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A key conjecture about the evolution
of complex quantum systems towards
an ergodic steady state, known as
scrambling, is that this process acquires
universal features when it is most efficient.
We develop a single-parameter scaling
theory for the spectral statistics in
this scenario, which embodies exact
self-similarity of the spectral correlations
along the complete scrambling dynamics.
We establish that the scaling predictions
are matched by a privileged stochastic
process, and serve as bounds for other
dynamical scrambling scenarios, allowing
one to quantify inefficient or incomplete
scrambling on all timescales.

1 Introduction
A central theme in the study of complex quantum
matter is to establish universal characteristics
that transfer between systems and application
domains. This theme unifies different areas
of physics, spanning from its historic origins
in nuclear physics [1–6], to disordered and
wave-chaotic electronic and photonic systems [7–
11], to isolated interacting models that display
many-body eigenstate thermalization [12–17],
and also provides insights into the black hole
information paradox [18–23]. Across all these
settings, a universal endpoint of the dynamics
can be defined in terms of random-matrix theory
(RMT), and systems that approach this endpoint
are described as being ergodic. Universal
random-matrix behavior also sets benchmarks
for systematic deviations reflecting the specific
structure of a system, such as those observed
in the interplay of short-range interactions,
disorder, and conservation laws [10, 11, 24, 25].
Tara Kalsi: t.kalsi@lancaster.ac.uk

Even for systems that establish ergodicity over
time, the approach to this endpoint itself—the
dynamical process known as scrambling—is
system-dependent [26]. This leads to the
emergence of characteristic time and energy
scales imprinted onto the dynamics, but also to
the concept of maximally chaotic systems, which
are posited to display universal characteristics
already for short times [23, 27]. For maximal
chaos, the conjectured state outside the horizon
of a black hole serves as an important motivation
[20–23, 26–33].

Mathematically, these emergent universal
features can be expressed in terms of chaos
bounds that govern, for instance, the behavior
of out-of-time-ordered correlators [23, 32]. On
the other hand, from a spectral perspective,
any scrambling dynamics are subject to
strict unitarity constraints, which enforce a
duality between times shorter and longer than
the Heisenberg time [34–39]. This spectral
perspective implies that maximally ergodic
long-time behavior provides universal constraints
on the short-time scrambling dynamics that are
directly imprinted onto the spectral statistics.

In this work, we utilize this spectral perspective
to develop a predictive single-parameter scaling
theory for the efficient scrambling dynamics
of maximally chaotic systems, and apply this
theory to obtain analytical benchmarks for
their behavior over all timescales, formalized as
spectral chaos bounds. This uncovers universality
in the language of a general framework that
relates all statistical details to a single intrinsic
parameter [40]. Our scaling assumption is
simple—we equate the only two invariants
of the dynamics under the assumption that
the Hilbert space has no further structure,
i.e., that the dynamics are invariant under
unitary basis changes. This ansatz integrates
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into a single-parameter version of a speci�c
random-matrix ensemble, the Poisson kernel,
which has been widely studied in static settings
[7, 41�43], but in our scaling theory acquires a
dynamical interpretation where it embodies exact
self-similarity of the spectral correlations along
the complete scrambling dynamics.

We furthermore apply this scaling framework
to evaluate the scrambling dynamics in general
unitarily invariant processes. Among these,
we establish that the scaling predictions are
faithfully replicated in a second central object of
random-matrix theory, the paradigmatic Dyson
Brownian motion process [4], which similarly
shifts its role from being a tool to study
the stationary ergodic endpoint to become a
dynamical process in its own right. Utilizing
exact analytical expressions for the scaling
parameter, density of states, and spectral
correlation functions, supplemented by numerical
results, we �nd that the spectral data from
this process agrees with the scaling theory
and recovers its key features, such as the
self-similarity of correlations along the �ow. We
also contrast this behavior with another unitarily
invariant stochastic process which displays clear
deviations from the scaling predictions, thereby
illuminating the role of these predictions as
spectral chaos bounds. As our theory manifestly
preserves all unitarity constraints, it emphasizes
the role of functional relations linking the short-
and long-time dynamics, both in the universal
regime as well as deviations away from it, from
which we can draw broader conclusions about
the approach to ergodicity in complex quantum
matter.

This paper is organized as follows. We begin
by reviewing the connection between scrambling
and chaos bounds in Section 2, and contrast
the out-of-time-ordered correlators typically used
to formulate these bounds with the spectral
form factor, which is the focal quantity in our
formulation in terms of spectral statistics. In
Section 3 we develop the scaling theory, and
derive analytical forms of the spectral form
factor for optimally e�cient scrambling. In
Section 4 we utilize the scaling framework to
characterize speci�c processes, and demonstrate
that scaling expressions serve as sensitive chaos
bounds. Finally, we draw our conclusions in
Section 5.

2 Background and objective

2.1 Characterizing scrambling

While complex quantum many-body dynamics
vary greatly for di�erent quantum systems, it
is conjectured that there exists an upper bound
on how quickly such systems can disperse, or
scramble, local information into nonlocal degrees
of freedom [23, 27, 32, 44]. A principal
diagnostic tool to quantify these scrambling
dynamics is the out-of-time-ordered correlator
(OTOC) between two arbitrary observables, say
V (0) and W (t), at time separation t [23, 32],
such that the OTOC probes the perturbative
e�ect by V on later measurements ofW , and
vice versa. The Maldacena-Shenker-Stanford
bound conjectures that this correlator develops at
most exponentially [23] in time, and never faster
than a universal Lyapunov exponent, setting
a bound that is independent of the details of
the system. This chaos boundis saturated by
fast scramblers, thought to encompass systems
such black holes and the SYK model at low
temperature [22, 28, 29]. After the scrambling
time, this initial exponential growth of the OTOC
for chaotic systems [45�47] settles into saturation
oscillations, whose amplitude is suppressed in
the chaotic limit [48�51], and generally displays
nonuniversal behavior [52�56]. Slow scramblers
fail to saturate this bound on all timescales,
only attaining, e.g., logarithmical growth as
in many-body localized systems [57�59], linear
short-time growth as in weakly chaotic systems
[60], or quadratic growth as in Luttinger liquids
[52].

This interplay between universal and
nonuniversal features replicates a common theme
known from the study of spectral statistics. In
this spectral setting, the key quantity to capture
both the universal and system-speci�c aspects of
the dynamics over all timescales is the spectral
form factor (SFF) [10, 11, 25, 29, 31�33, 61�74].
While originally de�ned as the Fourier transform
of the two-point level correlation function, for
systems with a �nite Hilbert-space dimension N
the SFF can be de�ned directly in terms of the
unitary time-evolution operator U(t),

K (t) � jtr U(t)j2; (1)

where the overline denotes a suitable average,
or, in some settings, a partition sum [32].
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Employing such averaging within random-matrix
theory, particularly simple results arise for the
case of stroboscopic dynamics of periodT, where
U(nT ) = U(T)n , and

K n � j tr Un (T)j2: (2)

In the circular unitary ensemble (CUE), one then
obtains

K n = N 2� n0 + min ( n; N ); (3)

which dips abruptly from K 0 = N 2 to K 1 =
1, and then ramps up steadily from unity to
N over the course of the e�ective stroboscopic
Heisenberg time n = N . However, this result
does not capture the details of the short-time
scrambling dynamics itself. For complex
quantum systems,K (t) generally displays a dip
over the scrambling regime, taking the value of
unity at the minimum, followed by a ramp up to
K (t) � N until the Heisenberg time, at which
the discreteness of the level spectrum becomes
resolved, which then is followed by a plateau.
System-speci�c signatures can persist well into
the ramp, while fast scramblers are expected
to display universality already during the dip
[27, 69, 75, 76]. When expressed in terms of the
energy levels, the SFF captures their correlations
at all scales, including level repulsion and spectral
rigidity, and thus directly gives information about
basic system properties such as integrability or
time-reversal symmetry [10, 11, 77].

Our general objective is to combine these
themes, and establish universal benchmarks of
e�cient complex quantum dynamics in terms of
the spectral information. This is paired with the
conjecture that for e�cient systems, this spectral
information again recovers a strong degree of
universality.

2.2 Spectral form factor and unitarily invariant
processes

Our main setting will be stochastic processes

U(t) ! U(t + dt) = u(t; dt)U(t); (4)

in which the unitary matrix U(t) generating the
dynamics is updated incrementally by unitary
matrices u(t; dt) ' 1 over a small time stepdt,
where the sole constraint imposed is thatu(t; dt)
be invariant under unitary basis changes, thus

describing a large class of dynamics. At any
point of time T, this dynamical evolution can
be equipped with a de�nite Heisenberg time by
considering the stroboscopic SFF(2). While this
can again be interpreted as a Floquet dynamics
in which, from a certain time T, the evolution
is repeated periodically, the stroboscopic SFF is
well-de�ned independent of this interpretation.
In the context of this work, it facilitates detailed
analysis by giving us two timescales�the time T
for the evolution along the scrambling dynamics,
and the time nT resolving the spectral statistics
established up to this point.

Our approach will allow us to relate these
spectral correlators through the �ow of a single
scaling parameter that we introduce in the next
section. To establish some early intuition for
what we are aiming at, let us apply the de�nition
(2) to any dynamical evolution (4) induced by
ensembles of generators that are invariant under
rotations u(t; dt) ! W yu(t; dt)W . Evaluating
the average overW in the CUE, the �rst-order
SFF incrementally updates as

K 1(t + dt) = K 1(t) +
N 2 � j tr u(t; dt)j2

N 2 � 1
(1 � K 1(t)) ;

(5)

resulting in an exponential decay to unity with
decay constant


 1 = lim
dt! 0

dt� 1(N 2 � j tr u(t; dt)j2)=(N 2 � 1): (6)

Within this class of unitarily invariant dynamics,
distinct processes are therefore characterized
by di�erent rates 
 1, which discriminate how
e�ciently they approach ergodic random-matrix
behavior. Moreover, it follows directly from
the statistical de�nitions that the corresponding
decay rates of the higher-order SFFs are
constrained as
 n � n
 1.

Our speci�c objective is to turn such relations
into spectral chaos bounds for the maximally
e�cient scrambling scenario, which abstracts
away the arbitrary overall timescale of the
dynamics. For this, we set out to formulate such
bounds in a stricter fashion in terms of a single
scaling parameter.
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3 Scaling theory of the spectral form
factor

3.1 Scaling ansatz

For processes in which u(t; dt) is invariant
under unitary basis changes, there are two
fundamental anti-Hermitian invariants, Uy dU

dt
and U � Uy. Of these, the former extracts
the generator of the time evolution, while the
latter characterizes the departure from the initial
conditions. For maximally chaotic scrambling, we
therefore propose the scaling assumption

U � Uy = g(t)Uy dU
dt

� Uy dU
da

; (7)

which equates these invariants in the ensemble
sense up to a time-dependent factorg(t), and
then expresses this in terms of a single dynamical
scaling parameter a(t) =

Rt (1=g(t0))dt0 + a0.
Upon integration, we obtain a parameterized
ensemble,

U = ( a1 + V)(1 + aV) � 1; (8)

where V is uniform in the unitary group of
degreeN . This ensemble is a single-parameter
incarnation of the Poisson kernel, a matrix
ensemble that previously appeared in stationary
scattering settings subject to some constraint
[7, 41�43], where its functional form is tied to
a multiple-scattering expansion [78]. Here, we
encounter it instead in the context of dynamics
generated by a multiplicative composition law,
where the dynamical �ow of the scaling
parameter a(t) will be of central importance.

3.2 Interpretation of the scaling parameter

Our scaling assumption reduces the
matrix-generated scrambling dynamics to a
single dynamical scaling parametera. In terms
of this parameter, the ensemble(8) interpolates
between action by the identity (U = 1) at a = 1
and the random unitary matrix U = V at a = 0 ,
i.e., the static ergodic endpoint de�ned by the
CUE. For intermediate time, we can equate
a = N � 1tr U, to characterize the motion of the
center of mass of the eigenvalues� n � exp(i� n ),
capturing their expansion on the unit circle as
ergodicity is established. This center-of-mass
motion is illustrated in an individual realization
U(t) in Fig. 1. The cloud of eigenvalues, initially

Figure 1: Interpretation of the spectral scaling parameter
a as the center of mass (red) of the eigenvalue
distribution (blue), illustrated for a single time evolution
generated by the multiplication of random unitary
matrices of the form(23) (N = 16, dt = 0 :01). Panels
(a-c) show snapshots after10, 100, and 1000 time
steps, while panel (d) shows the complete center-of-mass
trajectory over1000time steps.

centered at unity, begins to disperse around
the unit circle such that N � 1tr U performs a
stochastic trajectory towards the origin�the
RMT result�where the center of mass of the
eigenvalues is zero.

This motion is tied to a speci�c scaling of the
density of states, which we will have to take into
account in the application of the theory. The
mean density of eigenvalues� l � exp(i� l ) of
the unitary time-evolution operator U can be
obtained by �rst expressing it in terms of the
moments An = N � 1tr Un , whereby

� (� ) =
1

2�

 

1 + 2
1X

n=1

An cos (n� )

!

: (9)

In the scaling theory, An = an follows directly
by expanding Eq. (8) into a geometric series, and
using the CUE averageV m = � 0m 1. The �rst
term

A1 = a = N � 1tr U (10)

recovers the interpretation of the scaling
parameter as the center of mass of the eigenvalue
cloud. Summation of the series(9) then delivers
the scaling mean density of states

� (� ) =
1

2�
1 � a2

1 + a2 � 2a cos�
; (11)
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whose �ow corresponds to the expansion of the
eigenvalues.

The scaling ensemble (8) endows this
expanding eigenvalue cloud with intrinsically
universal spectral statistics, induced via the
matrix-valued Mobius transformation

U0 =
�

a0� a
1 � aa01 + U

� �
1 +

a0� a
1 � aa0U

� � 1

(12)

between the ensembles with parametersa to a0.
At the same time, the scaling parameter de�nes
a speci�c unfolding procedure of the eigenvalues.
For any pair of unitary matrices U, V related by
(8), the eigenvalues� l = exp( i l ) of V determine
the eigenvalues

� l = ( a + � l )=(1 + a� l ) = exp( i� l ) (13)

of U. When V is sampled from the CUE,� l are
eigenvalues distributed as in the Poisson kernel
with the scaling mean density of states (11).
This transformation can be inverted to translate
the eigenvalues � l into uniformly distributed
eigenvalues

� l = ( a � � l )=(a� l � 1); (14)

constituting an unfolding procedure in which
eigenvalues are unfolded to a uniform (CUE)
distribution, at any instant of time t 6= 0 in the
evolution.

3.3 Derivation of the spectral form factor
scaling predictions

Within the scaling ensemble (8), we can
analytically analyze the SFF by expressing it in
terms of the eigenvalues� l of U,

K n = j tr Un j2 =
X

lm

� n
l � � n

m : (15)

To this end, we use the transformation(13) to
recast the SFF in each realizationU explicitly
in terms of the eigenvalues� l = ei l of the
corresponding CUE matrix V ,

jtr Un j2 =
X

lm

 
a + ei l

1 + aei l

a + e� i m

1 + ae� i m

! n

: (16)

The joint distribution

PCUE (f  g) /
Y

l<m

�
�
�ei l � ei m

�
�
�
2

= det

 
X

l

� p� q
l

!

(17)

of these eigenvalues can be written as a product
of two Vandermonde determinants, where the
indices q; p = 1 ; 2; :::; N label the rows and
columns of the resulting determinant. While this
does not factorize in terms of the eigenvalues
� l , Ref. [79] establishes that the average of any
completely symmetric function f (f  l g) simpli�es
to

f (f  l g) =

 
Y

r

Z 2�

0

d r

2�

!

f (f  l g)det
�
� p� q

p

�
:

(18)
Applied to the SFF, we then obtain

K n =

 
Y

r

Z 2�

0

d r

2�

!

det(ei (p� q) q )

�
X

lm

 
a + ei l

1 + aei l

! n  
a + e� i m

1 + ae� i m

! n

:

(19)

In this expression, the integrals over  q can
be performed independently of one another and
pulled into the qth rows of the matrix in the
determinant. Each of the diagonal termsl = m
in the sum gives a contribution of 1, while the
o�-diagonal terms l 6= m give contributions

det

 
an cm� l;n

cm� l;n an

!

= a2n � c2
m� l;n ; (20)

where the integrals

cq;n =
Z 2�

0

d 
2�

 
a + e� i 

1 + ae� i 

! n

ei q (21)

correspond to the coe�cient / vq in the
expansion of(a + v)n=(1 + av)n in powers of v,
and hence is �nite only for m > l .

Altogether, we arrive at

K n = N + N (N � 1)a2n �
NX

q=1

(N � q)c2
q;n;

cq;n =
1
q!

dq

dvq

(a + v)n

(1 + av)n

�
�
�
�
v=0

: (22)

The �rst term is due to each diagonal l =
m term contributing 1, summing to N overall.
The second term is due to(N 2 � N ) distinct
o�-diagonal terms with l 6= m, each contributing
a2n from Eq. (20). The third then collects the
contributions � c2

q;n from this equation over all
possible combinations ofm and l with �xed q =
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m � l � 1 permitted by the matrix of dimension
N . Equation (22) recovers the standard CUE
result for a = 0 , where cq;n = � qn such that K n

take the form given in Eq. (3).
Equation (22) is our main result within the

scaling theory. It expresses all orders of the
SFF in terms of a single parameter, which has
its independent interpretation as characterizing
the expansion of the eigenvalue cloud. Next,
we will describe how this result can be utilized
as a benchmark to analyze speci�c dynamical
processes.

4 Applications

To establish how the scaling forms(22) of the
SFF provide benchmarks for maximally ergodic
dynamics, we describe how they can be used to
distinguish the e�ects of e�cient but incomplete
scrambling, and inherently ine�cient scrambling.
We develop these features both within the scaling
framework itself, as well as in the context of two
speci�c stochastic processes.

4.1 E�cient but incomplete scrambling

First, we describe how the e�ects of incomplete
scrambling up to a given time T are captured
within the scaling approach. As mentioned
above, the scaling forms(22) of the stroboscopic
SFF reduce to the CUE result (3) for a = 0 ,
which de�nes the endpoint of the scrambling �ow.
The SFF then falls from K 0 = N 2 to K 1 = 1
before ramping up linearly to K N = N at the
stroboscopic Heisenberg timeN , after which it
plateaus. Figure 2(a) contrasts this behavior of
the stroboscopic SFF(22) with the scenarios for
�nite values of a. Tuning the scaling parameter
a away from 0�stopping the dynamics at time
T short of maximally ergodic behavior�results
in curves that initially continue to dip, and
then take a longer time to recover the plateau.
Therefore, incomplete scrambling dynamics at
short times are translated into a long-time signal
in the form of a modi�ed ramp, demonstrating
the consequences of not having established fully
ergodic dynamics for the remainder of the time
evolution. The time over which the curves
continue to dip de�nes an e�ective ergodic time,
while the time it takes them to ramp up to
the plateau de�nes an e�ective Heisenberg time.

Figure 2: (a) Scaling predictions of the stroboscopic
form factor K n for maximally e�cient scrambling,
Eq. (22), for N = 16, where a describes di�erent
points along the scrambling �ow. All curves display
the paradigmatic dip-ramp-plateau shape. Fora =
0, scrambling is complete, and the curves follow the
RMT predictions of an ergodic system. Finite values
of a describe earlier times along scrambling dynamics,
resulting in e�ective ergodic and Heisenberg times
that are linked by the scaling parametera. (b)
Numerical sampling of the ensemble (104 realizations)
con�rms that the points along the scrambling �ow
are linked by the transformation(12), which implies
self-similar statistics and the exact collapse onto the
RMT result after unfolding the spectrum according to
(14), corresponding to settinga0 = 0 in Eq. (12).

Crucially, within the scaling theory, these two
timescales are directly linked via the scaling
parameter a.

This link is emphasized by the scaling relation
between these results. The transformation(12)
directly transfers into self-similar correlations of
the eigenvalues� l along the �ow. Unfolding the
spectrum to a uniform density with Heisenberg
time N according to (14) collapses the SFF
identically onto the RMT result, as illustrated
in Fig. 2(b). Within the scaling ensemble,
this collapse is exact, underlining both its scale
invariance and single-parameter nature.

4.2 Dyson's Brownian motion: a manifestation
of e�cient scrambling

We next turn to question whether this
single-parameter behavior within the ensemble
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can be replicated in a suitable unitary time
evolution. Which dynamical process, if any,
recovers the statistics of the scaling ensemble(8),
parametrized by a single suitable time-dependent
scaling parametera? We argue that the answer
lies in another paradigm of RMT, Dyson's
Brownian motion (DBM).

DBM emerges as a natural candidate for fast
scrambling in the context of quantum circuit
models. These come in two main variants:
random Haar circuits (e.g., [80�83]) built out
of fully ergodic gates from RMT, and Brownian
circuits [21, 75, 84�88], built from gates with
randomly chosen HamiltoniansH (t) over small
time steps dt. Our scaling approach interpolates
between both types of models for one of these
gates, and so does the Brownian process applied
for a �nite time. This coincides with the
DBM process, where the unitary time-evolution
operator U(t) performs a random walk in the
unitary group, sampling it uniformly according
to the Haar measure.

Originally, this process was introduced to
facilitate RMT calculations [4], and has since
served as a central tool in celebrated proofs of
universality over a broad class of RMT models
[89, 90]. Here, we consider it as a genuinely
dynamical model with a speci�c initial condition,
U(0) = 1. This is implemented via generating
incremental unitary time steps

u(t; dt) =
�

1 �
iH (t)

2

p
dt

� �
1 +

iH (t)
2

p
dt

� � 1

(23)
with an instantaneous Hamiltonian H (t) from the
Gaussian unitary ensemble, given by normally
distributed matrix elements satisfying H (t) lm =
0; H (t)kl H (t)mn = N � 1� kn � lm .

Within this process, we �nd that the scaling
parameter a decays exponentially from unity
to zero, a(t) = e� t=2, corresponding to a
dimensionless decay rate
 0 = 1=2. This is
accompanied by an exponential decayK 1(t) =
(N 2 � 1)e� t + 1 of the �rst-order SFF, describing
the dip to unity with a decay rate 
 1 = 2 
 0,
which agrees with the scaling prediction (22)
up to corrections O(N � 2). The key question
is whether the process recovers the complete
spectral statistics encoded in the scaling forms
(22) of K n , and displays self-similar spectral
correlations up to standard unfolding, as in the
scaling theory itself.

Figure 3: Scaling analysis of scrambling in the DBM
process, generated by Eq.(23) (N = 16, dt = 0 :01,
104 realizations). (a) Spectral form factorsK n after
unfolding the spectrum to the scaling mean density
of states (11) at a(t) = e� t= 2, as a function ofa.
There is agreement within statistical uncertainty with
the analytical scaling predictions(22) (black curves).
(b) Further unfolding the spectrum to uniform density
collapses it onto the RMT predictionK n = n, verifying
that DBM generates self-similar spectral statistics along
the complete scrambling dynamics.

This is analyzed in Fig. 3. The top panel shows
the SFF after unfolding the DBM spectrum to the
scaling mean density of states(11) (see Appendix
B). We observe that this agrees with the scaling
prediction (22) up to statistical �uctuations,
over the whole range of the scaling parameter,
hence, over the complete scrambling dynamics.
Furthermore, upon fully unfolding the spectrum
to a uniform mean density in the bottom panel,
we �nd perfect collapse of all data onto straight
lines K n = n, which establishes agreement
with the scaling theory down to the level of
self-similarity under the �ow, again on all scales
of a.

As we show next, this tight
agreement�including the higher orders of
the SFF�is a nontrivial statement about the
DBM process, marking it out as a privileged
model of fast scrambling among a wider class of
dynamical models.
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