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Abstract

General Relativity is the most successful theory of gravity developed so far. Among

its many successes lie just as many open questions. This thesis is concerned

primarily with the description of cosmological dynamical systems within General

Relativity. The Hawking-Penrose theorems have shown General Relativity contains,

quite generically, singular solutions for which it is not possible to uniquely and

deterministically evolve dynamical systems describing cosmological solutions of

General Relativity through these singular points. Possibly the most well known

example of a such a singular point in the spacetime manifold is the Big Bang.

Most conventional approaches to resolving this singularity impose some kind of

quantization of the gravitational field, as one expects quantum gravity effects to

be relevant under such conditions. In this work, we argue that if one takes the

relationalist point of view, initially developed by Barbour and Bertotti, in which

the measurable dynamical variables are dimensionless ratios, it is possible to find

a description of cosmological dynamical systems defined on a contact manifold

rather than the typical symplectic manifold of geometric classical mechanics. The

framework of contact-reduction is applied to FLRW, Bianchi I and Bianchi IX

cosmologies. We show that in the relational, shape space description there exist

unique solutions to the equations of motion describing the cosmological dynamical

system that pass smoothly through the Big Bang singularity. We also present

work on addressing fundamental issues with several classes of cosmological inflation

models, with a particular emphasis on the Quartic Hilltop model. These models

are typically investigated under assumptions that make them physically unviable.

We show that relaxing these assumptions and accounting for how they exit inflation

significantly alters their predictions of the spectral index and tensor-to-scalar ratio.
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Chapter 1

Introduction

General Relativity is a widely successful mathematical description of the fundamen-

tal structure that determines the evolutionary dynamics of the universe on large

scales. This is underpinned by a differential geometry framework which treats spatial

and temporal coordinates on equal footing, as part of a larger space - a manifold

structure which we specifically refer to as spacetime - that generally has a notion of

curvature. GR provides the setting for cosmology, the study of the universes large

scale causal structure and evolution. This necessarily involves important ideas from

other areas such as particle physics, thermodynamics and astrophysics to name a

few, and on the observational side a great deal of careful engineering, data gathering

and statistics.

General Relativity is one of the most heavily and widely tested theories in physics

and has enjoyed many successes since Einstein’s original works [8]. Despite GR’s

success, it still leaves a plethora of open problems in cosmology. This thesis will

address certain aspects of two open problems in cosmology, in particular it will

be concerned with the behaviour of cosmological dynamical systems within the

framework of General Relativity.

The first of these problems is one that really follows from some of the freedom

that GR allows us with regards to selecting what kind of matter we wish to populate

our model of the universes cosmology with. Without external guidance from areas
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like particle physics, GR does not really tell us a priori what type of matter fields

we should include and the exact nature of their interactions. General Relativity

fundamentally is a dynamical theory of the spacetime metric, but it allows us to add

other fields on the manifold. This is somewhat of a double edged sword, this freedom

in choice has allowed for promising approaches to tackling the problem of inflation

- the fact that the early universe appears to have undergone a period of very rapid

expansion - as evidenced by measurements of the Cosmic Microwave Background

(CMB), which we will discuss in this work. This rapid expansion of spacetime

doesn’t occur in vanilla GR, but it can be produced by the addition of an appropriate

matter field. However GR itself doesn’t put strong enough constraints on precisely

what the potential of this field is, or if it is even one field as it is also possible to

produce inflationary dynamics with multiple fields. Different choices of inflationary

potentials and mechanisms yield different observational predictions, particularly

ones related to the CMB. As CMB measurements have gotten more precise, it

has been possible to iteratively constrain the space of parameters whose measured

value depends on the precise choice of inflationary mechanism. However, there are

still a wide range of viable models whose analytical predictions are consistent with

current observations. While current data from the Planck collaboration hasn’t been

restrictive enough to single out a particular inflationary mode, simple models like

ϕ2 inflation have been strongly ruled out since the 2015 data release.

One class of single field inflation models that is still favourable with respect to

the Planck satellite data is the class of Hilltop models. These are a class of small

field inflation models, where the accelerated expansion of the early universe is driven

by a scalar field, with inflation taking place at ϕ≪ mpl. A particular iteration of the

Hilltop models, known as Quartic Hilltop inflation is able to produce predictions of

the spectral index ns and tensor-to-scalar ratio r which are consistent with current

Planck data. Quartic Hilltop, and indeed many other inflationary potentials suffer

from being unbounded from below. This feature of the inflationary potential makes it

an unsuitable candidate to explain physics near the end of inflation and quantization
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of such a classical field would lead to arbitrarily low every states with no stable

vacuum. In this thesis we highlight and address this problem, demonstrating how

the Quartic Hilltop Potential can be regularized before applying the regularization

techniques to other potentials which suffer the same issue. It is argued that this

regularization must be accounted for and that choice of how the model exits inflation

can have a significant effect on cosmological observables and the models consistency

with data collected from the Planck survey.

The second problem addressed in this thesis relates to the fundamental math-

ematical structures that generate the evolution of autonomous dynamical systems

on the spacetime manifold. It is well known, thanks to Hawking and Penrose [9],

that under rather generic conditions GR contains points at which the spacetime

manifold becomes singular and the Einstein Field Equations describing the evolution

of the metric tensor degrees of freedom become indeterminate. Perhaps the most

well known example of this is what is referred to as the Big Bang Singularity.

Cosmological solutions to GR are parametrised in terms of a scale factor a(t). The

scale factor is a necessary component to explain the overwhelming evidence that

the universe is expanding. The late universe appears to homogeneous and isotropic

which is reflected in solutions where the scale factor depends only on the temporal

coordinate. The scale factor determines the geometry of spatial hypersurfaces of the

spacetime manifold. Understanding the term structure and dynamics of the scale

factor is essential for understanding the evolution of the universes casual structure.

In cosmological solutions that contain a Big Bang Singularity, we tend to find quite

generically that a(t) → 0 at the Big Bang and that the equations of motion for

a(t) break down at this point. In this sense the dynamical system formed from the

metric and matter degrees of freedom cannot be smoothly continued through the

Big Bang.

There have been a number of approaches to this problem throughout the years,

chief among those is to impose a quantization of the gravitational field. Immediately

after the Big Bang the universe is in an incredibly hot and dense state at a very
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high energy scale, and so it is an intuitive approach to consider if a quantized

theory of gravity may solve the issue of singularities. Direct attempts to quantize

the Einstein-Hilbert action of General Relativity quickly run into problems as it

is perturbatively non-renormalizable, so quantizing it even in the low energy limit

as an effective field theory leads to a UV-incomplete theory [10, 11]. Although

there is currently no generally accepted quantum theory of gravity in the academic

community, two of the main candidates which constitute large areas of research are

String Theory and Loop Quantum Gravity [12–17]. It is possible within both the

String Theory and Loop Quantum Gravity frameworks to address the resolution of

spacetime singularities in cosmological solutions [18–23], but this obviously comes at

the cost of having to commit to a particular quantization and neither String Theory

nor Loop Quantum Gravity are yet to provide experimentally verifiable predictions,

at least at energy scales we can currently access.

In this work we consider a classical approach to the problem of resolving

spacetime singularities in General Relativity, specifically the Big Bang singularity

contained within the Bianchi class of cosmological solutions. The focus is on

developing a relational dynamics framework in which the dynamical system which

describes the metric and matter degrees of freedom, as well as the fundamental

mathematical structures which generate time evolution of this autonomous system

remain well defined at the Big Bang. This is achieved without altering the classical

physics predicted by General Relativity or without imposing exotic forms of matter,

as opposed to some other classical approaches to resolving GR singularities [24–26].

In the classical approach to resolving the singularity discussed in this thesis,

recent work on Dynamical Similarities - scaling symmetries of the action - is used to

remove the scale factor from cosmological solutions of GR. This reflects the fact that

the scale factor is not a physical observable, one can only measure relative changes

in scale with respect to a reference. Yet classical GR and quantum approaches like

String Theory and Loop Quantum Cosmology treat the scale factor as physical. In

this work it is argued that the scale factor represents redundant structure imposed
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on the dynamical system and that it can be removed by exploiting the Dynamical

Similarity it is associated with. Quotienting out this symmetry leaves behind a

dynamical system defined on a contact manifold, rather than the usual symplectic

manifold that we are used to in most differential geometry approaches Hamiltonian

and Lagrangian mechanics. After having defined the contact system we will show

that there exists an appropriate change of coordinates to Shape Space, where we

show that there exist unique solutions that pass smoothly through the Big Bang

singularity.

The sections and content of this thesis are laid out as follows. Section 2.1

provides a review of familiar symplectic Lagrangian and Hamiltonian mechanics

and an introduction to contact manifolds and contact mechanics. A basic review

of General Relativity and cosmology is given, particularly from the perspective

of a Lagrangian field theory. Features of homogeneous and isotropic cosmological

solutions to the Einstein field equations are explored and an introduction to the basic

motivations and ideas of inflation are given. We also review current observational

evidence, particularly with reference to the Cosmic Microwave Background and it’s

power spectrum. The section ends with an overview of the Bianchi classification of

homogeneous spacetimes.

Sections 3 4 & 5 are based on original research by the author and David Sloan.

In section 3 we discuss conceptual issues with a favourable inflationary potential

candidate, the Quartic Hilltop model. It is argued that vacuum stabilising terms,

which have previously been ignored in the literature, must be accounted for in

the Quartic Hilltop model in order for it to be physically viable. Furthermore we

show that when accounted for, these stabilising terms can significantly affect the

predictions of the model and its consistency with observational data. In section

4 we extend this analysis to similar candidate models which suffer from the same

issues as Quartic Hilltop.
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In section 5 we develop a framework in which the dynamical systems describing

Bianchi IX, Bianchi I and FLRW cosmologies may smoothly and uniquely evolved

through the Big Bang singularity. Section 5 begins with a brief review of dynamical

similarities and presents some foundational results from the literature. A review of

the ADM formalism of General Relativity is given, closely following references cited

wherein. We then describe the process of symmetry reducing the ADM Hamiltonian

by its scaling symmetry associated with the volume/scale factor to form a dynamical

system defined on a contact manifold in section 5.5. In section 5.6 we show that in

shape space, the equations of motion describing the cosmological dynamical systems

have unique, smooth solutions passing through the Big Bang in the cases of FLRW,

Bianchi I and Quiescent Bianchi IX spacetimes. In section 5.7 we provide numerical

solutions to the equations of motion in a variety of examples and show explicitly

continuation of the dynamical system through the initial singularity. Throughout

this thesis we work in units for which 16πG = 1 where G is the Newtonian

gravitational constant and c = 1 unless stated otherwise.

1.0.1 Notation

Below we list some key notation used in this work. On index convention, Greek

indices will run over the entire set of local coordinates and will typically be used

to indicate a coordinate basis with basis vectors {∂µ}. Latin indices will run over

spatial coordinates and when indicated, will be used to denote a non-coordinate

basis, particularly in section 5. The (−,+,+,+) metric signature will always be

used.
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Symbol Description
Q Configuration space
qi Generalised coordinates of configuration space Q
q̇i Generalised velocities
pi Generalised conjugate momenta
L(qi, q̇i) Lagrangian function
S Action functional
J(qi, q̇i) Jacobi energy function
H(qi, p

i) Hamiltonian function
M Smooth differentiable manifold
TpM Tangent space of a point p in a manifold M
TM Tangent bundle of a manifold M
T ∗
pM Cotangent space of a point p in a manifold M
T ∗M Cotangent bundle of a manifold M
iv Interior product associated with a vector field v
XH Hamiltonian vector field associated with a Hamiltonian H
Lv Lie derivative along a vector field v
L Legendre transform
Wij Hessian matrix
η Contact form
∧ Exterior product
R Reeb vector field
LH Herglotz Lagrangian
gµν Components of the metric tensor
∇µ Covariant derivative
Γρ
µν Christoffel symbols of the Levi-Civita connection
Rρ

σµν Components of the Riemann tensor

Rµν Components of the Ricci tensor
R Ricci scalar
L Lagrangian density
Tµν Components of the stress-energy tensor
ξc Killing vector field indexed by label c
a Scale factor
ν Volume factor
H = ȧ/a Hubble parameter
H0 Hubble parameter at the present day
ρc Critical energy density
z Redshift

Table 1.1: Table of key notation
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Symbol Description
χp Particle horizon
χe Event horizon
εH First Hubble slow roll parameter
ηH Second Hubble slow roll parameter
N Number of e-folds of expansion
ε First potential slow roll parameter
η Second potential slow roll parameter (dis-

tinct from contact form η and used in
separate contexts)

ns Spectral index
r Tensor-to-scalar ratio
Cl CMB angular power spectrum at multipole

moment l
rs Sound horizon
Dθ angular diameter distance of sound horizon
θs Angular subtended by the sound horizon
mpl The reduced Planck mass
Nk Remaining e-folds of inflation when the

reference scale k exits the horizon
Tre Temperature of the universe at the end of

reheating
D Dynamical Similarity vector field
µL Lagrange one-form
Ni Components of the shift vector field
N Lapse function
γij Metric on spatial slices of the spacetime

manifold
πij Conjugate momenta of spatial metric γij
Kij Extrinsic curvature of spatial slices
Di Spatial covariant derivative
H ADM Hamiltonian constraint
D ADM Diffeomorphism constraint
ea Invariant basis vectors
ωa Invariant one form basis
Cc

ac Structure constants of a Lie algebra
Vs Shape potential
Hc - Contact Hamiltonian density
(α, β, γ) Shape space coordinates

Table 1.2: Continuation of table 1.1 of key notation
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Chapter 2

Background

2.1 Geometric Lagrangian and Hamiltonian Me-

chanics

2.1.1 Lagrangian and Hamiltonian Mechanics

In this section we will start by briefly recapping the standard Lagrangian and

Hamiltonian mechanics that readers should be familiar with, before formalising

these ideas in the context of differential geometry. The geometric formulation

of Lagrangian and Hamiltonian mechanics has the benefit of being a coordinate-

independent description of the evolution of dynamical systems, thus making it

naturally suited for tackling problems in General Relativity.

The Lagrangian formulation of dynamical systems comes from considering a

fundamental question. If the state of a physical system at some time t is described

by a point in some configuration space Q, characterised by a set of generalised

coordinates qi(t) labelled by and index i = 1, ..., n, knowing the initial and final

states q0(t0) and q1(t1), what path does the system take through Q over the time

interval [t0, t1] between the two endpoints. Given two endpoints q0 and q1 there

are of course many paths that can be drawn between them. The physical path γ

through the configuration space is the one actually traced out by a classical system.
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Thus the study of dynamical systems in classical mechanics has at it’s core, the

problem of finding this physical path. The guiding principle that determines the

physical path of a system is the Principle of Stationary Action . This states

that the critical paths of the action functional are the physical paths of the system.

The action of a dynamical system S is a functional of the Lagrangian function.

The Lagrangian function takes as it’s input the generalised coordinates qi(t) and

velocities q̇i(t). It may also be an explicit function of time, however in this section

we will assume it is not unless stated otherwise.. The Lagrangian L(qi, q̇i) is defined

in the first instance as the kinetic energy of the system minus it’s potential energy.

L(qi, q̇i) = K(qi, q̇i) − V (qi) (2.1)

The action functional is defined as the integral of the Lagrangian over the time

t ∈ [t0, t1].

S[L(qi, q̇i)] =

∫ t1

t0

L(qi, q̇i) dt (2.2)

Given fixed boundary conditions qi(t0) & qi(t1), we wish to find the stationary paths

of the action, which will be the physical path of a classical system whose Lagrangian

is L(qi, q̇i). In order to determine these paths we consider an infinitesimal variation

of the generalised coordinates and velocities to the first order qi(t) → qi(t) + δqi(t),

q̇i(t) → q̇i(t) + δq̇i(t). If qi(t) are the generalised coordinates taken by the physical

path of the system on the configuration space over time t, and q̇i(t) is the velocity

at time t, then the infinitesimal variation of the action must be zero with respect to

a arbitrary infinitesimal variations δqi(t) and δq̇i(t). The first order variation in the

action is

δS =

∫ t1

t0

δL(qi, q̇i) dt

=

∫ t1

t0

∂L

∂qi
δqi(t) +

∂L

∂q̇i
δq̇i(t) dt

(2.3)
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Consider the second term in equation 2.3, which may be integrated by parts.

I =

∫ t1

t0

∂L

∂q̇i
δq̇i(t) dt

=

[
∂L

∂q̇i
δqi(t)

]t1
t0

−
∫ t1

t0

d

dt

(
∂L

∂q̇i

)
δqi(t) dt

(2.4)

The boundary points of the path qi(t0), qi(t1) are taken to be fixed, and therefore

the infinitesimal variations are zero at the boundaries δqi(t0) = δqi(t1) = 0 and thus

the first term in the brackets of eq 2.4 is zero, and the first order infinitesimal action

variation becomes

δS = −
∫ t1

t0

[
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
δqi(t) dt (2.5)

This variation must be zero with respect to arbitrary infinitesimal variations of

the generalised coordinates, which is the case if and only if

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.6)

These are the Euler-Lagrange equations of motion, they are a set of n second-

order ordinary differential equations, one for each of the generalised coordinates

qi(t). The Lagrangian approach to classical mechanics is generally superior to

the Newtonian approach, as we need only determine a single scalar function, the

Lagrangian, which describes the dynamics of system and decide on 2n appropriate

boundary conditions as initial data for the solutions of our differential equations.

The Lagrangian approach is completely equivalent to Newtonian mechanics, and if

one considers the Lagrangian of a point particle of mass m in n dimensions acting

under a potential V (qi), for which the Lagrangian is

L(qi, q̇i) =
1

2
m
∑
i

q̇2i − V (qi) (2.7)
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we obtain the standard Newtonian equation of motion.

mq̈i = −∂V
∂qi

= Fi(qi) (2.8)

where Fi(qi) is the component in the i-direction of the force acting on the point

particle. For simple classical systems the Newtonian equations of motion may be

more convenient but for complicated systems, writing down Newtons second law for

each particle will quickly become intractable, where as the Lagrangian offers a more

sophisticated approach to analysing dynamical systems.

In particular, the Lagrangian framework makes it very apparent when the

dynamical systems possesses a conserved quantity. If the Lagrangian is obtained,

and is independent of a particular generalised coordinate, say qk(t), the coordinate

is called a cyclic coordinate and the Euler-Lagrange equation for qk will read

d

dt

(
∂L

∂q̇k

)
= 0 (2.9)

The quantity pi = ∂L/∂q̇i is known as the generalised momentum, as it is this

term that in the familiar contexts such as point particles, gives exactly the particle

momentum. Thus a cyclic coordinate has constant (generalised) momentum.

dpk

dt
= 0 (2.10)

So far we have considered only Lagrangians with no explicit time dependence.

It is a trivial exercise to show that relaxing this assumption does not change the

Euler-Lagrange equations. Consider the total time derivative of a Lagrangian with

explicit time dependence L(qi, q̇i, t).

dL

dt
=
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i +

∂L

∂t
(2.11)
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Assuming that the Euler-Lagrange equations are satisfied, one has

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
(2.12)

and so equation 2.11 can be written as

dL

dt
=

d

dt

(
∂L

∂q̇i
q̇i

)
+
∂L

∂q̇i
q̈i +

∂L

∂t

=
d

dt

(
q̇i
∂L

∂q̇i

)
+
∂L

∂t

(2.13)

The total derivative terms in equation 2.13 can be grouped together, giving the

partial derivative of the Lagrangian with respect to time as

−∂L
∂t

=
d

dt

(
q̇i
∂L

∂q̇i
− L

)
(2.14)

We defined the Jacobi energy function J(qi, q̇i, t) by

dJ

dt
= −∂L

∂t
(2.15)

and therefore, up to an integration constant we have

J(qi, q̇i, t) = q̇i
∂L

∂q̇i
− L (2.16)

By it’s definition through equation 2.15, the Jacobi energy function is conserved

when the Lagrangian has no explicit time dependence. It is not immediately obvious

that this function represents an energy associated with the dynamical system.
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To elucidate this, consider the simple case of a point particle of mass m

moving under a potential V (q) that only has explicit dependence on the generalised

coordinates qi. Furthermore, let the Cartesian coordinates have no explicit time

dependence ∂txi = 0. The Lagrangian of the point particle can be written in terms

of kinetic part K and the potential V (qi)

L = K − V (qi) (2.17)

where

K =
1

2
m
∑
r

v2r (2.18)

The velocity of the r-th Cartesian coordinate can be written in terms of generalised

coordinates

vr(t) =
dxr
dt

=
∂xr
∂qj

q̇j (2.19)

The kinetic term of the Lagrangian then becomes

K =
1

2
m
∂xr
∂qj

∂xr
∂qk

q̇iq̇k (2.20)

where summation over the Cartesian coordinates indexed by r is now implied. To

calculate the Jacobi energy function we require the derivative

∂L

∂q̇i
=

1

2
m
∂xr
∂qj

∂xr
∂qk

(
δij q̇k + δikq̇j

)
= m

∂xr
∂qi

∂xr
∂qk

q̇k (2.21)

The Jacobi energy function is then

J(qi, q̇) = m
∂xr
∂qi

∂xr
∂qk

q̇iq̇k − L = K + V (qi) (2.22)

And thus we see that in this case the Jacobi energy function is always equal to the

total energy of the system. The Jacobi energy function is really a more generalised

case of the Hamiltonian, a function of fundamental importance in the study of

dynamical systems.
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So far we have explored the Lagrangian approach to classical dynamics, in which

we construct a Lagrangian from a set of generalised coordinates qi and velocities q̇i.

The Lagrangian is a function of the space of coordinates and velocities (or possibly

and extended space to include an interval of the real line if the Lagrangian is time

dependant). We have seen that for every velocity, there is an associated generalised

momentum

pi =
∂L

∂q̇i
(2.23)

If the Jacobian

Jij =
∂pi

∂q̇j
(2.24)

is non singular, then by the implicit function theorem [27] pi = pi(qj, q̇j) has an

inverse and there exists a one-to-one map between the velocities q̇i and momenta

pi. The Hamiltonian is simply the Jacobi energy function written in terms of the

momenta, rather than velocities when this particular regularity condition is satisfied

H(qi, p
i, t) = piq̇i − L(qi, q̇i, t) (2.25)

We will assume the Hamiltonian to be time-independent unless explicitly stated

otherwise. In this case the Hamiltonian is a function defined on phase space (qi, p
i),

the space of generalised coordinates and momenta and as we will see, Hamiltons

equations of motion define an autonomous dynamical system in the sense that

they do not depend explicitly on time. If one does choose to include explicit time

dependence, the issue of autonomy can be quite trivially addressed by extending the

phase space, which we will discuss in section 2.1.1.2 From here on we will assume

the Hamiltonian and Lagrangian to be time-independent unless specified. Each

point in phase space is a state of the dynamical system, specifying its position and

momentum, and as we shall now see, physical systems move through phase space in

a manner determined by the Hamiltonian.

Just as we derived equations of motion generated by the Lagrangian through the

stationary action principle, the same can be done for the Hamiltonian.
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Consider the action

S =

∫
Ldt (2.26)

From equation 2.25 we have L = piq̇i −H and thus

S =

∫
piq̇i −H dt (2.27)

Consider now a path through phase space γ(t) = (qi(t), p
i(t)). By the stationary

action principle, physical paths through phase space will be critical paths of the

action, and so for infinitesimal variations that vanish on the boundaries

qi(t) → qi(t) + δqi(t)

pi(t) → pi(t) + δpi(t)
(2.28)

we must have δS = 0. Taking the infinitesimal variation of the action in equation

2.27 we have

δS =

∫
δpiq̇i + piδq̇i − δH dt (2.29)

The variation of the Hamiltonian can be written as

δH =
∂H

∂qi
δqi +

∂H

∂pi
δpi (2.30)

The second term in equation 2.29 can be integrated by parts, with the boundary

terms vanishing ∫
piδq̇i dt = −

∫
ṗiδqi dt (2.31)

and so we have

δS =

∫
−
(
ṗi +

∂H

∂qi

)
δqi +

(
q̇i −

∂H

∂pi

)
δpi dt (2.32)
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To have δS = 0 for arbitrary infinitesimal variations δqi & δpi we must have

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(2.33)

These are Hamiltons equations of motion, which are an autonomous set of coupled

ordinary differential equations. They are autonomous in the sense that q̇i and

ṗi are both equal to functions which have no explicit time dependence since the

Hamiltonian is a function of qi and pi only.

Given the Hamiltonian description of a physical system, we may wonder how

to move to a Lagrangian description. The change of variables going between the

Lagrangian and the Hamiltonian description is a Legendre transform, and provided

that it does indeed exist then we may move between the two equivalent descriptions

of the same physical system. This will be discussed in section 2.1.1.2.

The Hamiltonian is an object of fundamental importance in the study in

dynamical systems. In a conservative system, it represents the total energy of the

system, which we saw when we introduced the Jacobi energy function. The fact that

the Hamiltonian is a conserved energy in this case hints at the fact that it is related

to time translation symmetry. Noethers theorem [28–31] tells us that continuous

symmetries are associated with conserved quantities. To see how the Hamiltonian

is the generator of time evolution, consider an arbitrary smooth function of phase

space F (qi, p
i) and its total time derivative along a physical path

dF

dt
=
∂F

∂qi
q̇i +

∂F

∂pi
ṗi (2.34)

Physical paths satisfy Hamiltons equations 2.33 and so we have

dF

dt
=
∂F

∂qi

∂H

∂pi
− ∂F

∂pi
∂H

∂qi
(2.35)
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The Hamiltonian induces a Poisson bracket structure on the phase space

{F,H} :=
∂F

∂qi

∂H

∂pi
− ∂F

∂pi
∂H

∂qi
(2.36)

which gives the time derivative of phase space functions along solutions to the

equations of motion
dF

dt
= {F,H} (2.37)

Consequently, we see that the Hamiltonian is conserved along solutions to the

equations of motion, since its Poisson bracket with itself is always zero.

2.1.1.1 Point and Canonical Transformations

By this point we have developed two different frameworks in which we can analyse

classical dynamical systems, which are the Lagrangian and Hamiltonian descriptions.

In the former, we construct a Lagrangian from a set of generalised coordinates and

velocities (qi, q̇i), physical paths through the configuration space satisfy the Euler-

Lagrange equations generated by the Lagrangian. There should not be anything

special about our particular choice of coordinates, so it’s natural at this point to

ask whether the Euler-Lagrange equations are invariant under an arbitrary change

of coordinates. Such a change of coordinates is called a point transformation, and

the Euler-Lagrange equations are indeed invariant under point transformations as

we shall show. Consider defining a new set of generalised coordinates Qi(qi, t)

which we assume are invertible functions and qi are solutions to the Euler-Lagrange

equations. We want to determine if the Euler-Lagrange equations hold in these

arbitrary coordinates. To that end, consider calculating the partial derivatives

∂

∂Qi

L
(
Qi, Q̇i

)
=
∂L

∂qj

∂qj
∂Qi

+
∂L

∂q̇j

∂q̇j
∂Qi

∂

∂Q̇i

L
(
Qi, Q̇i

)
=
∂L

∂qj

∂qj

∂Q̇i

+
∂L

∂q̇j

∂q̇j

∂Q̇i

(2.38)
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The point transformation does not depend on the velocities and so we have

∂qj
∂Q̇i

= 0 and the second line in equation 2.38 simplifies to

∂L
∂Q̇i

=
∂L
∂q̇j

∂q̇j

∂Q̇i

(2.39)

We also have
dqj
dt

=
∂qj
∂Qk

Q̇k +
∂qj
∂t

(2.40)

and so we may calculate the partial derivative term

∂q̇j

∂Q̇i

=
∂

∂Q̇i

(
∂qj
∂Qk

Q̇k +
∂qj
∂t

)
= δik

∂qj

∂Q̇k

=
∂qj
∂Qi

(2.41)

Substituting this into equation 2.39 gives

∂L

∂Q̇i

=
∂L

∂q̇j

∂qj
∂Qi

(2.42)

These pieces can now be brought together to show invariance of the Euler-Lagrange

equations.

d

dt

(
∂L

∂Q̇i

)
− ∂L

∂Qi

=
d

dt

(
∂L

∂q̇j

∂qj
∂Qi

)
− ∂L

∂qj

∂qj
∂Qi

− ∂L

∂q̇j

∂q̇j
∂Qi

=
∂qj
∂Qi

[
d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

]
+
∂L

∂q̇j

[
d

dt

(
∂qj
∂Qi

)
− ∂q̇j
∂Qi

] (2.43)

The fist term in equation 2.43 is zero since the qi are solutions to the Euler

Lagrange equations. To show that the second term is zero, consider the time

derivative
d

dt

(
∂qj
∂Qi

)
=

∂

∂Qk

(
∂qj
∂Qi

)
Q̇k +

∂

∂t

(
∂qj
∂Qi

)
(2.44)
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Assuming that the point transformation is at least C2 smooth, the ordering of

partial derivatives does not matter, so we may write

d

dt

(
∂qj
∂Qi

)
=

∂

∂Qi

(
∂qj
∂Qk

Q̇k +
∂qj
∂t

)
=

∂

∂Qi

dqj
dt

(2.45)

We then have the required result

d

dt

(
∂L
∂Q̇i

)
− ∂L
∂Qi

= 0 (2.46)

showing that the Euler-Lagrange equations do not depend on our choice of

generalised coordinates and are therefore covariant. In the Hamiltonian framework

however, a change of coordinates on phase space is not always guaranteed to

preserve the form of Hamiltons equations. Only a particular subset of coordinate

transformations leave Hamiltons equations invariant, which are known as canonical

transformations. Consider a Hamiltonian, possibly time dependant in a set of

generalised coordinates H(qi, p
i, t) and a transformation to a new set of coordinates

Qi(q, p, t) and P i(q, p, t). This is a canonical transformation if there exists a new

Hamiltonian K(Q,P, t) such that the form of Hamiltons equations is preserved in

the new coordinates

Q̇i =
∂K

∂P i
, Ṗ i = − ∂K

∂Qi

(2.47)

Hamiltons equations, which we derived from a variational principle, hold in both

sets of variables and thus we must have

δS = δ

∫
piq̇i −H(qi, p

i, t) dt

= δ

∫
P iQ̇i −K(Qi, P

i, t) dt

= 0

(2.48)
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Recall that when we have fixed boundary conditions, the variation is insensitive to

total derivative terms, and so for equation 2.48 to hold we must have

λ
(
pidqi −Hdt

)
= P idQi −Kdt+ dF (2.49)

where F is an unknown function, called the generating function and lambda is some

non-zero scale factor which we shall simply set to unity and ignore. There are four

independent generating functions that one can use to find canonical transformations.

Consider the case when F = F1(qi, Qi, t), then

dF =
∂F1

∂qi
dqi +

∂F1

∂Qi

dQi +
∂F1

∂t
dt (2.50)

Comparing equation 2.50 to equation 2.49 yields

pi =
∂F1

∂qi
, P i = −∂F1

∂Qi

, K = H +
∂F1

∂t
(2.51)

At a first glance it can be confusing to see how a generating function generates a

canonical transformation. It is best elucidated through an example. Consider the

Hamiltonian of a 1-dimensional harmonic oscillator in Cartesian coordinates

H =
p2

2m
+

1

2
mω2q2 (2.52)

The Hamiltonian for this system involves a mixture of position and momentum

variables, we would like to find a canonical transformation that simplifies the

Hamiltonian.
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To that end consider changing to a new set of variables (Q,P ) such that

p = f(P ) cosQ, q = Af(P ) sinQ (2.53)

where A is some scalar and f(P ) an unknown function of the new momentum

variable P . If we choose A = 1/mω then the Hamiltonian takes a simple form

H =
f(P )2

2m
(2.54)

Now let F1(q,Q) be the first generating function as defined in equation 2.51, then

we have

f(P ) cosQ =
∂F1

∂q
(2.55)

and

f(P ) =
mωq

sinQ
(2.56)

which is obtained from plugging in the chosen value of A into equation 2.53 and

rearranging for f(P ). We therefore have

∂F1

∂q
= mωq cotQ =⇒ F1(q,Q) =

1

2
mωq2 cotQ+G(Q) (2.57)

where G(Q) is some arbitrary function which we may set to zero. The new

momentum variable is then given by the generator function as

P = −∂F1

∂Q
=

mωq2

2 sin2Q
=⇒ q2 =

2P

mω
sin2Q (2.58)

Thus we identify the function

f(P ) =
√

2mωP (2.59)
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We are left with a new Hamiltonian that is far simpler than the one we started with

K = ωP (2.60)

with preserved Hamiltons equations and Poisson bracket structure

Q̇ =
∂K

∂P
= ω

Ṗ = −∂K
∂Q

= 0
(2.61)

with solutions Q(t) = Q0 +ωt and P = K/ω where the Hamiltonian K is conserved.

The other 3 generating functions are found by investigating equation 2.49 when

F is a function of different pairs of independent variables. In all cases one finds

F = F1(qi, Qi, t), pi =
∂F1

∂qi
, P i = −∂F1

∂Qi

F = F2(qi, P
i, t), pi =

∂F2

∂qi
, Qi =

∂F2

∂P i

F = F3(p
i, Qi, t), P i = −∂F3

∂Qi

, qi = −∂F3

∂pi

F = F4(p
i, P i, t), qi = −∂F4

∂pi
, Qi =

∂F4

∂P i

(2.62)

and the new Hamiltonian is given by

K = H +
∂F

∂t
(2.63)

such that

Q̇i =
∂K

∂P i
, K̇ = − ∂K

∂Q̇i

(2.64)
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2.1.1.2 Symplectic Geometric Mechanics

So far we have looked at two related frameworks for describing classical dynamical

systems, by constructing either a Lagrangian from a set of generalised coordinates

qi and velocities q̇i or a Hamiltonian from the coordinates and a set of momenta pi.

In the Lagrangian case, we saw that the equations of motion were invariant under

a point transformation of the generalised coordinates. To some extent, a result

along these lines should be expected, since physics shouldn’t depend on our choice

of coordinates, which is simply a way of labelling physical points in space. To this

end we seek a coordinate-free description of classical dynamical systems, for which

we will appeal to the language of differential geometry.

In the study of dynamical systems, we often start with a set of n coordinates

qi which can be thought of as labelling points q = (qi)i=1,..,n in “Configuration

Space”. We assume that the configuration space is a smooth n-dimensional

manifold M [28, 32, 33]. The generalised velocities q̇i belong to the tangent space

TqM of q ∈ M which are fibers of the tangent bundle TM . The Lagrangian is a

smooth map from points q ∈M and q̇i ∈ TqM to the reals, so we have L : TM → R

(or L : TM ×R → R if the Lagrangian has explicit time dependence). Likewise, the

Hamiltonian is a map from the cotangent bundle to the reals H : T ∗M → R. The

tangent and cotangent bundles are themselves 2n-dimensional manifolds.

The geometric description of conservative classical dynamical systems makes

use of Symplectic Geometry [28, 33–35], which we will give an overview of

here. A symplectic manifold is a pair (M,ω), consisting of an even dimensional

manifold M and a closed, non-degenerate 2-form ω called the symplectic form. The

non-degererate symplectic form allows us to define a volume form ωn ̸= 0 on M .

Darboux’s theorem [33] states that given a point p ∈ M , one can always find local

coordinates in a neighbourhood of p such that ω = dqi ∧ dpi. The fact that one can

always find coordinates such that the symplectic form ω has this canonical structure

is essentially the statement that symplectic manifolds have the same local structure,

since the Darboux coordinates can be constructed in any arbitrary neighbourhood.
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Symplectic manifolds are thus set apart by their global properties, rather than local

structure.

For now we will assume that the Hamiltonian on the contangent bundle manifold

has no explicit time-dependence, and so it is a map H(qi, p
i) : T ∗M → R. The

symplectic form allows us to define a vector field XH which is the unique solution

of

iXH
ω = dH (2.65)

where “i” denotes the interior product operator. The vector field XH is called

the “Hamiltonian Vector Field”, and equation 2.65 is actually a geometric,

coordinate-independent statement of Hamiltons equations of motion. Expanding

XH in the basis of local Darboux coordinates we have

XH = X i
q

∂

∂qi
+X i

p

∂

∂pi
(2.66)

and so we have the interior product

iXH
ω = iXH

(
dqi ∧ dpi

)
= iXH

(
dqi ⊗ dpi − dpi ⊗ dqi

)
= dqi(XH)dpi − dpi(XH)dqi

= X i
qdp

i −X i
pdqi

(2.67)

Comparing this result with

dH =
∂H

∂qi

∂

∂qi
+
∂H

∂pi
∂

∂pi
(2.68)

we have

XH =
∂H

∂pi
∂

∂qi
− ∂H

∂qi

∂

∂pi
(2.69)
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Thus the integral curves of the Hamiltonian vector field satisfy Hamiltons

equations of motion 2.33 and the Hamiltonian vector field generates a 1-parameter

group of diffeomorphisms on the phase space manifold

ϕt(qi(0), pi(0)) = (qi(t), p
i(t)) (2.70)

called the Hamiltonian flow. Liouvilles theorem [33] states that volume form

provides an invariant, volume preserving measure under the Hamiltonian flow

LXH
ωn = 0 (2.71)

where LXH
is the Lie derivative along XH . As a consequence of the symplectic form

being closed, it too is preserved along the flow. By Cartans formula we have

LXH
ω = iXH

dω + d(iXH
ω)

= iXH
(0) + d(dH)

= 0

(2.72)

One can in fact associate any smooth function F ∈ C∞(M) with a vector field

XF satisfying

iXF
ω = dF (2.73)

The symplectic form thus induces a natural Poisson bracket structure on the

manifold and generates time evolution along the flow

ω(XF , XH) =
∂F

∂qi

∂H

∂pi
− ∂F

∂pi
∂H

∂qi
:= {F,H} =

dF

dt
(2.74)
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Time evolution of smooth functions on the symplectic manifold can also be seen

as simply the action of the Hamiltonian vector field on the function

dF

dt
= XH(F ) (2.75)

since the flow of XH generates time evolution of the bundle coordinates (qi, p
i).

As a consequence, one can clearly see that the Hamiltonian is conserved along

its flow, as we have
dH

dt
= {H,H} = 0 (2.76)

The requirement that the Hamiltonian be conserved means that physical paths

through the cotangent bundle T ∗M are restricted to a subset of the phase space.

Given initial data (qi(0), pi(0)), the solution to Hamiltons equations of motion is one

that evolves on a surface of constant H. This also helps to shed some light on the

interpretation of the Hamiltonian vector field, which up until now plays the role of a

rather abstract tool that we have constructed in order to find equations of motion,

or in other words the Hamiltonian flow. For each point on the manifold p ∈ M

and XH |p ∈ TpM , the Hamiltonian is a constant of the motion along translations

in the XH direction. An example where this can be seen clearly is the infinite 2-

cylinder S × R, choosing a chart where points on the cylinder are parameterised

by the azimuthal angle ϕ and height from the origin z, with the symplectic form

ω = dϕ∧dz. Consider a Hamiltonian that is a function of the height only, H = H(z).

The Hamiltonian vector field is then

XH =
∂H

∂z

∂

∂ϕ
− ∂H

∂ϕ

∂

∂z
=
∂H

∂z

∂

∂ϕ
(2.77)

Thus translations in the ∂ϕ direction, which are rotations around the cylinders

central axis, preserve the Hamiltonian, as one would expect since it is only a function

of the height of a point on the cylinder.
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In more physical examples, the interpretation of the direction the Hamiltonian

vector field is not always so clear. Consider as an example a particle moving on the

2-sphere S2 with symplectic form ω = dθ ∧ dpθ + dϕ ∧ dpϕ, and the Hamiltonian

function

H =
1

2
p2θ +

1

2

p2ϕ
sin2 θ

(2.78)

Firstly, we note that the Hamiltonian is independent of ϕ and so from Hamiltons

equations of motion 2.33, pϕ is a constant along the Hamiltonian flow. We must

also have θ ̸= nπ, otherwise the Hamiltonian becomes ill-defined. The Hamiltonain

vector field is

XH = pθ
∂

∂θ
+
pϕ cos θ

sin3 θ

∂

∂pθ
+

pϕ
sin θ

∂

∂ϕ
(2.79)

In this case, the Hamiltonian vector field involves terms pointing in the ∂θ, ∂pθ and

∂ϕ directions, so it is not quite a simple as the cylinder case where the Hamiltonian

vector field was just a rotation of the azimuthal angle ϕ. In the case of the particle

on S2, would could have anticipated that XH would contain no contribution from

∂pϕ , since it is a conserved quantity along Hamiltonian flows, and thus moving in

the pϕ direction would be to go off-shell. In the particular case where pϕ = 0, the

Hamiltonian is only dependant on pθ, which becomes a conserved quantity since

∂H/∂θ = 0 and the Hamiltonian vector field reduces to

XH = pθ
∂

∂θ
(2.80)

Now it is clear that for this specific value of the pϕ momentum, the direction of XH

is easy to interpret, θ is the only dynamical variable left, and translations in the ∂θ

direction conserve the angular momentum pθ and Hamiltonian.
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In the case of an explicitly time dependant Hamiltonian, one can quite simply

define an extended phase space M̃ = M × R. Physical paths on the extended

manifold are integral curves of

X̃H = XH +
∂

∂t
(2.81)

and the time evolution of smooth functions on the extended phase space is given

by
dF

dt
= XH(F ) = {F,H} +

∂F

∂t
(2.82)

So far we have looked at the Hamiltonian description of dynamical systems

in the framework of differential geometry, so we also ought to be able to write

the Lagrangian description in coordinate-independent manner as well. Recall the

Legendre transform

L : TM → T ∗M (2.83)

which converts our description of the dynamical system from one in terms of

coordinates qi and velocities qi living on the tangent bundle TM to coordinates

and momenta pi living on the cotangent bundle T ∗M where

L(qi, q̇i) =

(
qi,
∂L
∂q̇i

)
(2.84)

Provided that the Hessian Wij = ∂2L/∂q̇i∂q̇j is regular, the symplectic form ω ∈

Ω2(T ∗M) can be pulled back to the tangent bundle TM by the Legendre transform.

Ω = L∗ω

= L∗(dqi ∧ pi)

= dqi ∧ d(L∗dpi)

= dqi ∧ d
(
∂L

∂q̇i

) (2.85)
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In the third line of equation 2.85 we have used the fact that the Legendre

transform (specifically its pullback in this case) acts on the momenta and not the

coordinates, which are essentially passive variables as far as L is concerned. This is

because the Legendre transform is exactly the fiber derivative at a fixed point [36].

Given a smooth L : TM → R, the fiber derivative LL is a bijective diffeomorphism

that maps a fiber in the tangent bundle TM over a point in the base manifold p ∈M

to a fiber in the cotangent bundle T ∗M over the same base point p ∈M .

For the exterior derivative of ∂L/∂q̇i we have

d

(
∂L

∂q̇i

)
=

∂2L

∂qj∂q̇i
dqj +Wijdq̇j (2.86)

where

Wij =
∂2L

∂q̇i∂q̇j
(2.87)

is the Hessian matrix, which is symmetric by the smoothness of L. The pullback of

the symplectic form can then be written as

Ω =
∂2L

∂qj∂q̇i
dqi ∧ dqj +Wijdqi ∧ dq̇j (2.88)

We then define the “Lagrangian Vector Field” XL as the unique vector field

satisfying

iXL
Ω = dJ (2.89)

where J is the Jacobi energy function as defined in equation 2.16. This is a direct

analogy of the defining equation for the Hamiltonian vector field. Expanding the

Lagrangian vector field in the local coordinates

XL = Xq
i

∂

∂qi
+X q̇

i

∂

∂q̇i
(2.90)
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the interior product on the left hand side of equation 2.89 is

iXL
Ω =

(
∂2L

∂qj∂q̇i
(dqi ⊗ dqj − dqj ⊗ dqi) +Wij (dqi ⊗ dq̇j − dq̇j ⊗ dqi)

)
(XL)

=

(
∂2L

∂qi∂q̇j
Xq

i −
∂2L

∂qj∂q̇i
Xq

j −WijX
q̇
j

)
dqi +WijX

q
j dq̇i

(2.91)

The exterior derivative of the Jacobi energy function is

dJ = d

(
q̇j
∂L

∂q̇j
− L

)
=

(
q̇j

∂2L

∂qi∂q̇j
− ∂L

∂qi

)
dqi + q̇jWijdq̇i

(2.92)

Equating these two we have

Xq
j = q̇j, WijX

q̇
j =

∂L

∂qi
− q̇j

∂2L

∂qj∂q̇i
(2.93)

It is clear from equation 2.93 that in order for a unique solution to exist, the Hessian

must be non-singular, so that its inverse W−1
ij exists. Assuming that this is the case,

the Lagrangian vector field is

XL = q̇j
∂

∂qj
+W−1

ij

(
∂L

∂qi
− q̇j

∂2L

∂qj∂q̇i

)
∂

∂q̇j
(2.94)

Integral curves of the Lagrangian vector field satisfy a system of ODE’s which are

equivalent to the Euler-Lagrange equations as follows. For such an integral curve

(qi(t), q̇i(t)) we have
d

dt
qi = q̇i

d

dt
q̇i = W−1

ij

(
∂L

∂qi
− q̇j

∂2L

∂qj∂q̇i

) (2.95)

The first equation is trivial but the second equation can be manipulated into a form

that makes the equivalence to the Euler-Lagrange equations clearer.
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Multiplying both sides by the Hessian we have

q̇j
∂2L

∂qj∂q̇i
+

∂2L

∂q̇i∂q̇j
q̈j =

∂L

∂qi
∂

∂qj

(
∂L

∂q̇i

)
q̇j +

∂

∂q̇j

(
∂L

∂q̇i

)
q̈j =

∂L

∂qi

(2.96)

Recognising that the left hand side of the last line is simply the total time derivative

of ∂L/∂q̇i, we see that this is simply the Euler-Lagrange equation

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.97)

2.1.1.3 Contact Geometric Mechanics

In this work we will make heavy use of the machinery of contact manifolds [33, 34,

37, 38]. Contact manifolds are a natural generalisation of a symplectic manifold, to

the case where the manifold M is of odd dimension. Specifically, a contact manifold

(M, η) is a pair consisting of an odd dimensional manifold M and a non-degenerate 1-

form η satisfying η∧(dη)n ̸= 0. This definition is in direct analogy with the definition

of a symplectic manifold. Much like how ωn defines a volume form on (M,ω),

η∧(dη)n defines an odd-dimensional volume form on the contact manifold. In some of

the literature, a contact manifold is instead defined in terms of the odd-dimensional

manifold M and a contact structure ξ. The contact structure is a maximally non-

integrable hyperplane field, which is a sub bundle of the tangent bundle TM such

that ξ ∈ ker(η). The maximal non-integrability condition is precisely that the

contact volume form is non-degenerate η ∧ (dη)n ̸= 0. There exists an equivalent

Darboux theorem for contact manifolds [39], stating that we may always find local

coordinates in which the contact form may be expressed as

η = −dS + pidqi (2.98)
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where we now have an additional global coordinate S on the odd dimensional

manifold, as well as qi and pi which we will continue to interpret as the generalised

coordinates and momenta. Just like symplectic forms, contact forms locally all look

the same, and are distinguished by their global structures.

In the symplectic case, every Hamiltonian function H : M → R was associated

with a unique Hamiltonian vector field generating the Hamiltonian flow on the phase

space manifold. Likewise in the contact case, one can define a contact Hamiltonian

vector field XH whose integral curves are the physical paths on the manifold. The

contact Hamiltonian vector field is the unique vector field satisfying

iXH
η = H (2.99)

and generates 1-parameter group of diffeomorphisms on the contact manifold,

expressed through the Lie derivative

LXH
η = fHη (2.100)

for some unknown function fH ∈ C∞(M). Every contact manifold is endowed with

a unique Reeb vector field R ∈ ker(dη) such that

iRη = 1 (2.101)

From the definition of the Reeb vector field, and the Darboux theorem on contact

manifolds, it’s components in the basis of Darboux coordinates can be calculated

explicitly as follows. We write the Reeb vector field as

R = Rq
i

∂

∂qi
+Rp

i

∂

∂pi
+Rs ∂

∂S
(2.102)

The exterior derivative of the contact form is

dη = dpi ∧ dqi = dpi ⊗ dqi − dqi ⊗ dpi (2.103)
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Since R ∈ ker(dη), we have iRdη = 0 and thus

dpi(R)dqi − dqi(R)dpi = 0

Rp
i dqi −Rq

idp
i = 0

(2.104)

Which is satisfied if Rq
i = Rp

i = 0. From Equation 2.101 we have

−dS(R) + pidqi(R) = 1

−Rs + piRq
i = 1

(2.105)

Since Rq
i = 0 we have Rs = −1 and the Reeb vector field is

R = − ∂

∂S
(2.106)

We know wish to determine the unknown function fH in equation 2.100. Cartans

formula allows us to write the Lie derivative term as

LXH
= iXH

dη + d (iXH
η) (2.107)

Recalling that the contact Hamiltonian vector field satisfies equation 2.99, we have

dH = fHη − iXH
dη (2.108)

Since iRη = 1 and iRdη = 0, acting the Reeb vector field on both sides of equation

2.108 yields

dH(R) = fHη(R) − iXH
dη(R)

dH(R) = fH =⇒ fH = −∂H
∂S

(2.109)

Now that the Reeb vector field and fH have been identified, we are left with two

equations defining the contact Hamiltonian vector field

iXH
η = H, dH = −∂H

∂S
η − iXH

dη (2.110)
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Expanding the contact Hamiltonian vector field XH in the basis of Darboux

coordinates

XH = Xq
i

∂

∂qi
+Xp

i

∂

∂pi
+Xs ∂

∂S
(2.111)

the defining conditions 2.110 reduce to

−Xs + piXq
i = H,

∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂S
dS =

(
−Xp

i − pi
∂H

∂S

)
dqi +Xq

i dp
i

(2.112)

Equation 2.112 fixes the components XH in the Darboux basis, giving

Xq
i =

∂H

∂pi
, Xp

i = −∂H
∂qi

− pi
∂H

∂S
, Xs = pi

∂H

∂pi
−H (2.113)

The integral curves of the contact Hamiltonian vector field satisfy the equations of

motion

q̇i =
∂H

∂pi
, ṗi = Xp

i = −∂H
∂qi

− pi
∂H

∂S
, Ṡ = pi

∂H

∂pi
−H (2.114)

One can immediately see that when the contact Hamiltonian is independent of the

global coordinate S, the equations of motion for (qi, p
i) reduce to that of a symplectic

Hamiltonian system. Time evolution of smooth functions on the contact manifold

F ∈ C∞(M) is again generated by the flow of the (contact) Hamiltonain vector field

dF

dt
=
∂F

∂qi
q̇i +

∂F

∂ṗi
ṗj +

∂F

∂S
Ṡ

= XH(F )

(2.115)

Unlike in the symplectic case, the contact Hamiltonian is not generally conserved

along its flow.
dH

dt
= XH(H) = −H∂H

∂S
(2.116)

From equation 2.116, we can see that the Hamiltonian will only be conserved

if it is independent of the global bundle coordinate S or everywhere zero.
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Consequently, contact Hamiltonian mechanics are a popular choice when modelling

non-conservative systems, particularly in classical and quantum thermodynamics

[40–44]. Since the contact Hamiltonian is no longer generically conserved, one might

expect that Liouvilles theorem does not hold on a contact manifold, and this is

indeed the case. We have shown already that the Lie drag of the contact form along

the Hamiltonian vector field is

LXH
η = −∂H

∂S
η (2.117)

It follows from this result that the Lie drag of the volume form dVol = η ∧ (dη)n

is [45]

LXH
dVol = −(n+ 1)

∂H

∂S
dVol (2.118)

In [45] it shown that there does in fact exist and invariant measure on contact

manifolds

dµ = |H|−(n+1)dVol (2.119)

for which there is a direct analogy of the Liouville theorem

LXH
dµ = 0 (2.120)

As an example of a simple classical system on a contact manifold, consider the

damped harmonic oscillator. Let T ∗M × R be a contact manifold with coordinates

(q, p, S) and contact form η = −dS + pdq. Let the contact Hamiltonian function be

H =
p2

2m
+

1

2
mω2q2 + γS (2.121)

The contact Hamiltonian equations of motion 2.114 for this system read

q̇ =
p

m
, ṗ = −mω2q − pγ, Ṡ =

p2

2m
− 1

2
mω2q2 − γS (2.122)
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From which we have

q̈ =
ṗ

m

= −ω2q − p

m
γ

= −ω2q − γq̇

(2.123)

Which is simply the familiar equation of motion of a damped oscillator

q̈ + γq̇ + ω2q = 0 (2.124)

On close inspection, one might see that the equation for the global coordinate S looks

similar to a kinetic term minus a sort of potential term, which we may be tempted

to identify as a Lagrange of sorts. In fact we shall see that this is exactly the contact

equivalent of the Lagrangian function, known as the “Herglotz Lagrangian”.

Consider an odd dimensional manifold TM × R formed from the cross product

of the tangent bundle TM of a configuration space manifold M and the reals. Let

(qi, q̇i, S) be the local coordinates on the manifold, where (qi, q̇i) are the coordinates

of the tangent bundle. The tangent bundle comes equipped with a natural canonical

endomorphism [32, 37] E : TM → TM , which may be expressed in the local

coordinates as

E = dqi ⊗
∂

∂q̇i
(2.125)

Let LH : TM × R → R be a Lagrangian function on the manifold. The pullback of

the canonical endomorphism allows us to construct a contact form on the manifold.

η = −dS + E∗(dLH)

= −dS +
∂LH

∂q̇i
dqi

(2.126)
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If the Lagrangian as a regular Hessian matrix, the volume form constructed from

η is non-degenerate η ∧ (dη)n ̸= 0 and thus we have a contact manifold (M, η). As

we have already discussed, associated with the contact manifold is a unique Reeb

vector field satisfying

iRdη = 0, iRη = 1 (2.127)

Expanding the Reeb vector field in the basis of Darboux coordinates

R = Rq
i

∂

∂qi
+Rq̇

i

∂

∂q̇i
+Rs ∂

∂S
(2.128)

The first condition iRdη = 0 reads

iRdη = iR

[
d

(
∂LH

∂q̇i

)
∧ dqi

]
= iR

[(
∂

∂qj

(
∂LH

∂q̇i

)
dqj +

∂

∂q̇j

(
∂LH

∂q̇i

)
dq̇j +

∂

∂S

(
∂LH

∂q̇i

)
dS

)
∧ dqi

]
= iR

[
∂2LH

∂qj∂q̇j
dqj ∧ dqi +Wijdq̇j ∧ dqi +

∂2LH

∂S∂q̇i
ds ∧ dqi

]
=

[
Rq

j

(
∂2LH

∂qj∂q̇i
− ∂2LH

∂qi∂q̇j

)
+Rq̇

jWij +Rs ∂
2LH

∂S∂q̇i

]
dqi −Rq

jWijdq̇i −Rq
i

∂2LH

∂S∂q̇i
dS

= 0

(2.129)

For this condition to hold for a generic Lagrangian LH(qi, q̇i, S) we must have

Rq
i = 0, Rq̇

i = −W ij ∂
2LH

∂S∂q̇j
Rs (2.130)

where W ij is the inverse Hessian, which we have assumed to be regular.
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This eliminates the Rq
i component, which is zero, the second condition iRη = 1

is required to fully constrain the Rq̇ and Rs components.

iRη = −dS(R) +
∂LH

∂q̇i
dqi(R)

= −Rs

= 1

(2.131)

We therefore have Rs = −1 and hence the Reeb vector field in the local Darboux

coordinates is

R = − ∂

∂S
+W ij ∂

2LH

∂q̇j∂S

∂

∂q̇i
(2.132)

We now define the Herglotz Lagrangian vector field XL to be the unique solution

of

I(XL) = dJ + (J −R(J)) η (2.133)

where J is the Jacobi energy function as defined in equation 2.16 and I : T (TM ×

R) → T ∗ (TM × R) is a bundle isomorphism associated with the contact form

I(v) = (ivη)η − iv(dη) (2.134)

Expanding the Herglotz Lagrangian vector field in the basis of Darboux coordinates

we have

XL = Xq
i

∂

∂qi
+X q̇

i

∂

∂q̇i
+Xs ∂

∂S
(2.135)

The bundle isomorphism in terms of the components of XL can then be calculated

as

I(XL) =

[
∂LH

∂q̇i

(
−Xs +Xq

j

∂LH

∂q̇j

)
+Xq

j

∂2LH

∂qi∂q̇j
−Xq

j

∂2LH

∂qj∂q̇i
−X q̇

jWij −Xs ∂
2LH

∂S∂q̇i

]
dqi

+Xq
jWijdq̇i +

[
Xs −Xq

i

∂LH

∂q̇i
+Xq

i

∂2LH

∂S∂q̇i

]
dS

(2.136)
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We next need to calculate the left hand side of equation 2.133. Recall that the

Jacobi energy function is

J(qi, q̇i, S) = q̇i
∂LH

∂q̇i
− LH (2.137)

and so we have the exterior derivative

dJ =
∂LH

∂q̇i
dq̇i + q̇jd

(
∂LH

∂q̇j

)
− dLH

=

[
q̇j
∂2LH

∂qi∂q̇j
− ∂LH

∂qi

]
dqi + q̇jWijdq̇i +

[
q̇i
∂2LH

∂S∂q̇i
− ∂LH

∂S

]
dS

(2.138)

Given the Reeb vector field in equation 2.132, we have

R(J) = −∂J
∂S

+W ij ∂
2LH

∂S∂q̇j

∂J

∂q̇i

= −
[
q̇i
∂2LH

∂S∂q̇i
− ∂LH

∂S

]
+W ij ∂

2LH

∂S∂q̇j

(
δik
∂LH

∂q̇k
+ q̇kWik −

∂LH

∂q̇i

)
=
∂LH

∂S

(2.139)

Combining the results of equations 2.137, 2.138 and 2.139, the right hand side

of equation 2.133 is

dJ + (J −R(J)) η =[
q̇j
∂2LH

∂qi∂q̇j
− ∂LH

∂qi
+ q̇j

∂LH

∂q̇i

∂LH

q̇j
− LH ∂L

H

∂q̇i
− ∂LH

∂q̇i

∂LH

∂S

]
dqi + q̇jWijdq̇i

+

[
q̇i
∂2LH

∂S∂q̇i
− q̇i

∂LH

∂q̇i
+ LH

]
dS

(2.140)

Equation 2.140 can now be equated with the calculation of the bundle isomorphism

in terms of the components of XL in equation 2.136. By inspecting the coefficients

of dqi, dq̇i and dS the components of XL can be determined. Firstly from the dq̇i

terms on both sides, we see that we must have

Xq
i = q̇i (2.141)
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Next, by inspecting the dS terms on both sides, we must have

Xs − q̇i
∂LH

∂q̇i
+ q̇i

∂2LH

∂S∂q̇i
= q̇i

∂2LH

∂S∂q̇i
− q̇i

∂LH

∂q̇i
+ LH

=⇒ Xs = LH

(2.142)

Finally by inspecting the dqi terms on both sides, we must have

X q̇
jWij =

∂LH

∂qi
+
∂LH

∂q̇i

∂LH

∂S
− q̇j

∂2LH

∂qj∂q̇i
− LH ∂2LH

∂S∂q̇i
(2.143)

It is clear from equation 2.143 why the Lagrangian must have a regular Hessian, we

require the inverse of Wij to exist in order for our system of equations to be solvable.

Assuming that the Hessian is indeed regular, the flow generated by XL satisfied

q̇i = q̇i, q̈jWij =
∂LH

∂qi
+
∂LH

∂q̇i

∂LH

∂S
− q̇j

∂2LH

∂qj∂q̇i
− LH ∂2LH

∂S∂q̇i
, Ṡ = LH (2.144)

The first equation in 2.144 is the trivial relation q̇i = q̇i, the third relation is

telling us that in contact Lagrangian systems, the Lagrangian is actually a function

of the action itself

S =

∫
LH(qi, q̇i, S)dt (2.145)

The contact Lagrangian is typically referred to in the literature as the Herglotz

Lagrangian as we have mentioned. The second equation in 2.144 encodes the

Herglotz-Lagrange equations of motion, which are a generalisation of the Euler-

Lagrange equations to a contact manifold. They are derived from the second

equation as follows. Consider the total time derivative

d

dt

(
∂LH

∂q̇i

)
=

∂2LH

∂qj∂q̇i
q̇j +

∂2LH

∂q̇j∂q̇i
q̈j +

∂2LH

∂S∂q̇i
Ṡ

=
∂2LH

∂qj∂q̇i
q̇j +Wij q̈j +

∂2LH

∂qj∂q̇i
LH

=⇒ Wij q̈j =
d

dt

(
∂LH

∂q̇i

)
− ∂2LH

∂qj∂q̇i
q̇j −

∂2LH

∂qj∂q̇i
LH

(2.146)
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Equating this to the second equation in 2.144 we have

d

dt

(
∂LH

∂q̇i

)
− ∂LH

∂qi
=
∂LH

∂q̇i

∂LH

∂S
(2.147)

These are the “Herglotz-Lagrange equations of motion”. One can see that

in the case where the Lagrangian is independent of the global coordinate S, they

reduce to the standard Euler-Lagrange equations for (qi, q̇i). The integral curves

of the Herglotz Lagrangian vector field satisfy the Herglotz-Lagrange equations if

and only if they are critical paths of the action 2.145. A detailed discussion of the

variational approach to the Herglotz-Lagrange equations can be found in [46], as

well as an alternative that approach using Lagrange multipliers to enforce Ṡ = LH

in [47]. We may build intuition for how this Lagrange multiplier approach works

by considering the case of a harmonic oscillator in the contact mechanics setting.

Consider an action

A(q, q̇, S, Ṡ, t) =

∫
LH(q, q̇, S) + λ(t)

(
LH(q, q̇, S) − Ṡ

)
dt (2.148)

where

LH(q, q̇, S) =
1

2
q̇2 − 1

2
ω2q2 − γS (2.149)

and γ is a real constant and λ(t) is a Lagrange multiplier. We will show through

variation of the action that the equations of motion generated by the Herglotz

Lagrangian 2.149 describe a damped harmonic oscillator. When γ = 0 this

description reduces to the standard harmonic oscillator. We will then show that the

equations of motion obtained from a generic Herglotz Lagrangian through the same

variational process are indeed the Herglotz-Lagrange equations of motion 2.147.

Firstly, we consider infinitesimal variations of the coordinates and the Lagrange

multiplier

δA =

∫
δLH + δλ(t)

(
LH − Ṡ

)
+ λ(t)

(
δLH − δṠ

)
dt

=

∫
(1 + λ(t))δLH + δλ(t)

(
LH − Ṡ

)
− λ(t)δṠ dt

(2.150)
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The first order variation in the Herglotz Lagrangian is

δLH = q̇δq̇ − ω2qδq − γδS (2.151)

and so the first order variation in the action becomes

δA =

∫
(1 + λ)

[
q̇δq̇ − ω2qδq − γδS

]
− δλ

(
LH − Ṡ

)
− λδṠ dt

=

∫
−
[
d

dt
((1 + λ)q̇) + (1 + λ)ω2q

]
δq +

[
λ̇− (1 + λ)γ

]
δS + δλ(LH − Ṡ) dt

(2.152)

where in the second step we have integrated by parts the δq̇ and δṠ terms and as

usual ignored the boundary contributions which are zero.

Requiring the action to be stationary for arbitrary variations gives the following

equations of motion
d

dt
[(1 + λ)q̇] + (1 + λ)ω2q = 0 (2.153)

λ̇ = (1 + λ)γ (2.154)

Ṡ = LH (2.155)

From equation we see that the Lagrange multiplier has enforced

S =

∫
LH(q, q̇, S)dt (2.156)

(up to an integration constant), which is the defining property of a Herglotz

Lagrangian. One can easily see that when this is satisfied it follows that our original

action reduces to simply A = S up to an integration constant. Equation 2.153 can

be expanded to give

(1 + λ)q̈ + λ̇q̇ + (1 + λ)ω2q = 0 (2.157)

The λ̇ term is given by equation 2.154, substituting this into the equation of motion

2.157 gives

q̈ + γq̇ + ω2q = 0 (2.158)
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which is exactly the equation of motion of a damped Harmonic oscillator. When

γ = 0, the Herglotz Lagrangian becomes independent of S and the equations of

motion 2.158 reduce to that of a regular harmonic oscillator. It is not hard to

extend this to a generic Herglotz Lagrangian LH(q, q̇, S). In this case we simply

have the first order variation

δLH =
∂LH

∂q
δq +

∂LH

∂q̇
δq̇ +

∂LH

∂S
δS (2.159)

The first order variation of the action 2.148 becomes

δA =

∫ [
(1 + λ)

∂LH

∂q
− d

dt

[
(1 + λ)

∂LH

∂q̇

]]
δq+

[
λ̇+ (1 + λ)

∂LH

∂S

]
δS+δλ

(
LH − Ṡ

)
dt

(2.160)

Just as in the case of the harmonic oscillator, requiring the variation of the action

to be zero for arbitrary infinitesimal variations of the coordinates enforces

d

dt

[
(1 + λ)

∂LH

∂q̇

]
− (1 + λ)

∂LH

∂q
= 0 (2.161)

λ̇ = (1 + λ)
∂LH

∂S
(2.162)

Ṡ = LH (2.163)

Again, we see that the Herglotz constraint Ṡ = LH enforces A = S up to an

integration constant and the other two equations of motion can be combined to

produce
d

dt

(
∂LH

∂q̇

)
− ∂LH

∂q
=
∂LH

∂S

∂LH

∂q̇
(2.164)

which is exactly the Herglotz-Lagrange equation of motion 2.147 we previously

derived from the geometric equations of motion 2.133.

It now remains to show that the Herglotz-Lagrange equations are equivalent to

the contact Hamiltonian equations under a Legendre transform. Given a contact

form η = −dS+pidqi on T ∗M×R and a Legendre transform L : TM×R → T ∗M×R
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such that

L(qi, q̇i, S) = (qi, p
i, S), pi =

∂LH

∂q̇i
(2.165)

The pullback of the contact form by the Legendre transform is exactly

L∗(η) = −dS +
∂LH

∂q̇i
dqi (2.166)

which is the contact form on TM × R which generates the Herglotz-Lagrange

equations.

2.2 General Relativity

2.2.1 Lagrangian Field Theory of General Relativity

Einsteins theory of General Relativity [9, 48–50], which is to date our most

comprehensive and well tested theory of gravity, is built in the language of differential

geometry. Einsteins key insights that allowed the development of this theory were

his “Equivalence Principle” and general covariance. These two concepts are

often misconceived as the same, but there is an important distinction which allowed

Einstein to construct a mathematical description of gravity as the curvature of

spacetime. Firstly, general covariance is the statement that physical laws should

be independent of any coordinate frame. Fundamentally, a set of coordinates is an

entirely human construct and thus a physical, axiomatic law need no reference to

them at all. Newtons laws of motion have covariance under the Galilean group,

one may transform to any inertial frame of reference and the equations of motion

will take the same form. This is not the case if one transforms to an accelerating

frame of reference, thus Einstein knew that Newtons laws of motion could only be

an approximation of a higher order theory in which one may make any coordinate

transformation and retain general covariance.

The equivalence Principle, not to be confused with general covariance, was

Einsteins insight that, in small enough regions of spacetime, one cannot distinguish
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through any experimental means between an accelerating frame of reference and

the effect of a gravitational field in an inert frame. This means that at any given

point of spacetime, we may always choose locally inertial coordinates provided we

look at a sufficiently small region around the point. Over small regions, observers

see spacetime has having a local Minkowski structure, but the global structure of

spacetime may be very different. In particular, while the local Minkowski structure

may be flat, the spacetime globally may be curved. The mathematical formalism

that describes such structures is the differential geometry of manifolds.

In General Relativity, spacetime is assumed to be a 4-dimensional Lorentzian

manifold M equipped with a non-degenerate metric g. We demand that the

connection on the manifold Γ be metric compatible

∇σgµν = 0 (2.167)

and torsion free

T ρ
µν := Γρ

µν − Γρ
νµ − Cρ

µν = 0 (2.168)

where Cρ
µν are the commutation coefficients of the basis vectors [êµ, êν ] = Cρ

µν êρ

(which are vanishing for a coordinate basis êµ = ∂µ). The unique connection

satisfying conditions 2.167 & 2.168 is the Levi-Civita connection, with connection

coefficients

Γρ
µν =

1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) (2.169)

With this specification the connection is not independent from the metric, in fact it

is completely determined by it. Thus in order to determine the intrinsic curvature

of the manifold topology, one needs only specify a metric gµν . Test particles will

then move on geodesics determined by this metric at each point according to the

geodesic equation

d2xρ

dλ2
+ Γρ

µν

dxµ

dλ

dxν

dλ
= 0 (2.170)
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where λ is an affine parameter along the geodesic. The affine parametrization

ensures that tangent vectors are parallel transported along themselves, i.e. if vµ =

dxµ/dλ is a tangent vector, then ∇vv
µ = 0.

Given a connection ∇ on a spacetime manifold M, the Riemann curvature tensor

is the unique tensor field satisfying

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (2.171)

where X, Y and Z are arbitrary smooth vector field on M and [X, Y ] is the Lie

bracket of X and Y which is itself a vector field on M defined by its action on

smooth functions f ∈ C∞(M)

[X, Y ](f) = X(Y (f)) − Y (X(f)) (2.172)

If ∇ is the Levi-Civita connection, the components of the Riemann tensor in a local

coordinate basis {∂µ} are [48]

Rρ
σµν = ∂σΓρ

νµ − ∂νΓρ
σµ + Γρ

σλΓλ
νµ − Γρ

νλΓλ
σσ (2.173)

The Riemann curvature tensor is of fundamental importance to the geometry of

curved spaces and hence General Relativity also, as it essentially measures by how

much a vector field changes when parallel transported around an infinitesimal closed

loop. In a flat space, such a parallel transport would result in a vector that starts and

ends pointing in the same direction, but in curved spaces this is no longer the case.

The Riemann tensor encodes this information and so characterises the curvature of

the manifold.

From the Riemann tensor we may derive other curvature-related objects which

are important to General Relativity. Summation over the ρ and σ indices of the
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Riemann tensor components yields the Ricci-tensor components

Rµν = Rρ
µρν (2.174)

and contraction with the metric defines the Ricci scalar

R = gµνRµν (2.175)

General Relativity can be considered as a field theory of the metric, in which

the goal is, given a spacetime with some particular matter components, how do we

determine the metric and the motion of that matter?

Since the metric gµν is the dynamical variable of General Relativity, we seek

equations of motion that tell us how the metric changes from point to point across the

manifold in response to it’s matter content, and how the matter moves in response

to the geometry of the manifold determined by the metric. The Einstein Field

Equations are usually introduced in the context of Lagrangian mechanics, making

use of the principle of stationary action discussed in section 2.1.1.2. In order to

make use of such a principle, one first needs to determine an appropriate scalar

Lagrangian, that is a function of the metric and it’s derivatives. There is indeed a

subtlety here that we should be aware of. In section 2.1.1 we studied Lagrangains

that were functions of the degrees of freedom on the tangent bundle (qi, q̇i). In that

context we are working with a particle theory, where there are a finite number of

degrees of freedom. General Relativity is a field theory, where we are concerned with

the dynamics of a field which is as function of the degrees of freedom on the tangent

bundle and is defined at every point p ∈ TM . In total there is an uncountably

infinite number of degrees of freedom, but a finite number per point. Thankfully

the variational principle is still well-defined for field theories and there is a natural

generalisation of the Euler-Lagrange equations for field theories. In this section we

are only concerned with the field theory of the metric so we will derive its equation

of motion by considering its variation explicitly.
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The action that produces the Einstein Field Equations (EFEs) in a vacuum is

the Einstein-Hilbert action

S =

∫
d4x

√
−g R (2.176)

When considering the possible actions we could construct, one must consider the fact

that in a neighbourhood of any point p ∈ M, we may construct a locally inertial

set of coordinates xµ̂ in which the metric takes it’s canonical form gµ̂ν̂(p) = ηµ̂ν̂

where η is the Minkowski metric. In particular, these coordinates are the Riemann

normal coordinates at p [48,50]. The Riemann normal coordinates at p are provided

through the exponential map

expp : TpM →M (2.177)

which associates a vector k ∈ TpM with the point γ(1) ∈M where γ(λ) is the unique

geodesic satisfying γ(0) = p and γ′(0) = k. For a sufficiently small neighbourhood

of p, the exponential map exists and is one-to-one [51]. The exponential map thus

defines a set of coordinates

expp(k) = xµ(λ = 1) (2.178)

where xµ(λ) is the unique solution to the geodesic equation 2.170 with tangent vector

kµ at λ = 0. In the Riemann normal coordinates, the connection coefficients at p

are zero, and thus metric compatibility implies the first derivatives of the metric are

zero at p in the Riemann normal coordinates.

∇σgµν = 0 =⇒ ∂σgµν(p) = 0 (2.179)

Thus for any Lagrangian to produce dynamics of the metric, it must be constructed

from at terms at least second order in the metric and it’s derivatives. The Riemann

tensor Rµνσρ plays an important role in this consideration, as it is the only linear,
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non-trivial tensor that can be constructed from the metric and it’s derivatives up to

second order [52]. Thus the Ricci scalar, is the only independent choice for a scalar

constructed from at most second order derivatives of the metric.

Let us now return to the Einstein-Hilbert action, and show that variation

with respect to the metric produces the correct vacuum field equations of General

Relativity. We start with the proposed Einstein-Hilbert action

S =

∫
d4x

√
−gR (2.180)

and consider its variation with respect to the metric. In particular, it is convenient to

vary with respect to the inverse metric components gµν , so that when the functional

derivative δS[g]/δgµν is set equal to zero the resulting equation of motion is in terms

of the metric tensor components gµν .

δS =

∫
d4x δ

(√
−gR

)
=

∫
d4x δ(

√
−g)R +

√
−gδR

(2.181)

Considering first the variation of the metric determinant term

δS1 =

∫
d4x δ(

√
−g)R = −

∫
d4x

1

2
√
−g

δgR (2.182)

the variation of the metric determinant δg with respect to the components δµν

can be obtained by first considering Jacobi’s formula [53] which states the following.

Let A(t) be a differentiable and invertible map from the reals to the space of n× n matrices

A(t) : R → Rn×n then the following holds

(2.183)
d

dt
Det A(t) = (Det A(t)) Tr

(
A−1(t)

d

dt
A(t)

)
(2.184)

We may then define a curve through Rn×n by fixing a n× n matrix B and defining
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the map A(t) = etB. Thus by eq. 2.184 we have

d

dt

[
Det etB

]
=
[
Det etB

]
Tr

(
e−tB d

dt

(
etB
))

=
[
Det etB

]
Tr
(
e−tBet

B

B
)

=
[
Det etB

]
TrB

(2.185)

Since B is a fixed matrix, eq. 2.185 can be viewed as differential equation on the

reals of the function f(t) = Det etB

d

dt
f(t) = (TrB) f(t) (2.186)

with the solution f(t) := Det etB = etTrB. Letting the parameter t = 1 we have

Det eB = eTrB (2.187)

Equation 2.187 can be used to find the variation in the metric determinant, if we

define the matrix M = eB we have

ln [Det M ] = Tr lnM (2.188)

Taking the matrix M to be the metric gµν , we have the infinitesimal variation of

both sides
1

g
δg = gµνδgµν =⇒ δg = ggµνδgµν (2.189)

In eq. 2.189 the variation is with respect to the metric components δgµν . This

can be swapped to a variation with respect to the inverse components simply by

considering that δ(gµνgµν) = 0 and thus gµνδgµν = −gµνδgµν . Therefore we have

the final variation of the metric determinant with respect to the components of the

inverse metric

δg = −ggµνδgµν (2.190)
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We may plug this back into the variation of the action 2.182 & 2.181 to obtain

δS = −
∫
d4x

1

2

√
−ggµνδgµνR +

∫
d4x

√
−gδR (2.191)

The Ricci curvature scalar R is the contraction of the metric tensor and Ricci

curvature tensor R = gµνRµν , and thus the variation δR with respect to the inverse

metric components is simply δR = Rµνδg
µν + gµνδRµν . Thus eq 2.191 becomes

δS =

∫
d4x

√
−g
(
Rµν −

1

2
Rgµν

)
δgµν +

∫
d4x

√
−ggµνδRµν (2.192)

We now need only consider the final term in eq. 2.192

δS2 =

∫
d4x

√
−ggµνδRµν (2.193)

The Ricci curvature tensor is the non-metric contraction of the Riemann curvature

tensor with it’s first and third indices Rµν = Rρ
µρν , with the Riemann tensor given

in terms of the Levi-Civita connection coefficients as

Rρ
µσν = ∂σΓρ

νµ + Γρ
σλΓλ

νµ − ∂νΓρ
σµ − Γρ

νλΓλ
σµ (2.194)

Thus the first order infinitesimal variation of the Riemann tensor with respect to

the Levi-Civita connection coefficients (which are functions of the metric gmu) is

δRρ
µσν = ∂σδΓ

ρ
νµ + Γρ

σλδΓ
λ
νµ + δΓρ

σλΓλ
νµ − ∂νδΓ

ρ
σµ − Γρ

νλδΓ
λ
σµ − δΓρ

νλΓλ
σµ (2.195)

We will now write the variation of the Riemann tensor 2.196 in terms of covariant

derivatives by considering that the infinitesimal variation of the Levi-Civita

connection δΓ(gµν) is in fact the difference between two different connections

δΓ(gµν) = Γ(gµν + δgµν) − Γ(gµν) (2.196)
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Therefore it is a tensor in its own right as it defines a multilinear map from the

space of differential forms and vector field on the manifold M to the reals [32]. As

such, we may take its covariant derivative with respect to Γ(gµν)

∇σδΓ
ρ
µν = ∂σδΓ

ρ
µν + Γρ

σλδΓ
λ
µν − Γλ

σµδΓ
ρ
λν − Γλ

σνδΓ
ρ
µλ (2.197)

from which it is clear that we may write eq 2.196 as

δRρ
µσν = ∇σδΓ

ρ
νµ −∇νδΓ

ρ
σµ (2.198)

Thus the infinitesimal variation of the Ricci tensor can also be written in terms

of covariant derivatives as it is simply the non-metric contraction of the Riemann

tensor over the indices ρ and σ

δRµν = ∇ρδΓ
ρ
νµ −∇νδΓ

ρ
ρµ (2.199)

Finally, we may use this to show that the second term in the variation of the

action eq 2.193 is simply a boundary term. Substituting in eq 2.199 we have

δS2 =

∫
d4x

√
−g gµνδRµν

=

∫
d4x

√
−g gµν

(
∇ρδΓ

ρ
νµ −∇νδΓ

ρ
ρµ

)
=

∫
d4x

√
−g∇ρ

(
gµνδΓρ

νµ − gµρδΓσ
σµ

) (2.200)

where in the final equality we have used metric compatibility of the Levi-Civita

connection as well as relabelled dummy indices. In many cases, specifically those

where the manifold is compact and without boundary, i.e. closed, one can argue

that this final term is zero since by Stokes theorem it is the term inside the bracket

evaluated at infinity where we requite the variations in the metric to be zero. This

will be the case for all manifolds considered in this work but it is worth mentioning

an important subtlety. In the case that the manifold M has a boundary ∂M , this
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boundary term cannot be so easily ignored. If the manifold has a boundary, applying

stokes theorem to eq 2.200 results in terms proportional to the derivatives of the

first order variations of the metric on the boundary, which are not in general zero.

Thus a correction term must be added to the Einstein-Hilbert action 2.180 in order

to cancel these derivative terms, so that the condition δgµν |∂M = 0 is sufficient for

the variational principle to be well defined.

This term is the Gibbons-Hawking-York (GHY) term [54–56]

SGHY = 2

∫
∂M

K (2.201)

where K is the trace of the extrinsic curvature on the boundary. Some contexts

where the GHY term becomes particularly relevant are path integral approaches to

quantum gravity, black hole entropy and transition amplitudes in Loop Quantum

Gravity [57–59]

As we are considering only contexts where the spacetime manifold is compact, the

variational term 2.200 can be set equal to zero and we arrive at the final infinitesimal

variation of the action with respect to δgµν .

δS =

∫
d4x

√
−g
(
Rµν −

1

2
Rgµν

)
δgµν (2.202)

The metric is assumed to be non-degenerate g ̸= 0, so for the infinitesimal variation

of the action to be zero for arbitrary infinitesimal variations of the (inverse) metric

δgµν , we arrive at the vacuum Einstein Field Equations

Rµν −
1

2
Rgµν = 0 (2.203)

Gµν = Rµν −Rgµν/2 is referred to as the Einstein tensor, as such the vacuum EFE’s

read simply

Gµν = 0 (2.204)

The Einstein tensor is a (0,2)-tensor on the 4-dimensional spacetime manifold M,
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and thus has 16 components. The EFE’s define a set of partial differential equations

in the metric, one for each of it’s components. However not all of these components

are independent. by symmetry of the Einstein tensor Gµν = Gνµ, there are actually

6 dependant equations.

One may use the Bianchi identity of the Riemann tensor

∇λRµνρσ + ∇ρRµνσλ + ∇σRµνλρ = 0 (2.205)

to determine that the divergence of the Einstein tensor is everywhere zero as follows.

Contracting the Bianchi identity with gµρ and using metric compatibility gives

∇λRνσ + ∇µRµνσλ + ∇σR
ρ
νλρ = 0 (2.206)

The Riemann tensor is antisymmetric in first two and last two indices Rµνρσ =

−Rνµρσ = −Rµνσρ. Using antisymmetry in the last two indices eq. 2.206 becomes

∇λRνσ + ∇µRµνσλ −∇σRνλ = 0 (2.207)

Contracting once more with gνσ and using antisymmetry if the Riemann tensor in

its first two indices yields

∇µ

(
Rµν −

1

2
gµνR

)
= 0 (2.208)

after relabelling dummy indices. The term in the brackets of eq. 2.208 is the Einstein

tensor Gµν , thus we have the covariant divergence equation

∇µGµν = 0 (2.209)

This constitutes a constraint on the components of the metric, in particular 4

constraint equations.
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Contracting the Einstein tensor with the metric reveals that the vacuum EFE’s

state that the Ricci curvature of the spacetime must indeed be flat

Rµν = 0 (2.210)

This agrees with the intuition of General Relativity, as there is no matter content

present in the spacetime telling it how to curve.

The non-vacuum EFE’s can be derived considering the simple addition of a

matter term SM to the action 2.180

S = SH + SM

=

∫
d4x

√
−g (R + Lm)

(2.211)

where Lm is the matter Lagrangian density. The variation principle, which we write

more precisely as
1√
−g

δS

δgµν
= 0 (2.212)

gives the field equations

Rµν −
1

2
Rgµν = Tµν (2.213)

where we have defined the stress-energy tensor Tµν by

δSM = −
∫
d4x

√
−gTµνδgµν ⇐⇒ Tµν = − 1√

−g
δSM

δgµν
(2.214)

In the second line of equation 2.211 we have implicitly assumed that the matter

content on the spacetime manifold is minimally coupled to gravity. The matter

Lagrangian couples to the metric only through its determinant term in the proper

volume element dV = d4x
√
−g, rather than through higher order interactions which

would involve couplings to the curvature tensors.
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As an example consider the case of a scalar field minimally coupled to gravity

as described above. The total action which describes both the gravitational and

matter sectors of the theory is

S =

∫
d4x

√
−g
[
R +

(
1

2
∇µϕ∇µϕ− V (ϕ)

)]
(2.215)

where the matter Lagrangian of the scalar field with potential V (ϕ) is

Lm =
1

2
∇µϕ∇µϕ− V (ϕ) (2.216)

If one considers the case in which the global spacetime metric is Minkowski ds2 =

−dt2 + dx2 and the covariant derivatives become partial derivatives ∇µ = ∂µ, the

variational definition of the stress-energy tensor 2.214 leads to the familiar stress-

energy of a relativistic scalar field 1 [60, 61].

Tµν = − 1√
−g

δSM

δgµν
=

1

4
gµν∂

σϕ∂σϕ− 1

2
∂µϕ∂νϕ− 1

2
V (ϕ)gµν (2.217)

As we have introduced a matter field ϕ into the theory, there will also be a

variational principle associated with this field

1√
−g

δS

δϕ
= 0 (2.218)

The gravitational sector of the theory SH is not coupled directly to the field, and

thus the variation with respect to the matter field involves only minimally coupled

matter action

δS = δSM =

∫
d4x

√
−g δLm(ϕ, ∂µϕ) (2.219)

1In this work we use units of 16πG = 1, in literature which is more concerned with making the
low-energy agreement with Newtonian gravity more apparent this factor is often left in and the
stress-energy tensor is defined with an additional factor of 2 so that the EFE’s read Gµν = 8πGTµν

75



which results in a relativistic wave equation for a scalar field

□ϕ = −dV (ϕ)

dϕ
(2.220)

where □ = ∂µ∂µ is the d’Alembertian derivative operator in Minkowski space. In

the general case, where we introduce a set of minimally coupled field ϕa on the

spacetime manifold with metric gµν one has the action

S =

∫
d4x

√
−g R +

∫
d4
√
−gLm(ϕa,∇µϕa) (2.221)

one has the Einstein Field Equations as defined in eq 2.213, with stress-energy tensor

as defined in eq 2.214 and the generalised Euler-Lagrange field equation

∇µ

(
∂Lm

∂(∇µϕa)

)
− ∂Lm

∂ϕa

= 0 (2.222)

We showed previously that the covariant divergence of the Einstein tensor is zero as

per eq. 2.209. This is due to the symmetry relations of the Riemann tensor, which

can be traced back to properties of the Levi-Civita connection 2. The vanishing

covariant divergence of the Einstein tensor holds regardless of whether we include

a matter term in the action or not, thus on-shell we must also have a vanishing

divergence of the stress-energy tensor

∇µTµν = 0 (2.223)

which should not come as a surprise, as it is the statement of local conservation

of energy-momentum generalised to a curved spacetime manifold. Importantly,

equation 2.223 states that energy-momentum is conserved only locally, not glob-

ally. Global energy conservation is associated with a Noether symmetry in time

translation. The stress-energy tensor is defined on a geometry with a (potentially)

2In fact, for any torsion-free connection one has the required symmetry properties of the
Riemann tensor to enforce a vanishing covariant divergence of the Einstein tensor
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time varying metric, thus such a Noether charge does not generally exist globally.

The stress-energy tensor is associated with the matter content that exists in the

spacetime, and does not represent a stress-energy associated with the gravitational

field itself. In the context of special relativity, we need only account for the stress-

energy of the matter content, as the background is non-dynamical as well as flat

which leads to a well defined notion of globally conserved energy. In a Cartesian

coordinate system on the Minkowski spacetime of special relativity, the Christoffel

symbols of the Levi-Civita connection are zero and so we may express the global

conservation of stress-energy through ∂µT
µν = 0. But in the context of General

Relativity, the background geometry is itself dynamical but there is no natural

way to isolate the dynamical sector of the metric, and so one can’t talk about a

well-defined gravitational stress-energy. The stress-energy of the matter field T µν

really represents an incomplete picture if one wishes to account for both the matter

fields and the gravitational field. The statement of only having local conservation

of energy can be physically interpreted as the curvature of spacetime doing work

on the matter content. In sufficiently small regions of spacetime, this amount of

work is negligible and one has approximate conservation of energy, but over larger

regions, the capacity of the curvature to do work on the matter content becomes

significant. We shall see in section 2.2.3.2 that a physically observable consequence

of this is that of cosmological redshift. We will return to the statement of local

energy conservation in GR after a discussion of symmetries.

2.2.1.1 Symmetries and Killing Vectors

The spacetime of General Relativity really consists of a pair (M, g) of a manifold

equipped with a Lorentzian metric g, since the manifold topology exists independent

of the metric we equip it with. General Relativity insists on the general covariance

of physical laws, in the sense that we are really concerned with an equivalence class

of spacetimes (M, g) ∼ (M′, g′) that are isometric to each other.
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This means that there exists a diffeomorphism ϕ : M → M′ whose pullback

maps g into g′

ϕ∗g = g′ (2.224)

Consider a 1-parameter group of diffeomorphism ϕt : M ×R →M , where the index

t ∈ R labels a the continuous group parameter. One can think of the diffeomorphism

as defining a curve through the manifold M as such. For a fixed p ∈ M, ϕt(p) maps

from the point p to another point in the manifold in a smoothly varying way with

the group parameter t. The diffeomorphisms form a group with identity element

ϕ0(p) = p. Hence ϕt(p) : R → M defines a curve on the manifold. Choosing

local coordinates xµ at p, we may then define a tangent vector to the curve in the

coordinate basis ∂µ

vp =
dxµ

dt
∂µ

∣∣∣∣
p

(2.225)

Specifically, this is an element of the tangent space at p, TpM, the set of all tangent

vectors at p. We define the tangent vectors in terms of their operation on smooth

functions

vp(f) = v(f)|p ∀f ∈ C∞(M) (2.226)

where v ∈ Vect(M), the space of vector fields on M which is spanned by the

orthogonal coordinate basis {∂µ}. A detailed exposition of tangent vector spaces

can be found in [32].

Just as a 1-parameter family of diffeomorphisms defines a smooth vector field,

the converse argument is also true. Given a smooth vector field v on the manifold,

one can construct a local coordinate system at p such that there exists a unique

solution to the integral curve equation of v passing through p at t = 0, so the vector

field generates a flow ϕt. Thus each diffeomorphism ϕ is associated with a vector

field v which is the infinitesimal generator of the transformation.
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The case of particular interest is that of isomorphism, where the pullback of any

element in the group of diffeomorphisms is a symmetry of the metric

ϕ∗
tg = g (2.227)

In this particular case, the associated vector field is called a Killing vector field ξ.

Since the metric is invariant under the flow ϕt, the Lie derivative along the Killing

vector field is zero

Lξgµν = lim
t→0

(
ϕ∗
tgµν − gµν

t

)
= 0 (2.228)

Equation 2.228 is true by virtue of the Killing vector field being a generator of

an isomorphism (equivalently by ϕt being a group of isomorphisms which defines a

vector flow ξ) and by writing out the Lie derivative in component form one may

show that a vector field ξ is a Killing vector field if and only if it satisfies Killings

equation, which we derive as follows.

For an arbitrary (k, r)-tensor field T on a manifold, the Lie derivative of T along

a vector field v is

LvT
a1...ak
b1...br

= vc∇cT
a1...ak
b1...br

− T c...ak
b1...br

∇cv
a1 − T a1c...ak

b1...br
∇cv

a2 − ...− T a1...c
b1...br

∇cv
ak

+ T a1...ak
c...br

∇b1v
c + T a1...ak

b1c...br
∇b2v

c + ...+ T a1...ak
b1...c

∇brv
c

(2.229)

The metric tensor is a type (0,2) tensor, and thus its Lie derivative along the vector

field ξ associated with the group of isometries ϕt in component form is

Lξgµν = ξσ∇σgµν + gσν∇µξ
σ + gµσ∇νξ

σ (2.230)

The connection in equation 2.229 is only required to be torsion free, but we are

considering the context of a spacetime manifold with a Levi-Civita connection which
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is both torsion free and metric compatible, so equation 2.230 simplifies to

Lξgµν = ∇µξν + ∇νξµ (2.231)

Since the Killing vector field is the generator of a group of isometries, the Lie drag

of the metric along it is zero as per eq. 2.228, and thus it’s components in a local

coordinate basis ∂µ must satisfy

∇µξν + ∇νξµ = 0 (2.232)

Equation 2.232 is known as Killings equation. A vector field is a Killing vector

field if and only if it satisfies Killings equation, we have proved the statement in

one direction above and the converse can be shown trivially. Killing vectors are an

important practical and conceptual tool when looking for solutions of the EFEs.

As we mentioned, Killing vectors are associated with symmetries of the metric.

Symmetries in physics come hand in hand with conserved quantities, and represent

a redundancy in the description of the physical system we are modelling. In general,

a spacetime may have no symmetries, there is no apriori reason for them to exist.

But in the case that a (or possibly many) Killing vector field does exist on the

spacetime, they satisfy a number of useful properties.

Firstly, given a Killing vector field ξ on a spacetime, one may always find a local

coordinate system xµ which is adapted to the Killing vector such that ξ = ∂µ∗ where

xµ∗ is a fixed coordinate in the system [48]. In such an adapted coordinate system,

the metric can be shown to be independent of xµ∗ as follows.

Using metric compatibility, Killings equation 2.232 can be written in the form

gνσ∇µξ
σ + gµσ∇νξ

σ = 0 (2.233)

In the adapted coordinate system the Killing vector field components are ξσ = δσµ∗,

where the µ∗ index is fixed.
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Thus the covariant derivative terms are

∇µξ
σ = ∂µξ

σ + Γσ
µνξ

ν

= ∂µδ
σ
µ∗ + Γσ

µνδ
ν
µ∗

= Γσ
µµ∗

(2.234)

and Killings equation 2.233 becomes

gνσΓσ
µµ∗ + gµσΓσ

νµ∗ = 0 (2.235)

At which point we can use the explicit form of the Christoffel symbols given in eq.

2.169 to determine

gνσΓσ
µµ∗ =

1

2
gνσg

σρ (∂µgµ∗ρ + ∂µ∗gµρ − ∂ρgµµ∗)

=
1

2
(∂µgµ∗ν + ∂µ∗gµν − ∂νgµµ∗)

(2.236)

Thus equation 2.235 finally reduces to

∂µ∗gµν = 0 (2.237)

which is true if and only if the metric components gµν are independent of xµ∗. We

have shown here that given a Killing vector field, there exists a local coordinate

system in which the metric is independent of a particular fixed coordinate, the

converse is also true. One can show trivially that if ∂µ∗gµν = 0 for some particular

coordinate xµ∗, then the vector ξ = ∂µ∗ satisfies Killings equation, which is a

necessary and sufficient condition for being a Killing vector field on the spacetime

manifold.

Killing vector fields, should they exist on the spacetime in question, allow us

to define conserved quantities along geodesics. Consider a spacetime (M, g) with

Killing vector field ξ and let γ(λ) be a geodesic on the spacetime with tangent vector

vµ(λ).
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Consider the quantity

vµ∇µ (ξνvν) = vµvν∇µξν + ξνv
µ∇µv

ν (2.238)

Geodesics by definition are those curves whose tangent vectors are parallel trans-

ported vµ∇µv
ν = 0 thus the second term in eq. 2.238 is zero. The second term is also

zero by the symmetry of Killings equation, thus we are left with the conservation

equation, satisfied along the geodesic γ(λ)

vµ∇µ (ξµvµ) = 0 (2.239)

In this sense we can understand the existence of a Killing vector field as generating

a conserved quantity for observers moving along through the spacetime in geodesic

motion. At this point it is appropriate to return to the stress-energy tensor Tµν .

The stress-energy is conserved locally as it must satisfy ∇µT
µν = 0, but it is not in

general possible to define a globally conserved energy. However, when there exists

a timelike killing vector, one can define the current

Jµ = T µνξν (2.240)

Calling E the integral of this current over a spacelike hypersurface Σ one has .

E =

∫
Σ

√
|γ|nµJ

µ (2.241)

where γ is the metric induced on the hypersurface by the spacetime metric g and

nµ is the unit normal to the spacelike hypersurface. At this point Stokes theorem

can be invoked (particularly as the hypersurface is not null and thus there exists a

well defined natural volume element on Σ) to write the quantity E as an integral of

a 4-divergence over the volume enclosed by the hypersurface V

E =

∫
V
d4x

√
−g∇µJ

µ (2.242)
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The 4-divergence of the current may be calculated explicitly from the properties of

the stress-energy tensor and the Killing vector field

∇µJ
µ = T µν∇νξmu+ ξν∇µT

µν = 0 (2.243)

Equation 2.243 implies that the quantity we have defined as E, which can be

interpreted as a total flux of the current Jµ passing through V , will be zero regardless

of the choice of spatial hypersurface Σ. Thus, given a timelike Killing vector field

on the spacetime, it is possible to construct a globally conserved quantity from the

stress-energy tensor.

The existence of a Kiliing vector field on a spacetime is not guaranteed but

it is possible to determine the maximum possible number of linearly independent

Killing vector fields on a spacetime by determining a well-defined system of ODEs

the Killing vector field components must satisfy. In equation 2.171 we gave the

coordinate-independent definition of the Riemann tensor given a connection ∇ on

the spacetime manifold. Choosing a local coordinate basis {∂µ}, the components of

the Riemann tensor R ρ
µνσ satisfy

∇µ∇νvσ −∇ν∇µvσ = R ρ
µνσ vρ (2.244)

where vρ are the components of an arbitrary smooth vector field v. Equation 2.244

may be applied to a Killing vector field and Killings equation can be used to swap

the µ and σ indices on the second term at the expense of a minus sign.

∇µ∇νξσ + ∇ν∇σξµ = R ρ
µνσ ξρ (2.245)

By permuting the set of indices (µ, ν, σ) one can determine the relation

2∇ν∇σξµ =
(
R ρ

µνσ +R ρ
νσµ −R ρ

σµν

)
ξρ (2.246)
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The components of the Riemann tensor satisfy anti-symmetry relation

3!R ρ
[µνσ] = R ρ

µνσ −R ρ
νσµ +R ρ

σµν = 0 (2.247)

Invoking these symmetry relations and relabelling indices, equation 2.246 becomes

∇µ∇νξσ = −R ρ
νσµ ξρ (2.248)

Equation 2.248 constitutes a system of partial differential equations for the

components of a Killing vector field. In the theory of PDEs, this system of equations

has at most one solution, provided that the functions R ρ
µνσ are suitably smooth.

To find such solutions one needs two pieces of initial data at a point p ∈ M,

the value of the Killing vector field ξ(p) and the value of the covariant derivative

(∇µξν) (p). Thus any Killing vector field will be uniquely determined by a point in

the space of initial data at p, (ξµ,∇µξν)p. Thus the maximum possible number

of linearly independent Killing vector fields possible on the spacetime manifold

will be the dimension of this space. If the spacetime were of dimension n, then

there would be n linearly independent components of a given killing vector, and

since the covariant derivative ∇µξν is antisymmetric by Killings equation, it has

1
2
n(n− 1) independent components. Therefore the dimension of the space of initial

data is n + 1
2
n(n − 1) = 1

2
n(n + 1). Thus this is the maximum possible number of

linearly independent Killing vector fields on a spacetime of dimension n. Maximally

symmetric spacetimes are those spacetimes with the maximum number of Killing

vector fields.

A final important property of Killing vector fields is that they form a Lie algebra

on the manifold. A Lie algebra [53] is a vector space v equipped with a bilinear map

[·, ·] : v × v → v satisfying the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z,∈ v (2.249)
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Given a set of m linearly independent killing vectors ξk on a spacetime manifold,

one can show trivially that the Lie drag of the metric along the commutator of two

Killing vector fields is zero

L[ξk,ξr]gµν = 0 (2.250)

Recalling that Killing vector fields generate isomorphims of the metric, for which

the Lie drag is zero as per eq. 2.228, we see that the commutator [ξk, ξr] is itself a

Killing vector field. Therefore the set of all linearly independent Killing vector fields

on a spacetime manifold of dimension n, should they exist, form the basis of a Lie

algebra of dimension N bounded by

0 ≤ N ≤ 1

2
n(n+ 1) (2.251)

We may then apply the standard theory of Lie algebras to the Killing vector fields,

if we are able to find them. In particular, since the Lie bracket [·, ·] is closed, we

may write the commutator of any two elements of the Killing vector Lie algebra in

terms of structure constants Cc
ab.

[ξa, ξb] = Cc
abξc (2.252)

2.2.2 Homogeneous and Isotropic Cosmological Spacetimes

In section 2.2.1 we developed the basic Lagrangian formalism of General Relativity,

arriving at the Einstein Field Equations which describe the evolution of the

spacetime geometry and the dynamics of matter fields that exist on the spacetime

Rµν −
1

2
Rgµν = Tµν

∇µT
µν = 0

(2.253)

These equations represent a complicated set of coupled partial differential equations

for components of the metric gµν and the matter fields introduced through the
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stress-energy tensor as defined in equation 2.214, which requires a specific choice

of matter Lagrangian. In general the Einstein Field Equations cannot be solved

analytically, one needs to impose more information about the underlying spacetime

and matter field (if they are present) in order to look for solutions. If we hope to be

able to describe the dynamical evolution of our universe through the framework of

General Relativity, we must appeal to observational evidence as a means to inform

further assumptions about the spacetime geometry. At this point one can then look

for solutions to the EFEs that describe the evolution of the universe under such

assumptions and search for predictions that may be tested against observational

data. One of the most significant observations in cosmology is the existence of the

Cosmic Microwave Background (CMB), thermal radiation present everywhere in the

universe that has been measured at a temperature of approximately T = 2.7K [62].

The CMB contains only very small anisotropies, on the order of δT ∼ 10−5 [63],

on large cosmological scales the correlator of fluctuations in the temperature field

is approximately invariant under rotations. In fact a proportion of these small

anisotropies can be explained by the fact that there is only one frame in which the

entire universe looks isotropic. The frame of an observer on Earth is not exactly at

rest relative to the CMB frame and therefore we observe small dipole anisotropies

resulting from the Doppler shifting of it’s blackbody spectrum [64–66].

Although an observer on Earth measures CMB anisotropies from a particular

frame of reference, there is no reason to believe that this is a preferred frame of

reference of the universe. This is the Copernicun principle , that no observer

inhabits a privileged reference frame. Thus is there is good reason to believe that

if the universe is approximately isotropic on cosmological scales as measured on

Earth, then it should also be so at any point in the universe. A universe that is

spatially isotropic at every point must also be spatially homogeneous. Given that

the temperature fluctuations of the CMB are so incredibly small, it is feasible that

the matter content of the universe is smoothed out on cosmological scales and the

spacetime is approximately homogeneous. These two assumptions, that the universe
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should be approximately homogeneous and isotropic on sufficiently large scales form

the Cosmological Principle .

Assuming that the Universe is spatially homogeneous and isotropic allows us to

greatly reduce the space of allowed solutions to the Einstein Field Equations, and in

fact find explicit solutions. Before doing so, should first develop a formal notion of

spatial homogeneity and isotropy of the spacetime manifold. Qualitatively, spatial

homogeneity means that metric on spatial slices looks the same at any point. We

recognise this as a symmetry of the (spatial metric) which we discussed in section

2.2.1.1. We define a spatially homogeneous spacetime (M, g) as one which may

be foliated into spatial hypersurfaces M = R × Σt, labelled by a single parameter

t ∈ R. Such that ∀ p, q ∈ Σt there exists an isometry ϕt for which ϕt(p) = q. This

statement of homogeneity tells us essentially that on any of the spatial hypersurfaces

Σt, there exists an smooth, invertible map which takes us from any point p ∈ Σt to

any other point q ∈ Σt and leaves the metric looking the same at the new point q.

The statement of spatial isotropy concerns, qualitatively, the geometry of spacetime

looking the same under rotations. Formally we define a spatially isotropic spacetime

(M, g) as one for which, given any point p ∈ M and unit spacelike vectors in the

tangent space v, w ∈ TpM, there exists an isometry ϕ such that ϕ(p) = p and

ϕ∗(v) = w where ϕ∗ is the pushforward of ϕ. In other words, there is a symmetry

transformation of the metric that maps p into itself but rotates one vector in the

tangent space TpM into another.

With these requirements of spatial homogeneity and isotropy, one can show that

the spatial geometry must be one of constant curvature. Thus the problem simply

reduces to finding those spatial geometries. There will exist an isomorphism between

any two geometries of the same constant curvature (as long as the manifolds are of

identical dimension and metric signature). Thus all of the spatial geometries are in

fact already known. For positive curvature, the isomoprhism is to the geometry of
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the 3-sphere, whose metric is

ds2 = dψ2 + sin2 ψdθ2 + sin2 ψ sin2 θdϕ2 (2.254)

and we refer to the manifold as closed FLRW which has the topology of R× S3.

For zero curvature, the spatial geometry is isomorphic to flat 3-Euclidean space with

metric

ds2 = dx2 + dy2 + dz2 (2.255)

with the simple topology of R3, which we call flat FLRW . For negative curvature,

the geometry is isomorphic to a 3-hyperboloid with metric

ds2 = dψ2 + sinh2 ψdθ2 + sinh2 ψ sin2 θdϕ2 (2.256)

and the manifold is referred to as open FLRW . The geometries are in fact the

maximally symmetric geometries with constant curvature.

Assuming that we must satisfy the cosmological principle, one can write the full

spacetime metric as

ds2 = −dt2 + a2(t)dΣ2 (2.257)

where a2(t) is an arbitrary positive function of the timelike coordinate and dΣ2 is

the metric on the spatial slice. The conditions of homogeneity and isotropic require

dΣ2 to be either flat, closed or open, each of which corresponding to constant zero,

positive or negative curvature respectively. In each of these three cases, the spatial

metric can be written in terms of polar coordinates (r, θ, ϕ) and a scalar curvature

parameter k = 0, 1,−1 corresponding to each of the three cases.

dΣ2 =
1

1 − kr2
dr2 + r2dΩ2 (2.258)

where dΩ2 is the metric on S2 and ψ and r are related through the coordinate
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transformation

dψ =
1√

1 − kr2
dr (2.259)

The metric of eq. 2.258 is referred to as the Friedman-Lemâıtre-Robertson-Walker

(FLRW) metric. It describes three spacetimes with distinct spatial topologies. The

overall geometry is also dependant on an undetermined the scalar function a(t),

referred to as the scale factor. Understanding the significance of the scale factor

is of fundamental importance in homogeneous cosmological models and we will

discuss it at length shortly. The coordinates (r, θ, ϕ) are referred to as the comoving

coordinates. Given this specific anszat for the metric, in terms of a curvature

parameter k and an undetermined scale factor a(t), we may write down explicitly

the Einstein Field Equations, which will turn out to be a set of ordinary differential

equations for a(t) and any matter fields we choose to introduce.

Given the form of the metric

ds2 = −dt2 + a2(t)

[
1

1 − kr2
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
(2.260)

one may compute the non-zero components of the Ricci tensor

Rtt = −3
ä

a

Rrr =
aä+ 2ȧ2 + 2k

1 − kr2

Rθθ = r2
(
aä+ 2ȧ2 + 2k

)
Rϕϕ = r2

(
aä+ 2ȧ2 + 2k

)
sin2 θ

(2.261)

and the Ricci scalar

R = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
(2.262)
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At this point we also note that, following our discussion of Killing vector fields in

section 2.2.1.1, we see that in this set of local coordinates the metric is independent

of ϕ, therefore ξ = ∂ϕ will be one of the Killing vector fields of this spacetime. This

is vector field which we associate with generating a conserved angular momentum

along the geodesic of an observer.

At this point we stop to discuss a further modification of the Einstein-Hilbert

action that should be considered when discussing cosmological solutions. It is well

understood that when measuring, say the energy of a system, only relative changes

in the energy of the system are measurable. These are changes with respect to some

ground state. This is manifest in both classical Newtonian mechanics and quantum

mechanics. In Newtonian mechanics one may define the zero of the potential energy

arbitrarily with no effect to the equations of motion. A foundational result of

quantum mechanics is that when solving the Schrodinger equation for the states of

a quantum harmonic oscillator, the energy eigenstates become discretely quantized

with a constant non-zero vacuum state energy. It is not unreasonable to ask if

there is a vaccum energy present in spacetime that may contribute to its dynamics.

In fact it is this vaccuum energy term that Einstein added to the gravitational

action after first publishing his theory of General Relativity. At the time of Einstein

publishing his General Theory of Relativity, there was no evidence to suggest that

the universe on cosmological scales was anything other than static in time. Einstein

initially looked for such static solutions of the gravitational field equations but the

field equations predicted a spatial geometry that could change with time through

the scale factor a(t). Einstein looked for static solutions to the field equations by

adding a constant parameter Λ to the action as such [67]

SEH → 1

16πG

∫
d4x

√
−g (R− 2Λ) (2.263)

where we have reinserted factors of 16πG in order to make better contact with the

standard literature.
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With the addition of the constant term Λ, called the cosmological constant the

Einstein Field Equations become

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (2.264)

It is reasonable to ask if the cosmological constant Λ is equivalent to an energy

density. If one considers the stress-energy of a perfect fluid with normalised 4-

velocity uµ, constant pressure pvac and constant energy density ρvac

T vac
µν = ρvacuµuν + pvac(uµuν + gµν) (2.265)

Letting the pressure be the negative of the energy density pvac = −ρvac, the EFEs

with no cosmological constant would be

Rµν −
1

2
Rgµν = 8πG (Tµν − ρvacgµν) (2.266)

which can be rearranged to give

Rµν −
1

2
Rgµν + 8πGρvacgµν = 8πGTµν (2.267)

Clearly this is equivalent to a cosmological constant term. Thus one can define the

vacuum energy associated with a cosmological constant as

ρΛ =
Λ

8πG
(2.268)

As we have mentioned, Einstein originally introduced the cosmological solution

to produce a static universe. If one considers the vacuum case of the Einstein Field

Equations with cosmological constant 2.264, Looking at the Rtt component we have

Rtt −
1

2
Rgtt + Λgtt = 0 =⇒ 3

(
ȧ

a

)2

+
3k

a2
= Λ (2.269)
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Thus a static solution for which ȧ = 0 is possible if

k

a2
=

1

3
Λ =

8

3
πGρvac (2.270)

In the case of a zero cosmological constant, and thus zero vacuum energy density,

the spatial topology is that of flat Euclidean space with the global spacetime being

Minkowskian. If the cosmological constant is positive one has a closed universe with

S3 spatial topology. And finally with a negative cosmological constant the spacetime

is open with the spatial topology of a 3-hyperboloid.

2.2.2.0.1 The Hubble Parameter Shortly after Einstein published his static

universe Edwin Hubble presented highly convincing evidence that the universe was

not static and that it was in fact expanding [68]. Through observing the red shift

of distant comoving galaxies, Hubble determined that their radial velocities were

proportional to their proper distance. If the spacetime is allowed to be non-static,

the proper distance between a local observer and a comoving galaxy is D(t) = a(t)R

where R is the comoving distance, which is constant time assuming that the observer

and the galaxy are indeed truly comoving. In the frame of the observer, the galaxy

is thus seen to be moving at a velocity

v = Ḋ = ȧR + aṘ = ȧR

=
ȧ

a
D

(2.271)

The function H(t) = ȧ/a appears frequently with some of the relevant quantities

we have calculated, in particular the scalar curvature R. H(t) is known as the

Hubble parameter and arguably one of the most important quantities in cosmology.

Simply by inspection one can see that the Hubble parameter represents a normalised

measure of the universes expansion H(t) ∼ ȧ. As we shall see shortly, the FLRW

universe is insensitive to a rescaling of its size, and thus the magnitude of a(t) is

of no physical significance. As such it is conventional to define a(t0) = 1, where
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t0 is present day time of an observer on Earth. The time scales over which we

make observations on Earth are negligibly small within the context of cosmological

timescale, so it is appropriate to consider the Hubble parameter measured in recent

years (since the start of modern cosmological observations) as a constant. Thus

we define the Hubble constant as H0 = ȧ(0). General Relativity is therefore able

to predict a linear relationship between the velocity of a comoving galaxy and its

proper distance to the observer as equation 2.271 becomes

v = H0D (2.272)

Equation 2.272 is known as Hubbles Law. In the 2022 publication of data collected

from the Hubble Space Telescope, the value of the Hubble constant was determined

to be H0 = 73.30±1.04km s−1 Mpc−1 [69,70]. There are however large discrepancies

in the measured values of the Hubble constant from different experiments, this

is known as the “Hubble Tension” [71–73]. In particular there is a statistically

significant discrepancy between the value of the Hubble parameter measured directly

though local methods, and the value of the Hubble parameter inferred through fitting

the free parameters of the ΛCDM model to the CMB power spectrum. The Hubble

tension will be discussed further in section 2.2.7 after having covered appropriate

background material.

2.2.2.1 The Friedmann Equations

We will now proceed to analyse the equations of motion for a homogeneous and

isotropic universe filled with a perfect fluid. As we have discussed in section 2.2.2,

such spacetime manifolds are equipped with the FLRW metric 2.260 from which

one derives the non-zero components of the Ricci tensor 2.261 and the Ricci scalar

2.262, repeated here for convenience.

93



Rtt = −3
ä

a

Rrr =
aä+ 2ȧ2 + 2k

1 − kr2

Rθθ = r2
(
aä+ 2ȧ2 + 2k

)
Rϕϕ = r2

(
aä+ 2ȧ2 + 2k

)
sin2 θ

(2.273)

R = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
(2.274)

Recall that the stress-energy tensor of a perfect fluid with energy density ρ,

pressure p and normalised 4-velocity uµ = (1, 0, 0, 0) can be written as Tµν = ρuµuν+

p(uµuν + gµν), as such the non-zero components are

Ttt = ρ

Tii = pgii = pa2(t)γii (no summation over i)
(2.275)

where the Latin index i runs over spatial coordinates and γij is the scale-free part

of the induced metric on spatial slices Σt. The total (matter) stress-energy tensor

will be a linear combination of contributions from different classifications of matter.

In this case one may write

ρ =
∑
i

ρi

p =
∑
i

pi

(2.276)

where the summation index in equation 2.276 refers to summation over the

contributions from different matter fields, not the coordinate indices. We will treat

the cosmological constant as entering into the Einstein Field Equations through the

contribution of a perfect fluid with ρΛ = −pΛ.
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Thus considering all non-zero components of the EFEs

Rµν −
1

2
Rgµν = 8πGTµν (2.277)

one has the following equations of motion from the non-trivial Einstein Field

Equations.

tt :

(
ȧ

a

)2

+
k

a2
=

8πG

3
ρ

ii : 2
ä

a
+

(
ȧ

a

)2

+
k

a2
= −8πGp

(2.278)

The tt equation may be used to eliminate the first derivative term H2 term and the

intrinsic curvature term proportional to k in the ii equation of 2.278, resulting in

the Friedmann equations. (
ȧ

a

)2

+
k

a2
=

8πG

3
ρ

ä

a
= −4πG

3
(ρ+ 3p)

(2.279)

To summarise what we have established thus far. A homogeneous and isotropic

spacetime filled with a perfect fluid (or many perfect fluids, each contributing linearly

to the overall matter stress-energy) is described in terms its scale factor a(t) and

constant spatial curvature. Simply by inspecting the Friedmann equations, one can

see that the overall size of the scale factor has no effect on the dynamics of the

spacetime. Rescaling a(t) by a positive scalar multiple a→ λa leaves the equations

of motion invariant. One particular subtly arises related to the spatial curvature

k. In the case k ̸= 0 one may think that the equations of motion are not invariant

under a rescaling of a(t) due to the k/a2 term in the first equation of 2.279. However

not that only the sign of k is meaningful, it determines which of the three distinct

spatial topologies the spacetime manifold possesses. It’s magnitude is always taken

to be 1, 0,−1 and therefore the rescaled term λk/a2 is equivalent to k′/a2 where

k′ = 1, 0,−1. Therefore the Friedmann Equations truly are insensitive to the overall

scale of the universe.
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We have already mentioned the Hubble parameter, as well as this the first

Friedmann equation of 2.279 may be used to define some important cosmological

parameters known as the density parameters. The first Friedmann equation may be

written in the form
k

H2a2
=

8πG

3H2
ρ− 1 (2.280)

We define a quantity called the critical density ρc as

ρc =
3H2

8πG
(2.281)

and define the density parameters Ωi as the ratios ρi/ρc. Equation 2.280 becomes

k

H2a2
= Ω − 1 (2.282)

where Ω =
∑

i Ωi is the total density parameter. In this form the interpretation of

the critical energy density is clearer. It is the total energy density of the universe

that enforces flat spatial curvature i.e. if ρ = ρc we must have k = 0. Finally, we

treat the spatial curvature term as equivalent to a density parameter term, although

it is important to mention that this is simply a convenience, and that this does

not represent an energy density associated with the gravitational field. Defining the

curvature density parameter as Ωk = k/H2a2, the first Friedmann equation becomes

Ωk = Ω − 1 (2.283)

The density parameters are not only important because they represent the matter

content in spacetime and thus are a necessary piece of information in determine the

evolution of the spacetime geometry, but because the from the value of Ω one can

determine the spatial topology of the manifold. As we have shown, the cosmological

principle restricts us to 3 distinct and fixed spatial topologies. If one has for the

overall energy density ρ > ρc, the clearly from equation 2.283 and the definitions

of the density parameters k > 0 and thus the spacetime is closed with spatial S3
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topology. By the same reasoning, if ρ = ρc the spacetme is flat and if ρ < ρc the the

spacetime is open with 3-hyperboloid spatial topology.

As well as the Friedmann equations we also have the local conservation of the

stress-energy tensor ∇µT
µν = 0, taking the ν = t component we have

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (2.284)

At this point it is useful to discuss some basic classifications used to describe the

cosmological matter content. In particular, consider in the case in which there

is a dominant contribution to the stress-energy tensor from one type of matter

(i.e. photons, relativistic or non relativistic massive particles), and that all other

contributions are negligible. Typically we assume a linear “equation of state”, the

relationship between the perfect fluids pressure and energy-density.

p = wρ (2.285)

where the state parameter w is usually assumed to be constant, as we shall do in

this work. In this case the conservation equation 2.284 becomes

ρ̇ = −3Hρ(1 + w) (2.286)

since we assume the only significant contribution to the overall stress-energy is from

one source with p = wρ. Recalling the definition of the Hubble parameter H = ȧ/a,

equation 2.286 can be written in the more enlightening form

1

ρ
ρ̇ = −3(1 + w)

ȧ

a
(2.287)

This is a simple ODE to which there clearly exists an exact solution

ρ(t) = ρ0a(t)−3(1+w) (2.288)
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where ρ0 is a constant. In particular it is a well known result that a photon gas

confided to, and in thermal equilibrium with, a box exerts a pressure equal to 1

third of it’s energy density [74]. If one considers the spacetime to be dominated

by a perfect fluid with such state parameter w = 1/3, the energy density will

scale with a−4 as per equation 2.288. One may expect that the energy density of

such a “radiation dominated” universe would scale with a−3, since the photons

are essentially confined to a box of length L ∼ a(t) and would therefore form

stationary waves of wavelength λn = a/nπ. But the spacetime itself is expanding

(or contracting depending on the sign of ȧ) and as we have mentioned in section

2.2.1, the gravitational field has the capacity to do work on the photons. The

photon wavelengths are stretched out along with the scale factor and they become

cosmologically redshifted. The cosmological redshift of photons shall be discussed

in more detail in section 2.2.3.2.

Another basic classification of matter that is often considered is that of dust. In

the late universe, on cosmological scales the matter content of the universe can be

approximated as consisting of uniformly spread out structures such as galaxies, or

clusters thereof. If one considers the perfect fluid filling the spacetime to be primarily

dominated by slow moving, massive “dust” particles that exert approximately zero

pressure, then clearly the state parameter w = 0. Thus from equation 2.288 we

see that the energy density scales with a−3. In contrast to the case of a radiation

dominated energy density, this agrees with our naive intuition. If the total number of

matter particles is held fixed during expansion of the spacetime, the number density

will scale as a−3 and thus the total energy density also scale in the same manner.

At the start of this section we decided to treat the vacuum energy contribution

as equivalent to a perfect fluid with ρΛ = −ρΛ. Clearly this corresponds to a state

parameter w = −1, for which the vacuum energy density does not scale with a(t)

at all, in fact it is constant ρΛ = ρ0 as we should expect from a vaccuum energy.

We have considered thus far three situations in which the matter content of the

universe is approximated as having only a single non-negligible contribution from a
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perfect fluid with state parameter w. The cases of w = 1/3, 0,−1 are referred to

as radiation dominated , dust/matter dominated and vacuum dominated

respectively. One could also consider the a case in which the energy density of the

universe is dominated by the contribution from the spatial curvature term. Recall

that we defined a density parameter related to the curvature term in analogy to

the matter density parameters Ωi = ρi/ρc. In this fashion we may define an energy

density term associated with the spatial curvature

ρk = Ωkρc (2.289)

The critical density ρc is defined in eq. 2.289 and thus the energy density term

associated with the curvature is

ρk =
3k

8πGa2
(2.290)

We see that the curvature energy density scales with a−2, so by comparison with eq.

2.288, this is acts like a perfect fluid with state parameter w = −1
3
.

In each of the radiation, matter, vacuum and curvature dominated approxi-

mations it is possible to solve the Friedmann equations directly and determine the

scale factor a(t).

2.2.2.2 The Radiation Dominated Solution

As described in section 2.2.2.1, in a radiation dominated universe the energy density

is given in terms of the scale factor as

ρ(t) = ρ0a(t)−4 (2.291)

Which follows from the conservation of stress-energy and the equation of state p =

ρ/3. The Friedmann equations have not yet been employed. Subsisting eq. 2.291
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into the first Friedmann equation 2.279 one has

(
ȧ

a

)2

+
k

a2
=

8πG

3
ρ0a

−4 (2.292)

In the case of a flat spatial topology with k = 0, the Friedmann equation 2.292

reduces to

a2ȧ2 =
8πG

3
ρ0

=⇒ aȧ = ±2

√
2πG

3
ρ0

(2.293)

We have the solution

a±(t) =

(
32πGρ0

3

) 1
4 √

±t (2.294)

There are in fact two solutions here, a+(t) defined on 0 ≤ t ≤ ∞ and a−(t) defined

on −∞ ≤ t ≤ 0. The a+(t) solution is expanding as the time coordinate evolves

forward, and the a−(t) solution is contracting. Both both solutions meet at t = 0

where a(0) = 0. With one eye looking towards the future, even from this simple

solution in a toy model, one can see that the theory of GR will contain singular

solutions. In equation 2.294 as t → 0 the scale factor shrinks to zero. The

determinant of the metric tensor is proportional to a(t)6 and therefore at t = 0

the metric becomes degenerate. The degeneracy of the metric is not a sufficient

condition for identifying a singular point, as it may well indicate a coordinate

singularity in which the chosen chart is no longer suitable. It does however indicate

that the points at which the metric becomes degenerate certainly warrants further

investigation. Typically one would calculate the curvature invariant R and look its

regularity at points for which g → 0. The solution can be checked for consistency

against the second Friedmann equation. Additionally, the Hubble parameter can

also be calculated exactly as

H±(t) =
ȧ±(t)

a±(t)
= ± 1

2t
(2.295)

In the closed and open cases with k = 1 and k = −1 respectively, the Friedmann
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Equations can also be solved exactly.
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In the radiation-dominated closed spacetime, the first Friedmann equation

becomes (
ȧ

a

)2

+
1

a2
=

8πG

3
ρ0a

−4 (2.296)

which has the solution

a(t) =

√
8πGρ0

3
− t2 (2.297)

where we have set the integration constant to zero. This is a solution defined on a

bonded domain |t| ≤
√

8πGρ0/3 where the scale factor goes to zero at the boundaries

and reaches a global maximum at a(0) =
√

8πGρ0/3. Again we see that this solution

has two points in time for which the metric becomes degenerate and the equations

of motion are indeterminate. Just as with the flat dust filled universe we can also

calculate the Hubble parameter explicitly as

H(t) =
3t

3t2 − 8πGρ0
(2.298)

Lastly in the open case with k = −1, one has the Friedmann Equation

(
ȧ

a

)2

− 1

a2
=

8πGρ0
3

a−4 (2.299)

Equation 2.299 has the branching solution (where the integration constant has been

set to zero)

a(t) =

√
t2 − 8πGρ0

3
(2.300)

defined on |t| ≥
√

8πGρ0/3. Similarly to the radiation dominated closed solution,

a(t) = 0 on the boundaries t = ±
√

8πGρ0/3 at which point the Friedmann equations

become indeterminate. The Hubble parameter for the radiation dominated open

solution is

H(t) =
3t

3t2 − 8πGρ0
(2.301)

Functionally, this is the same as the Hubble parameter for the closed solution in eq.

2.298, however it is defined on a different time interval.
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The two solutions are defined on non-intersecting branches of the same overall

global function H(t) = 3t/(t2 − 8πGρ0).

Figure 2.1: Plots of the scale factor solutions to the Friedmann Equations for a
radiation dominated universe. In blue, the spatially flat k = 0 solution given by
eq. 2.294. In orange, the closed k = 1 solution given by eq. 2.297. In green, the
open k = −1 solution given by eq. 2.300. The contracting branches of the Flat and
open solutions have been displayed in dashed to emphasise that they are separate
solutions, defined on a different domain than the expanding solutions.

In figure 2.1 we plot the three solutions of the Friedmann Equations for a

radiation dominated universe. In the case of flat spatial hypersurfaces, there exists

an expanding and a contracting solution (blue, and blue/dashed respectively.),

Likewise, in the open spacetime, there exist expanding and contracting solutions,

in which the scale factor shrinks to zero at t0 = ±
√

8πGρ0/3. However the

identification of a(t0) = 0 is arbitrary as the time at which the scale factor becomes

zero can simply be set to t = 0 with an appropriate choice of integration constant.

As mentioned above we have simply set all integration constants to zero without

loss of generality. It is important to note at this point that the solid and dashed

curves in figure 2.1 represent separate solutions. In both solutions, the scale factor

becomes zero at t = 0, at which point the equations of motion become undefined

and GR does not tell us how to uniquely continue the dynamical variables beyond

this point.
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The closed universe has a much different dynamic than the flat and open cases.

In the closed spacetime the scale factor is initially zero and the universe begins

to expand at a decelerating rate before the scale factor reaches a maximum at

amax =
√

8πGρ0/3 in finite time. After reaching this maximum the spatial slices

contract back to zero size. Thus the closed universe exists only for a finite amount

of time, whereas the flat and open universes can exist for arbitrarily long periods.

Figure 2.2: Plots of the Hubble parameters for a radiation dominated universe. In
blue, the spatially flat k = 0 solution given by eq. 2.294. In orange, the closed
k = 1 solution given by eq. 2.297. In orange, the open k = −1 solution given by eq.
2.300. For flat and open universes, the expanding solutions are given in bold and
the contracting solutions in dashed.

In figure 2.2 we plot the Hubble parameters for a radiation dominated universe

in the flat, closed and open spacetimes given by k = 0, 1,−1 respectively. The

Hubble parameter can be interpreted as a normalised expansion rate of the universe.

As such we see that in all three cases, as the scale factor approaches zero, the

Hubble parameter grows unboundedly. In the particular case of the open universe

the Hubble factor goes to zero at t = 0 which is when the scale factor reaches its

maximum, as we should expect since H = ȧ/a and therefore the Hubble factor is

zero when the scale factor is instantaneously stationary.
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2.2.2.3 Dust/Matter Dominated Solution

In section 2.2.2.1 we described an approximation in which the matter content of

spacetime can be considered, on cosmological scales, to consist of non-relativistic,

slow moving massive dust particles, with an equation of state p = 0, and hence

state parameter w = 0. In which case the matter energy density scales with a(t)

as ρ = ρ0a(t)−3, given by eq. 2.288. The Friedmann Equations 2.279 can be solved

exactly in this case. The first Friedmann Equation for a matter dominated universe

becomes

ȧ2 + k2 =
8πG

3
ρ0a

−1 (2.302)

We consider first the case of flat spatial slices for which k = 0 and one has

a
1
2 ȧ = ±

√
8πG

3
ρ0 (2.303)

Equation 2.303 has an expanding solution defined on t ≥ 0

a(t) = (6πGρ0)
1
3 t

2
3 (2.304)

and a contracting solution defined on t ≤ 0 given by

a(t) = (6πGρ0)
1
3 (−t)

2
3 (2.305)

With the respective Hubble parameters given by the t > 0 and t < 0 branches of

H(t) =
2

3t
(2.306)

In the closed spacetime with k = 1, the Friedmann Equation is

(
ȧ

a

)2

+
1

a2
=

8πGρ0
3

a−3 (2.307)

In this case, the equation of motion for a is most easily solved by making a coordinate
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transformation to conformal time η. The conformal time is a change of the timelike

coordinate given by

dη =
1

a
dt (2.308)

or equivalently

η(t) =

∫
1

a(t′)
dt′ (2.309)

In conformal time the FLRW metric 2.260 takes the form

ds2 = a(η)2
(
−dη2 +

1

1 − kr
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
(2.310)

Thus it derives its name “conformal time” from that fact that in the case of flat

spatial slices the metric is related to the Minkowski metric of special relativity by a

conformal transformation

gµν(x) = a2(x)ηµν (2.311)

The conformal transformation is a change of coordinates that acts as an angle-

preserving rescaling of the lengths measured by the metric. Conformal transforma-

tions are not to be confused with Weyl transformations, they look alike but there

is a subtle distinction to be aware of. A conformal transformation is fundamentally

a change of coordinates which pulls a positive factor out of the metric. Whereas

a Weyl transformation involves no coordinate transformation, and simply defines a

new metric which is a positive scalar multiplied by the old metric.

In conformal time, the Friedmann equation for a matter dominated closed

spacetime 2.307 becomes

a′ = ±
√

1

3
a (8πGρ0 − 3a) (2.312)

where ′ denotes a derivative with respect to conformal time η. As with previous

solutions, we expect to find two solutions defined on separate domains. This can be

seen explicitly as follows. Equation 2.312 is separable, and letting x = 3a/8πGρ0
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one finds ∫
1√

x(1 − x)
dx = ±(η − η0) (2.313)

The integral in eq. 2.313 is calculated using the substitution
√

1 − x = sin θ which

results in

θ = ±1

2
η (2.314)

where we have set the integration constant η0 = 0 without loss of generality. We

then have
√

1 − x = ± sin
1

2
η (2.315)

From equation 2.315 it is clear that in the case a′ ≥ 0 the solution is restricted to

0 ≤ η ≤ 2π and in the case a′ ≤ 0 the solution is restricted to −2π ≤ η ≤ 0. In

both cases solutions, the functional form of the scale factor, once we have traced

back the transformation of variables, is the same

a(η) =
4πGρ0

3
(1 − cos η) (2.316)

But just as has been mentioned in section 2.2.2.2, these are two separate solutions

defined on domains with a single point of intersection η = 0, but the equations of

motion cannot be defined at this point. The information contained in both solutions

however is fully captured by considering only one branch, say 0 ≤ η ≤ 2π, as one

can move between solutions by a time translation η ± 2π. Therefore we need only

consider the solution over 0 ≤ η ≤ 2π. Having changed to conformal time, we must

account for this when computing the Hubble parameter

H(η) =
1

a(η)

da

dt
=

1

a2
da

dη
(2.317)

Thus the Hubble parameter for a matter-dominated closed spacetime is

H(η) =
3

4πGρ0

sin η

(1 − cos η)2
(2.318)
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Similarly to the radiation dominated closed universe, the spacetime scale factor is

initially at zero and then begins to grow causing the spatial slices of the manifold to

expand before becoming stationary at η = π, at which point the scale factor is at a

local maximum of amax = 8πGρ0/3. For π < η ≤ 2π the scale factor begins to shrink

and the universe collapses back to zero size at η = 2π. Again we have a scenario

where the closed universe can only exist for a finite amount of time ∆η = 2π.

Lastly we have the open solution, for which the equation of motion in terms of

coordinate time t is (
ȧ

a

)2

− 1

a2
=

8πGρ0
3

a−3 (2.319)

Again, this is most easily solved in conformal time, for which the equation of motion

is

a′ = ±
√

1

3
a (8πGρ0 + 3a) (2.320)

In this case there are again two solutions with the same functional form, but defined

on the domains −∞ < η ≤ 0 and 0 ≤ η <∞

a(η) =
4πGρ0

3
(cosh η − 1) (2.321)

with Hubble parameter

H(η) =
3

4πGρ0

sinh η

(cosh η − 1)2
(2.322)

For the sake of consistency with the closed and open solutions, we may also write

the flat solution 2.304 in terms of conformal time, which can be easily calculated as

a(η) =
2πGρ0

3
η2 (2.323)

with Hubble parameter

H(η) =
3

πGρ0

1

η3
(2.324)

We can see explicitly that if one calculates the coordinate time t(η) given by eq.
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2.309

t(η) =

∫
a(η′)dη′ =

2πGρ0
9

η3 (2.325)

then the Hubble parameter in terms of conformal time 2.324 reduces to exactly the

Hubble parameter calculated in coordinate time 2.306.

Figure 2.3: Plots of the scale factor solutions to the Friedmann Equations as
functions of conformal time η, for a matter dominated universe. In blue, the spatially
flat k = 0 solution given by eq. 2.323. In orange, the closed k = 1 solution given
by eq. 2.316, where we have translated by η + π without loss of generality, so that
the function is centred on η = 0. In green, the open k = −1 solution given by eq.
2.321. The contracting branches of the flat and open solutions have been displayed in
dashed to emphasise that they are separate solutions, defined on a different domain
than the expanding solutions.

In figure 2.3 we plot the solutions to the matter dominated Friedmann Equations

for the three distinct spatial topologies. In the case of flat spatial slices, we see that

there are expanding (and contracting) solutions just as in the case of a radiation

dominated universe, where the scale factor grows unboundedly as η → ∞ and

approaches zero as η → 0. The open solution has the same qualitative behaviour

but with the scale factor taking a different functional form. In the matter dominated

closed solution, we also have the same qualitative behaviour as the radiation

dominated closed universe, the scale factor initially starts at zero and the spatial

slices expand at a decreasing rate until the scale factor reaches a maximum value

amax = 8πGρ0/3, after which the universe undergoes recollapse back to zero size.
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Figure 2.4: Plots of the Hubble parameters as functions of conformal time η, for a
matter dominated universe. In blue, the spatially flat k = 0 solution given by eq.
2.323. In orange, the closed k = 1 solution given by eq. 2.316. As in figure 2.3 we
have translated by η + π without loss of generality, so that the Hubble parameter
function is centred on η = 0. In green, the open k = −1 solution given by eq. 2.321.
The open solution lies almost on top of the flat solution. The contracting branches
of the flat and open solutions are displayed in dashed.

In figure 2.4 we plot the Hubble parameters for matter dominated solutions of

the Friedmann equations in the three distinct spatial topology cases. As we would

now come to expect, the Hubble parameters grow unboudedly where a→ 0, and in

the case of a closed universe the Hubble factor is zero where a(η) is stationary. We

see also that the Hubble parameters for spatially flat and open solutions lie almost

on top of each other, particularly for |η| << π. This should not come as too much

of a surprise. If we consider the functional form of the open Hubble parameter

H(η; k = −1) =
3

4πGρ0

sinh η

(cosh η − 1)2
(2.326)

and the flat Hubble parameter

H(η; k = 0) =
3

πGρ0

1

η3
(2.327)

For sufficiently small η we have the truncated Taylor series

sinh η ≈ η, cosh η ≈ 1 +
1

2
η2 (2.328)
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and thus we calculate explicitly

H(η; k = −1) ≈ 3

πGρ0

1

η3
:= H(η; k = 0) (2.329)

2.2.2.4 Vacuum Dominated Solution

In section 2.2.2.1 we treated the possible presence of a cosmological vacuum energy

as equivalent to a contribution to the stress energy tensor from matter with a state

parameter w = −1. As one would expect from a vacuum energy, the energy density

is constant ρ(t) = ρΛ. This considerably simplifies the Friedmann Equations 2.279.

In this case the first Friedmann equation becomes

(
ȧ

a

)2

+
k

a2
=

8πG

3
ρΛ (2.330)

Just as in the radiation and matter dominated cases, eq. 2.330 can be solved for

each of the three distinct spatial topologies.

Flat, k = 0: a(t) = e±Ht

H = ±
√

8πGρΛ
3

Closed, k = 1: a(t) =

√
3

8πGρΛ
cosh

(√
8πGρΛ

3
t

)

H(t) =

√
8πGρΛ

3
tanh

(√
8πGρΛ

3
t

)

Open, k = -1: a(t) =


√

3
8πGρΛ

sinh

(√
8πGρΛ

3
t

)
t ≥ 0√

3
8πGρΛ

sinh

(
−
√

8πGρΛ
3

t

)
t ≤ 0

H(t) =

√
8πGρΛ

3
coth

(√
8πGρΛ

3
t

)

(2.331)

In the case of flat FLRW, the scale factor is non-zero for finite t, and goes to

zero as t→ ∞ (in the expanding a = eHt case) and is increasing exponentially with
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coordinate time. Similarly in the case of closed, the scale factor is also non zero and

increasing exponentially with time. Indeed this is not a coincidence. One can define

a larger 5-dimensional space R5 with Lorentzian metric

ds2 = −dv2 + dw2 + dx2 + dy2 + dz2 (2.332)

and embed into it the hyperboloid defined by

−v2 + w2 + x2 + y2 + z2 =
3

8πGρΛ
(2.333)

which has constant positive scalar curvature R = 16πGρΛ

New coordinates (t, ψ, θ, ϕ) can be defined on the hyperboloid

v =

√
3

8πGρΛ
sinh

(√
3

8πGρΛ
t

)
, w =

√
3

8πGρΛ
cosh

(√
3

8πGρΛ
t

)
cosψ

x =

√
3

8πGρΛ
cosh

(√
3

8πGρΛ
t

)
sinψ cos θ y =

√
3

8πGρΛ
cosh

(√
3

8πGρΛ
t

)
sinψ sin θ cosϕ

z =

√
3

8πGρΛ
cosh

(√
3

8πGρΛ
t

)
sinψ sin θ sinϕ

(2.334)

In these coordinates the induced metric on the hyperboloid takes the form

ds2 = −dt2 +
3

8πGρΛ
cosh2

(√
8πGρΛ

3
t

)(
dψ2 + sin2 ψdθ2 + sin2 ψ sin θdϕ2

)
(2.335)

The entire sub manifold is covered by the new coordinates −∞ < t < ∞, 0 ≤

ψ ≤ π, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, except where the metric is degenerate ψ, θ = 0, π.

The induced metric in equation 2.335 we recognise as the vacuum dominated closed

solution to the Friedmann equations 2.331. The spatial slices with constant t are

submanifolds of R5 with constant positive curvature. A different set of coordinates
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on the hyperbolid

t′ =

√
3

8πGρΛ
ln

[
(v + w)

√
8πGρΛ

3

]

x′ =
x

v + w

√
3

8πGρΛ
, y′ =

y

v + w

√
3

8πGρΛ
, z′ =

z

v + w

√
3

8πGρΛ

(2.336)

yields the induced metric

ds2 = −dt′2 + e2
√

8πGρΛ
3

t′
(
dx′2 + dy′2 + dz′2

)
(2.337)

The timelike coordinate is defined for v + w > 0 only and the spatial coordinates

are undefined for w+ v = 0, so this chart covers only half of the higher dimensional

R5 manifold, excluding the line w+v = 0. The constant t′ hypersurfaces are ones of

constant zero curvature. We recognise this metric again as the vacuum dominated

flat space solution to the Friedmann Equations 2.331.

A third set of coordinates can be defined on the submanifold

v =

√
3

8πGρΛ
sinh

(√
8πGρΛ

3
t

)
coshψ, w =

√
3

8πGρΛ
cosh

(√
8πGρΛ

3
t

)

x =

√
3

8πGρΛ
sinh

(√
8πGρΛ

3
t

)
cos θ, y =

√
3

8πGρΛ
sinh

(√
8πGρΛ

3
t

)
sin θ cosϕ

z =

√
3

8πGρΛ
sinh

(√
8πGρΛ

3
t

)
sin θ sinϕ

(2.338)

which cover only the w > 0 part of the manifold. The metric in these coordinates is

ds2 = −dt2 +
3

8πGρΛ
sinh2

(√
8πGρΛ

3
t

)(
dψ2 + sinh2 ψdθ2 + sinh2 ψ sin2 θdϕ2

)
(2.339)

Equation 2.339 is the metric of the vacuum dominated open FLRW spacetime. We

see clearly now that each of the three cases represent flat, closed and open slicing
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of the same underlying spacetime manifold of constant positive scalar curvature

R = 16πGρΛ, which is referred to as de Sitter space. Each case is a particular

coordinate choice on the manifold. The choices of coordinates for the flat and

open spatial slicing are not fully extendable and are incapable of describing the

entire spacetime, where as the closed spatial slicing can describe the entirety of de

Sitter space. Furthermore, from the fact that the scalar curvature is well defined

everywhere and the fact that the closed slicing, which described all of de Sitter space,

has a > 0, it is clear that when a → 0 in the flat and open slicing this represents a

coordinate singularity.

Figure 2.5: Plots of the scale factor solutions to the Friedmann Equations for a
vacuum dominated universe given by eq. 2.331. In blue, the spatially flat k = 0,
where we have chosen a(0) =

√
3/8πGρΛ. In orange, the closed k = 1 solution.

In green, the open k = −1 solution. The contracting branches of the flat and
open solutions have been displayed in dashed to emphasise that they are separate
solutions, defined on a different domain than the expanding solutions.

In figure 2.5 we plot the solutions to the vacuum dominated Friedmann Equations

given in eq. 2.331, choosing to set a(0) =
√

3/8πGρΛ which we may do arbitrarily

as the Friedmann equations are insensitive to an overall scaling of a(t) by a positive

non-zero factor. Likewise this does not affect the Hubble parameter H = ȧ/a. In the

radiation and vacuum dominated cases, the closed solutions were concave functions

with the scale factor shrinking to zero at the boundaries and as such, the closed

universes can exist only for finite amounts of time.
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In the vacuum dominated case, we see that the scale factor is a convex function,

reaching a global minimum at a(0) =
√

3/8πGρΛ.

Figure 2.6: Plots of the Hubble parameters for a vacuum dominated universe, given
in equation 2.331. In blue, the spatially flat k = 0 solution. In orange, the closed
k = 1 solution. In green, the open k = −1 solution. The contracting branches of
the flat and open solutions are displayed in dashed.

Figure 2.6 shows the Hubble parameter functions for a vacuum dominated

universe for the three distinct spatial topologies. As we would have expected, for

the flat and closed universe, the Hubble parameter is well defined everywhere as the

scale factor is non-zero for all time, and in the case of open spatial slices, the scale

factor goes to zero as t→ 0 and thus the Hubble factor diverges as t→ 0 from either

side. In all three cases, the scale factor is exponential a ∼ e
√

8πGρΛ/3t for large t and

so the Hubble parameters converge as t→ ±∞ to a constant value ±
√

8πGρΛ/3.

2.2.2.5 Curvature Dominated Solution

We now turn briefly to the final case of curvature domination, we consider the energy

density of matter in the universe to be negligible in comparison to the contribution

of the curvature term in the Friedmann Equations. The Friedmann Equations in

such as case reduce to (
ȧ

a

)2

= − k

a2
(2.340)

The left hand side of eq. 2.340 is strictly greater than or equal to zero, and we
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therefore must have k ≤ 0. The k = 0 case results in the trivial static solution

ȧ = 0 where the scale of the spatial slices is constant for all time. The non-trivial

solution requires negative spatial curvature and it is restricted to the open geometry

with k = −1. The equation of motion is easily solved in this case with a(t) = t and

H(t) = t−1.

2.2.3 Cosmological Observables and Thermal History of the

Universe

We now understand the behaviour of the scale factor and Hubble parameters in the

approximations where the matter content of the universe is dominated particular

kinds of perfect fluids, the energy density of each scaling with a(t) as ρi(t) ∼ a(t)−ni

for some n ≥ 0. But in reality, the universe does not contain only one type of matter

and we know that there exist high energy relativistic particles as well as cold, non-

relativistic matter. There is also no apriori reason to rule out a contribution from

a vacuum energy and potential spatial curvature. Generally, we should include all

the kinds of matter we have discussed in the Friedmann equations

H2 +
k

a2
=

8πG

3

∑
i

ρi(t) (2.341)

where the index i runs over the vacuum, matter and radiation energy densities

respectively. Recalling the scaling of each energy density with the scale factor, and

that the curvature term can be thought of as equivalent to an energy density we

may write

H2 =
8πG

3

(
ρΛ + ρka

−2 + ρma
−3 + ρra

−4
)

(2.342)

where ρΛ, ρk, ρm and ρr are the vacuum, curvature, matter and radiation densities

observed today (a = 1).
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Equation 2.342 can equivalently be written in terms of the Hubble and density

parameters observed when at the present time, which we denote H0 & Ωi.

(
H

H0

)2

= ΩΛ + Ωka
−2 + Ωma

−3 + Ωra
−4 (2.343)

In the literature, it is conventional to work in terms of a variable z, rather than

the scale factor which we define by

a(t) =
1

1 + z
(2.344)

z is called the redshift and acts as a physical measure of cosmological time. It derives

its name from one of the most fundamental pieces of observational evidence for an

expanding universe, the cosmological redshifting of light, to be discussed in section

2.2.3.2.

2.2.3.1 Horizons

Simply by inspecting the units of the Hubble parameter we can see that it has units

of inverse time and so the Hubble constant H0 defines a length scale (in units where

c = 1) and 1/H0 defines a time scale. This is even more apparent when using the

Hubble parameter to compute the age of the universe. Using equation 2.343 and

the definition of redshift z one can write

H(z) = H0

√
E(z), E(z) = ΩΛ + Ωk(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4 (2.345)

The Hubble factor in terms of redshift is

H =
da

dt
= − 1

(1 + z)2
dz

dt
(2.346)

Thus equation 2.345 can be integrated from t = 0, z = ∞ to the present day t, z = 0.

t =
1

H0

∫ ∞

0

1

(1 + z)2
√
E(z)

dz (2.347)
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This calculation is of course model dependant as one needs to know the density

parameters Ωi. However we can see that generically t ∼ H−1
0 and so the inverse

Hubble parameter truly represents a cosmological time scale.

It is useful at this point to discuss two physical length scales that are defined

using the Hubble parameter. The first is the notion of a Particle Horizon . The

particle horizon is the maximum comoving distance a light signal can reach between

being emitted at the Big Bang t0 and some later time t when we observe it. In

calculating this, we may always choose our frame such that the light travels on a

radial null geodesic and thus the line element reads

dt2 =
a2(t)

1 − kr2
dr2 (2.348)

And thus the comoving distance is

χp(t) =

∫ t

t0

1

a
dt′ =

∫ ln a

ln a0

1

a′H
d ln a′ = η − η0 (2.349)

where η is conformal time. The proper horizon, which is the manifold distance is then

dp(t) = a(t)χp(t). The term “horizon” derives from the fact that the particle horizon

tells us the maximum distance light could have travelled to us have travelled to us

if it were emitted at the Big Bang. Anything at distances larger than the particle

horizon would lie outside out past light cone and so the particle horizon represents

a boundary between the observable and unobservable universe.

Just as the particle horizon of an observer defines the boundary between past

events that they could and could not have been in casual contact with, it is also

possible to define the boundary between future events that they could and could not

be in causal contact with. Consider an observer at r = 0 who emits a light signal

along a radial null geodesic at time t, then the maximum comoving distance of an

observer who can receive the signal is
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χe(t) =

∫ ∞

t

1

a(t′)
dt′ =

∫ ln a∞

ln a

1

a′H
d ln a′ = η∞ − η =

∫ R

0

1√
1 − kr2

dr (2.350)

Any observer at a comoving distance r > R will not be able to receive the signal

and is out of future causal contact. Provided that the integral

χe(t) =

∫ ∞

t

1

a(t′)
dt′ (2.351)

converges, the comoving distance χe is called the Event Horizon of the observer

at (t, r = 0). It also may not be the case that a(t) is globally monotonic, and that

there exists a global maximum a(tmax) = amax and that the universe undergoes a

recollapse, in which case the event horizon is defined analogously as

χe(t) =

∫ tmax

t

1

a(t′)
dt′ (2.352)

It is important to note that the horizons χp(t) and χe(t) defined here are different

from the casual horizons defined in the context of the Hawking-Penrose singularity

theorems [9] as χp(t) and χe(t) are explicitly observer-dependant.

The particle and event horizon may or may not exist depending on the choice

of model and observer. In the case of an FLRW cosmology, the conditions for the

existence of horizons can be easily investigated. As an example we may show this for

the flat spatial slices k = 0, although horizons exist in all three constant curvature

regimes. Consider again the perfect fluid, for which we have already derived the

scaling of the energy density with the scale factor in eq 2.288 ρ = ρ0a
−3(1+w). The

1st Friedmann equation then becomes

H2 = H2
0a

−3(1+w), H2
0 =

8πG

3
ρ0 (2.353)
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Recalling the definition of the Hubble parameter H = ȧ/a, equation 2.353 can

be integrated to obtain
2

3(1 + w)
a

3
2
(1+w) = H0t (2.354)

for w ̸= 1, where we have assumed an expanding universe and thus taken the

positive square root and set the integration constant to zero. The Hubble parameter

associated with the solution 2.354 is

H =
2

3(1 + w)t
(2.355)

We can thus calculate the particle horizon of an observer at time t using the

integral definition 2.349

χp(t) =

∫ t

0

1

a(t′)
dt′

=

[
3(1 + w)

2
H0

]− 2
3(1+w)

∫ t

0

t′−
2

3(1+w) dt′

∼
[
t

1+3w
3(1+w)

]t
0

(2.356)

In order for the lower limit of the integral to converge we require

1 + 3w

3(1 + w)
> 0 =⇒ w > −1

3
or w < −1 (2.357)

Indeed the bound of w > −1/3 is satisfied by the dust and radiation classifications

of matter that we explored in section 2.2.2.1. This condition for the existence of a

particle horizon also imposes that the expansion of the universe is accelerating, one

can see this through the second Friedmann equation 2.279

ä

a
= −4πG

3
(ρ+ 3p)

= −4πG

3
ρ(1 + 3w)

(2.358)

since w > −1/3 enforces ä > 0 and therefore the expansion is accelerating.
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However the conditions for the existence of a particle horizon are not necessarily

the same as those for the existence of an event horizon. From the definition of the

event horizon χe(t) in equation 2.352, which is essentially the same as the particle

horizon but with different limits of integration, we have

χe(t) ∼
[
t

1+3w
3(1+w)

]∞
t

(2.359)

The upper limit of integration will converge for −1 < w < −1/3, and so for the

same observer, we cannot have the existence of both a particle horizon and an event

horizon simultaneously.

2.2.3.2 Cosmological Redshift

In this section we will derive the redshifting of light due to FLRW expansion of the

universe through Killing vector field arguments. For the sake of demonstration we

will first consider the simplest case of flat spatial slices, the metric is thus

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (2.360)

but we need not specify the matter content filling the spacetime. The metric is

obviously independent of all spatial coordinates and thus ∂x, ∂y & ∂z are Killing

vector fields on the spacetime. Consider now a light signal emitted at a point p1

on the manifold and then received by a stationary comoving observer at a point p2

with 4-velocity uµ. The light signal emitted at p1 will follow a null geodesic to p2

with tangent vector kµ. Without loss of generality we may choose the projection

of kµ into the spatial slice at p1, Σ1 to be in the ∂x direction. Since the projection

is entirely in the ∂x direction at p1 we have (k · ∂y)p1 = (k · ∂z)p1 = 0. From our

discussion of Killing vector field in section 2.2.1.1 we may use the fact that the inner

products are conserved along geodesics, and thus at the observation point p2, the

projection of kµ into the spatial slice Σ2 is in the ∂x direction, which is a Killing

vector field ξ = ∂x. Since the tangent vector is null, its projection onto the observers
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4-velocity is equal in magnitude and opposite in sign as its projection into the spatial

slice Σ which is in the direction of the Killing vector field ξ = ∂x and we therefore

have

kµuµ = −kµ ξµ
|ξ|

(2.361)

The frequency of the light as measured by the stationary comoving observer is

ω = −k · u and so the frequencies measured at p1 and p2 are

ω1 = −(kµuµ)p1 =
(kµξµ)p1
|ξ|p1

(2.362)

ω2 = −(kµuµ)p2 =
(kµξµ)p2
|ξ|p2

(2.363)

The norm of the Killing vector field ξ = ∂x at a point p is given by |ξ|2 =

gµνξ
µξν = a2(t), so the norms at p1 and p2 compare as

|ξ|p1
|ξ|p2

=
a1
a2

(2.364)

Since ξ is a Killing vector field the inner product kµξµ is conserved along the geodesic

so we have (kµξµ)p1 = (kµξµ)p2 . Thus the ratio of the frequencies is

ω2

ω2

=
a1
a2

(2.365)

Written in terms of the redshift variables this is

ω2

ω1

=
1 + z2
1 + z1

(2.366)

The scale factor at the present time in the earths frame is always taken to be unity,

as we have mentioned we are free to choose this arbitrarily, which corresponds to

a redshift of z = 0. Thus light reaching us emitted from a source in the past at
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redshift z > 0 is observed at a frequency

ωobs =
ωemitted

1 + z
< ωemitted (2.367)

Contextualising this result with the scaling of radiation energy density with the

scale factor given in eq. 2.291, there is a clear interpretation that electromagnetic

radiation emitted in the early universe cools as the universe expands due to the

gravitational fields capacity to do work on it, and thus the spectrum of light that we

observe emitted from distant astrophysical objects is shifted to a lower temperature

than when it was originally produced. This can be seen explicitly when considering

blackbody radiation. A blackbody spectrum observed today at a temperature To

will have the spectrum [74]

B(ωo, To) =
ℏω3

o

2π2c2
1

e
ℏωo

kBTo − 1
(2.368)

If the blackbody radiation is emitted from a source at redshift z, then each frequency

ωo will have been redshifted by ωo = ωe/(1 + z) and thus the source blackbody

spectrum is

Bz(ωe, To) =
ℏω3

e

2π2c2(1 + z)3

(
e

ℏωe
kBTo(1+z) − 1

)−1

(2.369)

The blackbody spectrum of equation 2.369 can be interpreted as having a temper-

ature Te = To(1 + z), thus the temperature of the blackbody spectrum observed

today is cooler than an emitter in the past.

2.2.3.3 Thermal Evolution of The Universe; ΛCDM, Hot Big Bang

Theory

So far we have equipped ourselves with enough tools to understand some of the

generic dynamics of the universe as we trace it’s evolution back in time. In section

2.2.2.1 we derived solutions of the Friedmann Equations which gave a scale factor
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a(t). We saw that quite generically, going backwards in coordinate time from the

present day, the scale factor gets smaller and smaller, equivalent to a larger redshift

value.

We derived scalings of the energy densities of different kinds of matter contri-

butions with the scale factor and when written in terms of the density parameters

observed in the present day, the Hubble parameter is

H2 = H2
0

[
ΩΛ + Ωka

−2 + Ωma
−3 + Ωra

−4
]

(2.370)

Early in the universe when the scale factor is small, the dominant term in

equation 2.370 will be the contribution from relativistic matter and the universe

will be in a radiation dominated era, at later times the cold matter term will

contribute more significantly and the universe will be matter dominated. After

matter domination, there could be a period of curvature domination before finally

all contributions are beaten out by the vacuum energy ΩΛ. In section 2.2.3.2 we

showed how as the universe expands, radiation becomes redshifted and cools, so

conversely, at earlier times close to a = 0, the universe was much hotter and packed

into a smaller length scale. Broadly speaking, the idea that the early universe was

in a hot dense state that the cooled as it expanded and allowed for the formation

familiar matter that we see today is known as the Hot Big Bang theory. We note

here a subtle distinction between what we identify as the big bang, where the scale

factor of the universe a(t) → 0, and the period of the universes evlution described

by the Hot Big Bang (HBB) Theory. When the scale factor reaches zero, the

mathematical description of General Relativity fails to remain predictive and is

considered to have broken down. However even before this point, around the scale

of the Planck time tp or equivalently at energy scales above the Planck mass Mpl,

it is conventionally assumed that our classical description of gravity is no longer

valid and that quantum gravity effects must be accounted for, in order to continue

to describe the evolution of spacetime and matter dynamics beyond this point In

section 5 we will show that it is possible to continue cosmological dynamical systems
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through the Big Bang in an entirely classical description. The HBB really regards

thermal physics of the universe some short time after the universe exits this energy

scale and our current understanding of gravity and the standard model of particle

physics becomes accurate.

The first major event in the cosmological calendar is that of baryogensis. We

observe today, thankfully, that there is a vast over abundance of matter compared

to antimatter, thus at some point in the early universe matter and anti matter

must have entered a state of asymmetry which resulted in a huge suppression in

the amount of available antimatter in the universe. Very little is known about what

time or temperature this happened, except that the universe exited baryogensis

with an overabundence of matter. At energies above 100GeV the matter content of

the universe would have consisted of a hot, dense plasma of fundamental particles,

mainly electrons, positrons, photons, neutrinos, and asymptotically free quarks,

with heavier species in negligible quantities. At around 100GeV electroweak

symmetry breaking kicks in, particles gain mass through the Higgs mechanism and

the electromagnetic and weak force become distinct. As the universe cools even

further the universe undergoes a QCD phase transition as quark interactions begin

to become dominated by the strong force at around 150MeV. The strong force

interactions allow quarks to form proton and neutron bound states.

By this point in the evolution of the universe, it is far enough away from the

gravitationally extreme conditions of the Big Bang to assume that General Relativity

is an appropriate description of gravity. Imposing the conditions of the cosmological

principle, spacetime must follow the dynamics of an FLRW model. All particles in

the primordial “soup” will be undergoing complicated interaction, at an interaction

rate Γ ∼ nσ(T ) where n ∼ a−3 is the number density of a given particle species and

σ(T ) is the cross section of the leading order interaction at temperature T . The

interaction rate defines an interaction time scale τI ∼ a3/σ(T ). This interaction

time tells us roughly the time scale that is needed for local thermalisation inside

the particle horizon. The Hubble parameter also defines a natural characteristic
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time scale for the expansion of the universe τE ∼ 1/H. Thus if the interaction

time (for a given particle species) is much shorter than the characteristic expansion

time τI << τE, then particles will remain in equilibrium with the thermal bath.

When the characteristic interaction and expansion times are on roughly the same

order τI ∼ τE the particle species begin to “Freeze-Out” as for τI >> τE they

cannot locally thermalise within the particle horizon. At freeze-out, the interactions

of a given particle species essentially switch off and they exit equilibrium with the

thermal bath and begin to travel through the universe relatively unimpeded on

geodesic motion. Taking the k = 0 scale factor for a generic perfect fluid in equation

2.354 we have

τI ∼
t

2
1+w

σ(T )
, τE ∼ t (2.371)

and thus assuming a sufficiently high cross section σ(T ) for high temperatures in

the early universe, τI >> τE and local thermalization is possible. As the universe

expands and cools, the cross sections for leading order processes get smaller and the

particle species will eventually freeze-out. Different particle species will of course

have different dominant interaction rates and so we can expect them to freeze-out

at different times.

The first particle species to freeze out are neutrinos, when the weak interaction

rate falls below the expansion rate at a temperature T ∼ 1MeV, around 1

second after the Big Bang. After the neutrinos freeze out and decouple from the

thermal bath, the universe is left with a relic of cosmic background neutrinos. At

around 1.5 seconds the proton ↔ neutron interactions freeze out. The neutron

mass is approximately 939MeV whereas the proton mass is about 1MeV lighter

and are thus more abundant that neutrons at freeze out, resulting in a number

density ratio of nn/np ∼ 1/6. When the temperature drops to the scale of the

electron mass T ∼ 0.5MeV there is a significant cross section for electron-positron

annihilation which produces photons (and the converse interaction, although this is

less energetically favourable and thus has a smaller cross section). This interaction

dumps energy into the photon bath, heating it above the temperature of the cosmic
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neutrino background. As the temperature of the thermal baths continues to drop

below the scale of the electron mass, all of the positrons are annihilated, due to the

overabundance of matter compared to antimatter, leaving behind an electron excess.

At around 3 minutes into the evolution of the universe and a temperature of

T ∼ 109K, the universe undergoes a period of Big Bang Nucleosynthesis in which

the first light nuclei are formed. This comprises mainly of helium-4, about 25% by

mass with small abundances of hydrogen and lithium and with higher mass elements

in practically negligible amounts. Since these nuclei form in low amounts, there still

exists a bath of free electrons present in the universe. It is not until the temperature

of the universe drops by around 6 orders of magnitude to around 0.3eV or 4000K that

the next significant event occurs at a time of approximately 105 years after the big

bang. Below this temperature the cross section for Coulomb scattering of electrons

and protons becomes less significant than that of hydrogen formation and photo

disintegration of hydrogen nuclei becomes energetically disfavoured. This allows for

the creation of much more neutral hydrogen by “recombination” of electrons and

protons3. Before recombination, photons in the thermal bath were strongly coupled

to free electrons through Thompson scattering, but recombination causes a rapid

and significant drop in the number density of free electrons after which photons are

frozen out and decouple from the thermal bath. This last scattering event happens

at a redshift of around z ∼ 1100 and leaves behind a cosmic background of photons

that simply become redshifted as they travel through the universe. We observe these

photons today as the CMB at a temperature of around 2.7K. The CMB represents

the furthest back in time we can see the universe through the lens of electromagnetic

radiation, since before it’s formation any information becomes scrambled through

many Thompson scattering events.

Our understanding of the CMB represents a hallmark of modern cosmology and

it forms a crucial test for the predictions of General Relativity. The CMB is a

blackbody thermal spectrum and so measurements of the spectrum allow us to

3The name recombination is slightly misleading as electrons and protons involved in these
reactions were not somehow previously combined.
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determine its present day temperature of around T = 2.7K. From standard results in

statistical thermodynamics we know that the energy density of a photon blackbody

is proportional to T 4, specifically

ργ =
π2

15ℏc3
(kBT )4 (2.372)

Thus CMB temperature measurements allow us to determine the energy density of

the photon background. In order to determine the associated density parameter Ωγ

one also needs to know the Hubble constant H0, in order to determine the critical

density ρc = 3H2
0/8πG. Measurements of the Hubble constant come primarily

from two sources, type Ia supernovae (“standard candles”) and Baryon Acoustic

Oscillations (BAO) of the CMB. Current measurements of the Hubble constant

from the Planck collaboration provide a value of H0 = 67.4 ± 0.5kms−1Mpc−1 [5].

As we would expect, the photon density today is incredibly small Ωγ ∼ 10−5. This

comprises most of the radiation density, but it is not the only contribution, the

neutrino background also contributes to the overall radiation density. Measurements

of the CMB and its anisotropies infact allow us to determine all of the present day

density parameters, the collection of density parameters [5, 75,76]

ΩΛ = 0.6847±0.0073, Ωk = 0.001±0.002, Ωm = 0.3153±0.0073, Ωr ∼ 10−5 (2.373)

essentially defines the Lambda-Cold Dark Matter (ΛCDM). The energy content of

the present day universe is primarily dominated by a large vacuum energy density

presence ΩΛ. Radiation energy density has been diluted by the expansion of the

universe to the point where it becomes a negligible contribution. The idea of “cold

dark matter” is related to the matter density parameter Ωm. Measurements of

the universes baryon density parameter put it at Ωb = 0.0486± 0.001 [5]. Therefore

there is a large missing contribution to the overall non-relativistic matter component

Ωm. This, combined with observations such as spiral galaxy rotation curves [77]

has lead to the consideration that there must be some other form non relativistic,
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gravitationally interacting matter that contributes to the majority matter content

of the universe, known as “Dark Matter”.

2.2.3.4 The Flatness Problem

In the set of observed present day density parameters 2.373, the curvature

component is incredibly small, to the point where curvature is practically negligible.

In fact one can show that however small the density parameter is today, it must

have been even smaller in the past. The first Friedmann equation when written in

terms of the total density parameter Ω and spatial curvature k is

1 +
k

a2H2
= Ω (2.374)

we can therefore track the evolution of Ω with the growth of the scale factor a, or

in practise with the natural log of a, which turns out to be computationally more

convenient and grows monotonically with a.

dΩ

d ln a
= a

dΩ

da

=
1

H

dΩ

dt

= − 2k

ȧ2H2

ä

a

(2.375)

For a universe dominated by a perfect fluid, the second Friedmann equation 2.279

gives the acceleration parameter

ä

a
= −4πGρ(1 + 3w)

= −1

2
H2Ω(1 + 3w)

(2.376)

And so we have
dΩ

d ln a
= (1 + 3w)Ω(Ω − 1) (2.377)
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From equation 2.377 it is clear that there are two fixed-point solutions, Ω = 0

and Ω = 1. The Ω = 0 solution is the fully curvature dominated solution, which

corresponds to a universe with no matter or vacuum energy content, only curvature.

On the other hand the Ω = 1 solution describes a universe with flat spatial slices.

Since we observe a universe today with almost no curvature, it’s quite reasonable

to investigate small perturbations around the Ω = 1 solution. Considering such a

small perturbation Ω(a) = 1 + ω(a), we have the following equation of motion to

first order in ω(a)
dω

d ln a
= (1 + 3w)ω (2.378)

which is separable and has the solution

ω(a) = ω0a
1+3w (2.379)

It is clear from equation 2.379 that the stability of the Ω = 1 fixed-point solution

depends on the value of the state parameter w. For 1 + 3w < 0, ω → 0 and a→ ∞,

so the perturbations are killed off with the expansion of the universe and Ω = 1 is a

stable fixed point, however all ordinary matter that we know of, satisfying the strong

energy condition has 1 + 3w > 0, for which the perturbations grow with the scale

factor. Assuming that the early universe could be accurately approximated as having

gone through periods of radiation and matter domination, we would then expect that

during these periods curvature perturbations should have grown. Because of these

periods of presumed growth in curvature perturbations, however small we observe

Ωk to be today, it must have been even smaller in the past, somewhere close to, if

not exactly zero.
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This situation is known as the “Flatness Problem”, to observe such a small

density parameter today, the universes initial density parameter at the time of the

big bang must have been fine tuned to an incredible degree. There currently does

not exist a particularly compelling argument as to why the universe should be fine

tuned in such a way, and we will see in the following section that the dilution of

the universes curvature can be explained without imposing such a fine tuning of its

initial conditions.

2.2.3.5 The Horizon Problem

In section 2.2.3.1 we showed that for FLRW universes dominated by SEC satisfying

matter, there exists a particle horizon for matter satisfying the SEC. The particle

horizon which we calculated in eq 2.356 in terms of cosmic time t can also be written

in terms of the scale factor a, which turns out to be more convenient for the purposes

of considering the “Horizon Problem”. We have the definition of the comoving

particle horizon as

χp(a) =

∫ ln a

ln ai

1

a′H
d ln a′ (2.380)

The quantity (aH)−1 is known as the Hubble radius, this represents roughly the

comoving radius of spherical volume of spacetime that the cosmic observer is in

causal contact with at time t. Taking the perfect fluid dominated FLRW spacetime,

the first Friedmann equation is

H2 = H2
0a

−3(1+w) (2.381)

and thus the integral 2.380 can be calculated as

χp(a) =
1

H0

2

1 + 3w

[
a

1+3w
2 − a

1+3w
2

i

]
=

2

1 + 3w

[
(aH)−1 − (aH)−1

i

] (2.382)
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Taking the initial scale factor as ai = 0, the particle horizon only exists for matter

satisfying the SEC, and is dominated by the contribution from late times, as the

Hubble radius grows with the scale factor.

d(aH)−1

da
=

1 + 3w

2
H−1

0 a
−1+3w

2 (2.383)

The growing Hubble sphere means that the comoving particle horizon today would

be larger than the particle horizon at the time of recombination when the CMB is

formed.

Another way of looking at this is that there must be a finite amount of conformal

time between the big bang and the formation of the CMB since one has χp = η−ηi.

This finite amount of conformal time and the fact that the horizon would be bigger

today than it was at the formation of the CMB, means that there should be patches

of the CMB which have never been in causal contact. A detailed calculation can

be performed with the measured density parameters 2.373, which allow us to write

H(z) = H0

√
E(z) where

E(z) = ΩΛ + Ωk(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4 (2.384)

The Horizon can be calculated in terms of redshift z

χp(z, zi) =

∫ a

ai

1

a′H
da′ =

1

H0

∫ 1
1+zi

1
1+z

1

(1 + z′)
√
E(z′)

dz (2.385)

Recombination occurred around a redshift of z ∼ 1100, we can compare how

the size of the horizon has changed from the Big Bang to the formation of the

CMB and from the formation of the CMB to the present day. These horizons are

χp(CMB) = χp(1100,∞) and χp(t0) = χp(0, 1100) respectively, and the integrals

can be calculated numerically since the density parameters are known. One finds

that we have

χp(CMB) ≈ 0.06

H0

, χp(t0) ≈
3.1

H0

(2.386)
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In the small angle approximation, the causally disconnected patches should then be

separated by a small angle such that χp(CMB) = θχp(t0), given the calculations

of 2.386, θ ∼ 1.1 degrees. Therefore when looking at the CMB, we should expect

that patches separated by more than about 1 degree should never have been in

causal contact with each other. However observations of the CMB show that its

temperature is uniform to about 1 part in 105 [5, 62,78].

This outlines the Horizon Problem, the fact that the CMB appears to be in

thermal equilibrium at scales well beyond what should be possible if the Hubble has

been growing from the Big Bang onwards. The reader is referred to [79] for a more

detailed overview of CMB temperature anisotropies.

2.2.4 Inflation

In sections 2.2.3.4 & 2.2.3.5 we showed that the CMB, whilst being a cornerstone

of modern cosmology, also suggests some fundamental problems about our under-

standing of the universes history and evolution. In particular we saw that because

the Hubble radius is increasing in the early universe, during periods of radiation

and matter domination, patches of the CMB observed today at angles more than

about 1 degree should never have been in causal contact. Yet they appear to be

in thermal equilibrium with very small temperature fluctuations ∆T/T ∼ 10−5. In

the Horizon problem, we saw that due to the growing Hubble radius the dominant

contribution to the particle horizon was from late times. This mean that there was

a finite amount of conformal time between the Big Bang and the formation of the

CMB, leading to patches with non-overlapping past light cones. This problem could

be alleviated if there existed some period of time in the early universe for which

the Hubble radius was shrinking for a sufficient amount of time. Simply through

observing equation 2.383 we see that this is possible if the universe is dominated by

and SEC violating fluid which has w < −1/3.
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Such a fluid would cause the expansion of the universe to accelerate, since

Friedmann’s second equation tells us that

ä

a
= −4πG

3
ρ(1 + 3w) (2.387)

Conveniently, this also provides a way to tackle the Flatness Problem. In our

discussion of the Flatness Problem, we saw that early time perturbations in the

density parameter would grow unless there was a period of domination by an SEC

violating fluid, in which case these perturbations would get smaller as the scale factor

grows. This period of accelerated expansion is called “Inflation”, a sufficient period

of inflation could provide an explanation of the observed smallness of the density

parameter and the homogeneity of the CMB.

To see how we might obtain such a period of inflation, consider the following

time derivative of the Hubble radius

d(aH)−1

dt
= −1

a
(1 − εH) (2.388)

where

εH = − Ḣ

H2
(2.389)

is the first Hubble slow roll parameter. For the Hubble sphere to be shrinking i.e.

a period of inflation, we require εH < 1. Recall in section 2.2.2.1, we discussed

vacuum dominated solutions to the Friedmann equations and saw that a perfect

fluid with negative pressure was able to produce an exponentially increasing scale

factor a ∼ eHt with constant Hubble parameter H. Such a fluid could then produce

the required inflationary effects, and would correspond to εH = 0, since Ḣ = 0.

This is referred to as quasi-de Sitter inflation, during inflation the spacetime is

approximately de Sitter, however it cannot be perfectly de Sitter otherwise there

would be no end to inflation and we would still be experiencing it today. Thus more

realistically, the universe would require some period of quasi-de Sitter inflation where

134



H ≈ constant for some finite amount of time. The amount of inflation experienced

by the universe is usually discussed in terms of e-folds N , defined by a = eN , rather

than the amount of coordinate time that has passed. In order to resolve the Horizon

and Flatness problem, one typically needs around 60 e-folds of inflation [50,80]. The

first Hubble slow roll parameter can be written in terms of the e-folds of inflation

simply as

εH = −d lnH

dN
(2.390)

Inflation will end when the first Hubble slow roll parameter reaches unity, so

in order to have a sufficient amount of inflation, one requires the fractional change

in εH per Hubble time to be small, hence we define the second Hubble slow roll

parameter as

ηH =
d ln εH
dN

=
˙εH

HεH
(2.391)

For |ηH | < 1 the fractional change in εH is sufficiently small over the course of one

inflation time that we remain in a quasi-de Sitter expansion. Thus for inflation to

occur, and be sustained for a sufficiently long period of time, we have two conditions

that must be satisfied

εH < 1, |ηH | < 1 (2.392)

The universe will start to exit quasi-de Sitter expansion when |ηH | ∼ 1 and inflation

will fully stop when εH = 1.

2.2.4.1 Slow Roll Inflation

The simplest possible mechanism by which we can establish the conditions required

for an inflationary phase in the early universe is that of “Slow Roll” inflation

[81]. In the slow roll regime, we consider the energy density of the universe to

be dominated by that of a scalar field ϕ, often called the inflaton field, minimally

coupled to the Einstein Hilbert action. Recalling equation 2.211, the action is then

S =

∫
d4x

√
−g (R + Lm) (2.393)
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where gµν is the FLRW metric and the matter Lagrangian is

Lm =
1

2
ϕ̇2 − V (ϕ) (2.394)

Note that the conditions of homogeneity and isotropy mean that the scalar field

must be a function of time only.

Recalling the definition of the matter stress-energy tensor 2.214, one can easily

calculate the pressure and energy density of the scalar field

pϕ =
1

2
ϕ̇2 − V (ϕ), ρϕ =

1

2
ϕ̇+ V (ϕ) (2.395)

We therefore have the state-parameter associated with the scalar field

wϕ =
pϕ
ρϕ

=
1
2
ϕ̇2 − V (ϕ)
1
2
ϕ̇+ V (ϕ)

(2.396)

If the kinetic term ϕ̇2/2 is sufficiently small compared to the potential, then the

state parameter is approximately constant

wϕ ≈ −1 (2.397)

and satisfied the bound required for inflation w < −1/3. The slow roll regime is an

approximation, part of which assumes the aforementioned condition ϕ̇2 ≪ V (ϕ), but

this is not the only condition. The first Friedmann equation during the inflationary

phase is

H2 =
1

3M2
pl

(
1

2
ϕ̇2 + V

)
(2.398)

from which we have the time derivative

Ḣ = −1

2

ϕ̇2

M2
pl

(2.399)

where Mpl is the Planck mass.
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The minimally coupled scalar field also has an equation of motion

ϕ̈+ 3Hϕ̇ = −V ′(ϕ) (2.400)

where V ′ = dV/dϕ. Note that the expansion of the universe enters into the equation

of motion for the scalar field as a frictional term 3Hϕ̇. The equations of motion for

the Hubble parameter and scalar field can be used to investigate the Hubble slow

roll parameters further and eventually, define a second set of parameters which are

dependant entirely on the field potential V (ϕ). Given equations 2.398 & 2.399, the

first Hubble slow roll parameter is simply

εH = − Ḣ

H2
=

ϕ̇2

2M2
plH

2
(2.401)

From this we may calculate the second Hubble slow roll parameter, recalling ηH =

˙εH/HεH

ηH = 2

(
ϕ̈

ϕH
− Ḣ

H2

)
(2.402)

Defining δ = −ϕ̈/Hϕ̇, the second Hubble slow roll parameter can be written as

ηH = 2(εH − δ) (2.403)

Thus the two conditions εH , |δ| ≪ 1 are sufficient for the required inflationary regime

to occur and sustain itself. In the slow roll approximation, the scalar field kinetic

term is negligible compared to its potential, and thus equation 2.398 becomes

H2 ≈ 1

3M2
pl

V (ϕ) (2.404)

The condition that the acceleration parameter δ be small means that we can

approximate the equation of motion of the scalar field 2.400 as

3Hϕ̇ ≈ V ′ (2.405)
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In this approximation, the first Hubble slow parameter becomes

ε =
ϕ̇

2M2
plH

2
≈ 1

2
M2

pl

(
V ′

V

)2

(2.406)

We can also calculate the combination

δ + ε ≈M2
pl

V ′′

V
(2.407)

The parameters

ε =
1

2
M2

pl

(
V ′

V

)2

(2.408)

and

η = M2
pl

V ′′

V
(2.409)

are called the first and second potential slow roll parameters respectively. The

conditions ε(ϕ) < 1 and |η(ϕ)| ≪ 1 tell us if the shape of the scalar field potential

can create the conditions required for a quasi-de Sitter inflationary period. Tracking

these two slow roll parameters is important as they have significant implications for

observational tests of slow roll inflation.

2.2.5 The Quantum Statistics of Inflation and Comoving

Scales

Here we will give a brief overview of the quantum statistics of perturbations to

the metric and scalar field during inflation, and their relation to two cosmological

observables, the spectral index ns and tensor-scalar ratio r which will be important

in the following chapters. This will closely follow the exposition given in [80], where

a fully detailed account can be found.

Firstly consider, during an inflationary period driven by a single minimally

coupled scalar field ϕ, small perturbations around a homogeneous background ϕ̄(t)

ϕ(t, x) = ϕ̄(t) + δϕ(t, x) (2.410)
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We take the background metric field to be a flat FLRW solution ḡµν(t) with scale

factor a(t), for which the spacetime is of course homogeneous and isotropic. We

then perturb around this background

gµν(t, x) = ḡµν(t) + δgµν(x, t) (2.411)

The high degree of symmetry of spatially flat FLRW geometries allows the

background metric to be decomposed into scalar, vector and tensor components

which can be shown to evolve independently of each other [82]. Under this

decomposition of the full metric in a Cartesian coordinate basis, the invariant line

element ds2 can be written as

ds2 = gµνdx
µdxν

= − (1 + 2Φ) dt2 + 2aBidx
idt+ a2 [(1 − 2Ψ) δij + Eij] dx

idxj
(2.412)

The vector and tensor components Bi and Eij respectively can be further broken

down into

Bi = ∂iB − Si, ∂iSi = 0 (2.413)

Eij = 2∂ijE + 2∂(iFj) + hij

∂iFi = 0, hii = ∂ihij = 0
(2.414)

The conformal invariance of massless vector fields means that these modes are

not excited by the expansion of spacetime. Furthermore, any vector modes that

could have existed can be shown to decay rapidly and so given a sufficient amount

of inflation, vector modes would not be observable by the end of the inflationary

period [83,84]. Since the vector perturbations Si and Fi evolve independently of the

scalar and tensor components, they can be ignored in this analysis.

We now turn to the gauge invariance of the perturbations. The metric perturba-

tions are already gauge invariant, however the scalar perturbations transform under

a change of coordinates. This induces a further change in the energy density ρϕ
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and pressure pϕ which dominate the contributions to the stress-energy Tµν during

inflation. To avoid ambiguity, we need to look for gauge invariant combinations

of the perturbations which cannot be removed by simply defining a new set of

coordinates.

It can be shown that under change of coordinates

t→ t+ α(t, x)

xi → xi + δijβj(t, x)
(2.415)

the energy density and pressure perturbation transform as

δρϕ → δρϕ − ˙̄ρϕα

δpϕ → δpϕ − ˙̄pϕα
(2.416)

where ρ̄ϕ and p̄ϕ are the background energy density and pressure respectively. A

particular gauge-invariant quantity that can be formed out of these gauge-dependant

perturbations is the comoving curvature perturbation R defined by

R = Ψ − H

ρ̄ϕ + p̄ϕ
δq (2.417)

where H is the Hubble factor and δq is a scalar identified from the 3-momentum

density T 0
i = ∂iδq. The stress-energy tensor is dominated by the scalar field ϕ

during inflation so we have T 0
i = − ˙̄ϕ∂iδϕ. The comoving curvature perturbation

under these conditions is then

R = Ψ +
H
˙̄ϕ
δϕ (2.418)

Typically, we tend to work with the Fourier components of the comoving curvature

perturbation Rk, rather than R itself. Choosing the particular Fourier convention

R =

∫
d3k

(2π)3
Rke

−ik·x (2.419)

140



The power spectrum PR(k) is related to the 2-point correlator by

⟨RkRk′⟩ = (2π)3δ(k + k′)PR(k) (2.420)

where ⟨⟩ denotes the ensemble expectation. The dimensionless power spectrum is

defined by rescaling PR appropriately

∆2
R =

k3

2π2
PR(k) (2.421)

The sensitivity of the power spectrum to the Fourier mode scale is captured by the

spectral index, which is conventionally defined by

ns − 1 =
d ln ∆2

R
d ln k

(2.422)

This can be viewed as the first order coefficient of a Taylor expansion of ln ∆2
R in

log-space around an arbitrary reference scale k∗, referred to as the pivot scale

ln ∆2
R = ln ∆2

R(k∗) + (ln k − ln k∗)
d ln ∆2

R
d ln k

∣∣∣∣
k=k∗

+ .... (2.423)

Defining

As(k∗) = ∆2
R(k∗) (2.424)

and

ns − 1 =
d ln ∆2

R
d ln k

∣∣∣∣
k=k∗

(2.425)

we have to first order

∆2
R(k) ≈ As(k∗)

(
k

k∗

)ns(k∗)−1

(2.426)

Indeed, the power spectrum of curvature perturbations is observed to be nearly

scale-invariant, corresponding to ns ≈ 1 [85].
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The comoving curvature perturbation R has the particularly important property

that it is constant outside the horizon (comoving Hubble radius discussed in sections

2.2.3.5 and 2.2.4). During inflation, this horizon is rapidly shrinking, and so modes

that were originally inside the horizon and excited by inflationary expansion having

k ≫ aH, will gradually be frozen out as the horizon scale shrinks and the modes exit

the horizon, where k < aH. The frozen-out modes will remain this way, unaffected

post inflationary physics until they re enter the horizon. For this reason, when

computing correlators of the quantised comoving curvature perturbation, one can

simply restrict the calculation to the point of horizon crossing k = aH.

Just as one can compute the power spectrum of scalar modes, resulting in ∆2
R,

the power spectrum of the tensor modes hij in equation 2.414 can also be computed

resulting in a dimensionless tensor power spectrum ∆2
t . Both the scalar and tensor

mode power spectra can be calculated for classical perturbations and quantised

perturbations, the details of which we omit here and can be found in [80]. We quote

the main results here, that in the slow-roll approximation, the dimensionless power

spectrum of the quantised comoving curvature perturbation is given by

∆2
R(k) =

H4

(2π)2ϕ̇2
(2.427)

Similarly for tensor-perturbations we have

∆2
t =

2H2

π2Mpl

(2.428)

where Mpl is the Planck mass. In equations 2.427 & 2.428, both expressions are

evaluated where the chosen scale exits the horizon k = aH. We have already

mentioned the spectral index ns which is an important parameter which can be

observed by measuring the scale dependence of ∆2
R with respect to a particular

reference k∗. Another important quantity is the normalization of the tensor power

spectrum to the scalar power spectrum, also defined with respect to the reference
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scale k∗. This is known as the tensor-to-scalar ratio r

r =
∆2

t (k∗)

∆2
R(k∗)

(2.429)

The power spectra at horizon crossing are related directly to quantities we

can observe today, specifically the angular power spectra of CMB temperature

anisotropies and the two polarization modes of the CMB radiation, referred to as

E and B modes. After horizon exit, the perturbations become dynamical again

and anisotropies introduced by their time evolution need to be accounted for by an

appropriate transfer function. We will not cover this in detail here as it is a large

subject but an appropriate exposition can be found in [86]. The key point is that

curvature and tensor perturbation induce fluctuations in the CMB temperature T as

well as E and B modes. There are 4 non-vanishing autocorrelation functions (angular

power spectra) CTT
l , CEE

l , CBB
l , CTE

l where l is the multipole moment, with all others

vanishing due to symmetry. Each power spectrum is related to power spectrum of

perturbations at horizon crossing

CXY
l =

2

π

∫
P(k)TXY

l (k)k2dk (2.430)

where TXY
l (k) is an appropriate transfer function and P(k) is the power spectrum

of perturbations at horizon crossing. The indexes X, Y run over {T,E,B}. There

are a number of important observations which allow us to associate particular

perturbation spectra (i.e. scalar or tensor) to particular CMB autocorrelations CXY
l

[87,88]. Firstly, for small tensor-to-scalar ratio r, the TT spectrum is dominated by

scalar perturbations, so measurements of the TT modes give information on PR(k)

and hence ∆2
R(k). Scalar perturbations only produce E-mode fluctuations and tensor

perturbations produce both E and B mode fluctuations, so the CBB
l spectrum can

be used to obtain information about ∆2
t (k). The exact expressions relating the CXY

l

to the appropriate power spectra can be found in [80] but are not relevant here for

our purposes it suffices to understand that measurement of the appropriate CMB
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angular power spectrum allows us to measure ∆2
R(k) and ∆2

t (k) at some chosen scale

pivot scale k∗, and hence the spectral index ns and tensor-to-scalar ratio r.

Figure 2.7: This figure from [4] shows a compilation of measurements of the CMB
angular power spectrum from various experiments, including Planck 2018 (blue).
The top panel displays the TT, EE and BB autocorrelations. The middle panel
displays the TE cross correlation and the bottom panel displays the lensing deflection
power spectrum which we do not discuss here.

Figure 2.7 shows measurements of the CMB power angular power spectra. In

particular, there are significant fluctuations and the lowest multipole numbers.

These fluctuations correspond to the largest length scales we can observe, on the

order H−1
0 . The fact that these fluctuations are present means that these scales

must have exited the horizon during inflation. In fact it can be shown that in order

for these scales to exit the horizon, one needs around 60 e-folds of inflation as an

upper bound [89].
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It can be shown that in the slow roll approximation, the spectral index and

tensor-to-scalar ratio are both directly related to the potential slow roll parameters

previously defined by [80]

ns = 1 − 6ε+ 2η

r = 16ε
(2.431)

Since these parameters are defined explicitly by the choice of field potential V (ϕ),

they allow us to make predictions of (r, ns) which can be compared directly inferred

values obtained by measuring the CMB power spectrum. In this way the spectral

index and tensor-to-scalar ratio form a set of important cosmological observable

which can be used to test the validity of proposed inflationary models.

Figure 2.8: The constrained (r, ns) parameter space at the k∗ = 0.002Mpc−1 pivot
scale from the Planck 2018 data release, assuming a the ΛCDM model. The dotted
diagonal lines represent the analytical predictions of inflationary potentials of the
form V (ϕ) ∼ ( ϕ

mpl
)p at N = 50, 60 e-folds of inflation. The linear (p = 1) and

quadratic (p = 2) predictions are highlighted in red. Figure obtained from [5].

Figure 2.8 shows the constrained parameter space obtained by the Planck 2018

data release, where the spectral index and tensor-to-scalar ration are measure with

pivot scale k∗ = 0.002Mpc−1. The two dotted lines marked N = 50 and N = 60

mark the predictions of linear and quadratic field potentials when the pivot scale

exits the exits the horizon with 50 or 60 e-folds of inflation remaining.
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2.2.6 ϕ2 Inflation As a Toy Model

To give more context to figure 2.8, we could consider the simple toy model of ϕ2

inflation, where the inflationary potential is a harmonic one V (ϕ) = 1
2
m2ϕ2. In

this case one may easily find analytical predictions of the spectral index and tensor-

scalar ratio in the slow roll regime. Given the harmonic potential, the potential slow

parameters are

ε(ϕ) =
2m2

pl

ϕ2

η(ϕ) =
2m2

pl

ϕ2

(2.432)

Thus the spectral index and tensor-scalar ratio which are defined in terms of the

slow roll parameters in equations 2.431 are

ns = 1 −
8m2

pl

ϕ2
(2.433)

r =
32m2

pl

ϕ2
(2.434)

It is more common to parameterise ns and r in terms of the e-folds of inflation N

remaining after the reference scale (the pivot) exits the horizon. This can be written

as an integral

N =

∫ aE

aI

d ln a =

∫ tE

tI

Hdt (2.435)

where aI(tI) is the scale factor when the comoving scale exits the horizon and aE(tE)

is the scale factor at the end of inflation. The integral in equation 2.435 can be

converted to an integral over the inflation field as follows. One has dt = ḢdH and

thus

N =

∫ HE

HI

H

Ḣ
dH = −

∫ HE

HI

1

HεH
dH (2.436)

In the slow roll regime one has εH ≈ ε(ϕ) and well as H2 ≈ V (ϕ)/3m2
pl thus

dH = 1
2
√
3mpl

V − 1
2V ′dϕ.
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We arrive at the remaining number of e-folds of inflation as a function of the

inflaton field

N =
1

m2
pl

∫ ϕ

ϕend

V

V ′dϕ (2.437)

In the case of the harmonic potential one had V/V ′ = ϕ/2 and therefore

N =
1

4m2
pl

[
ϕ2 − ϕ2

end

]
(2.438)

Recalling that we consider slow roll inflation to end when ε(ϕ) = 1, we have

ε(ϕend) =
2mpl2

ϕ2
end

= 1 (2.439)

which may be solved for the value of the inflaton field at the end of inflation ϕ2
end =

2m2
pl. Thus at a given field value ϕ we have the remaining number of e-folds of

inflation

N +
1

2
=

1

4m2
pl

ϕ2 (2.440)

The spectral index and tensor-scalar ratio in equations 2.433 & 2.434 can then be

written as functions of the remaining e-folds of inflation

ns = 1 − 4

2N + 1
(2.441)

r =
16

2N + 1
(2.442)

We thus have a simple linear relationship in the ns − r plane

r = 4(1 − ns) (2.443)

The straight line described by eq. 2.443 is precisely that highlighted in red in figure

2.8. One can see in figure 2.8 that the predictions of the ϕ2 inflationary model pass

through the least constrained region of parameter space only slightly.
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Furthermore, the predicted relationship between r and ns alone is not enough

to determine the suitability of a slow roll inflation model, one must also take into

account its reheating dynamics.

As the process of inflation ends, the universe is still dominated by an inflation

field ϕ. But the observable universe today is made up of standard model particles,

the process by which the inflaton field transfers energy to standard model particle

fields at the end of inflation is known as “Reheating”. Slow roll inflation ends

when the particle potential V (ϕ) starts to become too steep, so one might generally

expect that as inflation ends, the scalar field enters a local minima of the potential

where it is approximately harmonic V (ϕ) ∼ 1
2
ϕ2. Thus the inflation field will execute

approximately damped oscillations according to the equation of motion

ϕ̈+ 3Hϕ̇ ≃ −m2ϕ (2.444)

and begin to dump energy into standard model fields, leaving the universe at a

temperature Tre at the end of reheating, after which conventional HBB and FLRW

dynamics ensue. The specific dynamics of reheating are highly model dependant,

the amount of reheating e-folds and the exact temperature at the end of reheating

will depend on the specific reheating mechanism and couplings of the inflaton field.

Detailed analysis can be found in [90–93].

The reheating dynamics ϕ2 inflation have been explored extensively, and detailed

calculations can be found in [94–96]. Generally speaking, the relationship between

r and ns alone is insufficient since the temperature of the universe at the end of

reheating is model dependant, and depends on the number of e-folds of inflation.

The number of e-folds of inflation required to produce an (ns, r) prediction that lies

within an acceptable region of the constrained parameter space, may not produce a

sufficient reheating of the universe. This will be explored further shortly.

Data collected from the Planck satellite constrains the spectral index to ns =

0.9649 ± 0.0042 and the tensor-to-scalar ratio to r < 0.1 [97]. When combining

data from Planck with data from BICEP2/Keck Array this the constraint on r is
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Figure 2.9: The (ns, r) predictions from a collection of candidate inflationary models
compared to the marginalised distributions from the Planck 2018 data release.
Figure taken from [5].

further reduced to r < 0.056. In practise, there exist a great many proposed models

for inflation within the slow roll regime. We required only that field potential has

a suitable shape for inflation. There are many such potentials that can provide

the conditions necessary for slow roll inflation. There are also more complicated

models that contain multiple fields, rather than just a single scalar field [98, 99].

Figure 2.9 shows the predictions of a number of inflationary models compared to

the constrained parameter space derived from the Planck 2018 data release [5, 97].

2.2.7 The Hubble Tension

In 1929 Edwin Hubble published the first experimental evidence that the universe

was expanding, with his observation that the radial velocity of distant galaxies was

proportional to their proper distance from the observer on earth [100], known as

Hubbles law which we introduced in equation 2.272. The local measurements of the

Hubble parameter rely on the use of standard candles, astrophysical objects of a

known intrinsic brightness, and standard rods, objects of known length.
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The proper radial distance of an astrophysical object from earth observed today

at some redshift z > 0 can be written as a Taylor expansion in z as

D =
cz

H0

[
1 +

(
1 +

1

2
q0

)
z +

(
1 + q0 +

1

2
q20 −

1

6
j0

)
z2 + ...

]
(2.445)

where we have reinserted the speed of light c and q0 and j0 are the present day

deceleration and jerk parameters receptively. At a generic time t they are defined

by

q(t) = − 1

H2a

d2a

dt2
(2.446)

j(t) =
1

H3a

d3a

dt3
(2.447)

In the small z limit equation 2.445 reduces to Hubbles law (in terms of redshift)

cz = H0D. Determining the redshifts of distant galaxies well understood and

involves measuring the shift in wavelength of atomic transitions compared to known

laboratory measurements. Measuring the proper distance of galaxies from Earth

is a bit more involved. In particular Hubbles original determination of the linear

relationship used Cephid variables as a standard candles. These are large supergiant

stars which have a well understood intrinsic brightness that pulsates at a frequency

which is highly dependant on their mass an luminosity. Due to how well understood

Cephids are they still form a highly favourable means of determining local distances

[101]. In modern methods, Cephids form the first step in iteratively calibrating

the so-called “distance ladder” to determine H0. There are a sufficient number of

Cephid variable stars located at distances within the Milky Way that they can be

calibrated to local parallaxes. These form the first “rung” of the distance ladder.

The next rung is formed from luminosity measurements of Type Ia supernovae (SN

Ia). These are much rarer than Cephids and located at much further distances

from Earth. These Type Ia supernovae are then used to further calibrate the final

rung of the distance ladder which is formed from even further supernovae. Having

calibrated the luminosities of these standard candles, they can then be used to
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determine proper distance of the galaxies under observation and hence determine

the Hubble parameter H0.

Figure 2.10: A recent construction of the local distance ladder by the Supernovae
and H0 for the Equation of State (SH0ES) team using Hubble Space Telescope
data [6], original figure also from [6]

A recent construction of this local distance ladder is shown in figure 2.10. This

figure comes from the work of the SH0ES team [6] and the value of the Hubble

parameter determined from this work is

H0 = 73.30 ± 1.04 km s−1 Mpc−1 (2.448)

Other direct, local measurements of the Hubble parameter fall in this “higher” range

of about 72 − 75 km s−1 Mpc−1 [102]. The issue of the Hubble tension is that these

direct probes of H0 are at odds with inferred values of H0, derived from the ΛCDM

parameters obtained by the fitting the CMB power spectrum. In particular, the

value of H0 obtained by the SH0ES team in 2.448 is discrepant from the value
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obtained by the Planck collaboration by a difference of 5σ significance.

The cosmologically inferred value of H0 derives from the peak structure of the

CMB power spectrum, which we discussed in section 2.2.5 (see figure 2.7). Recall

that during the early universe, pre formation of the CMB, the almost homogeneous

universe contains density perturbations at different scales k in the strongly coupled

bath of baryons and photons. These acoustic waves travel through the medium at

the speed of sound [102,103]

cs(z) =
c√

3(1 +R(z))
, R(z) =

3

4

ωb

ωγ

1

1 + z
(2.449)

where ωb = Ωbh
2 and ωγ = 2.47 × 10−5 are the physical baryon and photon

energy densities respectively and h = H0/(100 km s−1 Mpc−1) is the dimensionless

Hubble parameter. If one cosiders a density perturbation sourced by a Dirac delta

function, the solution to the equations of motion is the Greens function, which is

used to generate the solution for some early universe mass distribution ρ(z). When

smearing the mass distribution against the greens function to obtain a solution

to the equations of motion, one finds that in the galaxy autocorrelation function

(essentially the probability of finding two galaxies separated at a given length scale)

there is a peak near 150Mpc. In Fourier space, such a peak contributes a series of

peaks at high multipole moments which are precisely the high-l peaks in the CMB

power spectra of figure 2.7. These are known as Baryon Acoustic Oscillations

(BAO), they are most visible in the TT spectrum.

When electrons decouple from the photon bath at the surface of last scattering

and the universe becomes transparent, these acoustic oscillations are frozen out at

a scale called the “sound horizon”

rs =

∫ ∞

zls

cs(z)

H(z)
dz (2.450)

where zls ≈ 1080 is the red shift of the surface of last scattering.
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Assuming a flat FLRW geometry k = 0, the first Friedman equation gives

H2(z) =
8πG

3
ρ(z) (2.451)

and so the Hubble factor at redshift z can be related to the Hubble factor at last

scattering Hls and energy density at last scattering ρ(zls) by

H(z) = Hls

√
ρ(z)

ρ(zls)
(2.452)

and so for the sound horizon we have

rs =
c

Hls

√
3

∫ ∞

zls

1√
1 +R(z)

√
ρ(z)/ρ(zls)

dz (2.453)

In order to infer H0 we also require the angular distance to the surface of last

scattering Dθ given by

Dθ = c

∫ zls

0

1

H(z)
dz (2.454)

Recall that the Hubble parameter H(z) can be written in terms of the present day

density parameters Ωi 2.345

H2(z) = H2
0 [ΩΛ + Ωk(1 + z)2 + Ωm(1 + z)3) + Ωr(1 + z)4] (2.455)

Assuming again that we are in flat FLRW and that the late time universe is

dominated by by Ωm and ΩΛ ≈ 1 − Ωm then we have

Dθ =
c

H0

∫ zls

0

1√
1 + Ωm [(1 + z)3 − 1]

dz (2.456)

The Planck collaboration determine the free parameters of the ΛCDM model by

fitting the CMB power spectrum to the observed data simultaneously [85]. In

particular, one of these free parameters if the angle subtended by the sound horizon

θs. This is strongly related to the multipole moment at which the first acoustic peak
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appears ls ≈ 2/θs. The angle subtended by the sound horizon is one of the most

precisely determined parameters by the Planck collaboration with a value

θs = (1.04109 ± 0.00030) × 10−2 radians (2.457)

Clearly the small angle approximation is appropriate here to relate the sound horizon

rs to the angular distance Dθ through r = θsDθ. Given this relation, we can easily

write the present day Hubble parameter as

H0 =
√

3Hlsθs

∫ zls
0

1√
1+Ωm[(1+z)3−1]

dz∫∞
zls

1√
1+R(z)

√
ρ(z)/ρ(zls)

dz
(2.458)

Given H(z) in equation 2.345, the Hubble parameter at last scattering can also

be shown to be

Hls = 100 km s−1 Mpc−1ω
1
2
r (1 + zls)

2

√
1 +

ωm

ωr

1

1 + zls
(2.459)

where ωm = Ωmh
2 is the present day physical non-relativistic matter density and

ωr =

[
1 +

7

8
Neff

(
4

11

) 4
3

]
ωγ (2.460)

is the present day physical radiation energy density with effective degrees of freedom

Neff = 3.06 due to the decoupling of neutrinos from the thermal bath in the early

universe. The value of the Hubble parameter inferred through the free parameters

found by fitting the CMB power spectrum by the Planck collaboration is

H0 = 67.4 ± 0.5 km s−1 Mpc−1 (2.461)

which as we have mentioned, is a more than 5σ discrepancy compared to the local

SH0ES measurement. There are of course other direct and inferred measurements

of H0, and the Hubble tension really refers to the fact that there is a statistically
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significant difference between values of H0 obtained by direct measurements and

those inferred through the CMB. In this work we will not cover suggested resolutions

of the Hubble tension, but give a brief overview.

Since local measurements are considered to be quite straightforward in the

literature (at least compared to inferring H0 from ΛCDM parameters), much of

the effort in resolving the Hubble tension seeks to add new physics that slightly

alters our calculation of H0 from cosmological parameters. These potential solutions

can be broadly categorized into “early time” and “late time” solutions. Both the

early and late approaches to resolving the Hubble tension attempt to correct the

cosmologically inferred values of H0. Consider that equation 2.458 for the Hubble

parameter can be written in terms of the total energy density ρ(z) (rather than the

individual density parameters) as

H0 =
√

3Hlsθs

∫ zl

0
(ρ(z)/ρ0)

− 1
2 dz∫∞

zls
(1 +R(z))−

1
2 (ρ(z)/ρ(zls))

− 1
2 dz

(2.462)

The inferred value of the Hubble parameter could be made larger by effectively

increasing the numerator or decreasing the denominator. The integral in the

numerator involves physics of the universe post last scattering and so attempts to

effectively make the realized energy density ρ(z)/ρ0 smaller than that predicted by

ΛCDM, there by increasing the numerator, are known as late time solutions. On the

other hand attempts to modify the pre-last scattering physics and make ρ(z)/ρ(zls)

larger than predicted by ΛCDM, thereby making the numerator smaller, are known

as early time solutions.

Late time solutions are fundamentally constrained by the observed present day

energy density of the universe. The problem faced by these models is that they

must provide a mechanism by which the energy density of the universe between

last scattering and now is smaller than predicted by standard cosmology, but they

must still arrive at the present day energy density. The scaling of observed species

of matter and radiation with redshift is well understood, so most attempts to
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implement this rely on new sources of energy density, typically with exotic equations

of state that violate the strong energy condition [104] having state parameter

w < −1. The fact that late time solutions are heavily constrained by the physics at

last scattering and present day makes it difficult to resolve the Hubble tension while

remaining consistent with current observations [105–107].

Early time solutions on the other hand tend be considered more favourable

approaches. There are a number of approaches to early time solutions in the

literature [108, 109] but certainly one of the most active currently is that of early

dark energy (EDE) [109–113].

The high-level overview of EDE is to posit a new field whose energy density

contributes a minority amount in the early universe and then decays away rapidly

after last scattering so as not to significantly modify late time dynamics compared

to standard ΛCDM. EDE faces a similar problem to late time solutions in that it

is also highly constrained, this time by the very precisely measure structure of the

CMB power spectrum at high multipole numbers l ∼ 3000. These measurements

probe scales that exited the horizon at redshifts of around z ∼ 106, very early in

the universes history. Despite these constraints, there are many approaches to EDE

that are able to provide theoretical resolutions to the Hubble tension, the reader

is referred to [102] for an overview of some of these approaches. Although these

approaches seem to be favourable the current CMB data is not robust enough to

provide a decisive conclusion.

2.3 The Bianchi Classification and Homogeneous

Cosmologies

In section 2.2.2 we reviewed homogeneous and isotropic solutions to the Einstein

Field Equations. In this section we will be concerned with spatially homogeneous,

but not necessarily isotropic cosmological spacetimes. The isometries of such

spacetimes are captured by the “Bianchi Classification”, which we will describe
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here following along the lines of [114–116]. A spatially homogeneous spacetime

M = R × Σ is one for which there exists a Lie group G such that for any point p

on the spatial 3-manifold, every point q ∈ Σt lies in the group orbit of p. In other

words, ∀p, q ∈ Σt there exists a unique g ∈ G such that q = g(p). In this case the

group G is said to act “simply transitively” on Σt. Since g is unique, the dimension

of the group G must be equal to the dimension of the spatial slice Σt, thus the

group isometries on the spatial manifold have 3-independent Killing vector fields ξa

as their infinitesimal generators.

We saw in section 2.2.1.1 that a Lie algebra of Killing vector fields satisfies the

commutation relation

[ξa, ξb] = Cc
abξc (2.463)

where Cc
ab are the structure constants of the Lie group G. Here we will consider the

group to be simply transitive, in the only case where there is a group that does not

act simply transitively, or have a sub group that acts as such is SO(3) × R acting

on M = S2 × R which results in the Kantowski-Sachs model [117].

Up until this point we have worked in a coordinate basis ei = ∂i, e
i = dxi. In

general, the coordinate basis we are used to working in may not be invariant under

the isometries generated by the three independent Killing vector field. However the

existence of the Killing vector fields means that it is always possible to construct an

invariant basis ea, even if it does not coincide with the coordinate basis.

[ea, eb] = Cc
abec (2.464)

Associated with the invariant basis vectors, there will exist a dual basis of

invariant 1-forms ωa = eaαdx
α which satisfy the Maurer-Cartan equation

dωc =
1

2
Cc

abω
a ∧ ωb (2.465)

The triads eaα satisfy dual relations eaαe
α
b = δab & eaαe

β
a = δαβ .
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Any two Lie algebras with the same structure constant are isomorphic and

thus describe the same topological structure, and so to determine the distinct

homogeneous cosmologies, one must identify all inequivalent (real) 3 dimensional

Lie algebras. This is the Bianchi classification which we will outline here. First, we

will show that given a vector X, its components in the invariant basis satisfy the

same commutation relation as the basis vectors 2.464. Consider writing the induced

line element on the spatial hypersurfaces Σt in terms of the invariant dual basis

dl2 = γab(x)ωa(x)ωb(x) (2.466)

where x labels the chosen coordinate system on the manifold. The line element must

be invariant under a change of coordinates xα → x′α(x) which means we must have

ωa(x′) = ωa(x). In terms of the triads and the dual coordinate basis we have

eaα(x′)dx′α = eaα(x)dxα (2.467)

Recall that the triads satisfy dual condition eaµe
µ
b = δ b, thus we have

eβa(x′)eaα(x′)dx′a = eβa(x′)eaα(x)dxα

δβαdx
′α = eβa(x′)eaα(x)dxα

dx′β = eβa(x′)eaα(x)dxα

(2.468)

Since x′ = x′(x), the exterior derivative can be written as

dx′β =
∂x′β

∂xα
dxα (2.469)

We may then identify
∂x′β

∂xα
= eβa(x′)eaα(x) (2.470)

This is a set of coupled partial differential equations.
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In order for these to be integrable, they must satisfy the Schwarz condition, that

the Hessian of x′β be symmetric

∂2x′β

∂xγ∂xα
=

∂2x′β

∂xα∂xγ
(2.471)

Using equation 2.470, we have the following second partial derivative

∂2x′β

∂xγ∂xα
=

∂

∂xγ
(
eβa(x′)eaα(x)

)
=
∂eβa(x′)

∂xγ
eaα(x) + eβa(x′)

∂eaα(x)

∂γ

=
∂eβa(x′)

∂x′ρ
∂x′ρ

∂xγ
eaα(x) + eβa(x′)

∂eaα(x)

∂γ

=
∂eβa(x′)

∂x′ρ
eρk(x′)ekγ(x)eaα(x) + eβa(x′)

∂eaα(x)

∂γ

(2.472)

After exchanging derivatives between terms using the triad dual relations, the

integrability condition reads

eβc (x′)eρd(x
′)

[
∂ekβ(x′)

∂x′ρ
−
ekρ(x′)

∂x′β

]
= eβc (x)eρd(x)

[
∂ekβ(x)

∂xρ
−
ekρ(x)

∂xβ

]
(2.473)

Since x and x′ are arbitrary, the equality of equation 2.473 can be true if and only

if both sides are constant. We are free to choose these constants to be the structure

constants of the Lie algebra

eβc (x)eρd(x)

[
∂ekβ(x)

∂xρ
−
ekρ(x)

∂xσ

]
= Ck

cd (2.474)

Multiplying by eγk gives

eβc (x)eρd(x)

[
ekρ
∂eγk
∂xβ

− ekβ
eγk
xβ

]
= Ck

cde
γ

=⇒ eβc
∂eγd
∂xβ

− eρd
∂eγc
∂xρ

= Ck
cde

γ
k

(2.475)
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The components of a vector X in the invariant basis are related to the coordinate

basis by Xa = eαa∂α. The commutator can then be written as

[Xa, Xb] = eαa∂α(eβb ∂β) − eβb ∂β(eαa∂α)

= eαa (∂αe
β
b )∂β − eβb (∂βe

α
a )∂α

(2.476)

From equation 2.475 we may write

eαa
∂eβb
∂xα

− eρb
∂eβa
∂xρ

= Cc
abe

β
c

=⇒ eαa (∂αe
β
b )∂β = eρb(∂ρe

β
a)∂β + Cc

abe
β
c ∂β

eαa (∂αe
β
b )∂β = eρb(∂ρe

β
a)∂β + Cc

abXc

(2.477)

where in the final line we have identified Xk = eβk∂β. Equation 2.477 may be

substituted into equation 2.476, with a relabelling of the dummy indices ρ → β,

β → α to give the required result

[Xa, Xb] = Cc
abXc (2.478)

The commutator [Xa, Xb] satisfies the Jacobi identity

[Xa, [Xb, Xc]] + [Xb, [Xc, Xa]] + [Xc, [Xa, Xb]] = 0 (2.479)

Or equivalently in terms of the structure constants

Cd
bcC

f
ad + Cd

caC
f
bd + Cd

abC
f
cd = 0 (2.480)

In order to determine the different isomotries, and hence distinct Bianchi cosmolo-

gies, we must determine all the inequivalent sets of structure constants. The first

step in this process is to decompose the structure constants as follows. Let aa = Cb
ba

and define

Cab =
1

2
ϵacd

(
Cb

cd − δbcad
)

(2.481)
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Contracting with the Levi-Civita symbol ϵaef one has

ϵaefC
ab =

1

2
ϵaefϵ

acd
(
Cb

cd − δbcad
)

=
1

2
(δecδfd − δedδfc)

(
Cb

cd − δbcad
)

= Cb
ef +

1

2

(
δbfae − δbeaf

) (2.482)

Contracting over the e and b indices we have

ϵebfC
ab = Cb

bf +
1

2

(
δbfab − δbbaf

)
= af +

1

2
(af − 3af )

= 0

(2.483)

Equation 2.483 is the statement that Cab is a symmetric matrix, to see this more

clearly we may write the summation explicitly

ϵabfC
ab = ϵ12fC

12 + ϵ13fC
13 + ϵ21fC

21 + ϵ23fC
23 + ϵ31fC

31 + ϵ32fC
32 = 0

f = 1 =⇒ C32 − C32 = 0

f = 2 =⇒ C31 − C13 = 0

f = 3 =⇒ C12 − C21 = 0

(2.484)

Thus any structure constant can be decomposed as

Cc
ab = ϵabdC

dc + δcbaa − δcaab (2.485)

where Cab = Cba. with this decomposition of the structure constant, the Jacobi

identity 2.480 is

Cabab = 0 (2.486)

Without loss of generality, the invariant basis can be chosen such that the

symmetric matrix Cab can be taken to be diagonal, with principle eigenvalues
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(n1, n2, n3) and aa = (a, 0, 0). The Jacobi identity then reduces to

n1a = 0 (2.487)

This splits the Bianchi classification into two classes. Class A models are those

for which a = 0, and class B models are those for which a ̸= 0. The distinct

Bianchi models are therefore classified by all possible choices of ni ∈ {−1, 0, 1} and

a satisfying 2.487 [114]. The commutator structure is explicitly

Classification a n1 n2 n3

I 0 0 0 0
II 0 1 0 0
III 1 0 1 -1
IV 1 0 0 1
V 1 0 0 0

VIa a 0 1 -1
VI0 0 1 -1 0
VIIa a 0 1 1
VII0 0 1 1 0
VIII 0 1 1 -1
IX 0 1 1 1

Figure 2.11: The Bianchi classification of real 3 dimensional Lie algebras and the
associated values of a parameter and principle eigenvalues ni of the symmetric matrix
Cab.

[X1, X2] = −aX2 + n3X3

[X2, X3] = n1X1

[X3, X1] = n2X2 + aX3

(2.488)
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2.3.1 A Brief Aside: The Principle of Symmetric Criticality

At this point we may discuss an important subtlety which has gone unmentioned

so far. When looking at a dynamical system from the variational perspective, one

often starts with an action functional S and insists that the physical paths are

the stationary points of the action. These are curves that satisfy the equations of

motion resulting from the infinitesimal first order variation of the action. Sometimes

however the physical system under consideration may be quite complicated, and

we may only wish to look for solutions that are invariant under the action of some

symmetry group G. For example spherically symmetric solutions which are invariant

under the group of rotations in the relevant number of dimensions. In which case, we

may first form the symmetry reduced action S|G and then try to solve the equations

of motion resulting from its variational principle.

Much of the time we naively assume that the critical points of the symmetry

reduced action S|G will also be critical points of the full action S. This is the

“Principle of Symmetric Criticality (PSC). The PSC was first considered

by Palais in [118]. More formally, Palais defines the PSC as such: Let M be a

C∞ smooth manifold and let G be a group of diffeomorphisms acting on M . Let

f : M → R be a C∞(M) smooth function on M that is G-invariant. Then define

a critical point p of f as a point p ∈ M such that df |p = 0. A symmetric point

p ∈ M is defined as an element of the set of points in M that are invariant under

the group action i.e. p ∈ Σ, where Σ = {p ∈ M |g(p) = p ∀g ∈ G}. Then given a

symmetric point p of M , for p to be a critical point of M it is sufficient for it to be

a critical point of f |Σ where f |Σ denotes the restriction of f to Σ. Palais notes that

the PSC need not always be valid nor well defined. When the PSC is well defined, a

sufficient condition for it to be valid is that M is Riemannian and G is an isometry

of M . The PSC is particularly important when studying homogeneous spacetimes

in General Relativity. As Fels & Torre write in [119], typically in GR we start with a

fixed spacetime (M, g) and try to determine its group of isometries by identifying a

set of Killing vector fields, however in the Arnowitt-Deser-Misner (ADM) approach
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to Bianchi Cosmologies discussed in section 5.3, we will look for a restriction of all

possible spacetimes to a class of spacetimes with a chosen isometry. We therefore

want to be sure that critical points the symmetry reduced Einstein-Hilbert action

are in fact critical point of the general Einstein-Hilbert action. It was Hawking who

noted in [120] that the PSC is valid if and only if the Bianchi spacetime is of class A.

For class B isometry groups, the variation of the symmetry reduced action produces

a non-trivial boundary term and hence the equations of motion do not coincide

with those derived from the variation of the general Einstein-Hilbert action. In this

work we will be concerned only with Bianchi type A cosmologies, and henceforth

we will assume a = 0. In particular, we will look at the Bianchi I and Bianchi IX

models. For both cosmological models, we will want to determine the Hamiltonian

and diffeomorphism constraints 5.30 & 5.31 in the invariant basis and determine

what we may about solutions to Hamiltons equations of motion for the dynamical

variables. More detail on the PSC can be found in [121,122].
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Chapter 3

Quartic Hilltop Inflation

This section is based on research published by the author and David Sloan, contained

in Physical Review D [1].

With the release of the Planck 2018 data it has been possible to accurately test

a variety of candidate inflationary models [123]. A particular class of models that

has received attention is that of Hilltop models. This class of inflationary models is

defined by potentials of the form [124]

V (ϕ) = Λ

[
1 − λ

(
ϕ

mpl

)q

+ ...

]
(3.1)

where “...” indicates higher order terms. In this chapter we will only be considering

potentials which are symmetric around ϕ = 0. Thus any solution with ϕ > 0

can be mapped one-to-one to a corresponding ϕ < 0 solution which is physically

indistinguishable. In this section we need only consider the ϕ > 0 to fully understand

the possible evolutions of the dynamical system. In chapter 4 we will construct

asymmetric potentials which contain stable vacuums in the ϕ > 0 and are unbounded

from below in the ϕ < 0 direction. As we will discuss in the following chapters,

evolution in these unbounded directions is not physically realisable.
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Hilltop models are characterised by inflation occurring near the maxima of the

potential on a broad, flat plateau or “hilltop”. This feature makes Hilltop models

attractive for slow roll inflation as the conditions are easy for such a model to fulfil.

Furthermore, simple potentials such as these are easier to understand from a particle

physics and QFT perspective and do occur in symmetry breaking theories [125],

supergravity [126–134], supersymmetry [135, 136] and superstring theory models

[137]. Broadly speaking, inflation models can be divided into two categories [138].

These are large field models, where inflation starts with the field at a large value

ϕ > mpl, and small field models for which the inflation starts with the field at a

small value ϕ < mpl.

Hilltop models encompass both small and large field inflation, but one particular

small field hilltop model, “Quartic Hilltop Inflation” is among the models that

are most consistent with the Planck 2018 constraints on the (ns, r) parameter space.

Small field models are a widely studied class of models that are easily viewed from the

perspective of an effective field theory in particle physics, particularly because the

field varies on a scale less than mpl, which should be the cutoff of such a theory. They

are also good at accommodating slow-roll inflation [81,138–140], making calculations

tractable enough for comparison with observational data.

In slow roll inflation, the potential energy of the inflaton field V (ϕ) dominates

over its kinetic energy and the field evolves slowly. To provide a sufficient amount

of slow-roll inflation, potentials which are close to being flat are advantageous. This

is well accommodated by small and large field models, whose potentials can be

constructed to feature long, flat plateaus for the field to evolve through whilst the

universe expands rapidly.
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Hilltop models thus have many attractive features for an inflationary model. In

Hilltop models, when the parameter is large enough, λ ≳ 1 inflation occurs at a

small value of the field ϕ/mpl ≪ λ and thus the higher order terms in the potential

are heavily suppressed and are conventionally considered not to affect inflationary

predictions of the model. For this reason, Hilltop models containing only the lowest

order terms have usually been considered in previous studies.

The Quartic Hilltop (QH) model invokes a simple potential consisting of a

constant term and a quartic term in the field ϕ (q = 4). The plateau-like shape

of the potential is demonstrated in figure 3.1.

V (ϕ) = Λ

[
1 − λ

(
ϕ

mpl

)4
]

(3.2)

Figure 3.1: The Quartic Hilltop potential 3.2 of the inflation field ϕ at various values
of λ. The numerical values of λ chosen for this figure best illustrate the shape of
the potential, but the physically interesting values will be for λ≪ 1.

The QH model has recently received more attention in light of the Planck 2018

data, to which it showed a satisfactory fit under a numerical analysis [141], whereas

earlier attempts at an analytical treatment had ruled QH out on the basis that the

predictions for the spectral index ns as a function of the number of remaining e-folds

N of inflation after the scale k∗ exits the horizon [142]

ns = 1 − 3

N
(3.3)

was too small at N = 50 & 60 to fit within the bounds of the Planck 2018 data,
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as this places ns between 0.94 and 0.95. To align with the Planck data we require

ns ≳ 0.96.

Numerical treatments indicate that the QH model does achieve this, so there is an

apparent discrepancy between the results of numerical and analytic investigations.

The reason is that in the earlier attempts at solving the model analytically, it was

assumed that the physically relevant parameter space has λ ∼ 1. In [7], it is shown

that this is in fact not the case and that the parameter λ is actually very small.

This allows for a more detailed analytic investigation of the QH model, by revising

two key assumptions used in deriving the result 3.3.

1. The value of the inflation field during inflation is much smaller than its vacuum

expectation value (VEV) i.e. ϕ≪ ⟨ϕ⟩ ∼ mpl/λ
1/4.

2. The contribution of the value of the inflation field at the end of inflation ϕend

is negligible when calculating the remaining number of e-folds of inflation as

a function of the current field value.

By relaxing both of these assumptions it is possible to derive a theoretical

prediction for the r − ns curve which is in close agreement with numerical analysis

and thus better fits the Planck 2018 data. In the small λ regime, the higher order

terms become of greater importance and as we will show in this work, accounting for

such terms leads to distinct results when compared to the QH model in the (ns, r)

parameter space favoured by the Planck 2018 survey. Ultimately what is derived

in [7] is a relationship between the scalar tensor ratio r and the spectral index ns at

a given number of e-folds before the end of inflation N .

r(ns, N) =
8

3
(1 − ns)

[
1 −

√
3[2(1 − ns)N − 3]

(1 − ns)N

]
(3.4)

Whilst this treatment of the QH models yields a result that is much more

satisfactory due to being a better fit to the Planck data, the model is not without its

issues as discussed in [143]. Namely, that the QH potential turns negative shortly
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after inflation ends and is unbounded from below [143]. This is clearly unsatisfactory

as such a theory, when quantised would posses arbitrarily low energy states. The

potential needs to be stabilised by the higher order terms that have been neglected

in 3.2.

We will take the investigation of the QH model in [7] as a guide for investigating

a model which accounts for the higher order terms.

That is, we will follow steps analogous to those for investigating the QH model

i Compute the number of e-folds, N(ϕ), of inflation after the cosmological scale

leaves the horizon as a function of the field value ϕ.

ii Derive the contribution to N from the inflaton at the end of slow-roll in terms

of λ, Nend(λ) by solving the conditions ε(ϕend) = 1 & |η(ϕend)| = 1

iii Express the spectral index ns in terms of N and λ through our solution for

Nend(λ)

iv Invert the expression for ns(λ,N) to find λ(ns, N) and use this to derive the

relationship between r and ns for N = 50 and N = 60

Although the general method for the QH model and the model containing higher

order terms will be the same, a major difference comes in the final step when deriving

the relationship between the spectral index and tensor-scalar ratio in which we find

that, unlike in the QH case, we find a one-to-many mapping of ns to r for given

values of N .

Whilst we will derive analytical results for the relationship between the tensor-

scalar ratio and spectral index at a given number of remaining e-folds of inflation N

which allows accurate comparison of the predictions of the two models. However,

this does not necessarily allow us to evaluate how well the Quartic Hilltop model or

its corrected version explain the data collected by Planck and other such surveys of

the CMB. The r − ns relationship is only really one half of the picture since, given

some model defined by a potential V (ϕ) as we are considering here, one may fix any
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arbitrary (ns, r) by simply choosing an appropriate time at which the scale k exits

the horizon, which translates into an amount of remaining e-folds N . There are of

course some a priori restrictions on N as it is well established that approximately

50-60 e-folds of inflation are required to solve the horizon problem. However as we

show in section 3.3, by considering the reheating dynamics of the corrected model,

which one cannot do for the UV-incomplete QH model, it is possible to place further

restrictions on the possible values of N so that the resulting temperature of the

universe at the end of reheating is consistent with standard cosmology, which may

not be the case if one simply chooses N to get a desired (ns, r) pair.

3.1 The Quartic Hilltop Squared Model

As noted in [7], the Quartic Hilltop (QH) model1

V (ϕ) = Λ

[
1 − 2λ

(
ϕ

mpl

)4
]

(3.5)

approximates a linear potential near V (ϕ) = 0 which will become negative for

ϕ > mpl shortly before the end of inflation, and needs to be stabilised by higher

order terms. The shape of this potential is demonstrated in figure 3.2. This can be

achieved by working with the Quartic Hilltop Squared Model (QHS) as suggested

in [143] for which V (ϕ) ≥ 0.

V (ϕ) = Λ

[
1 − λ

(
ϕ

mpl

)4
]2

(3.6)

The approach of squaring the Hilltop potential to investigate the effects of

accounting for stabilising terms has previously been investigated in the case of the

Quadratic Hilltop potential [144] (its corrected form known as Double Well Inflation)

and in [145] where the authors discuss different aspects of the same corrected Quartic

1The parameter in the QH model is taken to be 2λ to keep the form consistent with the series
expansion of 3.6.
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Hilltop potential. As such, it is known that such models, whilst agreeing closely

with the uncorrected versions at small field values as one would expect from Taylor

expanding the potential, still produce substantially different predictions for the

tensor-scalar ratio and spectral index when the VEV is super-Planckian

Hilltop models generally require a super-Planckian VEV for their predictions of

r and ns to be in line with current measurements and this is shown for both the

Quadratic [144] and Quartic Hilltop models [7].

Figure 3.2: The Quartic Hilltop-Squared potential 3.6 at various values of λ. The
values of λ are chosen to illustrate the shape of the potential, which unlike the QH
potential, is bounded from below and gains a global minima from the higher order
terms but retains a flat plateau needed for slow-roll inflation.

We will calculate analytically the spectral index ns and tensor-scalar ratio r. The

analytic calculations can be compared to the detailed data collected by the Planck

satellite. Just as the QH model is investigated analytically in [7], analogous steps

can be performed for the QHS model. The spectral index and tensor-scalar ratio

can be written in terms of the potential slow roll parameters ε & η.

ns = 1 − 6ε+ 2η (3.7)

r = 16ε (3.8)
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where the slow roll parameters are

ε(ϕ) =
1

2
m2

pl

(
V ′(ϕ)

V (ϕ)

)2

= 32λ2
(

ϕ

mpl

)6
1[

1 − λ
(

ϕ
mpl

)4]2 (3.9)

η(ϕ) = m2
pl

V ′′(ϕ)

V (ϕ)

= ε(ϕ) − 24λ

(
ϕ

mpl

)2
1[

1 − λ
(

ϕ
mpl

)4] (3.10)

Just as in [7], it is easiest to work with the spectral index and tensor-scalar

ratio in terms of a parameter Z which will be defined shortly and N , the remaining

number of e-folds until the end of inflation after the cosmological scale has exited

the horizon. This is calculated as

N =
1

m2
pl

∫ ϕ(N)

ϕend

V

V ′dϕ

=
1

16

(
ϕ

mpl

)2

+
1

16λ

(
ϕ

mpl

)−2

−Nend

(3.11)

where the value of the scalar field at the end of inflation is ϕend and

Nend =
1

16

(
ϕend

mpl

)2

+
1

16λ

(
ϕend

mpl

)−2

(3.12)

By defining

N̄ ≡ N +Nend =
1

16

(
ϕ

mpl

)2

+
1

16λ

(
ϕ

mpl

)−2

(3.13)

and

Z = 64λN̄2 (3.14)
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equation 3.11 may be solved for
(

ϕ
mpl

)2
as

(
ϕ

mpl

)2

= 8N̄ [Z] (3.15)

The function [Z] is defined as

[Z] = 1 −
√

1 − 1

Z
(3.16)

A property of this function that we will make use of later is that it satisfies

[Z]2 = 2[Z] − 1/Z. The appearance of this function [Z] sets a constraint Z > 1.

Since the Z parameter is defined as Z = 64λN̄2, this constraint is saying that for

a given value of λ, which is a free parameter in the model, there will always be a

minimum amount of inflation given by

N̄ >
1

8
√
λ

(3.17)

In the QH model there is an analogous bound N̄QH > 1/4
√
λ, in fact it is shown

that in the small λ regime N̄QH ≃ N + 1/4
√
λ. This suggests that for the QHS

model we should expect N̄ ≃ N + 1/8
√
λ, and in fact we will later show that this is

indeed the case.

Using equation 3.15, the slow roll parameters can be written as

ε =
4

N̄

Z2[Z]3

(1 − Z[Z]2)2
(3.18)

η = ε− 3

N̄

Z[Z]

1 − Z[Z]2
(3.19)

which allows a calculation of the spectral index and tensor-scalar ratio as

ns = 1 − 6

N̄

Z[Z]

1 − Z[Z]2
− 16

N̄

Z2[Z]3

(1 − Z[Z]2)2
(3.20)
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r =
64

N̄

Z2[Z]3

(1 − Z[Z]2)2
(3.21)

Equation 3.20 can be written as a quadratic in F (Z) =
√
Z/(Z − 1) by virtue

of the purely algebraic relations

1 − Z[Z]2 = 2 (1 − Z[Z]) (3.22)

(
Z[Z]

1 − Z[Z]

)2

=
Z

Z − 1
(3.23)

Thus we have

ns = 1 +
1

N̄

√
Z

Z − 1
− 4

N̄

(
Z

Z − 1

)
(3.24)

with the solution √
Z

Z − 1
=

1 +
√

1 + 16N̄ ñs

8
(3.25)

where ñs = 1 − ns.

The goal of this investigation is to produce an analytic relationship between the

tensor-scalar ratio r and spectral index ns at a given number of e-folds before the end

of inflation N for λ ≪ 1. Recalling the definitions Z = 64λN̄2 and N̄ = N + Nend,

to produce such a function r(ns, N), we are required to eliminate λ & N̄ from the

equations.

Nend is the contribution of the value of the inflation field at the end of inflation

to the total number of e-folds, which as noted in [7] can be large for the QH model

at small λ. Investigation of this Nend term results in the approximation N̄QH ≃

N + 1/4
√
λ, so we are motivated to find an analogous approximation for the QHS

model.

Thus far we have extracted both the spectral index and tensor-scalar ratio in

terms of a newly defined parameter Z. The end goal of this analysis is to produce a

closed form expression for the tensor-scalar ratio in terms of only the spectral index

ns and remaining number of e-folds N . A strategy for proceeding can the be devised

as follows: An explicit expression for Nend(λ) will be derived in the small λ limit.
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This allows for the total number of e-folds N̄ to be written only in terms of N and

λ and hence also the Z parameter and spectral index. The resulting expression for

ns(N, λ) is invertible for λ(N, ns). The expressions for N̄(N, λ) and λ(N, ns) can

then be substituted into the definition of Z which is used in equation 3.21 to find

the target closed form relationship between r and ns for a given N .

3.2 Small λ behaviour of Nend

Guided by the QH model and Planck data, we are mainly interested in the region

of parameter space where λ is very small, roughly λ ≲ 10−4. The small λ behaviour

of Nend can be investigated by considering separately the cases where inflation is

ended by the slow roll parameters ε and η.

3.2.1 ε(ϕend) = 1

Consider first the case where slow roll inflation is ended by ε reaching unity before

η. In this case equation 3.9 becomes

1

λ
=

(
ϕend

mpl

)3(
ϕend

mpl

+ 4
√

2

)
(3.26)

For λ≪ 1, we have ϕend ≫ mpl and thus one has approximately

(
ϕend

mpl

)2

≃ 1√
λ

(3.27)

This result may be substituted into equation (3.12) to get an approximate expression

for Nend in the λ≪ 1 limit.

Nend ≃ 1

8
√
λ

(3.28)
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3.2.2 |η(ϕend)| = 1

Consider now the second case where the end of slow roll is characterised by

|η(ϕend)| = 1, which of course has two sub cases η(ϕend) = 1 & η(ϕend) = −1.

starting with the η(ϕend) = 1 case we have

(
ϕend

mpl

)8

− 56

(
ϕend

mpl

)6

− 2

λ

(
ϕend

mpl

)4

+
24

λ

(
ϕend

mpl

)2

+
1

λ2
= 0 (3.29)

Again, for λ≪ 1, (ϕend/mpl) ≫ 1 and 3.29 is approximately

(
ϕend

mpl

)8

+
1

λ2
≃ 0 (3.30)

which has no real solutions. In second sub case η(ϕend) = −1 we come to the same

conclusion. For λ ≪ 1, there are no real, positive solutions. From these cases we

conclude that, to a first approximation, for small λ the end of slow-roll inflation is

marked only by ε(ϕ) ≥ 1 .

3.2.3 Small λ Relationship Between r and ns

Given the results of section 2, for small λ we can use the approximation

N̄ ≃ N +
1

8
√
λ

(3.31)

which should come as no surprise given the earlier bound derived on N̄ in equation

(3.17). We see that just as in the case of the QH model, the term contributed by

ϕend is proportional to λ−
1
2 so this term certainly cannot be neglected when λ≪ 1.

With this expression we can now write equation 3.25 in terms of λ, ns and N .

√
1 +

1

16N
√
λ+ 64N2λ

=
1

8

[
1 +

√
1 + 16ñs

(
N +

1

8
√
λ

)]
(3.32)

Equation 3.32 can be solved as a quadratic in terms of
√
λ, and as such there
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will be two solutions, both of which are valid. This is of course because λ is a free

parameter in the model, a given r may map to multiple values of λ.

(√
λ
)
±

=
12Nñs − 2N2ñ2

s − 15 ±
√

8Nñs − 15

8N (15 − 8Nñs +N2ñ2
s)

(3.33)

The crossover point between the two branches where
(√

λ
)
+

=
(√

λ
)
−

=
√
λc

is at
√

8Nñs − 15 = 0 =⇒ Nñs = 15/8, this also defines the maximum possible

value of ns at a given N

nmax
s = 1 − 15

8N
(3.34)

The calculated spectral index bounds nmax
s (N = 60) = 0.96875 and nmax

s (N = 50) =

0.9625 are consistent with the observational data provided by Planck 2018 [123]

Substituting Nñs = 15
8N

into 3.33 one finds
√
λc = 1

60N
, resulting in the critical

values of λc ≃ 7.72 × 10−8 and λc ≃ 1.11 × 10−7 for N = 60 & N = 50 respectively.

The tensor-scalar ratio r which we aim to calculate, can be expressed in terms

of the slow-roll parameter ε as

r = 16ε

=
16

N̄

(
Z

Z − 1

)(
1 −

√
Z − 1

Z

)
(3.35)

Using equation 3.25 and the solutions for
√
λ 3.33, we can calculate the quantities

N̄ and Z/(Z − 1) in terms of ns and N as desired.

r =


1
4N

(
12Nñs−2N2ñ2

s−15+
√
8Nñs−15

4Nñs−N2ñ2
s+

√
8Nñs−15

)
[1 + g+(ñs, N)] [g+(ñs, N) − 7] , λ ≥ λc

1
4N

(
12Nñs−2N2ñ2

s−15−
√
8Nñs−15

4Nñs−N2ñ2
s−

√
8Nñs−15

)
[1 + g−(ñs, N)] [g−(ñs, N) − 7] , λ < λc

(3.36)
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Where we define the function

g±(ñs, N) =

√
12Nñs + 62N2ñ2

s − 16N3ñ3
s − 15 ± (1 + 16Nñs)

√
8Nñs − 15

12Nñs − 2N2ñ2
s − 15 ±

√
8Nñs − 15

(3.37)

Figure 3.3: Analytical solutions (bold) for the spectral index ns and tensor-scalar
ratio r of the QHS model equation 4.3, compared with their numerical solutions
(dotted) for 10−8 ≤ λ ≤ 1 at N = 50 and N = 60 e-folds before the end of inflation.

By comparison to numerical solutions for a broad range of λ from λ ≪ 1 to

λ ≈ 1 in figure 3.3 we can see that this approximation is quite accurate, even in the

regime when λ is large (λ ∼ 1). We can further validate the analytical solution by

comparing the N = 60 and N = 50 solutions to numerical solutions calculated up

to the predicted critical λc values. In figures 3.4a and 3.4b it can be seen that if the

system is solved numerically up to the predicated λc values, the solution branches do

indeed stop at the crossover point between the r+ and r− branches of the analytical

solution.

Comparing the solution for the QH model 3.4 and QHS model 4.3 in figure 3.5,

we see that the effect of including the higher order stabilising terms causes the

predictions of the QHS model to diverge quite dramatically from those of the QH

model. The models begin to diverge around ns ≃ 0.95 which is well outside of

the region expected from the Planck 2018 data making them quite distinct within

the acceptable regions. This is an important result as it makes clear that different
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(a) QHS N = 60 numerical solution
calculated up to the
crossover point between r± branches at λc

compared to
analytical solution

(b) QHS N = 50 numerical solution
calculated up
to the crossover point between r± branches
at λc

compared to analytical solution

Figure 3.4: Comparison of QHS numerical and analytical solutions

methods of stabilising the potential must be considered as distinct if we are to take

Hilltop potentials as serious candidates for inflation. It is not sufficient to ignore

these stabilising terms in the potential since in the small λ regime they have a

dramatic effect on inflationary predictions of the theory.

Figure 3.5: Comparisons of the analytic r(ns) solutions for Quartic Hilltop-Squared
4.3 calculated in this work and Quartic Hilltop 3.4 calculated in [7] at N = 50 &
N = 60 e-folds before the end of inflation.
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The result of including the stabilising terms, as shown in figure 3.6, is that the

N = 50 branch has shifted out of the 1σ region whilst remaining just within the 2σ

bound. In the QH model, both branches remains within the 1σ region, however this

does not spell such bad news for the QHS model since N ≃ 60 is generally favoured

by reheating constraints.

Figure 3.6: Analytical QHS solutions (bold) given by equation 4.3 at N = 50 &
N = 60 e-folds before the end of inflation, compared to the Planck 2018 data
bounds represented by the filled regions (2σ in lighter, 1σ in darker).

Another feature that is seen in the QHS model but not the QH model is that

the solution for r(ns) is not a function, a given ns may correspond to multiples

values of r. The points at which the curves reach their maximal values of the

spectral index are indeed the bounds calculated earlier nmax
s (N = 60) = 0.96875

and nmax
s (N = 50) = 0.9625. This arises due to the stabilisation, and is a general

feature of stabilised Hilltop models. This can be seen by considering the spectral

index ns and tensor ratio as functions of the slow roll parameters

ns = 1 − 6ε(ϕ) + 2η(ϕ)

r = 16ε(ϕ)
(3.38)

In the QHS case, the slow roll parameters are

η(ϕ) = ε(ϕ) − 24λ

(
ϕ

mpl

)2
1

1 − λ
(

ϕ
mpl

)4 (3.39)
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Defining

Γ(ϕ, λ) = 24λ

(
ϕ

mpl

)2
1

1 − λ (ϕ/mpl)
4 (3.40)

the two equations in (3.39) can be combined to give

r = 8 (1 − ns) − 32Γ(ϕ, λ) (3.41)

From the analytical results in this work, specifically equation 3.33, for a given

ns < nmax
s there will be two corresponding values of lambda λ± (one in the case

Nñs = 15/8 and two otherwise). And thus for a given ns there will be two values of

Γ(ϕ, λ) and hence corresponding values of r. The QH model does not exhibit this

behaviour because in this particular case η(ϕ) and ε(ϕ) are linearly independent.

From a physical standpoint, we expect this to be a generic feature of all Hilltop

models that take higher order correction terms into account. Consider the spectral

index ns written in terms of the Hilltop potential V (ϕ).

ns = 1 − 3m2
pl

(
V ′(ϕ)

V (ϕ)

)2

+ 2m2
pl

V ′′(ϕ)

V (ϕ)
(3.42)

The dependence of ns on the ratios of the derivatives of the potential to the

potential itself suggests that we should write this in terms of W (ϕ) = lnV (ϕ) for

which

ns = 1 −m2
plW

′(ϕ) + 2m2
plW

′′(ϕ) (3.43)

If one includes the stabilising terms in V (ϕ) then the potential will have a local

minima and thus the second derivative will also have a local minima ϕmin < ϕend

for sufficiently small λ. Because the curvature of V (ϕ) has a turning point, W ′′(ϕ)

will have a form such that if we fix a particular value W ′′
∗ = W (ϕ0, λ0), we can

find another set (ϕ1, λ1) for which W ′′
∗ = W (ϕ1, λ1). Since the spectral index is

just a linear combination of the first and second derivatives it will also inherit this

property. So for a fixed value of the spectral index n∗
s at (ϕ0, λ0), we may also
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find another set (ϕ1, λ1) which corresponds to the same value of the spectral index.

However the gradient term W ′(ϕ) is not necessarily the same at (ϕ0, λ0) and (ϕ1, λ1)

and since the tensor-scalar ratio is proportional to only this term, n∗
s will necessarily

correspond to multiple values of r.

3.3 Reheating in QHS

3.3.1 Generic Reheating Analysis and Subsequent Bound

on wre

Whilst it is useful to be able to calculate (ns, r) pairs for the Quartic Hilltop Squared

model, and verify that for 50 ≲ N ≲ 60 the predictions of the model lie within the

parameter space determined by Planck 2018 data, this does not fully validate the

model as a viable candidate for inflation. As discussed in section D of [146], given

a generic potential V (ϕ) one may calculate and desired (ns, r) pair by through

equations 3.7 & 3.8 by choosing an appropriate time at which the scale k exits the

horizon. This will correspond to a number of e-folds of inflation Nk remaining when

the scale exits. This however, may not result in acceptable reheating predictions of

the model defined by V (ϕ). The number of reheating e-folds and the temperature

at the end of reheating Tre depends explicitly on Nk [92, 146]. This dependence

is derived by considering the evolution of the horizon scale and the energy density

throughout the evolution of the universe.

Let the comoving scale at the time it exits the horizon be k = akHk, and consider

its evolution from inflation to the present day as outlined in figure 3.7.

k

a0H0

=
ak
aend

aend
are

are
aeq

aeq
a0

Heq

H0

Hk

Heq

(3.44)

We the write Nk = ln aend/ak for the number of remaining inflation e-folds after

the scale exits the horizon, Nre = ln are/aend for the number of reheating e-folds,

NRD = ln aeq/are for the number of e-folds during radiation domination.
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Figure 3.7: A schematic outlining the evolution of the horizon scale (aH)−1 as a
function of the (log) scale factor a(t) and dominant matter source at each time from
inflation to the present day at a0(t).

ln
k

a0H0

= −Nk −Nre −NRD − ln
aeq
a0

+ ln
Heq

H0

+ ln
Hk

Heq

(3.45)

Assuming a constant equation of state during reheating wre, we may track the

evolution of the energy density from the end of inflation to the end of reheating

ρend
ρre

=

(
aend
are

)−3(1+wre)

(3.46)

In terms of the reheating e-folds this is

Nre =
1

3(1 + wre)
ln
ρend
ρre

(3.47)

where the energy densities are given by

ρre =
π2

30
greT

4
re (3.48)

ρend =
3

2
Vend (3.49)
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where Vend is the value of the potential at the end of inflation (i.e. when ε ≃ 1), gre

is the effective number of relativistic species at the end of reheating.

The reheating temperature Tre can be written in terms of the CMB temperature

today T0
Tre
T0

=

(
43

11gre

) 1
3 a0
aeq

aeq
are

(3.50)

By taking the logarithm of equation 3.50 and combining with equation 3.45 we

obtain the reheating e-folds and temperature (Equivalently one may also consider

the reheating energy density 3.49 rather than the temperature as is done in some

literature [146]).

Nre =
4

1 − 3wre

(
1

4
ln
π2gre

45
+

1

3
ln

11

43gre
+ ln

a0T0
k

− ln
V

1
4
end

Hk

−Nk

)
(3.51)

Tre =

[(
43

11gre

) 1
3
(
a0T0
k

)
Hke

−Nk

[
45Vend
π2gre

]− 1
3(1+wre)

] 3(1+wre)
3wre−1

(3.52)

For the model to at least be considered as an acceptable candidate one needs

both that the predicted (ns, r) are within the bounds of current measurements and

that the corresponding remaining number of inflation e-folds Nk gives an acceptable

reheating temperature Tre. We may calculate analytically the model dependant

terms in equations 3.51 & 3.52. Firstly the value of the potential at the end of

inflation is simply V (ϕ) evaluated on the solution to equation 3.26. However using

just the first-order approximate solution 3.27 would result in Vend = 0. This may be

sufficient for calculating Nre since it only depends logarithmically on Vend, but the

reheating temperature Tre is sensitive to Vend so one needs at least the second order

term in the power series solution to 3.26 to calculate the reheating temperature.

(
ϕend

mpl

)
≃ λ−

1
4 + 3λ−

7
4 λ≪ 1 (3.53)
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and thus we have the value of the potential at the end of inflation

Vend ≃ 144Λλ−3 (3.54)

The value of the Hubble parameter Hk at the pivot scale is

Hk ≃ πmpl

√
Asr

2
(3.55)

Finally, given Nend ≃ 1/8
√
λ and equation 3.11, the number of remaining e-folds of

inflation Nk may be written in terms of the field value at the pivot scale ϕk.

Nk =
1

16

(
ϕk

mpl

)2

+
1

16λ

(
ϕk

mpl

)−2

− 1

8
√
λ

(3.56)

And thus the reheating e-folds and temperature are expressed as

Nre =
4

1 − 3wre

[
1

4
ln
π2gre

45
+

1

3
ln

11

43gre
+ ln

a0T0
k

− ln

[ √
2(144Λ)

1
4

λ
3
4πmpl

√
Asr

]

+
1

8
√
λ
− 1

16

(
ϕk

mpl

)2

− 1

16λ

(
ϕk

mpl

)−2
]

Tre =

[(
43

11gre

) 1
3
(
a0T0
k

)
πmpl

√
Asr

2
e−Nk

[
6480Λ

λ3
π2gre

]− 1
3(1+wre)

] 3(1+wre)
3wre−1

To investigate the reheating predictions of the model we consider r − ns curves

for 50 ≤ Nk ≤ 65 and their corresponding reheating e-folds and temperatures.
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From the plots of the reheating e-folds in figure 3.9a, one sees that if there are

more than approximately 55 remaining e-folds of inflation when the pivot scale exits

the horizon, then it it not possible to get Nre > 0. However for Nk ≤ 55, all of

the (ns, r) predictions of the model lie outside of the 1σ bound in figure 3.8 and

thus an equation of state parameter of wre = 0 leaves the model with no acceptable

predictions compared to the Planck 2018 data.

Figure 3.8: QHS numerical solutions of the tensor-scalar ratio r and spectral index
ns for 50 ≤ Nk ≤ 65 over the parameter range 10−3 ≲ λ ≲ 10−7. The solid black
lines represent the Planck 2018 bounds just as in figure 3.6

Taking a negative equation of state parameter wre = −1/3 as in figures 3.10 and

3.11 serves to push the solutions slightly tighter together compared to the wre = 0

case, as one would expect given that the dependence of the reheating e-folds Nre

on wre follows (1 − 3wre)
−1. In this case there are still no acceptable solutions for

Nk > 55. We may however also try positive equation of state parameters. Using a

positive equation of state parameter in figures 3.12 and 3.13 inverts the behaviour

of Nre and Tre with respect to Nk so that the number of reheating e-folds increases

with Nk and the reheating temperature decreases for with Nk. In this case there

are now solutions which lie in the 1σ region of figure 3.8 (i.e. Nk > 55) and have

Nre > 0.
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(a) Plots of the reheating e-folds Nre

corresponding to the numerical (ns, r)
solutions for the QHS model in figure 3.8
with wre = 0. The solid vertical black
lines mark the Planck 2018 1σ bound on the
spectral index ns. For Nk > 55 all of the
constant Nk curves lie below the Nre = 0
line, thus in this case the model does not
produce any reheating if there are more
than 55 e-folds of inflation.

(b) Plots of the (log) reheating temperature
Tre corresponding to the numerical (ns, r)
solutions for the QHS model in figure 3.8
with wre = 0. The solid vertical black
lines mark the Planck 2018 1σ bound on
the spectral index ns.

Figure 3.9: Reheating e-folds and temperature for the QHS model with wre = 0
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Figure 3.10: Plots of the reheating e-folds Nre corresponding to the numerical (ns, r)
solutions for the QHS model in figure 3.8 with wre = −1/3. The solid vertical black
lines mark the Planck 2018 1σ bound on the spectral index ns. Just as in figure 3.9a
The model cannot produce any reheating e-folds if there are more than 55 e-folds of
inflation.

Figure 3.11: Plots of the (log) reheating temperature Tre corresponding to the
numerical (ns, r) solutions for the QHS model in figure 3.8 with wre = −1/3. The
solid vertical black lines mark the Planck 2018 1σ bound on the spectral index ns.
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(a) Plots of the reheating e-folds Nre

corresponding to the numerical (ns, r)
solutions for the QHS model in figure
3.8 with wre = 2/3. The solid vertical
black lines mark the Planck 2018 1σ bound
on the spectral index ns. In this case
the behaviour of the reheating e-folds is
inverted from figures 3.9a & 3.10, the model
only produces non-zero reheating e-folds
Nre ≥ 0 for Nk ≥ 55. However, also
restricting to the region of the spectral
index’s 1σ bound makes this inequality
noninclusive Nk > 55.

(b) Plots of the (log) reheating temperature
Tre corresponding to the numerical (ns, r)
solutions for the QHS model in figure 3.8
with wre = 2/3. The solid vertical black
lines mark the Planck 2018 1σ bound on
the spectral index ns.

Figure 3.12: Reheating e-folds and temperature for the QHS model with wre = 2/3

3.3.2 Reheating Temperature Restrictions On The r − ns

Parameter Space.

In section 4.1 we have established that in order to get a non-zero amount of reheating

e-folds from the QHS model consistent with Planck measurements of the spectral

index ns, one is restricted to a positive equation of state parameter 0 < wre ≤ 1.

The temperature of the universe at the end of reheating is loosely bounded from

below in order to be consistent with standard cosmology. If reheating is to occur

before Big Bang Nucleosynethsis (BBN) then one requires Tre > TBBN . BBN occurs

on temperature scales of roughly TBBN ≲ 10MeV [147] so the reheating temperature

is constrained to be at least larger than 0.01GeV. The reheating temperature is also

loosely bounded from above by the fact that it should not exceed the energy scale of
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(a) Plots of the reheating e-folds Nre

corresponding to the numerical (ns, r)
solutions for the QHS model in figure 3.8
with wre = 1. The solid vertical black lines
mark the Planck 2018 1σ bound on the
spectral index ns. As in figure 3.12a, the
constant Nk curves lie above the Nre = 0
line in the 1σ ns region for Nk > 55.

(b) Plots of the (log) reheating temperature
Tre corresponding to the numerical (ns, r)
solutions for the QHS model in figure 3.8
with wre = 1. The solid vertical black
lines mark the Planck 2018 1σ bound on
the spectral index ns.

Figure 3.13: Reheating e-folds and temperature for the QHS model with wre = 1

inflation Tre ≲ 1016GeV [148], but this bound may be further restricted if one accepts

supersymmetry and considers the effects of gravitino production during inflation on

BBN [149–152]. This restricts the reheating temperature to much smaller range

0.01GeV ≲ Tre ≲ 108GeV.

Considering the extremal case where the equation of state parameter wre = 1,

the reheating temperature bounds can be used to restrict the QHS model to a much

tighter region of the r − ns parameter space, whose reheating e-folds are non-zero

and reheating temperature is compatible with standard cosmology.

If we consider the fixed Nk curves in figure 3.14 who lie within the reheating

temperature bounds for all values of λ within the 1σ region, one is restricted to the

range 63 ≤ Nk ≤ 68 of remaining e-folds of inflation. In figure 3.15 we plot the

r − ns curves for Nk = 63 and Nk = 68. These curves bound a region of parameter

space that is both compatible with the Planck 2018 measurements and such that the

model produces reheating temperatures within the range 0.01GeV ≲ Tre ≲ 108GeV.
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Figure 3.14: We plot the (log) reheating temperature of the QHS model over the
range 60 ≤ Nk ≤ 70 where as in previous figures the vertical black lines mark the
1σ Planck 2018 bounds on the spectral index ns. The horizontal black lines mark
the reheating temperature bounds 0.01GeV ≲ Tre ≲ 108GeV. The range of the
parameter λ is the same as in the figure 3.8.

3.4 Disscusion

We have derived analytical predictions for the cosmological parameters ns and r in

a Quartic Hilltop Squared model. This model accounts for a higher order correction

term which stabilises the potential in [7], such that it is nowhere negative. The

work of [7] makes it clear that when working with Hilltop models in the small λ

regime (the one in which they best fit observational data), one cannot assume that

when calculating the remaining number of e-folds of inflation, the contribution of

the inflaton field at the end of inflation will be small enough to be negligible. In

fact one find that the contribution is Nend ∝ λ−1/2. Clearly this will be large for

small λ. In the case of the Quartic Hilltop model the relevant range of values of

λ are λ ≤ 10−4, yet one only needs λ = 4 × 10−4 for the λ−1/2 contribution to be

as large as 50 e-folds. In this paper we find that the same relationship exists when

accounting for the higher order terms in the Quartic Hilltop Squared model. The

only difference is that the constant of proportionality is smaller. For the QH model

NQH
end/λ

−1/2 = 1/4 and for the QHS model NQHS
end /λ−1/2 = 1/8.
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Figure 3.15: The reheating temperature limits restrict us to the area bounded by
the Nk = 63 and Nk = 68 curves in the r−ns parameter space which is considerably
smaller than just the Planck 2018 bounds.

Because Nend and λ follow the same relationship in the QHS model studied in

this paper we also conclude that one cannot assume this contribution to be small

in the calculation of the remaining number of e-folds and that it must be accounted

for in order to explain why the model fits well to observational data.

When the analytical solution derived in this work is compared with that of the

QH model in [7] and the Planck 2018 data there are two important observations to

be made. Firstly, both Hilltop models provide very good fits to the observational

data, being within the 1σ region with the exception only of the QHS N = 50 branch.

The QH model was already known to be a good candidate inflationary model and we

show here that whilst accounting for the higher order terms does shift the positions

of the N -branches quite dramatically, the model still remains within a region of

the parameter space that makes it an attractive inflationary model. In addition

to both models being favourable with respect to the Planck 2018 data, it is clear

from comparing the two solutions, such as in figure (3.5), that the two solutions

deviate quite dramatically long before either model enters the region of parameter

space favoured by the Planck 2018 data. This is because the higher order terms

actually become large during inflation and are therefore relevant to the calculation
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of observables and dramatically change the inflationary predictions of the model by

shifting the r − ns spectrum far to the left. Clearly the QH and QHS models need

to be treated distinctly in the context of inflation, and that one cannot simply take

the Quartic Hilltop model as an accurate approximation of Quartic Hilltop Squared.

Throughout this work frequent references and comparisons are made to numerical

solutions for the Hilltop models in question. The numerical solutions help evaluate

the validity of the results and form part of ongoing work by the author to develop

numerical solutions for a wide range of inflationary models. The ability to solve

models numerically will aid in investigating the generic features of Hilltop models.

For example whether or not the Nend ∝ λ−1/2 relationship holds for other Hilltop

models or if there is some other power law. Furthermore, the numerical solutions

also make it possible to investigate how dramatically the r − ns changes in other

Hilltop models, say for example quintic models as opposed to quartic and whether

or not those models require us to account for the higher order correction terms.

At a first glance, the fact that both the QH and QHS model predictions for

the tensor-scalar ratio and spectral index fit nicely into the Planck 2018 bounds

seems encouraging, however as we note, and has already been discussed at length in

the literature, this does not necessarily mean the model goes a long way in helping

explain the data that has been presented since we may generate any (ns, r) pair by

appropriate choice of Nk, that may or may not correspond to reheating predictions

that are consistent with standard cosmology.

Correcting the models UV behaviour allows us to explore the reheating dynamics

of the QHS model through the numerical solutions and further constrain its r − ns

parameter space to the region bounded by 63 ≤ Nk ≤ 68, by considering Big

Bang Nucleosynthesis limits on the reheating temperature. Whilst this does not

drastically reduce the range of allowed values of ns and r, the area of (ns, r) pairs

is significantly smaller than if one were to just consider the bounds derived by the

Planck 2018 survey.
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Chapter 4

Regularisation of Single Field

Inflation Models

This section is based on research published by the author and David Sloan, contained

in Physical Review D [2].

A number of the single scalar field models analysed in [144], including some of

those most favoured by the Planck survey, involve potentials which are unbounded

from below after the end of inflation. Such models may be able to provide

satisfactory inflationary dynamics, however if they are taken to be valid beyond

inflation the potentials quickly become negative and due to their unboundedness,

lead to universes that collapse on a time scale τ ∼ H−1. Clearly this is not the

cosmology we observe today, so such behaviour must be corrected by regularizing

the potentials to introduce a local minima shortly after inflation ends. Naturally one

may ask if modifying the behaviour after the end of inflation significantly changes

the models predictions of inflationary observables such as the tensor-to-scalar ratio

and spectral index, even 50-60 e-folds before the end of inflation.

In this section we explore the effect of generic correction terms on a collection

of inflationary models. The correction terms are designed only to be the simplest

possible options that prevent collapse of the universe after the end of inflation. Such

terms which stabilise the inflaton VEV may, and do, appear in more physically
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motivated models. Although in this work we do not attempt to explain the physical

origin of such terms. We show that such corrections will have an effect on the

inflationary predictions of the model. Thus, regardless of how corrections of these

forms may appear, they do indeed need to be accounted for before the inflationary

predictions of the model can be trusted.

We show that the addition of correction terms designed to stabilise the inflaton

VEV affect the reheating temperature Tre predicted by the model as a function

of the spectral index ns at a given number of e-folds before the end of inflation

Nk. Therefore by requiring that the predicted reheating temperature stays within

the loose bounds set by the big bang nucleosynthesis scale and the energy scale

of inflation, 0.01GeV ≤ Tre ≤ 1016GeV, the model under consideration may fall

into a further restricted region of r − ns space that is acceptable under the Planck

2018 results. Thus we arrive at a key result of our analysis: In considering models

which require regularization, it is insufficient to examine their predictions without

taking such regularization into account. We have chosen to remain agnostic on the

form that such regularization should take, motivating the correction terms solely

by their role in ensuring that the potential remain positive with zero minimum.

This allows us to demonstrate that generic regularizations should be taken into

account regardless of their physical origins. In specific cases there are good

physical reasons which inform the precise nature of the regularization, such as the

contribution of higher loop corrections to the radiatively corrected Higgs inflation

from the Jordan frame. However our goal is not simply to test specific models and

regularizations but to make the broader point that since regularizations do make an

impact on physical observables for such models, a wide range of potentials requiring

regularization should only have their observational consequences examined with such

regularizations in place.

In the work of [1], detailed in section 3, we addressed for the case of quartic hilltop

inflation, a model well favoured by Planck, corrected by one particular modification

scheme which involves squaring the potential. It is shown that modifying the
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quartic hilltop potential in this way does have a significant effect on the final (r, ns)

parameter space that is consistent with the Planck 2018 results. In this section, we

explore several different modification types for quartic hilltop, radiatively corrected

Higgs inflation and Exponential SUSY inflation. These are all single field inflation

models featured in [144] which all suffer from the same issue of unboundedness. We

consider generic corrections to these models, motivated only by preventing collapse of

the universe after the end of inflation, but we show that should such correction terms

arise from physical motivations, they may have significant effects on the inflationary

predictions of the models. Therefore one must carefully consider exactly how a

candidate potential exits inflation. As we will show in this section, it can have

a significant effect on the inflationary predictions. Models that produce such a

collapsing universe, must be corrected before calculations of r and ns are compared

to data. In all three models we explore the effects of simply squaring the potential

to form a potential that is bounded below. We then explore the simplest possible

correction terms that may be used to extend the models, these are polynomial and

inverse polynomial terms for QH and RCHI respectively.

The corrected potentials that we construct in this chapter by adding polynomial

and inverse polynomial terms will be alternately symmetric and asymmetric

depending on the power of the correction term. As mentioned at the beginning

of chapter 3, when the potentials are symmetric, there is no physical distinction

between solutions where ϕ > 0 and ϕ < 0 and thus we need only consider the

ϕ > 0 solutions to understand the physics. In the case where the potentials are

asymmetric, we will construct the potentials such that the stable vacuum states are

in the ϕ > 0 region through our choice of parameters for the corrected potential.

The ϕ < 0 region will contain the unbounded region of the field potential. One

could just as easily construct potentials whose parameter values have the opposite

sign, under which the stable vacuum states would be contained in the ϕ < 0 region

and then consider only ϕ < 0 solutions to the equations of motion
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4.1 Corrected Hilltop Models

While the predictions of the tensor-to-scalar ratio and spectral index for the QHS

model are consistent with the Planck 2018 bounds, the numerical analysis that

these results are derived from still acts in an opaque manner. It tells us only the

results that we should expect for r(ns) and not precisely why the model behaves in

a certain way. Further more, this analysis is incomplete with regards to reheating

after inflation. Since the QHS potential is UV regulated, there exists a local minima

of the potential just after inflation ends around which the inflaton oscillate. The

damped oscillations cause the inflaton field to dump it’s energy into the thermal

bath of the universe, leading eventually the production of ordinary matter. The

temperature of the universe at the end of reheating Tre and the number of reheating

e-folds Nre depend explicitly on the number of e-folds of inflation after the scale

exits the horizon Nk.

Tre = V0

[(
43

gre

) 1
3
(
a0T0
k

)
Hke

−Nk

(
45

π2gre

)− 1
3(1+wre)

] 3(1+wre)
3wre−1

(4.1)

Nre =
4

1 − 3wre

(
1

4
ln
π2gre

45
+

1

3
ln

11

43gre
+ ln

a0T0
k

− ln
V

1
4
end

Hk

−Nk

)
(4.2)

where gre is the effective number of relativistic species at the end of reheating, T0 is

the present day CMB temperature, Vend is the value of the inflaton potential at the

end of inflation, Hk is the value of the Hubble parameter when the scale exits the

horizon and wre is the effective equation of state parameter of the inflaton during

reheating. Throughout this paper we will assume a mean reheating parameter of

wre = 1 as this providers the most conservative estimates on the predictions of

reheating [153].
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For a fixed value of Nk, we have seen in section 3 that the (r, ns) predictions

of the QH model differ quite drastically from the QHS model. In that analysis we

derive a closed form expression for r(ns)

r =


1
4N

(
12Nñs−2N2ñ2

s−15+
√
8Nñs−15

4Nñs−N2ñ2
s+

√
8Nñs−15

)
[1 + g+(ñs, N)] [g+(ñs, N) − 7] , λ ≥ λc

1
4N

(
12Nñs−2N2ñ2

s−15−
√
8Nñs−15

4Nñs−N2ñ2
s−

√
8Nñs−15

)
[1 + g−(ñs, N)] [g−(ñs, N) − 7] , λ < λc

(4.3)

where

g±(ñs, N) =

√
12Nñs + 62N2ñ2

s − 16N3ñ3
s − 15 ± (1 + 16Nñs)

√
8Nñs − 15

12Nñs − 2N2ñ2
s − 15 ±

√
8Nñs − 15

(4.4)

and the critical parameter value is λc = (60N)−
1
2 . As noted previously, in the

QH model, there is a contribution NQH
end = 1/4

√
λ to the total e-folds of inflation

coming from the value of the field at the end of inflation ϕend. In the QHS model

this contribution is found to be NQHS
end = 1/8

√
λ (when λ ≪ 1) the contribution

is half as small as in the QHS model, for small λ the higher order terms begin to

contribute significantly, and push the field out of slow roll inflation sooner than in

QH. For all of the corrected quartic hilltop models in this paper, we work in the

small λ regime, where the symmetry breaking scale µ = mpl(4λ)−1/4 is large [154],

thus avoiding the region of parameter space that is not compatible with the Planck

results.

Furthermore, we completed the analysis of QHS model by computing it’s

reheating temperature and e-folds. Computing the reheating parameters allows

us to further constrain the parameter space for QHS by demanding that the

reheating temperature be bounded below by the Big Bang Nucleosynthesis scale

TBBN ≲ 0.01GeV ≲ Tre and bounded above by the energy scale of inflation

Tre ≲ 1016GeV. In fact, the size of the acceptable region in (r, ns) space of the

QHS model reduces significantly after reheating consistency is taken into account.
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Before reheating, whilst only bounded by the Planck 2018 data, the QHS model was

constrained to the region defined by

0.9607 ≲ns ≲ 0.9691

55 ≲Nk

(4.5)

whereas after taking into account reheating consistency, this is reduced to

0.9607 ≲ns ≲ 0.9691

63 ≲Nk ≲ 68
(4.6)

The fact that the inflationary potential must be UV regularised and that the

models predictions of the tensor fraction and spectral index must be consistent with

reheating bounds significantly constrains the models parameter space which is in

agreement with the Planck 2018 bounds.

Choosing to regularise the potential by squaring it, is simply one possibility out

of a great many. In this work, we show that how one chooses the regularise the shape

of the potential near the end of inflation can have an important and quantifiable

effect on the models predictions of ns and r.

The QHS potential essentially amounts to adding a (ϕ/mpl)
8 correction term to

the original QH potential, which is seen simply by expanding out the potential and

rescaling the coupling parameter λ.

VQH(ϕ) = V0

[
1 − λ

(
ϕ

mpl

)4
]2

(4.7)

VQHS(ϕ) = V0

[
1 − 2λ

(
ϕ

mpl

)4

+ λ2
(

ϕ

mpl

)8
]

= V0

[
1 − λ̃

(
ϕ

mpl

)4

+
1

4
λ̃2
(

ϕ

mpl

)8
] (4.8)

As well as squaring the potential, one may also consider what the effect of adding

single polynomial terms ϕp to the potential are.
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We only wish to correct the behaviour of the potential for large ϕ, so we look at

positive values of p. Furthermore, the coefficient of the ϕp term must be fine-tuned

to ensure that the VEV remains at V (ϕ0) = 0 so that inflation ends in a finite time.

Therefore consider potentials of the form

V (ϕ) = V0

[
1 − λ

(
ϕ

mpl

)4

+ αp

(
ϕ

mpl

)p
]
, p > 4 (4.9)

The potential has stationary points at

ϕ3
(
pαpϕ

p−4 − 4λ
)

= 0 (4.10)

and thus the VEV is located at

ϕ0 =

(
4λ

pαp

) 1
p−4

(4.11)

Requiring that V (ϕ0) = 0 allows us to solve for the fine-tuning of the coefficient αp

αp = 4λ
p
4 p−

p
4 (p− 4)

p−4
4 (4.12)

So to add polynomial corrections to the Quartic Hilltop model, we work with

potentials of the form

V (ϕ) = V0

[
1 − λ

(
ϕ

mpl

)4

+ 4λ
p
4 p−

p
4 (p− 4)

p−4
4

(
ϕ

mpl

)p
]

(4.13)

Henceforth we will refer to such models as QHp, with the Quartic Hilltop Squared

model being equivalent to QH8 as per equation 4.8.

The lowest order term that we can add to modify the small-field behaviour of the

potential but retain its plateau and large-field shape is p = 5 since the QH model

already contains a ϕ4 term. As we shall see from the results later in this section,

there is no need to investigate larger than p = 10, so we consider only terms in

this range. Starting from p = 5 through to p = 10 we have calculated the tensor
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ratio r as a function of the spectral index ns and the temperature at the end of

reheating Tre as a function of the spectral index between 50 ≤ Nk ≤ 70. We then

determine which of these curves are reheating-consistent by demanding that they lie

within the rectangle on the Tre − ns plots. The horizontal bounds on the reheating

temperature plots are 0.01GeV ≲ Tre ≲ 1016GeV. The reheating temperature is

bounded below by the energy scale of Big Bang Nucleosynthesis (BBN) [92, 155]

TBBN ∼ 10MeV. Measurements of the CMB anisotropies constraining the tensor

fraction r are equivalent to upper bounds on the energy scale of inflation [63,97,155]

since

V
1
4
∗ =

(
3π2As

2
rmpl

) 1
4

≲ 1016GeV (4.14)

where V∗ is the energy scale of inflation and As is the amplitude of scalar

perturbations. This bounds Tre from above.

In all of the following r − ns plots, we produce results from numerical solutions

of the tensor fraction and spectral index and the corresponding temperature at the

end of reheating for QHp models with p = 5, 10. Figures for p = 6, 7, 9 are contained

in appendix A.1 (omitting QH8 ≡ QHS). The solid and dashed black curves are

the Planck 2018 1σ and 2σ bounds respectively. The horizontal black line is the

BICEP/Keck Array bound on the tensor fraction r < 0.036 [63]. Similarly, in all

following Tre−ns plots, the upper horizontal line is the energy scale of inflation bound

Tre ≲ 1016GeV and the lower horizontal line is the BBN bound 0.01GeV ≲ Tre. The

vertical solid lines represent the Planck 2018 bounds 0.9607 ≲ ns ≲ 0.9691.

Starting with the QH5 model, only those curves with 58 ≲ Nk ≲ 68 are within the

acceptable region of reheating temperate and spectral index in figure 4.1b. However

when one also takes into account the 1σ region in figure 4.1a this is further reduced to

60 ≲ Nk ≲ 68. Requiring that we consider both the Planck-consistent and reheating-

consistent curves thus drastically reduces the acceptable region of r− ns parameter

space for the corrected quartic hilltop model. This is significant as the corrections

themselves are required for such models to even be taken seriously as candidates for
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(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the QH5 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the QH5 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure 4.1: Numerical solutions of (ns, r) and reheating temperature for the QH5

model.

single-field slow-roll inflation as without regularizing the potentials they produce a

cosmology entirely incompatible with a universe that does not immediately collapse

after inflation ends.

For QH5, the resulting acceptable region on the r − ns plot lies in the mid to

upper-left corner of the 1σ bound. If further, more precise measurements were to

constrain the tensor fraction and spectral index away from this region, QH5 would

quickly become untenable.

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the QH10 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the QH10 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure 4.2: Numerical solutions of (ns, r) and reheating temperature for the QH10

model.
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Considering the QH10 in figure 4.2a, we see that increasing p causes more curves

to enter the 1σ region of the r − ns plot. If one were to not consider reheating

consistency this would place a lower bound of 56 ≲ Nk on the number of e-folds of

inflation after the scale exits. However as we increase the power of the correction

term, the curves in the (log) reheating temperature plot move very slowly and by

p = 10 no new curves have entered or left the acceptable region in figure 4.2b.

Reheating consistency of QH10 thus still requires 60 ≲ Nk ≲ 68 just as with the

lowest order correction QH5. In contrast to QH5 we see that now the curves for

which 54 ≲ Nk ≲ 58 have now entered the 1σ region in figure 4.2a, however we must

still reject these as they remain outside the acceptable region of the reheating plot.

(a) The QH5 potential at λ = 1 (b) The QH10 potential at λ = 1

Figure 4.3: Plots of the QH5 and QH10 potentials.

Overall, the region of reheating-consistent parameter space in the r − ns plot

actually increases with increasing p, as the distance between the curves remains

relatively constant and they are only shifted along laterally.

4.2 Radiatively Corrected Higgs Inflation

The case of the quartic hilltop model demonstrates clearly that we must only

consider those potentials that are regularised and will not collapse the universe

immediately after exiting inflation. How one regularises the potential is important

if the model is to be compared to measurements. A huge number of candidate single
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field inflation models are analysed in [144]. Out of these models there are two which

suffer from the same vacuum stabilisation problem as quartic hilltop. The first of

these is the Radiatively Corrected Higgs Inflation (RCHI) model. This model derives

from taking into account 1-loop corrections to the Higgs inflation model, in which

the inflaton is a Higgs particle [156–160]. If one considers the standard model with

the Higgs non-minimally coupled to classical gravity, the simplest such action in the

Jordan frame is

ST =

∫
d4x

√
−g
[

1

2
m2

plR + ξH†HR + LSM

]
(4.15)

where H† is the Higgs doublet and ξ > 0 is a dimensionless coupling parameter.

If we consider only the gravi-scalar sector of the theory and make use of the

unitary gauge for which H = (0, h/
√

2) where h is a real scalar field, then the action

of interest is

S =

∫
d4x

√
−g
[

1

2
F (h)R− 1

2
∂µh∂

µh−W (h)

]
(4.16)

the functions F (h) and W (h) which we define now for later convenience are

F1(h) = (m2
pl + ξh2), W (h) =

λ

4
(h2 − ν2) (4.17)

where ν is the electroweak symmetry breaking scale. After a conformal

transformation of the metric

gµν → θ(x)gµν , θ(x) =
m2

pl

m2
pl + ξh2

(4.18)

we obtain the Einstein frame action

S =

∫
d4x

√
−g
[

1

2
m2

plR− 1

2
m2

plK(θ)∂µθ∂
µθ − V (θ)

]
(4.19)

in which the scalar field θ has a non-trivial kinetic term

K(θ) =
1

4|a|θ2

(
1 − 6|a|θ

1 − θ

)
, a = − ξ

1 + 6ξ
(4.20)
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After rescaling to a canonically normalised field the action becomes

S =

∫
d4x

√
−g
[

1

2
m2

plR− 1

2
∂µϕ∂

µϕ− V (ϕ)

]
(4.21)

where the field ϕ satisfies the differential equation

1

M2
pl

(
dϕ

dθ

)2

= K(θ) (4.22)

The exact solution, which we omit here for brevity, is given in [156]. At tree level,

where the coupling in the Jordan frame ξ is large and a ≃ 1/6 the Einstein frame

potential is approximately

V (ϕ) =
M4

plλ

4ξ2

(
1 − e

−
√

2
3

ϕ
mpl

)2

(4.23)

We see from equation 4.23 that the Higgs self coupling λ and coupling to

gravity ξ only enter the potential through it’s overall normalisation so the ratio
√
λ/ξ is completely determined from the CMB normalisation. However, the 1-loop

radiative corrections to the effective action 4.16 in the Jordan frame contribute

more significantly at large values of ξ, so it is not sufficient to consider only the tree

level approximation [161]. The radiative corrections modify the functions F (h) and

W (h). To first order these corrections are

F (h) = m2
pl + ξh2 +

C

16π2
h2 ln

(
m2

plh
2

µ2

)
(4.24)

W (h) =
1

4
λ
(
h2 − ν2

)2
+

λA

128π2
h4 ln

(
h2

µ2

)
(4.25)

The modifications to these functions change the resulting Einstein frame

potential from which we compute the inflationary observable ns and r.
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The Radiatively Corrected Higgs Inflation (RCHI) potential is thus

V (ϕ) ≃ V0

(
1 − 2e

− 2ϕ√
6mpl +

AI

16π2

ϕ√
6mpl

)
(4.26)

where AI is a free parameter as given in eq 4.12 of [144].

Before moving on to calculating corrections terms to the RCHI model we

take note that there exists in the literature a modification to the Higgs inflation

model that produces a regularized potential (as opposed to equation 4.26 which is

unbounded from below). Firstly, in the literature there has been debate over the

validity of the Higgs inflation model due to it’s UV cutoff being very close to the

energy scale of inflation H ∼
√
λmpl/ξ [162–166] The cutoff scale, at which unitarity

is broken for tree-level amplitudes, is calculated in [163] as Λ ∼ mpl/ξ in the Einstein

frame. For non-minimal coupling ξ and λ ∼ O(1) the effective field theory may not

be a valid description of inflationary dynamics. In [162] the authors point out that

these calculations of the cutoff scale are performed in the small field approximation

ϕ ≈ h. However the we note that the inflationary regime has ϕ ≫ 1, in which the

Einstein frame potential is

V (ϕ) ≈ λ

4ξ2

(
1 + e

− 2ϕ√
6

)2
≈ λ

4ξ2

(
1 + 2e

− 2ϕ√
6

) (4.27)

If one considers the series expansion of the potential in powers of ϕ, the result is

quite different to what would have been obtained in the small field approximation

V (ϕ) ≈ 3λ

4ξ2
− λ

ξ2
√

6
ϕ+

λ

6ξ2
ϕ2 − λ

9
√

6ξ2
ϕ3 + ... (4.28)

thus the one-loop quantum corrections will contribute a cutoff

Λ ∼ ξ2

λ
mpl (4.29)
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This unitarity bound is well above the energy scale of inflation and so the effective

field theory remains a safe description of inflationary physics with a regularized

potential given by equation 4.27. In this section however we focus only on the RCHI

model featured in [144] as a means of demonstrating the effect of correction terms

required by such unregularized potentials.

The Radiatively Corrected Higgs Inflation model shares similarities to Quartic

Hilltop in that it also fits within the 1σ region of the Planck 2018 data over a given

range of it’s free parameter AI , but does not produce a cosmology consistent with

a universe that does not collapse.

(a) Numerical solutions for tensor frac-
tion r and spectral index ns of the RCHI
model over the range 1 ≤ AI ≤ 40 for
50 ≤ Nk ≤ 70. The solid and dashed
curves represent the Planck 2018 1σ and
2σ bounds respectively. The horizontal
black line is the BICEP tensor fraction
bound r ≲ 0.032.

(b) Numerical solutions for reheating
temperature Tre and spectral index ns

of the RCHI model over the range 1 ≤
AI ≤ 40 for 50 ≤ Nk ≤ 70. The vertical
solid lines represent the Planck 2018
spectral index bounds 0.9607 ≲ ns ≲
0.9691 and the horizontal solid lines
represent the reheating temperature
bounds 0.01GeV ≲ Tre ≲ 1016GeV.

Figure 4.4: Numerical solutions of (ns, r) and the reheating temperature of the
RHCI model.

In figure 4.4a there are indeed a few curves that fit well within the 1σ region

provided by the Planck 2018 data, specifically those with 50 ≲ Nk ≲ 60. When

we take into account reheating consistency over the same parameter range in figure

4.4b we see that lie within the acceptable region formed by the rectangular bounds,

essentially ruling out this model as a possibility. Like the quartic hilltop model, this

potential also fails to produce a cosmology compatible with what we observe today.
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In the RCHI model, we exit inflation at small ϕ and shortly after the potential

becomes negative. This behaviour of the potential needs to be corrected. There are

a variety of ways one may correct the behaviour of this potential, as we did to form

the QHS model. As such we could first consider simply squaring the potential to

produce one which is regularised. However for RCHI, the potential only needs to be

corrected at small field values as we would like to retain the flatness of the potential

during slow-roll. Squaring the potential does not achieve this very well as it makes

the potential very steep at large ϕ.

(a) Numerical solutions for tensor frac-
tion r and spectral index ns of the RCHI-
Squared model over the range 1 ≤ AI ≤
40 for 50 ≤ Nk ≤ 70. The solid and
dashed curves represent the Planck 2018
1σ and 2σ bounds respectively. The
horizontal black line is the BICEP tensor
fraction bound r ≲ 0.032

(b) Numerical solutions for reheating
temperature Tre and spectral index ns

of the RCHI model over the range 1 ≤
AI ≤ 40 for 50 ≤ Nk ≤ 70. The vertical
solid lines represent the Planck 2018
spectral index bounds 0.9607 ≲ ns ≲
0.9691 and the horizontal solid lines
represent the reheating temperature
bounds 0.01GeV ≲ Tre ≲ 1016GeV.

Figure 4.5: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI-Squared model.

Compared to the standard RCHI model, the r − ns curves in figure 4.5a are

elongated and far more dramatically curved outside of the 2σ region. Whilst the

curves with 50 ≲ Nk ≲ 58 lie within the 1σ region, it still remains the case that none

of the curves are able to be made reheating-consistent. Furthermore, it is also worth

noting that one needs at least 60 e-folds of inflation to solve the horizon problem,

making a squared version of the RCHI potential even less favourable.
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(a) The RCHI potential at AI = 1
(b) The RCHI-Squared potential at
AI = 1.

Figure 4.6: Plots of the RCHI and RCHI-Squared potentials.

The simplest such terms that one could add the only modify the potential at

small ϕ are inverse powers of the form ϕ−p where p > 0. Henceforth we refer to such

models as RCHIp. Just as we did when adding polynomial correction to the quartic

hilltop model, we must ensure that the coefficient of the correction term keeps the

scalar fields VEV at zero in order for inflation to end in a finite time. That is,

consider a potential of the form

V (ϕ) = 1 − 2e
− 2ϕ√

6mpl +
AI

16π2

ϕ√
6mpl

+ αp6
p
2ϕ−p (4.30)

The coefficient αp must be such that V (ϕ0) = 0, where ϕ0 is the field value at

the minimum of the potential and therefore satisfies V ′(ϕ0) = 0

4ϕ0√
6mpl

e
− 2ϕ0√

6mpl +
AI

16π2
√

6mpl

− pαp6
p
2ϕ

−(p+1)
0 = 0 (4.31)

Equation 4.31 cannot be solved analytically for ϕ0 but we may make use of an

approximation. The minima of the potential is at small field values ϕ0/mpl ≲ 1 and

thus

e
− 2ϕ0√

6mpl ≈ 1 − 2ϕ0√
6mpl

(4.32)
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The ϕ
−(p+1)
0 term will dominate the expression and thus we may solve for ϕ0(αp)

ϕ0 ≃
√

6

(
16π2pαpmpl

AI + 64π2

) 1
p+1

(4.33)

Now substituting approximate solution 4.33 into V (ϕ0) = 0 allows us to solve

for the coefficient

αp =

(
16π2mpl

AI + 64π2

)p

pp(1 + p)−(p+1) (4.34)

and so we work with an approximate potential

V (ϕ) = 1 − 2e
− 2ϕ√

6mpl +
AI

16π2

ϕ√
6mpl

+

(
16π2mpl

AI + 64π2

)p

pp(1 + p)−(p+1)6
p
2ϕ−p (4.35)

In the following figures we display the r− ns and Tre − ns plots for RCHIp with

1 ≤ p ≤ 10. The bounds on the parameter spaces are the same as in all previous

figures.

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI1 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the RCHI1 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure 4.7: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI1 model.

Starting with the RCHI1 model which contains a ϕ−1 correction term, it can be

seen in figure 4.7a, that the 1σ region contains those curves with 50 ≲ Nk ≲ 62.

Taking into account reheating consistency in figure 4.7b, we see that the reheating-

consistent curves are those with 58 ≲ Nk ≲ 62.
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However, these curves only slightly fit into the acceptable region of the Tre − ns

plot over the parameter range 1 ≤ AI ≤ 40, so the likelihood that they would survive

any further constraining by more precise measurements of ns is low.

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI10 model over the 50 ≤ Nk ≤
70.

(b) The (log) reheating temperature of
the RCHI10 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure 4.8: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI10 model.

As we increase the power of the correction term through to p = 10, the effect

of this term in the potential is of course much stronger at small ϕ where the model

exits inflation, and much weaker at large ϕ where it starts. Figures for 2 ≤ p ≤ 9

are given in Appendix C. The effect on the r − ns plot compared to that of RCHI1

is to push out of a few of the curves, leaving those with 50 ≲ Nk ≲ 60 in the 1σ

region. This is a relatively small change in the r− ns parameter space. Conversely,

in figure 4.8b we see that all of the curves have been pushed out of the acceptable

in the reheating plot, leaving none that are reheating consistent over this parameter

range.
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Clearly the models become less viable as one increases the strength of the

correction term. We also see from figures 4.9a and 4.9b that as the the power of the

correction term increases the approximation for the coefficient αp given in equation

4.34 becomes less accurate and the local minima is displaced from V (ϕ0) ≃ 0.

Given that the RCHI1 model only just survives reheating-consistency, it’s likely

that RCHI and corrections thereof will not fair well under any future, more precise

measurements.

(a) The RCHI1 potential at AI = 1 (b) The RCHI10 potential at AI = 1.

Figure 4.9: Plots of the RCHI1 and RCHI10 potentials.

4.3 Exponential SUSY Inflation

The final model we will investigate is that of Exponential SUSY Inflation (ESI). ESI

models are governed by potentials of the form

V (ϕ) − V0

(
1 − e

−q ϕ
mpl

)
(4.36)

where q is the free parameter of order 1.

Potentials of this form appear in a broad range of literature [167–171], so we will

not discuss the precise nature in which they occur in detail and only focus on the

inflationary predictions of the potential 4.36 and modifications thereof. Exponential

SUSY inflation is a large field inflation model, one can calculate exactly the field

value when slow roll inflation ends [144].
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ϕend

mpl

=
1

q
ln

(
1 +

q√
2

)
(4.37)

For q ∼ O(1), inflation ends at small field values ϕend/mpl ≲ 1, after which the

potential becomes negative. The ESI model is another of the single field inflation

models featured in [144] which fits well within the Planck 2018 bounds. However

like RCHI and QH, the potential remains unregularized and thus the model cannot

lead to any physically realised cosmology.

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the ESI model with 0 < q < 10 over
50 ≤ Nk ≤ 70. The solid and dashed
curves represent the Planck 2018 1σ and
2σ bounds respectively.

(b) The (log) reheating temperature
of the ESI model with against the
spectral index ns with 0 < q < 10
over 50 ≤ Nk ≤ 70. The vertical
solid lines represent the Planck 2018
spectral index bounds 0.9607 ≲ ns ≲
0.9691 and the horizontal solid lines
represent the reheating temperature
bounds 0.01GeV ≲ Tre ≲ 1016GeV

Figure 4.10: Numerical solutions of (ns, r) and the reheating temperature of the
ESI model.

If one considers only the r − ns plot in figure 4.10a, ESI is among the most

promising of the three models investigated in this paper, with all curves between

52 ≲ Nk ≲ 68 lying within the 1σ region. In figure 4.10b however, only the curves

for 56 ≲ Nk ≲ 64 lie withing the acceptable region, and much like for the RCHIp

models, only a small proportion of the curves fit within the Planck 2018 ns bounds,

particularly for larger Nk, making it difficult for this model to remain viable if the

parameter space were to be further constrained towards the centre of the rectangular

bound. Of course we argue that these results are of little significance due to the
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unregularized behaviour of the potential. Just as with QH and RCHI this can be

corrected by taking the square of the potential and calculating the resulting spectral

index, tensor fraction and temperature at the end of reheating.

(a) The ESI potential at q = 1 (b) The ESI-Squared potential at q = 1.

Figure 4.11: Plots of the ESI and ESI-Squared potentials.

The squaring of the potential is motivated simply as a means of obtaining a

new potential which behaves similarly to the original potential during inflation but

has modified behaviour as the inflaton exits inflation. Namely that the potential

is bounded from below and has a stable vacuum. From both figures 4.12a & 4.12b

we see that squaring the potential does little to change the inflationary predictions

of the model but gives allows the potential to produce a cosmology compatible

with a universe that does not immediately collapse after inflation. The reheating-

consistent curves remain those with 56 ≲ Nk ≲ 64, although they still cover only a

small fraction of the parameter space in figure 4.12b.

Unlike QH, we cannot add polynomial terms as an option to correct the ESI

model at the end of inflation, since the exponential function will dominate over any

ϕp term we can add towards the end of inflation. We could however, consider adding

an inverse power correction of the form ϕ−p as we did with RCHI to form the family

of RCHIp models.

Consider a potential of the form

V (ϕ) = 1 − e
−q ϕ

mpl + αpϕ
−p (4.38)
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(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the ESI-Squared model with 0 < q < 10
over 50 ≤ Nk ≤ 70. The solid and
dashed curves represent the Planck 2018
1σ and 2σ bounds respectively.

(b) The (log) reheating temperature of
the ESI-Squared model with against the
spectral index ns with 0 < q < 10
over 50 ≤ Nk ≤ 70. The vertical
solid lines represent the Planck 2018
spectral index bounds 0.9607 ≲ ns ≲
0.9691 and the horizontal solid lines
represent the reheating temperature
bounds 0.01GeV ≲ Tre ≲ 1016GeV

Figure 4.12: Numerical solutions of (ns, r) and the reheating temperature of the
ESI-Squared model.

Just as with the QHp and RCHIp models, we must adjust the coefficient αp to

ensure that the potentials at the VEV remains at V (ϕ0) ≃ 0 to first order so that

inflation ends in a finite time. The VEV ϕ0 satisfies V ′(ϕ) = 0 and thus

q

mpl

e
−q

ϕ0
mpl − pαpϕ

−(p+1)
0 = 0 (4.39)

For sufficiently small ϕ0 equation 4.39 is dominated by the ϕ
−(p+1)
0 term and thus

to first order

ϕp+1
0 ≃ pαpmpl

q
(4.40)
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Demanding that the potential at the VEV is zero, one arrives at the equation

ϕ0

(
1 +

1

p

)
= 0 (4.41)

for generic p this would require αp = 0, thus to a first approximation in the methods

used here, there are no such correction terms that we can find for ESI. There may be

other regularization methods outside the scope of this analysis which could perform

this role.

4.4 Discussion

In this section we have investigated three candidate single field inflation models.

These models all belong to the subset of candidate inflation models that are capable

of producing an acceptable spectral index and tensor-to-scalar ratio in light of the

Planck 2018 data, but do not predict any kind of sensible cosmology that is consistent

with the fact that we are simply around to observe the universe today. The issue lies

in the unstabilized nature of the potentials after inflation ends. The Quartic Hilltop,

Radiatively Corrected Higgs and Exponential SUSY potentials do not posses local

minima and so there is no stable vacuum about which the inflaton may oscillate

and reheat the universe after expansion. In fact, since the potentials are unbounded

from below, if the energy density of the universe continues to be dominated by the

inflaton it will collapse on a time scale τ = H−1 after the end of inflation. This

is a generic feature of any such potential that is not stabilized after inflation. The

question remains as to whether regularizing the behaviour of these potentials has a

significant effect on the inflationary predictions of the models, which indeed it does.

The corrections that are made to the inflationary potentials in this model are

not motivated by a particular physical principle, however such potentials do indeed

have to be corrected, otherwise the resulting cosmology is simply not compatible

with the cosmology we observe today. We show that any such correction terms

are significant in terms of their effect on the inflationary predictions of the model.

216



There are of course examples of more physically motivated corrections to inflationary

models that previously suffered from the same issue of unboundedness. Brane

inflation models featured in [144] can be consistently modified in a way that does

not introduce new fine tuning parameters, to fit the Planck 2018 data in KKTLI

inflation [172]. Likewise, the Higgs inflation model featured also has a physically

motivated modification scheme that is consistent with Planck [162, 163]. In this

approach, the corrections to the functions F (h) and W (h) in equations 4.24 & 4.25

are calculated in the Einstein frame, giving an inflationary potential 4.27 that is

everywhere positive with a local minima.

Potentials with regularized behaviour may undergo the reheating period after

inflation without the universe collapsing in the process. The reheating temperature

must at least as large as the BBN energy scale, and no greater than the energy scale

of inflation, and so is loosely bounded by 0.01GeV ≲ Tre ≲ 1016GeV. Since Tre

depends explicitly on the amount of inflation that has occurred, through Nk and

Hk. Demanding reheating-consistency further constrains the acceptable region of

the r−ns parameter space when combined with the Planck 2018 and BICEP/Keck

Array measurements. Furthermore, at least approximately 60 e-folds of inflation

are required to solve the horizon problem [173], this consideration also allows us to

pinpoint the regions of r − ns and Tre − ns inhabited by these regularized models.

For the Quartic Hilltop model investigated in [1], before taking into account

reheating consistency, one may fit all curves with 53 ≲ Nk into the acceptable

region of r − ns parameter space, however after regularizing to form the QHS

model, reheating consistency reduces this to only the curves with 63 ≲ Nk ≲ 68

corresponding to reheating temperatures 1.8 × 10−2GeV ≲ Tre ≲ 6.0 × 104GeV. In

this section we investigate further options for correcting the behaviour of QH by

adding polynomial terms ϕp forming the class of QHp models for 5 ≤ p ≤ 10. The

lowest order corrected model QH5 has reheating consistent curves 60 ≲ Nk ≲ 68

corresponding to reheating temperatures 1GeV ≲ Tre ≲ 7.2 × 1010GeV. As

we increase the strength of the correction term through to QH10, the reheating-
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consistent curves in the r − ns parameter space still remain only those with

60 ≲ Nk ≲ 68 as the spectral index and tensor fraction Nk e-folds before the end of

inflation are not particularly sensitive to the strength of the correction term which

kicks in towards the end of inflation. However the reheating temperature is sensitive

to this change and for QH10 these curves correspond to reheating temperatures of

8.2 × 10−2GeV ≲ Tre ≲ 1.1 × 1013GeV.

The next model in our discussion is that of Radiatively Corrected Higgs Inflation.

Out of the three models considered in this paper, RCHI appears to be the least

favourable, having already started in a precarious position even before regularization.

Un-regularized RCHI potential allows only those curves with 50 ≲ Nk ≲ 60 in the

acceptable region of r−ns parameter space, considering that we require at least 60 e-

folds for the horizon problem that leaves only a singular curve Nk ≃ 60 as a potential

candidate. However, none of the curves enter the region of reheating-consistency in

the Tre − ns space. As we did with Quartic Hilltop, we may attempt to regularize

this model by simply squaring the potential. The RCHI-Squared potential however

only admits curves with 50 ≲ Nk ≲ 58 in the acceptable region of r − ns space,

so it does not address the horizon problem, which is an important corner stone of

scalar field inflation models. Squaring the RCHI potential significantly alters the

shape of the potential during inflation, so we may look for options that only affect

the potential towards the end of inflation when the inflation field ϕ is small. The

simplest such choices would be inverse power corrections of the form ϕ−p, forming a

family of RCHIp models. We investigate these for 1 ≤ p ≤ 10. RCHI1 admits curves

with 58 ≲ Nk ≲ 62 in the acceptable region of r − ns space, further constrained to

60 ≲ Nk ≲ 62 to be consistent with the horizon problem, corresponding to reheating

temperatures 2.4 × 107GeV ≲ Tre ≲ 3.6 × 109GeV. This simple correction makes

the model very tightly bound and ideal for further analysis under more precise

measurements of the spectral index and tensor fraction. As we increase the power of

the correction term, there are less reheating-consistent curves available in the r−ns

parameter space. The highest order corrected model we look at, RCHI10 contains

218



no reheating-consistent curves at all.

The final model discussed in this paper is that of exponential SUSY inflation.

This potential in its un-regulairzed form already inhabits promising regions of the

r − ns and Tre − ns parameter spaces. When squared to form a regularized ESI-

squared model, the reheating consistent curves are those with 56 ≲ Nk ≲ 64.

Taking into account the horizon problem this is further reduced to 60 ≲ Nk ≲ 64,

a corresponding bound on the reheating temperature of 1.5 × 102GeV ≲ Tre ≲

4.9 × 108GeV. Unlike QH, adding polynomial corrections to ESI does not stabilise

the potential as the exponential function dominates any such term that we could

add. We show also that is it not possible to add inverse power terms that can be

investigated analytically to first order.

Single field inflation models provide a versatile landscape of models to approach

the problem of explaining cosmological inflation, but one must take great care that

any model under consideration produces a cosmology after inflation that is consistent

with what we observe today. In particular, it is important that the inflationary

models we consider in this paper have stable vacuums which prevent the universe

from collapsing shortly after inflation ends. This is an important consideration for

as we have shown in the cases of Quartic Hilltop and radiatively corrected Higgs

inflation, how one decides to regularise the potential can have significant effects on

the observable that we measure today and may determine the viability of a given

model when compared to observational data. In this work we make use of polynomial

and inverse power correction terms, it is certainly worth noting that for a scalar field

theory in d = 4 dimensions, only ϕ4 interaction terms are renormalizable [174,175].

So even models such as these with corrected potentials cannot be quantised to form

self-consistent QFT’s, they can only be considered as classical effective field theories

for computing inflationary observables.
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Chapter 5

Continuation of Bianchi

Spacetimes Through The Big Bang

] This section is based on research by the author and David Sloan published in

Physical Review D [176]. It also contains an expanded upon discussion of the ADM

formalism, closely following references cited where relevant.

One of the biggest conceptual and practical problems in contemporary cosmology

is that of singularities in General Relativity (GR). The Hawking-Penrose theorems

[177] establish that a wide class of spacetimes are geodesically incomplete. Without

going into the details of measures on a space of theories, this is generally taken to

mean that maximally extended space-times without any singularities are a set of

measure zero. Solutions to the Einstein Field Equations (EFE) provide the metric

structure and manifold geometry at each point in spacetime, when the EFE become

indeterminate, the spacetime structure cannot be defined. In this sense there is a

boundary beyond which GR cannot be deterministically continued which we know as

a singularity. Typically this is characterised by some component of the Ricci tensor

growing arbitrarily large [178], although this is not always the case. The most

comprehensive understanding of singularities is provided by the Hawking-Penrose

theorems, in which geodesic incompleteness necessitates a spacetime singularity,

there will be a boundary beyond which a null or timelike geodesic terminates after
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finite affine length [9, 177]. This poses a problem for General Relativity. Many

physical solutions are bound to contain a region beyond which physics according

to GR cannot be continued in a deterministic manner. In particular, cosmological

solutions to GR contain a Big Bang singularity, characterised by the vanishing of

the scale factor and the unbounded growth of the Hubble parameter. Study of the

Big Bang has been at the centre of contemporary cosmology research [179]. In most

modern literature, attempts to resolve spacetime singularities invoke a quantization

of gravity, be it perturbatively through string theory [180–182] or non-perturbatively

through Loop Quantum Gravity [18,183–187].

These resolutions can be broadly fit into two camps. In the first camp the

singularity is avoided dynamically through, e.g. the introduction of a new type of

matter, or repulsive force at small scales. In the second, the space-time geometry

is replaced by a quantum counterpart such as a quantum foam. In both cases the

resolution requires that GR be ‘corrected’ in the neighbourhood of the singularity.

The need for these corrections informs two key aspects in the study of quantum

gravity. In the first the necessity of replacing GR by a quantum counterpart is

underlined by the presence of singular points at which the theory needs to be

corrected. In turn this means that that such points are the focus of where quantum

theories of gravity should provide observable deviations from GR.

In this work, we present an approach to the resolution of spacetime singularities

in an entirely classical manner, appealing to the relationalist framework of Shape

Dynamics (SD) [188, 189]. A key dynamical variable in the cosmological sector of

GR is the scale factor a. The scale factor however, is not a physical observable. One

never measures (or more precisely, is not able to measure) the size of the universe

a, only the size compared to some reference scale a/aref. Any measurement of the

size of universe is a relative one, as our measuring apparatus is indeed part of the

system we are attempting to measure. The relationalist framework laid out by

Barbour and Bertotti [190] seeks to track only the intrinsic change of a dynamical

system. This has formed the foundation of the Shape Space, and recently, Dynamical
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Similarity [191] approach to cosmology. In this work, we synthesise recent work on

the Shape Dynamics formalism [192, 193] and Dynamical Similarity to show how,

starting with the ADM description of Hamiltonian GR, one can move formally to

a description of cosmology with equivalent physical dynamics that never makes

reference to a notion of absolute scale. In this description the dynamical system

of physical observables defined on the phase space manifold remains well defined

through the initial cosmological singularity and in this sense it is resolved classically.

In this description the principle mathematical objects, namely the Hamiltonian and

contact structure, remain finite and well defined, which hints at a rigorous route to

quantization.

This classical resolution is possible because we relax the requirement that our

physical system consists of a pseudo-Riemannian geometry at all times. With the

elimination of scale from our system we form a physical system which, away from

the singularity, can always be embedded within a pseudo-Riemannian framework

through the additional assignment of scale. However, while this assignment breaks

down at the singularity, crucially the integrability of the equations of motion does

not. Therefore within this framework the singularity is not an endpoint of physics,

but rather a point at which the pseudo-Riemannian description in terms of a three

dimensional spatial manifold with volume is no longer appropriate.

5.1 Dynamical Similarity

Here we present how scale invariance can be used to reduce a theory from a

symplectic manifold to a contact manifold. Scale invariance is an important aspect of

the analysis of dynamical systems in cosmology. In any cosmological measurement,

the scale factor is never directly observable as we are only able to infer relative

changes. We shall start by reviewing some foundational results in the study

of dynamical similarities presented by Sloan in [194], in particular the fact that

quotienting out a dynamical similarity from a symplectic system leaves behind a
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symmetry reduced contact system. This is an autonomous dynamical system defined

entirely in terms of dimensionless relational variables, and describes the same physics

as the symplectic system. Consider for example the Kepler problem as in [195]. We

consider the Lagrangian of two unit mass particles interacting through Newtonian

gravity

L =
1

2
ṙ2 +

1

2
r2θ̇2 +

G

r
(5.1)

where r is the separation in the centre of mass frame. There exists a coordinate

transformation that moves between indistinguishable solutions of the equations of

motion. In particular this coordinate transformation is a multiplicative rescaling by

a non-zero constant λ

r → λr, t→ λ
3
2 t (5.2)

Under this rescaling, the action

S =

∫
L(r, ṙ, θ̇)dt (5.3)

transforms also by a multiplicative rescaling S → λ
1
2S and hence the equations of

motion whose solutions are critical paths of the action δS = 0, remain unchanged.

This is an example of a dynamical similarity [191], which is a scaling symmetry

of the dynamical system. As we will see in section 5.5, Lagrangians of relevant

cosmological models exhibit a dynamical similarity associated with the scale factor.

In this section we show how the identification of a dynamical similarity can be used

to quotient out a redundant symmetry of the symplectic phase space, and define a

system with equivalent dynamics on a contact manifold phase space.
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Consider a symplectic system with Lagrangian L(qi, q̇i) : TQ→ R and action

S =

∫
L(qi, q̇i)dt (5.4)

integrated over physical paths γ of the tangent bundle manifold TQ of a configura-

tion space Q, parameterised by time over some interval I ⊆ R. The physical curves

γ on TQ are tangent lifts of curves γ̄ on the configuration space. In this paper we

will consider Lagrangians that have a configuration space scaling symmetry (CSSS).

We define a CSSS to be a vector field D̄ on Q× I such that

i For all curves γ̄ : I → Q whose tangent lifts are stationary paths of the action

5.4, D̄γ̄ are also stationary paths of the action.

ii DL = ΛL, where Λ ∈ R and D is the tangent lift of the CSSS along γ̄

The scaling symmetry D̄ moves between curves on configuration space Q, which

represent indistinguishable solutions of the equations of motion as the Lagrangian

scales by a multiplicative constant Λ which we call the degree of the CSSS. The

CSSS is defined only up to a non-zero scalar factor, which we may fix by demanding

that D preserves the Lie drag of the Lagrange one-form

LDµL = µL, µL =
∂L

∂q̇i
dqi (5.5)

Consider a scaling symmetry of one of the configuration space variables x ∈ Q and

possibly of the time coordinate t ∈ I. The CSSS D̄ is the infinitesimal generator

of scaling transformations, so we can write the new cooridinates under the scaling

transformation as

(x̄, t̄) = eεD̄ (x, t) = ε(Ax,Bt), D̄ = Dx∂x +Dt∂t (5.6)

To first order we have

eεD̄x ≈ (1 + εDx∂x + εDt∂t)x

= x+ εDx

(5.7)
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eεD̄t ≈ (1 + εDx∂x + εDt∂t) t

= x+ εDt

(5.8)

Thus the CSSS can be written locally w.l.o.g. as

D̄ = Ax
∂

∂x
+Bt

∂

∂t
(5.9)

The tangent lift of a vector field along γ̄ is a curve through the tangent bundle TQ

that maps to γ̄ under the bundle projection map π : TQ → Q [32]. The tangent

lift of the vector field is itself a vector field on the tangent bundle TQ. Under the

rescaling transformations we have ẋ → eε(A−B)ẋ due to the rescaling of both x and

t as well as q̇ → eεiB q̇ since q̇ is only affected by the rescaling of t. So we have the

tangent lift acting on the Lagrangian DL = ΛL

D = Ax
∂

∂x
+ (A−B)ẋ

∂

∂ẋ
−Bq̇i

∂

∂q̇i
+Bt

∂

∂t
(5.10)

where qi ∈ Q are the configuration space coordinates unaffected by the scaling

symmetry. We next make a coordinate and lapse transformation

ρ = x
1
A , dτ = ρ−Bdt (5.11)

under which the CSSS is isochronal (B = 0) and has tangent lift

D = A

(
x
∂

∂x
+ x′

∂

∂x′

)
∼ x

∂

∂x
+ x′

∂

∂x′
, Normalising A = 1 (5.12)

where ′ denotes derivatives w.r.t. the new time coordinate τ . We now show that

given a Lagrangian function L : TQ → R with a CSSS D of degree 1, it is possible

to construct a Herglotz Lagrangian LH that describes the same dynamics on TQ/D.

Firstly, consider the converse. Let LH(q, q̇, S) be a Herglotz Lagrangian, and define

L = eρ
(
LH + ρ̇S

)
, ρ = −∂L

H

∂S
(5.13)

225



Since LH is a Herglotz Lagrangian, the physical paths on the manifold satisfy the

Herglotz-Lagrange equations of motion 2.147. Thus one can show that the original

tangent bundle coordinates (q, q̇) satisfy the Euler-Lagrange equations generated by

L.
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=

d

dt

(
∂LH

∂q̇

)
− ∂LH

∂q
+ ρ̇

∂LH

∂q̇

=
d

dt

(
∂L

∂q̇
− ∂LH

∂q

)
− ∂LH

∂S

∂LH

∂q̇
= 0

(5.14)

Thus the dynamics of all (q, q̇) ∈ TQ generated by L and LH are equivalent. Lastly

make a change of coordinate x = eρ, under which the Lagrangian becomes

L = xLH + ẋS (5.15)

The Lagrangian 5.15 clearly has a scaling symmetry of degree 1 given by

D = x∂x + ẋ∂ẋ (5.16)

Now consider the converse, let L : TQ → R be a Lagrangian with the scaling

symmetry 5.16 of degree 1. By the definition of D we have DL = L thus

x
∂L

∂x
+ ẋ

∂L

∂ẋ
= L (5.17)

We identify the partial derivatives as

LH =
∂L

∂x
, S =

1

x
iDµL =

∂L

∂ẋ
(5.18)

where LH(q, q̇, S) : TQ×R can be shown to be a Herglotz Lagrangian with equivalent

dynamics to L.
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The physical paths satisfy the Euler-Lagrange equations generated by L, which

can be written in terms of LH .

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0

=⇒ x
d

dt

(
∂LH

∂q̇

)
− x

∂LH

∂x
− LHδx,q + Ṡδẋ,q̇ − x

∂LH

∂S

∂LH

∂q̇
= 0

=⇒ d

dt

(
∂LH

∂q̇

)
− ∂LH

∂q
− ∂LH

∂S

∂LH

∂q̇
= 0

(5.19)

Thus the physical paths also satisfy the Herglotz equations of motion generated by

LH on the symmetry reduced manifold TQ/D.

5.2 The ADM Formalism

In this section we present a brief review of the ADM formalism of General Relativity

and cosmological spacetimes of interest in this section, namely Bianchi (I and IX)

and flat FLRW. In particular we closely follow the approaches of [49, 114], which

can be consulted for additional detail.

Within the framework of General Relativity, spacetime is assumed to be a 4-

dimensional Lorentzian differentiable manifold M with metric gµν . The manifold is

assumed to be globally hyperbolic, so that it has the topological structure of R×Σ

where Σ is a spatial 3-manifold. Since M is globally hyperbolic, it can be foliated

by such spacelike hypersurfaces. The full spacetime metric may be decomposed as

gµν =

NiN
i −N2 Nj

Ni γij

 (5.20)

where the shift vector N i, lapse function N and spatial 3-metric γij fully determine

the 4-dimensional spacetime metric gµν .

With the 3+1 foliation of spacetime described above, one may start with the

Einstein-Hilbert action and decompose it into dynamical variables defined on the

3-geometry
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S =

∫
d4x

√
−gR

=

∫
d4xN

√
γ

(
3R(γ) +K2 +KijK

ij − 2∇nK − 2

N
DiDiN

) (5.21)

where 3R is the Ricci scalar associated with the spatial 3-metric γij and Kij is the

extrinsic curvature of the spatial spatial slice Σt given by

Kij = −γσi γ
ρ
j∇σnρ =

1

2N
(DiNj +DjNi − γ̇ij) (5.22)

K = γijK
ij is the extrinsic curvature scalar, Di are the spatial covariant derivatives

and ∇nK is the covariant derivative along the normal vector to the spatial 3-manifold

nµ, normalised to nµnµ = −1. It is important to note that the objects γij, Kij and Di

are non-zero only on the spatial 3-manifold and therefore only have Latin subscripts.

The action in eq. 5.21 is equivalent to

S =

∫
d4xN

√
γ
[
3R(γ) +KijK

ij −K2
]

(5.23)

up to boundary terms that have no effect on the equations of motion as their

variation can be set to zero. Thus we have the Einstein-Hilbert Lagrangian

L = N
√
γ
[
3R(γ) +KijK

ij −K2
]

(5.24)

from which we may find the conjugate momenta of the dynamical variables

{N,N i, γij}. Firstly one sees immediately that the lapse N and shift vector N i have

no conjugate momenta as their velocities do not enter into the Lagrangian. We will

see that the lapse and shift vector actually turn out to be non-dynamical variables,

as variation of the action with respect to them results in constraint relations which

are fundamental to the Hamiltonian description of GR. On the other hand, the

conjugate momenta to the spatial 3-metric is given by
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πij =
∂L
∂γ̇ij

=
√
γ
(
Kγij −Kij

)
(5.25)

The Hamiltonian density can then be obtained from a Legendre transform H =

πij γ̇ij − L, giving the Hamiltonian

H =

∫
Σt

d3xH =

∫
Σt

d3xN

[
1
√
γ

(
πijπij −

1

2
π2

)
−√

γ3R(γ)

]
+ 2

∫
Σt

d3x πijDiNj

(5.26)

The term in the second integral of eq 5.26 can be written in terms of a spatial

covariant derivative of πij up to a boundary term which we may neglect. Thus the

Hamiltonian that is conventionally presented in the ADM literature is

H =

∫
Σt

d3xN

[
1
√
γ

(
πijπij −

1

2
π2

)
−√

γ3R(γ)

]
− 2

∫
Σt

d3xN iDjπij (5.27)

As usual, the physical paths on the solution space are the stationary paths of

the action. Requiring the variation of the action 5.23 with respect to the lapse and

shift vector produces

√
γ3R(γ) = KijK

ij −K2 =
1
√
γ

(
πijπij −

1

2
π2

)
= 0 (5.28)

Diπij = 0 (5.29)

respectively. These are constraint equations which must be satisfied by solutions

to the equations of motion. The first constraint in equation 5.28 is known as the

Hamiltonian constraint and equation 5.29 is the diffeomorphism constraint. The

expression of the ADM Hamiltonian 5.26 can be written in terms of the constraints

by defining

H[N ] =

∫
Σt

d3xN

[
1
√
γ

(
πijπij −

1

2
π2

)
−√

γ3R(γ)

]
≈ 0 (5.30)

D[N i] = −2

∫
Σt

d3xN iDjπij ≈ 0 (5.31)
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Where ≈ 0 denotes zero for solutions of the equations of motion which lie on the

spacelike hypersurfaces Σt. Thus the Hamiltonian is written as

H = H[N ] + D[N i] ≈ 0 (5.32)

The Hamiltonian and diffeomorphism constraints form a set of first class

constraints. A first class constraint f , as defined in Diracs treatment of constrained

Hamiltonian systems [196] is a constraint whose Poisson bracket vanishes weakly

with all other constraints of the system ϕi

{f, ϕi} ≈ 0 (5.33)

The Hamiltonian and diffeomorphism constraints form a closed algebra under

Poisson brackets, known as the “Hypersurface Deformation Algebra”, and

thus they vanish on spatial hypersurfaces.

{D[N i],D[M j]} = D [[N,M ]]

{D[N i],H[N ]} = H
[
N i∂iN

]
{H[N ],H[M ]} = D

[
γij (N∂iM −M∂kN)

] (5.34)

The detail of deriving this algebra may be found in appendix H of [114] or Diracs

original work [196]. The Hamiltonian and diffeomorphism constraints restrict

physical paths to a subset of the GR phase space admitted by Hamiltons equations

of motion. The Hamiltonian and diffeomprhism constraints must be zero on shell

for arbitrary N and N i, in this sense the lapse function and shift vector are non-

dynamical Lagrange multipliers. The spatial 3-metric γij and conjugate momentum

πij satisfy Hamiltons equations of motion

γ̇ij =
∂H
∂πij

, πij = − ∂H
∂γij

(5.35)
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5.3 Bianchi I

Having now determined Hamiltons equations for the spatial metric γij and conjugate

momentum πij, as well as the Hamiltonian and diffeomorphism constrains, we may

now look at specific cosmological solutions. Those of interest to us will be the

Bianchi cosmologies discussed in section 2.3. The Bianchi I cosmology 2.11 has

n1 = n2 = n3 = 0 and so the structure constants are all identically zero Cc
ab. This

admits the simple Lie bracket structure

[X1, X2] = [X2, X3] = [X3, X1] = 0 (5.36)

and its symmetry group is the Abelian group of translations in three dimensions

R3. In this case the invariant basis coincides with the coordinate basis eα = ∂α and

the triads are simply Kronecker deltas eαa = δαa . Recall that in a coordinate basis,

variation of the action with respect to the non-dynamical shift vector results in 5.29

Diπij = 0, and so the diffeomorphism is satisfied trivially when our invariant basis

which coincides with the coordinate basis. The Hamiltonian constraint 5.30 is

H[N ] =

∫
Σt

d3x
N
√
γ

(
παβπαβ −

1

2
π2

)
(5.37)

Thus the Bianchi I Hamiltonian can be written as

HBI =
n
√
γ

(
1

2
πabπab −

1

2
π2

)
(5.38)

where n =
∫
Σt
d3xN is the lapse function spatially integrated over the fiducial cell.

This is a non-dynamical Lagrange multiplier and so can be set to unity without loss

of generality.
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The integration over the fiducial cell takes us from field theory of GR with an

infinite number of degrees of freedom (although a finite number per point), to a

particle theory with a finite number of degrees of freedom. Note here that while the

ADM Hamiltonian of equation 5.37 describes the dynamics of general spacetimes,

the Bianchi I Hamiltonian 5.38 is a symmetry reduced Hamiltonian.

We now continue to determine Hamiltons equations of motion for the Bianchi I

Hamiltonian. For the following partial derivatives we have

∂HBI

∂παβ
=

n
√
γ

(
∂

∂παβ
(πρσπρσ) − π

∂π

∂παβ

)
=

n
√
γ

(
παβ + πρσ ∂πρσ

∂παβ
− πγαβ

)
=

n
√
γ

(
παβ +

∂

∂παβ

(
γαργσβπ

αβ
)
− πγαβ

)
=

n
√
γ

(παβ + πρσγαργσβ − πγαβ)

=
n
√
γ

(2παβ − πγαβ)

(5.39)

∂HBI

∂γαβ
= n

(
πρσπρσ −

1

2
π2

)
∂γ−

1
2

∂γαβ
+

n
√
γ

(
πρσ ∂πρσ

∂γαβ
− π

∂π

∂γαβ

)
(5.40)

On shell, the ADM Hamiltonian must vanish for an arbitrary lapse and shift vector,

so we have the constraint equation

1

2
πabπab −

1

2
π2 ≈ 0 (5.41)

We are only concerned with on-shell dynamics on the spatial hypersurfaces, so we

may enforce the constraint in the first term of equation 5.40 giving

∂HBI

∂γαβ
=

n
√
γ

(
πρσ ∂

∂γαβ

(
γρδγσωπ

δω
)
− π

∂

∂γαβ
(γρσπ

ρσ)

)
=

n
√
γ

(
πασπβωγσω + πρσπδβγρδ − ππαβ

)
=

n
√
γ

(
2πασπβ

σ − ππαβ
) (5.42)
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Thus we have Hamiltons equations of motion for the metric and its conjugate

momentum

γ̇αβ =
n
√
γ

(2παβ − πγαβ) , π̇αβ = − n
√
γ

(
2πασπβ

σ − ππαβ
)

(5.43)

As one would expect the spatial curvature invariant for the Bianchi I cosmology is

exactly zero, and thus it describes geometries with flat spatial hypersurfaces.

We will now proceed to derive solutions to the vacuum equations of motion, by

first making a series of canonical transformations and taking n = 1. The metric and

momentum can always be chosen to be diagonal through a linear transformation of

the coordinate basis and we choose to work in Ashtekar-Henderson-Sloan variables

[197] where γαβ and παβ take the form

γαβ = (Q1, Q2, Q3) (5.44)

παβ =

(
P1

Q1

,
P2

Q2

,
P3

Q3

)
(5.45)

in which the Hamiltonian is

HBI =
1√

Q1Q2Q3

[
P 2
1 + P 2

2 + P 2
3 − 1

2

(
P1 + P2 + P3)

2
)]

(5.46)

We then make a further transformation of (canonical) variables

Q1 = ν
2
3 e

− x√
2
+ y√

6 , Q2 = ν
2
3 e

x√
2
+ y√

6 , Q3 = ν
2
3 e−

√
2
3
y (5.47)

P1 = − kx√
2

+
ky√

2
+
ντ

2
, P2 =

kx√
2

+
ky√

2
+
ντ

2
, P3 = −

√
2

3
ky +

ντ

2
(5.48)
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The variables (x, y) are called the Misner anisotropy parameters [198] which

measure the deviation from homogeneity, since when x, y = 0 the spacetime is both

homogeneous and isotropic. The Misner variables have conjugate momenta (kx, ky)

and ν is the volume factor which describes the overall scale of the fiducial cell and

conjugate momenta τ , known as the York time. The Bianchi I Hamiltonian in this

set of variables takes the form

HBI = ν−1

(
−3

8
ν2τ 2 + k2x + k2y

)
(5.49)

From the form of the Hamiltonian in equation 5.51, particularly from the overall

factor of ν−1, we can see intuitively that there will be a singularity at ν → 0, in the

sense that the Hamiltonian flow becomes ill-defined and therefore the Hamiltonian

description of this dynamical system ceases to become predictive. We make one final

transformation of variables

ν = ν0e
−

√
3

2
x0 , τ = − 2√

3
ν−1
0 e

√
3

2
x0p0

x =
√

2x1, kx =
1√
2
p1

y =
√

2x2, ky =
1√
2
p2

(5.50)

where ν0 is a constant scale. This gives a Hamiltonian of the form

HBI =
1

2
ν−1
0 e

√
3

2
x0
(
−p20 + p21 + p22

)
(5.51)

The Bianchi I Hamiltonian 5.51 is independent of x1 and x2, consequently the

conjugate momenta p1 and p2 are conserved along its flow. There are two more

equations of motion for x0 and p0 which read

ẋ0 =
∂HBI

∂p0
= −ν−1

0 p0e
√

3
2
x0 (5.52)

ṗ0 = −∂HBI

∂x0
= −

√
3ν−1

0 e
√
3

2
x0
(
−p20 + p21 + p22

)
(5.53)
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For the Hamiltonian constraint to be satisfied at all points along the flow, we require

−p20 + p21 + p22 ≈ 0 (5.54)

and thus p0 is also a conserved momentum and equation 5.52 admits the simple

solution

e−
√
3
2
x0 = C0 +

√
3

2
ν−1
0 p0t (5.55)

where C0 is a constant of integration. Hamiltons equations for x1 and x2 read

ẋi =
∂HBI

∂pi
= ν−1

0 e
√
3
2
x0pi, i = 1, 2. (5.56)

Having already solved for x0(t) we may simply integrate for xi(t)

xi(t) = Ci + ν−1
0 pi

∫
e

√
3
2
x0 dt

= Ci + 2pi

∫
1

2ν0C0 +
√

3p0t
dt

= Ci +
2pi√
3p0

ln
(

2ν0C0 +
√

3p0t
) (5.57)

Having solved the Hamiltons equations of motion for the vacuum Bianchi I

cosmology, known as the “Kasner Solution”. We are interested in analysing

the dynamics of the metric components. Before proceeding, we set all integration

constants to zero, noting that we may do so without loss of generality, as they

amount to a simply translation of our coordinate system. We will now trace back

our steps through the coordinate transformations and determine the spatial metric

components γαβ(t).
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Recall that the volume factor is related to x0 by 5.50

ν(t) = ν0e
−

√
3
2
x0(t) =

√
3

2
p0t (5.58)

and the Misner anisotropy parameters are

x(t) =
√

2x1 = 2

√
2

3

p1
p0

ln
(√

3p0t
)

y(t) =
√

2x2 = 2

√
2

3

p2
p0

ln
(√

3p0t
) (5.59)

The constant momentum p0 can be set to unity by a rescaling of the time coordinate,

after which we have the spatial metric

γαβ(t) =
(
t2q1 , t2q2 , t2q3

)
(5.60)

where

q1 =
1

3
+

1√
3
p2 − p1

q2 =
1

3
+

1√
3
p2 + p1

q3 =
1

3
− 2

3
p2

(5.61)

The parameters qi are known as the “Kasner Exponents”, by simply inspection

we can see that they must satisfy

q1 + q2 + q3 = 1 (5.62)

Considering also the Hamiltonian constraint (remembering that we have effectively

p0 to unity through a rescaling of the time coordinate) 1 = p21 + p22 we see that

q21 + q22 + q23 = 1 (5.63)
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These two constraints mean that there is only one free Kasner exponent, and

thus we have a 1-parameter family of solutions, described by the intersection of the

“Kasner plane”
∑

i qi = 1 with the “Kasner sphere”
∑

i q
2
i = 1, which is just the

unit 2-sphere. Without loss of generality we may choose an ordering of the Kasner

exponents q1 ≤ q2 ≤ q3 and parametrize the exponents by letting u = q2/q3 for

q3 ̸= 0. Equation which defines the Kasner plane 5.62 then gives

q1 = 1 − q3(1 + u) (5.64)

Substituting this into the equation 5.63 for the Kasner sphere gives

[1 − q3(1 + u)]2 + u2q33 + q23 = 1

=⇒ q3
[
q3(u

2 + u+ 1) − (1 + u)
]

= 0
(5.65)

Since we have q3 ̸= 0 the only valid solution is

q1(u) = − u

u2 + u+ 1
, q2(u) =

u(1 + u)

u2 + u+ 1
, q3(u) =

1 + u

u2 + u+ 1
(5.66)

There exist only two degenerate solutions to equations 5.62 & 5.63 which are (0, 0, 1)

and (−1
3
, 2
3
, 2
3
). Otherwise, no two Kasner exponents are equal. All solutions other

than (0, 0, 1) must have one negative Kasner exponent and two positive ones, and

so there is always one contracting spatial dimension as t → ∞. In converse, as

t → −∞, two of the spatial dimensions are contracting whilst one is expanding,

squashing the spacetime into a pancake-like shape!
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Figure 5.1: Figure showing the intersection of the Kasner plane
∑

i qi = 1 (light
blue) with the Kasner sphere

∑
i q

2
i = 1 (light red). The solutions lie on the Kasner

circle (bold red). The only two degenerate solutions (0, 0, 1), (−1
2
, 2
3
, 2
3
) are both

labelled. Apart from where it passes through the north pole of the Kasner sphere,
the Kasner circle always lies in a quadrant where one of the Kasner exponents is
negative.

The intersection between the Kasner plane and the Kasner sphere is plotted in

figure 5.1, the resulting set of solutions lie on the “Kasner circle”. In figure 5.2 we

plot the solutions for the Kasner exponents as functions of the free parameter u,

highlighting the degenerate solutions.

Figure 5.2: Plots of the constrained Kasner exponents which lie on the Kasner circle,
in terms of the free parameter q(u). The degenerate solutions (0, 0, 1) and (−1

2
, 2
3
, 2
3
)

are highlighted.
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The curvature invariant has a genuine singularity at t = 0 in all solutions except

the degenerate (0, 0, 1) solution. In this case the spacetime metric can be shown to

be flat 1+1 dimensional Minkowski metric through a coordinate transformation

τ = t cosh z, ψ = t sinh z (5.67)

for which we have

dτ 2 − dψ2 = (cosh zdt+ t sinh zdz)2 − (sinh zdt+ t cosh zdz)2

=
(
cosh2 z − sinh2 z

)
dt2 + t2

(
sinh2 z − cosh2 z

)
dz2

= dt2 − t2dz2

(5.68)

The invariant metric line element is then

ds2 = −dt2 + γabω
aωb

= −dt2 + γabdx
adxb

= −dt2 + t2dz

= −dτ 2 + dϕ2

(5.69)

5.4 Bianchi IX

We now move on to determining the Bianchi IX Hamiltonian. Recall from the table

in figure 2.11, that the Bianchi IX Lie algebra has n1 = n2 = n3 = 1, which admits

the Lie bracket structure

[X1, X2] = X3

[X2, X3] = X1

[X3, X1] = X2

(5.70)

The structure constants are simply Levi-Civita symbols Cc
ab = ϵabc. Unlike the

Bianchi I cosmology, the invariant basis does not coincide with a coordinate basis

for Bianchi IX.
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A choice of the invariant 1-form basis in terms of the coordinate basis is given

by [114,194,199]

ω1 = − sin r dθ + cos r sin θ dϕ

ω2 = − cos r dθ − sin r sin θ dϕ

ω3 = dr + cos θ dϕ

(5.71)

Where (r, θ, ϕ) are spherical coordinates. These 1-forms are invariant under the

group rotations in three dimensions, and thus the Bianchi IX Lie algebra is so(3).

The Hamiltonian and diffeomorphism constraints from equations 5.30 and 5.31

in the invariant basis become

H[N ] =

∫
Σt

d3x
N sin θ
√
γ

[
Trγ2 − 1

2
(Trγ)2 + πabπab −

1

2
π2

]
(5.72)

D[Na] = −2

∫
Σt

d3xNa sin θϵcabπ
bcγbc (5.73)

Just as in the Bianchi I case, the spatially integrated lapse function can be

packaged into a variable n

n =

∫
Σt

d3xN sin θ (5.74)

which enters as a Lagrange multiplier, and thus the overall factor of n can be set to

unity in both the Hamiltonian and diffeomorphism constraint giving

H =
1
√
γ

(
Trγ2 − 1

2
(Trγ)2 + πabπab −

1

2
π2

)
≈ 0 (5.75)

Da = −2ϵcabπ
bdγdc ≈ 0 (5.76)

The diffeomorphism constraint can be written in terms of a commutator that

strongly suggests the same gauge fixing used in the Bianchi I case should be used

here

[πac, γcb] ≈ 0 (5.77)
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To this end we impose the Taub gauge where the 3-metric and conjugate

momentum are diagonal and choose the same Misner anisotropy parameter variables

as in equations 5.47 and 5.48. Following the same transformation of variables as in

section 5.3 one arrives at the Bianchi IX ADM Hamiltonian

HBIX = ν−1

[
−3

8
ν2τ 2 +

1

2
(p2x + p2y) + ν

4
3Vs(x, y)

]
(5.78)

where the function Vs(x, y) is the “shape potential” given by

Vs(x, y) = f(−
√

3x+ y) + f(
√

3x+ y) + f(−2y)

f(z) =
1

2
e
√

2
3
z − e

− z√
6

(5.79)

The shape potential originates from the 3-Ricci scalar on the spatial hypersurface,

which in the chosen coordinates is simply the volume factor multiplied by a “scale-

free” part 3R(γ) = ν−
2
3Vs(x, y). There is an important comparison between the

Bianchi IX and Bianchi I Hamiltonian. The Hamiltonian describing the Bianchi

IX dynamical system can be likened to that of a free point particle acting under a

potential term ν
4
3Vs(x, y) (we may ignore the ν−1 pre-factor here as the lapse can

always be chosen to scale with ν such that the resulting pre-factor is constant.) In

the case where Vs(x, y) = 0, we are left with the Bianchi I dynamical system in

which the point particle simply moves along straight lines in the (x, y) plane. From

this perspective we can see that Bianchi IX solutions pass through points where the

geometry is that of Bianchi I.

In figure 5.3a we plot the shape potential (in log scale) and in figure 5.3b we

plot its heat map and equipotential lines, as functions of the anisotropy parameters.

The potential has exponentially steep walls with a triangular shape. The exponential

steepness of the shape potential means that in the regions between the walls, the

potential is approximately zero, and thus the solution to the equations of motion

are approximately Kasner.
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(a) Plot in log scale of the shape
potential Vs(x, y) defined in equation
5.79 as a function of the anisotropy
parameters (x, y). The shape potential
exhibits exponentially steep walls with a
triangular symmetry around about the
origin.

(b) A heat map plot of shape potential
Vs(x, y). In particular we highlight
the equipotential lines Vs(x, y) =
(−1, 0, 1, 10, 100, 103)

Figure 5.3: Plots of the shape potential Vs(x, y).

The Bianchi IX dynamics can be described from the perspective of a particle

which travels freely along straight lines until it collides with the potential wall. The

shape potential couples directly to the volume factor which increases monotonically

with time, and therefore the walls of the potential are receding from the “particle”

and the collisions are inelastic. After each collision the Bianchi IX dynamical

system sets off on a new approximate Kasner trajectory with decreased momentum√
p2x + p2y. These transitions between quasi-Kasner states are known as Taub

transitions. Detailed explanations of these transitions can be found in section 4.3.2

of [114] and section 13.1 of [188]. A natural question arises from consideration of

Taub transitions of the Bianchi IX system. Since the potential walls are receding

away from the particle, are there configurations for which there are a finite number of

bounces off the potential walls before the dynamical system is left in a final quasi-

Kasner state? Such a condition is called “Quiescence”, and the answer is that

Quiescence is not possible in vacuum Bianchi IX cosmologies. Here we will outline

the arguments given in [114, 188] from the perspective of the ADM Hamiltonian.

In section 4.3.2 of [114] one can also find an argument from the perspective of the
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Einstein field equations. The end result from both approaches is the same: quasi-

Kasner solutions in the vacuum Bianchi IX dynamical system are never stable, and

there will be an infinite number of Taub transitions before the spacetime singularity

is reached in finite proper time. The argument is as follows. We start with the ADM

Hamiltonian, where we have chosen the lapse to scale with
√
γ for which

HBIX = Trγ2 − 1

2
(Trγ)2 + πabπab −

1

2
π2 (5.80)

Following the same steps as before, gauge fixing the metric and momentum to be

diagonal we have

HBIX = −3

8
ν2τ 2 + k2x + k2y + ν

4
3Vs(x, y) (5.81)

Then making the canonical transformation

ν = ν0e
− 3

2
x0 , τ = − 2√

3
ν−2
0 e

3
2
x0p0

x =
√

2x1, kx =
1√
2
p1

y =
√

2x2, ky =
1√
2
p2

(5.82)

The Hamiltonian is then

HBIX =
1

2

(
−p20 + p21 + p22

)
+W (x0, x1, x2) (5.83)

Where the potential function W (x0, x1, x2) is given by

W (x0, x1, x2) = ν
4
2
0 e

− 2√
3
x0Vs(x1, x2) (5.84)

Consider the dynamical system during a Kasner epoch, where the potential term is

negligible in comparison to the kinetic term −p20 + p21 + p22, then the Hamiltonian is

H ∼ 1

2

(
−p20 + p21 + p22

)
≈ 0 (5.85)

243



where all momenta are constant. To clarify the notation here we use ∼ to denote

“approximately equal to” and ≈ to denote on-shell equality. The equations of motion

during this Kasner epoch are simply

x0 = −p0t, xi = pit, i = 1, 2 (5.86)

where we have set the integration constants to zero. The Hamiltonian constraint

during a Kasner epoch sets p0 = −
√
p21 + p22, where have chosen the p0 ≤ 0 solution,

since we are interested in cases where ν → 0 as x0 → ∞. We next make a coordinate

transformation of (x1, x2) to polar coordinates

x1 = r cosϕ, x2 = r sinϕ (5.87)

The potential function felt by the particle during a Kasner epoch is then

W (x0, x1, x2) = ν
4
3
0 e

− 2√
3
x0Vs(r, ϕ)

= ν
4
3
0

∑
i

cie
rfi(ϕ)− 2√

3
x0

= ν
4
3
0

∑
i

cie

(
fi(ϕ)− 2√

3

)√
p21+p22t

(5.88)

The functions fi(ϕ) and their coefficients are given by

f1(ϕ) =
2√
3

sinϕ+ 2 cosϕ, c1 =
1

2
, f2(ϕ) =

2√
3

sinϕ− 2 cosϕ, c2 =
1

2

f3(ϕ) = − 1√
3

sinϕ+ cosϕ, c3 = −1, f4(ϕ) = − 1√
3

sinϕ− cosϕ, c4 = −1

f5(ϕ) = − 4√
3

sinϕ, c5 =
1

2
, f6(ϕ) =

2√
3

sinϕ, c6 = −1

(5.89)

The functions fi(ϕ) − 2√
3

appearing in the exponents of the potential 5.88 are

plotted in figure 5.4. One can see clearly that all functions fi(ϕ) are bounded below

and for any given ϕ, there is always at least one function satisfying fi(ϕ) − 2√
3
≥ 0.

Therefore during any Kasner epoch, the potential term will eventually grow to
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Figure 5.4: Plots of the exponents fi(ϕ)− 2√
3

in the potential function W (x, r, ϕ) as
given in equation 5.88

dominate the kinetic term, even if it is initially negligibly small in comparison.

Any Kasner epoch is thus unstable and cannot persist indefinitely. The particle is

guaranteed to catch up with the receding potential wall resulting in another inelastic

collision. Since this carries on indefinitely, there will be an infinite number of bounces

from any given time until the particle reaches the singularity at ν → 0. Quiescence

therefore cannot be achieved in vacuum Bianchi IX. The behaviour in which the

particle undergoes an infinite number of Taub transitions before reaching the

singularity is known as the Mixmaster behaviour [200]. The Mixmaster behaviour

is opaque to its initial conditions in that by the time the particle has reached the

singularity, it has gone through infinitely many Taub transitions scrambling any

information that could have been inferred about its initial configuration.

Whilst quiescence cannot be attained in vacuum solutions, the introduction of

a minimally coupled homogeneous scalar field eliminates the Mixmaster behaviour.

Through the same procedure in which we derived the vacuum ADM Hamiltonian, it

can be easily shown that the introduction of such a scalar field ϕ(t) simply introduces

an additional kinetic term into the Bianchi IX Hamiltonian in the way that we could

intuitively suspect and a potential term should we choose to include it. The details

of this can be found in section 5.3 of [114].

HBIX = −3

8
ν2τ 2 + k2x + k2y +

1

2
p2ϕ + ν

4
3Vs(x, y) + ν2V (ϕ) (5.90)
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The key differences in this model that allow for quiescence are that the scalar

field is not coupled to the shape potential, and therefore does not feel the effect

of its bounces, consequently its momentum is conserved through Taub transitions.

Secondly the field potential has a different coupling to the volume factor than the

shape potential, we will see that there are restrictions on how fast the field potential

may grow if quiescence is to be achieved. Following the same canonical coordinate

transformation from section 5.82, the Bianchi IX Hamiltonian 5.90 becomes

HBIX =
1

2

(
−p20 + p21 + p22 + p2ϕ

)
+W (x0, x1, x2, ϕ)

W (x0, x1, x2, ϕ) = ν
4
3
0 e

− 2√
3
x0Vs(x1, x2) + v20e

−
√
3x0V (ϕ)

(5.91)

During Kasner epochs we can see that we have the familiar solutions to the

approximate equations of motion as follows. Firstly we require that

lim
t→∞

[
e−

√
3x0(t)V (ϕ(t))

]
= 0 (5.92)

so that the field potential term cannot dominate over the shape potential term after

a sufficient amount of time. Provided that this is satisfied, then during a Kasner

epoch the solutions to the approximate equations of motion are the familiar

x0 = −p0t, xi = pit, i = 1, 2

ϕ = pϕt
(5.93)

with all momenta constant.

The Hamiltonian constraint now reads p0 = −
√
p21 + p22 + p23. Writing (x1, x2)

in polar coordinates (r, θ), the potential function during a Kasner epoch is

W (r, θ, ϕ) = ν
4
3
0

∑
i

cie

√
p21+p22

fi(θ)− 2√
3

√
1+

p2
ϕ

p21+p22

t

+ ν20e
−
√

p21+p22+p2ϕtV (pϕt) (5.94)
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As mentioned, the scalar field does not interact with the shape potential, and

so inelastic collisions with the potential wall reduce p21 + p22 and not p2ϕ. After a

sufficient number of Taub transitions the dynamical system will reach a point where

fi(ϕ) <
2√
3

√
1 +

p2ϕ
p21 + p22

, ∀i (5.95)

Since the momentum p21 + p22 decreases for every bounce, there will no longer

be any positive exponent in the potential function and the shape potential term

will begin to exponentially decay. We thus reach a state where the dynamical

system undergoes one final Taub transition and continues on its final quasi-Kasner

trajectory.

5.5 Contact Reduction of Cosmological Dynamical

Systems

5.5.1 FLRW

Having now reviewed the ADM formulation of Hamiltonian General Relativity,

subsequently determining the Bianchi I & IX Hamiltonians we will now apply the

mathematical framework of dynamical similarities outlined in section 5.1 to reduce

the symplectic Hamiltonian systems to contact ones. In particular, in section 5.1

we established that it is possible to reduce the standard symplectic description of

a system to a contact one when there exists a scaling symmetry D such that the

Lie drag of the Lagrangian moves between indistinguishable solutions LDΛ
L = ΛL.

Before diving straight into the Bianchi cosmologies, we will first describe the process

of contact-reducing the flat (k = 0) FLRW (+ free massless scalar field) Lagrangian

as a toy model. The process of contact reduction will involve removing a redundant,

non-physical degree of freedom, the volume factor ν leaving a dynamical system

which is described in therms of the physical relational quantities such as the Hubble
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factor ν ′/ν. We start by considering the action of a scalar field minimally coupled

to the FLRW metric

S =

∫
R

∫
Σt

d4x
√
−g
(
R +

1

2
ϕ̇2 − V (ϕ)

)
(5.96)

where the spacetime M = R × Σt is foliated by spacelike hypersurfaces Σt. The

metric gµν is the FLRW metric with line element ds2 = −dt2+a(t)2(dx2+dy2+dz2).

The Ricci scalar associated with the FLRW metric is

R = 6

[
ä

a
+

(
ȧ

a

)2
]

(5.97)

In terms of the volume factor ν(t) = a(t)3 the action is

S =

∫
d4x ν

[
−2

3

(
ν̇

ν

)2

+
1

2
ϕ̇2 − V (ϕ)

]
(5.98)

The Lagrangian

L = ν

[
−2

3

(
ν̇

ν

)2

+
1

2
ϕ̇2 − V (ϕ)

]
(5.99)

exhibits an isochronal scaling symmetry of the volume factor

ν = λν̄ =⇒ L = λν̄

[
−2

3

(
˙̄ν

ν̄

)
+

1

2
ϕ̇2 − V (ϕ)

]
= λL̄, λ ∈ R/{0} (5.100)

The CSSS that generates this scaling symmetry is D̄ = ν∂ν with tangent lift

D = ν∂ν + ν̇∂ν̇ By acting on the Lagrangian with D one sees clearly that this is

already a scaling symmetry of degree 1 (therefore no coordinate transformations are

required before forming the Herglotz Lagrangian). As per section 5.1, there exits a

Herglotz Lagrangian LH given by equation 5.18 which describes the same physics as

L on the symmetry-reduced contact manifold TQ/D. In the following sections we

will switch notation from S → h to describe the global coordinate on the contact

manifold.
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h =
1

ν
iDµL = −4ν̇

3ν

LH(q, q̇, h) =
∂L
∂ν

=
3

8
h2 +

1

2
ϕ̇2 − V (ϕ)

(5.101)

The contact Hamiltonian given by the Legendre transformation and contact form

are

Hc = −3

8
h2 +

1

2
p2ϕ + V (ϕ), η = −dh+ pϕdϕ (5.102)

In the contact formalism, the scalar field has been decoupled from the redundant

scale factor variable in the symplectic system, however this still does not make (h, ϕ)

the correct choice of variables to describe the manifold geometry near the Big Bang

singularity. These variables still diverge as we approach the Big Bang. We will show

in section 5.6 that making a compactification onto shape space provides a suitable

description in which the dynamical variables, contact form and Hamiltonian are well

defined through the Big Bang. The Herglotz equations of motion for the Lagrangian

5.101 are
d

dt

(
∂LH

∂ϕ̇

)
− ∂LH

∂ϕ
=
∂LH

∂h

∂LH

∂ϕ̇
=⇒ ϕ̈+ ∂ϕV =

3

4
hϕ̇ (5.103)

ḣ = LH =⇒ ḣ =
3

8
h2 +

1

2
ϕ̇2 − V (ϕ) (5.104)

In this example it’s quite clear how a contact manifold is a useful description of

frictional systems. The equation of motion for ϕ(t) 5.103 can be seen as a driven

harmonic oscillator with a time dependant frictional term h(t). In this case the

oscillator is being driven by its potential V (ϕ) with friction generated by the Hubble

factor h(t).

In the potential-free case these equations can be solved exactly, with solution

h(t) = − 4

3t
, ϕ(t) = ϕ0 +

2√
3

ln |t| (5.105)

It is explicitly clear that there still exits a divergence of the dynamical variables as

we reach the big bang at t → 0. In the shape space representation, the dynamical
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variables of the contact Hamiltonian/Herglotz Lagrangian and Hamiltonian flow will

remain well defined.

5.5.2 Vacuum Bianchi

In section 5.4, we showed that the ADM Hamiltonian of a type A Bianchi cosmology

with shape potential Vs(x, y) is given by

HB = ν−1

[
−3

8
ν2τ 2 +

1

2

(
p2x + p2y

)
+ ν

4
3Vs(x, y)

]
(5.106)

where (x, y) are the anisotropy parameters with conjugate momenta pi, ν is the scale

factor with conjugate τ (York time). For Bianchi I the shape potential is everywhere

zero and for Bianchi IX it is given by

Vs(x, y) = f(−
√

3x+ y) + f(
√

3x+ y) + f(−2y)

f(z) =
1

2
e
√

2
3
z − e

− z√
6

(5.107)

whilst Bianchi cosmologies are most easily studied in the Hamiltonian/ADM

formalism, for the purpose of applying the contact-reduction scheme outlined in

section 5.1 we will use Lagrangian given by the Legendre transformation

L = ν

[
−2

3

(
ν̇

ν

)2

+
1

2

(
ẋ2 + ẏ2

)
− ν−

2
3Vs(x, y)

]
(5.108)

In the Bianchi I case Vs = 0 the Lagrangian reduces to

L = ν

[
−2

3

(
ν̇

ν

)2

+
1

2

(
ẋ2 + ẏ2

)]
(5.109)

which is identical in form to the FLRW Lagrangian except we have the anisotropy

parameters as our dynamical variables rather than a scalar field. For this section we

will show the contact-reduction with the general non-zero shape potential. starting

with the Bianchi Lagrangian 5.108, we see that there is a scaling symmetry ν = λν̄,
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t = λβ t̄ under which the Lagrangian transforms as

L = λν̄

[
−2

3
λ−2β

(
ν̄ ′

ν̄

)2

+
1

2
λ−2β(x′2 + y′2) − λ−

2
3 ν̄Vs(x, y)

]
, q′ =

dq

dt̄
(5.110)

We require β = 1/3 in order for the shape potential term to scale the same with λ

as the other two terms in the brackets. Making the CSSS vector field

D̄ = ν
∂

∂ν
+

1

3
t
∂

∂t
(5.111)

The CSSS is only defined up to a non-zero constant factor, so with foresight we will

choose to work with

D̄ =
3

2
ν
∂

∂ν
+

1

2
t
∂

∂t
(5.112)

which has tangent lift

D =
3

2
ν
∂

∂ν
+ ν̇

∂

∂ν̇
− 1

2
ẋ
∂

∂ẋ
− 1

2
ẏ
∂

∂ẏ
+

1

2
t
∂

∂t
(5.113)

This is a non-isochronal scaling symmetry with degree 1/2, therefore we require a

coordinate transformation and reparameterisation of the time variable in order to

form an isochornal, degree 1 scaling symmetry. Consider the transformation ρ = ν
2
3 ,

dτ = ρ−
1
2dt under which the action becomes

S =

∫
L(ν, ν̇,x, ẋ)dt =

∫
ρ

[
−3

2

(
ρ′

ρ

)2

+
1

2
(x′2 + y′2) − Vs(x, y)

]
dτ, q′ =

dq

dτ

(5.114)

We identify the transformed Lagrangian

L = ρ

[
−3

2

(
ρ′

ρ

)2

+
1

2
(x′2 + y′2) − Vs(x, y)

]
(5.115)

which clearly has a scaling symmetry D = ρ∂ρ + ρ′∂ρ′ of degree 1.
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Thus there is a Herglotz Lagrangian LH on TQ/D given by

h =
1

ρ
iDµL =

∂L
∂ρ′

= −3
ρ′

ρ

LH(x, ẋ, h) =
∂L
∂ρ

=
1

6
h2 +

1

2
(x′2 + y′2) − Vs(x, y)

(5.116)

In this contact manifold description, the volume factor of the universe becomes

decoupled in the Lagrangian from the anisotropy parameters and shape potential.

Herglotz equations of motion for this system are similar in form to those of the

FLRW with scalar field in section 5.5.1, but with a shape potential of the anisotropy

parameters rather than a scalar field potential. The Kasner universe is the vacuum

Bianchi I cosmology, which corresponds to the potential-free case Vs = 0 for which

the equations of motion reduce to (we now use the ordinary q̇ to denote time

derivatives rather than q′)

ḣ =
1

6
h2 +

1

2

(
ẋ2 + ẏ2

)
q̈ =

1

3
hq̇, q = x, y

(5.117)

These equations can be solved analytically, with solutions

h(t) = −3

t
(5.118)

q(t) = q0 + Cq ln |t|,
∑
q

C2
q = 3 (5.119)

At this point we note that, whilst the quantities h(t), x(t), y(t) may diverge as

t→ 0, relational quantities like x(t)/y(t) remain finite, as well as

h(t)e
− 1

2

∑
q

q(t)
Cq (5.120)

This will motivate our choice of variables when we project the system onto shape

space in section 5.6.
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Once the Herglotz Lagrangian has been obtained it is possible to move to the

contact Hamiltonian representation by a Legendre transformation

Hc = −1

6
h2 +

1

2

(
p2x + p2y

)
+ Vs(x, y) (5.121)

with contact form

η = −dh+ pxdx+ pydy (5.122)

The Hamiltonian representation will be used in making the projection to shape space

in section 5.6.

5.5.3 Minimally Coupled Scalar Field

The case of a scalar field minimally coupled to a Bianchi cosmology changes the

procedure slightly, since the scalar field potential V (ϕ) couples to the scale factor

differently to the shape potential Vs(x, y)

L = ν

[
−2

3

(
ν̇

ν

)2

+
1

2
ϕ̇2 +

1

2

(
ẋ2 + ẏ2

)
− ν−

2
3Vs(x, y) − V (ϕ)

]
(5.123)

In the case of Bianchi I, the shape potential is everywhere zero and thus the

Lagrangian reduces to a form that immediately has a scaling symmetry of degree

1 associated with the scale factor ν. Therefore the exact same procedure may be

followed in section 5.5.1, whereby the contact Hamiltonian for Bianchi I + matter

is given by

Hc
BI = −1

6
h2 +

1

2
(p2x + p2y) +

1

2
p2ϕ + V (ϕ) (5.124)

For Bianchi cosmologies with a shape potential that is not everywhere zero, the

scaling symmetry we previously identified in section 5.5.2 ν = λν̄, t = λ
1
3 t̄ is not a

symmetry for this Lagrangian in equation 5.123.
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However, the scaling symmetry can be restored by introducing a velocity term

k̇ and forming a new Lagrangian

L∗ = ν

[
−2

3

(
ν̇

ν

)2

+
1

2
ϕ̇2 +

1

2

(
ẋ2 + ẏ2

)
− ν−

2
3Vs(x, y)

]
−
√
νk̇V (ϕ) (5.125)

The new variable k is a cyclic coordinate with constant momentum, it is possible to

choose an appropriate boundary condition for k̇ such that the equations of motion

generated by L coincide with those generated by the new Lagrangian L∗. The

advantage of working with L∗ is that it has the scaling symmetry we require in

order to make a contact-reduction.

The equations of motion generated by the original Lagrangian 5.123 are

−4

3

d

dt

(
ν̇

ν

)
=

2

3

(
ν̇

ν

)2

+
1

2

(
ẋ2 + ẏ2

)
+

1

2
ϕ̇2 − 1

3
ν

1
3Vs − V (ϕ)

d

dt
(νq̇) = −ν

1
3∂qVs, q = x, y

d

dt

(
νϕ̇
)

= −ν∂ϕV (ϕ)

(5.126)

and the equations of motion generated by the new Lagrangian L∗ are

−4

3

d

dt

(
ν̇

ν

)
=

2

3

(
ν̇

ν

)2

+
1

2

(
ẋ2 + ẏ2

)
+

1

2
ϕ̇2 − 1

3
ν

1
3Vs

d

dt
(νq̇) = −ν

1
3∂qVs, q = x, y

d

dt

(
νϕ̇
)

= −1

2

√
νk̇

V (ϕ)
∂ϕV (ϕ)

C = −1

2

√
νV (ϕ)

k̇
, C = constant

(5.127)

One can see that choosing the boundary condition C = −1
4

restores the original

equations of motion. Choosing a boundary condition on 4k̇ = C−2V (ϕ)ν is

equivalent to choosing an overall scale of the potential field potential V (ϕ), which

would have to be chosen in order to specify a solution. So while it may appear
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at first that the new Lagrangian L∗ requires additional information to specify a

solution compared to L, in in fact does not, only the choice in scale of the potential

is made explicit through k̇, rather than implicit in the definition of V (ϕ). The new

Lagrangian L∗ now generates the same dynamics as the original in eq 5.123 whilst

retaining the desired scaling symmetry ν = λν̄, t = λ
1
3 t̄. Choosing to work with the

CSSS

D̄ =
3

2
ν
∂

∂ν
+

1

2
t
∂

∂t
(5.128)

we have the tangent lift

D =
3

2
ν
∂

∂ν
+ ν̇

∂

∂ν̇
− 1

2
ẋ
∂

∂ẋ
− 1

2
ẏ
∂

∂ẏ
− 1

2
ϕ̇
∂

∂ϕ̇
− 1

2
k̇
∂

∂k̇
+

1

2
t
∂

∂t
(5.129)

We again make a coordinate transformation and reparameterisation of the time

coordinate under

ρ = ν
2
3 , dt = ρ−

1
2dτ (5.130)

under which the action transforms as

S =

∫
L∗dt =

∫
ρ

[
−3

2

(
ρ′

ρ

)2

+
1

2

(
x′2 + y′2

)
+

1

2
ϕ′2 − Vs(x, y) −

√
k′V (ϕ)

]
dτ

(5.131)

and identify the transformed Lagrangian as

L = ρ

[
−3

2

(
ρ′

ρ

)2

+
1

2

(
x′2 + y′2

)
+

1

2
ϕ′2 − Vs(x, y) −

√
k′V (ϕ)

]
(5.132)

This has scaling symmetry D = ρ∂ρ +ρ′∂ρ′ of degree 1, hence there is a Herglotz

Lagrangian given by

h =
1

ρ
iDµL = −3

ρ′

ρ

LH =
∂L
∂ρ

=
1

6
h2 +

1

2

(
x′2 + y′2

)
+

1

2
ϕ′2 − Vs(x, y) −

√
k′V (ϕ)

(5.133)
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The contact Hamiltonian obtained from a Legendre transformation and contact

form are

Hc = −1

6
h2 +

1

2

(
p2x + p2y

)
+

1

2
p2ϕ + Vs(x, y) − V (ϕ)

4pk

η = −dh+ pkdk + pϕdϕ+ pxdx+ pydy

(5.134)

This casts the Hamiltonian into the form that will be used for the shape space

projection, we make one last parity transformation of the pk momentum and absorb

the factor constant factor 4pk → −pk so that we may work with a positive pk. Thus

we arrive at

Hc = −1

6
h2 +

1

2

(
p2x + p2y

)
+

1

2
p2ϕ + Vs(x, y) +

V (ϕ)

pk

η = −dh− 1

4
pkdk + pϕdϕ+ pxdx+ pydy

(5.135)

We now have contact Hamiltonians for FLRW + scalar field, vacuum Bianchi

and Bianchi + scalar field cosmologies. Although the overall scale factor of the

universe ν(t) is decoupled from the dynamical variables in the contact description,

as demonstrated through the cases of potential-free FLRW and Kasner solutions, the

dynamical variables still diverge at the initial singularity. There is no apriori reason

why this choice of coordinates on the contact manifold should be a suitable one for

describing the universe at the Big Bang. In section 5.6 we will outline a procedure

that projects the system onto shape space. We will then prove that the equations

of motion have unique solutions in a neighbourhood of the initial singularity via the

Picard-Lindelöf theorem.
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5.6 Shape Space Projection and Proof of Exis-

tence and Uniqueness Through β = π/2

In the following section we will take the symmetry-reduced models of FLRW and

Bianchi I and IX on contact manifolds, and describe the procedure for projecting

them onto shape space. The configuration space coordinates of the symplectic

systems that one starts with have as their spatial manifolds, n-dimensional real space

Rn. In forming the contact system, this space is quotiented by a scaling symmetry

resulting in n-dimensional real-projective space RPn. An important property of the

gnomonic projection is that it maps straight lines in the plane to great circles on the

sphere. Thus we see the geodesic motion of a free particle in the plane represented

by a great circle in shape space coordinates. For a concrete example of this, we refer

the reader to appendix B.2.

The projection onto shape space of the contact Hamiltonian systems under

consideration is a gnomonic projection of the dynamical variables in RPn onto the

unit sphere Sn. The dimensionality n will depend on the number of dynamical

variables. The gnomonic projection constitutes of a compactification of RPn onto

an n sphere. In choosing the sign of the triads used to describe the geometry,

we implicitly decide on an orientation of the manifold, which does not affect the

physical dynamics. The gnomonic projection maps points on the surface of an n-

sphere to a tangent plane at one of the poles by drawing a straight line from the

centre of the sphere through the surface point to where the projection line intersects

with the plane. This naturally forms a double cover, which we need in order to

describe both orientations of the real projective space. In n = 2 dimensions, this

consists of two distinct tangent planes at antipodal points of an S2 surface. The

gnomonic projection maps the asymptotic boundaries of the planes to the equator

of the sphere, forming a border between the two planes.
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We first consider the cases of FLRW with one and then two scalar fields and

show how the compactification to shape space works in the simplest cases. Once

the Hamiltonian has been written in shape space variables, we show that there

exist unique, smooth solutions to the equations of motion at the big bang, which is

mapped to the equator of Sn under the gnomonic projection. We then progress to

the Bianchi I and IX cosmologies and show the same result.

5.6.1 FLRW + 1 scalar field

We start with the contact Hamiltonian and contact form derived in equation 5.102

for FLRW + a minimally coupled scalar field

Hc = −3

8
h2 +

1

2
p2ϕ + V (ϕ)

η = −dh+ pϕdϕ

(5.136)

Consider the mapping of ϕ on the real line onto S1 through a gnomonic projection

ϕ = | tan β| (5.137)

Under the gnomonic projection, the initial singularity is mapped to |β| = π/2.

We will also make a transformation of the Hubble factor h(t).

h = sem+a| tanβ|, s = Sign(tan β), a = constant (5.138)

Although we expect h(t) to diverge as we approach the singularity, the global

coordinate m(t) will tend to a finite value. Next we compute the transformed contact

form

η = −h
(
dm+ sa sec2 βdβ

)
+ spϕ sec2 βdβ (5.139)

We may divide both the contact form, and shortly the Hamiltonian by a non-zero
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Figure 5.5: A schematic of the 1D gnomic projection mapping the real scalar field
ϕ > 0 onto the unit circle through ϕ = | tan β|. The gnomic projection projects a
line from the north pole to the point ϕ on the real line.

factor, as this is equivalent to making a change of lapse. In particular we choose

η → η

sh
= −sdm+

(pϕ
h

− a
)

sec2 βdβ

= −sdm+ (sχ− a) sec2 βdβ

(5.140)

where we have defined χ = pϕ/|h|.

From the contact form 5.140, the pβ momentum associated with β can be

identified as

pβ = (sχ− a) sec2 β (5.141)

In these new variables the contact Hamiltonian is

Hc =
1

2
h2
(
p2β cos4 β + 2apβ cos2 β + a2 − 3

4

)
+ V (ϕ) (5.142)

The constant a may be set freely, a convenient choice of a =
√

3/2 cancels the

constant term in eq 5.142 which diverges like h2.
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Finally, choosing to divide the contact Hamiltonian by a factor of h2 cos2 β

(equivalent to a change of lapse) we arrive at the shape space Hamiltonian for

FLRW + a minimally coupled scalar field

H =
Hc

h2 cos2 β
=

1

2
p2β cos2 β +

√
3

2
pβ + U(β)e−2m

U(β) = V (β)e−
√
3| tanβ| sec2 β

(5.143)

Heuristically, we see that provided the potential V (β) does not grow faster than

the exponential factor e−
√
3| tanβ|, any divergence from the potential and the sec2 β

factor as β → π/2 will be exponentially suppressed, keeping U(β) finite at the initial

singularity. The contact Hamiltonian equations of motion for this system are

β̇ = pβ cos2 β +

√
3

2

ṗβ = p2β cos β sin β + (2sUpβ − ∂βU) e−2m

ṁ = −s

(√
3

2
pβ + 2Ue−2m

) (5.144)

Where in the last line we have used the fact that the ADM Hamiltonian of general

relativity satisfies the constraint H := 0 on the spacial hypersurfaces Σt. In

the potential free-case this system of ODE’s can be solved exactly. Firstly the

Hamiltonian constraint must be satisfied at all times.

1

2
p2β

(
pβ cos2 β +

√
3
)

= 0 (5.145)

Thus there is one non-physical diverging solution pβ = −
√

3 sec2 β and one that

remains finite at the initial singularity pβ = 0. Although in this case the finite

solution is a constant pβ = 0, we will show shortly that this not need always be the

case, one may have a finite solution with non-zero potential and momentum.
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The pβ = 0 solution gives

β̇ =

√
3

2
, =⇒ β(t) = β0 +

√
3

2
t

ṁ = 0 =⇒ m(t) = m0

(5.146)

Thus we reach the initial singularity at β = π/2 in finite proper time. At this

point the dynamical variables, Hamiltonian and contact form remain finite and well

defined..

5.6.2 FLRW + 2 Scalar Fields

In anticipation of projecting the vacuum Bianchi contact Hamiltonian, which

contains two dynamical fields x(t) and y(t), we shall first show how the projection to

S2 works with a contact FLRW + 2 scalar fields cosmology. The contact-reduction

results of section 5.6.1 can be easily extended to n scalar fields in the usual way.

The field ϕ is simply replaced with a vector of fields ϕ and ϕ̇2 becomes the Euclidean

norm squared of ϕ̇. The contact Hamiltonian for FLRW + 2 scalar fields is thus

Hc = −3

8
h2 +

1

2

(
p21 + p22

)
+ V (ϕ1, ϕ2) (5.147)

In section 5.6.1 we had a single field and made a gnomonic projection of the real

(projective) line onto S1, here there are two fields and thus it required a gnomonic

projection of RP2 to S2 given byϕ1

ϕ2

 = | tan β|

cosα

sinα

 (5.148)

and a projection of the momenta into polar coordinatesp1
p2

 = p

cos θ

sin θ

 (5.149)
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Figure 5.6: A schematic of the 2D gnomic projection in which the point ϕ = (ϕ1, ϕ2)
in the plane is mapped onto the surface of the unit sphere through equation 5.148,
described by the angular coordinates β and α.

We make the same transformation of the Hubble factor as in eq 5.138, but now

with the foresight to fix a =
√

3/2

h = sem+
√
3

2
| tanβ|, s = Sign(tan β) (5.150)

The contact form under this transformation becomes

η = −h

(
dm+ s

√
3

2
sec2 β

)
+sp cos(θ−α) sec2 βdβ+p sin(θ−α)| tan β|dα (5.151)

again defining the variable χ = p/|h| and scaling the contact form by the non-zero

factor 1
sh

gives

η → η

sh
= −sdm+

[
sχ cos(θ − α) −

√
3

2

]
sec2 βdβ+χ| tan β| sin(θ−α)dα (5.152)
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We identify the momenta

pβ =

[
sχ cos(θ − α) −

√
3

2

]
sec2 β (5.153)

pα = χ| tan β| sin(θ − α) (5.154)

Returning to the contact Hamiltonian, it is written in terms of the new variables as

Hc = −1

2
h2
(
χ2 − 3

4

)
+ V (α, β) (5.155)

Once more, rescaling by the non-zero factor h−2 sec2 β, we arrive at the shape space

Hamiltonian for FLRW + 2 scalar fields

H =
Hc

h2 cos2 β
=

1

2
p2β cos2 β +

√
3

2
pβ +

p2α
2 sin2 β

+ U(α, β)e−2m

U(α, β) = V (α, β)e−
√
3| tanβ| sec2 β

(5.156)

With equations of motion

α̇ =
pα

sin2 β

β̇ = pβ cos2 β +

√
3

2

ṗα = (2sUpα − ∂αU) e−2m

ṗβ = p2β cos β sin β + (2sUpβ − ∂βU) e−2m

ṁ = −s

(√
3

2
pβ + 2Ue−2m

)
(5.157)
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Just as with the single field case in section 5.6.1, we can analyse the potential-free

cosmology analytically. In this case the equations of motion reduce to

α̇ =
pα

sin2 β

β̇ = pβ cos2 β +

√
3

2

pα = constant

ṗβ = p2β cos β sin β

ṁ = −s
√

3

2
pβ

(5.158)

The Hamiltonian constraint H := 0 must also be enforced. For the shape space

Hamiltonian 5.156, we can think of the constraint as a quadratic equation in pβ

sin2 β cos2 βp2β +
√

3 sin2 βpβ + p2α = 0 (5.159)

with solutions

p±β =

√
3

2
sec2 β

(
−1 ±

√
1 − 4

3
p2α cot2 β

)
(5.160)

At a first glance it may seem that both solutions become undefined at β = π/2 due

to the factor of sec2 β, but if one considers the series expansion of the p+β solutions,

valid for tan2 β ≥ 4p2α/3

p+β =

√
3

2
sec2 β

[
−1 +

(
1 − 2p2α cot2 β − 1

2
cot4 β + O(cot6 β)

)]
= − p2α

2
√

3 sin2 β

[
2 +

1

2
p2α cot2 β + O(cot4 β)

] (5.161)

In the series expansion it is clear that p+β is finite through the initial singularity at

β = π/2. Just as pβ has been parameterised in terms of β in equation 5.161, we

may also look for the solution α(β).

dα

dβ
=
α̇

β̇
=

2pα

sin2 β
√

3 − 4p2α cot2 β
(5.162)
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Equation 5.162 has the solution

2pα√
3

cot β = sin[
√

2(α0 − α)] (5.163)

Thus we have a solution of dynamical variables, Hamiltonian and contact form that

remain well defined through the initial singularity. Furthermore, equation 5.163

is the equation of a great circle on shape space. This is to be expected since

the potential-free motion corresponds to a straight line in the (ϕ1, ϕ2) plane and

gnomonic projections map straight lines in the plane to great circles on the sphere.

5.6.3 Vacuum Bianchi

We now turn to the case of a contact-reduced vacuum Bianchi spacetime with shape

potential Vs(x, y). As shown in section 2.3, the contact Hamiltonian is given by

Hc = −1

6
h2 +

1

2

(
ẋ2 + ẏ2

)
+ Vs(x, y) (5.164)

By simply inspecting the Hamiltonian, it is clearly functionally the same as the

FLRW + 2 scalar field Hamiltonian in eq. 5.147. The projection to shape space thus

follows the exact same procedure as that described in section 3.2, setting a = 1/
√

3 to

account for the coefficient of −1
6

on the Hubble factor. The shape space Hamiltonian

for a vacuum Bianchi cosmology is thus

H =
1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β

+ U(α, β)e−2m

U(α, β) = V (α, β)e
− 2√

3
| tanβ|

sec2 β

(5.165)
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with equations of motion

α̇ =
pα

sin2 β

β̇ = pβ cos2 β +
1√
3

ṗα = (2sUpα − ∂αU) e−2m

ṗβ = p2β cos β sin β + (2sUpβ − ∂βU) e−2m

ṁ = −s
(

1√
3
pβ + 2Ue−2m

)
(5.166)

The Kasner solutions, which are exactly solvable, correspond to great circles on S2

given by
√

3pα cot β = sin[2(α0 − α)] (5.167)

For a non-zero shape potential, there is not a general solution to the system of

equations and so we rely on a different method to prove existence of smooth solutions

passing through the Big Bang. The Picard-Lindelöf theorem states that, given an

ordinary differential equation of the form

r′(t) = f(t, r), r(t0) = r0 (5.168)

there exists a unique, local solution if f(t, r) is continuous in t and locally Lipschitz

continuous in r. This extends to a system of ODE’s

r′i(t) = fi(t, r), ri(t0) = ri0 (5.169)

where the functions fi(t, r) are required to be continuous in r and locally Lipschitz

continuous in ri. The Picard-Lindelöf theorem applies immediately to the equations

of motion 5.166, the RHS’s are not explicitly dependant on time and are locally

Lipschitz around β = π/2 provided that the potential U(α, β) are its derivatives are

locally bounded around β = π/2.
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Assuming that the potential satisfies these conditions, there exists a unique local

solution of the equations of motion that continues smoothly through the big bang.

In the case of the vacuum Bianchi I cosmology, this is satisfied trivially as the shape

potential is everywhere zero. However for Bianchi IX the shape potential is such

that the exponential suppression in U(α, β) is killed off exactly. The shape potential

is given by

Vs(x, y) =
1

2
e

2√
3
y (
e2x + e−2x

)
− e

− 1√
3
y (
ex + e−x

)
+

1

2
e
− 4√

3
y − e

2√
3
y

(5.170)

In terms of the shape space coordinates (α, β) this can be written as

Vs(α, β) =
1

2
ef1(α)| tanβ|+

1

2
ef2(α)| tanβ|−ef3(α)| tanβ|−ef4(α)| tanβ|+

1

2
ef5(α)| tanβ|−ef6(α)| tanβ|

(5.171)

The functions fi(α) are given by

f1(α) =
2√
3

sinα + 2 cosα, f2(α) =
2√
3

sinα− 2 cosα

f3(α) = − 1√
3

sinα + cosα, f4(α) = − 1√
3

sinα− cosα

f5(α) = − 4√
3

sinα, f6(α) =
2√
3

sinα

(5.172)

One can see that clearly, some of these functions will surpass fi(α) = 2/
√

3,

cancelling the exponential suppression of e
− 2√

3
| tanβ|

in U(α, β).

In figure 5.7 we plot the functions fi(α) over the entire range 0 ≤ α ≤ 2π. Note

that these are exactly the same functions we came across when showing that Bianchi

IX could not achieve quiescence without the introduction of a matter field in section

5.4. For all values of α, there is at least one functions that is greater than or equal

to 2/
√

3. So it is not possible in vacuum Bianchi IX to find a subset of α ∈ [0, 2π]

for which the exponential suppression in U(α, β) is not cancelled out.

The fact that local Lipschitz continuity is not in general satisfied for the Vacuum

Bianchi IX cosmology should not come as a surprise, as it is well known that Bianchi
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Figure 5.7: Plots of the functions fi(α) − 2√
3

for 0 ≤ α ≤ 2π.

IX cannot achieve quiescence without the presence of a matter field [114, 197, 201].

In fact we will find that in order for Local Lipschitz continuity to hold, one needs

essentially the same conditions on the field potential as were derived in equation

5.92 but in the shape space coordinates.

5.6.4 Bianchi + Scalar Field

Having seen in section in section 5.6.3 how Lipschitz continuity fails in the case of

vacuum Bianchi IX, we are now motivated to consider the shape space projection

of the contact Bianchi + scalar field Hamiltonians.

The simplest case is that of Bianchi I + scalar field, since the shape potential is

everywhere zero.

The contact Hamiltonian for such a system is given by equation 5.124

Hc
BI = −1

6
h2 +

1

2
(p2x + p2y) +

1

2
p2ϕ + V (ϕ) (5.173)

with contact form

η = −dh+ pϕdϕ+ pxdx+ pydy (5.174)
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The configuration space variables (ϕ, x, y) are projected onto S3 through the

gnomonic projection
ϕ

x

y

 = | tan β|


cos γ

sin γ cosα

sin γ sinα

 ,


pϕ

px

py

 = p


cos θ

sin θ cosψ

sin θ sinψ

 (5.175)

and the Hubble factor is transformed as

h = se
m+ 1√

3
| tanβ|

, s = Sign(tan β) (5.176)

Under this set of transformations, the rescaled contact form and Hamiltonian become

η → η

sh
= −sdm+ pαdα + pβdβ + pγdγ (5.177)

HBI =
Hc

BI

h2 cos2 β
=

1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ Uϕ(β, γ)e−2m

Uϕ(β, γ) = Vϕ(β, γ)e
− 2√

3
| tanβ|

sec2 β

(5.178)

The equations of motion generated by the shape space Bianchi I Hamiltonian

5.178 are

α̇ =
pα

sin2 β sin2 γ

β̇ = pβ cos2 β +
1√
3

γ̇ =
pγ

sin2 β

ṗα = (2sUϕpα − ∂αUϕ) e−2m

ṗβ = p2β cos β sin β +
p2α cos β

sin3 β sin2 γ
+
p2γ cos β

sin3 β
+ (2sUϕpβ − ∂βUϕ) e−2m

ṗγ =
p2α cos γ

sin2 β sin3 γ
+ (2sUϕpγ − ∂γUϕ) e−2m

ṁ = −s
(

1√
3
pβ + 2Uϕe

−2m

)

(5.179)
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The right hand sides of the equations of motion 5.179 are locally Lipschitz continuous

around β = π/2 provided that the field potential does not grow faster than the

exponential suppression in Uϕ(β, γ) i.e.

lim
β→π

2

(
Vϕ(β, γ)e

− 2√
3
| tanβ|

)
= 0 (5.180)

Since the right hand-sides of the equations of motion are locally Lipschitz continuous,

by Picard-Lindelöf there exists a unique local solution to the initial value problem.

In section 5.5.3 the contact Hamiltonian and contact form for a Bianchi

cosmology with non-zero shape potential and field potential is shown to be 5.135

Hc = −1

6
h2 +

1

2

(
p2x + p2y

)
+

1

2
p2ϕ + Vs(x, y) +

V (ϕ)

pk

η = −dh− 1

4
pkdk + pϕdϕ+ pxdx+ pydy

(5.181)

This has to be handled differently to the vacuum Bianchi case as the shape potential

and field potential terms scale differently with ν. We now show the projection of this

system onto shape space. In doing so, we will see how the well known conditions for

Bianchi IX quiescence translate to the shape space representation. Beginning with

the gnomonic projection of (ϕ, x, y) onto S3, and writing the momenta in terms of

polar coordinates
ϕ

x

y

 = | tan β|


cos γ

sin γ cosα

sin γ sinα

 ,


pϕ

px

py

 = p


cos θ

sin θ cosψ

sin θ sinψ

 (5.182)

along with the transformation

h = se
m+ 1√

3
| tanβ|

, s = Sign(tan β) (5.183)
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and finally we define the variables χ and Ω as

χ =
p

|h|
, Ω = − pk

4|h|
(5.184)

the rescaled contact form then becomes

η

sh
= −sdm− a sec2 βdβ + Ωdk + χ cos θdϕ+ χ sin θ cosψdx+ χ sin θ sinψdy

= −sdm+ Ωdk + pαdα + pβdβ + pγdγ

(5.185)

We identify the shape space momenta as

pα = χ| tan β| sin γ sin θ sin(ψ − α)

pβ = sec2 β [sχ (cos γ cos θ + sin γ sin θ cos(ψ − α)) − a]

pγ = χ| tan β| [− sin γ cos θ + cos γ sin θ cos(ψ − α)]

(5.186)

The re-scaled shape space Hamiltonian is therefore

H =
Hc

h2 cos2 β
=

1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ U(α, β, γ)e−2m +

Uϕ(β, γ)

sΩ
e−3m

U(α, β, γ) = Vs(α, β, γ)e
− 2√

3
| tanβ|

sec2 β

Uϕ(β, γ) = Vϕ(β, γ)e−
√
3| tanβ| sec2 β

(5.187)
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The equations of motion generated by the shape space Hamiltonian are

α̇ =
pα

sin2 β sin2 γ

β̇ = pβ cos2 β +
1√
3

γ̇ =
pγ

sin2 β

k̇ = − Uϕ

sΩ2
e−3m

ṗα =

[(
3Uϕ

Ω
e−m + 2sU

)
pα − ∂αU

]
e−2m

ṗβ = p2β cos β sin β +
p2α cos β

sin3 β sin2 γ
+
p2γ cos β

sin3 β
+

[(
3Uϕ

Ω
e−m + 2sU

)
pβ − ∂βU − e−m

sΩ
∂βUϕ

]
e−2m

ṗγ =
p2α cos γ

sin2 β sin3 γ
+

[(
3Uϕ

Ω
e−m + 2sU

)
pγ − ∂γU − e−m

sΩ
∂γUϕ

]
e−2m

Ω̇ =
(
3Uϕe

−m + 2sΩU
)
e−2m

ṁ = −s
(

1√
3
pβ + 2Ue−2m

)
− 3Uϕ

Ω
e−3m

(5.188)

The right-hand sides of the equations of motion 5.188 will be locally Lipschitz

continuous around β = π/2 provided that |Ω| > 0, and the potentials U and Uϕ

and their derivatives are locally bounded around β = π/2. The locally bounded

conditions on the potentials U and Uϕ will be satisfied if Vs and Vϕ do not grow

faster than their exponential suppression. In particular, the condition

lim
β→π

2

(
Vϕ(β, γ)e−

√
3| tanβ|

)
= 0 (5.189)

is the direct translation to shape space of the field potential quiescence condition for

mixmaster behaviour to end in a finite number of bounces in Bianchi IX. Generically,

any minimally coupled field potential that is added to the original Einstein-Hilbert

action will produce a term that couples to e−
√
3| tanβ| in this way, and so all matter

fields are required to become effectively massless as β → π/2 in order for quiescence

to be attained and for dynamical system to be able to pass smoothly through the
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Big Bang. In section 5.6.3 it was established that in the vacuum Bianchi IX model,

for any given value of α, there was always at least one function fi(α) such that

fi(α) − 2/
√

3 ≥ 0 and thus the potential

U(α, β) = sec2β
∑
i

cie

(
fi(α)− 2√

3

)
| tanβ|

(5.190)

diverges at β = π/2. In the case of Bianchi IX + a scalar field, the anisotropy

parameters are given by

x = | tan β| sin γ cosα, y = | tan β| sin γ sinα (5.191)

and the potential term in the shape space Hamiltonian 5.187 becomes

U(α, β, γ) = sec2 β
∑
i

cie

(
fi(α) sin γ− 2√

3

)
| tanβ|

(5.192)

where the functions fi(α) as defined as they were in eq. 5.172 with coefficients ci.

One can now use the additional degree of freedom γ ∈ [0, π] to ensure exponential

suppression at β = π/2. Define the set

M =

{
max

0≤α≤2π
fi(α)|i = 1, 2..., 6

}
(5.193)

Then the exponential suppression will be retained for any α ∈ [0, 2π] if

sin γ <
2√

3 sup(M)
(5.194)

The form of all functions fi(α) are known and the supremum of M is sup(M) =

4/
√

3. Thus we have the quiescence condition

sin γ <
1

2
(5.195)
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The conditions under which unique solutions passing through the big bang for

the various Bianchi (and FLRW) cosmologies now been established. In the next

section we present numerical solutions to the equations of motion for various example

models.

5.7 Numerical Simulations

In this section we will present numerical solutions to the equations of motion

for a variety of the models discussed in this paper. It will be shown that there

exist solutions who pass smoothly through the big bang. Under the gnomonic

projection, the initial singularity of General Relativity is mapped to β = π/2. The

contact Hamiltonians are defined on a contact manifold T ∗Q× R where T ∗Q is an

2n-dimensional cotangent bundle. The gnomonic projection maps the dynamical

variables on T ∗Q to Sn.

5.7.1 FLRW + 1 Scalar Field

The simplest model we can consider is that of FLRW + 1 scalar field. The gnomonic

projection in this case maps the dynamical variable ϕ onto S1. The shape space

Hamiltonian for this model is given by eq.5.143.

H =
1

2
p2β cos2 β +

√
3

2
pβ + U(β)e−2m

U(β) = Vϕ(β)e−
√
3| tanβ| sec2 β

(5.196)

In section 3.1 it was shown that the free field solution is exactly solvable, constant,

everywhere-zero momentum pβ and linear solution for β(t)

β(t) = β0 +

√
3

2
t (5.197)
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The system reaches the Big Bang in finite coordinate time

ts =
1√
3

(π − 2β0) (5.198)

We will consider the numerical solution for a scalar field in a harmonic potential. In

the shape space representation this potential is

V (ϕ) =
1

2
ϕ2 =

1

2
tan2 β (5.199)

The potential function U(β) is locally Lipschitz continuous around β = π/2, and so

Picard-Lindelöf is expected to hold here.

Figure 5.8: Plot of the numerical solution Hamiltonian for FLRW + Harmonic
Potential over the time domain t ∈ [−1, 8].

In figure 5.8 we plot the numerical solution Hamiltonian for the FLRW + scalar

field in a harmonic potential model. The Hamiltonian constraint requires H := 0,

this is satisfied within machine precision, in this case on the order of 10−7. The

initial conditions are chosen at t = 0 as

β(0) =
π

8
, pβ =

√
3

2
sec2 β

[
−1 +

√
1 − 8

3
U(β)e−2m cos2 β

]
m(0) = 0

(5.200)
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where the pβ momentum is determined by the Hamiltonian constraint H := 0.

In figure 5.9 we plot the numerical solution of β(t), transformed so that it

intercepts the t-axis exactly when β = π/2. We see explicitly that the solutions pass

through β = π/2 in finite coordinate time. As shown in eq 5.198, the time at which

the free field system passes through the big bang can be calculated analytically, as

ts ≈ 1.4 for these particular initial conditions. The harmonic potential solutions

and free field solutions lie very close together, particularly near β = π/2 which is

to be expected as the potential becomes exponentially suppressed close to the big

bang and thus the harmonic potential model becomes approximately free.

Figure 5.9: Plot of 2
π
β(t) − 1 for both the free field (red, dashed) and harmonic

potential (blue) models. Showing explicitly that both solutions pass through β =
π/2 at approximately ts = 1.5.

The other dynamical variables for this model are the momentum pβ and frictional

global coordinate m(t). In the free field case the momentum is everywhere zero and

m(t) is a constant, which for the initial conditions 5.200 is also zero.
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Figure 5.10: (β, pβ) phase space plot for the numerical solution of the FLRW +
harmonic potential model.

The phase space of the numerical solution to the harmonic potential model is

plotted in figure 5.10. The numerical solution of pβ(β) is π-periodic, with a cyclical

structure as the spatial manifold undergoes inversions of orientation and Sign(tan β)

changes between 1 and -1. The momentum also has the expected characteristic

exponential suppression where | tan β| → ∞. Most importantly, the momentum is

well defined through β = π/2.

Figure 5.11: Numerical solution of m(t) for the FLRW + harmonic potential model.

Lastly, we plot in figure 5.11 the numerical solution for m(t) for the harmonic

potential model. This solution also displays a periodic structure and remains well

defined through the big bang.
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As well as simple toy models such as a harmonic potential, it is also possible to

find numerical solutions for more complicated potentials, provided that they satisfy

the conditions for Lipschitz continuity of U(β). As an example, consider the Quartic

Hilltop potential introduced in section 3

VQH(ϕ) = Λ

[
1 − λ

(
ϕ

mpl

)4
]

(5.201)

In that section, we explored corrections to the QHS model in order for it to remain

valid when describing post inflationary dynamics such as reheating. In shape space

the Quartic Hilltop potential becomes (in units where mpl = 1)

VQH(β) = Λ(1 − λ tan4 β) (5.202)

The Quartic Hilltop potential is well known to be unbounded below with no stable

vacuum. One stabilised version of the potential which has been investigated in detail

is the Quartic Hilltop Squared (QHS) model, with potential

VQHS(ϕ) = Λ

[
1 − λ

(
ϕ

mpl

)4
]2

VQHS(β) − Λ
(
1 − λ tan4 β

)2 (5.203)

Having developed the formalism of contact reduction, we may now investigate the

pre-inflationary cosmological dynamics implied by the QHS potential by finding

numerical solutions to the equations of motion that pass smoothly through the

big bang, provided that the Uϕ potentials are locally Lipschitz continuous around

β = π/2. For both the Quartic Hilltop and Quartic Hilltop Squared potentials, this

is indeed the case, so there will exist a unique local solution that passes through the

big bang.
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In figure 5.12 the numerical solution Hamiltonian for Quartic Hilltop and Quartic

Hilltop Squared models are plotted, which are approximately zero to within machine

precision over the time domain. The initial conditions are taken as those in eq

5.200, the energy-density scale is chosen as Λ = 1/3 and the potential parameter

is λ = 10−2. We have chosen a λ a few orders of magnitude larger than what is

actually required for observational consistency for illustrative purposes that become

apparent when one examines the numerical solutions of the dynamical variables.

Figure 5.12: Plot of the numerical solutions Hamiltonian for the FLRW + Quartic
Hilltop (green) and Quartic Hilltop Squared (blue) models with initial conditions
5.200.

In figure 5.13 we plot the numerical solutions for the free field, Quartic Hilltop

and Quartic Hilltop Squared models, again transformed so that they intercept the

t-axis exactly when β = π/2 at ts ≈ 1.5. For a small potential parameter λ the QH

and QHS potentials are approximately equal far from the QHS vacuum expectation

value, and thus the solutions lie almost on top of each other. An even smaller

value of λ closer to what is required for observational consistency with inflationary

measurements would force these two solutions closer together.
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Figure 5.13: Plots of 2
π
β(t) − 1 for the free field (red, dashed), Quartic Hilltop

(green) and Quartic Hilltop Squared (blue) models, showing explicitly that the
system evolves through β = π/2 in finite coordinate time ts ≈ 1.5.

Figure 5.14: (β, pβ) phase space plot for the numerical solutions of the Quartic
Hilltop (green) and Quartic Hilltop Squared (blue) models.

Although the numerical solutions for β(t) are almost indistinguishable, the

solutions of the momentum pβ(t) displayed in the phase space diagram of figure

5.14 are quite distinct, particularly in a neighbourhood around β = π/2. Both

momenta go to zero at the big bang as we would expect due to the exponential

suppression factor and are thus well defined.
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Figure 5.15: Numerical solution of m(t) for the Quartic Hilltop (green) and Quartic
Hilltop Squared (blue) models.

In figure 5.15 we plot the numerical solutions of the final dynamical variable, the

frictional global coordinate m(t) for the Quartic Hilltop and Quartic Hilltop Squared

models. Just as for the other dynamical variables, the QH and QHS solutions are

approximately equal far from the big bang but distinct in a neighbourhood around

ts ≈ 1.5. For both models m(t) is well defined through the big bang. Thus all

dynamical variables, the Hamiltonian and contact form are well defined through the

big bang.

5.7.2 FLRW + 2 Scalar Fields

In this section we present examples of a higher dimensional system than that of

section 5.7.1. In the case of FLRW + 2 scalar fields, the shape space projection

maps the scalar fields onto S2. The evolution of the fields can be visualised as a

path on S2. We showed in previously that the free field case was exactly solvable,

with the solutions being great circles on S2 5.163.

The shape space Hamiltonian and equations of motion for FLRW + 2 scalar

fields are

H =
Hc

h2 cos2 β
=

1

2
p2β cos2 β +

√
3

2
pβ +

p2α
2 sin2 β

+ U(α, β)e−2m

U(α, β) = V (α, β)e−
√
3| tanβ| sec2 β

(5.204)

281



α̇ =
pα

sin2 β

β̇ = pβ cos2 β +

√
3

2

ṗα = (2sUpα − ∂αU) e−2m

ṗβ = p2β cos β sin β + (2sUpβ − ∂βU) e−2m

ṁ = −s

(√
3

2
pβ + 2Ue−2m

)
(5.205)

In this example we consider a two-field harmonic potential, which has the

following forms in field-space and shape shape respectively

V (ϕ1, ϕ2) =
1

2

(
ϕ2
1 + ϕ2

2

)
Vϕ(α, β) =

1

2
tan2 β

(5.206)

Figure 5.16: Numerical solution Hamiltonians for the free field (red, dashed) and
two-field harmonic potential (blue).

In figure 5.16 we plot the numerical solution Hamiltonians for the free field and

harmonic potential models for the initial conditions at t = 0

β(0) = 1, pβ(0) =

√
3

2
sec2 β

[
−1 +

√
1 − 4

3
cos2 β

(
p2α

sin2 β
+ 2Ue−2m

)]
α(0) =

π

4
, pα(0) = 0.5

m(0) = 0

(5.207)
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Both solutions are stopped just as they become numerically unstable due to the

machine precision of the discretised equations of motion becoming insufficient [202].

This point occurs at different times for each solution, with the harmonic potential

solution running for much longer than the free field solution.

Figure 5.17: Numerical solutions of β(t) for the free field (red, dashed) and two-field
harmonic potential (blue).

In figure 5.17 we plot the numerical solutions of β(t) for the free field (red,

dashed) and harmonic potential (blue) models. Both solutions pass smoothly

through β = π/2 in finite coordinate time. We see the characteristic exponential

suppression of the potential function U(α, β) near β = π/2, making both solutions

approximately equal near the big bang.

Figure 5.18: (β, pβ) phase space plot for the free field (red, dashed) and harmonic
potential (blue) numerical solutions.
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In figure 5.18 we plot the (β, pβ) slice of the full 4-dimensional phase space

(α, β, pα, pβ), for the free field and harmonic potential numerical solutions. In this

figure it is easier to see why the Hamiltonians are becoming numerically unstable,

particularly for the harmonic potential solutions. As β(t) approaches 0 &π the

momentum starts to oscillate rapidly. It is unlikely that this is the true behaviour of

the system, but rather due to the numerically instability of solving a stiff system of

coupled ODEs. Despite this, the momentum remains well defined at the big bang.

The parametric plots of (β(t), α(t)) and (β(t), pα(t)) are presented in figures

5.19a and 5.19b respectively for the free field and harmonic potential numerical

solutions. Both dynamical variables α(t) and pα(t) remain well defined through

β = π/2. In particular, in the free field case pα is simply a constant. In figure 5.19a

we see that the two solutions are approximately equal near β = π/2, again due to

the exponential suppression of the potential close to the big bang. The potential

suppression is also manifest in figure 5.19b, for the harmonic potential solutions, pα

becomes approximately constant near β = π/2.

(a) Parametric plot of
(β(t), α(t)) for the free field
(red, dashed) and harmonic
potential (blue) numerical
solutions.

(b) Parametric plot of
(β(t), pα(t)) for the free field
(red, dashed) and harmonic
potential (blue) numerical
solutions.

Figure 5.19: Parametric numerical solutions of (β(t), α(t)) and (β(t), pα(t)) for the
free-field and ϕ2 models.
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Lastly in figure 5.20 we plot the global frictional variable m(t) parametrized by

β(t) for the free field and harmonic potential solutions. Both solutions remain well

defined through the big bang at β = π/2 and display the characteristic potential

suppression.

Figure 5.20: Parametric plot of (β(t),m(t)) for the free field (red, dashed) and
harmonic potential (blue) numerical solutions.

In figure 5.21 we plot the free field and harmonic potential solutions (α, β) as a

path on S2, with the equator at β = π/2 corresponding to the big bang under the

shape space gnomonic projection.

Figure 5.21: free field (red, dashed) and Harmonic potential (blue) numerical
solutions of (α(t), β(t)) plotted as a path on S2. The solid red line is the shape space
equator β = π/2, corresponding to the big bang under the gnomonic projection.
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Recall that we showed explicitly how the free field solution is a great circle

on shape space 5.163. This can be seen clearly in figure 5.21. The great circle

is incomplete due to the numerical solution being stopped just before it becomes

unstable. Most importantly figure 5.21 shows clearly how the system evolves

smoothly through the shape space equator.

5.7.3 Bianchi I

We will now look at numerical results in the shape space representation of the

Bianchi I cosmology, which contains flat FLRW geometries at the S2 poles of shape

space β = 0, π. The vacuum case simply corresponds to the Kasner solution. The

Kasner cosmology is exactly solvable, with the solutions being great circles on S2. In

figure 5.22 below, we present the numerical solution of one such Kasner cosmology,

which are parametrized by a single constant momentum pα 5.167.

Figure 5.22: Numerical solution of (α(t), β(t)) to the vacuum Bianchi I (Kasner)
equations of motion 5.166, showing a great circle solution (blue) passing smoothly
through the shape space equator (red) β = π/2.

We will now consider in more detail, the case of Bianchi I + a scalar field. In

this particular case. The shape space projection now maps the dynamical variables

onto S3, as we start with the anisotropy parameters and a single scalar field.
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We will consider the case of a free field and harmonic potential. With the

Hamiltonian and equations of motion given by eq’s 5.178 and 5.179 respectively.

Reproduced here for convenience.

HBI =
1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ Uϕ(β, γ)e−2m

Uϕ(β, γ) = Vϕ(β, γ)e
− 2√

3
| tanβ|

sec2 β

(5.208)

α̇ =
pα

sin2 β sin2 γ

β̇ = pβ cos2 β +
1√
3

γ̇ =
pγ

sin2 β

ṗα = (2sUϕpα − ∂αUϕ) e−2m

ṗβ = p2β cos β sin β +
p2α cos β

sin3 β sin2 γ
+
p2γ cos β

sin3 β
+ (2sUϕpβ − ∂βUϕ) e−2m

ṗγ =
p2α cos γ

sin2 β sin3 γ
+ (2sUϕpγ − ∂γUϕ) e−2m

ṁ = −s
(

1√
3
pβ + 2Uϕe

−2m

)

(5.209)

The harmonic potential in field space and shape space is given by

V (ϕ) =
1

2
ϕ2

Vϕ(β, γ) =
1

2
tan2 β cos2 γ

(5.210)
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For this example, we look for a numerical solution to the equations of motion

5.209, subject to the following initial conditions at t = 0.

α(0) =
3

2
π, pα(0) = 0.1

β(0) = 1.1, pβ(0) =

√
3

2
sec2 β

[
−1 +

√
1 − 4

3
cos2 β

(
p2α

sin2 β
+ 2Ue−2m

)]
γ(0) =

π

4
, pγ(0) = 1

m(0) = 0

(5.211)

For this section and the following, we provide the Hamiltonian numerical solution

plots in appendix B.1. In particular, one may find the numerical solution

Hamiltonian for Bianchi I + free field and harmonic potential models in figure B.1.

Just as for the FLRW + 2 scalar fields model, we also see in Bianchi I + matter

that the free field solution becomes numerically unstable faster than the harmonic

potential model and has to be stopped after a shorter time. We next check the

numerical solutions of β(t) to confirm that the solutions pass through the shape

space equator.

Figure 5.23: Numerical solution of β(t) for the Bianchi I + free field (red, dashed)
and harmonic potential (blue) models.

288



In figure 5.23 we plot the numerical solutions of β(t) for the free field and

harmonic potential model. Both solutions pass smoothly through the big bang

at β = π/2. In this case the there is a bigger difference between the free field and

harmonic potential solutions over the entire time domain. This is due to the fact

that the initial conditions for each solution are slightly different. We choose pβ to

be set by the Hamiltonian constraint H := 0 (This choice is arbitrary, in principle

we could have chosen any of the other dynamical variables). This means that given

a set of initial α, pα, γ, pγ and m, the boundary condition on pβ is determined by

pβ =

√
3

2
sec2 β

[
−1 +

√
1 − 4

3
cos2 β

(
p2α

sin2 β
+ 2U(α, β)e−2m

)]
(5.212)

The potential term U(α, β) is non-zero for our chosen initial conditions in the

harmonic potential case, and thus the initial pβ will be different in the free field

and harmonic potential cases.

(a) Phase space plot of (β(t), pβ(t)) for
the numerical solutions of the Bianchi I
+ free field (red, dashed) and harmonic
potential (blue) models.

(b) Numerical solution of pβ(t) for the
numerical solutions of the Bianchi I +
free field (red, dashed) and harmonic
potential (blue) models.

Figure 5.24: Numerical solution of pβ(t) for the free-field and ϕ2 models.

In figure 5.24a the numerical solution of pβ parametrized by β(t) ((β, pβ) slice

of phase space) for the free field and harmonic potential models. Both solutions,

as expected pass smoothly through the big bang at β = π/2. In figure 5.24b we

plot pβ(t) parametrized by the time coordinate. This plot shows explicitly that
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the initial pβ’s at t = 0 are quite different for each model, so it is no surprise

that the numerical solutions differ by quite a large amount as compared to some

of the previous examples, even near the big bang singularity where the potential is

exponentially suppressed.

(a) Parametric plot of (β(t), α(t)) for
the Bianchi I + free field (red, dashed)
and harmonic potential (blue) numerical
solutions.

(b) Parametric plot of (β(t), pα(t)) for
the Bianchi I + free field (red, dashed)
and harmonic potential (blue) numerical
solutions.

Figure 5.25: Parametric numerical solutions of (β(t), α(t)) and (β(t), pα(t)) for the
Bianchi I + free-field and ϕ2 models.

In figures 5.25a and 5.25b we plot the numerical solutions of α and pα respectively,

parametrized by β(t). As we expect, both solutions pass smoothly though the big

bang at β = π/2 along with some other expected features. In figure 5.25b, we see

that the free field pα momentum is everywhere constant, as it should be since ṗα = 0

everywhere for zero-potential. Likewise, near the big bang where the potential

becomes exponentially suppressed, the harmonic potential pα momentum becomes

approximately constant.
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(a) Parametric plot of (β(t), γ(t)) for
the Bianchi I + free field (red, dashed)
and harmonic potential (blue) numerical
solutions.

(b) Parametric plot of (β(t), pγ(t)) for
the Bianchi I + free field (red, dashed)
and harmonic potential (blue) numerical
solutions.

Figure 5.26: Parametric numerical solutions of (β(t), γ(t)) and (β(t), pγ(t)) for the
Bianchi I + free-field and ϕ2 models.

In figures 5.26a and 5.26b we plot the numerical solutions of γ and pγ respectively,

parametrized by β(t). We again see that the numerical solutions are well-defined

through the big bang at β = π/2. Additionally, we see a small oscillatory behaviour

in γ around γ = π/2. The interpretation of this will becomes clear when we look

at the original configuration space variables (ϕ, x, y, ) shortly. The last dynamical

variable to check is the global frictional coordinate m(t), which we plot in figure

5.27 for the free field and harmonic potential models. In both models the numerical

solution is well defined through the big bang at β = π/2. Thus all dynamical

variables, the Hamiltonian and contact form are well defined through β = π/2 as we

expect due to the potential function U(α, β, γ) being locally Lipschitz continuous

around β = π/2.
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Figure 5.27: Parametric plot of (β(t),m(t)) for the Bianchi I + free field (red,
dashed) and harmonic potential (blue) numerical solutions.

In the case of a Bianchi + scalar field cosmology, the shape space projection is a

compactification onto S3 (rather than S2 as in the FLRW case), thus we can think

of solutions a path on S3. One way to visualise this is to consider constant α, β or γ

slices of S3, which are S2 surfaces.

Figure 5.28: Constant γ slice of the Bianchi I + matter S3 shape space. The (α, β)
solutions for the free field (red, dashed) and harmonic potential (blue) are plotted
as paths on the S2 surface. The solid red line is the S2 slice equator at β = π/2
which corresponds to the GR singularity.
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In figure 5.28 we plot a constant γ slice of the full S3 shape space with the

free field and harmonic potential paths plotted on the surface. The equator is the

line β = π/2 which represents the big bang, both solutions pass smoothly through

the shape space equator. However the paths are not symmetric on either side of

the equator, despite there being a symmetric (or no) potential, since this is only a

constant γ slice of the full S3 shape space, on which the path would be symmetric

either side of the big bang. Likewise we could also look at constant α and constant

β slice of shape space.

(a) Constant α slice of the Bianchi
I + matter S3 shape space. The
(γ, β) solutions for the free field (red,
dashed) and harmonic potential (blue)
are plotted as paths on the S2 surface.
The solid red line is the S2 slice equator
at β = π/2 which corresponds to the GR
singularity.

(b) Constant β slice of the Bianchi
I + matter S3 shape space. The
(γ, α) solutions for the free field (red,
dashed) and harmonic potential (blue)
are plotted as paths on the S2 surface.
The solid red line is the S2 slice equator
at α = π/2 which does not correspond
to any GR singularity.

Figure 5.29: Constant α and β shape space plots for Bianchi I numerical solutions.

In figures 5.29a and 5.29b we plot constant α and β slices of the full S3 shape

space respectively. In the constant α slice, the solid red line is again the β = π/2

equator, representing the initial GR singularity. The solution path passes smoothly

through the big bang equator for both solutions. In the constant β slice, the solid

red line is the α = π/2 equator, which does not correspond to any GR singularity

and thus the system passing through this line is not of any particular significance

in relation to GR singularities.
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In this section we have seen examples of the shape space dynamical variables

and mathematical structures remain well defined through the big bang, as was

to be expected from the potential function U(α, β, γ) satisfying the conditions for

Lipschitz continuity. It is still the case however that the original configuration space

dynamical variables ϕ, x, y are ill-defined though the big bang. One may transform

back to the original variables and see this explicitly for the numerical solutions.

Figure 5.30: Plot of the original scalar field variable ϕ(t) = | tan β(t)| cos γ(t) for
the Bianchi I + free field (red, dashed) and harmonic potential (blue) numerical
solutions.

In figure 5.30 we plot the scalar field under the shape space projection 5.175 for

the free field and harmonic potential numerical solutions. Since β(t) passes smoothly

through β = π/2, the scalar field diverges at the big bang due to the | tan β| factor

in the gnomonic projection, but is well defined on either side of the big bang. We

also see oscillations of the scalar field around the vacuum ϕ0 = 0 on both sides of

the GR singularity, although they are more pronounced on the right-half plane. In

shape space, these vacuum oscillations manifest as γ oscillating around γ = π/2.

In figures 5.31a and 5.31b we plot the anisotropy parameters x(t) and y(t)

given by the shape space projection 5.175 for the free field and harmonic potential

numerical solutions.
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(a) Plot of the original anisotropy pa-
rameter x(t) = | tanβ(t)| sin γ(t) cos γ(t)
for the Bianchi I + free field (red,
dashed) and harmonic potential (blue)
numerical solutions.

(b) Plot of the original anisotropy pa-
rameter x(t) = | tanβ(t)| sin γ(t) sin γ(t)
for the Bianchi I + free field (red,
dashed) and harmonic potential (blue)
numerical solutions.

Figure 5.31: Numerical solutions of the anisotropy parameters (x, y) for Bianchi I
+ free field and harmonic potential models.

The anisotropy parameters also diverge at the big bang. One would expect

from solving the original configuration space equations of motion generated from

the Herglotz Lagrangian

LH =
1

6
h2 +

1

2
(ẋ+ ẏ) +

1

2
ϕ̇− V (ϕ) (5.213)

that the anisotropy parameters are related to each other by a linear relationship

y(x) = y0 + Cyx.

In figure 5.32 we display the parametric plot (x(t), y(t)) and see that indeed this

linear relationship is satisfied. Each solution has two straight line branches, as the

system evolves through the big bang the spatial manifold undergoes an inversion of

orientation and moves from one branch to the other.
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Figure 5.32: Parametric plot of (x(t), y(t)) for the Bianchi I + free field (red, dashed)
and harmonic potential (blue) numerical solutions. As the system evolves through
the Big Bang at β(ts) = π/2, the spatial manifolds orientation inverts and system
moves between straight line branches.

5.7.4 Quiescent Bianchi IX

In this section we look at a numerical example of quiescent Bianchi IX cosmology

and show that it continues smoothly through the big bang in the shape space

representation. Unlike Bianchi I, the Bianchi IX cosmology has a non-trivial Lie

algebra, which leads to generally non-zero shape potential and contains flat FLRW

cosmologies. The shape space potential function U(α, β, γ) for Bianchi IX is given

in equation 5.192, with the functions fi(α) defined in equation 5.172. The flat

FLRW-cosmologies are contained at β = 0, π and γ = 0, π. However the time

parametrization we have chosen, implicit in the re-scaling of the contact Hamiltonian

by h−2 sec2 β is not suited for investigating these sub-geometries as the Hamiltonian

is undefined for β, γ = 0, π.

We will consider Bianchi IX cosmologies minimally coupled to a scalar field in

the free field (massless) and harmonic potential cases.
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As we have already shown, in the case of a everywhere-zero field potential, the

shape space Hamiltonian is

H =
1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ U(α, β, γ)e−2m

U(α, β, γ) = sec2 β
∑
i

cie

(
fi(α) sin γ− 2√

3

)
| tanβ|

(5.214)

In section 5.6.4 we showed that, including a generally non-zero field potential

changes the shape space Hamiltonian to

H =
1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ U(α, β, γ)e−2m +

Uϕ(β, γ)

sΩ
e−3m

U(α, β, γ) = sec2 β
∑
i

cie

(
fi(α) sin γ− 2√

3

)
| tanβ|

Uϕ(β, γ) = Vϕ(β, γ)e−
√
3| tanβ| sec2 β

(5.215)

as additional degrees of freedom (k,Ω) are required in order to retain the original

scaling symmetry of the action. We consider the numerical solutions to the equations

of motion 5.188 subject to the following initial conditions at t = 0. Simply

for demonstrative purposes, we have chosen to use the Hamiltonian constraint to

determine the initial condition on pα, rather than pβ as in previous sections.

α(0) =
1

2
π, pα(0) = | sin β sin γ|

√
−2

(
1

2
p2β cos2 β +

1

2

p2γ
2 sin2 β

+
1√
3
pβ + Ue−2m +

Uϕ

sΩ
e−3m

)
β(0) =

1

8
π, pβ(0) − 0.5

γ(0) =
1

8
π, pγ(0) = 0.1

m(0) = 0

k(0) = 0, Ω(0) = −1

(5.216)
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In figure 5.33 we plot 2
π
β(t) − 1 where β(t) is the Bianchi IX numerical solution

for the free field and Harmonic potential models, showing explicitly that the system

passes through the Big Bang at β = π/2. In the free field case, the discretised system

equations of motion become numerically unstable shortly after passing through the

Big Bang.

Figure 5.33: Plots of 2
π
β(t)−1 for the Bianchi IX β(t) numerical solutions, including

the free field (red, dashed) and harmonic potential (blue) models.

In figure 5.34 we plot ln |pβ(t)| parameterised by β(t), one can see clearly that in

both cases the pβ momentum is well defined through β = π/2. In this particular case

we choose to plot the logarithm as the free field and harmonic potential solutions of

pβ differ by approximately two orders of magnitude near the big bang.

Figure 5.34: Plots of ln |pβ(t)| parametrised by β(t) for the Bianchi IX pβ(t)
numerical solutions, including the free field (red, dashed) and harmonic potential
(blue) models.
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In figures 5.35a and 5.35b we plot the numerical solutions of the shape space

coordinate α and associated momentum pα respectively, parametrised by β. In both

figures we see that the dynamical variables remain well defined through the big

bang at β = π/2 as we expect. In the case of Bianchi I, pα is constant for free field

solutions as the equation of motion for ṗα contains only terms with factors of Uϕ

and ∂Uϕ.

However in the Bianchi IX case, which contains a shape potential which is not

everywhere zero, the equation of motion for ṗα contains terms which have factors of

the shape potential function U as well as the field potential Uϕ, so even in the free

field case where Uϕ = 0, the momentum pα is not constant for all time as we see in

the numerical solution of figure 5.35b.

(a) Parametric plot of (β(t), α(t)) for the
Bianchi IX + free field (red, dashed)
and harmonic potential (blue) numerical
solutions.

(b) Parametric plot of (β(t), pα(t)) for
the Bianchi IX + free field (red, dashed)
and harmonic potential (blue) numerical
solutions.

Figure 5.35: Parametric plots of (β(t), α(t)) and (β(t), pα(t)) for Bianchi IX + free
field and harmonic potential models.

In figures 5.36a and 5.36b we plot the numerical solutions of γ and pγ

parametrised by β for the Bianchi IX + free field and harmonic potential models.

Both dynamical variables remain well defined through the big bang at β = π/2. In

addition to the shape degrees of freedom, for the Bianchi IX + matter cosmology

we also have the additional degrees of freedom k and its associated momentum Ω(t)

which were introduced to retain the scaling symmetry of the symplectic Lagrangian

when there is a field potential present.
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(a) Parametric plot of (β(t), γ(t))
for the Bianchi IX + free field (red,
dashed) and harmonic potential
(blue) numerical solutions.

(b) Parametric plot of (β(t), pγ(t))
for the Bianchi IX + free field (red,
dashed) and harmonic potential
(blue) numerical solutions.

Figure 5.36: Parametric plots of (β(t), γ(t)) and (β(t), pγ(t)) for Bianchi IX + free
field and harmonic potential models.

In figures 5.37a and 5.37b we plot the numerical solutions of k and Ω parametrised

by β(t) for the Bianchi IX + harmonic potential model. Both dynamical variables

are well defined through the big bang at β = π/2. One one can see from the plot of

(k, β) that the numerical solution becomes unstable shortly after passing through

the big bang as k → ∞.

(a) Parametric plot of (β(t), k(t)) for
the Bianchi IX + harmonic potential
numerical solution.

(b) Parametric plot of (β(t),Ω(t)) for
the Bianchi IX + harmonic potential
numerical solutions.

Figure 5.37: Parametric plots of (β(t), ka(t)) and (β(t),Ω(t)) for Bianchi IX + free
field and harmonic potential models
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The last dynamical variable is the frictional global coordinate m(t), plotted

in figure 5.38, m(t) is also well defined through the big bang and displays the

characteristic “cusp” as its time derivative changes sign as the system passes through

the big bang, due to the overall factor of Sign(tan β) in the equation of motion 5.188.

Figure 5.38: Parametric plot of (β(t),m(t)) for the Bianchi IX + harmonic potential
numerical solution.

Thus we demonstrate that as expected, all dynamical variables, the Hamiltonian

and contact form remain well defined as the system passes through the Bianchi IX

big bang when the quiescence conditions are satisfied.

Once more we can visualise the evolution of the cosmology in terms of a paths

on S2 slices of the full S3 shape space. Figure 5.39 displays a constant gamma S2

slice of shape space. The free field and harmonic potential solutions are plotted in

red/dashed and blue respectively. Both solution paths pass smoothly through the

big bang, represented by the solid red equator at β = π/2.
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Figure 5.39: Constant γ slice of the Bianchi IX + matter S3 shape space. The (α, β)
solutions for the free field (red, dashed) and harmonic potential (blue) are plotted
as paths on the S2 surface. The solid red line is the S2 slice equator at β = π/2
which corresponds to the GR singularity.

Figures 5.40a and 5.40b display constant α and constant β S2 slices respectively.

In figure 5.40a the equator is still at β = π/2 corresponding to the big bang, which

both paths cross smoothly. However in figure 5.40a, where a constant β S2 slice

is displayed, the equator is at α = π/2. which does not correspond to any GR

singularity. Having numerically solved the system in the shape space representation,

one can then transform back to the original configuration space dynamical variables

of the scalar field ϕ and anisotropy parameters (x, y). In particular, it is much easier

in this representation to see explicitly, the quiescence behaviour of the cosmology.

Firstly we plot in figure 5.41 the scalar field ϕ = | tan β| cos γ for the free field

and harmonic potential numerical solutions, which as expected is undefined at the

big bang. Note that the free field and harmonic potential solutions pass through

the big bang at different coordinate times. From figure 5.33 one can see that the

free field model passes through the big bang at approximately ts,free ≈ 5.9 and the

numerical solutions becomes unstable very shortly after, so the divergence is hard

to see in figure 5.41’s plot of ϕ(t). The harmonic potential model passes through

the big bang at ts,ϕ2 ≈ 4.2 and the numerical solution does not becomes unstable

until a few coordinate time units later.
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Thus the divergence in ϕ(t) can be seen much clearer for the harmonic potential

model in figure 5.41.

(a) Constant α slice of the Bianchi
IX + matter S3 shape space. The
(γ, β) solutions for the free field (red,
dashed) and harmonic potential (blue)
are plotted as paths on the S2 surface.
The solid red line is the S2 slice equator
at β = π/2 which corresponds to the GR
singularity.

(b) Constant β slice of the Bianchi
I + matter S3 shape space. The
(γ, α) solutions for the free field (red,
dashed) and harmonic potential (blue)
are plotted as paths on the S2 surface.
The solid red line is the S2 slice equator
at α = π/2 which does not correspond
to any GR singularity.

Figure 5.40: Constant α and β shape space plots of Bianchi IX + matter numerical
solutions.

Figure 5.41: Plot of the original scalar field variable ϕ(t) = | tan β(t)| cos γ(t) for
the Bianchi IX + free field (red, dashed) and harmonic potential (blue) numerical
solutions.
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(a) Numerical solution of the anisotropy
parameters (x(t), y(t)) for the Bianchi
IX + free field (red, dashed) and
harmonic potential (blue) models. With
the anisotropy parameters given by x =
| tanβ| sin γ cosα, y = | tanβ| sin γ sinα.

(b) Numerical solution of the anisotropy
parameters (x(t), y(t)) for the Bianchi
IX + free field (red, dashed) and
harmonic potential (blue), over subset
of the time domain t ∈ [0, ts] (ts being
the time at which each model passes
through the big bang singularity). With
the anisotropy parameters given by x =
| tanβ| sin γ cosα, y = | tanβ| sin γ sinα.

Figure 5.42: Numerical solutions of the anisotropy parameters (x, y) for Bianchi IX
+ free field and harmonic potential models.

In figure 5.42a we plot the anisotropy parameters for the Bianchi IX + free field

and harmonic potential numerical solutions, over the full time domain. Transforming

back to the original configuration space variables makes it much easier to see the

quiescent behaviour of the Bianchi IX cosmology. In particular, in figure 5.42b we

plot the anisotropy parameter numerical solutions on a subset of the time domain,

from t = 0 until t = ts, where ts is the time at which the models pass through the

big bang singularity in shape space. Here we see explicitly the Taub transitions and

the bounces of (x, y) off the shape potential wall before being set off on one final

Kasner epoch, which the cosmology remains on until it reaches the big bang and

spatial contact manifold undergoes and inversion of orientation.

304



5.8 Discussion

The notion of a singularity in General Relativity is a subtle one. Generally

speaking, in classical field theories we tend to think of singularities as points at

which physical quantities become indeterminate and grow unboundedly. In GR,

we solve the Einstein Field Equations for the spacetime manifold and its endowed

metric structure. In this sense we can’t think of a singularity in general relativity

as a point on the manifold where the curvature invariant grows unboundedly, as

the Einstein Field Equations need to be solved in an neighbourhood of that point

in order to define the spacetime manifold and metric. Therefore the contemporary

interpretation of a singularity in GR is that of a boundary to the spacetime manifold

on which the curvature invariants become indeterminate [203, 204]. In this work

we show how the physical quantities of the cosmological dynamical system and

the mathematical structures which generate dynamics (Hamiltonian and contact

form) can be smoothly continued across this boundary that stitches two identical,

oppositely spatially oriented cosmologies together.

Hawking and Penrose showed that singularities in General Relativity are of a

generic nature [177,203,204], the theory breaks itself with relatively lenient require-

ments for timelike and null geodesic incompleteness. The fact that singularities

occur so generically in GR is the main motivating reason to believe that the theory

is incomplete. Many hope that the key to resolving singularities in GR lies at the

quantum level, and there is a large school of thought that singularities are where

one should look to for effects of quantum gravity. Whilst GR is perturbatively

non-renormalisable, non-perturbative approaches like loop quantum gravity [205]

have been successful in resolving spacetime singularities at the quantum level

[18,183–187].
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Within the Loop Quantum Gravity framework, the singularities of FLRW (flat,

open and closed) are investigated in [186, 206–208]. In much of the literature,

it is assumed that quantum effects are necessary to resolve singularities in GR,

particularly the initial cosmological singularity due to the small length scales

involved [18, 209]. In the relational dynamics approach however, the Hamiltonian

makes no reference to the overall length scale of the universe, which is not a

physically observable. The shape dynamical system is subtly different from general

relativity in that the fundamental gauge symmetry is that of spatial conformal

invariance of the metric, rather than local diffeomorphism invariance [188,189,210]

and its configuration space is an equivalence class of conformal 3-geometries, rather

than the space of Riemann 3-geometries.

In this section we have shown how one may form a relational, shape space

description of flat FLRW, Bianchi I and Quiescent Bianchi IX cosmologies that

contains no reference to the scale factor ν, by identifying a dynamical similarity

scaling symmetry associated with the scale factor in the Einstein Hilbert action.

While the curvature invariant remains divergent at the initial singularity, in this

relational description the system remains autonomous and well defined at the initial

singularity and in this sense it is resolved at the classical level. In the literature,

homogeneous and black-hole interior spacetime have been continued through

their GR singularities [192, 211] by forming dimensionless dynamical variables

with equations of motion generated by the usual symplectic ADM Hamiltonian.

Deterministic continuation through the singularity is established by investigating

integrability of the equations of motion. In this work we first form a fully

relational contact system by quotienting out the scaling symmetry and forming

a symmetry-reduced contact manifold with physically equivalent dynamics to the

original symplectic manifold. The equations of motion in the relational system are

generated directly from a contact Hamiltonian, which makes no reference to the

overall scale of the universe. A gnomonic projection of the configuration space

coordinates is performed which compactifies the phase space onto shape space, the
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dynamics of this contact system can thus be viewed as equivalent to the motion of

a particle evolving on the surface of a sphere. Under this gnomonic projection,

the initial GR singularity is mapped to the equator. We then investigate the

integrability of this system and have shown that there exist unique solutions to

the contact Hamiltonian equations of motion in the shape space description which

evolve smoothly through the big bang. Moreover, the mathematical structures that

generate time evolution, namely the Hamiltonian and contact form remain well

defined. This is a key development both in terms of defining the solution space,

and when considering potential quantizations of the theory. In this manner we

are able to define a classical Hamiltonian that is well defined across the big bang,

which may be of particular interest in canonical quantisations of GR, where the

Hamiltonian and symplectic structure are of fundamental importance. Similar work

has also been performed in modified gravity theories, where the initial singularity in

Bianchi I solutions is replaced by a bounce. In [212] the authors show that in such

models the Kasner plane can be compactified onto a sphere and derive transition

rules for the quasi Kasner exponents through non singular bounces.

Shape Dynamics presents a possible new path to a towards a quantum theory of

gravity, in particular it offers a solution to the fundamental problem of time in the

canonical approach to quantum gravity [213], in which the Hamiltonian constraint

when quantized demands a stationary wavefunction. Shape Dynamics manages to

decouple dynamical evolution from scale and admits unambiguous evolution in terms

of the York time [214,215].

Alongside showing analytically that cosmological dynamical system on a contact

manifold may be continued uniquely through the initial singularity, in this work we

have provided complete numerical solutions of the relational equations of motion

for each of the cosmologies described above. These numerical solutions show the

asymptotic potential-free behaviour near the big bang corresponding to great circles

which continue smoothly through the shape space equator. In the case of the Bianchi

spacetimes, these great circles represent Kasner solutions.
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As a result of the analytical treatment, we see that the Mixmaster behaviour

of Bianchi IX cosmologies must be resolved to quiescence by the introduction of a

suitable matter field (in this case a scalar field) in order for the equations of motion

to satisfy the Picard-Lindelöf theorem near the initial singularity. In other words,

Bianchi IX quiescence must be achieved in order for the dynamical system to have

a unique, smooth continuation through the big bang. In the numerical solution

examples given for quiescent Bianchi IX, we see explicitly the final Kasner epochs

and Taub transitions before the system passes through the initial singularity.

There exists in the literature a number of works on the quantization of classical

contact Hamiltonian systems from the geometric perspective. In the work of [216]

the authors implement a Becchi, Rouet, Stora, and Tyutin (BRST) quantization

regime of time dependant Hamiltonian systems which are described by a contact

phase space, in which general covariance is implemented from the ground up. In

this quantization regime, each point in the phase space is a fibre of an underlying

vector bundle, with its own copy of canonical quantum mechanics. The operator-

valued connection which allows comparison of quantum wave functions at different

phase space points is the nilpotent BRST charge Q̂2 = 0 (up to a factor of −iℏ).

The nilpotency imposes a flat connection as a consequence of geometric quantization.

BRST quantization of contact Hamiltonian systems is also explored in [217]. In [218]

quantization of contact manifolds describing thermodynamics systems, which have

odd-dimensional state spaces, is studied. Quantization is implemented through

generalising the canonical commutation relations to Legendre bracket structures.

The work of [219] establishes a direct contact analogue to the Kostant-Souriau

quantization of symplectic manifolds [220].

In the canonical quantization of symplectic Hamiltonian systems, dynamical

variables are promoted to operators and the natural Poisson bracket induced by the

symplectic structure is replaced with a commutator structure. Within the context

of GR, this means promoting dynamical elements of the metric to operators, this

includes the volume factor. We present a reformulation of cosmological solutions of
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GR in which the scale factor has been eliminated and dynamics remain well defined

at the initial GR singularity. That the scale factor can be removed at the classical

level, leaving behind a autonomous dynamical system that is well defined at points

on the manifold in which GR breaks down suggests that the contact system may

be a more appropriate starting point for quantization. At this point it is an open

question as to how one would implement the contact reduction of a covariant field

theory exhibiting a dynamical similarity associated with the metric.
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Chapter 6

Conclusion

General Relativity, whilst being one of the most successful and cohesive descriptions

of nature developed within physics, is still riddled with open questions. In this

thesis we addressed two issues that are considered of fundamental importance to our

understanding of the evolution of the universe and the validity of GR, inflation and

the nature of spacetime singularities. Over 100 years after Einstein first published his

work on General Relativity, overwhelmingly convincing evidence has been collected

indicating that the universe is expanding such as the cosmological redshifting of light

from far away galaxies, the abundance of light hydrogen and helium isotopes and the

rich structure of the CMB. GR provides an excellent framework for understanding

and modelling this expansion. Imposing on GR the observation that the universe

today seems to be homogeneous and isotropic on large scales leads to a symmetry

reduced class of spacetime solutions to Einsteins Field Equations know as the

Friedmann–Lemâıtre–Robertson–Walker solutions.

The FLRW solutions are described in terms of the scale function a(t) whose

functional form depends on the chosen geometry of spatial hypersurfaces and the

matter content in the spacetime. We saw in section 2.2.2 that assuming the matter

content of the FLRW universe to be dominated by a perfect fluid leads to expanding

solutions, providing an elegant and experimentally verifiable way of explaining

Hubbles observation that galaxies in all direction appear to be receding away from
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us at a velocity proportional to their comoving distance from us.

The Cosmic Microwave Background is arguably the cornerstone of contemporary

observational cosmology and its intense scrutiny within the context of General

Relativity has both provided answers to outstanding questions and opened doors

to new ones. In particular, inferred measurements of the cosmological density

parameters and observations of the CMB temperatures homogeneity and isotropy

as have lead to the formulation of the flatness and horizon problems which were

discussed in sections 2.2.3.4 & 2.2.3.5 respectively.

The leading explanation for the horizon and flatness problems is that the

early universe experienced a rapid period of exponential expansion called inflation,

discussed in section 2.2.4. Whilst the precise mechanism of inflation remains an

open question, we discussed in section 2.2.4 that a necessary condition of inflation

is the shrinking of the Hubble radius in the early universe. A shrinking Hubble

radius can be achieved by means of introducing a matter field into the cosmology.

This is an intuitive approach as our universe is clearly filled with matter. We

have seen that introducing even a simple scalar field can produce fruitful results.

In section 2.2.4.1 we discussed the slow-roll regime in which a scalar field whose

energy is dominated its potential is introduced generating an inflationary period.

For the approximations of the slow roll regime to be valid, conditions must be

placed on the shape of the field potential, these conditions essentially ensure that it

is flat enough for potential dominated inflation to persist long enough to produce a

sufficient “amount” of inflation, as measured by the number of e-folds.

The success of slow roll inflation is not without its problems, particularly with

regard to the large number of choices one has for the field potential V (ϕ) that can

satisfy the conditions placed on the shape of the potential. Reference [141] gives

a thorough and detailed account of many of field-driven inflationary models that

have been or are currently still under consideration as candidates and includes a

detailed analysis of their slow roll regimes and comparison to the results from the

Planck collaboration [85]. Planck observations of the CMB have been able to place
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restrictions on two important cosmological observables, the spectral index ns and

ratio of tensor to scalar perturbations r, which were discussed in section 2.2.4.1.

While the (ns, r) parameter space is constrained, it is not constrained enough to

determine a single candidate inflationary model and there are a great many of them

that are consistent with current constraints given an appropriate choice of the free

parameters in the model. In this thesis we explored work relating to a particular

candidate model, Quartic Hilltop Inflation in section 3. Quartic Hilltop inflation

had initially been discounted based on the fact that analytical computations of its

predicted relationship between the spectral index and tensor-to-scalar ratio, at an

amount of e-folds sufficient for inflation to solve the horizon and flatness problem

was not consistent with observations. In particular the predicted spectral index was

too small for 50 − 60 e-folds of inflation. However this early analytical work was

based on a few key assumptions about the order of magnitude of the fields vacuum

expectation value, in that it was assumed to be sub-Planckian. Later numerical

analysis of Quartic Hilltop performed in [141] revived interest in the model, showing

that its predicted relationship between the spectral index and tensor-to-scalar ratio

can be consistent with current observations if the assumptions about its vacuum

expectation value are relaxed, allowing it to potentially be super-Planckian. A later

analytical investigation of the Quartic Hilltop inflation with these assumptions was

performed in [7] which shed light on the numerical treatment which is somewhat of

a “black box”. However the Quartic Hilltop potential as an inflationary potential

suffers from a major theoretical drawback which is further amplified by dropping

the assumptions on its VEV. The Quartic Hilltop model belongs to a wider class of

Hilltop inflationary models whose potentials are of the form

V (ϕ) = Λ

[
1 − λ

(
ϕ

mpl

)p

+ ...

]
(6.1)

where “...” denotes the higher order terms which stabilise the vacuum. Typically in

treatments of the Quartic Hilltop model (for which p = 4), the stabilising terms are

assumed to be negligible and are ignored as inflation is presumed to take place far
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from the VEV. This essentially means that precisely how the model exits inflation is

not being considered. The exclusion of higher order terms leaves the potential with

no local minimum making it unsuitable for describing post inflationary dynamics as

field would be able to access an arbitrarily low energy, leading to a universe that

collapses in on itself. Allowing the VEV to be super Planckian means that one now

has a much harder time justifying ignoring the higher order stabilising terms as they

start to become non-negligible. Furthermore, without the inclusion of such terms,

the Quartic Hilltop potential would not be able to produce reheating dynamics.

The reheating dynamics of a given inflationary model form an important part of

connecting the model with current observations. Generally speaking, in the slow

roll analysis one will derive expressions for the spectral index ns(N) and tensor-to-

scalar ratio r(N) as functions of the the number of e-folds of inflation and therefore

find a bound on N in order for (ns, r) to be consistent with the Planck data. However

this is only half of the story, in section 3.3 we discussed how the number of e-folds

of reheating and hence the temperature of the universe at the end of reheating are

dependant on the number of e-folds of inflation and the value of the potential at the

end of inflation for a given model. So whilst we may be able to find ns and r that are

consistent with Planck data, it is not guaranteed that the corresponding reheating

temperature and e-folds will be consistent with what we know about the thermal

history of the universe. To fully consider a candidate inflationary model we must

look at both its inflationary and reheating predictions and ensure that agreements

with data can be found in both the (ns, r) pair and the reheating temperature.

In section 3, based on a paper written by the Author and David Sloan [1],

we argue that the inflationary predictions of the Quartic Hilltop model cannot be

fully contextualised without including such stabilising terms for the reasons outlined

above. We work with a previously suggested “regularization” of the Quartic Hilltop

model which involves simply squaring the potential [143] to form the Quartic Hilltop

Squared model. We carry out an analytical investigation of the QHS model similar

to that of the QH model in [7], deriving expressions for the spectral index and
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tensor-scalar ratio in terms of the number of e-folds of inflation. We also carry

out numerical simulations to solve the equations of motion of the inflaton field over

a range of parameter values. We complete the analysis by computing reheating

temperatures and e-folds. In this work we find that even without including the

reheating analysis, the inclusion of stabilising terms in the potential significantly

alters the predictions of the spectral index and tensor-to-scalar ratio, showing that

how the model exits inflation has a noticeable effect on its prediction of cosmological

parameters. When the reheating analysis is included, we derive bounds on the

number of e-folds of inflation that are allowed within the QHS model in order for

it to be consistent with Planck 2018 data, and further constrict the Planck-allowed

region of parameter space that QHS falls into.

In section 4 based on the paper [2] written by the Author and David Sloan, the

consideration of regularizing inflationary potentials is extended to more candidate

single field inflation models which also suffer from being unbounded from below.

In particular, we consider higher polynomial correction terms added to the Quartic

Hilltop model, forming a class of QHp models with potentials of the form

V (ϕ) = V0

[
1 − λ

(
ϕ

mpl

)4

+ αp

(
ϕ

mpl

)p
]
, p > 4 (6.2)

where we choose the coefficient αp to be fine tuned such that the value of the

potential at the fields vacuum expectation value is zero. We consider also Radiatively

Corrected Higgs inflation with inverse polynomial correction terms and Exponential

SUSY inflation corrected by squaring. In all cases we perform the same numerical

analysis that was carried out in [1] and derive bounds on the number of e-folds of

inflation that are reheating-consistent and hence bound the allowed region of (ns, r)

parameter space that each corrected model falls into.

In section 5 we develop a framework for deterministically evolving cosmological

dynamical systems through spacetime singularities in the context of Bianchi IX,

I, & FLRW solutions to General Relativity. We appeal to the relationalist
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viewpoint developed by Barbour and Bertotti [221] and implement this within

the context of contact Hamiltonain systems. The work builds off recent progress

made in developing the concept of “Dynamical Similarities” and previous results by

Koslowski, Mercatti & Sloan in [192] which a set of dimensionless variables can be

found in (symplectic) Bianchi IX cosmologies which remain well defined through the

Big Bang.

Homogeneous spacetime solutions to GR contain as a key dynamical variable a

notion of absolute scale through the volume/scale factor. However no cosmological

observer has access to any notion of such absolute scale. Measurements must

be taken with respect to rods and clocks defined within the dynamical system

itself. Indeed, physical measurements taken by observers are in fact dimensionless

ratios, invariant under a rescaling of the dynamical variables. If one accepts the

relationalist point of view, it is the dynamics of these dimensionless ratios that we

care about, not the redundant reference scale. Barbour and Bertotti describe this

through the relative “shape” configurations formed by the system. Shape dynamics

is the contemporary implementation of Barbour and Bertotti’s original ideas about

relationalism, in the context of classical gravitational systems. Shape Dynamics,

like General Relativity is a gauge theory of the metric. In General Relativity, we

have an equivalence class of metrics under diffeomorphisms. In Shape Dynamics,

relationalism is implemented by considering metric solutions to the equations of

motion to be indistinguishable under a local rescaling, and so we have a equivalence

class of metrics under Weyl transformations g′µν(x) = e2ϕ(x)gµν(x). Shape Dynamics

and General Relativity are distinct physical theories that live on the same phase

space (γij, ϕ
ij), but they admit gauge fixings in which they coincide [188].

The theory of dynamical similarities [191] formalises this notion of scale invari-

ance within the context of classical Hamiltonian and Lagrangian systems. A key

result in the study of Dynamical Similarites in symplectic Hamiltonian/Lagrangian

systems is that when they exist, after quotienting out the redundancy represented by

the symmetry, we are left an autonomous subsystem defined on a contact manifold.
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In section 5.1 we outlined results by Sloan [194] showing that the equations of motion

of this contact subsystem coincide with the symplectic system, thus they describe

the same physics for the dynamical variables that remain in the contact subsystem.

The framework developed in section 5 synthesises the concepts of relationalism

and dynamical similarities in the context of the ADM formalism of General

Relativity. We first show that there exists a scaling symmetry of the Einstein-

Hilbert action associated with the volume factor. By quotienting this dynamical

similarity out of the phase space, we are left with a symmetry reduced model

defined on a contact manifold. The description in terms of contact mechanics

has the added benefit of being well suited to describing frictional, dissipative

systems. It is well known that in expanding cosmologies such as the FLRW solution,

the Hubble parameter H(t) has the effect of adding friction to the evolution of

matter fields present in the cosmology. In the contact system, the dynamical

variables are decoupled from scale, the information left over from the volume/scale

factor is present in the global coordinate on the contact manifold h. It is the

contact Hamiltonians dependency on this coordinate that is precisely responsible

for violating conservation of the Hamiltonian along its flow.

The contact system that remains after removing the redundancy of the scaling

symmetry is defined entirely in terms of relational, dimensionless variables. This is

a key distinction between the work in this thesis and the result obtained in [192]. In

the latter, an appropriate set of dimensionless variables are found in the symplectic

ADM Hamiltonain description which remain well defined through the Big Bang

singularity. In this work, we first define a contact Hamiltonian system, whose

dynamical variables are all relational. The next step in this work is to project

the dynamical variables to an appropriate set of coordinates for describing the

dynamical system at the initial singularity. Here we perform a gnomonic projection

of the anisotropy parameters onto shape space, and describe the dynamical system

in terms of the shape variables (α, β). The shape space coordinates are not chosen

arbitrarily, we saw explicitly in section 5.5.2 that when solving the equations of
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motion for the contact Bianchi I system, relational quantities like x(t)/y(t) ∼ sinα

converge to a finite limit at the Big Bang. Under a rescaling of the dynamical

variables, angles between tangent vectors will always be conserved so we expect

these variables to appropriately encode the dynamics of the system when we make

a compatification of the contact manifold onto Sn. Under the gnomonic projection,

the Big Bang singularity is mapped to the β = π/2 equator of shape space. We

show that there exist unique solutions to Hamiltons equations of motion that pass

smoothly through the Big Bang by showing that the Picard-Lindelöf theorem is

satisfied in the cases of FLRW, Bianchi I and Quiescent Bianchi IX cosmologies.

The Hamiltonian and contact form remain well defined, thus one is able to have a

well defined Hamiltonian flow at the Big Bang and be sure that the evolution of the

dynamical system is deterministic. Existence and uniqueness of solutions fails in the

case of vacuum Bianchi IX, for essentially the same reasons as quiescence fails in

the conventional symplectic analysis of Bianchi IX. Without introducing a matter

field, it is not possible to suppress exponential growth of the shape potential term

in the Hamiltonian resulting in Mixmaster behaviour. The equations of motion for

Kasner universes are exactly solvable and correspond to great circles on S2. This

is to be expected since Kasner solutions in the configuration space variables simply

look like free particle motion in a straight line, gnomonic projections maps straight

lines in the plane to great circles on the sphere.

In section 5.7 we perform numerical simulations, solving the equations of motion

for a variety of FLRW, Bianchi I & Quiescent Bianchi IX models and show explicitly

unique solutions passing through the Big Bang. In this section we also make

contact with the work performed on Quartic Hilltop Inflation. We present numerical

solutions to the contact Hamiltonian equations of motion for FLRW + a scalar field

with both QH and QHS potentials. Without a regularized potential and without

a way to describe near-singularity behaviour of cosmological dynamical systems,

potentials like Quartic Hilltop are severally flawed in their cosmological predictions.

We have already described how the post-inflationary behaviour of such potentials
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needs to be accounted for as it has a significant effect on observable, the contact

dynamics framework now lets us look at the pre-inflationary classical behaviour

of the potential. In symplectic GR, such early-time behaviour would have been

inaccessible as the Hamiltonian flow becomes ill-defined at the singularity. In section

5.7 we also transform back to the familiar configuration space dynamical variables

and see explicitly the Taub transitions and final Kasner epoch in Quiescent Bianchi

IX solutions.

The main success of the contact dynamics framework developed in section 5

is that we are able to define a dynamical system that resolves the singularity

completely classically. Previous approaches to resolving the initial singularity have

relied on invoking a quantisation of the gravitational field such as in the approaches

of Loop Quantum Cosmology and String Theory. Contact manifolds have been

readily used in the literature to study both classical and quantum thermodynamics

due to their natural description of dissipative systems. From a speculative view,

having a well defined contact Hamiltonian and contact form at the singularity

could have implications in the study of statistical thermodynamics. The well

defined Hamiltonian and volume measure should allow for the computation of a

partition function and hence thermodynamic quantities at the Big Bang. That the

mathematical structures determining evolution of the dynamical system remain well

defined at the singularity, could open the door to a new approach to quantum gravity

involving a quantization of the contact dynamical system, which we have shown is

already singularity free for the particular cosmologies studied. It remains an open

question as to whether, and under what conditions, this is a feature of generic

spacetimes. To answer such questions and to set down the path of quantization, one

would need to implement the formalism of dynamical singularities into a contact

field theory. Research on this procedure has only recently begun in [222].
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Appendix A

A.1 QHp Correction figures

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the QH6 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the QH6 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.1: Numerical solutions of (ns, r) and reheating temperature for the QH6

model.
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(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the QH7 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the QH7 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.2: Numerical solutions of (ns, r) and reheating temperature for the QH7

model.

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the QH9 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the QH9 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.3: Numerical solutions of (ns, r) and reheating temperature for the QH9

model.
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A.2 RCHIp Correction Figures

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI2 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the RCHI2 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.4: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI2 model.

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI3 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the RCHI3 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.5: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI3 model.
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(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI4 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the RCHI4 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.6: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI4 model.

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI5 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the RCHI5 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.7: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI5 model.
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(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI6 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the RCHI6 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.8: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI7 model.

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI7 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the RCHI7 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.9

(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI8 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the RCHI8 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.10: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI8 model.
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(a) Numerical solutions of the tensor-
scalar ratio r and spectral index ns for
the RCHI9 model over the 50 ≤ Nk ≤ 70.

(b) The (log) reheating temperature of
the RCHI9 model against the spectral
index ns over 50 ≤ Nk ≤ 70.

Figure A.11: Numerical solutions of (ns, r) and the reheating temperature of the
RCHI9 model.
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Appendix B

B.1 Bianchi Numerical Solution Hamiltonians

Figure B.1: Numerical solution Hamiltonian for the Bianchi I + free field (red,
dashed) and harmonic potential (blue) models. The discretised equations of motion
for the free field model become numerically faster than the harmonic potential model
thus the numerical solution is valid over a smaller time domain.

In figure B.2a we plot the numerical solution Hamiltonians for Bianchi IX, the

numerical solution Hamiltonians are larger in magnitude than the previous cases we

have looked at in this paper, however the Hamiltonian itself is still much smaller

than the individual terms that it is comprised of. For example consider the first

term in the Hamiltonian 5.214

H1 =
1

2
p2β cos2 β (B.1)
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The relative size of H/H1 is typically small except where H1 → 0, as demonstrated

in figure B.2b

(a) Bianchi IX numerical solution Hamil-
tonian for the free field (red, dashed) and
harmonic potential models.

(b) Plot of the ratio H/H1 for the
Bianchi IX numerical solution Hamilto-
nians.

Figure B.2: Numerical solutions of the Bianchi IX + matter Hamiltonians and
comparison of the Hamiltonian to its first term.

B.2 Gnomonic Projection Example

Consider the motion of a free-particle in two dimensions, in the standard symplectic

mechanics context. The Lagrangian for such a system is simply

L =
1

2

(
ẋ2 + ẏ2

)
(B.2)

and the solutions, which are straight lines on the R2 plane are of course obtained

trivially. The solutions are characterised by two constant momenta (px, py) each

associated with one of the coordinates on the plane

x(t) = x0 + pxt, y(t) = y0 + pyt (B.3)

In this appendix we show explicitly how, after making a gnomonic projection to

shape space, the solutions of the equations of motion are great circles on S2. Recall

that the gnomonic projection is a compactification onto the surface of a sphere,

in this case a 2-sphere. This projection takes a unit sphere tangent to the plane

at the origin and draws a straight line from a point P (x, y) on the plane to the
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centre of the tangent sphere. P (x, y) is then identified with the coordinates on the

2-sphere (α, β) where the line intersects the sphere. The shape space coordinates

are the angle subtended from the pole β and the azimuthal angle α. Explicitly the

projection map is written as x
y

 = | tan β|

cosα

sinα

 (B.4)

In these shape space coordinates the Lagrangian in

L =
1

2

(
β̇2 sec4 β + α̇2 tan2 β

)
(B.5)

From which one may find the canonical momenta

pα = α̇ tan2 β, pβ = β̇ sec4 β (B.6)

and obtain the Hamiltonian through a Legendre transformation

H =
1

2
p2β cos4 β +

p2α
2 tan2 β

(B.7)

One may now simply use the symplectic Hamiltons equations of motion [37]

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

(B.8)

to obtain

α̇ =
pα

tan2 β
, ṗα = 0 (B.9)

β̇ = pβ cos4 β, ṗβ = 2p2β cos3 β sin β + p2α
cos β

sin3 β
(B.10)
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In symplectic mechanics, the Hamiltonian is a conserved, constant quantity and

therefore one may determine that

dα

dβ
=
α̇

β̇
=

pα

sin2 β
√

2H− p2α cot2 β
(B.11)

Equation B.11 has the solution

cos(α− α0) =
pα√

2H tan β
(B.12)

which is the equation of a great circle on the 2-sphere, whose orientation relative to

the R2 is controlled by pα/
√

2H.
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D. Maino, N. Mandolesi, A. Mangilli, A. Marcos-Caballero, M. Maris, P. G.

Martin, M. Martinelli, E. Mart́ınez-González, S. Matarrese, N. Mauri, J. D.
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