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ABSTRACT

Euclid will collect an enormous amount of data during the mission’s lifetime, observing billions of galaxies in the extragalactic sky. Along with
traditional template-fitting methods, numerous machine learning (ML) algorithms have been presented for computing their photometric redshifts
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and physical parameters (PPs), requiring significantly less computing effort while producing equivalent performance measures. However, their
performance is limited by the quality and amount of input information entering the model (the features), to a level where the recovery of some
well-established physical relationships between parameters might not be guaranteed – for example, the star-forming main sequence (SFMS).
To forecast the reliability of Euclid photo-zs and PPs calculations, we produced two mock catalogs simulating the photometry with the UNIONS
ugriz and Euclid filters. We simulated the Euclid Wide Survey (EWS) and Euclid Deep Fields (EDF), alongside two auxiliary fields. We tested
the performance of a template-fitting algorithm (Phosphoros) and four ML methods in recovering photo-zs, PPs (stellar masses and star forma-
tion rates), and the SFMS on the simulated Euclid fields. To mimic the Euclid processing as closely as possible, the models were trained with
Phosphoros-recovered labels and tested on the simulated ground truth. For the EWS, we found that the best results are achieved with a mixed
labels approach, training the models with wide survey features and labels from the Phosphoros results on deeper photometry, that is, with the best
possible set of labels for a given photometry. This imposes a prior to the input features, helping the models to better discern cases in degenerate
regions of feature space, that is, when galaxies have similar magnitudes and colors but different redshifts and PPs, with performance metrics
even better than those found with Phosphoros. We found no more than 3% performance degradation using a COSMOS-like reference sample or
removing u band data, which will not be available until after data release DR1. The best results are obtained for the EDF, with appropriate recovery
of photo-z, PPs, and the SFMS.

Key words. galaxies: evolution – galaxies: general – galaxies: fundamental parameters – methods: data analysis – surveys

1. Introduction

Euclid1 is an European Space Agency mission whose primary
objective is to reveal the geometry of the Universe by measuring
precise distances and shapes of ∼ 109 galaxies up to z ∼ 3, while
it is also predicted to observe millions of galaxies at 3 < z < 6
(Euclid Collaboration: Mellier et al. 2024). Euclid will observe
the extragalactic sky in four optical and near-infrared (NIR) fil-
ters: IE, corresponding to r, i, and z filters (Euclid Collabora-
tion: Cropper et al. 2024); and YE, JE, and HE on the Near In-
frared Spectrometer and Photometer (NISP: Euclid Collabora-
tion: Jahnke et al. 2024). Such a wealth of data will dramatically
improve our knowledge of the evolution of galaxies throughout
cosmic time.

The Euclid Wide Survey (EWS) will cover 13 345 deg2 of
the sky up to a 5σ point-like source depth of 26.2 mag in IE and
24.5 mag in YE, JE, and HE (Euclid Collaboration: Scaramella
et al. 2022; Euclid Collaboration: Schirmer et al. 2022). The Eu-
clid Deep Fields (EDF) will probe a smaller (∼ 53 deg2) area to
a targeted 5σ point-like source depth of 28.2 in IE and 26.5 in YE,
JE, and HE. In total, Euclid is expected to detect approximately
ten billion sources and determine roughly 30 million spectro-
scopic redshifts (e.g., Laureijs et al. 2011). The Euclid observa-
tions will be complemented with ground-based data from the Ul-
traviolet Near-Infrared Optical Northern Survey (UNIONS, e.g.,
Ibata et al. 2017), the Legacy Survey of Space and Time (LSST,
Ivezic et al. 2008; LSST Science Collaboration et al. 2009), and
the Dark Energy Survey (DES, Flaugher et al. 2015; Dark En-
ergy Survey Collaboration et al. 2016), in order to have a com-
plete wavelength coverage between 0.3 µm and 1.8 µm.

Such a vast amount of data are out of computational reach for
traditional template-fitting algorithms, which aim to model the
observed spectral energy distribution (SED) with a set of syn-
thetic templates searching for the best fit parameters (i.e., pho-
tometric redshifts, stellar masses, and star formation rates) with
computational times scaling linearly with the number of objects
involved. For this reason, a wide set of machine learning (ML)
techniques have been proposed, developed, tested, and used to
extract the maximum scientific information from such a huge
amount of data, especially for the photo-zs (Euclid Collabora-
tion: Desprez et al. 2020, requiring a precision of σz < 0.05 and
< 10% outlier fraction), with the intention of speeding up the
computational efforts while yielding comparable (or even better)
performance in recovering the quantities of interest.

⋆ e-mail: andrea.enia@unibo.it
1 https://sci.esa.int/euclid/

The past decade has seen an incredible surge in the use of ML
methods for astrophysical data analysis in virtually every possi-
ble subfield, from identification and modeling of strong lensing
systems (Hezaveh et al. 2017; Gentile et al. 2022, 2023; Euclid
Collaboration: Leuzzi et al. 2024), to classification tasks aiming
to automatically identifying objects in images and catalogs, or to
measure morphologies (Huertas-Company et al. 2015; Dieleman
et al. 2015; Tuccillo et al. 2018; Bowles et al. 2021; Guarneri
et al. 2021; Cunha & Humphrey 2022; Li et al. 2022b; Euclid
Collaboration: Aussel et al. 2024; Signor et al. 2024), to regres-
sion tasks, for example in finding the relationship between the
photometric redshifts and/or physical properties from the ob-
served photometry (Tagliaferri et al. 2003; Collister & Lahav
2004; Brescia et al. 2013; Cavuoti et al. 2017; D’Isanto & Pol-
sterer 2018; Ucci et al. 2018; Bonjean et al. 2019; Delli Veneri
et al. 2019; Pasquet et al. 2019; Surana et al. 2020; Mucesh
et al. 2021; Razim et al. 2021; Simet et al. 2021; Davidzon et al.
2022; Li et al. 2022a; Carvajal et al. 2023; Euclid Collaboration:
Bisigello et al. 2023; Alsing et al. 2023; Leistedt et al. 2023; Als-
ing et al. 2024; Thorp et al. 2024). Astrophysics has entered the
big data era, and the potential of ML methods has been revealed
to the whole community.

However, as powerful as they can be, ML techniques are not
flawless. The goodness of the predicted quantities is inevitably
limited by the quality (and size) of the input information used
to train the model. Noisy features hamper a plain association
between them and the desired outputs, degrading the final per-
formance to a level where the optimal recovery of the most im-
portant quantities to place an observational constraint on galaxy
evolution models might not be guaranteed at all. Some kind of
agnostic analysis on the performance of ML methods is neces-
sary, as it is determining how those benchmark against classical
methods (i.e., template-fitting).

Therefore, it is crucial to evaluate the Euclid (and comple-
mentary data) capability to recover photometric redshifts, phys-
ical parameters (PPs), and the relationships between those, such
as the star forming main sequence (SFMS, Daddi et al. 2007;
Rodighiero et al. 2014), and doing so in the most realistic way
possible. This will help put the forthcoming EWS and EDF re-
sults into a more stable context and could act as a benchmark
for those that will be obtained by the forthcoming large-area sur-
veys of the next decade, LSST with the Vera C. Rubin Observa-
tory (Ivezic et al. 2008), and the Nancy Roman Space Telescope
(Akeson et al. 2019).

Euclid was successfully launched on July 1, 2023, reaching
its observing orbit around the second Lagrange point (L2) the
following month. The first public Data Release (DR1), covering
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Fig. 1. Throughput of the filters used through this work. On the top
panel we show the four Euclid filters: IE, YE, JE, and HE, along with
two IRAC filters at 3.6 µm and 4.5 µm. In the bottom panel, we include
the four UNIONS filters that will complement the Euclid data in the
northern sky: CFIS u and r, HSC g and z, and PAN-STARRS i.

∼ 2500 deg2, is expected to be in June 2026. In the meantime, in
order to estimate the performance of the survey’s retrieved phys-
ical parameters (and relations), we make use of mock catalogs
built from simulations, for which the ground truth (i.e., the real
value of the physical parameters) is known.

This paper is outlined as follows: In Sect. 2, we describe
the simulations from which we built Euclid and ground-based
photometry as inputs to the ML models and test their perfor-
mance. In Sect. 3, we describe the template-fitting and ML meth-
ods used. In Sect. 4, we report the results, focusing in particular
on the EWS and EDF and what can be done to improve the re-
covery of photo-zs and physical parameters with the Euclid data
products. In Sect. 5, we present our conclusions and perspectives
on other upcoming wide-area surveys.

In this work, we adopt a flat Lambda cold dark matter
(ΛCDM) cosmology with H0 = 70 km s−1 Mpc−1, Ωm = 0.3,
and ΩΛ = 0.7, and assume a Chabrier (2003) initial mass func-
tion (IMF). The magnitudes are given in the AB photometric
system (Oke & Gunn 1983).

2. Building the mock catalogs

Assessing how good the Euclid observations will yield to pho-
tometric redshifts and physical parameters necessarily passes
through the use of simulated data, for which the ground truth
is known. We want these simulations to be as close as possible
to the real Euclid data, which will not be available until DR1.

2.1. The mambo workflow

In this work, we use the Mocks with Abundance Matching in
BOlogna (mambo) workflow (see Girelli 2021, for a thorough
description). mambo starts from an N-body dark matter simu-
lation to build an empirical mock catalog of galaxies, repro-
ducing their observed physical properties and observables with
high accuracy. The cosmological simulation used here is the Mil-
lennium dark matter N-body Simulation (Springel et al. 2005),

matched to the Planck cosmology following Angulo & White
(2010), with a lightcone taken from Henriques et al. (2015), cov-
ering 3.14 deg2 with sub-halo masses M200 > 1.7 × 1010 h−1 M⊙
up to z = 6. Considering a typical stellar-to-halo mass relation
(SHMR, Girelli et al. 2020), the corresponding stellar mass at
low redshift is on the order of log10(M⋆/M⊙) = 7.5. In COS-
MOS2020 (Weaver et al. 2022), galaxies with such a small stel-
lar mass at low redshift are characterized by a H band magni-
tude of mH ∼ 25.2. This is therefore the limit to be considered
for the completeness of the mambo simulation at very low red-
shifts z < 0.2; however, given that the volume of the simulation
is very small at such redshifts, the incompleteness in the case
of the simulated EDF is negligible, and the simulation can be
considered complete in all the explored regimes. The simulation
extends to higher redshifts, in principle, but we cut it at z = 6, as
it is the default limit of the main Euclid pipeline for photometric
redshifts.

Starting from the lightcone, the main parameters that we use
are the position of each halo in RA and Dec, its redshift z, and
the DM sub-halo mass. mambo assigns to each galaxy its prop-
erties following empirical prescriptions with a scatter that ran-
domizes the properties. In this way, not only do we ensure a bet-
ter representation of the observed universe, but we also avoid the
possible replication of galaxies that would be caused by a de-
terministic approach. As for the stellar masses M⋆, those come
from a SHMR developed using a sub-halo abundance matching
technique based on observed stellar mass functions (SMFs) on
the SDSS, COSMOS, and CANDELS fields (Girelli et al. 2020).
The SMFs are:

– Peng et al. (2010), measured in the SDSS survey and divided
into passive and star-forming using the rest-frame (U − B)
color at z ∼ 0;

– Ilbert et al. (2013), measured in COSMOS and classified into
red or blue using the rest frame color selection (NUV − r) vs
(r − J) at 0.2 < z < 4;

– Grazian et al. (2015), measured in CANDELS at z ≥ 4.

Every galaxy is randomly assigned a star-forming or passive
and quiescent label based on the ratio of the stellar mass func-
tions (SMFs) for the blue and red populations. Due to the high
observational uncertainties of the fraction of SF/Q galaxies at
z > 4 (Merlin et al. 2018; Girelli et al. 2019), the star-forming
fraction fSF was extrapolated from the results at lower redshifts
with a limit of fSF = 99% up to z = 6.

All the other properties, for example, SFR, metallicity, rest-
frame, and observed photometry from UV to submillimeter in
the desired bands, are extracted with the Empirical Galaxy Gen-
erator (EGG, Schreiber et al. 2017), a C++ code that creates a
mock catalog of galaxies from a simulated lightcone, whose
empirical nature assures that the retrieved physical properties
are realistic – as long as the EGG models are. In the config-
uration of EGG used for mambo, each galaxy SED is assigned
from a pre-built library of templates from the Bruzual & Charlot
(2003) models covering the UV J-plane (Williams et al. 2009).
Models in the library are derived with a Salpeter IMF (Salpeter
1955), but we subsequently converted stellar masses and SFRs
to a Chabrier IMF (Chabrier 2003). The physical properties (and
type, i.e., star-forming or quiescent) are randomly extracted us-
ing empirical relations starting from the stellar mass previously
assigned, once again covering the full UV J-plane.

With mambo, we generate a mock catalog of roughly five mil-
lion galaxies between redshifts zero and six, with the same pho-
tometric filters as the ones expected for DR1 in the EWS in the
northern hemisphere, where a network of multiple collaborations
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Fig. 2. Four simulated Euclid catalogs used in this work (solid purple line, EWS; dashed orange line, C16; solid gray line, C25; dashed-dotted
blue line, EDF) shown as the number of sources as a function of the Euclid HE band magnitude (leftmost panel), redshift (center left), stellar mass
(center right), and star formation rate (rightmost panel). We notice that the magnitude cut upon which the fields are built is an OR condition on
the S/N in HE, IE filters; as such, simulated galaxies are found below the nominal limiting magnitude cut for HE band, as those are detected at
S/N > 10 in IE.

Table 1. Set of filters used in this work.

Band λeff [µm] EWS
CFHT/MegaCam u 0.372 23.6
HSC g 0.480 24.5
CFHT/MegaCam r 0.640 24.1
PAN-STARRS i 0.755 23.2
HSC z 0.891 23.4
VIS/IE 0.715 25.0
NISP/YE 1.085 23.5
NISP/JE 1.375 23.5
NISP/HE 1.773 23.5
IRAC/[3.6 µm] 3.550 24.8
IRAC/[4.5 µm] 4.493 24.7

Notes. Reported magnitudes are the 10σ expected observational depths
for an extended source in a 2′′ diameter aperture. IRAC observations
will be available only for the EDF; as such, their reported magnitudes
are the ones measured in the EDF-N and EDF-F (see Euclid Collabora-
tion: Moneti et al. 2022; Euclid Collaboration: McPartland et al. 2024).

will obtain data in different bands as part of the Ultraviolet Near-
Infrared Optical Northern Survey (UNIONS), whose throughput
is shown in Fig. 1. These are the Canada-France Imaging Sur-
vey (CFIS; Ibata et al. 2017, on the Canada-France-Hawaii Tele-
scope CFHT) for bands u and r; Subaru Hyper Suprime-Cam
(HSC: Miyazaki et al. 2018) observations for z and g bands
as part of the Wide Imaging with Subaru HSC of the Euclid
Sky (WISHES) and the Waterloo Hawaii IfA G band Survey
(WHIGS); PAN-STARRS in band i (Chambers et al. 2016), and
the Euclid IE, YE, JE and HE filters (Cropper et al. 2016; Maci-
aszek et al. 2016).

The EDF has already been observed with the Spitzer Space
Telescope’s Infrared Array Camera (IRAC, Werner et al. 2004;
Fazio et al. 2004) at 3.6 µm and 4.5 µm. These observations are
described in detail in Euclid Collaboration: Moneti et al. (2022)
and Euclid Collaboration: McPartland et al. (2024). When deal-
ing with the EDF, we also include these two photometric filters,
assuming the same observation depth reported in Euclid Collab-
oration: McPartland et al. (2024).

For convenience, the full set of filters is also listed in Table 1,
with the corresponding expected 10σ observation depths for a
generic extended source (in a 2′′ aperture, i.e., a typical Euclid
extended source) per band in the EWS – with attached IRAC
observed depths in the same aperture for the EDF.

Table 2. Four simulated Euclid catalogs.

ROS Sources IE lim HE lim
EWS 1 512 527 25.00 23.50
C16 16 1 209 598 26.50 25.00
C25 25 1 361 041 26.75 25.25
EDF 40 1 534 023 27.00 25.50

Notes. The limits are the 10σ (IE) and 5σ (HE) expected observational
depths for an extended source in a 2′′ diameter aperture.

2.2. The Euclid simulated fields

We simulate different versions of Euclid observations by adding
realistic photometric noise to each band depending on the num-
ber of reference observation sequences that are going to be ob-
served (ROS, see Fig. 8 of Euclid Collaboration: Scaramella
et al. 2022) and the expected limiting magnitudes of the survey.
A galaxy is kept in the catalog if it is detected either in HE at
S/N > 5 or in IE at S/N > 10, given the expected limiting mag-
nitude. Those limits were used because they enable a posteriori
selections for other Euclid analyses, such as cluster detection and
weak lensing analysis.

The four simulated catalogs (see Table 2 and Fig. 2) are:

– Wide, a single ROS at limiting magnitudes of HE,lim = 23.5
and IE,lim = 25.0, simulating what is expected from the EWS
(Euclid Collaboration: Scaramella et al. 2022).

– C16, 16 ROS at limiting magnitudes of HE,lim = 25.0 and
IE,lim = 26.5, corresponding to a limit 1.5 mags deeper than
the EWS. This simulates the so-called Euclid auxiliary fields
(Euclid Collaboration: Scaramella et al. 2022), six well-
known regions with vast ancillary information, observed for
photometric and color calibration; 16 ROS are expected to
be observed by the time of DR1.

– C25, 25 ROS at limiting magnitudes of HE,lim = 25.25 and
IE,lim = 26.75, corresponding to a limit of 1.75 mags deeper
than EWS. This simulates the expected final average number
of ROS to the Euclid auxiliary fields.

– Deep, 40 ROS reaching limiting magnitudes of HE,lim = 25.5
and IE,lim = 27.0, corresponding to an expected limiting mag-
nitude of 2 mags deeper than EWS, simulating the minimum
number of ROS of the different fields composing the EDF
(north, south, and Fornax).

We notice that the magnitude limits reported here are dif-
ferent from the ones in Euclid Collaboration: Scaramella et al.
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(2022), which refer to point-sources at 5σ. Here instead, we con-
vert those to 10σ limits for an extended source with a 2′′ aperture
(as a proxy for a typical Euclid extended source).

We are building the calibration fields by improving the EWS
photometry on the Euclid and UNIONS filters; however, the
real auxiliary fields, such as the Cosmic Evolution Survey field
(COSMOS; Scoville et al. 2007) will benefit from a wealth of
multiwavelength ancillary data (i.e., the COSMOS2020 catalog,
Weaver et al. 2022) that will yield better photometric redshifts
and physical parameter estimation with respect to what we re-
port in this work.

There are a few caveats about the simulated catalogs. While
the photometric noise for all the considered mock catalogs is
simulated in the most realistic way possible, we are still deal-
ing with an idealized situation where the photometric procedures
are bypassed. Moreover, within the catalogs, we are considering
galaxies only, without accounting for any source of contamina-
tion that the real Euclid data will have to deal with: contam-
inants such as stars, photometric masks (e.g., from stars) and
defects (snowballs, cosmic rays, persistence from solar flares),
AGN and QSOs (López-López et al. 2024), under-deblended and
over-deblended objects, Local Universe extended objects, and
low surface brightness galaxies. While all of those are expected
to be reduced to the minimum possible (i.e., by exploiting ML
to automatically classify stars and galaxies, see e.g. Cunha &
Humphrey 2022, whose reported F1-scores are ∼ 98%), some
degree of performance degradation will be unavoidable.

Finally, as the absolute best-case scenario, yielding the best
possible value for each quality metric, we report the results com-
ing from the unperturbed version of the survey, that is, the mambo
generated catalog without any photometric noise added, run on
the ground-truth magnitudes. Regardless of the flaws that may
be inherent in the simulations, whatever uncertainty is generated
from this set of photometric values and parameters depends only
on the technique used to derive the second from the first, such as
badly interpolated holes in the feature space for ML algorithms
or a lack of SED models and degeneracies between colors and
physical properties for template-fitting algorithms.

3. Methodology

In this section, we describe the algorithms and metrics used to
assess the model’s performance in recovering the ground truth.
In particular, we focus on the recovery of photometric redshifts z
and two physical parameters: stellar masses log10(M⋆/M⊙) and
star formation rates log10 (SFR/M⊙ yr−1), and the relation be-
tween them, the star-forming main-sequence (SFMS).

3.1. Feature, labels, and samples

In line with the standard ML terminology, we now designate the
catalogs’ photometry and subproducts (i.e., broad-band photom-
etry and colors) as features, and the model output (i.e., redshifts
and physical properties) as labels. In this work, we address two
versions of the latter:

– the true labels, which are the ground-truth z and physical
properties extracted from mambo;

– the recovered labels, whose values have been obtained by
running a traditional template-fitting code (Phosphoros, see
Sect. 3.3) on the (simulated) Euclid observed features.

Thus, we can check what the best possible performance for a
particular run is (i.e., when the redshifts and physical parameters

are perfectly known) to compare with the more realistic ones that
will be obtained with Euclid data, when the ground truth will
be inevitably unknown and recovered labels will be built from
the observed features as the model input samples. This informa-
tion is useful, especially in cases where the EWS performance
are evaluated with a reference sample built from the calibration
fields (see in the next paragraphs). As reported in Sect. 2.2, the
simulated ones have labels recovered from the same set of filters
as the EWS, but the real ones will benefit from lots more mul-
tiwavelength data, with better recovered photo-z and PPs. The
expected real performance of such cases should therefore be in
between the recovered and true labels performance.

Every supervised ML application is composed of a training
(or reference2) sample from which the relations between features
and labels are inferred, and a target (or test3) sample on which
the models are applied. As described in Sect. 2, we have four dif-
ferent simulated versions of Euclid observations, mimicking the
expected outcome of the EWS, EDF, and two calibration (aux-
iliary) fields. As common practice in ML applications, we split
those catalogs, using part of the sample for training (or as refer-
ences) and the rest equally split for cross-validation and testing.
In this work, we used 90% of the samples for training (translat-
ing into training sets between 500 k and one million galaxies),
ensuring at least ∼ 50 k galaxies in the test sample, which is
more than enough to evaluate the model’s performance.

To understand the actual performance expected from the ob-
served Euclid data, we explore the predictive capabilities of
models trained on deeper photometry when applied to a shal-
lower one (in this case, the EWS). For instance, this is achieved
by training a model using the EDF catalog and subsequently
evaluating it on the EWS catalog. In those cases, at test time,
we share the same set of train and test sources between the cat-
alogs to be as consistent as possible. The same is done for ev-
ery ML method used in this work, and we share the same train,
reference, and test samples for the same catalog permutation be-
tween different models (e.g., when testing the performance of a
model trained on the EDF catalog and tested on the EWS one,
the training and test source IDs are the same for all the methods
considered).

When dealing with recovered labels, in order to simulate a
typical application where the ground truth is unknown as Euclid
will observe photometry from which the photo-zs and physical
parameters will be derived, we train the models on those and test
on the true labels.

3.2. Features engineering

As reported in Sect. 2, in standard ML terminology, the catalogs
observed photometric values are the features of the models. At
the base level, each entry in the features space is a single galaxy’s
simulated photometry, in magnitudes; that is, the nine Euclid +
UNIONS bands for the EWS, with the addition of two IRAC
bands for the EDF. In order to improve the quality of the mod-
els, thus the model inferences, we also include derived features
as the colors (pairwise differences of the magnitudes, exclud-
ing permutations), increasing the number of total features to 45
2 For some ML methods (i.e., the nearest-neighbors algorithms), there
is no training phase (or it could be considered instantaneous training); as
such, the sample from which the predictions are inferred is not referred
to as the training sample but as the reference sample.
3 Similarly, both terms are applied to data samples that will not be
utilized for the model’s training or as a reference sample. The subtle
distinction lies in the utilization of a test sample, specifically employed
for evaluating the model’s performance.
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(EWS) and 66 (EDF). This is the number of features for each
of the previously described methods, with the notable exception
of the CatBoost chained regressors (CCR), where the inferred
labels are added on top of those as new training features at each
iteration, as described in Sect. 3.5.2.

All of the methods presented in this section are not sensitive
to the dynamic range and scales of the input features, except for
the Deep Learning Neural Network (DLNN). In that case, we
scale the features to a similar dynamic range with a standard Z-
score normalization.

3.3. Phosphoros

Phosphoros4 (Paltani et al., in prep) is a Bayesian template-
fitting tool for galaxies SED developed within the Euclid collab-
oration. In the Euclid photo-z data challenge, which evaluated
the performance metrics of different template-fitting and ML
codes in retrieving the photometric redshift of a mock catalog,
Phosphoros yielded the best performance along with LePhare
(Euclid Collaboration: Desprez et al. 2020).
Phosphoros can be used to evaluate at the same time the

photometric redshift and the physical properties of galaxies that
have to be provided as tags for the templates. In the present
work, we have used 1254 templates from Bruzual & Char-
lot (2003, in the 2016 version5) with Chabrier IMF (Chabrier
2003), considering exponentially declining (e-folding timescale
τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr) and delayed (characteris-
tic timescale τ = 1, 3 Gyr) star formation histories, 2 metallici-
ties (Z = 0.008, 0.02) and 57 ages between 0.01 and 13.5 Gyr.
The internal dust attenuation has been modeled with Calzetti’s
law (Calzetti et al. 2000) with E(B − V) values in the range
[0.0, 0.5]. We tested whether the IMF choice for the templates
might bias the performance by running Phosphoros with tem-
plates built with Salpeter IMF (Salpeter 1955), finding identical
results in terms of performance metrics (see Sec. 3.6), though
almost monolithically shifted by a factor 0.23 dex in logarithm
with respect to the Chabrier results, shown throughout the paper.

As a first step, a grid with model photometry is derived for
all the templates in the redshift range z ∈ [0.0, 6.0] with steps
of dz = 0.01. When comparing the model to the observed pho-
tometry, the only factor considered prior is the “volume-prior”,
proportional to the redshift-dependent differential comoving vol-
ume. Upper limits are treated in a statistical sense, as models
with fluxes over the limit in the undetected bands are still con-
sidered when looking for the best-fit model; in those cases, the
χ2 evaluation follows the indications in Sawicki (2012). In the
version that will be used for Euclid data, there will also be the
possibility of consistently dereddening the photometry for the
Galactic extinction (Galametz et al. 2017) and considering the
variability of the filter transmission functions across the field of
view (Euclid Collaboration: Paltani et al. 2024). A recipe to add
emission lines is also implemented in Phosphoros, but not used
in this work.

The final result of the computation is the characterization of
the multidimensional posterior with a density sampling of 100
values for each galaxy, as well as the values of the physical prop-
erties and redshift from the best posterior model as the mean, the
median (used in this work), or the mode of the distribution.

In this work, we use Phosphoros results to benchmark ML
methods against a standard template-fitting algorithm and as a

4 https://phosphoros.readthedocs.io
5 http://www.bruzual.org/bc03/Updated_version_2016/

necessary step to build the reference sample to use as input for
nnpz.

3.4. nnpz

The Nearest-Neighbors Photometric Redshift (nnpz, see Tanaka
et al. 2018, for a first application on the HSC-SSP survey) is a
supervised-learning technique mapping a given set of features to
known labels with an upgraded version of the k-nearest neigh-
bors algorithm (k-NN). In its most simple form, a k-NN algo-
rithm combines an integer number of k neighbors in a reference
sample closest to the target in feature space with respect to some
distance metric (e.g., Euclidean) and predicts a label based on
some user-defined combination of the metrics of the k-NN ref-
erence sample labels (e.g., a mean weighted by the distance in
feature space). The same conceptual approach can be employed
to provide a posterior distribution function (PDF) for the desired
label by combining some a priori known PDFs for the reference
sample under the assumption that similar observations with sim-
ilar uncertainties would naturally produce similar results. Pre-
dictions and confidence intervals will naturally follow from the
output PDF.

This is the concept behind nnpz in a nutshell. The refer-
ence sample is built starting from Phosphoros as a set of ob-
jects whose full parameters’ PDF has been sampled with 100
randomly extracted points according to the PDF density distribu-
tion. The samples of the k-NNs are then combined to produce the
target PDF, from which a punctual prediction is obtained from
the mean, the median, or the mode of the distribution.

In this work, we used the 1.2.2 version of nnpz available on
the Euclid LOcal DEvelopment ENvironment (LODEEN) ver-
sion 3.1.0, a virtual machine containing all of the Euclid soft-
ware and pipelines. As for the code hyperparameters, after a first
skim in a batch of at least 1000 nearest neighbors in the target
space obtained from a space partition with KDTree (necessary
to speed up the whole process instead of simply brute-forcing
the search), we fix the final k from which the target labels are
evaluated to 30 nearest neighbors. To generate a prediction, each
neighbor is weighted with its χ2 likelihood, which is the χ2 dis-
tance between the reference neighbor and the target point in the
feature space. nnpz combines the posterior coming from all the
nearest neighbors and produces a PDF for the predicted target
galaxy, from which we extract the point prediction as the median
value of the distribution. We perform the same tests presented in
this work with the mode of the distribution (i.e., the maximum-
likelihood estimator) as the point prediction without noticing a
significant change in the results.

In fact, returning a source’s multivariate PDF samples as out-
put instead of a single-point prediction is one of the great advan-
tages of nnpz. This information is in principle recoverable with
other ML algorithms, such as CatBoost (see Mucesh et al. 2021,
for an application to a simple random forest) if considering all
the training samples in a particular leaf as PDF samples, though
this is computationally and memory-wise less feasible than the
∼ 100 samples per galaxy of nnpz.

3.5. Other machine learning techniques

Apart from nnpz, we performed similar tests using previously
tested ML techniques that have been shown to be extremely
efficient for redshift and galaxy property estimation: Gradient-
Boosted Decision-Trees (GBDT) and DLNN.
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3.5.1. CatBoost single-model regressor

A GBDT is rooted in decision trees, a building block of widely
used and successful techniques for regression and classifica-
tion tasks. In a decision tree, the data is recursively split into
smaller subsets based on the features that best separate the data
according to some information gain (for classification) or vari-
ance minimization (for regression) criteria, until a stopping crite-
rion is met. The result is a tree-like structure, with each internal
node representing a feature, each branch representing a poten-
tial value for that feature, and each final node (leaf) represent-
ing a class (for classification) or predicted value (for regression).
This scheme has been improved by what is called gradient boost-
ing, which decreases the randomness improvement in training by
starting with a set of imprecise decision trees (“weak learners”)
and iteratively improving them, focusing on what these are pre-
dicting wrong rather than generating a new random subset of the
data.
CatBoost (Prokhorenkova et al. 2018)6 is a cutting-edge

ML algorithm specifically designed for gradient boosting on de-
cision trees. There are some specific features that help reduce
some typical issues in gradient boosting algorithm implementa-
tions, such as the ordered boosting to reduce overfitting and the
oblivious trees to regularize while increasing speed.

In this work, we use CatBoost in two different ways. With
the CatBoost single-model regressor (CSMR), we train a single
model to solve a multiregression problem. Each set of features
is associated with a pool of labels (zphot, M⋆, SFR) and not just
a single label per time (as in Sect. 3.5.2), finding the best model
with a Multivariate Root Mean Square Error (MultiRMSE) loss.
In each case presented, the final model is trained with 1000 esti-
mators, allowing for a maximum depth of 11.

3.5.2. CatBoost chained regressors

With the CCR we train on a set of features one label per time,
and iteratively append the predicted labels to the features up until
convergence, allowing the model to naturally learn the correla-
tion between parameters through an iterative approach. A thor-
ough and more detailed description can be found in Humphrey et
al., (in prep). Here, we summarize it in the following paragraph.

We start with a training set (Xtrain, ytrain) and a test set (Xtest,
ytest). The first iteration goes as follows:

1. the model is trained on Xtrain whose features are the full set of
colors and magnitudes (with permutations, see in Sect. 3.2),
with only zphot as the lone label in ytrain. From this model, we
can predict some zphot and evaluate their performance metrics
on the test sample.

2. Now, the model is trained on a new Xtrain that is composed of
the previous ones (magnitudes and colors) and the zphot pre-
dicted in 1. From this model, we predict log10(M⋆/M⊙) and
evaluate the log10(M⋆/M⊙) performance metrics on the test
sample; of course, the Xtest has been extended to incorporate
the new feature from the predicted zphot on the test sample.

3. Then, the model is trained on another Xtrain composed
of the previous features plus the predicted log10(M⋆/M⊙)
in the previous step. With this model, we predict
log10 (SFR/M⊙ yr−1) and evaluate the log10 (SFR/M⊙ yr−1)
performance metrics on the (once again, extended) test sam-
ple.

Now the second iteration starts.
6 https://catboost.ai/

Table 3. Architecture of the DLNN used in this work.

Layer Nin Nout
input Nfeat 4096
dense 4096 2084
dense 2048 1204
dense 1024 512
dense 512 64
output 64 3

Notes. All layers are dense, fully connected with a ReLU activation
function. Nfeat values are reported in Sect. 3.2.

4. The model is trained on an Xtrain composed of the previous
features – including the zphot and log10(M⋆/M⊙) predicted
in steps (1) and (2) – plus the predicted SFRs in step (3),
and with this model, we re-predict zphot and evaluate their
performance metrics.

5. Again, another model is retrained with the previous fea-
tures plus the new zphot predicted in the previous step.
log10(M⋆/M⊙) is re-predicted, and the model performance
on the label is evaluated.

The whole procedure goes on for four iterations, when we ob-
serve a convergence of the evaluated metrics in agreement with
Humphrey et al., (in prep).

As such, the model features are (in square brackets, the step
in which they have been evaluated):

1. magnitudes and colors;
2. magnitudes, colors, and zphot [1];
3. magnitudes, colors, zphot [1], and log10(M⋆/M⊙) [2];
4. magnitudes, colors, zphot [1], log10(M⋆/M⊙) [2], and

log10 (SFR/M⊙ yr−1) [3];
5. magnitudes, colors, zphot [1], log10(M⋆/M⊙) [2],

log10 (SFR/M⊙ yr−1) [3], and zphot [4].

And so on, for four iterations.
Finally, we store the final set of label predictions for the test

set on which we evaluate the performance metrics (see Sect. 3.6).
In running CatBoost we use the same set of hyperparameters
as in CSMR and in Humphrey et al., (in prep).

3.5.3. Deep learning neural network

As we only deal with structured (i.e., tabular) data, we also test
the performance of a simple, multilayered DLNN. Here we adopt
a typical architecture that has been widely used in the literature
in searching for photometric redshifts and physical parameters
(e.g. Firth et al. 2003; Collister & Lahav 2004; Euclid Collabo-
ration: Bisigello et al. 2023).

The DLNN inputs are the training features (magnitudes and
colors, with permutations, see Sect. 3.2), and the output is a set
of three labels (zphot, M⋆, SFR). The DLNN architecture (de-
scribed in Table 3) consists of five fully connected layers with
a decreasing power of two hidden units for each layer. The
adopted activation function for each layer is a Rectified Linear
Unit (ReLU, Nair & Hinton 2010), Mean Squared Error (MSE)
for the loss function with L2 regularization to avoid overfitting,
and the model is optimized with the ADaptive Moment estimator
(Adam, Kingma & Ba 2014).

The DLNN for each model are trained and tested on the same
train and test samples as for all the other methods. We run the
training on mini-batches of size 512.
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3.6. Metrics and quality assessment

We use standard metrics to quantify the model’s performance.
Those are defined differently when referring to redshifts or PPs.

The first is the normalized median absolute deviation, de-
fined as:

NMAD = 1.48 × median


|zpred − ztest|

1 + ztest
− b for redshifts;

|ypred − ytest| − b for PPs,
(1)

with b being the model bias (see below).
The outlier fraction fout is defined as the fraction of catas-

trophic outliers (Hildebrandt et al. 2010) over a certain threshold
(in log space for physical parameters, linear for redshifts):

fout :


|zpred − ztest|

1 + ztest
> 0.15 for redshifts;

|ypred − ytest| > tout for PPs.
(2)

These thresholds have been evaluated looking at the standard de-
viation of the PPs distribution, considering only sources with a
good photo-z recovery – that is, below the 0.15(1 + z) threshold
– for all the methods considered, trained with true labels (see
Sec. 3.1). As a consequence, the PPs thresholds are not the same
for stellar masses or SFRs. The chosen thresholds are two times
the mean standard deviation between the prediction and the true
values found for all the considered methods, rounded to the near-
est decimal. The values are tout = 0.4 dex for stellar masses and
tout = 0.8 dex for SFRs.

Defining the catastrophic outliers in this way is different than
assuming a plain 0.3 dex difference between the prediction and
the true values of the physical parameters (corresponding to a
factor of two) that is found in recent literature (e.g. Euclid Col-
laboration: Bisigello et al. 2023). Fixing the same value in dex
space for every PP is a penalizing choice, especially for SFRs,
where a 0.3 dex difference might even be the order of (or even be-
low) 1σ of the distribution, which is too little to define a galaxy
as a catastrophic outlier. In this way, we adopt a more robust
definition from a statistical sense, which actually returns an in-
formative quantitative description of what a catastrophic outlier
is for a stellar mass estimate or a star formation rate.

Finally, a model’s overall bias b is:

b = median


(

zpred − ztest

1 + ztest

)
for redshifts;

(ypred − ytest) for PPs.
(3)

In all three cases, the closer to zero, the better the predicted
values resemble the test ones. Of all three, only the bias can take
either positive or negative values.

We notice that those metrics are different from the Euclid re-
quirements, that depend on the redshift probability distribution
functions (PDZ, see their definition in Sect. 4.2 of Euclid Col-
laboration: Desprez et al. 2020). We use photo-z and PPs point
estimates instead.

As for the SFMS, we evaluate the performance of the recov-
ered relation by evaluating three parameters:

– the relation slope m, measured with an orthogonal distance
regression (ODR);

– the fraction of passive galaxies fp, defined as the fraction
of objects with specific-SFR log10(sSFR/Gyr−1) < −1. This
limit has been determined looking at the divide between pas-
sive and nonpassive galaxies in mambo and is in accordance
with values found in the literature (e.g. Pozzetti et al. 2010;
Ilbert et al. 2013);

– the relation scatter σ, measured only on nonpassive sources.

4. Results

In this section, we present the results of the methods presented
in Sect. 3 on the simulated Euclid fields described in Sect. 2. Our
primary objective is to evaluate the performance of the methods
described in Sect. 3 and find the optimal strategies to extract the
maximum amount of information available in the Euclid survey,
in particular the EWS and EDF. We ought to do so by dealing
with realistic information, that is, what the survey will actually
deliver as a scientific product. As such, we present results for the
EWS and for the EDF, obtained by combining the Phosphoros
results (photometric redshifts, physical parameters) in the fields
with the available photometry. As described in Sect. 2, we deal
with two kinds of training labels: the true ones (i.e., the ground-
truth simulated parameters), which of course are unknown in a
real-life application, and as such, we only use them to assess
what the best-case scenario for a particular field could be, and
the recovered labels, whose values are the Phosphoros outputs
resulting from the observed photometry, which is what an actual
application to real Euclid data will have to deal with. However,
it is worth noticing that spectroscopic redshifts will be avail-
able for a smaller sample (still around the order of millions of
sources), which is the closest thing to true labels that the EWS
and EDF will yield. A similar argument (with lots of attached
caveats) could apply to those sources with Hα-derived SFRs,
though the numbers in this case are sensibly reduced with re-
spect to the spectroscopic redshifts. For each trained model, we
carefully checked that the performance metrics evaluated on the
training set do not differ significantly from the ones obtained by
applying the model to the test set, thus excluding any kind of
overfitting to the training set.

4.1. Computational performance

Most of the runs presented here – specifically, the CSMR, CCR
and DLNN results – are performed on Galileo100, a high-
performance computing (HPC) system located at Cineca, within
the Italian SuperComputing Resource Allocation (ISCRA7)
Class C program, as part of the PPRESCIA-HP10CBAZOH pro-
gram (PI, Enia). Galileo1008 is a DUal-Socket Dell PowerEdge
cluster, hosting 636 computing nodes each with two x86 In-
tel(R) Xeon(R) Platinum 8276-8276L, with 24 cores each. In
fact, the main advantage of ML methods over classic template-
fitting templates is the dramatic speed-up to the inference prob-
lem, at least when dealing with point value prediction for the pa-
rameters, coupled with the improved computational performance
in training these models in HPC systems.
Phosphoros and nnpz are run on a PowerEdge T640 ma-

chine with an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
processor, and 24 available cores. A typical run of Phosphoros
requires ∼ 0.8 seconds per galaxy; for a number of galaxies
around a million (as in our cases), it translates into uninterrupted
runs of a couple of weeks on the 24 available cores of our work-
station.

With nnpz, which technically does not need training as the
whole computational load is on the shoulders of the neighbor
search and PDF combination, a typical run on a target sam-
ple of ∼ 50 k galaxies requires ∼ 8 minutes of time, or 0.006
seconds per galaxy, a speed-up of a factor 100 with respect to
Phosphoros.

7 https://iscra.cineca.it/
8 https://www.hpc.cineca.it/systems/hardware/
galileo100/
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Fig. 3. Phosphoros results on two simulated Euclid catalogs, EWS (top panels) and EDF (bottom panels), with true values plotted against the
Phosphoros recovered ones. The black line is the 1:1 relation; the shaded area is the region beyond which a prediction is an outlier. In every plot,
the four contours are the area containing 98%, 86%, 39% (corresponding to the 3σ, 2σ and 1σ levels for a 2D histogram) and 20% of the sample.
For SFMS the true distribution is reported in red (dashed), the predicted one in blue (solid). The lines are the ODR best-fit to the (passive-removed)
distribution. The reported metrics are NMAD (purple), the outlier fraction fout (blue) and the bias (green) for the photometric redshifts and physical
parameters, and the slope m, scatter σ and fraction of passive galaxies fp for the SFMS, all defined in Sect. 3.6.

CatBoost-based runs and DLNN require training instead,
after which the inference is almost instantaneous. How long
those methods will run depends on the size of the training set,
how complex the model is allowed to be and the number of
training epochs for DLNN; for a typical training set size of a
million galaxies, it translates into training runs of ∼ 15 minutes
for CSMR on 16 cores, ∼ 0.002 seconds of training time per
galaxy. For CCR the training time per galaxy is similar, though
the final run is of course longer since a model is trained at every
iteration for each label. We run the CCR on Galileo100, asking
for a single node of 48 cores, whose overall run lasted for ∼ 1
hour time.

Finally, on the same HPC system, we trained the DLNN for
300 epochs, translating into ∼ 7 hours of training time (∼ 80 sec-
onds per epoch) for a ∼ million galaxies in the training sample,
a training time of ∼ 0.003 seconds per galaxy.

4.2. Phosphoros results

The first results we present are the template-fitting runs with
Phosphoros on all the galaxies present in the training (or ref-
erence) samples. We refer the reader to Sect. 3.3 for further de-
tails on how Phosphoros has been run. The results are shown in
Fig. 3, for the simulated EWS and EDF. In Appendix B we also
show the results for the two auxiliary fields at 16 and 25 ROS. In
each plot, the true values are plotted against the recovered ones,
and the performance metrics are reported in the bottom right of
each plot.

These results are sort of the blueprint for all the others found
in this work. The first thing that jumps out is the difficulty in re-
covering the correct SFR, as both the EWS and EDF simulations
display high NMADs (0.90–0.77, respectively) and fractions of
outliers (> 30%). The recovered SFRs for the EWS are also bi-

ased toward higher values by a factor ∼ 1.4 (a bias of 0.13–0.15
in the logarithm).

Optimal recovery is obtained for photometric redshifts in-
stead, with NMADs that improve from 0.057 to 0.035 passing
from Wide to Deep photometry – and the addition of the two
IRAC bands – and fout reducing from 22% to 10%, with half of
this reduction the consequence of an improvement in correctly
distinguishing faint low-z, low-mass objects from high-z, high-
mass ones. For the EWS, worse results are obtained for the stel-
lar masses, with higher NMADs (0.258) and fractions of outliers
(22%). The combined effect of deeper photometry plus the two
IRAC bands sensibly improve the recovered stellar masses in the
EDF, with NMADS decreasing to 0.18 and fout to 11%. Both the
recovered photometric redshifts and stellar masses show low bi-
ases (absolute values smaller than 0.04) with respect to the ones
found in the SFRs.

These are not unexpected findings, given the specific set of
filters used as input. As reported in Sect. 2 (see also Table 1 and
Fig. 1), for the EWS we use 9 filters with rest-frame λeff between
0.37 µm and 1.77 µm. As the photometric redshifts are more sen-
sitive to colors in the ultraviolet (UV)-to-NIR part of the spec-
trum, these are well recovered with the given wavelength range
and the number of filters. Moreover, dropouts in different filters
are an excellent proxy for high-z galaxies. Stellar masses corre-
late well with rest-frame NIR photometry, in particular the HE

band, and most of our simulated sample (> 60%) reside between
0 < z < 1.5 where NIR is still sampled by Euclid filters. The
addition of the first two IRAC channels helps significantly in im-
proving the stellar masses recovery. Things are harder for SFRs,
as they correlate the most with mid-IR to far-IR photometry
(Kennicutt & Evans 2012), tracing obscured star formation, and
secondly with UV rest-frame monochromatic fluxes at 1550 Å
(FUV, Bell & Kennicutt 2001) and 2800 Å (NUV, Bell et al.
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Table 4. Metrics for the unperturbed simulation.

CSMR CCR DLNN nnpz
NMAD fout bias NMAD fout bias NMAD fout bias NMAD fout bias

z 0.005 0.1% < 10−3 0.002 0.0% < 10−3 0.017 1.4% 0.002 0.001 0.1% < 10−3

M⋆ 0.032 0.1% < 10−3 0.022 0.1% < 10−3 0.083 1.5% < 10−3 0.019 0.1% < 10−3

SFR 0.178 0.2% 0.005 0.168 0.2% < 10−3 0.275 1.5% 0.004 0.132 0.2% < 10−3

Notes. Here, the methods try to find the mapping between the true labels and the noise-free features. As such, these should be intended as the
absolute lower limits for each parameter. M⋆ refers to log10(M⋆/M⊙), SFR to log10 (SFR/M⊙ yr−1).

2005), tracing unobscured star formation. The former, stronger
proxy is inaccessible with the chosen set of filters, while the lat-
ter is a weaker one. This makes the recovery of SFRs difficult
even in an ideal, pristine situation (see Sect. 4.3 and Table 4)
and extremely complicated when more sources of uncertainty
are added. These could be improved by imposing some SFR-
related priors to the template-fitting algorithm, something that
will be carefully considered when dealing with real Euclid data.

The main fraction of photo-z catastrophic outliers (around
10% for the EWS, 5% for the EDF) is composed of faint low-
redshift (ztrue < 1), low-mass [log10(Mtrue

⋆ /M⊙) < 9] and low-
SFR galaxies [log10(SFRtrue/M⊙ yr−1) < 0] that are instead
misplaced at higher redshifts (z > 2) with at least one order
of magnitude higher masses [log10(M⋆/M⊙) > 10] and SFRs
[log10 (SFR/M⊙ yr−1) > 1]. This is reflected in the SFMS. In the
EWS case, the higher SFR overestimation with respect to stel-
lar masses yields a fitted relation with a sensibly higher slope
(m = 2.1) with respect to the true one (m = 1.3). The uncer-
tainties on the recovered parameters translate also into a higher
scatter of σ = 0.48 (ground truth of 0.30) and a fraction of pas-
sive galaxies higher ( fp = 12% instead of 6%). Things get better
for the EDF, with metrics still distant from the true ones though.

4.3. The unperturbed simulation

One might wonder what the absolute best-case scenario is in
terms of performance when applying the methods described in
Sect. 3 to a pristine, unperturbed set of features mapping to the
true labels. This is the same as asking what order of magnitude
the irremovable inherent uncertainty of those methods is, which
will always affect the measured metrics, even in a more realistic
scenario where the noise affecting the features (and labels) will
dominate.

To answer this question, we run the methods defined in
Sect. 3 on an unperturbed, noise-free features version of the
mambo catalog with true labels (see Sect. 2 for definitions). Any
uncertainty depends only on the specifics of the technique used
to map features to labels and, from a broader perspective, on
how well those specific features (magnitudes and colors) are able
to recover those particular labels (photometric redshifts, stellar
masses, and star formation rates).

The results are reported in Table 4. What stands out is the
perfect recovery of the photometric redshifts, up to a 0.1% frac-
tion of outliers. Those nine filters and the associated colors are
able to correctly put a galaxy in its right place in the cosmic
picture (see Appendix A for a quantification on the feature im-
portance). This is similar for stellar masses, though with met-
rics degraded by an order of magnitude, NMADs of ∼ 10−2 vs.
∼ 10−3 for photo-zs – and comparable outlier fractions – as ex-
pected once considering that the rest-frame H band is a well-
known tracer for correctly identifying the galaxy mass content,

which is still true as the majority of the simulated sources are at
z < 1.5.

Star formation rates are harder to recover, though. Even in
an ideal, perfect scenario, it is impossible to go below NMADs
of ∼ 0.13 for that particular set of features. Of course, there is
room for improvement if adding other features more sensitive to
the star formation processes when available, for instance, mid-IR
or far-IR photometry, or spectral features, such as the Hα emis-
sion line. A more detailed dissertation is beyond the scope of this
work, which focuses mainly on the EWS and EDF, without con-
sidering other ancillary (or new) filters. However, the complete
exploitation of the full spectrophotometric (and morphologic) in-
formation in Euclid will be explored in a forthcoming work.

4.4. Results for the Euclid Wide Survey

The unperturbed case gives back an extremely optimistic best-
case scenario. In reality, all the observed photometry in Euclid
will be affected by some degree of uncertainty, whose effect is
to make the feature space noisier, mixing together sources with
different labels. At times, even with extremely different ones,
in degenerate regions of the feature space (i.e., fainter and less
massive or brighter and more massive), making it hard – or even
impossible – to correctly understand which label is associated
with that particular set of features. This unavoidably degrades
the quality of the model and the performance metrics when ap-
plied to a sizable sample of data.

As reported in Sect. 2, we simulate four different versions
of Euclid observed catalogs: the EWS and EDF, and two cali-
bration fields with 16 and 25 ROS, respectively, mimicking the
Euclid auxiliary fields for photometric and color gradient cal-
ibration (Euclid Collaboration: Scaramella et al. 2022). In this
section, we focus on the EWS, and the performance observed
when training the models on deeper samples.

We present two possible approaches for this task. In the
flowchart shown in Fig. 4, we summarize what has been done
in obtaining the reported results for the EWS (top panel) and the
EDF (bottom panel). The flowchart describes the different ap-
proaches employed when dealing with simulations at different
depths of the same field.

4.4.1. Paired labels approach

The first one is the paired labels approach. Here, we train each
model (or build a reference sample) with features and labels
coming both from a particular field (EWS, EDF, or the two cali-
bration fields), and test on the EWS. The labels are the recovered
ones (see Sect. 3.1), that is, the Phosphoros results for photo-z
and physical parameters on the field-correspondent photometry.
The results are summarized in Table C.1, where for each pair of
training/reference - test field we report the performance metrics
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Fig. 4. Flowchart followed for the reported results on the EWS and EDF. Panel a) summarizes what has been done for the EWS. In this case, we
employed two different approaches: pairing features to labels coming from Phosphoros results at the corresponding depth (paired labels), or with
features always from the Wide simulated catalog and labels coming from Phosphoros results at the Calibration and Deep fields depth for the
corresponding sources (mixed labels). These pairs of (features, labels) – or (features, posteriors for nnpz (see Sect. 3.4) – are thus given as input
for the ML models described in Sect. 3. Panel b) illustrates the straighter flowchart for the EDF, where the pairs (features, labels) or (features,
posteriors) always come from the simulated Deep field.

for all the considered labels, and Table C.2, where we report the
same for the SFMS results.

The photometric redshifts performance is good, in line with
the template-fitting results in Sect. 4.2 (see top panels of Fig. 5).
There is a slight improvement in training the model with pho-
tometry and labels coming from deeper fields, with NMADs re-
ducing by ∼ 0.01 and outliers by ∼ 5% at best. nnpz has the
best results overall (NMAD ∼ 0.06, fout ∼ 18%), for every pos-
sible case of training field involved. The vast majority of outliers
– raising the NMAD too – are z < 1.5 galaxies mistakenly as-
sumed to be higher redshift ones at z > 2 (more on that in the
next paragraphs). When looking at their magnitudes, these ob-
jects are revealed to be faint galaxies, with a distribution peaking
close to the magnitude limits for each band.

This wrong distance attribution is carried over to the stellar
mass prediction. A part of the degradation in the NMAD and
most of the one in fout is a consequence of those lower-z, lower-
mass galaxies mistakenly assumed to be as high-z, high-mass
ones. At best, with the given features and true labels in the train-
ing sample, no less than NMAD ∼ 0.14 and fout ∼ 13% is ex-
pected (with the CCR, see bottom panel of Fig. 6). For stellar
masses, no improvement is observed when using deeper calibra-
tion fields for training but rather a degradation (see Table C.1,
with the exception of EDF field, with the two IRAC channels).
This is not unexpected, as it is common in ML applications to
see cases where training and testing on noisier data altogether
yields better results than training with better features and testing
on the noisy ones.

The most worrisome metrics are the ones associated with
SFRs. The outlier fraction, defined as points with predicted SFR
above or below a certain threshold to the true value (0.8 dif-
ference in log space, Sect. 3.6), is over 30% for every method
with the notable exception of nnpz, where it stays between 26%
and 30%. We already showed in Sect. 4.3 how recovering SFR
with the given set of features is harder than photo-zs or stellar
masses even in the ideal, unperturbed case. In a more realistic
scenario, the results of the EWS are far from ideal, even when
the true values for SFR are used in the training process (no less
than an NMAD of 0.38 and 10% of outliers, see bottom panel
of Fig. 7). The template-fitting algorithm finds it hard to recover
SFR indeed, as reported in Sect. 4.2 (∼ 39%). Differently than
stellar masses, this is not just a matter of the wrong photo-zs
attribution affecting the SFRs (i.e., closer and less star-forming
vs. farther and more star-forming; more on that in the following
paragraphs), but an inherent degeneracy due to the filters and
colors used in the inference process.

The occurrence of simultaneous wrong predictions for stellar
masses and SFRs (both overestimated or underestimated) miti-
gates the impact on the recovered SFMS, at least regarding the
relation slope m, when training with deeper photometry (Ta-
ble C.2). However, with the notable exception of nnpz, which
yields the best performance in terms of SFRs, the recovered frac-
tion of passive galaxies [log10(sSFR/Gyr−1) < −1] is usually
well overestimated by a factor of two, the true one being 6%. No
method at whatever training depth is able to recover the correct
relation scatter (σ = 0.24).
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Fig. 5. Results for the EWS with the mixed labels approach. The true values on the x-axis are plotted against the predicted values on y. The black
line is the 1:1 relation; the shaded area is the region beyond which a prediction is an outlier. Contours are the area containing 98%, 86%, 39%
(corresponding to the 3σ, 2σ and 1σ levels for a 2D histogram) and 20% of the sample. Each column represents the results for the methods
described in Sect. 3. In the first four rows, the training labels are the recovered ones, coming from Phosphoros results to the mock photometry at
the same depth of the field reported in the leftmost plot legend and tested on the EWS (see Sect. 2 for further details). The T.lab Wide-Wide case
is exactly the same as the Wide-Wide case in Table C.1. In the fifth row, we show the results of the EWS training the models with their true labels
as the best-case scenario for that particular field. The reported metrics are NMAD (purple), the outlier fraction fout (blue) and the bias (green) for
the photometric redshifts and physical parameters, as well as the slope m, scatter σ and fraction of passive galaxies fp for the SFMS, all defined in
Sect. 3.6).

4.4.2. Mixed labels approach

Trying to mitigate the effect of the aforementioned cloud of
catastrophic outliers, we tried another approach, rooted in the
belief that better performance should arise in training the mod-

els with the best possible set of labels for a given set of features.
We refer to this one as the mixed labels approach, whose results
are reported in Figs. 5–8 and Tables 5–6.

Differently from the previous approach, here we train the
models with features (magnitudes and colors) always coming
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Fig. 6. Same as in Fig. 5, but for stellar masses.

from the EWS catalog. However, for the deeper fields, the train-
ing labels are the Phosphoros results obtained with the corre-
sponding photometry. This is specified in the plot with the text
Training Label (T.lab.) followed by the name of the field. The
model is then tested on features and (true) labels of the EWS.

To give an example, when referring to T.lab Deep - Wide we
mean:

– training features from the EWS;
– training labels from the Phosphoros results obtained with

the Euclid Deep photometry;
– test with features from the EWS and as labels the true values

for zphot, log10(M⋆/M⊙) and log10 (SFR/M⊙ yr−1).

The mixed labels T.lab. Wide-Wide case is exactly the same
as the paired labels Wide-Wide case, so the first rows of Ta-
ble C.1 report the same values as the first rows of Table 5 and
shown in Figs. 5 – 7. Notice also that with this approach we re-
duce the number of galaxies in the reference/training samples,
as only those detected in the EWS will have Phosphoros recov-
ered labels, thus the number of training galaxies passes from the
∼ one million for the Deep and calibration fields to ∼ 500 k (in
Sect. 4.4.3 we reduce it to ∼ 230 k to simulate a more realistic
COSMOS-alike reference sample).

However, despite the reduced training set, this approach im-
proves the overall performance when applying the models to the
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Fig. 7. Same as in Fig. 5, but for star formation rates.

test sample.9 In fact, attaching labels obtained with the best pos-
sible available photometry acts similar to a prior, which is able to
guide the model in better distinguishing the cases in which there
are degeneracies in the feature space where two close sets of fea-
tures yield drastically different solutions (and catastrophic out-
liers, e.g., two faint galaxies with similar features can be either
low-z, low-mass or high-z, high-mass objects), an improvement
that totally compensates the loss in sheer number of training ex-

9 In typical ML applications, the relation between the size of the train-
ing sample and the quality metrics scales in logarithm scale and satu-
rates after a while; as such, adding (or removing) a factor of two from
the training sample could not significantly impact the final metrics.

amples. This behavior in feature space translates in the photo-z
predictions as a vertical strip at zphot ∼ 1, which are z < 1.5
galaxies mistakenly assumed as being farther away (see upper
left panel of Fig. 3 or the top row of Fig. 5), and generating a
cloud of higher mass, higher SFR galaxies in their respective
plots. The wrong photo-z attribution is dragged onto the stel-
lar masses (top rows of Fig. 6), where the outliers cloud is less
prominent as in the photometric redshift case but still present as
a stripe of higher mass galaxies than expected. This also applies
to SFRs, which are also heavily affected by the reduced predic-
tive power of the chosen features, as previously described.

To better illustrate what was described in the previous para-
graphs, in Fig. 9 we show the distribution of true vs. predicted
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Fig. 8. Same as in Fig. 5, but for the SFMS. Dashed red contours are the test SFMS (i.e., the true values), solid blue is the predicted one. Contour
levels are the same as reported in Fig. 5. The lines are the ODR best-fit to the passive-removed distribution (dashed for test SFMS, solid for
predicted). The reported metrics are the SFMS slope, scatter, and fraction of passive galaxies, defined in Sect. 3.6.

PPs as a function of the difference between zpred and ztrue. In the
true PP – predicted PP plane, zpred − ztrue is measured as the me-
dian of the values falling within each bin. We report the results
obtained with nnpzon EWS (i.e., the T.lab. Wide-Wide case), but
similar things are observed for all the other methods and cases
considered.

Both for stellar masses (top panel) and SFRs (bottom panel),
the cloud of photo-z catastrophic outliers is visible as a region of
blue squares – meaning low-z objects mistakenly placed at high-
z – while a minor impact is due to the opposite, in red. These
regions are correctly placed outside the defined thresholds for

PPs outliers (shaded area), described in Sect. 3.6, thus showing
how they better relate with the distribution statistics with respect
to a fixed 0.3 dex threshold. Another thing to notice is how the
presence of those photo-zs outliers has a limited effect on the PPs
distributions scatter (i.e., the NMADs). The majority of the dis-
tributions (> 80% of points) have |zpred−ztrue| < 0.1. Even remov-
ing all the catastrophic photo-z outliers, the NMADs would still
be 0.19 (for stellar masses) and 0.58 (for SFRs). This is a con-
sequence of the inherent difficulties of the methods (template-
fitting and ML) in recovering PPs with the given set of features,
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Table 5. Metrics for the EWS, with the mixed labels approach.

CSMR CCR DLNN nnpz
NMAD fout bias NMAD fout bias NMAD fout bias NMAD fout bias

EWS
z 0.08 30% −0.02 0.06 23% −0.03 0.08 28% −0.02 0.06 22% −0.03
M⋆ 0.25 20% −0.02 0.24 20% −0.03 0.27 20% −0.04 0.24 19% −0.01
SFR 0.92 40% 0.20 0.86 37% 0.15 0.95 41% 0.06 0.71 30% 0.13

C16
z 0.06 19% −0.04 0.05 15% −0.03 0.06 20% −0.03 0.06 16% −0.04
M⋆ 0.21 14% −0.10 0.19 12% −0.08 0.22 14% −0.10 0.21 13% −0.06
SFR 0.68 26% 0.09 0.65 25% 0.10 0.67 25% 0.05 0.62 25% 0.18

C25
z 0.06 19% −0.04 0.05 14% −0.03 0.07 20% −0.03 0.06 16% −0.04
M⋆ 0.21 14% −0.10 0.19 12% −0.09 0.21 15% −0.12 0.20 13% −0.07
SFR 0.66 25% 0.08 0.64 24% 0.11 0.66 25% 0.08 0.61 23% 0.16

EDF
z 0.06 18% −0.03 0.05 14% −0.03 0.07 21% −0.05 0.05 15% −0.03
M⋆ 0.21 14% −0.10 0.19 12% −0.09 0.22 15% −0.12 0.19 11% −0.07
SFR 0.65 25% 0.08 0.64 24% 0.11 0.64 23% 0.06 0.62 23% 0.13

True
z 0.05 16% 0.00 0.04 13% −0.00 0.06 18% −0.01 0.05 15% −0.01
M⋆ 0.15 9% −0.01 0.14 8% −0.00 0.18 11% −0.02 0.16 10% 0.01
SFR 0.41 9% −0.02 0.38 8% −0.00 0.44 12% −0.06 0.43 11% −0.01

Notes. Leftmost column refers to the training sample, i.e., EDF means a model trained with EWS features and labels from Phosphoros results to
the EDF photometry, True means a model trained with EWS features and the ground truth labels. All of those models are then tested on galaxies
with features from the EWS survey and ground truth as labels. The reported metrics are the ones presented in Sect. 3.6. M⋆ refers to log10(M⋆/M⊙),
SFR to log10 (SFR/M⊙ yr−1).

Table 6. Metrics for the recovered SFMS in the EWS, with the mixed labels approach.

CSMR CCR DLNN nnpz
m σ fp m σ fp m σ fp m σ fp

EWS

SFMS

1.68 0.48 0.11 1.98 0.45 0.11 1.92 0.47 0.13 1.22 0.41 0.08
C16 1.22 0.34 0.08 1.26 0.32 0.08 1.23 0.32 0.08 1.24 0.32 0.06
C25 1.21 0.33 0.08 1.26 0.31 0.07 1.20 0.33 0.07 1.24 0.31 0.06
EDF 1.20 0.32 0.07 1.24 0.30 0.07 1.19 0.30 0.07 1.16 0.28 0.05
True 1.16 0.13 0.05 1.18 0.14 0.05 1.15 0.14 0.05 1.20 0.14 0.05

Notes. Leftmost column refers to the training sample, i.e., EDF means a model trained with EWS features and labels from Phosphoros results
to the EDF photometry, True to models trained with EWS features and the ground truth labels. The reported metrics are the ones presented in
Sect. 3.6. The SFMS ground truth values, injected in the simulation, are m = 1.30, σ = 0.30, fp = 0.06.

that is, filters chosen to sample the galaxies emissions, even in
cases where photo-z is correctly measured.

This fraction (∼ 9–10%) of low-z galaxies mistakenly as-
sumed to be high-z skew the respective luminosity functions to
overestimation. This is also observed in the SFMS, where the
overall effect is somehow compensated by the mass-SFR scaling
in the same (wrong) direction. The fit to the relation is usually
way steeper than the true one when the training sample is at the
same depth as the EWS, with the exception of nnpz.

With the mixed labels approach, the models will preferen-
tially place fainter objects at lower-z with lower masses instead
of the opposite. The other side of the coin is that now a fraction
of truly high-z galaxies will be placed at lower redshifts. This
is particularly visible with nnpz (right column of Fig. 5), and a
little less with the other models. However, the net result is an im-
provement, as only ∼ 1–2% of these kinds of outliers are present
in our results, while the number of low-z objects previously mis-
taken for high-z ones reduces by a half (from ∼ 10% to ∼ 5%).

We find that nnpz and CCR return the best performance of all
the ML methods described in Sect. 3, followed by CSMR and the
DLNN. In particular, nnpz returns the best results for the stellar
masses and SFRs for the EWS, reducing the outlier fraction from
the ∼ 28% of the paired labels approach to the (still high) ∼ 20–
30% in the mixed labels one, and NMADs down to 0.61 from
0.67.

nnpz is also the best method for recovering the SFMS, as
shown in Fig. 8. In the T.lab Deep - Wide case, all the methods
get close to the true values, with nnpz being the closest. In fact,
even in the worst case where Wide features and labels are em-
ployed in training, nnpz results are better than the ones obtained
with the other methods, with a close to correct recovery of the
slope and fraction of passive galaxies, despite a higher scatter
(σ = 0.42 instead of σ = 0.30) and a very small parallel dis-
placement of the relation due to an overall overestimation of the
SFRs.

The whole EDF will not be finalized until the end of the mis-
sion. The EWS results will be largely inferred from the auxiliary
fields. These results show that this will not significantly affect
the EWS scientific outcomes, as the performance of the auxiliary
fields at 16 or 25 ROS is only slightly (a few percentage points)
worse than the ones with the full EDF photometry available.

We find photo-z metrics slightly outside the mission require-
ments (σz < 0.05, fout < 10%) As reported in Sec 3.6, the met-
rics reported here are the ones measured on point predictions,
while the requirements in Euclid Collaboration: Desprez et al.
(2020) depend on the PDZ. Moreover, the calibration fields used
here have recovered labels from applying Phosphoros to the 9
bands described in Sec. 2, while the real calibration fields will
benefit from more multiwavelength observations. The net effect
will be more reliable labels for training and, thus, improved met-
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Fig. 9. Stellar masses (top panel) and SFRs (bottom panel), color coded
with the difference between the true and predicted redshifts, for the
nnpz results in the EWS trained with wide features (the upper-right
plots in Figs. 6–7). Similar results are obtained for all the other methods
considered. The black line is the 1:1 relation. Shaded area is the re-
gion beyond which a prediction is an outlier (0.4 dex for stellar masses,
0.8 dex for SFRs, see Sect. 3.6). Contours are the area containing 98%,
86%, 39% (corresponding to the 3σ, 2σ and 1σ levels for a 2D his-
togram) and 20% of the sample. The zpred − ztrue are measured as the
median of the values falling in each true vs. predicted bin. It is clearly
visible how the wrong photo-z attribution generates the main bulk of
catastrophic outliers. However, the distribution scatter along the 1:1 re-
lation – i.e., the NMAD – is mainly due to the inherent difficulties of
the methods in assigning the correct PPs given the set of input features
independently from the inferred photo-z. This is particularly true for
SFRs. This plot also illustrates how penalizing a 0.3 dex definition for
catastrophic outliers would be with respect with the ones chosen for
this work, which actually follows better the distribution of true and pre-
dicted PPs.

rics. While our findings lie just outside the mission requirements
for photo-z, we can likely assume that real ones will meet them.

4.4.3. A COSMOS-like reference sample

The photometric and color gradient calibration in Euclid will
be performed observing six of the most observed fields in the
sky (the so-called Euclid auxiliary fields; see Sect. 6.2 in Euclid

Collaboration: Scaramella et al. 2022, for further details). The
COSMOS field (Scoville et al. 2007) will be one of the first to
be observed, and the widest, covering ∼ 2 deg2.

When applying the same expected depth cuts of the Eu-
clid auxiliary fields to the COSMOS2020 catalog (Weaver et al.
2022), we are left with ∼ 230 k galaxies. As such, we try to
quantify if and how much the performance degrades with such
a reduced number of training galaxies. Therefore, we run all the
previously reported tests with this smaller sample of ∼ 230 k
galaxies for all the reference fields with the mixed labels ap-
proach and test on the EWS. This corresponds to a ∼ 50% cut to
the training samples, though, as previously reported (Sect. 4.4),
this does not automatically translate into a catastrophic reduc-
tion in performance metrics. We observe a reduction in NMAD
and fout between less than 1% and 2%–3% indeed, a sign that
a ∼ 230 k COSMOS-like reference sample is enough to reach
close to the saturation limit for performance metrics given the
specifics of the surveys.

4.4.4. Removing the u band in the target sample

The final design (and timing) for the EWS are still under redef-
inition with respect to what was reported in Euclid Collabora-
tion: Scaramella et al. (2022). However, we already know that
for DR1 we will have different observations in the northern and
southern sky, with the latter lacking a u band filter in the com-
plementary ground-based observations.

Therefore, we perform another test to quantify the perfor-
mance degradation once we remove the u filter from the target
sample. As reported in Appendix A, except for the u − g color,
which is the second most important one, the u band is typically
absent from the first ∼ 30 features in terms of importance and
usually appears with less than 0.5% importance. As such, we ob-
serve a small reduction in the metrics performance, of the order
of ∼ 3%, for all the methods and fields considered.

4.5. Results for the Euclid Deep Fields

For the EDF, Euclid will observe 53 deg2 with at least 40 ROS,
pushing the expected magnitude limits two magnitudes deeper
in all the bands. Moreover, the EDF will benefit from two addi-
tional bands at 3.6 µm and 4.5 µm. This will not mean just deeper
data but also more robust photometry with smaller uncertainties,
translating into a more reliable estimation of photometric red-
shifts and physical parameters, especially stellar masses.

To quantify how more reliable the EDF will be with respect
to the EWS, we perform the same tests in Sect. 4.4 on a set of
training (reference) and test (target) samples coming both from
the mambo simulated EDF, with 40 ROS, the minimum expected
for the Deep fields (see Sect. 2 for further details). It is useful to
point out that these deeper data push significantly toward higher-
z, lower stellar masses, and lower SFRs. As shown in Fig. 2, the
number of z > 4 galaxies increases from a few 103 to 104 (in
the simulated 3.14 deg2 of the lightcone), one order of mag-
nitude higher. A similar increase is observed for galaxies with
log10(M⋆/M⊙) < 8, log10 (SFR/M⊙ yr−1) < 0. Correctly pre-
dicting those values will become increasingly difficult as they
become more distant and less massive or star-forming, as a con-
sequence of their inherently lower S/N and the shifting of in-
formative wavelengths out of the region sampled by Euclid. As
such, those will hamper the naturally expected metrics improve-
ment for Wide-alike sources observed at Deep uncertainty level.
For the sake of comparison, in Table 7 we also report the cor-

Article number, page 17 of 26



A&A proofs: manuscript no. aanda

0 1 2 3 4 5 6

ztrue

0

1

2

3

4

5

6

z

CSMR

σNMAD : 0.047

fout : 15.7%

bias : −0.04

7 8 9 10 11 12 13

log10(M true
? /M�)

7

8

9

10

11

12

13

lo
g 1

0
(M

?
/
M
�

)

0.160

6.4%

−0.06

−4 −2 0 2 4

log10 (SFRtrue/M� yr−1)

−4

−2

0

2

4

lo
g 1

0
(S

F
R
/
M
�

yr
−

1
)

0.731

28.6%

+0.11

7 8 9 10 11 12 13

log10(M?/M�)

−4

−2

0

2

4

lo
g 1

0
(S

F
R
/
M
�

yr
−

1
)

True

m = 1.30

σ = 0.30

fp = 3%

Pred.

m = 1.25

σ = 0.44

fp = 5%

Pred.

m = 1.25

σ = 0.44

fp = 5%

0 1 2 3 4 5 6

ztrue

CCR

0.035

11.4%

−0.03

7 8 9 10 11 12 13

log10(M true
? /M�)

0.159

7.1%

−0.05

−2 0 2 4

log10 (SFRtrue/M� yr−1)

0.709

27.1%

+0.06

7 8 9 10 11 12 13

log10(M?/M�)

Pred.

m = 1.34

σ = 0.38

fp = 5%

Pred.

m = 1.34

σ = 0.38

fp = 5%

0 1 2 3 4 5 6

ztrue

DLNN

0.049

14.3%

−0.02

7 8 9 10 11 12 13

log10(M true
? /M�)

0.161

6.6%

−0.08

−2 0 2 4

log10 (SFRtrue/M� yr−1)

0.712

28.4%

+0.16

7 8 9 10 11 12 13

log10(M?/M�)

Pred.

m = 1.34

σ = 0.39

fp = 5%

Pred.

m = 1.34

σ = 0.39

fp = 5%

0 1 2 3 4 5 6

ztrue

nnpz

0.040

11.2%

−0.03

7 8 9 10 11 12 13

log10(M true
? /M�)

0.165

7.6%

−0.05

−2 0 2 4

log10 (SFRtrue/M� yr−1)

0.635

25.5%

+0.25

7 8 9 10 11 12 13

log10(M?/M�)

Pred.

m = 1.05

σ = 0.42

fp = 4%

Pred.

m = 1.05

σ = 0.42

fp = 4%

Fig. 10. Results for the EDF. Each column represents the results for the methods described in Sect. 3. The first three rows are the labels, with the
true value plotted against the predicted one. The fourth column is the SFMS, with true values in red (dashed) and predicted ones in blue (solid).
The reported metrics are the NMAD (purple), outlier fraction fout (blue), the bias (green), and for the SFMS the slope (α), the scatter (σ) and
fraction of passive galaxies ( fp), all defined in Sect. 3.6.

Table 7. Metrics for the EDF, with the same EWS photometric cuts to the test galaxies.

CSMR CCR DLNN nnpz
NMAD fout bias NMAD fout bias NMAD fout bias NMAD fout bias

z 0.02 1.8% −0.03 0.02 0.9% −0.03 0.03 3.2% 0.00 0.02 0.9% −0.02
M⋆ 0.12 2.5% −0.10 0.12 2.5% −0.09 0.12 4.7% 0.01 0.13 2.2% −0.06
SFR 0.60 23.4% 0.13 0.61 22.1% 0.13 0.63 25.4% 0.22 0.63 22.5% 0.13

Notes. M⋆ refers to log10(M⋆/M⊙), SFR to log10 (SFR/M⊙ yr−1).
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Fig. 11. Results for the recovered SFMS in the EDF, in four different redshift bins. Test values are in red (dashed) and predicted ones in blue
(solid). The reported metrics are defined in Sect.3.6.

responding metrics obtained by applying the same photometric
cuts from the EWS to the EDF test galaxies (see Sect. 2 for fur-
ther details).

The results are reported in Fig. 10. It is immediately visible
how the EDF goes farther in distance (contours extending sig-
nificantly at z > 4) and at lower masses and SFRs. The photo-zs
NMAD values are comparable, though lower (0.04–0.05) than
the best ones reached for the EWS (0.05–0.06). The same is true
for outliers, with a reduction of 1%–3% despite the presence of
a cloud of low-z galaxies spread over 1.5 < zphot < 5. Those are
fainter, low-mass galaxies with log10(M⋆/M⊙) < 8 which were
marginally detected in the EWS but are one order of magnitude
more present in the EDF. If we apply the Wide cuts to the Deep
test galaxies, we observe a dramatic improvement in the metrics,
as the NMAD for photo-z falls to ∼ 0.02–0.04 with only ∼ 1%
of outliers for both nnpz and CCR.

A significant improvement is observed also for the stellar
masses, even without parceling out the fainter galaxies from the
Wide-alike, as for the photo-z. This is principally a consequence
of the addition of the two IRAC filters and, secondly, of the im-
proved photometry. All the codes show a net improvement for
NMADs, outlier fractions, and biases, even for the full set of test
galaxies (down to NMADs of ∼ 0.16 and fout ∼ 13%. If account-
ing only for the Wide cut, the net improvement gets important,
falling to NMAD ∼ 0.12 and fout ∼ 2.5%.

SFRs show a different behavior for the full set of test data.
This is due to a particular set of outliers, low star-forming galax-
ies [log10 (SFR/M⊙ yr−1) < −1] that are mistakenly predicted
as higher log10 (SFR/M⊙ yr−1) > 0 due to a wrong photo-z at-
tribution that impacts the SFRs, visible as the strip of ztrue ∼ 1
galaxies in the top panels of Fig. 10. When applying the EWS
photometric cuts, the NMADs are lower than those found in the
mixed labels Deep - Wide case. The same applies for fout and the
bias.

There is a notable exception, as nnpz is able to reduce the
impact of these outliers, to the point where even the full set of
test data gives back comparable results to the mixed labels Deep
- Wide case and better for the EWS-cut ones. This is both a con-
sequence of a better photo-z estimation and an overall better abil-
ity of nnpz in recovering the SFRs given the input set of features,
as also observed in Sect. 4.4.

Overall, the SFMS recovery is optimal in the EDF. Of all the
considered methods, CCR and nnpz are the ones returning the
best overall results, as the former optimally recovers photo-zs
and stellar masses, while the latter recovers the SFRs the best.
If we perform a binning in redshift, we observe how the best

results are obtained when the stellar masses and SFRs are opti-
mally recovered (as the true redshift is) – thus at 0.8 < z < 1.5
– and worse ones at higher-z, where lots of low-z objects are
mistakenly placed at high-z with greatly enhanced stellar masses
(and to a lesser extent the SFRs), thus bending the whole rela-
tion by a significant amount (see rightmost plot in Fig. 11). At
lower-z, we notice a symmetric issue, with lots of low-mass and
log10 (SFR/M⊙ yr−1) ∼ 0 galaxies removed from the binning as
the models place those at z > 2, and thus the predicted relation
differs significantly from the true one.

There are reasons for optimism. First of all, we stress that
these results should be considered lower-limit performance.
Forty ROS are the minimum number expected for the EDF, with
the highest going up to 53. We expect that increasing the num-
ber of ROS will produce better performance, at least slightly (the
order of a few percentage points), even though it is not straight-
forward to assess as mentioned before. In fact, the improvement
in metrics seems to saturate after a certain number of ROS. We
can roughly quantify, by extrapolating from the different realiza-
tions of the metrics for the four different number of ROS used in
this work, a reduction of a few percentage points in NMAD and
fout with 53 ROS, both with template-fitting and ML methods.

All those results are limited to the UNIONS+Euclid +two
IRAC filters, which do not extend over the 4.5 µm observed-
frame, with a gap between the HE band and IRAC. The more the
galaxies move to higher redshift, the more these particular sets
of features will probe the source UV-rest frame, which is less
sensible to stellar masses and more to SFRs. However, the EDF,
given their extension and importance in galaxy formation and
evolution, will benefit from a wealth of ancillary and upcoming
multiwavelength data from UV to radio. For example, the EDF-
South has been observed with the MeerKAT program MKT-
23041 (P.I. Prandoni); the EDF-N is currently proposed to be
observed with the LOFAR2.0 Ultra-Deep Observation (LUDO),
whose 2 µJy beam−1 at 150 MHz would translate into one of the
deepest radio observations ever, and it has already been observed
at 144 MHz with a central rms of 32 µJy beam−1 (Bondi et al.
2024); as illustrated, all the EDF has been covered with Spitzer
at 3.6 and 4.5 µm (Euclid Collaboration: Moneti et al. 2022);
deep observations in U band with CFHT (Euclid Collaboration:
Zalesky et al. 2024) are currently ongoing; the same for deep op-
tical observations with Hyper Suprime Cam (Euclid Collabora-
tion: McPartland et al. 2024); K band observations with VISTA
of the EDF-S have been taken as part of the EDFS-Ks program,
down to a limiting magnitude of 23.5 (PI Nonino), covering the
gap between the HE band and IRAC. Extending the feature space
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with mid-IR to submillimeter and radio fluxes will undoubtedly
produce better, more reliable physical parameters than those re-
ported in this work.

5. Summary

Euclid and the forthcoming large-scale surveys – Rubin/LSST,
Roman) – will benefit from unprecedentedly sampled areas of
the sky, with an estimated number of observed sources up to the
order of billions. At those scales, automated, accurate, and rapid
methods to assess photometric redshifts and physical properties
from the observables must be developed and tested.

In this study, we evaluated the performance of Phosphoros,
a template-fitting algorithm, with four ML methods for the re-
covery of photo-zs, stellar masses, star formation rates, and
the SFMS: two CatBoost-based methods rooted in GBDT, a
single-pass regressor (CSMR) and a chained regressor ensem-
ble (CCR); a simple and plain DLNN; and nnpz, an enhanced
nearest-neighbors algorithm capable of handling the full param-
eter posteriors. As it is typical in ML applications, the quality
of the recovered labels is inevitably limited by the number and
quality of input information entering the model. Noisy features
hamper a plain association between those and the labels, degrad-
ing the final performance.

In order to realistically quantify how reliable Euclid photo-
zs and physical parameters will be, we simulated observations of
both the EWS and the EDF with ground-based ugriz and Euclid
filters (plus two IRAC channels for the latter). The simulations
are obtained within the mambo workflow, an empirical method
to extract galaxies’ physical information from simulated light-
cones. We also simulated an intermediate number of ROS mim-
icking what is expected from the Euclid auxiliary fields, obser-
vations of well-known fields in the sky where a wealth of ancil-
lary multiwavelength data is available for optimal photometric
and color calibration. Finally, we run all the methods on an un-
perturbed version of the mocks, that is, without any photometric
noise added and trained on the labels true values, serving as an
unrealistic best-case scenario for the performance given that par-
ticular set of features (magnitudes and pairwise differences, the
colors).

We found how, in the unperturbed catalog, that set of 45 fea-
tures is more than enough for the models to almost perfectly re-
cover photometric redshifts and stellar masses (NMAD < 0.03,
fout < 0.3%). Things are more complicated for star formation
rates, with NMADs never falling below 0.16. This is expected,
as the SFR correlates weakly with the input labels that sam-
ple the 0.3–1.8 µm observed-frame wavelength range but cor-
relates strongly with the 8–1000 µm integrated luminosity (and
monochromatic flux in the UV at 2800 Å rest-frame).

When feeding the mock photometry to Phosphoros ei-
ther for the EWS or the EDF, we observe a typical pat-
tern where the vast majority of outliers are generated by
low-z galaxies (z < 1) misplaced at 1.5 < z < 5, with
predicted higher values of log10(M⋆/M⊙) > 10 instead of
∼ 8.5, and log10 (SFR/M⊙ yr−1) > 0.5 instead of −2 <
log10 (SFR/M⊙ yr−1) < −1. The SFMS is poorly recovered in
the EWS, while better though suboptimal results are observed
for the EDF, suggesting the need for better-suited, ad hoc priors
to adopt for template-fitting.

As we want to evaluate the ML methods with what Euclid
will realistically yield, their EWS and EDF performance are
measured training on Phosphoros recovered labels and test-
ing on true values. We also checked the metrics improvement
when training on true values – inaccessible in a real scenario,

as the ground truth is unknown. Moreover, since we simulated
four different versions of the mock catalogs (EWS, EDF, and
two auxilliary fields named C16 and C25 from the number of
expected ROS), for the EWS we test how a model trained on
features and labels coming from deeper photometry fare on the
test EWS ground truth values.

We found different results by employing two approaches:
in the paired labels approach, we are training the models on a
rightly coupled set of features and labels coming respectively
from the four catalogs and testing on the EWS ground truth.
With this approach, we notice a well-known pattern in ML ap-
plications: as there is a mismatch between the training and test
features (in terms of noise), it is not guaranteed that a deeper set
of features (and labels) would lead to better performance. This is
particularly true for stellar masses, as the NMADs and fraction
of outliers do not improve significantly (or become even worse,
see Table C.1) from training and testing on the EWS to training
on deeper photometries and testing on the EWS, with the notable
exception of EDF training as it benefits from the addition of two
IRAC filters.

Better performance is obtained if we employ a mixed labels
approach. In this case, the labels are still the Phosphoros results
on photometry coming from the four catalogs, but the training
features are always the ones from the EWS. Despite the reduc-
tion in the training sample size (as only EWS detected sources
are employed in training) from a few million to ∼ 500 k sources,
this approach avoids the data mismatch issue, as the features al-
ways come from the EWS simulated catalog. More importantly,
it acts as a prior on the features-labels association, as the models
are able to better distinguish between similar cases near degener-
ate regions of the feature space, for instance, the ones that gener-
ate the outlier cloud of close and less massive galaxies mistaken
for far-away and more massive ones.

In fact, those outliers are significantly reduced (or disap-
pear altogether) with this approach. We observed a significant
improvement in the performance metrics, matching or even
surpassing those obtained with Phosphoros: for nnpz, zphot
NMAD decreases from 0.063 to 0.055, and fout is reduced from
22% to 15% passing from Wide training labels to Deep train-
ing labels, not so distant from the ideal scenario when the true
labels are known (0.047 and 15% respectively). The same goes
for stellar masses (for the CCR, NMAD falls from 0.24 to 0.19,
outliers from 28% to 11%, while they are 0.14 and 10% in the
ideal scenario) and star formation rates (nnpz reaches NMADs
of 0.62 starting from 0.71, and outliers of 23% from 30%, lower
limits of 0.43 and 11%). The same is true for the SFMS.

The full EDF would not be finalized until February 2031.
In the meantime, the main scientific results will rely on train-
ing samples obtained from multiple ROS of the auxiliary fields.
We observed how the metrics did not degrade by more than a
few percentage points between the C16 and C25 training sam-
ples (though here we only use the 9 previously cited bands to
infer the results, thus the real ones will benefit from better esti-
mated labels) and the EDF one. Moreover, we also checked how
a COSMOS-like reference sample does not significantly impact
the model performance, as a reduction to ∼ 230 k galaxies in the
training sample is not enough to degrade those by more than 1–
2%. As a final test, we removed the u band filter from the test
sample, as we already know that, for DR1, those observations of
the southern sky will not yet be available. However, that should
not compromise the scientific outcome, as we only notice a small
performance degradation, on the order of ∼ 3%.

As expected, the EDF results are the ones with the best re-
sults, where both labels and features come from the deepest
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available observations (and Phosphoros run on). The parameter
recovery is optimal, especially the SFMS, once considered how
the EDF extends the object detection to significantly higher red-
shifts (one order of magnitude more z > 4 galaxies) and lower
stellar masses and SFRs, with one order of magnitude increase
for log10(M⋆/M⊙) < 8 and log10 (SFR/M⊙ yr−1) < 0.

There are some caveats to keep in mind to properly gauge all
those results in the right framework. In our simulated catalogs,
we are only considering galaxies, thus neglecting the potential
impact of misclassified stars, AGN and QSOs, local contami-
nants, and photometric defects. These will undoubtedly cause a
degradation in the considered metrics, at least by a few percent,
even though a precise quantitative estimation is nontrivial and
outside the scope of this work. The simulated EWS and EDF are
built assuming BC03 models; thus, whatever discrepancy might
come from what an actual galaxy emission is (or the chosen
IMF) will impact the overall performance, again, in a nontrivial
way. Also, we are evaluating performance on the EWS and EDF
simulated catalogs with nine filters, the ground-based ugriz and
four Euclid ones. This is the bare minimum that will be released
by Euclid, but we know that, especially for the ∼ 53 deg2 of the
EDF given their importance in the galaxy formation and evolu-
tion context, multiple ancillary or forthcoming multiwavelength
data will be available to complement the Euclid releases.

As such, we can consider our results as a kind of best-case
– as we are not accounting for defects in the catalog, the con-
tamination by AGNs, and the fact that galaxy emission could
differ from BC03 models – of the worst-case scenario, as adding
more filters, especially in the mid-IR to far-IR, will undeniably
improve the performance. These results highlight Euclid ’s vast
potential in assessing galaxy formation and evolution and could
serve as a benchmark for all the upcoming large-area surveys in
the next decade.
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Appendix A: Feature importances

In this appendix, we present the feature importance for models
evaluated with CSMR. In standard ML terminology, feature im-
portance refers to the quantification of the impact each feature
has on the model’s predictions. This is measured by considering
the number of times a feature is used for splits across all trees in
the ensemble and the corresponding improvement in the model’s
performance. The higher the number of times a feature is used
and the greater the improvement, the more important the fea-
ture is considered, giving insights into the relative significance
of different features in the data, for example, if and what certain
filter or color is more important in correctly assessing a galaxy
redshift, stellar mass, or star formation rate.

These findings are reported in Fig. A.1, where we show
the feature importance for four different models, each one
specifically trained to recover a single label, whether is zphot,
log10(M⋆/M⊙), or log10 (SFR/M⊙ yr−1), and a model trained on
a set of pooled labels. In each case, to remove altogether every
source of noise skewing the results, we are performing the train-
ing on the unperturbed catalog (see Sect. 4.3 for further details).

As expected, considering that most of the training galaxies
are at 0 < z < 1.5, the HE band is by far the most important one
in determining a galaxy’s stellar mass (more than half impor-
tance); similarly, for photometric redshifts, the colors hold the
most importance, more than single filter observations. Things
are more mixed for star formation rates, as with the exception of
HE (∼ 25%), all the other features hold similar importance (be-
tween 3% and 6%). When considering all the labels together, we
observe a mix between the previous results, with HE being still
the most considered feature at ∼ 25% importance, followed by
the colors.

Appendix B: Phosphoros results for the calibration
fields

In Sect. 4.2, we reported the template-fitting results with
Phosphoros to the EWS and EDF. In Fig. B.1, we report the
corresponding Phosphoros run to the auxiliary fields at 16 and
25 ROS each. As expected, the performance is intermediate be-
tween the EDF and the EWS, though closer to the former. Any-
way, it should always be kept in mind that the deeper the obser-
vations, the more distant and/or less massive galaxies will enter
the catalogs, whose photometric redshifts and physical param-
eters are harder to properly assess, therefore reducing the ex-
pected metrics improvement.

Appendix C: Results with the paired labels
approach

In Tabs. C.1–C.2, we report the results for the EWS with the
paired labels approach. As described in Sect. 4.4, with this ap-
proach, we train each model with a set of features and labels
obtained from the Phosphoros run to the corresponding depth
(e.g., C16 features, labels from Phosphoros run to the C16 pho-
tometry), and test on Wide features and ground truth values ob-
tained from the simulation.
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Fig. A.1. Pie chart highlighting the most important features in recover-
ing the pooled labels with CSMR. The feature importance weights (in
percentage) how much a single feature influences the final prediction.
In the Pooled Labels and log10 SFR only cases, 45 features enter the
model (magnitudes and all possible color permutations), only five have
an importance over 5%.
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Fig. B.1. Phosphoros results on two simulated Euclid auxiliary fields, with 16 (C16, bottom panel) and 25 (C25, bottom panel) ROS each. The
ground truth is plotted against the Phosphoros recovered parameters. The black line is the 1:1 relation; the shaded area is the region beyond which
a prediction is an outlier. In every plot, the four contours are the area containing 98%, 86%, 39% (corresponding to the 3σ, 2σ and 1σ levels for
a 2D histogram) and 20% of the sample. For SFMS the true distribution is reported in red (dashed), the predicted one in blue (solid). The lines
are the ODR best-fit to the (passive-removed) distribution. The reported metrics are NMAD (purple), the outlier fraction fout (blue) and the bias
(green) for the photometric redshifts and physical parameters, as well as the slope m, scatter σ and fraction of passive galaxies fp for the SFMS,
all defined in Sect. 3.6.

Table C.1. Metrics for the EWS, with the paired labels approach.

CSMR CCR DLNN nnpz
NMAD fout bias NMAD fout bias NMAD fout bias NMAD fout bias

C16
z 0.07 24% −0.03 0.06 20% −0.03 0.07 22% −0.03 0.06 18% −0.04
M⋆ 0.25 20% −0.10 0.24 20% −0.08 0.25 21% −0.09 0.23 17% −0.01
SFR 0.82 34% −0.05 0.80 33% −0.04 0.83 35% −0.11 0.70 28% 0.16

C25
z 0.07 24% −0.03 0.06 20% −0.03 0.07 25% −0.03 0.06 18% −0.04
M⋆ 0.25 21% −0.11 0.24 21% −0.08 0.25 21% −0.09 0.22 17% −0.05
SFR 0.82 34% −0.08 0.80 33% −0.07 0.82 34% 0.03 0.69 28% 0.14

EDF
z 0.06 21% −0.01 0.05 17% −0.01 0.07 22% −0.03 0.05 16% −0.02
M⋆ 0.21 22% −0.03 0.19 20% −0.05 0.22 23% −0.08 0.19 17% 0.01
SFR 0.79 30% −0.06 0.75 28% −0.09 0.81 31% −0.12 0.65 25% −0.09

Notes. The leftmost column refers to the training (reference) sample, i.e., C25 means a model trained with features and labels from the C25
simulated auxiliary field. All the models are then tested on features from the EWS simulation and ground truth labels. The reported metrics are
the ones presented in Sect. 3.6. We are not reporting the paired labels EWS row as it is the same as the mixed labels T.lab. Wide-Wide case in
Figs. 5–7 and Table 5. M⋆ refers to log10(M⋆/M⊙), SFR to log10 (SFR/M⊙ yr−1).

Table C.2. Metrics for the recovered SFMS in the EWS, with the paired labels approach.

CSMR CCR DLNN nnpz
m σ fp m σ fp m σ fp m σ fp

C16 1.29 0.41 0.14 1.32 0.39 0.14 1.35 0.39 0.16 1.27 0.39 0.08
C25 1.28 0.40 0.14 1.28 0.40 0.14 1.32 0.42 0.13 1.28 0.38 0.08
EDF 1.27 0.39 0.14 1.23 0.39 0.14 1.31 0.42 0.17 1.23 0.36 0.14

Notes. The reported metrics are the one presented in Sect. 3.6.
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