

Grass 6.780 
 

0.275 
 

0.078 
 

0.022 
 

1606.381 
 

615.630 
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Arable 6.763 
 

0.343 
 

0.122 
 

0.039 
 

1619.988 
 

385.612 
 

Fallow 6.926 
 

0.217 
 

0.115 
 

0.035 
 

1089.436 
 

92.034 
 

 Iron Potassium Magnesium 

Mean  Sd Mean Sd Mean Sd 

Grass 0.046 
 

0.034 
 

246.671 
 

99.131 
 

91.387 
 

12.573 
 

Arable 0.066 
 

0.025 
 

264.471 
 

135.518 
 

85.227 
 

19.948 
 

Fallow 0.101 
 

0.059 
 

187.672 
 

21.838 
 

75.632 
 

11.065 
 

 Manganese* Sodium* 

Mean  Sd Mean Sd 

Grass 6.171 
 

4.213 
 

5.495 
 

2.949 
 

Arable 10.483 
 

6.226 
 

6.858 
 

3.553 
 

Fallow 2.287 
 

0.681 
 

2.796 
 

0.407 
 

 

*Refers to soil health indicators that showed significant differences across one or more land 

management. 

 

For our chemical, biological and physical soil health latent variables, we chose to use the first 

3, 2 and 1 principal components as indicators, accounting for 88%, 72%, and 93% of the total 

variation with each latent variable, respectively. (See Appendix B for full PCA loadings and 

soil health indicator contributions for each principal component). Figure 17 shows our 

chemical, physical, and biological indicators, which have been transformed into a new 

coordinate system defined by the principal components, which are orthogonal axes that 

capture the maximum variance in the data. The position of each data point in the 3D space is 

determined by its scores on the principal components. The original soil properties are 

projected onto the new coordinate system and clusters of arrows in the plot indicate 

similarities among the soil health indicators.  
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Figure 17: Three-dimensional (3D) Principal Component Analysis (PCA) plot representing the 

distribution and relationships among our A) physical, B) biological, C and D) chemical data 

points (C shows dimensions 1 and 2, and D shows 1 and 3 for chemical data points). The 

loadings for each soil property are shown with a solid arrow. The length of the arrow shows 

the size of the contribution to each principal component. 

 

Our resulting SEM model contained a two-tier structure. The first tier included the measured 

physical, chemical, and biological soil health indicators as described in Tables 7 and 8, and 

the second-tier factor consisted of the ‘overall soil health’, which had the indicators total 

organic carbon, total nitrogen, and yield collected from arable and grass plots (Figure 18). 

The model additionally incorporated regressions to account for the influences of 

environment and management on each soil health indicator, as discussed earlier. To ensure 
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the model’s accuracy, we conducted post-hoc adjustments to introduce and independently 

estimate parameters governing the covariance and correlation among specific soil health 

indicators. However, overall, our model fit was poor, with a CFI (Comparative Fit Index) of 

0.914, RMSEA (Root Mean Square Error of Approximation) of 0.183, SRMR (Standardised 

Root Mean Square Residual) of 0.116, and a significant Chi-square result (Chi-sq = 0.00, 

P≤0.00, df = 81), suggesting that the model should be developed further. The significant chi-

squared value suggests that there were discrepancies between the covariance matrices of 

the proposed model and the observed data. 

 

 
 

 

Figure 18: Proposed model showing how biological, chemical, and physical factors 

contribute to soil health. The model includes how the environment (soil type, temperature, 

and soil moisture) and management (treatment and amendment) can influence soil health. 

Soil health was defined using total nitrogen, carbon, and yield data collected from each plot. 

Numbers in each observed indicator box linked to latent variables depict the loading of each 

indicator. Numbers in each latent variable box linked to other latent variables show 

regression coefficients. Observed indicators are represented in square boxes, and rounded 

boxes are latent variables. Significant effects are indicated *p<0.05, **p<0.01, ***p<0.001.  
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The SEM presented in this study was designed to assess the relationships between various 

environmental, management, and soil health indicators. The model shown in Figure 18 

integrates both latent and observed variables to determine how environmental factors (soil 

type, temperature, and soil moisture) and management practices (such as organic 

amendments and land use types) contribute to overall soil health. Soil health in this model is 

quantified using three key indicators: total nitrogen, organic carbon, and yield data. 

 

The environmental latent variable in our SEM was influenced by three key indicators. 

Sand content had a positive loading on the environmental variable (0.48***), indicating that 

soils with higher sand content tended to score higher on this environmental axis. Soil 

moisture had a significant negative loading (-0.84***), suggesting that drier soils are 

associated with higher environmental scores in the context of this model. Temperature also 

had a significant negative loading (-1.11***), indicating that cooler temperatures are 

associated with higher environmental scores. 

 

The environmental variable positively influenced the biological component of soil health 

(0.18*), suggesting that favourable environmental conditions (as defined by the SEM) lead to 

higher biological activity in the soil. Conversely, environmental conditions had a negative 

effect on the physical component (-0.27**), implying that these conditions might be 

associated with lower levels of key physical indicators such as aggregate stability and bulk 

density. Although not statistically significant, the environmental variable showed a weak 

negative relationship with the chemical component (-0.05). 

 

The use of organic amendments had a slight negative loading on the management latent 

variable (-0.25**), suggesting that sites receiving organic amendments might score lower on 

the management axis, potentially due to the varied effects of amendments across different 

soil types. Grass cover had a strong positive loading (0.63***), indicating that pasture or 

grassland management practices contribute positively to the management score. Whilst 

arable land use had a significant negative loading (-1.24***), suggesting that cultivated land 

negatively impacts the management score. 
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The management variable positively influenced the biological component (0.27***), 

indicating that better management practices (higher management scores) lead to increased 

biological activity, as reflected by enzymes GLU and NAG. The management variable showed 

a negligible, non-significant positive influence on the chemical component (0.01), implying a 

weak or minimal effect of management on chemical indicators. Similarly, there was a small 

positive effect of management (0.09) on the physical component, suggesting that better-

managed soils might have slightly improved physical properties like aggregate stability and 

bulk density. 

 

Total nitrogen had a strong positive loading on soil health (1.06***), indicating that higher 

nitrogen levels are a critical indicator of better soil health. Organic carbon also had a strong 

positive loading (0.93***), further emphasising its importance as a key component of 

healthy soils. Yield data, while still positively correlated with soil health (0.29***), had a 

lower loading compared to nitrogen and carbon, suggesting that while crop yield is an 

important measure, it may be influenced by multiple factors beyond those mentioned in our 

SEM alone. 

 

The indicators for the biological, physical, and chemical latent variables were built from our 

PCA (Figure 17; Appendix B). The biological component is significantly influenced by Bio1 

(0.95***) and Bio2 (0.59***), with Bio1 distinguishing between soils with varying levels of 

GLU activity and Bio2 reflecting differences in NAG and PHO activities. It follows that sites 

with greater scores on our biological latent variable generally exhibited higher GLU and PHO 

activity, with NAG activity contributing variably depending on the balance between Bio 1 and 

Bio2 (Appendix B, Table B4). 

 

The chemical component is strongly influenced by Chem1, which showed a positive effect 

(0.83***), while Chem2 and Chem3 had negative loadings (-1.06*** and -0.87***, 

respectively), indicating a complex relationship between the chemical indicators and soil 

health. Meanwhile, the physical component, represented by variables like compaction, bulk 

density, and aggregate stability, had a positive but non-significant loading on soil health 

(0.13), highlighting its importance but also the need for further investigation into its role.  
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Together, these three components (Biological, Chemical and Phys1) determined the final soil 

health variable. Soils with great physical values (0.13), together with small biological and 

chemical values (-0.26 and -0.23*, respectively), gave large scores for soil health; these soils 

typically had large C, N and Yield as these indicators all contributed positively to the latent 

variable. 

 

Summary of Key Relationships in our Model 

Environmental Effects 

Sand (0.48***), Soil Moisture (-0.84***), and Temperature (-1.11***) have significant 

loadings on the ‘Environment’ latent variable. This suggests that these factors are key 

components of the environmental conditions affecting soil health. The ‘Environment’ 

variable has a small positive influence on ‘Chemical’ properties (0.18*) but a negative impact 

on ‘Biological’ properties (-0.27**), indicating that environmental conditions might 

negatively affect biological soil health but have a minor positive effect on chemical 

properties. 

 

Management Effects 

Grass (0.63***) and Arable (-1.24***) significantly contribute to the ‘Management’ latent 

variable, indicating that these land uses strongly influence management practices. 

‘Management’ has a positive relationship with ‘Biological’ properties (0.27***), suggesting 

that certain management practices improve biological soil health. 

 

Chemical, Biological, and Physical Impacts on Soil Health 

‘Chemical’ properties have a small but significant negative effect on overall ‘Soil Health’ (-

0.23*). This could indicate that certain chemical properties (like excess nutrients or 

contaminants) might degrade soil health. ‘Biological’ properties also negatively affect ‘Soil 

Health’ (-0.26), which could reflect issues like nutrient competition or the presence of 

certain enzymes in unhealthy soil conditions. ‘Physical’ properties show a positive but non-

significant effect on ‘Soil Health’ (0.13), suggesting that while physical structure is important, 

its impact may be less direct or less pronounced compared to chemical and biological 

factors. 
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Figure 19: Modified model only using collected soil data from A) Clay or B) Sandy soil types. 

Numbers on arrows depict the strength of correlation each variable has in describing soil 

health. Physical soil parameters under clay and sandy soils have an inverse effect, -0.56*** 

and 0.23, respectively. Significant effects are indicated *p<0.05, **p<0.01, ***p<0.001. 
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From our preliminary analyses of our various soil properties and our understanding of the 

way in which they interact, we hypothesised that the influence of different soil types, 

amendments, and treatments may interact with the various physical, biological, and 

chemical properties. Due to the limited sample size, we were unable to fit an SEM with 

these interaction terms included. Instead, we subsetted our data collected from clay and 

sandy soils and fitted additional SEMs, omitting the management and environment 

variables.  

 

Figure 19 shows differences between the resultant SEMs, particularly from our physical soil 

health indicators, where we see that physical parameters under clay and sandy soils had an 

inverse effect of -0.56 and 0.23, respectively. Similarly, we saw differences across our model 

when we only input collected soil data from arable or grass treatments. 
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Figure 20: Modified model only using soil data collected from A) Arable, B) Grass, or C) No 

added amendment data. Numbers on arrows depict the strength of correlation each variable 

has in describing soil health. Chemical soil parameters under arable, grass, and soils with no 

added amendments had an inverse effect, -0.2* and 0.73, -0.15*, respectively. Significant 

effects are indicated *p<0.05, **p<0.01, ***p<0.001. 
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In Figure 20, we see that chemical soil parameters under arable, grass, and soils with no 

added amendments had differing effects on soil health of -0.2*, 0.73, and -0.15*, 

respectively. These differences confirm our hypothesis and highlight that a lack of second-

order interactions may be giving a poor fit in our full model. Thus, soil type and land use 

history significantly impacted our measured soil health indicators, as evidenced by the 

regression results in Figures 19 and 20. To further develop our model, the next step would 

be to add more data to account for the interaction steps and effects. As we were limited to 

the sample size in our current dataset, we propose further data collection to make the 

proposed model more robust.  

 

 

A)  
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B)  

C)  

 

Figure 21: Relationship between the soil health score and the A) Biological, B) Chemical, and 

C) Physical latent variable scores generated from our model across different soil types and 

land management practices.  
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Figure 21 shows the relationships between our soil health score and the biological, physical, 

and chemical latent variables. The values of these latent variables were predicted from our 

full model (Figure 18). From Figure 21, we can see smaller soil health scores under fallow 

treatments, followed by grass and arable treatments. Furthermore, there were noticeable 

differences in the physical scores between grass and fallow treatments, indicating distinct 

structural and physical differences in soils under grass compared to fallow. However, it was 

hard to discern differences between grass and arable treatments based on chemical, 

physical, and biological scores.  

 

We also observed a stronger negative relationship between our soil health score and 

biological score under grass than we do for arable. However, this was not seen across our 

physical and chemical scores, providing evidence for the need for additional data to allow 

our model to incorporate interactions based on land use and soil type. Furthermore, we 

could see clear differences in soil health scores for clay and sandy soils across biological, 

chemical, and physical variables, with soil health scores being greater for clay soils compared 

to sandy soils. 

 

Overall, the relationship between both physical and biological latent variables and soil health 

was weak, whilst the chemical variable was negatively correlated with soil health (Figure 18, 

regression coefficient values). When we separated the predicted scores by land use and soil 

type however, we could see that the weak overall relationships may be due to opposing 

results across these landscape and management factors.   
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A)  

B)    
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C)  

 

Figure 22 illustrates A) Soil health scores derived from our structural equation model plotted 

against total organic carbon for all observed data points across grass, arable, and fallow 

treatments. Additionally, soil health scores generated from our modified, exploratory SEM, 

adjusted using soil data exclusively from B) Grass and C) Arable treatments, are presented 

against total organic carbon. 

 

Figure 22A displays our model-generated soil health scores against organic carbon for our 

SEM fitted to the full dataset of observed variables from all land uses and soil types, whilst 

Figures 22B and 22C show the same relationships built from our exploratory models fitted to 

our subsetted data from under grass and arable treatments, respectively. We observed a 

stronger correlation between soil health scores under grass and arable treatments in this 

subset compared to soil health scores under the whole dataset, which was what we 

anticipated based on the results from Figure 20. However, although we observed positive 

correlations between total organic carbon scores and SI scores under grass treatments as 

well as total organic carbon and SI scores under arable treatments, a notable difference can 

be seen in the strength of these correlations. Specifically, arable treatments correlate more 
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strongly with the soil health score than grass treatments. Differences in correlations 

between grass and arable datasets underscore the importance of segregating our current 

model by land use and soil type and emphasise the need for additional data points to 

enhance model fitting and accommodate interaction steps and effects. 

 

4.5  Discussion 
 

Researchers have recognised the importance of incorporating a variety of biological, 

chemical, and physical properties in soil health assessments (Karlen et al., 2003). While 

there is widespread agreement on integrating these indicators into a comprehensive 

approach to understanding soil health, there is often ambiguity regarding their association 

with specific processes (Lehmann et al., 2020). Moreover, determining the relative 

importance of each indicator to the overall score is not always straightforward, although 

some researchers advocate for assigning equal weight to each sector (biological, chemical, 

or physical) (Cherubin et al., 2016). Using SEM, we were able to refine our minimum dataset 

of soil health indicators and categorise them into the appropriate groupings. SEM offers an 

advantage over standard PCA by providing deeper insights into how we conceptualise and 

categorise soil health indicators. In our study, we used SEM to define latent variables (Table 

8) to describe soil health based on a minimum dataset of soil health indicators (Table 7). 

SEM then determined the weight of each soil health indicator based on the strength of 

relationships associated with total organic C, total N, and yield data, allowing for a more 

data-based approach.  

 

Figure 18 presents our SEM for soil health, integrating environmental, management, 

chemical, physical, and biological factors. Environmental variables such as soil moisture, 

temperature, and soil type (sand content) significantly impact soil health through their 

effects on chemical, biological, and physical components. Soil moisture and temperature are 

key environmental variables that influence microbial activity, organic matter decomposition, 

and nutrient cycling. For example, soil moisture regulates microbial respiration, while 

temperature affects enzymatic activities involved in nutrient cycling (Schimel et al., 2007). 

Sand content influences soil texture, water retention, and aeration, directly affecting soil 

biological activity and nutrient availability (Six et al., 2004). 



 127 

 

Moreover, management practices, including organic amendments, grass, and arable land 

use, affect soil health primarily through biological and chemical mechanisms. Organic 

amendments can increase SOC and stimulate microbial activity, while grass cover can 

enhance soil structure and prevent erosion. In contrast, arable management practices often 

lead to soil compaction and nutrient depletion, reducing biological activity and degrading 

chemical properties (Lal, 2004). SEM modelling in Figure 18 shows direct effects on 

biological factors, confirming the importance of management in controlling microbial activity 

and nutrient availability. 

 

Environmental and management factors influence soil health through their impact on 

chemical (Chem1, Chem2, Chem3), biological (Bio1, Bio2), and physical (Phys1) properties. 

The chemical properties of soil, such as nutrient content and pH, are crucial for determining 

soil fertility and plant growth. Microbial activity (Biological factors) drives nutrient cycling 

and organic matter decomposition, while physical properties like bulk density influence root 

growth and water retention (Gregorich et al., 2000). SEM analysis suggests that both 

management and environmental factors act on these intermediate variables before 

ultimately affecting soil health. 

 

Chemical (Chem1, Chem2, Chem3) and biological (Bio1, Bio2) factors have direct influences 

on overall soil health. Chemical properties such as nutrient levels and pH are directly related 

to soil fertility, which in turn impacts crop yield and organic matter turnover. The biological 

health of the soil, indicated by microbial biomass and enzyme activities, directly contributes 

to nutrient cycling and organic matter decomposition (Dick, 1994). In our model, the 

biological components are shown to have stronger direct effects on soil health than chemical 

factors, highlighting the role of microbial activity. 

 

Furthermore, our SEM revealed that physical properties (Phys1) played a moderating role in 

the relationship between soil health and its drivers, showing a relatively weak direct 

influence. While soil physical properties like bulk density, soil texture, and aggregation are 

important, they often exert indirect influences on soil health. They regulate water retention 

and root penetration, which in turn affect biological and chemical processes (Tisdall et al., 
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1982). Our model suggests that physical properties do not directly drive soil health but 

moderate other relationships, such as the impact of chemical and biological factors. 

 

Soil health is ultimately represented by key indicators such as organic carbon, yield data, and 

total nitrogen. SOC is widely recognised as a primary indicator of soil health due to its role in 

supporting microbial activity, nutrient retention, and soil structure (Lal, 2004). Similarly, 

nitrogen availability is a critical nutrient that determines plant productivity and overall soil 

fertility. Crop yield is an integrative measure of soil health, as it reflects both the physical and 

biochemical conditions of the soil (Gregorich et al., 2000). The strong correlations shown in 

the model reflect the importance of these variables in determining soil health outcomes. We 

have found that our SEM builds on established relationships between environmental, 

management, chemical, biological, and physical factors, whilst revealing that soil health is 

primarily driven by biological and chemical factors, with management practices and 

environmental variables playing indirect roles. Thus, SEM has facilitated our understanding 

of how these factors interact, providing a robust framework for assessing soil health across 

different contexts. 

 

The conventional additive approach for soil health scoring involves assigning individual 

scores to different soil health indicators and summing them to obtain an overall soil health 

score (Rinot et al., 2019). This method typically treats each indicator as equally important 

and assumes that their effects on soil health are independent of each other. It does not 

account for potential interactions or correlations between indicators (Schulte et al., 2006). 

The SEM approach offers several advantages over conventional additive soil health scoring 

approaches. Unlike the additive approach, SEM allows for the incorporation of latent 

variables, which may better capture the underlying complexity of soil health dynamics. 

Additionally, SEM can assess the relationships between different soil health indicators, 

providing insights into how they interact to influence overall soil health (Karlen et al., 1994). 

Moreover, SEM offers a more rigorous statistical framework for analysing complex datasets, 

potentially yielding more robust and reliable results compared to the simplistic additive 

method.  
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Congreves et al. (2015) found that when detecting changes in soil health across different 

land management, PCA-weighted soil health parameters exhibited up to ten times greater 

sensitivity than the conventional additive function. Similarly, Mukherjee and Lal (2014) 

found strong correlations among additive functions, weighted additive functions, and 

weighted PCA-modelled scores. However, they favoured the weighted PCA-modelled scores 

due to their objectivity and relatively higher correlations with crop yield. Furthermore, 

Askari and Holden (2014) reported similar scores between additive and weighted additive 

approaches but noted that the weighted additive approach, based on a minimal indicator 

dataset, exhibited the highest discriminatory power among all indices (Maaz et al., 2023). 

Together, these results suggest an increasing consensus towards using PCA-weighted 

indicators over additive functions in soil health assessments. 

 

To serve as an effective tool, a scoring function must be capable of identifying changes in 

management practices or land use. We found that our soil health score showed a stronger 

negative relationship between our soil health score and biological score under grass 

compared to arable (Figure 21). This could be explained by the increased levels of soil 

organic carbon (SOC) found under grass, which not only serves as an indicator of soil health 

but also facilitates increased microbial activity (Kallenbach et al., 2016). Furthermore, SOC 

tends to decrease during land use changes from natural ecosystems to agricultural systems, 

which would explain the smaller biological score under arable systems compared to grass 

(Omonode et al., 2006). However, we did not detect any correlations between our soil 

health scores and physical and chemical scores across different land management (Figure 

21). Similarly, Saviozzi et al. (2001) found that intensive cultivation resulted in a decline in all 

measured soil health indicators. As a result, they found grasslands showed greater soil 

health scores compared to arable sites. Furthermore, according to Noponen et al. (2013), 

disparities attributed to differences in land use or management may vary with depth. This is 

potentially significant given that most of our soil samples were collected up to a depth of 15 

or 25 cm, depending on the observed variable. We suggest that further data would allow our 

model to better incorporate interactions based on land use. 

 

One of our main objectives was to devise a scoring mechanism capable of quantifying the 

impacts of land use changes and management practices on soil health. However, our 
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proposed SEM designed for the soil health index showed a significant chi-squared value, 

suggesting discrepancies between the proposed model and the observed data. Several 

potential issues could be causing this discrepancy. For example, there may be errors or 

inconsistencies in the observed data used to fit the model. The proposed model, therefore, 

would not accurately represent the underlying relationships among the variables in the 

dataset, leading to poor model fit. During our analysis, we noticed a gap in our current 

database in the representation of soils collected from fallow and grass systems, as well as 

organic amendment plots. Thus, we were not able to fully examine the effect of 

management within these land uses. Furthermore, a major limitation of this study was that 

the assessment of latent variables (Table 7) hinges on the data we gathered and, therefore, 

must be understood within that framework. However, we found that most of our measured 

soil health indicators showed significant results across soil types and land uses but not 

across organic amendment additions (Table 9), leading us to believe that inconsistencies 

within our observed data were not solely responsible for the poor fit of our model. 

Moreover, we identified that one main issue was that our proposed model was too complex 

relative to the available data, resulting in poor generalisation of new data and unreliable 

parameter estimates.  

 

We also discovered that the relationship between our model-generated soil health scores 

and organic carbon for our SEM fitted to the full dataset of observed variables from all land 

uses and soil types showed a weaker positive correlation compared to exploratory models 

fitted to our subsetted data from grass or arable treatments (Figure 22). We observed a 

stronger correlation between soil health scores under arable treatments in this subset 

compared to soil health scores under the whole dataset. These differences underscore the 

importance of segregating our model by land use and soil type and emphasise the need for 

additional data points to enhance model fitting and accommodate interaction steps and 

effects. We believe that addressing these issues by improving our data quality and increasing 

the sample size will improve our model fit to the data. 

 

Maaz et al. (2023) also attempted to design a soil health scoring function using SEM. 

Surprisingly, their investigation revealed that soil health indicators did not conform to 

traditional biological, chemical, and physical categorisations within the SEM. They also found 
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that SEM was more effective in scoring soil health compared to conventional scoring 

methods, demonstrating the superior discriminatory power of SEM. Moreover, Maaz et al. 

(2023) generated a scoring function that was able to address intrinsic soil properties crucial 

for accurately assessing modern management practices across diverse soil types, 

encompassing tropical and volcanic soils and varying land use histories. Unlike our SEM, 

their model was able to highlight differences across management practices and soil types 

despite being fitted to the full dataset of observed variables.  

 

A reliable soil health index must account for soil heterogeneity across time and space, as 

well as adhere to standardised soil sampling methodologies and analysis protocols. 

Additionally, the reliability of the index is influenced by model limitations associated with 

indicator selection and underlying assumptions used in its evaluation. Due to inherent 

variations and diversity among soils, standard practice for existing scoring indices defines soil 

health indices separately across various soil categories, often based on textural classification 

(Karlen et al., 2003). SEM can allow us to see the relationships between measured soil health 

indicators to determine the weight of each attribute or group of attributes in order to 

develop an integrated soil health score across different land uses and managements (Rinot 

et al., 2019). This study emphasises the potential of our proposed model and future soil 

health scores that utilise SEM in soil health assessments. 

 

4.6  Conclusion  
 
While many studies assess individual soil health indicators, only a limited number provide a 

comprehensive soil health score. In this study, we adopted a novel methodology utilising 

SEM to generate a soil health scoring function that can be used across a variety of soil types 

and land uses based on a minimum dataset of soil attributes. By employing SEM, we were 

able to capture the complex interactions among biological, chemical, and physical properties 

of soils. Whilst our model was not able to differentiate between different land uses and soil 

types when using our entire dataset, we did observe differences when using a subset of our 

data, showing that soil type and land use history significantly impacted our measured soil 

health indicators. Thus, our findings underscore the importance of considering the inherent 

variability among soils and the need for tailored approaches to soil health assessment based 
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on specific land use and soil types. Furthermore, our study highlights the limitations of 

traditional soil health indices and the necessity for a more integrated and comprehensive 

approach that accounts for the diverse range of soil functions and processes. Through the 

integration of various soil health indicators and the incorporation of latent variables, our 

model offers a more holistic understanding of soil health dynamics.  

 

Moving forward, future research endeavours should focus on refining and validating our 

proposed soil health scoring function across different soil types and land management 

practices. Additionally, efforts should be directed towards elucidating the underlying 

mechanisms driving soil health processes and interactions, thus informing more targeted 

and effective soil management strategies. Overall, SEM provides a powerful analytical tool 

that aids in understanding the intricate relationships between different variables to help 

develop and test models that help unravel the complexity of soil systems, which will 

undoubtedly contribute to informed decision-making. This research thereby contributes to 

the ongoing development of soil health assessments and underscores the importance of 

adopting innovative approaches to better understand and manage our soils sustainably.  
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5 Main Discussion 
 

Throughout this thesis, the significance of design choices when creating a soil health index 

was emphasised. This involves selecting the appropriate methods for measuring soil health 

indicators and exploring novel methodologies (Chapter 2), as well as identifying potential 

soil health indicators and validating their use in soil health assessments (Chapter 3). The 

overarching objective has been to leverage these insights to create a soil health index that is 

both robust and reliable (Chapter 4). The following discussion will delve into the implications 

and broader insights gathered from the primary findings. 

 

5.1 Selecting the Best Method to Measure a Soil Health Indicator 
 

Soil aggregate stability reflects the ability of soil aggregates to withstand disintegration when 

subjected to external forces such as rainfall, irrigation, or tillage (Amézketa 1999). Stable 

aggregates are crucial for maintaining crop productivity, reducing soil erosion, and 

promoting soil health (Neal et al., 2020). Thus, aggregate stability serves as a pivotal 

indicator for soil health and erosion risk assessment. However, its effective use in these 

assessments is impeded by the absence of convenient, standardised procedures, posing 

significant challenges in its use beyond research.  

 

There are several traditional ways to measure aggregate stability. For the wet sieving 

technique, soil aggregates are submerged in water and gently agitated to separate them into 

different-size fractions based on their stability. The stability of aggregates is inferred from 

the amount of material retained on sieves of various mesh sizes after wet sieving (Kemper et 

al., 1986). Critiques of the wet sieving method highlight its limitation in capturing all 

mechanisms contributing to aggregate breakdown in natural field conditions (Kemper et al., 

1986). In response, Le Bissonnais. (1996) proposed a more comprehensive approach known 

as the 'unified framework.' This method integrates the use of both water and ethanol as 

wetting fluids, along with varying rates of wetting (slow and fast) and mechanical energy 

(shaking after pre-wetting) (Almajmaie et al., 2017). These conventional methods for 

measuring aggregate stability often require significant time, expense, and laboratory 

resources.  
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In Chapter 2, we explored a novel technique to measure aggregate stability called “The Soil 

Aggregate Stability (SLAKES) smartphone application (Farjardo et al., 2016).” It aims to 

quantify aggregate stability by measuring how quickly soil aggregates disintegrate once 

submerged in water. With just a Petri dish, three soil aggregates ranging from 2 to 15 mm, 

and water, along with the SLAKES application installed on a smartphone, users can obtain 

aggregate stability measurements within 10 minutes. Thus, SLAKES represents a convenient, 

rapid, and cost-effective approach to assessing aggregate stability compared to traditional 

methods. Notably, SLAKES eliminates the need for laboratory facilities and is accessible to 

anyone with a smartphone.  

 

To evaluate the tool, we collected SLAKES measurements across a range of land uses and soil 

types and compared results with the Le Bissonnais method. The results showed that the Le 

Bissonnais method effectively distinguished between almost all treatments, where soil 

aggregates in grass-treated plots exhibited significantly higher stability compared to those in 

arable and fallow treatments under clay and sandy soils (Figure 2). While the SLAKES app 

accurately differentiated the highly stable aggregates in the grass treatment from the less 

stable ones in arable and fallow treatments, it did not achieve the same level of statistical 

significance between arable and fallow treatments as the Le Bissonnais method and was 

significantly less sensitive under sandier soils (Figure 3). Thus, the study showed that the 

SLAKES method was able to determine aggregate stability to some extent, but it was less 

sensitive than the traditional Le Bissonnais method. However, depending on the purpose, 

the SLAKES method can provide some measure of aggregate stability quickly and at low 

costs. 

 

Flynn et al. (2020) examined the SLAKES application's ability to detect variations among 

conventional tillage, no-tillage, and perennial grass management practices, contrasting its 

performance with the Cornell wet aggregate stability test (CWAST). Their findings revealed 

SLAKES' superior sensitivity in distinguishing tillage management practices compared to 

CWAST. In contrast, our laboratory-based method showed heightened sensitivity in detecting 

differences between land management practices relative to SLAKES. Similarly, Rieke et al. 

(2022) conducted a comparative study of the SLAKES app with three other aggregate 
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stability tests. They found SLAKES had a weaker correlation with these tests and was limited 

in its ability to discern differences in aggregate stability across treatments. However, our 

investigation demonstrated a significant correlation between SLAKES and the Le Bissonnais 

method. 

 

Each methodology for assessing aggregate stability applies different types and levels of 

disruptive energy, leading to variations in how closely they reflect the disruptive forces 

encountered by soil aggregates in their natural environment (Almajmaie et al., 2017). 

Consequently, establishing a standardised method for measuring aggregate stability faces 

many problems, as relying solely on one approach may not adequately capture the 

behaviour of aggregates in real-world settings. Thus, selecting a methodology should 

prioritise replicating the types and magnitudes of disruptive energy experienced under 

natural field conditions. For example, aggregates subjected to rapid immersion, such as 

those encountered during flood or irrigation events, would be best evaluated using the wet 

sieving method (Truman et al., 1990). Ideally, all analyses should be performed using 

aggregates at moisture levels comparable to those observed before irrigation or rainfall 

events. Alternatively, analyses can be conducted using aggregates at air-dried moisture 

content levels as a standard practice.  

 

As shown in our study, the cheaper and easier approaches to measuring aggregate stability 

are not the most sensitive at determining treatment differences across soil types compared 

to more conventional techniques. So, while each method has its own advantages and 

limitations, when selecting the most appropriate way to measure aggregate stability, we 

should consider a number of factors, such as soil characteristics, the nature of disruptive 

forces experienced by soil aggregates, and the availability of resources and equipment, 

before making a decision. Ideally, the chosen method should be simple, cost-effective, 

reproducible, and capable of distinguishing between different soils and treatments. 

 

5.2 Selecting Potential Soil Health Indicators in Soil Health Assessments 
 

Soil enzymes (EE) are crucial in ecosystem functioning. Researchers have proposed using 

enzymes as soil health indicators in agroecosystems due to their vital role in delivering 
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ecosystem services and soil functioning (Karaca et al., 2010). EE are involved in the 

decomposition and transformation of OM, releasing plant-available nutrients, and 

participating in C, N, and P cycling. Despite this, enzyme activity was found to be one of the 

least common soil properties used in soil assessments compared with other biochemical 

parameters (Saviozzi et al., 2002). However, in the last decade, soil EEs have been 

increasingly used as soil health indicators, allowing land managers to understand and 

monitor ecological changes in their soils.  

Chapter 3 aimed to investigate how N-acetyl-β-glucosaminidase (NAG), acid phosphatase 

(PHO) and β-glucosidase (GLU) respond to different land uses and relate with other soil 

properties and evaluate the use of EE as a helpful indicator of soil health. The study also 

examined the impact of soil organic amendment (OA), soil type, and land management 

practices on enzyme activities. The findings indicated that there were significant 

relationships among the activities of the chosen soil enzymes: GLU, NAG, and PHO 

(Fließbach et al., 2007). It was also found that soil OA, soil type, and land management 

practices had an impact on soil enzyme activities. Furthermore, the results supported the 

hypothesis that soils with increased SOC have increased enzyme activity. 

Dale et al. (2001) suggested parameters for potential soil health indicators. They must be: 1) 

easily measurable; 2) sensitive and responsive to environmental stressors, natural 

disturbances, and changes over time; 3) able to predict changes in soil ecosystems; and 4) 

variable in response. This study showed that overall, PHO, NAG, and GLU activities were easy 

to measure, sensitive to land use changes and OA additions, and able to predict other 

essential soil chemical health indicators. The results confirmed that land uses with the least 

amount of soil disturbances have greater soil health, as grass treatments relative to all other 

plots showed increased levels of enzymatic activity, followed by arable and fallow, 

respectively (Figures 6 to 8). Also, soil EE activity correlated with other observed soil health 

indicators. In particular, NAG and PHO were correlated to more chemical attributes of the 

soil (pH, inorganic-P, total N and soil organic carbon (SOC) (Figure 15). However, GLU was the 

most sensitive to land management and OA additions (Figure 11). 

Further on, the study highlights the significance of studying long-term experiments with 

known histories and large datasets in order to better comprehend the drivers of soil health. 
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We concluded that EEs are promising indicators of soil health and are important in 

maintaining or increasing SOC in agricultural lands. These findings also suggest that EE 

activity could serve as an early indicator of soil degradation, allowing land managers to 

implement management strategies for enhancing soil health in agricultural systems. 

However, it must be stressed that EE activity should not be used as a standalone 

measurement to describe soil function and health. Results should be compared against 

baseline values or reference conditions for meaningful assessments of soil health. 

Additionally, using a combination of indicators, including physical and chemical properties, 

alongside enzymatic assessments would provide a more comprehensive understanding of 

soil health.  

EE assays, while valuable tools for studying microbial activity and nutrient cycling in soils, 

have some limitations. Soil is disturbed during the collection, preparation, and storage of 

samples, which can change enzyme activity. Measuring enzymes within 24 hours after 

sampling is optimal; however, this is only sometimes plausible, and samples must be stored. 

According to Lee et al. (2007), keeping fresh samples cool at 5 °C instead of freezing during 

transport and storage has less impact on enzyme activity for temperate soils. For long-term 

storage, freezing samples at -80 °C is better than drying for organic soils (Wallenius et al., 

2010). Storing soils after air-drying reduces enzyme activity and should be avoided 

(DeForest, 2009). Researchers agree that no clear standards can be made regarding the 

optimal storage of soil samples for enzyme tests because temperature and the duration of 

storage are enzyme- and soil-specific (Burns et al., 2013). As a result, soils from different 

climates and ecosystems would have different storage requirements. For example, Turner et 

al. (2010) recommended that temperate soils be stored at 5 °C, but tropical soils be stored at 

22 °C. Furthermore, the time of year when soil samples are taken should be standardised. 

For example, attempts should be made to sample mid-season rather than just after the 

application of amendments or fertilisers to be more representative.   

 

An unexpected problem encountered during the data analysis was that the protocols for 

measuring EE activity are not universal, making the comparison of studies difficult. There are 

two main approaches towards the enzyme assay methodology, which have the potential to 

produce remarkably different results (Dunn et al., 2013). The classical approach determines 
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enzymatic activity using substrate dilutions and optimises conditions such as pH and 

temperature. The second ‘in situ’ approach attempts to replicate the natural conditions of 

the soil to estimate actual enzymatic activity (Burns et al., 2013).  The two approaches are 

not mutually exclusive, and the choice of method is dependent on the research in question 

(Wallenstein et al., 2002).  

 

An inherent difficulty of studying EE is that only a fraction of the total enzymes found in the 

soil can be assessed (Dodor, 2002). In our study, enzyme assays were performed under a 

strict set of conditions. Thus, the methods were clearly defined, and any changes to these 

conditions would change the measured activity. This means the enzyme assays measured 

the potential activity under optimal conditions and not the in-situ activity. Hence, the assays' 

conditions differ from those in the original soil, particularly the substrate concentrations that 

saturate the system.  

 

Furthermore, EE can originate from plants, animals, and microorganisms, although it is 

widely considered that bacteria contribute the most to EE abundance. Enzyme assays cannot 

identify the source of enzymes in the soil. Instead, they measure the total activity of all 

enzymes present despite not all isoenzymes being assayed under their optimal conditions. 

As a result, enzyme assays may produce lower enzymatic activity readings (Knight et al., 

2002; Nakayama et al., 2023). Despite these limitations, EE assays remain valuable tools for 

gaining insights into microbial processes and nutrient cycling in soils. Using a combination of 

assays and complementary techniques to address these limitations would result in a more 

comprehensive understanding of soil microbial activities. 

 

Collaborations with other disciplines and technological advancements have already seen 

much progress in EE research. Enzyme assay methodologies are relatively quick and 

straightforward; as a result, they can be done on a routine basis. However, previous research 

recognises issues regarding the use of EE. Differences in methodologies and the lack of 

universal standards can complicate the interpretation of results and do not allow for 

comparisons across studies. Nonetheless, EE activities provide an integrative insight into 

changes resulting from external factors such as land management and the environment. 

Moreover, our ability to assess soil health and identify fundamental soil properties that can 
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serve as indicators of soil health has become a growing concern for land managers and 

farmers worldwide; the use of EE may be the solution to address these issues.   

 

5.3 Integration of Measured Soil Health Indicators to Construct a 

Comprehensive Soil Health Index. 
 

After selecting relevant soil health indicators and choosing which methodology is best suited 

to measure these variables, the next step is to weigh the contribution of each soil health 

indicator to quantify soil health. Using measurements of key soil health indicators collected 

from Rothamsted Research's long-term experiments across the UK, Chapter 4 aimed to 

design a soil health index using Structural Equation Modelling (SEM) capable of quantifying 

soil health across various land management practices and soil types. The results revealed 

that SEM offers a broad understanding of both observed indicators and latent variables 

contributing to overall soil health. However, the proposed model showed limitations in its 

applicability across diverse soil types and land management practices. Instead, its 

effectiveness was more pronounced when applied to specific land uses and soil types. 

Nonetheless, larger sample sizes are needed for a more comprehensive assessment. Despite 

these challenges, the study suggests that soil scientists could use SEM to refine soil health 

assessment models, enhance measurement accuracy, and deepen insights into the impacts 

of agricultural management practices on soil health. 

 

Integrating measured soil attributes and their respective contributions into a soil health 

index posed a challenge during the initial design phase of our model. Current soil heath 

assessments commonly assign equal weight to each selected indicator, also known as an 

additive method (Fine et al., 2017). This approach may be oversimplified and may not reflect 

the complex contributions of different indicators to the soil system and soil functions. 

Gradual relative contribution, also known as a weighted additive, can be established through 

either a review of existing literature or expert opinions. The determination of the relative 

significance of each parameter is guided by specific objectives, such as productivity (yield or 

outcome), pesticide use, water use efficiency, and other relevant factors (Andrews et al., 

2002; Wienhold et al., 2004). In addition, attributes may be further categorised into several 

soil functions, for example, water holding capacity, plant available water, soil degradation 
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resistance and nutrient supply power (Mukherjee et al., 2014). The relative importance of 

each soil function can be assigned either to equal or varying weightings. The differential 

relative weights could be based on the number of attributes within each soil function or 

determined by the perceived importance of each soil function. Greater relative importance 

might be attributed to field measurements, as they offer more pertinent and realistic data 

about the current state of the soil (Rinot et al., 2019). 

 

An alternative approach is to categorise the measured attributes into sectors, such as 

physical, biological, and chemical, and then assign an equal weight to each sector. Kang et al. 

(2005) integrated soil attributes from three different indices (microbial activity, nutrient 

status, and crop yields) to quantify a unified soil sustainability index (Rinot et al., 2019). 

Nevertheless, the connection between particular soil attributes or soil categories and 

specific soil functions is subjective and currently lacks quantitative tools for validation. 

Moreover, concentrating solely on specific soil functions may prove inadequate for a system 

of such complexity. Hence, a more comprehensive quantitative approach is needed.  

 

Another approach for integrating measured soil attributes and their respective contributions 

into a soil health index involves statistical analyses that outline the relative variability 

described by each parameter; this can include methods like principal component analysis 

(PCA) (Yu et al., 2018). Attributes incorporated into multidimensional scaling (MDS) for each 

soil sample can be assigned weights, based on the results from the PCA. Each principal 

component reveals specific proportions of variation found within the whole dataset. 

However, using this method could allocate a higher contribution to the most sensitive 

attribute, which may not necessarily be the same as the most important component in 

relation to soil functioning.  

 

This study used PCA when creating our soil health index (Figure 17 and Appendix B), because 

PCA was able to condense multiple correlated soil health indicators into a smaller set of 

uncorrelated variables (principal components), which reduced the complexity of the model 

and prevented multicollinearity issues, which are often encountered with the additive 

weighting approach (Dormann et al., 2013). Furthermore, PCA objectively assigned weights 

to each principal component based on the variance explained by each component. In 
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contrast, additive weighting requires subjective decisions on the importance of each 

individual indicator, which can introduce bias and inconsistency across different studies. 

Finally, we found PCA was less sensitive to outliers and measurement errors and provided a 

clear interpretation of the relationships between soil health indicators and their 

contributions to overall variability, enhancing the soil health index's interpretability and was 

more robust in capturing the underlying structure of the data.  

 

5.4 Challenges in the Development and Application of Soil Health Indices  
 

There are several challenges and limitations in the development and application of soil 

health indices. Bünemann et al. (2018) conducted a review of major national soil assessment 

approaches that selected relevant indicators based on their conceptual relationships with 

soil functions and ecosystem services. They found that the most used indicators in soil 

health tests were pH, available phosphorous, and organic matter but noted that biological 

indicators were generally underrepresented. Moreover, Roper et al. (2017) examined 

common soil health tests in North Carolina and found that they were unable to differentiate 

between management systems or correlate soil health scores with measured yields. They 

concluded that focusing solely on specific soil threats, functions, or ecosystem services may 

not provide a comprehensive assessment of soil health. Furthermore, Roper et al. (2017) 

found that many indices primarily focused on soil productivity over limited growing periods, 

which may not accurately reflect the long-term sustainability of the soil (Rinot et al., 2019). 

However, van Es et al. (2019) reassessed their work and discovered the observed soil health 

indicators were correlated to crop yields and sensitive to management when measured by 

the Comprehensive Assessment of Soil Health (CASH). Their work highlights the 

inconsistencies in scoring approaches for quantifying soil health, which can result in the soil 

health index being susceptible to manipulation based on expert opinion or inappropriate 

statistical techniques, and further emphasises the need for standardised soil health 

assessments.  

 
In this thesis, we have consistently observed significant differences across land uses and soil 

types, particularly between sandy loam and clay loam soils. These differences underscore 

the influence of soil type on soil health, indicating that soil health scores can vary not only 
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across different soil types but also within the same soil series under varying management 

practices. Nonetheless, we argue that a reliable index should encompass the diversity 

among soil types, land uses, and climate regions to effectively tackle the global challenges 

associated with soil health and sustainable agriculture. However, as we have discovered, 

accomplishing this goal is very challenging and would necessitate a significantly larger 

dataset and further research.  

 

5.5 Future Works 
 

While certain questions regarding soil EEs have persisted over time, fresh perspectives and 

innovations are now emerging to address them. Furthermore, the integration of novel 

technologies, such as the SLAKES app, could potentially revolutionise how we measure soil 

health and is anticipated to yield significant advancements. Ultimately, it is crucial to 

conduct extensive, field-scale research over time to successfully integrate indicators of soil 

health into more comprehensive biogeochemical models. We conclude this section by 

highlighting key research areas that could accelerate our understanding of EE and aid in 

designing future soil health metrics and indices. 

 

1. Can EE activities observed in laboratory-based assays accurately reflect those in the 

field, and is it feasible to create nanoprobes that can be inserted into the soil for in 

situ, real-time measurements? 

 

While briefly discussing the limitations of EE assays, the need for accurate EE measures was 

highlighted. Most EE assays are conducted in vitro, outside of their natural environment. 

This lack of in situ dynamics means that the assays may not capture the complex interactions 

and regulatory mechanisms that occur in the native soil environment. For example, enzyme 

activity is highly dependent on temperature and pH. EE assays are typically conducted under 

specific laboratory conditions, and the results may not accurately reflect the enzyme 

activities occurring in the field, where temperature and pH can vary widely. Therefore, we 

emphasise the need for in situ, real-time measurements that will better represent EE 

activities found in the field. 
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2. What is the potential impact of fluctuating environmental conditions on EE activity, 

and how will this affect ecosystem services? 

EE activities are controlled by abiotic factors, such as temperature and pH, as well as biotic 

factors, including microbial activity and enzyme secretion. Global warming and shifts in 

precipitation patterns will likely cause drastic changes to ecosystem functioning, such as OM 

decomposition and nutrient cycling, and EE activity is likely to be receptive to these changes. 

The potential impact of fluctuating environmental conditions on EE activity raises concerns 

about its repercussions on ecosystem services. Variations in environmental factors can 

influence the ability of organisms to engage in EE, with subsequent effects on the delivery of 

essential ecosystem services. Understanding these dynamics is crucial for predicting and 

mitigating potential downturns in ecosystem services.  

 

3. Is it possible to formulate a soil enzyme index that can also serve as an indicator of 

soil health? 

 

A soil enzyme index would combine information from various soil enzymes to provide a 

comprehensive assessment of the soil's biological activity and functional capacity. Different 

enzymes play specific roles in nutrient cycling, OM decomposition, and overall soil 

ecosystem functioning. By measuring the activities of these enzymes, we can gain insights 

into the biological and biochemical processes occurring in the soil. Furthermore, a well-

designed soil enzyme index would typically include enzymes associated with key soil 

functions such as C cycling (GLU), N cycling (NAG), and P cycling (PHO). The index may also 

consider ratios or combinations of enzyme activities to provide a more integrated view of 

soil health. A soil enzyme index would, therefore, allow for the integration of multiple soil 

processes, providing a more holistic view of soil health. 

4. How can the methodologies for soil health indicators be effectively standardised to 

ensure accurate assessments of soil health? 

As previously discussed, there are many contrasting methodologies that measure aggregate 

stability and EE activities, which ultimately influence our results and interpretations. 

Standardising the methodologies of soil health indicators, as well as sampling and handling 
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procedures in the field, is essential to ensure results can accurately reflect soil health status 

and predict soil functions. Without this, there is a risk of using misleading or inaccurate data, 

which could lead to incorrect assessments of soil health and ineffective management 

decisions. Moreover, standardised methodologies can ensure consistency and comparison of 

soil health assessments across different studies and locations. Addressing this can no doubt 

lead to further advancement of soil health research and the development of effective soil 

management strategies.  

 

5. Can advancements in technology, such as remote sensing and molecular techniques, 

be leveraged to enhance soil health assessment and index development? 

Advancements in technology hold significant promise for enhancing soil health assessment 

and index development. Remote sensing enables the collection of large-scale spatial data on 

soil properties and characteristics, facilitating comprehensive assessments of soil health over 

broad geographic areas. Molecular techniques, on the other hand, provide insights into soil 

microbial communities and their functions, offering valuable information on soil biological 

activity and health. By leveraging these technologies, researchers and practitioners can gain 

a deeper understanding of soil health dynamics and develop more robust soil health indices 

that account for various biological, physical, and chemical factors and ultimately allow for 

better-informed management decisions. 

 

6. Can we develop a soil health index that is applicable across diverse soil types while 

accounting for variations in soil properties and management practices? 

 

Much of Chapter 6 delves into answering this question by designing a soil health index that 

can be used across different soil types. However, further work is needed to refine and 

validate our soil health index to ensure its successful application across different soil types, 

land uses, and management practices. This involves conducting extensive field studies to 

collect more data from soil health indicators from diverse locations and ecosystems. Soil 

health varies significantly across different soil types due to differences in physical, chemical, 

and biological properties. Developing a soil health index that can effectively capture these 

variations and provide meaningful assessments across diverse soil types is crucial for 
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sustainable land management and agricultural practices, enabling researchers, 

policymakers, and land managers to make informed decisions and implement strategies to 

improve soil health. 

 

6 Concluding Remarks 
 

It is widely acknowledged that preserving soil health is crucial for human sustainability, and 

effective soil management is necessary to support human health and well-being while 

mitigating soil and environmental degradation. Thus, creating a quantitative, comparative 

test to evaluate the success of soil management approaches is a global challenge of high 

priority. An index that only caters to a specific soil type could fail to project soil health status 

on regional and global scales. Therefore, a reliable soil health index must be robust to assess 

different soil types despite the inherent variability in the soil.  

 

Choosing the appropriate methodology for measuring soil health indicators is crucial for 

developing an effective soil health index. In Chapter 2, we evaluated a novel technique, 

SLAKES, alongside the Le Bissonnais method to assess aggregate stability. SLAKES showed 

sensitivity in differentiating management types on clayey soil, but its performance was 

limited on sandy soil. Nonetheless, SLAKES presents a promising option for quick and 

convenient assessment of aggregate stability. However, our results highlight the need for 

further refinement and validation of the SLAKES app before its widespread use in soil 

stability assessments. 

 

Biological soil health indicators are often underrepresented in soil health assessments. 

Chapter 3 investigated extracellular enzymes (NAG, PHO, GLU) as potential soil health 

indicators. We found that grass treatments exhibited greater enzymatic activity compared to 

arable and fallow treatment, and enzyme activity correlated with other established soil 

health indicators, indicating their potential as comprehensive biological indicators of soil 

health. These results underscore the importance of considering biological processes in soil 

health assessments and highlight the need for further research into the role of enzymes in 

soil health dynamics. 
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Finally, Chapter 4 integrated insights from previous chapters to develop a meaningful soil 

health index using structural equation modelling (SEM). We found that SEM proved 

invaluable in comprehensively understanding complex soil health dynamics, particularly in 

interpreting relationships among multiple indicators and latent variables. Despite the 

challenges encountered in designing a soil health index that can be applied across diverse 

soil types, our research suggests that such an endeavour is feasible with further investigation 

and larger datasets. Ultimately, the development of a robust soil health assessment 

necessitates collaborative efforts and data collection from a wide range of soil types and 

management practices to ensure its effectiveness and reliability.  

 

Throughout this thesis, the multifaceted nature of designing a soil health index was 

highlighted, emphasising the importance of selecting informative indicators, appropriate 

measurement methodologies, and suitable model design. By addressing these 

considerations, this research lays the groundwork for more effective soil health assessments.  
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Appendix A: Detailed Description of Long-Term Experimental Sites.   

 

Highfield Ley-Arable Long-Term Experiment and Highfield Bare Fallow 
 

Soil samples were taken from the Highfield Ley-Arable long-term experiment located at 

Rothamsted Farm in Harpenden, UK (geolocation: 51.802777, -0.366025). The experiment 

started in 1948 in a field that had been in permanent grass since 1838. In total, six 

treatments were established in a randomised complete block design with four replicate 

blocks. The treatments included permanent grass (i.e., continuation of the former land use), 

arable rotations, and some alternating between grass ley and arable rotations. In 1959, an 

area of permanent grass (since 1838) adjacent to the Highfield Ley-Arable experiment at 

Rothamsted was ploughed, and crops have not grown there since; this is the Highfield Bare 

Fallow. A similar long-term bare fallow (the ‘Geescroft Soil Mine’) is located adjacent to the 

Highfield Bare Fallow. These areas have been kept bare fallow by frequent cultivation, so 

inputs of carbon into the soil have been negligible.  

 

In 2008, two plots (containing long-term continuous grass and arable treatments, 

respectively) within each block of the Highfield Ley-Arable experiment were split to establish 

(or maintain in the case of the original treatment) continuing grass, arable and bare-fallow 

treatments. Similarly, on the Highfield Bare Fallow area, new ‘plots’ of grass and arable 

treatments were established in 2008.  Together, this split-plot establishment forms the 

Highfield Conversion experiment. We nevertheless focused on the split-plots continuing the 

long-term (since 1948 or 1959) grass, arable, and bare fallow treatments for this research. 

These treatments are all continuous with no rotation (‘arable’ is continuous winter wheat 

since 2008). For the bare fallow treatment, 5 ‘plots’ were established in 2008 (3 on Highfield 

Bare Fallow and 2 on the Geescroft Soil Mine) to maintain the long-term treatment on what 

was formerly just single parcels of land. Therefore, in total, we focussed on 13 plots under 

continuing long-term treatment (8 under long-term arable or grass, 5 under long-term bare 

fallow) (Table A1 and Figures A1 and A2). For further information, visit the e-RA webpages:  

https://www.era.rothamsted.ac.uk/experiment/rrn1 and 

https://www.era.rothamsted.ac.uk/experiment/rrs1 

 

https://www.era.rothamsted.ac.uk/experiment/rrn1
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Table A1: Current treatment components in the Highfield Ley-Arable long-term experiment 

and Highfield Bare Fallow used in our experimental study. 

 

Treatment Description of treatment 

Rc(Rc) Permanent grass/clover ley (since 1948) 

A(A) Arable rotation (1948-2008), continuing as permanent winter wheat (2008-) 

F(F) Permanent bare fallow (since 1959) 

 

 

 

Figure A1: The current layout of the Highfield Conversion experiment showing split-plots on 

the former long-term grass and arable treatments of the surrounding Highfield Ley-Arable 

experiment and newly created plots on the former Highfield Bare Fallow (right of upper 

panel, outlined in blue), including the Geescroft Soil Mine (bottom panel, outlined in red) 

fallow areas. 
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Figure A2: Aerial view of the Highfield Ley-Arable experiment. The Highfield Bare Fallow is 

shown towards the top in relation to the Highfield Ley-Arable and Highfield Conversion 

(sometimes also known as ‘Reversion’) experiments. The Geescroft Soil Mine is above and to 

the right of the Highfield Bare Fallow, outlined in red. 
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Woburn Ley-Arable Experiment  
 

This experiment, originally set up in 1938 at the Woburn Experimental Farm in Bedfordshire, 

UK (geolocation: 51.99906, -0.61673), tests the effects of continuous arable and ley-arable 

cropping on crop production, soil organic matter dynamics and fertility in a sandy loam soil. 

Since 2012, some changes were made, where there are essentially 4 five-year rotation 

treatments (2 arable rotations and 2 grass ley rotations), with 4 replications in the 16 plots (4 

treatments x 4 replications). A five-year rotation comprises 3 years of ‘treatment’ (i.e., the 

arable or grass ley rotation) followed by 2 years of ‘test’ (under arable crops) 

A main difference, therefore, with the Rothamsted Highfield Ley-Arable experiment is that 

there are no treatments which are permanently under grass (the ‘grass ley’ treatments all 

have two years under arable crops). 

 

The two arable rotation treatments during the experimental period had recently been 

standardised (since 2021) and were in a 3-year treatment phase of annual winter crops of 

rye, barley, and oats (the order of these varied between the two treatments, as did one of 

the crops prior to 2021). The two grass ley rotation treatments are either 3 years under grass 

(with N fertiliser), or 3 years under grass-clover (with no N fertiliser). Following the 3 years 

under the treatment, there is the 2-year test phase, under annual winter crops of wheat and 

then rye. During the test phase, the 16 plots are subdivided into 4 subplots to test 4 levels of 

N fertiliser application (including a 0 rate) which rotate from cycle to cycle (i.e., after 4 

cycles, each subplot will have received the same amount of N). The 16 plots were replicated 

in 5 blocks during the experiment (80 plots in total).  

 

With 5 blocks and a 5-year rotation, it means that in any one year, each year of the rotation 

will be present (i.e., a block under the 1st year of the treatment, a block under the 2nd year of 

the treatment, a block under the 3rd year of the treatment, a block under the 1st year of the 

test, and a block under the 2nd year of the test).  

 

On the plot plan for the site (Figure A3), any single plot will comprise a two-part code: the 

first part in parentheses tells you the overall rotation treatment, and the second part tells 
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you the crop that it is currently in (e.g. ‘(ABe)W’ indicated it is the arable rotation (R-WB-O) 

currently under test year 1 (wheat). 

 

For the purposes of soil health, we looked at three treatments, the newly uniform arable 

rotation (ABe/AO) and two grass ley rotations (Lc3/Ln3), both sampled at the end of their 

third year of treatment. This will be when soil organic matter is at its maximum in the grass 

rotation treatments before they go into 2 years of cropping. We also sampled plots in their 

first year of test crop that were previously under grass and arable treatments to capture two 

extremes of the rotation – after the maximum effect of the treatment and after the ‘re-

setting’ test crop years.  

 

 

Figure A3: Plot plan for the site of the Woburn Ley-Arable experiment in 2022. Any single 

plot will comprise a two-part code: the first part in parentheses tells you the overall rotation 

treatment, and the second part tells you the crop that it is currently in. Blocks 4 and 5 

(highlighted in red) were in their third year of treatment and first year of a test crop in 2022, 

respectively. 
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Table A2. The eight arable and grass ley rotations in the Woburn Ley-arable experiment. The rotation are five years, comprising three years 

under the arable or grass ley treatment, followed by two years under arable test crops. The code gives the overall rotation treatment in 

parentheses, followed by the current crop in that year. All arable crops are autumn-sown winter varieties. Note that changes were made in 

2021 to align the arable rotations and to replace beans with barley. 

 

Rotation treatment Treatment year 1 Treatment year 2 Treatment year 3 Test year 1 Test year 2 

code descriptor code descriptor code descriptor code descriptor code descriptor code descriptor 

(ABe) arable rotation R rye WB barley 

(formerly 

oats) 

O oats 

(formerly 

beans) 

W wheat R rye 

(AO) arable rotation R rye WB barley 

(formerly 

beans) 

O oats W wheat R rye 

(LLc/ABe) arable rotation R rye WB barley 

(formerly 

oats) 

O oats 

(formerly 

beans) 

W wheat R rye 

(LLn/AO) arable rotation R rye WB barley 

(formerly 

beans) 

O oats W wheat R rye 
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(Lc3) grass ley 

rotation 

Lc1 clover/grass Lc2 clover/grass Lc3 clover/grass W wheat R rye 

(Ln3) grass ley 

rotation 

Ln1 grass Ln2 grass Ln3 grass W wheat R rye 

(LLc/Lc3) grass ley 

rotation 

Lc1 clover/grass Lc2 clover/grass Lc3 clover/grass W wheat R rye 

(LLn/Ln3) grass ley 

rotation 

Ln1 grass Ln2 grass Ln3 grass W wheat R rye 

 
 
 
For further information, visit the e-RA webpage: https://www.era.rothamsted.ac.uk/experiment/wrn3 

 

 
 

https://www.era.rothamsted.ac.uk/experiment/wrn3
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Woburn Organic Manuring Experiment 
 

The Woburn Organic Manuring Experiment started in 1964 on a sandy loam soil at the 

Woburn Experimental Farm in Bedfordshire, UK (geolocation: 51.999805, -0.616036) to test 

the effects of different types of organic matter inputs on soil organic matter (SOM) and crop 

yields. The experiment has had three distinct phases of organic matter input, always with 8 

treatments in a randomised complete block design with four replicate blocks (32 plots in all). 

Initially, six organic treatments (FYM, peat, straw, green manure and two grass leys) were 

compared with two mineral-fertilizer-only treatments. In 2003, the third and current 

treatment phase started, with 8 treatments (Table A3). An arable rotation (winter rye, spring 

barley, winter beans, winter wheat, forage maize) was started on seven treatments; the 

eighth treatment was sown to a grass/clover ley. The seven treatments under the arable 

rotation are split into 6 split plots to receive 6 levels of inorganic N inputs (except for the 

winter beans phase, which does not receive inorganic N), which rotates annually. In a seven-

year period (accounting for the year of no N under winter beans), each split plot will have 

received the same amount of mineral N, and soil sampling conventionally is done across the 

whole main plot area to capture a representative sample across all split plots. 

 

For further information, visit the e-RA webpage: 

https://www.era.rothamsted.ac.uk/experiment/wrn12  

 

 

 

 

 

 

 

 

 

 

 

 

https://www.era.rothamsted.ac.uk/experiment/wrn12
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Table A3: Current treatment components (since 2003) in the Woburn Organic Manuring 

experiment. Note that there are two F treatments – one is a long-term inorganically-

fertilised treatment, the other has previously received organic amendment in a previous 

phase of the experiment. 

Treatments since 2003 

Code Treatment 

F None 

Dg10 FYM at 10 t/ha annually 

Dg25 FYM at 25 t/ha annually 

St Chopped wheat straw at 7.5 t/ha annually 

CC Cover crop (white mustard) prior to spring sown crop 

Co Compost at 40 t/ha annually 

Lc Permanent grass/clover at 30 kg/ha 
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Figure A4: Plot plan for the site of the Woburn Organic Manuring experiment in 2022. Any single plot will comprise six different nitrogen 

additions: N0 to N6. All soil samples were taken from the N2 subplot from all plots.  

 



Fosters Organic Amendment Experiment 
 

On Fosters field at the main Harpenden site (geolocation: 51.812922, -0.379079), 220 

ploughed plots tested five rates of addition of four kinds of organic matter (OM) 

amendment and 3 mixtures with straw and with the background N-response 

measured at 5 rates of N (2 crops x 2 blocks x (5 N rates x 4 OM types + 5 OM rates x (4 

OM types +3 mixtures)) =220 experimental plots). Two arable rotation series were 

compared in two replicate blocks, with half the field sown with each crop in 220 plots 

(Table A4). The Fosters field experiment was located at Rothamsted Research farm 

(51.82 N and 0.37 W) in Harpenden, UK, which has a temperate climate in the South of 

England. The soil is characterised as a flinty clay loam of the Batcombe series, with a 

total organic C of 1.6 % and pH of 6.99. The trial is managed using a conventional 

regime (fertiliser, pesticides) and is tilled by ploughing.  Both the organic amendments 

and nitrogen treatments (Table A5) were applied by hand each year in the autumn 

(farmyard manure was chopped first with a muck spreader).  

 
Table A4: Cropping details on Fosters Organic Amendment field experiment.  
 

Block 2019 2020 2022  2023 

 W Rotation 1 Winter Wheat, 
ww 

Spring Barley, 
sb 

Winter Oats, 
woats 

Winter Wheat, 
ww 

 E Rotation 2 Spring Barley, 
sb 

Winter Oil Seed 
Rape, osr 

Winter Wheat, 
ww 

Spring Barley, 
sb 

 
 
Table A5: Treatments on Fosters Organic Amendment field experiment.  
 

Organic matter Carbon rate  
(tonnes C ha−1) 

Nitrogen rate  
(kg N ha−1) N0-N4 

Straw 

0, 1, 1.75, 2.5 or 3.5 

N0-N4,  

Anaerobic digestate N0-N4 

Anaerobic digestate + Straw N3 

Compost N0-N4 

Compost + Straw N3 

Farmyard manure N0-N4 

Farmyard manure + straw N3 
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Appendix B: Chapter 4 Supplementary Information for Principal 

Component Analysis (PCA) Loadings.  

 

Table B1: Standard deviation, proportion of variance, and cumulative proportion for 

Principal Component Analysis (PCA) related to chemical indicators.  

 

 Principal 

component 1 

Principal 

component 2 

Principal 

component 3 

Standard deviation 2.1661 1.5058 0.9860 

Proportion of 

variance 

0.5213 0.2519 0.1080 

Cumulative 

proportion  

0.5213 0.7733 0.8813 

 

Table B2: Dimension loadings for chemical indicators, showing the contributions of 

each chemical indicator to the principal components.  

 

Chemical indicator Dimension 1 Dimension 2 Dimension 3 

Aluminium 10.3193743 11.7750684 8.19237607 

Magnesium 17.5242690 2.4334023 0.41206710 

Manganese 17.9612971 0.2377030 5.03821049 

Calcium 3.0006444 37.0207380 0.11864452 

Iron 0.9696029 3.8951918 84.73454292 

Potassium 11.8236801 14.1218771 0.03395387 

Sodium 9.1885488 22.8806118 0.35299774 

pH 13.5297683 0.1436069 0.10932442 

Inorganic 

phosphate 

15.6828149 7.4918006 1.00788287 

 

 



 159 

Table B3: Standard deviation, proportion of variance, and cumulative proportion for 

Principal Component Analysis (PCA) related to biological indicators.  

 

 Principal 

component 1 

Principal 

component 2 

Standard deviation 1.4684 0.9196 

Proportion of variance 0.7187 0.2813 

Cumulative proportion  0.7187 1.0000 

 

Table B4: Dimension loadings for biological indicators, showing the contributions of 

each biological indicator to the principal components.  

 

 Dimension 1 Dimension 2 

β-glucosidase 46.24291 0.3440719 

N-acetyl-β-glucosaminidase 19.55632 68.5392545 

Acid phosphatase 34.20077 31.1166735 

 

Table B5: Standard deviation, proportion of variance, and cumulative proportion for 

Principal Component Analysis (PCA) related to physical indicators.  

 

 Principal component 1 

Standard deviation 1. 1.6719 

Proportion of variance 0.9317 

Cumulative proportion  0.9317 

 

Table B6: Dimension loadings for chemical indicators, showing the contributions of 

each physical indicator to the principal component.  

 

 Dimension 1 

Compaction 32.48751 

Bulk Density 35.75055   

Aggregate Stability 31.76194 
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Abbreviations  
 

AD   Anaerobic Digestate 

AMC    Amino-methyl coumarin 

ANOVA   Analysis of Variance  

BD   Bulk Density 

C   Carbon 

Ca   Calcium 

CEC   Cation Exchange Capacity 

CICES    Common Classification of Ecosystem Services 

EE   Extracellular Enzymes  

ES    Ecosystem Services 

GLU   β-glucosidase  

IQR   Interquartile Range 

kPA   Kilopascals 

L-DOPA   L-3,4-dihydroxyphenylalanine 

LMM   Linear Mixed Model 

Mn   Manganese 

MWD   Mean Weight Diameter 

MUF   Methylumbelliferone 

N   Nitrogen  

Na   Sodium 

NAG   N-acetyl-β-glucosaminidase 

OA    Organic Amendment  

OM    Organic Matter 

P   Phosphate 

p   Probability   

p-NP   p-nitrophenol 

PCA   Principal Component Analysis 

PLS   Partial Least Squares 

PHO   Acid Phosphatase 

SCD   Segmented Array Charged Coupled Detector 
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SI   Slaking Index 

SH   Soil Health  

SHI   Soil Health Indicators  

SOC   Soil Organic Carbon  

SOM    Soil Organic Matter  

VIF   Variance Inflation Number 

VNIR   Visible Near-Infrared Spectroscopy 

VSA    Visual Soil Assessment 
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