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A Two-Timescale Learning Automata Solution
to the Non-Linear Stochastic Proportional

Polling Problem
Anis Yazidi, Hugo Hammer, and David S. Leslie

Abstract—In this paper, we introduce a novel Learning
Automata (LA) solution to the Non-linear Stochastic Propor-
tional Polling (NSPP) problem. The only available solution to
this problem in the literature is that given by Papadimitriou
et al. [1]–[3]. It was shown to solve a large set of adaptive
resource allocation problems under noisy environments [1],
[2], [4]–[10]. We make a threefold contribution. First, we take
a two-timescale approach to the field of LA by estimating the
reward probabilities on a faster timescale than the timescale
for updating the polling probabilities. Second, by making
a not-obvious choice of the objective function, we show
that the NSPP problem is indeed an instantiation of the
Stochastic Non-linear Fractional Equality Knapsack (NFEK)
problem, which is a substantial resource allocation problem
based on incomplete and noisy information [11], [12]. Third,
in contrast to the legacy approach taken by Papadimitriou
et al. [13], [14], we show through extensive experimental
results that our solution is remarkably robust to the choice of
tuning parameters and that it outperforms the state-of-the-art
solution in terms of Bayesian expected loss.
Keywords: Learning Automata, Two-timescale Learning, Resource
Allocation, Stochastic Non-linear Fractional Equality Knapsack .

I. INTRODUCTION

A Learning Automaton (LA) is an adaptive learning
mechanism that interacts with a stochastic environment
in order to find an optimal action from among a set of
offered actions [15], [16]. The field of LA was pioneered
by Tsetlin more than five decades ago [17] through the
introduction of the first LA scheme based on finite-state
machines. Since then, the theory of LA has attracted ex-
tensive research interest [15], [17]–[20]. Most LA schemes
in the literature aspire, as time elapses, to learn the op-
timal action among a usually finite set of actions offered
by a stochastic environment, where the notion of opti-
mality is often defined as converging to the action with
the largest reward probability, or, equivalently, the action
with the lowest penalty probability. An LA solution that
is radically different from the latter stream of research
is that proposed by Papadimitriou et al. [13], [14]. In a
series of works, Papadimitriou et al. [13], [14] addressed
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the so-called Non-linear Stochastic Proportional Polling
(NSPP) problem. In contrast to the main stream of LA
algorithms that operate under the assumption that the
reward probabilities of the actions are stationary over
time, the NSPP problem instead works on the premise
that reward probabilities vary over time and depend on
the action probability vector [11], [19], [21].

The NSPP problem [1]–[3] is characterized by the
following three main peculiarities:

• First, the reward probabilities are stochastic variables
whose distributions are unknown.

• Second, the reward probability of an action may
decrease as a function of the polling probability.

• Third, the optimal probability of an action should
be proportional to its reward probability.

The only available solution to the NSPP problem is
that proposed by Papadimitriou et al. [1]–[3], which was
shown to have a large set of applications in computer
science [1], [2], [4]–[10].

In this paper, we show that the NSPP problem can
be formulated as an instantiation of the Stochastic Non-
linear Fractional Equality Knapsack (NFEK) problem
[22] thanks to a subtle choice of the objective function.
We therefore bridge the gap between the Stochastic
NFEK problem [11], [12], [22], [23] and the NSPP prob-
lem of Papadimitriou et al. [1]–[3]. It is worth men-
tioning that the first optimal solution to an instance
of the Stochastic NFEK problem is that proposed by
Granmo and Oommen [11], [12], which relies on two-
action discretized LA. The solution was subsequently
generalized by invoking a hierarchy of two-action dis-
cretized LA in order to resolve the generalized case of
multi-materials. However, as we will elucidate later in
the paper, our NSPP has a different objective function
than the one found in [11], [12]. Therefore, the latter
solution attributed to Granmo and Oommen [11], [12]
cannot be used to solve the NSPP problem. In a recent
work, Yazidi et al. [24] propose using the theory of a
two-timescale approach to solve the latter problem. By
virtue of introducing the two-timescale approach, Yazidi
et al. [24] achieved a more stable convergence than in
[11], [25]. The LA in [24] converges to a solution that
equalizes the reward probabilities from each action. In
informal terms, the decision maker is indifferent among
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the different actions at equilibrium as the reward proba-
bilities from each action are equal. In this paper, we deal
with the proportional polling problems where the action
probabilities are proportional to the reward probabilities.

To the best of our knowledge, the latter work is the
first work in the field of LA to invoke this concept.

In this paper, we introduce a novel strategy that allows
the LA to obtain estimates of the reward probabilities,
and a method for how these estimates can be utilized
directly in the learning process. Our approach is dis-
tinct from classical LA schemes [26] that only require
knowledge of the maximum estimates rather than the
exact values of these estimates. To achieve synchronous
updating and learning, we resort to carefully designed
estimates of the reward probabilities when adjusting the
action probabilities.

We present a threefold contribution that can be briefly
outlined as follows:

1) First, we show that the NSPP problem [1]–[3] is an
instantiation of the Stochastic NFEK.

2) Second, we report an application of the two-
timescale approach to the field of LA by estimating
the reward on a faster timescale than the update
of the polling probabilities. This advance can pave
the way for new LA schemes that build on the idea
of connecting the updates of the action probabili-
ties and reward probabilities in tandem using the
concept of two-timescale updates.

3) Third, we show that our solution has high robust-
ness to the choice of the tuning parameters while
outperforming the state-of-the-art solution of Pa-
padimitriou and colleagues [1]–[3].

The rest of this paper is organized in the following
manner. First, in Section II, we review related work. Sec-
tion IV presents the design of our solution together with
sound theoretical results proving its convergence to an
optimal fixed point. Section V provides some thorough
experimental results investigating how our solution per-
forms in different scenarios, and shows its superiority
compared to the state-of-the-art solution. Finally, Section
VI rounds off the paper with some concluding remarks.

II. PRELIMINARIES

The vast majority of the LA schemes described in the
literature are designed to converge on the action yielding
the largest reward probability. Furthermore, in the field
of LA, the reward probabilities are usually constant over
time and independent of the action choice. However,
in many real-life applications involving multiple agents
that share some common resources, resorting to classical
LA schemes to govern access to these resources among
competing agents does not produce a fair result. To
counter this problem, Papadimitriou, in collaboration
with different researchers [1], [2], [4]–[10], has provided
a novel LA design that yields a fair share of resources
by ensuring that an entity can access or use a resource in

proportion to its demand. This usually involves design-
ing an LA that polls an action in a proportional manner
to its reward probability. In the most generic case, the
resource access can be modelled as a Non-linear Stochas-
tic Proportional Polling (NSPP) problem [1]–[3] with
the three aforementioned peculiarities, namely unknown
distribution of the reward, monotonicity of the reward
function, and an optimal fixed point characterized by
a polling probability that is proportional to the corre-
sponding reward probability. In this perspective, it is
worth mentioning that the literature on LA includes two
prominent studies that operate under the monotonicity
assumption of the reward function, notably the work
of Narendra and Thathachar on adaptive routing [19],
[21], and the work of Granmo and Ommen on adaptive
web crawling [11]. However, in contrast to the work of
Papadimitriou et al. on the NSPP problem [1]–[3], the
objective of the latter two works is to equalize the reward
probabilities. The informed reader would remark that an
ergodic LA is required in this case. However, work has
been done on LA in non-stationary environments [27]
where, even though the reward probabilities are time-
varying, the optimal action is kept unchanged, which
means that an absorbing LA scheme is required [28], [29].
Another type of non-stationarity in an LA environment
appears in [30], where the source of the non-stationarity
emanates from the fact that the joint local decisions of
the neighboring cells affect the reward of the irregular
cellular automata LA in the current cell.

In this section, we have tried to cover the most promi-
nent proportional LA applications and schemes reported
in the literature. For a complete list of proportional LA
applications, we refer the reader to the following studies
[31]–[39]. The latter articles do not present a new solution
to the proportional polling problem originally devised
in Papadimitriou et al. [13], [14]. These papers rather
deal with different application domains of the originally
devised algorithm in [13], [14]. The large amount of
applications of the stochastic polling problem motivates
a new efficient solution which is the objective of our
paper.

The scheme developed in this paper can be deployed
to model a large family of adaptive self-organizing sys-
tems that rely on Reinforcement Learning (RL) where
there is a coupling between the reward probability
and the action probability [40]–[45]. The main literature
stream in RL deals with the assumption of ”no-effect of
the chosen actions” on the future reward distribution.
In those classical settings, the optimal policy is usually
deterministic and consists in converging to the optimal
action that yields the highest average reward. However,
in many real-life scenarios, there is a coupling between
reward outcomes and how often an action is chosen. This
can be seen, for instance, in a resource allocation prob-
lem, where the more often a resource is chosen, the more
it is exhausted, and thus, the less the resulting reward
perceived by an RL agent [44]. In the latter work, we
have demonstrated that classical RL fails dramatically



3

due to exclusive action choice. Some recent literature
in the field of RL have used the terminology the satia-
tion effect to describe the phenomenon of diminishing
reward [46], [47]. The satiation effect in RL describes
the situation in which the perceived reward by an agent
diminishes as it consumes more and more of the same
resource. This is relevant for the case for instance of food
recommendations where recommending the same food
type might lead to boredom by the user. Wang et al.
devised a per-load reward, where the reward depends on
the number of players choosing the same arm [48], [49].
The main difference compared to our work is the fact
that the latter two works consider decentralized settings,
while ours consider centralized ones. Furthermore, in the
latter two works, the reward depends on the number of
players while in our settings it depends on the polling
probabilities. In [46], the reward depends on the time
since an arm was pulled in a consecutive manner. Other
studies assume that the expectation of the reward from
an action is a a function of the last time it was pulled [50],
[51]. More precisely, the reward function is increasing
concave function of the time since it was last played. In
[52], [53], the expected reward of an arm increases since
the last time it was pulled and decreases after pulling it.
In this paper, we rather investigate a direct dependency
between the reward and the action probabilities rather
than a dependency with the last time it was pulled
or the number of times it was pulled. The informed
reader will observe that the polling problem considered
in this paper is related to policy patrol optimization
[54], which was solved using reinforcement learning in
[55]. In [55], the aim is to choose a location to patrol
at each time instant. The security state of a location
degrades as the idling time between two consecutive
patrols increases. In this sense, it is possible to model the
reward probability of patrolling as a decreasing function
of the patrol probability.

III. PROBLEM FORMULATION

In this section, we formulate the NSPP problem as
an instance of the Stochastic NFEK problem [11]. The
Stochastic NFEK involves finding an optimal allocation
of n materials, denoted as xopt = [xopt1 , . . . , xoptn ], that
can fit within a knapsack of capacity c. (Without loss
of generality, we suppose that c = 1.) Granmo and
Oommen formulate the problem as:

maximize f(x) =

n∑
i=1

fi(xi)

where fi(xi) =

∫ xi

0

pi(u) du ∀i ∈ {1, . . . , n},

subject to
n∑
i=1

xi = c and xi ≥ 0 ∀i ∈ {1, . . . , n}.

(1)

The functions pi are monotonic, either all decreas-
ing or all increasing, but otherwise unknown. Instead,
the optimiser observes a random variable vi with a

Bernoulli(pi(xi)) distribution in response to selecting
material i with probability xi.

A. Formulation of NSPP as an instance of the Stochastic
NFEK

In order to show that our NSPP problem is an instance
of the Stochastic NFEK problem, we instead define
fi(xi) =

∫ xi

0
upi(u)−1 du. An alternative interpretation

of this is to replace pi(u) with p̃i(u) := u/pi(u) in
(1), although the feedback available is still a vi ∼
Bernoulli(pi(xi)) instead of the Bernoulli distribution
with the parameter p̃i. Without loss of generality, in the
rest of the article, fi(xi) will be defined as fi(xi) =∫ xi

0
upi(u)−1du. Furthermore, we suppose that the func-

tions pi are strictly monotonically decreasing, Lipschitz
and continuous.

maximize f(x) =

n∑
i=1

fi(xi)

where fi(xi) =

∫ xi

0

upi(u)−1 du ∀i ∈ {1, . . . , n},

subject to
n∑
i=1

xi = 1 and xi ≥ 0 ∀i ∈ {1, . . . , n}.

(2)

We will show that, by resorting to this not-obvious
choice of fi(xi) given by fi(xi) =

∫ xi

0
upi(u)−1du, the

solution to the above Stochastic NFEK problem will
coincide with the solution to the NSPP problem.

B. Characterization of the Stochastic NFEK solution

We will first study the characteristics of the optimal so-
lution to the above Stochastic NFEK problem described
by the optimization problem (2).

Lemma 1. The material mix xopt = [xopt1 , . . . , xoptn ] that
solves the Stochastic NFEK Problem (2) is characterized by

xopt
1

p1(xopt
1 )

=
xopt
2

p2(xopt
2 )

= ... =
xopt
n

pn(xopt
n )

Furthermore, the problem (2) admits a unique solution.

Proof. We consider the following Lagrangian function
L(x, η) where η ≥ 0 is the Lagrange multiplier corre-
sponding to the optimization problem (2):

L(x, η) =

n∑
i=1

fi(xi) + η(

n∑
i=1

xi − 1)

To solve the optimization, we set the partial deriva-
tives for 1 ≤ i ≤ n:

∂L(x, η)

∂xi
= 0

This gives for 1 ≤ i ≤ n:

∂fi(xi)

∂xi
= η
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Thus,
∂f1(x1)

∂x1
= · · · = ∂fn(xn)

∂xn

It follows immediately that

xopt1

p1(xopt1 )
= · · · = xoptn

pn(xoptn )
(3)

and simple algebra leads to

xopti

pi(x
opt
i )

=

∑n
j=1 x

opt
j∑n

j=1 pj(x
opt
j )

(4)

Using the fact that
∑n
j=1 x

opt
j = 1, we obtain

xopti =
pi(x

opt
i )∑n

j=1 pj(x
opt
j )

(5)

Now, we proceed to proving the uniqueness of the
solution by contradiction. Let xopt = [xopt1 , . . . , xoptn ] be an
optimal solution. Let us suppose that another solution
yopt = [yopt1 , . . . , yoptn ], exists to the problem. Therefore,
yopt = [yopt1 , . . . , yoptn ] must verify equation (4).

Since xopt and yopt are two distinct probability vectors,
we can affirm that they have two indexes i and j where
on the one hand xopti > yopti and on the other hand
xoptj < yoptj . As a consequence of the fact that pi(·) and
pj(·) are monotonically decreasing, we obtain pi(x

opt
i ) <

pi(y
opt
i ) and pj(x

opt
j ) > pj(y

opt
j ). Thus xopti /pi(x

opt
i ) >

yopti /pi(y
opt
i ) and xoptj /pj(x

opt
j ) < yoptj /pj(y

opt
j ). This con-

tradicts (3), since we cannot have both xopti /pi(x
opt
i ) =

xoptj /pj(x
opt
j ) and yopti /pi(y

opt
i ) = yoptj /pj(y

opt
j ).

Therefore, we deduce that the solution is unique.

We have shown that the Stochastic NFEK problem (2)
has a unique solution

xopti =
pi(x

opt
i )∑n

1 pj(x
opt
j )

(6)

which is indeed the solution to the NSPP problem
reported in the literature [13], [14]. Hence, a learning
algorithm which solves the Stochastic NFEK problem
will also solve the NSPP problem.

IV. A TWO-TIMESCALE LA SOLUTION TO RESOURCE
ALLOCATION

While we now have a Stochastic NFEK formulation
of the problem, the pi are considered unknown, so it is
not possible to solve (2) directly. We therefore derive a
learning algorithm to find optimal solutions, building on
earlier linear automata approaches to NFEK [11], [12],
[22]. LA is just an instance of RL algorithms. In the
original paper introducing REINFORCE [56], LA was
shown to be an instance of the REINFORCE framework.
In this paper, what is original is the design of the
updating scheme in the form of ODE in order to make
the LA system converge to the desired equilibrium of

Proportional Polling Problem where the optimal proba-
bility of an action should be proportional to its reward
probability. LA can be seen as another variant or solution
to the multi-armed bandit problem. LA is competitive to
other RL algorithms such as for instance Q-learning. If
one applies instead a classical RL algorithm such as the
linear-reward inaction the RL algorithm will converge
to equalizing the reward probabilities of the different
actions which is not the desired equilibrium in the case
of our proportional polling problem [11], [25]. The direct
application of any bandit algorithm to this problem will
not lead to the desired of equilibrium of the NSPP
problem.

The general approach is to play repeatedly, evolving
an action x in response to observations of the rewards
received. Previous automata approaches are not effec-
tive for this problem, since the available feedback is
a signal, vi ∼ Bernoulli(pi(xi)), while our Stochastic
NFEK formulation integrates p̃i(x) = x/pi(x) instead
of pi(x) in the objectives; the reason we care about
this alternative Stochastic NFEK formulation is that the
Bernoulli(pi(xi)) feedback signals are those we observe
in an NSPP. Hence we develop a two-timescale approach
in which we estimate the (current) response probabilities
pi, while evolving our action vector x.

A. Details of the two-timescale LA Solution
At each time instant t, the player:
• selects action i(t) using strategy x(t) (i.e., set i(t) = i

with probability xi(t)),
• observes a response v(t), which is a Bernoulli ran-

dom variable with the parameter pi(t)(xi(t)(t)),
• updates the belief vector p̂(t) and the strategy x(t).

In fact, we need to modify x(t) slightly before playing
(see below).

The interleaving updates of p̂ and x are:
a) Updating p̂i(t) for 1 ≤ i ≤ n: The estimates of

the reward probabilities are updated in the following
manner:

p̂i(t)(t+ 1)← p̂i(t)(t) + αt
[
v(t)− p̂i(t)(t)

]
p̂j(t+ 1)← p̂j(t) for j 6= i(t)

(7)

where αt ∈ [0, 1] is a learning parameter. As we can see
from the above equation, p̂i(t) is an estimate of the re-
ward probability obtained using an exponential moving
average update with αt as a learning parameter. p̂i(t) are
probability estimates. The initial values of p̂i(t) should
be in the interval [0, 1]. Although the initial values do not
affect the asymptotic convergence they can influence the
convergence speed during the first iterations. We suggest
to choose 0.5 as initial value in the absence of a priori
knowledge about the underlying functions pi(.).

b) Updating x(t): We suppose that initially, xi(0) =
1/n for 1 ≤ i ≤ n. The value of xi(t), 1 ≤ i ≤ n is
updated as per the following rule:

xi(t+ 1)← xi(t) + θt

p̂i(t)− xi(t) n∑
j=1

p̂j(t)

 (8)
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The stepsizes αt, θt in (7) and (8) are positive scalars
satisfying:∑

t

αt =
∑
t

θt =∞,
∑
t

α2
t + θ2

t <∞, θt = o(αt)

The first two terms are standard for the stochastic ap-
proximation literature. The final term is what makes the
approach a two-timescale one [57]: parameter θt, which
governs the magnitude of the x(t) updates should be
considerably smaller than parameter αt used to track the
reward probability estimates p̂(t), with the consequence
that from the perspective of the fast dynamics of p̂i, xi
seems to be “almost constant”, while when considering
the slow dynamics of xi, p̂i seems to be almost always
“almost equilibriated” [58].

It is easy to see that the above update form xi(t), 1 ≤
i ≤ n preserves the property that the components of the
probability x(t) still sums to 1:

n∑
i=1

xi(t+ 1) =

n∑
i=1

xi(t) + θt(p̂i(t)− xi(t)
n∑
j=1

p̂j(t))


= 1 + θt

n∑
i=1

p̂i(t)− θt
n∑
j=1

p̂j(t)

n∑
i=1

xi(t)

= 1 + θt

n∑
j=1

p̂j(t)− θt
n∑
j=1

p̂j(t)

= 1

B. Remark: Bounds of the sampling probability
Although (7–8) is the scheme we would like to run,

it is necessary to ensure that all actions are selected
sufficiently often so that all of the p̂i estimates are
reasonable. We therefore do not use strategy x(t) to select
the actions, but use a modified strategy x′ satisfying

x′i(t) =
ε

n
+ (1− ε)xi(t). (9)

Choosing ε > 0 ensures that all actions are played
infinitely often, while choosing ε small enough ensures
that the system is only perturbed to a small extent.
Note, however, that, by playing strategy x′(t) instead of
x(t), the reward v(t) is now sampled from a Bernoulli
distribution with a success probability of pi(t)(x′i(t)(t)).
We denote qεi (xi(t)) = pi(x

′
i(t)) = pi

(
ε
n + (1− ε)xi(t)

)
.

At this juncture, we note that there is some sensitivity
to choosing sufficiently small learning parameters so
that the xi(t) probabilities remain positive. In particular,
assuming that xi(t) > 0,

xi(t+ 1) = xi(t) + θt[p̂i(t)− xi(t)
n∑
j=1

p̂j(t)]

= xi(t)(1− θt
n∑
j=1

p̂j(t)) + θtp̂i(t)

≥ xi(t)(1− θtn)

since
∑n
j=1 p̂j(t) ≤ n. Hence a sufficient condition is θt <

1
n for all t.

Similarly, if ε ∈ [0, 1], then x′i(t) is a convex combi-
nation of 1/n and xi(t) ∈ [0, 1] and therefore lies in
[ε/n, 1− (1− 1/n)ε].

C. Convergence proofs

In this section, we resort to the theory of two-timescale
stochastic approximation [57]–[59]. The “almost con-
stant” and “almost calibrated” nature of the system
means that we should consider continuous time ODE’s
corresponding to the ‘fast’ timescale p̂(t) as if the ‘slow’
timescale x(t) is constant, and, for the x(t) system, as if
the p̂(t) system is fully calibrated. We start by proving
the convergence of the slow system.

Let x(t) = (x1(t), . . . , xn(t)), p̂(t) = (p̂1(t), . . . , p̂n(t))
and q(x) = (q(x1), . . . , qn(xn)) where qεi (xi) = pi(ε/n +
(1−ε)xi) denotes the composition of the smoothing from
x to x′ followed by the proportional polling function pj .
It is easy to check that the qεi (.)’ s are strictly decreasing,
continuous, non-negative functions of the xi’s because
the pi(.)’s possess the same property.

Consider the following ODE for i ∈ [1, n]:

ẋi = qεi (xi)− xi
n∑
j=1

qεj(xj). (10)

Let x∗(ε) be the fixed point of the ODE given by (10).
The uniqueness of x∗(ε) is guaranteed by following
the same lines as Lemma 1 for a modified Stochastic
NFEK problem where pi is replaced by qεi in the original
Stochastic NFEK problem (2).

Proposition 1. The fixed point of the ODE given by Eq. (10)
is asymptotically stable and unique.

Proof. Throughout this proof, we fix ε and suppress it
from the notation (in both qεi and x∗(ε) to simplify the
notation. Consider the following Lyapunov function.

V (x) = −
n∑
i=1

x∗i ln(
xi
x∗i

), (11)

where x∗ is the fixed point of the ODE (10). We can see
that V (x∗) = 0.

By applying the Jensen’s inequality, we move the log
outside the parentheses:

ln(

n∑
i=1

x∗i
xi
x∗i

) ≥
n∑
i=1

x∗i ln(
xi
x∗i

)

ln(

n∑
i=1

xi) ≥ −V (x)

ln(1) ≥ −V (x)

V (x) ≤ 0

Because the function ln(.) is strictly concave, the equal-
ity V (x) = 0 holds whenever:
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x1

x∗1
= · · · = xn

x∗n
(12)

Let the above ratio equal σ.
Therefore,

1 =

n∑
i=1

xi = σ

n∑
i=1

x∗i = σ (13)

Then σ = 1. Thus, V (x) = 0, yields that xi = x∗i ∀i ∈
{1, . . . , n}.

We know that
∑n
i=1 ẋi = 0.

dV (x)

dt
=

n∑
i=1

∂V (x)

∂xi
ẋi

=

n∑
i=1

(1 +
∂V (x)

∂xi
)ẋi

(
since

n∑
i=1

ẋi = 0

)

=
n∑
i=1

(1− x∗i
xi

)(qi(xi)− xi
n∑
j=1

qj(xj))

=

n∑
i=1

(xi − x∗i )

qi(xi)
xi

−
n∑
j=1

qj(xj)


=

n∑
i=1

(xi − x∗i )

qi(xi)
xi

−
n∑
j=1

qj(x
∗
j )

 , (14)

where (14) follows because
∑n
i=1(xi−x∗i )

∑n
j=1 qj(xj) =

(1−1)
∑n
j=1 qj(xj) = 0 = (1−1)

∑n
j=1 qj(x

∗
j ) =

∑n
i=1(xi−

x∗i )
∑n
j=1 qj(x

∗
j ).

Recall that qi(xi) is non-negative decreasing and xi >
0, so that qi(xi)/xi is also decreasing. We will show that
xi − x∗i and qi(xi)

xi
−
∑n
j=1 qj(x

∗
j ) have opposite signs.

In fact, suppose xi > x∗i , then qi(xi)/xi < qi(x
∗
i )/x

∗
i =∑n

j=1 qj(x
∗
j ) ( Recall that x∗ is the fixed point of the ODE

given of Eq. (10) which satisfies x∗i = qi(x
∗
i )/
∑n
j=1 qj(x

∗
j )

). Therefore, dV (x)
dt < 0 for x 6= x∗ and dV (x∗)

dt = 0.
Given that a unique solution exists, x∗ is also asymp-

totically stable, and the ODE will converge to the unique
fixed point satisfying,

x∗i =
qi(x

∗
i )∑n

j=1 qj(x
∗
j )

=
pi(

ε
n + (1− ε)x∗i )∑n

j=1 pj(
ε
n + (1− ε)x∗j )

.

(15)

Thus, we have proved the result. It is not out place to
remark that we have resorted to the decreasing mono-
tonicity of the functions pi to prove that the derivative
of the Lyapunov function is negative by showing that
it is the sum of terms of opposite signs. In the proof of
Lemma 1, only strict monotonicity is needed to prove
the uniqueness of the optimal solution.

We now make use of this ODE result within the
proof of convergence of the two timescale discrete time
algorithm.

Theorem 1. (p̂(t), x(t)) converges almost surely to
(qε(x∗(ε)), x∗(ε)) which, for small ε, approximates
(p(xopt), xopt).

Proof. Let i be arbitrary and fix xi = xi(t). Double
expectation gives

E[(p̂i(t+ 1)− p̂i(t))/αt |Ht] =

E [E[(p̂i(t+ 1)− p̂i(t))/αt |Ht, i(t)] |Ht]

where Ht denotes the history up to immediately prior
to action i(t) being selected at time t.

Since p̂i(t) is updated only if i(t) = i,

E[(p̂i(t+ 1)− p̂i(t))/αt |Ht, i(t) = j] =

Ij=i {E[v(t) |Ht, i(t) = j]− p̂i(t)} =

Ij=i {qεi (xi)− p̂i(t)}

where Ij=i = 1 if i = j and Ij=i = 0 otherwise. Therefore

E[(p̂i(t+ 1)− p̂i(t))/αt |Ht] =

P (i(t) = i |Ht) {qεi (xi)− p̂i(t)} ={
ε
n + (1− ε)xi

}
{qεi (xi)− p̂i(t)}

where P (i(t) = i |Ht) = ε
n + (1− ε)xi by (9). Thus

(p̂i(t+1)−p̂i(t))/αt =
{
ε
n + (1− ε)xi

}
{qεi (xi)− p̂i(t)}+Mt+1

for some martingale difference sequence {Mt}.
We obtain the following ODE system, if (as is pro-

scribed by the two-timescale approach [57]) the strategies
are fixed at xi:

˙̂pi =
( ε
n

+ (1− ε)xi
)

(qεi (xi)− p̂i). (16)

Since xi is fixed, and
(
ε
n + (1− ε)xi

)
> 0, this system

has a unique globally asymptotically stable fixed point
at p̂i = qεi (xi).

Now we consider the slow dynamics, under the as-
sumption that p̂i is fully calibrated (i.e. p̂i = qεi (xi(t))):

xi(t+ 1) = xi(t) + θt[p̂i(t)− xi(t)
n∑
j=1

p̂j(t)]

= xi(t) + θt[q
ε
i (xi(t))− xi(t)

n∑
j=1

qεj(xj(t))],

The corresponding ODE is simply that given in (10), so
Proposition 1 tells us that the slow system also has a
unique globally asymptotically stable fixed point. Apply-
ing the results of [59] shows that (p̂(t), x(t)) converges
almost surely to (q(x∗(ε)), x∗(ε), where x∗(ε) satisfies
(15). In Appendix A, we give a summary of the theory
behind two-timescale framework and how it applies to
our case.

We now show that x∗(ε) is continuous in ε, proving
the final part of the theorem. Suppose not, so that there
exists an ε∞ and a sequence εm → ε∞ such that x∗(εm) 6→
x∗(ε∞). Since x ∈ [0, 1]n, a compact space, there exists a
subsequence εmk

and x∞ 6= x∗(ε∞) such that x∗(εmk
)→

x∞. Now recall that x∗(ε) is the unique solution of 0 =
Qεi(x) := qεi (xi)− xi

∑
j q

ε
j(xj) for all i, and note that the
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Qεi are continuous as functions of both ε and x. Hence
for each i

Qε∞i (x∞i ) = lim
k→∞

Q
εmk
i (x∗i (εmk

)) = lim
k→∞

0 = 0.

By uniqueness of x∗(ε∞), this implies that x∞ = x∗(ε∞),
which leads to a contradiction. So x∗(ε) is continuous in
ε. Note that this is an implicit function theorem [60], but
the need to prove continuity at ε = 0 on the boundary of
the space precludes the use of standard implicit function
theorems.

V. EXPERIMENTAL RESULTS

In this Section, we compare the performance of the
suggested algorithm with the algorithm of Papadim-
itriou et al. [13], [14]. We consider two different reward
functions:
• Linear: For the linear case, we assume the following

reward probabilities

pi(xi(t)) = max {0.7− xi(t)i, 0}, i = 1, 2, . . . , n

• Exponential: For the exponential case, we assume
the following reward probabilities

pi(xi(t)) = 0.7e−xi(t)i, i = 1, 2, . . . , n

We consider fixed steps sizes, meaning θt = θ, αt = θ,
and α << θ. We used ε = 0.001. We considered the
linear case for n = 4 materials and the exponential
case for n = 2 and n = 4. We refer to the three cases
as LINE4, EXP2, and EXP4. Furthermore, We consider
both static and dynamic environments. Please note that
the linear function is only decreasing and not strictly
decreasing. The strictly monotonically decreasing condi-
tion is a sufficient but not necessary condition to ensure
the uniqueness of the optimal point. Please note that
the only part where we use the condition is when, by
contradiction, we used the uniqueness of the optimal
point. In our case, we have verified numerically that the
fixed point is unique.

For the sake of completeness, we provide a description
of Papadimitriou’s algorithm [13], [14] which we use
for comparison purposes in the experiments. In simple
terms, Papdimitriou’s algorithm runs an estimate of the
reward probability for each action and polls that action
in a proportional manner to its estimated reward. Ini-
tially, at time instant 0, we start from an initial probabil-
ity vector that is in the simplex. The algorithm runs the
following loop over time starting from arbitrarily initial
estimates of the reward probabilities p̂i(t), 1 ≤ i ≤ n that
are in the unit interval.

1) Poll a random action i ∈ [1, .., n], according to the
probability

xi(t) =
p̂i(t)∑n
j=1 p̂j(t)

(17)

2) Update the reward probability for the polled action
i, in same manner as (7).

A. Dynamic environment
In this experiment, we investigate situations where the

feedback from the system varies with time. We consider
three different cases:

1. Every D = 500 iteration the reward probabilities
for the different materials are shuffled. More specif-
ically, at every D = 500 iteration we draw a ran-
dom permutation n̄1, . . . , n̄n of the material indexes
[1, 2, . . . , n]. The reward probability for amount xi
of material i, then becomes pn̄i(xi). We refer to this
case as SHORT.

2. The same as 1., with D = 5000. We refer to this case
as LONG.

3. We now let D be a stochastic variable with the
outcomes 500, 2000, and 10 000 with the probabilities

P (D = 500) = 20/26

P (D = 2000) = 5/26

P (D = 10000) = 1/26

which means that the amount of time spent in a
rapidly (D = 500), medium (D = 2000), and slowly
(D = 10 000) changing environment is equal. We
refer to this case as RAND. The objective of this case
is to investigate the extent to which our algorithm is
robust and can handle environments that randomly
alternate between rapid and slow changes.

In order to initialize our scheme, we use a flat Dirich-
let distribution that ensures that the initial values are
uniformly distributed in the simplex.

In a dynamic environment, the aim is to obtain polling
probabilities as close as possible to the underlying opti-
mal values in every iteration. For a given choice of the
tuning parameters and for each of the three cases above,
we ran a chain for N = 106 iterations. We measured the
error using the RMSE.

L
(
x̂′∗ , xopt;α

)
=

1

n

∑
i=1

√√√√ 1

N

N∑
j=1

(
x′ij − x

opt
i

)2
(18)

where x′ij refers to the value of the chain at iteration j for
material i and xopt to the optimal values of the chains.

Let p(α) denote a probability distribution for our prior
belief in the tuning parameter α in the algorithms. As
a key performance indicator, we define the Bayesian
expected loss

Eα

(
L
(
x̂′∗ , xopt;α

))
=

∫ 1

0

L
(
x̂′∗ , xopt;α

)
p(α) dα (19)

As described above, it is not possible to know be-
forehand which values for the tuning parameters will
perform best, and we therefore computed the RMSE in
(18) for a large set of values. We tested the following
ratios: θ/α: 1/50, 1/20, 1/10, 1/5 and 1/3. Using higher
ratios than 1/3 resulted in convergence problems since
the material amounts sometimes became negative. Table
I shows results under optimal values of the tuning
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Ratio
Pap. 1/50 1/20 1/10 1/5 1/3

SHORT
EXP2 4.76 4.67 4.69 4.79 4.93 5.01
EXP4 3.02 2.90 2.98 3.03 3.13 3.17
LINE4 4.07 4.53 4.05 4.11 4.26 4.37

LONG
EXP2 2.73 2.74 2.82 2.77 2.85 2.89
EXP4 1.70 1.74 1.75 1.79 1.85 1.89
LINE4 2.33 2.26 2.35 2.42 2.43 2.56

RAND
EXP2 3.05 3.08 3.11 3.12 3.22 3.23
EXP4 1.90 1.90 1.93 1.96 2.03 2.08
LINE4 2.64 2.51 2.58 2.60 2.72 2.76

TABLE I: Dynamic environment. RMSE multiplied by
100 under optimal choices of the tuning parameter α.

Ratio
Pap. 1/50 1/20 1/10 1/5 1/3

SHORT
EXP2 23.70 5.28 5.10 5.69 7.11 8.82
EXP4 14.12 3.16 3.52 4.35 5.79 7.43
LINE4 17.19 6.12 5.03 4.82 5.49 6.84

LONG
EXP2 23.61 3.16 3.74 4.82 6.57 8.42
EXP4 14.07 2.17 2.96 4.00 5.57 7.26
LINE4 17.08 2.94 2.85 3.36 4.54 6.15

RAND
EXP2 23.63 3.48 3.92 4.93 6.63 8.46
EXP4 14.08 2.30 3.02 4.04 5.59 7.28
LINE4 17.08 3.44 3.10 3.52 4.64 6.22

TABLE II: Bayesian expected loss based on Equation (19)
in dynamic environments. The Bayesian expected losses
are scaled in the tables by a factor of 100.

parameter α. Figure 3 in the Appendix B shows addi-
tional results under all choices of the tuning parameter
α. From Table I, we see that, under optimal values of
the tuning parameters, Papadimitriou’s algorithm and
the suggested algorithm perform about equally well.
However, from Figure 3, we see that the performance of
Papadimitriou’s algorithm is much more sensitive to the
choice of the tuning parameter α than the suggested al-
gorithm. This is further demonstrated in Table II, which
shows the Bayesian expected loss on the assumption
of no prior knowledge of α, i.e., p(α) in (19) is the
uniform distribution on the [0, 1] interval. We see that
the suggested algorithm outperforms the algorithm of
Papadimitriou by a large margin. Robustness is impor-
tant since we usually have little knowledge of suitable
values for α.

B. Static environment

In a static environment, we assume that the reward
probabilities do not vary with time. In this section we
demonstrate how the algorithm in this paper can also be
used for such cases. The basic idea is to take the average
over time instead of picking the last material estimates.
In a static environment, the aim is to get as precise
estimates of the true material amounts xopt1 , xopt2 , . . . , xoptn

as possible within a given set of iterations N . If we
use high values for the tuning parameters, α and θ, the
estimates will rapidly converge towards the true material
amounts, but the marginal variance of the chain after
convergence will be high. If we use low values for the
tuning parameters, the estimates will converge slowly
toward the true estimates, but the marginal variance

of the chain after convergence will be low. In other
words, it is not easy to know which values of the tuning
parameters will result in the least estimation error based
on a set of iterations. In the experiments below, we there-
fore measured the estimation error for a large number
of different choices of parameters. To estimate the true
material amounts, we use two estimation strategies.

1. In the first strategy, we simply take the average of
all the values of the material amounts in the chain
up to iteration N . A disadvantage of this strategy is
that we also include the values before convergence,
resulting in estimation bias.

2. The second strategy uses a simple procedure to
detect when a chain has converged by running
two chains in parallel, starting with highly different
initial estimates. For example if n = 4, we could
start the first chain with the initial state x1 = 0.5,
x2 = 0, x3 = 0.5 and x4 = 0 and start the second
chain from x1 = 0.25, x2 = 0.25, x3 = 0.25 and
x4 = 0.25. When the two chains have crossed at
least once for every material, we assume that the
chains have converged. Since we run two chains, to
make the comparison with the first strategy fair, we
only run each of the chains for N/2 iterations in this
strategy. We estimate the true material amounts by
taking the average of all the values from the two
chains after convergence is detected.

For a given choice of the tuning parameters, we com-
puted the estimation error using the root mean squared
error measure (RMSE). In order to reduce the Monte
Carlo error in the results, we repeated the experiment
M = 1000 times. For the first strategy the RMSE becomes

L
(
x̂′∗ , xopt;α

)
=

1

n

n∑
i=1

√√√√ 1

M

M∑
k=1

(
x̂′
∗
ki(α)− xopti

)2

(20)

where x̂′
∗
ki(α) is the average of all the values of the

amount of material i in the chain using the value α for
the tuning parameter, i.e.

x̂′
∗
ki(α) =

1

N

N∑
j=1

xijk

where x∗ijk is the value of the chain from experiment k at
iteration j for material i. Results under optimal choices
of the tuning parameters are shown in Tables III and IV.
Figures 1 and 2 in the Appendix B present additional
results under all choices of the tuning parameter α.
We start with the results based on the first estimation
strategy (average of all values of the chain) shown in
Figure 1 and Table III. From Figure 1, for N = 1000
iterations, and to some extent for N = 10 000 iterations,
using a ratio of 1/50 results in a high estimation error
for low values of α. Using a ratio of 1/3 for the LINE4
case, we observe high estimation errors for high values
of α. Overall, it seems that using ratios of 1/5, 1/10,
1/20 results in good estimation performance for almost
any choice of α. This is an important property since,
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Ratio
Pap. 1/50 1/20 1/10 1/5 1/3

N = 1000
EXP2 7.40 12.70 8.27 7.41 7.12 7.32
EXP4 4.29 5.40 4.46 4.38 4.39 4.33
LINE4 3.83 5.19 3.58 3.55 3.53 3.61

N = 10 000
EXP2 2.30 2.46 2.25 2.27 2.29 2.27
EXP4 1.34 1.39 1.38 1.37 1.37 1.37
LINE4 1.04 1.01 0.97 0.99 0.98 0.96

TABLE III: Static environment. Estimation based on us-
ing all values of the chains. The table shows RMSE
multiplied by 1000 under optimal choices of the tuning
parameter α.

Ratio
Pap. 1/50 1/20 1/10 1/5 1/3

N = 1000
EXP2 7.18 9.16 7.24 7.23 7.09 7.02
EXP4 4.28 4.50 4.30 4.22 4.37 4.35
LINE4 2.97 2.97 2.83 2.85 2.89 2.88

N = 10 000
EXP2 2.29 2.16 2.21 2.22 2.13 2.22
EXP4 1.31 1.33 1.33 1.33 1.33 1.35
LINE4 0.88 0.86 0.86 0.87 0.87 0.86

TABLE IV: Static environment. Estimation based on us-
ing all values of the chains after convergence. The table
shows RMSE multiplied by 1000 under optimal choices
of the tuning parameter α.

in a real situation, it is hard to know which values of
the tuning parameters are preferable. From Table III, we
see that Papadimitriou’s algorithm and the suggested
algorithm perform about equally well under optimal
choices of the tuning parameters. However the perfor-
mance of Papadimitriou’s algorithm is highly sensitive
to the choice of α, which can be critical in a real situation
since we do not know which value of α to use. In fact,
by choosing a value of α that deviates slightly from
the optimal value, the performance of Papadimitriou’s
algorithm drops dramatically. Inspecting the results for
the second strategy (average after convergence), shown
in Figure 2 and Table IV, we can draw many of the same
conclusions. Using a ratio of 1/5, 1/10 or 1/20 yields
very robust results. Again, we see that the performance
of Papadimitriou’s algorithm is critically sensitive to the
choice of α.

Tables V and VI summarize the Bayesian expected loss
for the results in Figures 1 to 2. We usually have minimal
knowledge about preferable values of α, and the results
in Tables V and VI are computed on the assumption that
the prior distribution p(α) is the uniform distribution on
the interval [0, 1]. From the tables, we see that especially
for N = 10 000 iterations, the suggested method outper-
forms Papadimitriou’s algorithm by a large margin. We
also see that the suggested method performs a little bet-
ter for strategy two (average of values after convergence)
compared to strategy one (average of all values), while
Papadimitriou’s algorithm performs about equally well
for the two strategies.

VI. CONCLUSION

In this article, we have presented an efficient and
novel solution to the NSPP problem, which was first

Ratio
Pap. 1/50 1/20 1/10 1/5 1/3

N = 1000
EXP2 1.58 4.08 2.24 1.53 1.17 1.04
EXP4 0.79 1.61 0.95 0.72 0.62 0.63
LINE4 3.47 1.87 1.01 0.73 0.75 1.09

N = 10 000
EXP2 1.35 0.72 0.43 0.33 0.31 0.36
EXP4 0.63 0.30 0.20 0.18 0.22 0.31
LINE4 3.42 0.31 0.18 0.19 0.41 0.86

TABLE V: Bayesian expected loss based on equation (19)
in a static environment using estimation based on all
values of the chain. Evaluation after N = 1000 and N =
10 000 iterations. The Bayesian expected losses are scaled
in the tables by a factor of 100.

Ratio
Pap. 1/50 1/20 1/10 1/5 1/3

N = 1000
EXP2 1.56 2.86 1.65 1.20 0.97 0.92
EXP4 0.79 1.16 0.75 0.60 0.55 0.59
LINE4 3.46 1.92 0.98 0.68 0.69 1.07

N = 10 000
EXP2 1.35 0.50 0.36 0.29 0.28 0.34
EXP4 0.63 0.22 0.19 0.17 0.21 0.30
LINE4 3.41 0.26 0.19 0.18 0.40 0.85

TABLE VI: Bayesian expected loss based on equation (19)
in a static environment using estimation based on values
after convergence. Evaluation after N = 1000 and N =
10 000 iterations. The Bayesian expected losses are scaled
in the tables by a factor of 100.

introduced by Papadimitriou and colleagues. Our solu-
tion outperforms the state-of-the-art solution by a large
margin in terms of Bayesian expected loss. Furthermore,
our solution is robust to the choice of the tuning param-
eter. Moreover, the paper advocates the concept of two-
timescale LA, paving the way for more research on this
novel type of LA design. In future work, we would like
to generalize our solution to the NSPP problem to tackle
the case of continuous random variables. Furthermore,
designing a discretized LA algorithm to solve the NSPP
problem is an interesting research direction that is worth
pursuing.
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APPENDIX A
TWO-TIMESCALE FRAMEWORK

Theorem 5 of [59] presents the results of [57] in a more
useful framework for our context. It considers a system:

θ
(j)
n+1 = θ(j)

n + λ(j)
n

{
F (j)(θ(1)

n , θ(2)
n ) +M

(j)
n+1

}
for j = 1, 2, with F (j) globally Lipschitz, the {θ(j)

n }
sequences bounded,

∑
λn =∞ and

∑
λ2
n <∞, with the

Mn martingale difference sequences (so that
∑
λnMn+1

converges a.s.), and λ
(1)
n /λ

(2)
n → 0 as n → ∞ (the two-

timescales assumption). If for each fixed θ(1) the ODE
Ẏ = F (2)(θ(1), Y ) has a globally attracting fixed point
ξ(θ(1)) where ξ is Lipschitz, then (almost surely):

‖θ(2)
n − ξ(θ(1)

n )‖ → 0

and an interpolation of the iterates θ(1)
n is an asymptotic

pseduotrajectory of the ODE:

Ẋ = F (1)(θ(1)
n , ξ(X)). (21)

Results from Benaı̈m [61], culminating with Proposi-
tion 6.4, tell us that if there is a Lyapunov function for a

Fig. 1: Static environment based on using all values of
the chains. The left and the right refer to evaluation after
N = 1000 and N = 10 000 iterations, respectively. The
rows from top to bottom refer to the cases EXP2, EXP4
and LINE4, respectively.

unique fixed point of this fast timescale ODE (21) then
the iterates {θ(1)

n } converge to the fixed point.
In our article we map θ(2) to the vector of p̂ values,

θ(1) to the vector of x values, λ(1) to θ and λ(2) to α. The
conditions on αt and θt immediately following Eq. (8)
ensure they meet the requirements of the general theory.
Furthermore, by the assumption that pi are Lipschitz
function of xi, and using the fact that the composition
of two Lipschitz functions is Lipschitz, and the sum of
Lipschitz functions is again Lipschitz, we deduce that
qi(xi)−xi

∑
j qj(xj) is Lipschitz function xi. We can also

see that (ε/n+(1− ε)xi)(qi(xi)− p̂i) is Lipschitz function
of p̂i since any linear function is Lipschitz.

The proof given of Theorem 1 verifies the convergence
of the requisite ODEs.

APPENDIX B
SUPPLEMENTARY EXPERIMENTAL RESULTS

Please recall the experiments leading to the results in
Tables III and IV. Figures 1 and 2 show estimation error
under all possible values of α.

Please recall the experiments leading to the results in
Table I. Figures 3 in Appendix B show tracking error
under all possible values of α.
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Fig. 2: Static environment based on using values of the
chains after convergence. The left and the right column
refer to evaluation after N = 1000 and N = 10 000
iterations, respectively. The rows from top to bottom
refer to the cases EXP2, EXP4 and LINE4, respectively.
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Fig. 3: Dynamic environment. RMSE under different choices of the tuning parameters. The columns from left to
right refer to the cases SHORT, LONG and RAND, respectively. The rows from top to bottom refer to the cases
EXP2, EXP4 and LINE4, respectively.


