
Exploring the Problems, their Causes and Solutions of AI Pair
Programming: A Study on GitHub and Stack Overflow
Xiyu Zhoua, Peng Lianga,∗, Beiqi Zhanga, Zengyang Lib, Aakash Ahmadc, Mojtaba Shahind and
Muhammad Waseeme

aSchool of Computer Science, Wuhan University, Wuhan, China
bSchool of Computer Science, Central China Normal University, Wuhan, China
cSchool of Computing and Communications, Lancaster University Leipzig, Leipzig, Germany
dSchool of Computing Technologies, RMIT University, Melbourne, Australia
eFaculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

A R T I C L E I N F O
Keywords:
GitHub Copilot, GitHub Issues,
GitHub Discussions, StackOverflow
Post, Problem, Cause, Solution

A B S T R A C T
With the recent advancement of Artificial Intelligence (AI) and Large Language Models (LLMs), AI-
based code generation tools become a practical solution for software development. GitHub Copilot,
the AI pair programmer, utilizes machine learning models trained on a large corpus of code snippets
to generate code suggestions using natural language processing. Despite its popularity in software
development, there is limited empirical evidence on the actual experiences of practitioners who
work with Copilot. To this end, we conducted an empirical study to understand the problems that
practitioners face when using Copilot, as well as their underlying causes and potential solutions.
We collected data from 473 GitHub issues, 706 GitHub discussions, and 142 Stack Overflow posts.
Our results reveal that (1) Operation Issue and Compatibility Issue are the most common problems
faced by Copilot users, (2) Copilot Internal Error, Network Connection Error, and Editor/IDE
Compatibility Issue are identified as the most frequent causes, and (3) Bug Fixed by Copilot, Modify
Configuration/Setting, and Use Suitable Version are the predominant solutions. Based on the results,
we discuss the potential areas of Copilot for enhancement, and provide the implications for the Copilot
users, the Copilot team, and researchers.

1. Introduction
In software development, developers strive to achieve

automation and intelligence to generate most code automat-
ically with minimal human coding effort. Several studies
(e.g., Luan et al. (2019), Robillard et al. (2010)) and soft-
ware products (e.g., Eclipse Code Recommenders (Eclipse,
2019)) have been dedicated to improving the efficiency of
developers through the development of systems that can
recommend and generate code. However, early AI code gen-
eration tools mostly used heuristic rules or expert systems,
which faced significant limitations, including inflexibility
and challenges in scalability (Jiang et al., 2024), making
them less adaptable to varying contexts. Large Language
Models (LLMs) are a type of natural language processing
(NLP) technique based on deep learning that is capable of
automatically learning the grammar, semantics, and prag-
matics of language, and generating a wide variety of con-
tents. Due to the extensive number of parameters and large-
scale training datasets, LLMs have demonstrated powerful
capabilities in NLP, often approaching or even surpassing
human-level performance in NLP tasks such as text trans-
lation (Huang et al., 2023) and sentiment analysis (Amin
et al., 2023) (Chen et al., 2023). The expansion of model

∗Corresponding author.
xiyuzhou@whu.edu.cn (X. Zhou); liangp@whu.edu.cn (P. Liang);

zhangbeiqi@whu.edu.cn (B. Zhang); zengyangli@ccnu.edu.cn (Z. Li);
ahmad.aakash@gmail.com (A. Ahmad); mojtaba.shahin@rmit.edu.au (M.
Shahin); muhammad.m.waseem@jyu.fi (M. Waseem)

ORCID(s):

parameters also enables LLMs to capture intricate language
patterns, resulting in sustained performance enhancements
across a wide range of downstream tasks (Wei et al., 2022).
Therefore, the emergence of LLMs has significantly re-
shaped the field of code generation tasks (Chen et al., 2021).
Recently, AI code generation tools driven by LLMs that
have been trained on large amounts of code snippets are
increasingly in the spotlight (e.g., AI-augmented develop-
ment in Gartner Trends 2024 (Gartner, 2023)), making it
possible for programmers to automatically generate code
with minimized human effort (Austin et al., 2021).

On June 29, 2021, GitHub and OpenAI jointly an-
nounced the launch of a new product named GitHub Copi-
lot (GitHub, 2024d). This innovative tool is powered by
OpenAI’s Codex, a large-scale neural network model that
is trained on a massive dataset of source code and natural
language text. The goal of GitHub Copilot is to provide
advanced code autocompletion and generation capabilities
to developers, effectively acting as an “AI pair programmer”
that can assist with coding tasks in real-time. Copilot has
been designed to work with a wide range of Integrated
Development Environments (IDEs) and code editors, such
as VSCode, Visual Studio, Neovim, and JetBrains (GitHub,
2024d). By collecting contextual information like function
names and comments, Copilot is able to generate code snip-
pets in a variety of programming languages (e.g., Python,
C++, Java), which can improve developers’ productivity
and help them complete coding tasks more efficiently (Imai,
2022).

X Zhou et al.: Preprint submitted to Elsevier Page 1 of 22

Problems, Causes and Solutions of Using GitHub Copilot

Since its release, Copilot has gained significant attention
within the developer community, and it had a total of 1.3
million paid users till Feb of 2024 (Wilkinson, 2024). Many
studies identify the effectiveness and concerns about the
potential impact on code security and intellectual prop-
erty (Pearce et al., 2022) (Bird et al., 2023) (Jaworski and
Piotrkowski, 2023). Some prior research investigated the
quality of the code generated by Copilot (Yetistiren et al.,
2022) (Nguyen and Nadi, 2022), while others examined its
performance in practical software development (Imai, 2022)
(Barke et al., 2023) (Peng et al., 2023).

However, there is currently a lack of systematic catego-
rization of the problems arise during the practical use of
Copilot from the perspective of developers, as well as the
causes behind them and solutions for addressing them. To
this end, we conducted a thorough analysis of the problems
faced by software developers when coding with GitHub
Copilot, as well as their causes and solutions, by collecting
data from GitHub Issues, GitHub Discussions, and Stack
Overflow (SO) posts, which would help to understand the
limitations of Copilot in practical settings.

Our findings show that: (1) Operation Issue and Com-
patibility Issue are the most common problems faced by
developers, (2) Copilot Internal Error, Network Connection
Error, and Editor/IDE Compatibility Issue are identified as
the most frequent causes, and (3) Bug Fixed by Copilot,
Modify Configuration/Setting, and Use Suitable Version are
the predominant solutions.

The contributions of this work are that:
• We provided a two-level taxonomy for the problems

of using Copilot in the software development practice,
and a one-level taxonomy for the causes of the prob-
lems and the solutions to address the problems.

• We drew a mapping from the identified problems to
their causes and solutions.

• We proposed practical guidelines for Copilot users,
the Copilot team, and other researchers.

The rest of this paper is structured as follows: Section
2 presents the Research Questions (RQs) and research pro-
cess. Section 3 provides the results and their interpretation.
Section 4 discusses the implications based on the research
results. Section 5 clarifies the potential threats to the validity
of this study. Section 6 reviews the related work. Finally,
Section 7 concludes this work along with the future direc-
tions.

2. Methodology
The research goal of this study is to identify the problems

encountered by users when coding with Copilot, as well as
their underlying causes and potential solutions. We formu-
lated three RQs presented in Section 2.1. Fig. 1 provides the
overview of the research process.

2.1. Research Questions
RQ1: What are the problems faced by users while using
Copilot in software development practice?
Rationale: GitHub Copilot is one of the most popular
AI-assisted coding tools and has been widely used for
software development with 1.3 million paid users till Feb
of 2024 (Wilkinson, 2024). Consequently, it is important to
understand the specific challenges and problems users face
while using this tool in software development practice.
RQ2: What are the underlying causes of these problems?
Rationale: Understanding the causes of the problems
identified in RQ1 is essential to developing effective
solutions to address them. By identifying these causes, this
study can provide insights into how to improve the design
and functionality of Copilot.
RQ3: What are the potential solutions to address these
problems?
Rationale: Exploring the solutions of the problems identified
in RQ1 and the causes identified in RQ2 is essential to
improving the user experience when using Copilot. By
identifying these solutions, this study can gain insight into
potential improvements that enhance the functionality and
usability of Copilot.

2.2. Data Collection
We collected data from three sources: GitHub Issues1,

GitHub Discussions2, and SO posts3. Data from these three
sources has been frequently used in empirical studies to
gather various developer-reported problems in software en-
gineering (Bird et al., 2023) (de Dieu et al., 2023) (El aoun
et al., 2021). GitHub Issues is a commonly used feature on
GitHub for tracking bugs and feature requests and reporting
other issues related to software projects. It allows us to
capture the specific problems that users have encountered
when coding with Copilot. GitHub Discussions is a feature
that allows open-ended discussions among project contrib-
utors and community members. It offers a central hub for
project-related discussions and knowledge sharing. Stack
Overflow is a public Q&A platform covering a wide range
of programming, development, and technology topics, also
including inquiries about using Copilot.

Considering that Copilot was announced and started its
technical preview on June 29, 2021, we chose to collect the
data that were created after that date. The data collection
was conducted on June 18, 2023. To answer RQ3, i.e., the
solutions for addressing Copilot usage problems, we chose
to collect closed GitHub issues, as well as answered GitHub
discussions and SO posts. Specifically, for GitHub issues,
we used “Copilot” as the keyword to search closed Copilot-
related issues globally in the entire GitHub, and a total of
4,057 issues were retrieved. We also employed “Copilot” as
a keyword to search answered posts in SO, resulting in 679
retrieved posts. Note that we did not use the “Copilot” tag

1https://docs.github.com/en/issues
2https://github.com/orgs/community/discussions/categories/copilot
3https://stackoverflow.com/

X Zhou et al.: Preprint submitted to Elsevier Page 2 of 22

https://docs.github.com/en/issues
https://github.com/orgs/community/discussions/categories/copilot
https://stackoverflow.com/

Problems, Causes and Solutions of Using GitHub Copilot

 Research Questions

Data Extraction
[D1~D3: Data Items]

RQ1

RQ2

RQ3

Phase A Phase C Phase D

Problems

Causes

Solutions

Data Labelling

[474 issues]

GitHub

Issues Discussions

Data Extraction

[706 discussions]

Stack Overflow

[142 posts]
Posts

Phase B

Data Collection

Phase E

Data Analysis

Open Coding
&

Constant Comparison

Problems
Causes
Solutions

Copilot Usage Related Data

GitHub Stack Overflow

Figure 1: Overview of the research process

for retrieval because the keyword-based method allows us
to obtain a more exhaustive dataset. Different from GitHub
issues and SO posts, GitHub discussions related to Copilot
are grouped under the “Copilot” subcategory within the
“Product” category in the GitHub Community, which is
recommended by the Copilot team to provide feedback on
Copilot usage. Therefore, the discussions within the “Copi-
lot” subcategory frequently receive attention and responses
from the Copilot team, making them highly valuable for
answering RQ2 and RQ3 in our research. Given the high
relevance of these discussions to Copilot usage, we collected
all the 925 answered discussions under the “Copilot” subcat-
egory.
2.3. Data Labelling

We conducted the data labelling on the collected data
to filter out those cannot be used for this study. The criteria
for data filtering is as follows: the issue, discussion, or post
should contain specific information related to the use of
GitHub Copilot.
2.3.1. Pilot Data Labelling

To minimize personal bias in the formal labelling pro-
cess, the first and third authors conducted a pilot data la-
belling. For GitHub issues and discussions, we randomly
selected 100 and 25 from each, making up 2.5% of the total
count. Due to the small quantity of SO posts, we randomly
selected 35, which constitutes 5% of the total posts. Selecting
a certain proportion of data from different platforms respec-
tively is to verify whether the criteria of the two authors
are consistent across various data sources. The inter-rater
reliability between the two authors was measured by the
Cohen’s Kappa coefficient (Cohen, 1960), resulting in values
of 0.824, 0.834, and 0.806, which indicate a reasonable level
of agreement between the two authors. For any discrepancies
in the results, the two authors engaged in discussions with
the second author to reach a consensus. To be specific,
the first author and the third author presented their reasons
for why the data should or should not be included in our
research. Then, the three authors analyzed and discussed
these reasons according to the criteria for data filtering,
ultimately arriving at a conclusion accepted by the three
authors. The results of pilot data labelling were compiled
and recorded in MS Excel (Zhou et al., 2024).

2.3.2. Formal Data Labelling
The first and third authors then conducted the formal

data labelling. During this process, we excluded a large
amount of data not related to our research. For instance,
“Copilot” may refer to other meanings in some situations,
such as the “co-pilot” of an aircraft. Additionally, Copilot
might be mentioned in a straightforward manner without
additional information, like a post mentioned, “You can try
using Copilot, which is amazing”. We also excluded such
cases of data since they could not provide useful information
about the usage of Copilot. During the labelling process, any
result on which the two authors disagreed was subject to
discussion with the second author until an agreement was
reached. Ultimately, the two authors collected 473 GitHub
issues, 706 GitHub discussions, and 142 SO posts. The data
labelling results were compiled and recorded in MS Excel
(Zhou et al., 2024).
2.4. Data Extraction

To answer the three RQs in Section 2.1, we established
a set of data items for data extraction, as presented in
Table 1. Data items D1-D3 intend to extract the information
of problems, underlying causes, and potential solutions from
the filtered data to answer RQ1-RQ3, respectively. These
three data items could be extracted from any part of a GitHub
issue, discussion, or SO post, such as the title, the problem
description, comments, and discussions.
2.4.1. Pilot Data Extraction

The first and third author conducted a pilot data extrac-
tion on 20 randomly selected GitHub issues, 20 discussions,
and 20 SO posts, and in case of any discrepancies, the
second author was involved to reach a consensus. The results
indicated that the three data items could be extracted from
our dataset. Based on the observation, we established the
following criteria for formal data extraction: (1) If the same
problem was identified by multiple users, we recorded it
only once. (2) If multiple problems were identified within
the same GitHub issue, GitHub discussion, or SO post,
we recorded each one separately. (3) For a problem that
has multiple causes mentioned, we only recorded the cause
confirmed by the reporter of the problem or the Copilot
team as the root cause. (4) For a problem that has multiple
solutions suggested, we only recorded the solutions that were

X Zhou et al.: Preprint submitted to Elsevier Page 3 of 22

Problems, Causes and Solutions of Using GitHub Copilot

First Author
Discussion #10598
Code1

Open
Coding

"Stopped Giving
Inline Suggestions"

Step 1

Type

Code1 Code2

Category

Step 2

Constant
Comparison

Three Authors

Negotiated
Agreement

Step 3

Taxonomy

Figure 2: The process of data analysis

Table 1
Data items extracted and their corresponding RQs

Data Item Description RQ

D1 Problem The key point(s) of the problem from GitHub
issues, GitHub discussions, and SO posts RQ1

D2 Cause The key point(s) of the cause from GitHub
issues, GitHub discussions, and SO posts RQ2

D3 Solution The key point(s) of the solution from GitHub
issues, GitHub discussions, and SO posts RQ3

confirmed by the reporter of the problem or the Copilot team
to actually solve the problem.
2.4.2. Formal Data Extraction

The first and third authors conducted the formal data
extraction from the filtered dataset to extract the data items.
Subsequently, they discussed and reached a consensus with
the second author on inconsistencies to ensure that the data
extraction process adhered to the predetermined criteria.
Each extracted data item was reviewed multiple times by the
three authors to ensure accuracy. The data extraction results
were compiled and recorded in MS Excel (Zhou et al., 2024).

Although we selected closed GitHub issues, and an-
swered GitHub discussions and SO posts, not all collected
data includes the cause and solution of a problem. Some-
times, the respondents to a Copilot related problem might
offer a solution without detailed analysis, preventing us
from extracting the underlying causes. In other situations,
although the cause of a problem was identified, the user did
not describe the specific resolution process. For example, a
user found that Copilot “cannot work correctly on VSCode
remote server” and realized it was due to “the bad network”,
but did not provide any solutions (Discussion #14907). Ad-
ditionally, even when some responses provided both causes
and solutions, they might not be accepted or proven effective
by the problem’s reporter or the Copilot team. For example,
a user asked for “a way to set up GitHub copilot in Google
Colab”, but the user neither accepted nor replied to the three
proposed answers (SO #72431032). Therefore, we cannot
consider any of the three answers as an effective solution
to his problem.
2.5. Data Analysis

To answer the three RQs formulated in Section 2, we
conducted data analysis by using the Open Coding and
Constant Comparison methods, which are two widely em-
ployed techniques from Grounded Theory during qualitative
data analysis (Stol et al., 2016). Open Coding is a research
method that encourages researchers to generate codes based

on the actual content of the data rather than being restricted
by pre-existing theoretical frameworks. These codes con-
stitute descriptive summarizations of the data, aiming to
capture the underlying themes. For Constant Comparison,
researchers continuously compare the coded data, dynam-
ically refining and adjusting the categories based on their
similarities and differences before forming the final classifi-
cation results.

As presented in Fig 2, the specific process of data
analysis includes three steps: 1) The first author reviewed
the collected data and then assigned descriptive codes that
succinctly encapsulated the core themes. For instance, the
issue in Discussion #10598 was coded as “Stopped Giving
Inline Suggestions”, which was reported by a user whose
Copilot suddenly stopped providing code suggestions in
VSCode. 2) The first author compared different codes to
identify patterns, commonalities, and distinctions among
them. Through this iterative comparison process, similar
codes were merged into higher-level types and categories.
For example, the code of Discussion #10598, along with
other akin codes, formed into the type of FUNCTIONALITY
FAILURE, which further belongs to the category of Operation
Issue. Once uncertainties arose, the first author engaged in
discussions with the second and third authors to achieve a
consensus. Due to the nature of Constant Comparison, both
the types and the categories were refined multiple times
before reaching their final form. 3) The initial version of the
analysis results was further verified by the second and third
authors, and the negotiated agreement approach (Campbell
et al., 2013) was employed to address the conflicts. The final
results are presented in Section 3.

3. Results and Interpretation
In this section, we report the results of three RQs and

provide their interpretation. The results of Copilot usage
problems are categorized into two levels: categories (e.g.,
Suggestion Content Issue) and types (e.g., LESS EFFICIENT
SUGGESTION). Meanwhile, the results for causes and solu-
tions are organized as types only (e.g., Network Connection
Error). We also provide the mapping relationship of Copilot
related problems to their causes and solutions. As mentioned
in Section 2.4.2, only causes that were proven to lead to
the problems and solutions that could resolve the problems
were extracted and provided in the results. Therefore, not
all problems have corresponding causes and solutions. It is
worth noting that due to the rapid update of Copilot, some
problems and feature requests raised by users have already

X Zhou et al.: Preprint submitted to Elsevier Page 4 of 22

Problems, Causes and Solutions of Using GitHub Copilot

Taxonomy of Problems of Using GitHub Copilot

User Experience Issue (58, 4.3%)Suggestion Content Issue (59, 4.4%)

Feature Request (201, 14.9%)

Copyright and Policy Issue (45, 3.3%)

Compatibility Issue (211, 15.6%)

Taxonomy (Number of Issues)Type

Taxonomy Legend

 Version Control Issue (28)
 Installation Issue (50)

 Accessing Failure (84)

 Startup Issue (193)

 Authentication Failure (198)

 Functionality Failure (226) Function Request (114)

 Integration Request (71)

 Professional Copilot Version (6)

 UI Request (10)
 Plug-in Compatibility Issue (70)

 Editor/IDE Compatibility Issue (136)

 Keyboard Compatibility Issue (5)

 Poor Authentication Experience (13)

 Poor Performance (10)

Poor Subscription Experience (11)

Poor Functionality Experience (24)

Nonsensical Suggestion (12)

Low Quality Suggestion (25)

Suggestion with Invalid Syntax (4)

Suggestion with Bugs (8)

Insecure Suggestion (2)

Less Efficient Suggestion (2)

Violation of Marketplace Policy (1)

Code Telemetry Issue (18)

Code Copyright Issue (26)

 Category
 (Number, Percentage)

Incomprehensible Suggestion (6)

Operation Issue (779, 57.5%)

Example of 'Authentication Failure' Issue

Can't login to Github via Copilot #4459

https://github.com/coder/code-server/issues/4459

Identifies Problem

m
ay

 p
ro

vi
de

de
sc

rip
tio

n

1

2

Contributor

GitHub Issues

3
reports

Throws a TypeError
This issue can be reproduced in VS Code: No

Figure 3: A taxonomy of problems when using GitHub Copilot

been addressed in newer releases of Copilot. We identified
these two scenarios separately as two types of solutions, i.e.,
Bug Fixed by Copilot and Feature Implemented by Copilot.
However, due to the absence of Copilot version information
in the dataset, we could not consider the version information
thoroughly in this study. To help understand the taxonomies
of problems, causes, and solutions of using Copilot, we
provide examples with the “#” symbol, which indicates the
“GitHub Issue ID”, “GitHub Discussion ID”, or “SO Post
ID” in the dataset (Zhou et al., 2024).
3.1. Type of Problems (RQ1)

Fig. 3 presents the taxonomy of the problems extracted
from our dataset. We have identified a total of 1,355 prob-
lems related to Copilot usage. It can be observed that Oper-
ation Issue (57.5%) accounts for the majority of problems
faced by Copilot users. Furthermore, there are a notable
number of users who have countered Compatibility Issue
(15.6%) when using Copilot in different environments, fol-
lowed by users who have raised Feature Request (14.9%)
based on their user experience and requirements. Addi-
tionally, smaller percentages were identified as Suggestion
Content Issue (4.4%), User Experience Issue (4.3%), and
Copyright and Policy Issue (3.3%).
3.1.1. Operation Issue (57.5%)

Operation Issue refers to a category of obstacles en-
countered by users when attempting to utilize some of the
fundamental functions of Copilot. This category of problems
is divided into six types, which are elaborated below.

• FUNCTIONALITY FAILURE refers to the abnormality of
code generation-related features provided by Copilot.
Copilot offers various interactive features to better

engage with users, such as “previous/next sugges-
tion”, “viewing all suggestions”, and “configuration
of shortcut keys to accept suggestions”. Users may
encounter exceptions when using these features. For
example, a user reported that “Copilot no longer sug-
gesting on PyCharm” after a period of not using it
(Discussion #11199).

• STARTUP ISSUE refers to errors or malfunctions en-
countered by users attempting to run Copilot. This
issue results in a complete failure of Copilot to execute
and is typically accompanied by error messages. Such
problems may arise either during a user’s initial usage
of Copilot or unexpectedly after several successful
runs. For example, a user failed to activate Copilot
after installing it on VSCode, and received an error
message stating “Cannot find module” (Issue #380).

• AUTHENTICATION FAILURE refers to the issues re-
lated to user login and authentication difficulties when
using Copilot. Copilot requires users to log in to
their GitHub account before using the service. Only
users with access permissions (including paid sub-
scriptions, student identity verification, etc.) can use
the code generation service of Copilot. During the
authentication process, users may encounter AUTHEN-
TICATION FAILURE, resulting in the inability to use
Copilot. For example, a user was repeatedly prompted
with the message “waiting for GitHub Authentication”
in IDEA, and was unable to log in (SO #72505280).

• ACCESSING FAILURE refers to the situation where
users fail to access Copilot’s server, which often in-
volves errors related to server connections. A user

X Zhou et al.: Preprint submitted to Elsevier Page 5 of 22

Problems, Causes and Solutions of Using GitHub Copilot

may encounter an error message like “GitHub Copilot
could not connect to server” (Discussion #11801).

• INSTALLATION ISSUE refers to the problems encoun-
tered by users during the installation process of Copi-
lot, including installation errors, inability to find in-
stallation methods, and other related problems. For
instance, a user failed to install Copilot on VSCode
insiders, and the server log showed “Error while in-
stalling the extension” (Issue #187).

• VERSION CONTROL ISSUE refers to the problems that
users encounter when adjusting the version of Copilot
or its runtime environment (e.g., IDE), including the
inability to upgrade the Copilot version or abnormal
issues like continuing to prompt for upgrades even
after upgrading. For example, a user reported that
“copilot plugin fails to update” when using it in In-
telliJ IDEA (Discussion #17298).

Interpretation: We identified Operation Issue at various
stages of user interaction with Copilot. Users tend to report
these problems and seek assistance, making Operation Issue
the most prevalent category of problems related to Copilot.
FUNCTIONALITY FAILURE (226), AUTHENTICATION FAIL-
URE (198), and STARTUP ISSUE (193), are the top three
types of such problems. We attribute the higher frequency
of the first two types to the deficiencies in Copilot’s feature
design and stability, which are also influenced by users’
environments in which Copilot operates. AUTHENTICATION
FAILURE mainly stems from particular details encountered
during the login process when users need to access Copilot
with their GitHub accounts.
3.1.2. Compatibility Issue (15.6%)

This category covers the problems that arise from mis-
matches between Copilot and its runtime environment. Copi-
lot operates as a plugin in various IDEs and code editors
(e.g., VSCode and IntelliJ IDEA), and the complexity of the
environments Copilot operates on can result in an increased
number of compatibility issues. These problems are further
classified into three types, which are elaborated below.

• EDITOR/IDE COMPATIBILITY ISSUE refers to issues
arising from mismatches between Copilot and its
IDE or editor. These problems typically manifest as
Copilot being unable to operate properly in a spe-
cific IDE or editor. For example, a user previously
found that Copilot “does not work in Neovim” while
writing a Python program, even though the Copilot
status showed that “Copilot: Enabled and Online”
(SO #72174839).

• PLUG-IN COMPATIBILITY ISSUE refers to a type of
matching issue that arises when Copilot and other
plugins are activated and working together at the same
time. Such problems can cause partial or complete
malfunctions of Copilot and other plugins. They are
usually identified through troubleshooting methods

such as disabling Copilot or other plugins. For in-
stance, one user reported that “a Keyboard shortcut
conflict with Emmet” prevented him from receiving
code suggestions generated by Copilot (Issue #47).

• KEYBOARD COMPATIBILITY ISSUE refers to the situa-
tion when the functionality of Copilot can not be used
in some uncommon keyboard layouts. For example,
a user with a German keyboard layout could not use
most of the code generation-related features of Copilot
(Discussion #7094).

Interpretation: Compatibility Issue arises from the
complex environments in which users utilize Copilot, as
well as the compatibility robustness of Copilot itself. In the
case of EDITOR/IDE COMPATIBILITY ISSUE (136), VSCode,
the platform officially recommended for using Copilot, has
garnered a higher number of reported issues about compat-
ibility. We also identified many problems in other widely
used IDEs, like Visual Studio, IntelliJ IDEA, and PyCharm.
The appearance of PLUG-IN COMPATIBILITY ISSUE (70) is
less predictable, which often arises when using Copilot with
other code completion tools.
3.1.3. Feature Request (14.9%)

Feature Request refers to the features that users request
to add or improve based on their experience and actual needs
when using Copilot. These feature requests not only help
improve the user experience of Copilot but also contribute to
the exploration of how AI code generation tools like Copilot
can better interact with developers. This category is further
divided into four types, as shown below.

• FUNCTION REQUEST refers to the requests for devel-
oping new functions in Copilot, which typically arise
from users’ genuine needs and difficulties encountered
while utilizing the tool. For example, a user requested
that Copilot should be able to “look at the context of a
project with multiple files”, rather than generate code
suggestions based on the context in a single file (SO
#73848372).

• INTEGRATION REQUEST refers to a type of request for
Copilot to be available on certain platforms or to be
integrated with other plugins. This is mainly due to
the desire of some users to use Copilot in the envi-
ronments they are familiar with. For instance, a user
called for “Support for Intellij 2022.2 EAP family”
(Discussion #17045). The requests for integration also
reflect the popularity of Copilot among developers to
some extent.

• UI REQUEST refers to requests made by users for
changes to the User Interface (UI) of Copilot, such
as modifying the appearance of the Copilot icon.
These requests generally aim to improve the visual
effects and user experience of Copilot. For example,
a user requested the addition of a “status indicator” to
provide information about the current working status
of Copilot (Issue #161).

X Zhou et al.: Preprint submitted to Elsevier Page 6 of 22

Problems, Causes and Solutions of Using GitHub Copilot

• PROFESSIONAL COPILOT VERSION refers to requests
from some users for a professional version of Copilot.
These users are developers from certain companies
who hope to receive more professional and reliable
code generation services in their actual work. They
may have higher requirements for the reliability and
security of Copilot’s code, as well as team certification
and other aspects. For example, a user asked for “an
on-prem version for companies to purchase”, so that
they could deploy Copilot in a local environment
(Discussion #38858).

Interpretation: For FUNCTION REQUEST (114), we ob-
served that users expressed a desire for greater flexibility in
configuring Copilot to align more closely with their develop-
ment habits. Common requests include the ability to accept
Copilot’s suggestions word by word and to specify where
Copilot should automatically operate in terms of file types or
code development scopes. More innovative demands involve
the need for Copilot to provide suggestions according to
the whole project, as well as features like code explanation
and chat functionality which have been provided in GitHub
Copilot Chat (Zhao, 2023). INTEGRATION REQUEST (71)
reflects the wish of developers to use Copilot in their familiar
environments. This places greater demands on the Copilot
team, as we have identified a significant number of Compat-
ibility Issues.
3.1.4. Suggestion Content Issue (4.4%)

This category of problems refers to the issues related to
the content of the code generated by Copilot. The generation
of code suggestions is the core feature of AI code generation
tools like Copilot, and the quality of the suggestions directly
determines whether users will adopt them. Therefore, the
content of the generated code is naturally an area of concern
for users, researchers, and the Copilot team. These problems
are further divided into seven specific situations, which are
detailed below.

• LOW QUALITY SUGGESTION refers to situations where
Copilot is unable to comprehend the context suffi-
ciently to generate useful code. Such code suggestions
may not have any syntactical errors, but due to their
poor quality, they are unlikely to be adopted by users.
For instance, Copilot once generated an empty method
containing only a return statement without meeting
the requirements specified in the user’s code (Discus-
sion #6631).

• NONSENSICAL SUGGESTION refers to the code sug-
gestions provided by Copilot that are completely ir-
relevant to the needs of users. Such suggestions are
considered almost unusable and provide little heuristic
assistance to the user. For example, a user once re-
ceived an inaccessible fake URL generated by Copilot,
which was of no help with his programming task
(Discussion #14212).

• SUGGESTION WITH BUGS refers to the situation where
Copilot is able to generate relevant code based on the

context, but the suggested code contains some bugs.
This can result in the program being able to run, but
not as the developer intended, or in some cases, it may
cause errors or crashes. For example, a user reported
that Copilot suggested using “setState(!state)” instead
of “setState(true)”, which caused a logical bug in his
code (Issue #43).

• INCOMPREHENSIBLE SUGGESTION refers to the situ-
ation where Copilot provides potentially useful code
suggestions, but due to the complexity of the code or
user’s lack of experience, they found it challenging to
comprehend the suggested code and need more time to
verify its correctness. For example, a user complained
that “My Github Copilot just autocompleted it for me,
then I scoured the internet trying to find information
pertaining to it but could not” (SO #73075410).

• SUGGESTION WITH INVALID SYNTAX refers to the
situation where the suggestions generated by Copilot
may contain syntax errors that prevent the program
from running properly. For example, a user found
that the code suggestions provided by Copilot “missed
curly brackets, leading to erroneous code when ac-
cepting suggestion” (Discussion #38941).

• LESS EFFICIENT SUGGESTION refers to the code sug-
gestions generated by Copilot that are functionally
correct and meet the requirements of users, but may
suffer from suboptimal execution efficiency or convo-
luted logic, potentially impacting the overall quality of
the code. For example, when a user requested Copilot
to “find the cup with the most water” and “find the
maximum amount of water in any cup”, the suggested
code performed adequately but was not optimized for
efficiency (Issue #160).

• INSECURE SUGGESTION refers to the code suggestions
generated by Copilot that introduce security vulnera-
bilities. For example, a user indicated that the code
suggestion lacked accountability for the sizes being
read (Discussion #6636).

Interpretation: The quality of code suggestions is a
critical factor in determining the capability of Copilot for
practical code development. We identified a relatively small
number of Suggestion Content Issues, possibly indicating
that users are less inclined to report problems related to
suggested code compared to usage-related problems. Among
these problems, LOW QUALITY SUGGESTION (25), NONSEN-
SICAL SUGGESTION (12), and SUGGESTION WITH BUGS (8)
are the three most frequently reported types, while INSE-
CURE SUGGESTION (2) and LESS EFFICIENT SUGGESTION
(2) are less prevalent. This result implies that the main
concern for users could be whether Copilot can provide code
suggestions that have significant referential value.
3.1.5. User Experience Issue (4.3%)

This category covers user feedback on their experience
of using Copilot. Compared with Operation Issue, Copilot

X Zhou et al.: Preprint submitted to Elsevier Page 7 of 22

Problems, Causes and Solutions of Using GitHub Copilot

generally runs and functions as intended, but the user ex-
perience is suboptimal. User Experience Issue can provide
insights into areas where Copilot could be improved. User
Experience Issue can be further classified into four types,
which are detailed below.

• POOR FUNCTIONALITY EXPERIENCE refers to a type of
user experience problem where the usage of Copilot’s
code generation-related functionalities is unsatisfac-
tory. When such problems arise, Copilot’s function-
alities remain operational, which is different from
FUNCTIONALITY FAILURE. However, users expressed
dissatisfaction with their experience when using these
functionalities. These problems can often hinder the
coordination between users and Copilot, and even
decrease the efficiency of development work. Such
problems often highlight areas where Copilot could be
further enhanced and may potentially motivate users
to propose some Feature Requests. For example, a
user felt that the code automatically generated and
popped up by Copilot was quite noisy (Issue #97).

• POOR SUBSCRIPTION EXPERIENCE refers to the obsta-
cles that users encounter during the process of sub-
scribing to the services of Copilot. Copilot offers sev-
eral subscription methods (e.g., student verification,
paid subscription), leading to some inconvenience for
users during this process. For example, one user felt
lost and was unsure about what to do next after setting
up a billing (Discussion #19119).

• POOR PERFORMANCE refers to performance issues
that occur when Copilot is running, which directly
impacts the user experience. These problems include
high CPU usage, long response times, and overly fre-
quent server access. For example, a user complained
that Copilot took “around 1-2 minutes for it to show
one suggestion” on VSCode, which was very slow
(Discussion #19491).

• POOR AUTHENTICATION EXPERIENCE refers to the
inconvenience that users encounter when authenticat-
ing their identities before using Copilot. While users
successfully navigate the login procedure, they may
experience a suboptimal user experience. This could
be due to factors such as an unwieldy process flow
or the absence of explicit instructions. For example,
a user complained that Copilot frequently “prompt
to enable GitHub Copilot on every VSCode launch”
which can be a significant source of frustration (SO
#70065121).

Interpretation: User Experience Issues provide valu-
able insights into the direction for improving Copilot.
Among the POOR FUNCTIONALITY EXPERIENCE (24), the
most commonly reported problems involve Copilot’s inline
suggestions that cause disruptions to the coding process of
users (5) and the inconvenience of not being able to accept
certain portions of the suggested code (2). These concerns

align with some of the demands mentioned by users in
Feature Request, e.g., setting when Copilot can generate
code and the length of suggested code.
3.1.6. Copyright and Policy Issue (3.3%)

Copilot is trained on a large corpus of open source code
and generates code suggestions based on the users’ code
context. The way in which Copilot operates raises concerns
regarding potential copyright and policy issues, as expressed
by some users. These problems are divided into three types,
as shown below.

• CODE COPYRIGHT ISSUE refers to the concerns raised
by some code authors regarding the unauthorized use
of their open-source code by Copilot for model train-
ing. GitHub is currently one of the most popular web-
based code hosting platforms, and since the release of
Copilot, there have been suspicions among some code
authors that their code hosted on GitHub has been
used for training without proper consideration of their
license. For example, a user “started migration” of his
projects on GitHub because he was worried about his
code being used to train Copilot without permission
(Issue #148).

• CODE TELEMETRY ISSUE refers to the concerns ex-
pressed by users regarding Copilot collecting their
code to generate suggestions, which may potentially
result in the leakage of confidential code. Some users
may also simply be unwilling to have their own code,
as well as the code generated by Copilot for them,
collected for other purposes. For example, a user is
concerned that using Copilot might “give away API
key” in his code (SO #70559637).

• VIOLATION OF MARKETPLACE POLICY is a specific
case where a user reported that Copilot was able to be
published on the VSCode marketplace despite using
proposed APIs, while other plugins were prohibited.
The user suspected that this behavior may be in viola-
tion of the Marketplace Policy (Issue #3).

Interpretation: The emergence of Copyright and Policy
Issue reveals the concerns of users about the way Copilot
works. Copilot is trained on multi-language open-source
code and also needs to collect users’ code context during its
operation to generate suggestions. These two facts have led
people to pay more attention to copyright and intellectual
property problems when using Copilot, especially in in-
house development.
3.2. Type of Causes (RQ2)
3.2.1. Results

As mentioned in Section 2.4.2, not all problems have
corresponding causes that can be extracted. As a result,
we identified a total of 391 causes, which were collected
from 28.9% of all problems related to Copilot usage, and
categorized into 16 types as presented in Table 2. The result
indicates that the most frequent causes are Copilot Internal

X Zhou et al.: Preprint submitted to Elsevier Page 8 of 22

Problems, Causes and Solutions of Using GitHub Copilot

Table 2
Causes of Copilot usage problems

Type Example (Extracted Cause) Count %

Copilot Internal Error (CIE) There has been an outage of one of our models which has caused the others to
have to handle a higher traffic load. (Discussion #14370) 76 19.4%

Network Connection Error (NCE) It seems that my company’s network settings blocked the connection to copilot and
that affect the behavior of my personal mac too. (Discussion #36152) 53 13.6%

Editor/IDE Compatibility Issue (EICI) This is related to the version of your visual studio 2022. (SO #71702171) 50 12.8%

Unsupported Platform (UP) ⋯ as some Linux distributions ship with Code OSS or VSCodium which Copilot
does not currently support. (Discussion #8015) 32 8.2%

Improper Configuration/Setting (ICS) The settings.json file had disabled inline suggestions. (SO #76257401) 27 6.9%

Poor Functionality Experience (PFE) Please add shortcut command for suggestion ... Feature auto suggestion is
something annoying. (Discussion #7172) 26 6.6%

For Coding Habit (FCH)
I would like to change the Tab keybinding for completion in vim to something
else because many people use the tab binding for opening the completion menu.
(Discussion #6919)

25 6.4%

User Unauthorized (UU) I’m sorry that you have not been given access yet. (Discussion #16795) 22 5.6%

Improper User Operation (IUO) I had signed up to Copilot under a different GitHub account (Discussion #19556) 17 4.3%

Plug-in Compatibility Issue (PCI) This was a bad extension interaction between Copilot and learn-markdown. (Issue
#438) 15 3.8%

Intentional Design of Copilot (IDC) Yes, this is intentional. There is a hidden setting that you can toggle to disable this
behavior. (Issue #152) 12 3.1%

Unimplemented Feature (UF) ... currently the Copilot VSCode extension does not support proxies. (Discussion
#11630) 12 3.1%

For Higher Coding Efficiency (FHCE) Suggestion: Add mapping generator for classes ... Would be nice to have such
feature, that would help with every day mapping. (Discussion #7870) 9 2.3%

Obsoleted Copilot Version (OCV) Your copilot extension is out of date (Discussion #17463) 7 1.8%

License Restriction (LR) Due to the licensing of Copilot, it cannot be used in free or open-source software
such as code-server (Issue #122) 4 1.0%

Code Telemetry Issue (CTI) I’d like to disable copilot per workspace, so I can use it for open-source projects but
not private/work projects. (Discussion #47991) 4 1.0%

Error (19.4%) and Network Connection Error (13.6%), with
Editor/IDE Compatibility Issue (12.8%) and Unsupported
Platform (8.2%) also commonly reported. The example,
count, and proportion of each type of cause are presented
in Table 2. It is worth noting that certain types of prob-
lems can potentially be the causes of other problems. For
example, EDITOR/IDE COMPATIBILITY ISSUE is a type of
Compatibility Issue. However, it is also the causes leading
to other types of problems such as INSTALLATION ISSUE and
STARTUP ISSUE.

• Copilot Internal Error (CIE) refers to the problems
with the Copilot server side that affects its usage.
These may include errors with the CodeX model and
services provided by the server side, which are not
visible to users. For example, the Copilot team once
reported that “there has been an outage of one of our
models which has caused the others to have to handle
a higher traffic load”, which consequently results in
temporary issues (Discussion #14370).

• Network Connection Error (NCE) refers to the dis-
ruptions in the network communication between the
user side and the Copilot server side, resulting in an
inability for users to utilize the code generation service
of Copilot. For example, a user repeatedly encoun-
tered issues with Copilot not functioning properly
because his “company’s network settings blocked the
connection to copilot” (Discussion #36152).

• Editor/IDE Compatibility Issue (EICI) refers to situ-
ations where the code editors and IDEs is not com-
patible with Copilot, resulting in various anomalies
when using Copilot. For example, a user was “unable
to install GitHub Copilot extension in Visual Studio
2022 Enterprise”, because the version of his IDE was
outdated, resulting in its incompatibility with Copilot
(SO #71702171).

• Unsupported Platform (UP) refers to situations where
users try to use Copilot on development platforms that
lack official support for Copilot, which may results
in unpredictable problems. For example, the Copilot
team claimed that “Code OSS and VSCodium” were
not supported by Copilot, which explains why some
users failed to install Copilot in these two IDEs (Dis-
cussion #8015).

• Improper Configuration/Setting (ICS) refers to situa-
tions where Copilot operates abnormally or offers a
suboptimal user experience due to the settings that
are not configured appropriately. For example, a user
found that “the setting.json file had disabled inline
suggestions”, which resulted in Copilot not providing
code suggestions in VSCode (SO #76257401).

• Poor Functionality Experience (PFE) refers to the
negative experiences users encounter when coding
with Copilot, which lead them to request for enhance-
ment to existing features. For example, a user wanted

X Zhou et al.: Preprint submitted to Elsevier Page 9 of 22

Problems, Causes and Solutions of Using GitHub Copilot

Copilot to provide code suggestions via a shortcut,
because “feature auto suggestion is something annoy-
ing” (Discussion #7172).

• For Coding Habit (FCH) refers to the wishes of some
users for Copilot to offer new features and ensure com-
patibility with their preferred development platforms
to accommodate their coding habits. For example, a
user asked “if there was an option for changing the
keybinding for accepting the suggestions”, because he
was accustomed to “using the tab binding for opening
the completion menu” (Discussion #6919).

• User Unauthorized (UU) refers to situations where
some users cannot access Copilot services because
they lack the authorization for using Copilot. For
example, a user found that “GitHub Copilot could not
connect to server”, because he was not authorized yet
(Discussion #16795).

• Improper User Operation (IUO) refers to situations
where Copilot exhibits unintended behavior because
of user mistakes or oversights during the process of
using Copilot such as registration, login, and sub-
scription. For example, a user consistently received
a prompt in Visual Studio stating that “Your Copilot
experience is not fully configured, please complete
your setup”. It was found that this issue arose because
he “had signed up to Copilot with a different GitHub
account” (Discussion #19556).

• Plug-in Compatibility Issue (PCI) refers to situations
where Copilot fails to work properly because of in-
compatibility with other plug-ins. For example, “a
bad extension interaction between Copilot and learn-
markdown” resulted in some users being unable to
accept code suggestions from Copilot (Issue #438).

• Intentional Design of Copilot (IDC) refers to situa-
tions where what some users may perceive as anoma-
lies of Copilot are features deliberately designed by
the Copilot team. For example, a user noticed that
Copilot’s “inline completions are trumping normal
completions”. However, a member from the Copilot
team proved that “this is intentional” and can be
disabled by modifying certain setting (Issue #152).

• Unimplemented Feature (UF) refers to the function-
alities that users assume Copilot to already have, but
which the Copilot team has not yet provided. For ex-
ample, a user could not activate Copilot behind proxy
in VSCode, and a Copilot team member explained
that “currently the Copilot VSCode extension does not
support proxies” (Discussion #11630).

• For Higher Coding Efficiency (FHCE) is the reason
that some users wish for new functionalities in Copilot
to enhance efficiency in coding tasks. For example,
a user suggested that Copilot could “add mapping
generator for classes” to facilitate the generation of

mapping methods between different classes (Discus-
sion #7870).

• Obsoleted Copilot Version (OCV) refers to an out-
dated version of Copilot that is no longer operational.
For example, a user encountering an issue with Copi-
lot not working and was informed that “your Copilot
extension was outdated” (Discussion #17463).

• License Restriction (LR) refers to situations where
some development platforms are unable to be inte-
grated with Copilot due to the restriction imposed by
Copilot license. For example, a repository contributor
explained that Copilot “cannot be used in free or open-
source software such as code-server” due to its license
restriction (Issue #122).

• Code Telemetry Issue (CTI) is the reason that some
users request new features, aiming to prevent the
exposure of their code to Copilot. For example, a
user wanted to “disable Copilot per workspace”, so
that he could “use it for open-source projects but not
private/work projects” (Discussion #47991).

3.2.2. Causes to Problems Mapping
Table 3 illustrates the mapping relationship of Copilot

related problems to their causes. We use abbreviations to
represent each type of cause; for example, “CIE” represents
Copilot Internal Error. The full names for all types of causes
are provided in the note of Table 3.

Over one third of Operation Issues (37.2%) have asso-
ciated causes. Specifically, AUTHENTICATION FAILURE is
primarily induced by CIE, NCE, and UU; FUNCTIONALITY
FAILURE is mainly caused by CIE, ICS, and PCI; The oc-
currence of INSTALLATION ISSUE typically stems from EICI
and UP; STARTUP ISSUE commonly originates from CIE and
NCE; while ACCESSING FAILURE is primarily attributed to
NCE; and VERSION CONTROL ISSUE is mainly brought about
by CIE, EICI, and UP.

For Compatibility Issue, causes are identified in 9.5%
of the cases. To be specific, EDITOR/IDE COMPATIBILITY
ISSUE is mainly caused by UP and ICS, while PLUG-IN
COMPATIBILITY ISSUE is attributed to ICS and IDC.

For Feature Request, four types of causes are identified
in 31.0% of cases, which are FCH, PFE, FHCE, and CTI.
PFE and FCH are the prime causes for users to raise FUNC-
TION REQUESTS, while INTEGRATION REQUESTS are mainly
attributed to FCH.

For User Experience Issue, causes are identified in
19.0% of the cases. However, there are only a few causes
identified for each type of User Experience Issue, with CIE
identified as the prime cause for POOR AUTHENTICATION
EXPERIENCE and POOR PERFORMANCE.

For Suggestion Content Issue, causes are identified in
8.6% of the cases. CIE and UF are the causes leading to LOW
QUALITY SUGGESTION, while CIE and ICS are the causes for
NONSENSICAL SUGGESTION.

X Zhou et al.: Preprint submitted to Elsevier Page 10 of 22

Problems, Causes and Solutions of Using GitHub Copilot

Table 3
Mapping between problem types (vertical) and cause types (horizontal)

CIE NCE EICI UP ICS PFE FCH UU IUO IDC UF PCI FHCE LR OCV CTI

Compatibility Issue

Editor/IDE Compatibility Issue 2 0 1 3 3 0 0 0 1 1 0 0 0 0 0 0
Keyboard Compatibility Issue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Plug-in Compatibility Issue 2 0 0 0 4 0 0 0 0 3 0 0 0 0 0 0

Copyright and Policy Issue
Code Telemetry Issue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Code Copyright Issue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Violation of Marketplace Policy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Feature Request

Function Request 0 0 0 0 0 21 11 0 0 0 0 0 8 0 0 4
Integration Request 0 0 0 0 0 0 14 0 0 0 0 0 1 0 0 0
Professional Copilot Version 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UI Request 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0

Suggestion Content Issue

Insecure Suggestion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Less Efficient Suggestion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Low Quality Suggestion 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
Nonsensical Suggestion 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Suggestion with Bugs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Incomprehensible Suggestion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Suggestion with Invalid Syntax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Operation Issue

Accessing Failure 3 11 0 1 0 0 0 4 0 1 3 0 0 0 0 0
Authentication Failure 25 16 8 9 2 0 0 13 5 0 2 0 0 1 1 0
Functionality Failure 17 6 10 0 14 0 0 1 4 6 5 11 0 0 3 0
Installation Issue 0 0 11 12 0 0 0 0 0 0 0 0 0 2 0 0
Startup Issue 19 19 15 4 3 0 0 4 5 0 0 3 0 1 1 0
Version Control Issue 2 0 4 3 0 0 0 0 0 0 0 0 0 0 1 0

User Experience Issue

Poor Authentication Experience 2 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
Poor Functionality Experience 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Poor Performance 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
Poor Subscription Experience 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Full names of each cause type: CIE: Copilot Internal Error ; NCE: Network Connection Error ; EICI: Editor/IDE Compatibility Issue; UP: Unsupported Platform;
ICS: Improper Configuration/Setting ; PFE: Poor Functionality Experience; FCH: For Coding Habit; UU: User Unauthorized ; IUO: Improper User Operation; IDC:
Intentional Design of Copilot; UF: Unimplemented Feature; PCI: Plug-in Compatibility Issue; FHCE: For Higher Coding Efficiency ; LR: License Restriction; OCV:
Obsoleted Copilot Version; CTI: Code Telemetry Issue.

Copyright and Policy Issue refers to the concerns of
some users about code leakage to Copilot, which inherently
forms the reason for raising such problems, thereby no need
for further identification of the underlying causes.
3.2.3. Interpretation

Frequency of Causes: CIE is the most common type
of cause leading to Copilot usage problems. Typically, the
cause identification of CIE relies on user feedback regarding
abnormal usage experiences of Copilot, and it often results in
a group of users reporting the same problem within a certain
time period. For example, “a bad deployment” of the Copilot
server caused a group of users to report AUTHENTICATION
FAILURES (Discussion #39533). The high number of NCE,
EICI, and ICS indicates that some problems arise from the
environment in which Copilot operates. A common situation
of NCE is that users connect to the Copilot server through
an HTTP proxy, which may lead to the intercept of Secure
Socket Layer (SSL). However, Copilot now offers support
for access through an HTTP proxy, thus addressing such
problems (GitHub, 2024b). PFE, FCH, FCE, and CTI are
the four types of causes for Feature Request. The remaining
eight types of causes are less common, but can still pro-
vide insights into specific problems related to Copilot. For
instance, UU is identified as the direct cause for many users
experiencing AUTHENTICATION FAILURE and FUNCTIONAL-
ITY FAILURE when using Copilot.

Mapping of Causes to Problems: When Copilot users
encounter Operation Issues, nearly one quarter (23.1%) of
these problems are caused by errors originating from Copilot
server (i.e. CIE), while the rest of such problems are induced
by the environment on which Copilot operates. According to

the causes of Feature Request, it appears that users typically
request for new functionalities or enhancement of existing
features based on their personal coding habits and subopti-
mal experiences when coding with Copilot. Fewer causes
have been identified for Compatibility Issue. When users
identify the problem as Compatibility Issue, they tend to
focus on finding solutions rather than further analyzing the
causes. The causes identified for Suggestion Content Issue
and Copyright and Policy Issue are limited in number. One
possible reason is that the non-open source nature of Copilot
prevents users from investigating the causes of the problems
in these two categories. From the results of Table 3, we did
not identify the main causes leading to User Experience
Issue. However, when users encounter POOR AUTHENTI-
CATION EXPERIENCE or POOR PERFORMANCE when using
Copilot, consideration should be given to whether there are
internal errors within Copilot, as the four cases of CIE
leading to such problems.
3.3. Type of Solutions (RQ3)
3.3.1. Results

As mentioned in Section 2.4.2, not all problems have
corresponding solutions that can be extracted. As a result,
we identified a total of 497 solutions, which were used
to address 36.7% of all problems, and categorized into 11
types as shown in Table 4. The result reveals that most
of the usage bugs were addressed by Bug fixed by Copilot
(27.2%). When users tried to solve problems themselves,
Modify Configuration/Setting (22.1%), Use Suitable Version
(17.1%), and Reinstall/Restart/Reauthorize Copilot (12.1%)
were commonly used as effective solutions. The example,

X Zhou et al.: Preprint submitted to Elsevier Page 11 of 22

Problems, Causes and Solutions of Using GitHub Copilot

count, and proportion of each type of solution are presented
in Table 4.

• Bug Fixed by Copilot (BFC) refers to the process
where the Copilot team collects problems reported by
users or conducts functionality test on Copilot, and
then addresses identified bugs. For example, a user
failed to use Copilot because of the “problem from
Copilot’s server-side”, and this problem was fixed by
the Copilot team as soon as they noticed it (Issue #86).
Typically, the resolution process to the problems by
the Copilot team is unclear for users.

• Modify Configuration/Setting (MCS) refers to the so-
lutions that users adjust settings or configuration files
of Copilot to solve specific usage problems. For exam-
ple, by “updating the file setting.json”, a user resolved
the problem of Copilot “not adding closing brackets”
(SO #68347605).

• Use Suitable Version (USV) refers to users choosing a
suitable version of Copilot that resolves the problems
faced in the Copilot version currently used. This type
of solution also includes adjusting the version of IDEs
or code editors to be compatible with Copilot. For
example, a user who wanted to use Copilot in Visual
Studio solved the problem of “not being able to find
the GitHub copilot extension”, by “upgrading Visual
Studio to 17.2” (Discussion #18566).

• Reinstall/Restart/Reauthorize Copilot (RC) is a type
of solution allowing users to reset Copilot to its
original state, thereby resolving any previous errors
or restoring settings to their default conditions. For
example, a user found that “GitHub Copilot could not
connect to server” in VSCode, and solved it by simply
“restarting extension” (Discussion #27378).

• Feature Implemented by Copilot (FIC) refers to the
introduction or enhancement of a feature by the
Copilot team. For example, the latest Copilot “con-
tains preliminary support for connecting through
HTTP proxy servers”, addressing the AUTHENTICA-
TION FAILURE previously experienced by some users
(SO #73242748).

• Follow Official Instruction (FOI) refers to the process
where users follow the steps provided by the Copilot
UI or described in the user manuals during registra-
tion, login, subscription, and configuration. This type
of solution usually aimed at assisting users who are not
familiar with Copilot. For example, a user was advised
to consult the “Copilot doc” for guidance on configur-
ing keyboard shortcuts on Mac (SO #75276040).

• Disable Interfering Factors (DIF) refers to the process
where users identify and remove the factors disrupting
the normal operation of Copilot, such as other acti-
vated plug-ins and HTTP proxies that could interfere
with network connection. For example, a user reported

that “GitHub Copilot autosuggesions are not auto-
filled in .md files”, and solved this problem by dis-
abling the “Markdown all in one” plug-in (Discussion
#10203).

• Restart Runtime Environment (RRE) refers to the
process of restarting the environment Copilot operates
on to resolve any errors affecting the current runtime
environment. For example, restarting the computer
and IDE on which Copilot is running helped a user
solve an INSTALLATION FAILURE on IntelliJ IDEA
2022 (Discussion #17638).

• Modify the Input Way (MIW) refers to users changing
the way they prompt Copilot to generate code, to
address problems that Copilot does not automatically
provide code suggestions, or to make Copilot provide
codes that better meet their expectations. For example,
“going to a new line after a code comment, and
starting typing what you want to create” resolved the
problem that Copilot created “the same comment over
and over again” (SO #70995718).

• Install/Update Framework (IUF) refers to installing
or updating the frameworks in IDEs and code editors
for Copilot to operate. This solution is primarily em-
ployed to resolve the incompatibility between Copi-
lot.vim (Pope, 2024) and Node.js. For example, a user
found that he had to “install node.js” for Copilot to
work in Neovim (Discussion #40300).

• Others: Different from Copilot usage problems and
their causes, which can be categorized into spe-
cific categories and types, several dedicated solutions
aimed at addressing certain Copilot usage problems
are classified under the category Others. For example,
using the VSCode extension “Win-CA” in append
mode to resolve ACCESSING FAILURE of Copilot was
identified only once, making it difficult to form a new
type of solution (SO #71367058).

3.3.2. Solutions to Problems Mapping
Table 5 illustrates the mapping relationship of Copilot

related problems to their solution types, using abbreviations
to represent each type of solution. For example, “BFC”
represents Bug Fixed by Copilot. The full names for all types
of solutions are provided in the note of Table 5.

For Operation Issue, 44.5% of the cases are effectively
addressed. Specifically, ACCESSING FAILURE is mainly ad-
dressed by BFC; AUTHENTICATION FAILURE is primarily
resolved by BFC, MCS, and RC; FUNCTIONALITY FAILURE
is commonly fixed by BFC, MCS, and USV; and STARTUP
ISSUE is mostly solved by BFC, MCS, USV, and RC. To ad-
dress INSTALLATION ISSUE and VERSION CONTROL ISSUE,
USV is the primarily employed solution.

For Compatibility Issue, effective solutions were iden-
tified in 39.3% of the cases. BFC, MCS, and USV are the

X Zhou et al.: Preprint submitted to Elsevier Page 12 of 22

Problems, Causes and Solutions of Using GitHub Copilot

Table 4
Solutions of Copilot usage problems

Type Example (Extracted Solution) Count %

Bug Fixed by Copilot (BFC) The problem is from Copilot’s server-side and got fixed now. (Issue #86) 135 27.2%

Modify Configuration/Setting (MCS) Update your settings.json like the following... (SO #68347605) 110 22.1%

Use Suitable Version (USV) Upgrading to 17.2 solved the problem. (Discussion #18566) 85 17.1%

Reinstall/Restart/Reauthorize Copilot (RC) Problem solved after restarting extension. (Discussion #27378) 60 12.1%

Feature Implemented by Copilot (FIC) The latest release of Copilot for Visual Studio Code and Copilot for IntelliJ contains
preliminary support for connecting through HTTP proxy servers. (SO #73242748) 32 6.4%

Follow Official Instruction (FOI) In the Copilot docs, see for Visual Studio Code “Keyboard shortcuts for GitHub
Copilot” (SO #75276040) 15 3.0%

Disable Interfering Factors (DIF) Disable Markdown All in One, and it will work. (Discussion #10203) 15 3.0%

Restart Runtime Environment (RRE) Restart your machine and IDE as a quick fix. (Discussion #17638) 11 2.2%

Modify the Input Way (MIW) Go on new line after comment, and start typing what you want to create. (SO #
70995718) 8 1.6%

Install/Update Framework (IUF) Have to install node.js for it to work. (Discussion #40300) 5 1.0%

Others Installing Win-CA helps hides it again and all looks back to normal. (SO #71367058) 21 4.2%

commonly used solutions for resolving EDITOR/IDE COM-
PATIBILITY ISSUE, while BFC, MCS, and USV are mostly
employed for addressing PLUG-IN COMPATIBILITY ISSUE.
Moreover, resolving KEYBOARD COMPATIBILITY ISSUE
mainly relies on MCS.

For Feature Request, 21.7% of the cases have effective
solutions. Specifically, FUNCTION REQUEST is primarily
addressed by MCS and FIC. Two cases of UI REQUEST were
addressed by MCS. In addition, although the solutions for
PROFESSIONAL COPILOT VERSION have not been identified,
GitHub announced the availability of Copilot Enterprise on
February 27, 2024 (GitHub, 2024a), potentially addressing
the need for a professional version of Copilot.

We identified effective solutions for 24.1% of User Ex-
perience Issues. POOR AUTHENTICATION EXPERIENCE is
addressed by BFC, USV, and RC, while POOR FUNCTION-
ALITY EXPERIENCE is mainly resolved by MCS. Moreover,
BFC is the only solution identified for addressing POOR
PERFORMANCE.

We only identified five solutions for Suggestion Content
Issue, accounting for 10.2% of the total cases. BFC and
MIW were employed to address NONSENSICAL SUGGESTION
and LOW QUALITY SUGGESTION ISSUES, and no solutions
have been identified for resolving INSECURE SUGGESTION,
LESS EFFICIENT SUGGESTION, SUGGESTION WITH BUGS,
INCOMPREHENSIBLE SUGGESTION, and SUGGESTION WITH
INVALID SYNTAX.

Only 6.7% of Copyright and Policy Issues have corre-
sponding solutions. For CODE COPYRIGHT ISSUE and CODE
TELEMETRY ISSUE, MCS is the identified solution.
3.3.3. Interpretation

Frequency of Solutions: BFC is the most commonly
employed solution for addressing problems related to Copi-
lot usage, which is reasonable since Copilot Internal Error
is identified as the most common cause of Copilot usage
problems, indicating that many problems of Copilot cannot
be resolved by users. MCS, USV, and RC are frequently
employed solutions when users attempt to resolve Copilot

related problems by themselves. Typically, users can obtain
relevant experience and knowledge in resolving Copilot
usage problems by these three methods on public Q&A plat-
forms (e.g., GitHub Issues, GitHub Discussions, SO). FIC
ranks as the fifth most frequently used solution, reflecting
the expansion and improvement of Copilot features to match
the requirements of a large user community. The remaining
six types of solution account for only 11.8% of the total num-
ber of solutions, but can still provide valuable experiences
for users who face specific Copilot related problems. For
instance, DIF can effectively resolve the conflicts between
the plug-in “Markdown All in One” and “Copilot”, saving
lots of time for the users who experience the same problem.

Mapping of Solutions to Problems: For Operation
Issue and Compatibility Issue, a great number of effective
solutions have been identified. This is partially due to the
high number of Operation Issue and Compatibility Issue,
and their direct impact on the proper functioning of Copilot.
As a result, both the Copilot team and users are inclined
to promptly address these two categories of Copilot related
problems. Besides the errors in Copilot server that can be
addressed by BFC, some Operation Issues and Compatibil-
ity Issues are attributed to the Copilot running environments
of users. Therefore, users can address the problems in these
two categories through MCS, USV, and RC. The relatively
limited number of solutions for Suggestion Content Issue
reflects the lack of effective methods for users to adjust
the code suggested by Copilot. Feature Request and User
Experience Issue usually require a new release of Copilot
by the Copilot team to expand and optimize the features of
Copilot, making it difficult to meet the expectations of some
users in a short term. Additionally, we found that MCS is
frequently utilized by users when trying to get the function-
ality they want without waiting the new release of Copilot.
Fewer solutions were identified for Copyright and Policy
Issue, indicating that it is important to provide satisfactory
solutions to address the concerns of code leakage.

X Zhou et al.: Preprint submitted to Elsevier Page 13 of 22

Problems, Causes and Solutions of Using GitHub Copilot

Table 5
Mapping between problem types (vertical) and solution types (horizontal)

BFC MCS USV RC FIC FOI DIF RRE MIW IUF Others

Compatibility Issue

Editor/IDE Compatibility Issue 18 10 12 0 1 1 1 0 1 0 0
Keyboard Compatibility Issue 0 2 0 0 0 0 0 0 0 0 0
Plug-in Compatibility Issue 14 16 1 0 0 0 3 0 0 0 4

Copyright and Policy Issue
Code Telemetry Issue 0 2 0 0 0 0 0 0 0 0 0
Code Copyright Issue 0 1 0 0 0 0 0 0 0 0 0
Violation of Marketplace Policy 0 0 0 0 0 0 0 0 0 0 0

Feature Request

Function Request 0 9 3 0 14 1 0 0 1 0 0
Integration Request 0 0 0 0 13 0 0 0 0 0 0
Professional Copilot Version 0 0 0 0 0 0 0 0 0 0 0
UI Request 0 2 0 0 0 0 0 0 0 0 0

Suggestion Content Issue

Insecure Suggestion 0 0 0 0 0 0 0 0 0 0 0
Less Efficient Suggestion 0 0 0 0 0 0 0 0 0 0 0
Low Quality Suggestion 0 0 0 0 0 0 0 0 1 0 2
Nonsensical Suggestion 2 0 0 0 0 0 0 0 1 0 0
Suggestion with Bugs 0 0 0 0 0 0 0 0 0 0 0
Incomprehensible Suggestion 0 0 0 0 0 0 0 0 0 0 0
Suggestion with Invalid Syntax 0 0 0 0 0 0 0 0 0 0 0

Operation Issue

Accessing Failure 8 4 3 4 2 1 0 2 0 0 2
Authentication Failure 31 15 7 30 2 1 3 1 0 2 3
Functionality Failure 27 31 14 8 0 8 5 2 3 0 5
Installation Issue 2 3 11 1 0 0 0 1 0 0 0
Startup Issue 23 11 24 15 0 2 3 4 0 3 5
Version Control Issue 4 1 8 1 0 0 0 1 0 0 0

User Experience Issue

Poor Authentication Experience 2 0 1 1 0 0 0 0 0 0 0
Poor Functionality Experience 0 3 1 0 0 0 0 0 1 0 0
Poor Performance 3 0 0 0 0 0 0 0 0 0 0
Poor Subscription Experience 1 0 0 0 0 1 0 0 0 0 0

Full names of each solution type: BFC: Bug Fixed by Copilot; MCS: Modify Configuration/Setting ; USV: Use Suitable Version; RC: Reinstall/Restart/Reauthorize
Copilot; FIC: Feature Implemented by Copilot; FOI: Follow Official Instruction; DIF: Disable Interfering Factors; RRE: Restart Runtime Environment; MIW: Modify
the Input Way ; IUF: Install/Update Framework.

4. Implications
4.1. Implications for the Copilot Users

Implication 1. Seeking inspiration from Copilot’s code
suggestions rather than relying on them can lead to better
control over your coding tasks.

In Feature Request, we have observed that users fre-
quently present their wish to accept code suggestions word-
by-word or line-by-line when reviewing them. As a user
complained in an SO post, “Copilot inputs tons of code when
people just want a tiny part” (SO #74091857). Users’ desire
for such requests may reflect their concerns about losing
control over their coding tasks because Copilot sometimes
is too “productive” for them. In the experiment conducted
by Vaithilingam et al. (2022), five participants perceived
the same worry when they failed to understand the code
suggested by Copilot. Thus, finding a right balance between
leveraging Copilot’s productivity and maintaining develop-
ers’ command over their code is important for Copilot users.
As pointed out by Ziegler et al. (2024), the value of Copilot
lies in whether the suggestions serve as a useful starting
point for further development. Therefore, a useful position
of Copilot would be a tool that provides coding insights,
rather than a complete replacement for developers in coding
tasks. Before using Copilot for coding, users should ideally
have a clear understanding of their code structure. Then, by
guiding Copilot to provide code suggestions, they can further
optimize the code implementation. This way ensures that

users maintain control over their code while incorporating
the inspiring suggestions provided by Copilot, keeping the
role of users as a real “pilot” of the coding tasks.

Implication 2. Review the code suggestions provided
by Copilot before accepting them to prevent introducing
quality issues into your project.

According to the results of RQ1, the emergence of IN-
SECURE SUGGESTION, LESS EFFICIENT SUGGESTION, and
SUGGESTION WITH INVALID SYNTAX indicates potential
quality issues in the code suggested by Copilot. The code
quality of Copilot generated code has been a critical topic
for the Copilot team and many researchers (e.g., Yetistiren
et al. (2022), Siddiq et al. (2022)). Since the outputs of
LLMs are unpredictable and the code snippets used to train
Copilot potentially contain quality issues, it is unrealistic
to expect Copilot to consistently produce quality-assured
code under all circumstances. In our study, we identified
only a few issues related to the quality of Copilot-generated
code. One possible reason is that developers may not be
attentive enough and may lack the experience to identify
quality issues such as code security in Copilot generated
code. According to research conducted by Fu et al. (2024),
29.8% of the 452 code snippets produced by Copilot and
collected from GitHub contain security issues spanning 38
Common Weakness Enumeration (CWE) (MITRE, 2023)
categories. These code snippets were produced in practical
software development rather than controlled environments,

X Zhou et al.: Preprint submitted to Elsevier Page 14 of 22

Problems, Causes and Solutions of Using GitHub Copilot

Table 6
Mapping between problem categories (vertical) and IDEs/editors (horizontal)

VSCode Neovim Visual Studio IDEA PyCharm VSCodium Emacs PhpStorm Vim Others
Compatibility Issue 130 24 16 5 3 2 1 2 2 10
Copyright and Policy Issue 6 0 1 0 0 0 1 0 0 1
Feature Request 63 20 14 7 3 0 5 2 5 14
Suggestion Content Issue 9 2 5 0 1 0 0 0 0 0
Operation Issue 365 63 59 40 36 14 6 11 10 41
User Experience Issue 27 1 0 4 2 0 1 3 0 2

which reveals the severe security challenges of the code
produced by Copilot in real-world scenarios. Users need
to have the necessary security awareness and skills when
dealing with the code suggestions generated by Copilot.
Additionally, other quality issues such as code smells (Zhang
et al., 2024) and code efficiency (Nguyen and Nadi, 2022)
present in Copilot code suggestions also require users to
exercise critical evaluation and judgment. We noticed that
users may find it challenging to fully understand the code
suggestions provided by Copilot in INCOMPREHENSIBLE
SUGGESTION, leading to difficulties in recognizing the qual-
ity issues introduced by Copilot. Therefore, it is essential to
carefully examine whether there are any quality issues with
the code suggestions from Copilot before accepting them. If
users want to utilize code suggestions from Copilot in crit-
ical software projects, rigorous code reviews and thorough
testing are necessary.

Implication 3. It is advisable to utilize IDEs or code
editors that are officially supported by Copilot.

Table 6 presents the correlation between the number
of Copilot usage problems and the IDEs or code editors
that users predominantly utilize. We found that discus-
sions regarding Copilot usage problems mainly occurred
on mainstream coding development platforms such as VS-
Code, Neovim, Visual Studio, IDEA, PyCharm. However,
the results in Table 6 do not imply that using a particu-
lar IDE or code editor will result in encountering a large
number of specific category of Copilot-related problems.
Higher numbers often indicate that such problems have
been widely discussed and even already addressed. For
instance, users of VSCode reported many Operational Issues
that have been resolved through discussions. This does not
necessarily mean that using Copilot on VSCode will lead
to encountering a significant number of Operation Issues.
Besides, the Copilot team also actively provides solutions to
the queries arising on the platforms officially supported by
Copilot. As a result, users utilizing Copilot on these IDEs
or code editors are more likely to resolve usage problems
by finding existing solutions or reporting them on public
Q&A platforms. On the contrary, we found that Unsupported
Platform ranks as the fourth most frequent cause leading
to Copilot usage problems. Based on the results of RQ2
(see Table 3), it is also one of the primary reasons causing
various types of Operation Issue, which suggests that users
may encounter unforeseen problems when attempting to use
Copilot on the platforms that are not supported yet. These

problems are often challenging to resolve. In our study, none
of the 31 issues associated with Unsupported Platform has
been resolved effectively. Therefore, users should prioritize
using Copilot on officially supported platforms to ensure an
optimal experience.
4.2. Implications for the Copilot Team

Implication 4. Provide more customization options to
allow users to tailor the behavior of Copilot to align with
their own workflow.

Among the 114 FUNCTION REQUESTS, we identified
52 instances of such requests to customize the behavior of
Copilot in various aspects, accounting for approximately
50%. Some common requests are specifying the file types
or workspace in which Copilot automatically runs (11),
modifying the shortcut keys for accepting suggestions (10),
accepting code suggestions line-by-line or word-by-word
(9), preventing Copilot from generating certain types of
suggestions (e.g., file paths, comments) (3), and configuring
text color and fonts (3). Our previous study on the expected
feature of Copilot also indicates that the functionalities pro-
vided by Copilot have not yet fully met the requirements
of users for flexible utilization of the tool (Zhang et al.,
2023). Additionally, according to some of the identified
POOR FUNCTIONALITY EXPERIENCE (e.g., perceiving the
auto-suggestions of Copilot as distracting, which is also
mentioned in the study of Bird et al. (2023)), we can discern
the demand for customizing the behavior of Copilot. It is
believed that the extent to which the behavior of Copilot
can adapt well to user coding habits is a vital factor in their
decision to use Copilot. Therefore, providing flexible and
user-friendly customization options is highly beneficial.

Implication 5. Provide more ways to control the content
generated by Copilot.

According to Table 5, there is only a small number of
solutions for Suggestion Content Issue. Out of the 59 Sug-
gestion Content Issues, only five solutions were identified,
indicating that users may find it challenging to provide ideal
solutions for the problems of content suggested by Copilot.
The output of Copilot is inherently unpredictable, and users
have limited ways to control the code generated by Copilot
besides modifying code context or code comments per se.
Based on our observation, features such as allowing users
to define code styles and conventions, and choosing multiple

X Zhou et al.: Preprint submitted to Elsevier Page 15 of 22

Problems, Causes and Solutions of Using GitHub Copilot

Table 7
Mapping between problem categories (vertical) and programming languages (horizontal)

Python C# JavaScript Php Java TypeScript C++ Go Others
Compatibility Issue 13 8 8 2 1 5 3 1 1
Copyright and Policy Issue 0 1 1 0 0 0 0 0 0
Feature Request 8 8 3 2 1 0 2 1 4
Suggestion Content Issue 10 9 5 1 1 4 2 1 4
Operation Issue 49 13 14 12 15 10 5 4 7
User Experience Issue 5 0 1 3 0 1 1 0 0

files as the context for Copilot to generate code suggestions
are worth trying.

Implication 6. Simplify the configuration of Copilot and
provide support for more IDEs and code editors.

According to the results of RQ1 and RQ2, Compati-
bility Issue is the second-largest category, and Editor/IDE
Compatibility Issue is one of the main causes that leads
to many Operation Issues. From the perspective of users,
we also have observed lots of discussions related to con-
figuration and settings of Copilot, which makes Modify
Configuration/Setting the second most frequently employed
solution. Additionally, Improper Configuration/Setting is the
fifth most common cause of problems related to Copilot
usage. Based on these findings, we believe that simplifying
the configuration process of Copilot for users can signifi-
cantly improve their experience. For example, the Copilot
team may offer more detailed installation and configura-
tion guidelines, provide user-friendly configuration options.
Moreover, we have identified 71 INTEGRATION REQUESTS,
indicating a significant number of users expressing a desire
for Copilot compatibility across a broader range of IDEs and
code editors.

Implication 7. Increase the diversity of the code sug-
gested by Copilot while improving their quality.

In Suggestion Content Issues, the predominant types are
LOW QUALITY SUGGESTION and NONSENSICAL SUGGES-
TION. Bird et al. (2023) also observed that Copilot occa-
sionally offers peculiar and nonsensical code suggestions
as reported by the Copilot users. Other prior studies (e.g.,
Vaithilingam et al. (2022), Pearce et al. (2022)) also indi-
cated the problems with the code suggestions provided by
Copilot in terms of code quality. However, compared to
the issues of specific code content suggested by Copilot,
we found that users are more inclined to discuss situations
where Copilot fails to provide valuable code suggestions as
problems on public Q&A platforms. This tendency actually
reflects one of the primary purposes for which many users
utilize Copilot: they hope that Copilot will inspire their
ideas in coding. Observations from some instances of User
Experience Issue have shown how users can be disappointed
when all 10 code suggestions provided by Copilot lack diver-
sity. In fact, in addition to the improvement in code quality,
diverse coding suggestions are essential for satisfying the
needs of users for more inspirational code.

Implication 8. When using popular programming lan-
guages, user experience with Copilot shows no noticeable
differences. However, additional enhancement may be
necessary for more niche or domain-specific languages.

Table 7 presents the correlation between the number
of Copilot usage problems and the programming languages
that users predominantly utilize. Python, C#, JavaScript, and
Java are the most frequently used programming languages.
The official claim from the Copilot team is that Copilot can
support almost all programming languages (GitHub, 2024d).
Based on our observations of these reported problems, no
commonly used programming language consistently exhib-
ited specific categories of problems for users. Users of these
mainstream languages have not indicated significant differ-
ences in user experience and the quality of code suggestions
when using different languages. However, We found that
some users expressed a need for enhancements or support for
niche and domain-specific languages when using Copilot.
For instance, a user expressed disappointment with the code
suggested by Copilot for the Nim language (Discussion
#7180), while another user requested support for Classic
ASP and VBScript (Discussion #53154). Due to varying
training data across different programming languages, users
may have a suboptimal experience when using less common
languages. Therefore, we suggest that the Copilot team col-
lect more relevant training data and further train Copilot for
these programming languages to improve the user experi-
ence.

Implication 9. Consider intellectual property and copy-
right when gathering training data for Copilot and giving
code suggestions.

Since the announcement of Copilot, there has been on-
going controversy regarding its implications for intellec-
tual property and copyright. In our dataset, the number of
Copyright and Policy Issue is higher than we expected,
and we observed many related concerns from both users
and repository owners during the data extraction process.
For the owners of the repositories hosted on GitHub, the
primary concern is whether their code has been or will
be used illegally to train Copilot. Copilot users are con-
cerned about whether the sensitive code context provided
for generating code suggestions would be collected and
stored by Copilot. In Feature Request, we noticed that some
users call for Copilot to introduce new features that prevent
CODE TELEMETRY ISSUE. In addition, Bird et al. (2023)

X Zhou et al.: Preprint submitted to Elsevier Page 16 of 22

Problems, Causes and Solutions of Using GitHub Copilot

found some discussions between Copilot users about how
copyright applied to code suggestions generated by Copilot.
According to their findings, Copilot users hold different
views about how to license the code generated by Copilot
and whether the code generated by Copilot should be capable
of copyright protection. Issues related to intellectual prop-
erty and copyright when using Copilot should be seriously
taken into account by the Copilot team to prevent potential
impacts on the development of Copilot and user experience.
As Akbar et al. (2023) pointed out, intellectual property,
legal compliance, and privacy are critical ethical principles
when developing and using LLM-driven tools like Copilot.
Therefore, we contend that the Copilot team should take
measures to address these problems, providing high-quality
code generation services while protecting user privacy and
intellectual property. Besides, we noticed that the Copilot
team has published “GitHub Copilot Trust Center” (GitHub,
2024c) to help answer questions regarding privacy, security,
and intellectual property. We plan to further explore the
role of this center in addressing user concerns regarding the
Copyright and Policy Issue in our future work.
4.3. Implications for Researchers

Implication 10. The use of Copilot may alter the coding
process and increase the time cost of verifying code
suggestions, making code explanation highly important.

In our research, INCOMPREHENSIBLE SUGGESTION
ranks as the fourth most common Suggestion Content Issue,
and the code explanation feature is also frequently requested.
Some users mentioned that the code suggestions generated
by Copilot are excessively long, resulting in reduced read-
ability. This indicates that when Copilot provides relatively
complex suggestions, or when users lack coding experience
in a particular domain, understanding the code logic and
verifying its correctness can be time-consuming. In that
case, users may refrain from adopting code suggestions of
Copilot as it makes them feel a loss of control over the coding
task, according to the research of Vaithilingam et al. (2022).
The study by Wang et al. (2023b) also shows that using
AI-generated code can lead to substantial review pressure.
Therefore, we believe that AI coding tools like Copilot
will change the allocation of time spent on various tasks
in software development. As expected by some users, the
code explanation feature would be helpful. GitHub Copilot
Chat now is generally available for organizations and in-
dividuals (Zhao, 2023), which is powered by GPT-4. The
chat feature enables Copilot to interact more flexibly with
users, providing the potential for implementing functions
such as code explanation, code refactoring, and vulnerability
detection. For future research, we plan to explore how the
chat feature can influence the programming process and
enhance efficiency of coding tasks.

Implication 11. To accurately gauge user satisfaction
with Copilot, it is essential to consider programming
tasks across various application domains, as well as the
purposes for which users employ Copilot.

We identified relatively few Suggestion Content Issues,
and one potential reason is that users are less inclined to
report specific code-related issues to public Q&A platforms,
indicating a certain degree of tolerance for AI-generated
erroneous suggestions (Weisz et al., 2021). Therefore, our
study results may not fully reflect user satisfaction with the
Copilot generated code content. Users often propose new
Feature Requests based on their individual needs and coding
habits, coupled with their experience of using Copilot. Some
of these requests are closely associated with the domains of
the applications that Copilot users develop, such as front-end
web development and game development. Consequently,
user satisfaction levels with Copilot may vary across dif-
ferent application domains. Thus, assessing the capabilities
of Copilot through the lens of single programming tasks,
such as addressing algorithmic problems or writing SQL
statements, may not represent the actual user satisfaction
in other application domains. Furthermore, our previous
research found that users have diverse objectives when us-
ing Copilot (Zhang et al., 2023), directly influencing their
expectations. For instance, users looking to quickly grasp
new technologies with the assistance of Copilot are more
concerned with whether the code suggestions provide help-
ful programming guidance for subsequent steps; conversely,
those who wish to use Copilot for repetitive coding tasks,
such as CRUD operations on a database, are more concerned
with whether Copilot can generate correct code to reduce the
significant effort they spend on fixing similar issues in code
suggestions. Therefore, the intended utilization of Copilot
also stands as a critical factor influencing the satisfaction of
users with Copilot. A focused study on user satisfaction with
Copilot based on these two factors will provide an insightful
assessment.

Implication 12. By analyzing the timeline of when prob-
lems related to Copilot usage occurred, we found that
Feature Requests of users increased with the iterations of
Copilot.

Fig. 4 illustrates the variation in the number of six
categories of Copilot usage problems every three months.
As shown in Fig. 4, Operation Issue outnumbers other
categories during almost all the periods, which is reason-
able since Operation Issues constitute 57.5% of all Copilot-
related problems. Besides, we found that the numbers of
User Experience Issue, Suggestion Content Issue, and Copy
and Policy Issue have remained relatively stable. However,
despite the Copilot team introducing new features and en-
hancing existing features to meet the requirements of Copilot
users, the number of Feature Requests has continued to rise
since January 2022. Considering the uncertainty of the code
generated by Copilot, users are also uncertain about the

X Zhou et al.: Preprint submitted to Elsevier Page 17 of 22

Problems, Causes and Solutions of Using GitHub Copilot

0

20

40

60

80

100

120

140

160

180

06
/29
/21
–0
9/2
8/2
1

09
/29
/21
–1
2/2
8/2
1

12
/29
/21
–0
3/2
8/2
2

03
/29
/22
–0
6/2
8/2
2

06
/29
/22
–0
9/2
8/2
2

09
/29
/22
–1
2/2
8/2
2

12
/29
/22
–0
3/2
8/2
3

03
/29
/23
–0
6/1
8/2
3

Operation Issue Compatibility Issue
Feature Request Suggestion Content Issue
User Experience Issue Copoyright and Policy Issue

Figure 4: Trends of Copilot Problems

optimal way to interact with Copilot. Consequently, users
provide feedback based on their practical coding experi-
ence with Copilot and hope that the optimizations from
the Copilot team will enhance their usage experience. Even
though the Copilot team continuously introduced new func-
tions to meet user expectations, users can still provide more
feedback and come up with additional demands based on
their experience with these new features of Copilot. As the
version of Copilot evolves, user expectations also evolve
correspondingly. Hence, exploring how AI code generation
tools such as Copilot can better interact with users could
be an interesting and worthy research topic. We argue that
researchers should consistently monitor the feedback and
trends in Feature Requests for Copilot, particularly focusing
on the feedback following the introduction of new features,
which can guide future enhancements and pinpoint specific
areas where Copilot can be better improved.

5. Threats to Validity
The threats to validity are discussed according to the

guidelines in Runeson and Höst (2009), and internal validity
is not considered, since we did not investigate the relation-
ships between variables and results.

Construct validity: As the processes of data labelling,
data extraction, and data analysis in this study were con-
ducted manually, there is a risk of introducing personal bias.
Therefore, we implemented some strategies to enhance the
construct validity. In order to reduce this threat, the first
and third authors carried out pilot experiments to agree
on the criteria for data labelling and data extraction. If
any disagreements arose during these processes, the second

author was involved to achieve a consensus. The results of
data extraction were rechecked by the three authors to ensure
accuracy. The data analysis was conducted by the first author.
When uncertainties emerged, the first author discussed them
with the second and third authors to achieve joint agreement.
For the results of the data analysis, the negotiated agreement
approach (Campbell et al., 2013) was employed to address
any conflicts.

External validity: For our research, the primary threat
to external validity is the selection of data sources. To
maximize external validity, we chose GitHub Issues, GitHub
Discussions, and SO posts as data sources. GitHub Issues
is a tool used to report and track software issues, allowing
users to report errors, request features, and raise questions to
developers. While GitHub Discussions is a new feature on
GitHub that aims to provide a more open and organized plat-
form for users to communicate and share insights with other
community members. As a popular Q&A community, Stack
Overflow is also a platform for many developers to engage
in discussions and share insights regarding Copilot usage.
These platforms contain a substantial amount of relevant
data, and their data are complementary to each other. Con-
sequently, we were able to collect diverse usage-related data
of Copilot from a large number of developers and projects
from these three data sources. However, despite all these
efforts, we admitted that there may still be relevant data that
we missed. We collected the discussions under the “Copilot”
subcategory of GitHub Community rather than searching for
all GitHub discussions by using “Copilot” as the keyword.
The absence of discussions from other repositories that are
potentially related to Copilot could affect the statistics on the
number of different categories of Copilot usage problems.
Additionally, with the rapid release of the new versions of
Copilot, we acknowledge that some new problems related to
Copilot usage may emerge, or the problems reported may
have been resolved. Hence, there is a need to continuously
collect new data in future work to refine our conclusions.
Also, industrial surveys can be employed to obtain more
information related to the usage of Copilot, such as devel-
opment contexts and users’ coding experience. To validate
and replicate our findings and potentially uncover additional
insights, we provide our dataset for other researchers (Zhou
et al., 2024).

Reliability: To minimize potential uncertainties arising
from the research methodology, we have implemented mul-
tiple measures to maximize the reliability of our study. We
conducted a pilot labelling to assess the consistency of the
two authors prior to the formal data labelling process. The
Cohen’s Kappa coefficients of the three pilot labelling pro-
cesses are 0.824, 0.834, and 0.806, indicating good agree-
ment between the authors. Throughout the data labelling,
extraction, and analysis process, we thoroughly discussed
and resolved any inconsistencies within the team to ensure
the consistency and accuracy of the result. Furthermore, we
have made available the dataset of the study (Zhou et al.,
2024) to enable other researchers to validate our findings.

X Zhou et al.: Preprint submitted to Elsevier Page 18 of 22

Problems, Causes and Solutions of Using GitHub Copilot

6. Related Work
6.1. Evaluating the Quality of Code Generated by

Copilot
Several studies focused on various aspects of code qual-

ity generated by Copilot. Siddiq et al. (2022) analyzed the
prevalence of code smells in the datasets used to train code
generation tools like Copilot, and observed the presence
of 18 types of code smells in the suggestions provided
by Copilot. Yetistiren et al. (2022) evaluate the validity,
correctness, and efficiency of the Copilot generated code,
and their results indicate that Copilot is capable of gener-
ating valid code with a success rate of 91.5%. Pearce et al.
(2022) prompted Copilot to generate code related to high-
risk network security vulnerabilities in order to investigate
the conditions that may lead Copilot to suggest insecure
code. They found that vulnerabilities were present in 40%
of the cases. Nguyen and Nadi (2022) conducted a study
using 33 LeetCode problems to evaluate the correctness and
comprehensibility of Copilot in four different programming
languages. They found that Copilot’s suggestions had low
cyclomatic and cognitive complexity and did not show sig-
nificant differences across programming languages. Moradi
Dakhel et al. (2023) investigated the capabilities of Copilot
in two different programming tasks and found that it was
able to provide solutions for almost all basic algorithmic
problems, but some of the solutions were buggy and not
replicable. The study conducted by Asare et al. (2023)
suggests that Copilot won’t generate code with the same
vulnerabilities as those previously introduced by human de-
velopers overall. Sobania et al. (2022) evaluated the perfor-
mance of Copilot on standard program synthesis benchmark
problems and compared it with results from the genetic pro-
gramming literature. They found that Copilot demonstrated
more mature performance. Mastropaolo et al. (2023) aimed
to investigate whether different but semantically equivalent
natural language descriptions would lead to the generation of
the same recommended functions. Their results indicate that
differences between semantically equivalent descriptions
could affect the correctness of the generated code. Al Madi
(2023) investigated the readability and visual inspection of
the code generated by Copilot. They revealed the importance
of developers being cautious and vigilant when working with
code generation tools such as Copilot. Gustavo et al. (2023)
investigated the impact of programming with LLMs that
support Copilot. They found that users assisted by LLMs
produce critical security bugs at a rate no greater than 10%
more than those not assisted.
6.2. Copilot’s Impact on Practical Development

Several studies focused on investigating the performance
of Copilot in actual software development, as well as the
opinions of software practitioners on it. Wang et al. (2023a)
conducted an interview with 15 practitioners and then sur-
veyed 599 practitioners from 18 IT companies regarding
their expectations of code completion. They found that 13%
of the participants had used Copilot as their code completion
tool. Jaworski and Piotrkowski (2023) prepared a survey

questionnaire consisting of 18 questions to investigate de-
velopers’ attitudes toward Copilot. The research findings
indicate that most people have a positive attitude towards
the tool, but few participants showed concerns about security
issues associated with using Copilot. Imai (2022) conducted
experiments with 21 participants to compare the effective-
ness of Copilot paired with human programmers in terms of
productivity and code quality. The results indicate that while
Copilot can increase productivity by adding more lines of
code, the generated code quality is lower due to the need to
remove more lines of code during testing. Barke et al. (2023)
observed 20 participants who collaborated with Copilot to
complete different programming tasks in four languages, and
found that the interaction with the programming assistant
was bimodal in different collaboration mode. Bird et al.
(2023) conducted three studies aimed at understanding how
developers utilize Copilot. Their findings suggest that devel-
opers spent a lot of time assessing the suggestions generated
by Copilot instead of completing their coding tasks. Peng
et al. (2023) presented the results of a controlled exper-
iment using Copilot as an AI collaborative programmer.
They found that the experimental group who had access to
Copilot completed tasks 55.8% faster than the control group.
Zhang et al. (2023) investigated the programming languages,
IDEs, associated technologies, implemented functionalities,
advantages, limitations, and challenges when using Copilot.
Vaithilingam et al. (2022) conducted a user study involving
24 participants to assess the usability of Copilot and its
integration into the programming workflow. They found that
while Copilot may not directly enhance the efficiency of
completing programming tasks, it serves as a valuable start-
ing point for programmers, saving time spent on searching.
Liang et al. (2024) conducted a survey among software de-
velopers and found that the primary motivation for develop-
ers to use AI programming assistants is to reduce keystrokes,
complete programming tasks quickly, and recall syntax.
However, the impact of using these tools to help generate
potential solutions is not significant. Gustavo et al. (2023)
analyzed the use of Copilot for programming and compared
it with earlier forms of programmer assistance. They also
explored potential challenges that could arise when applying
LLMs to programming. Ziegler et al. (2024) sought to assess
the impact of Copilot on user productivity through a case
study, aiming to align user perceptions with empirical data.
Their research highlights the aspects in which Copilot has
enhanced users’ coding productivity and how it achieves
these improvements.
6.3. Conclusive Summary

Most of the prior studies utilized controlled experiments
or surveys to evaluate the effectiveness of Copilot. Our
research is grounded in the perspective of software devel-
opers, focusing on the real-world problems they encounter
when using Copilot, exploring the underlying causes and
viable solutions. By analyzing the study results, we aimed
to provide insights for Copilot users, the Copilot team, and
researchers. Besides, we collected data from three popular

X Zhou et al.: Preprint submitted to Elsevier Page 19 of 22

Problems, Causes and Solutions of Using GitHub Copilot

software development platforms and forums, i.e., GitHub
Issues, GitHub Discussions, and SO, to ensure the compre-
hensiveness of our dataset.

7. Conclusions
In this study, we focused on the problems users may

encounter when using GitHub Copilot, as well as their
underlying causes and potential solutions. After identifying
the RQs, we collected data from GitHub Issues, GitHub
Discussions, and Stack Overflow. After manual screening,
we obtained 473 GitHub issues, 706 GitHub discussions,
and 142 SO posts related to Copilot and got a total of 1353
problems, 391 causes, and 497 solutions based on our data
extraction criteria. The results indicate that Operation Issue
and Compatibility Issue are the most common problems
faced by users. Copilot Internal Error, Network Connection
Error, and Editor/IDE Compatibility Issue are identified
as the most common causes of these problems. Bug Fixed
by Copilot, Modify Configuration/Setting and Use Suitable
Version are the predominant solution. For the Copilot users,
our results suggest that they should carefully review its
code suggestions and seek inspiration from them. IDEs or
code editors that are officially supported by Copilot can
lead to a better user experience. For the Copilot team, it is
essential to enhance the compatibility and provide support
for a broader range of IDEs and code editors, simplify
the configuration process, diversify the code suggestions
while improving their quality, enhance Copilot performance
for niche or domain-specific programming languages, and
address concerns related to intellectual property and copy-
right. Additionally, users are asking for more customization
options to tailor Copilot’s behavior and more control over the
code content generated by Copilot. For researchers, we found
that additional time is required for code suggestion verifica-
tion when utilizing Copilot, thus making code explanation
feature especially valuable. Programming tasks in different
application domains and the purpose for which users employ
Copilot should be taken into consideration when assessing
user satisfaction with Copilot. Consistently monitoring the
feedback in Feature Request, particularly after introducing
new features, can guide future improvements and identify
specific areas for enhancing Copilot.

For future work, we plan to continuously collect new
data from the three data sources to analyze the latest usage
problems that occur during the iterations of Copilot, along
with their causes and solutions. With the introduction of
GitHub Copilot Trust Center (GitHub, 2024c), we plan to
investigate whether the concerns of users for Copyright and
Policy Issue will be addressed. Besides, we will employ an
industrial survey to gather more information, such as the
programming experiences of Copilot users and the devel-
opment contexts when coding with Copilot, to further in-
vestigate how these factors impact the categories of Copilot-
related problems encountered by users. Additionally, we aim
to understand the impact of Copilot on various stages of
software development life cycle by conducting an interview

with developers who use Copilot in industrial software de-
velopment. Besides, considering the emergence of LLMs is
likely to drive a significant proliferation of AI code assistant
tools, a comparison between Copilot and other popular AI
code assistant tools (e.g., Tabnine (Tabnine, 2024), Amazon
Q Developer (AWS, 2024)) holds valuable insights.

Data availability
We have shared the link to our dataset in the reference

(Zhou et al., 2024).

Acknowledgments
This work is supported by the National Natural Sci-

ence Foundation of China under Grant Nos. 62172311
and 62176099, the Natural Science Foundation of Hubei
Province of China under Grant No. 2021CFB577, and
the Knowledge Innovation Program of Wuhan-Shuguang
Project under Grant No. 2022010801020280.

CRediT authorship contribution statement
Xiyu Zhou: Conceptualization, Investigation, Data cu-

ration, Formal analysis, Writing - Original draft prepara-
tion. Peng Liang: Conceptualization, Methodology, Inves-
tigation, Data curation, Supervision, Writing - review and
editing. Beiqi Zhang: Investigation, Data curation, Formal
Analysis, Writing - Original draft preparation. Zengyang
Li: Conceptualization, Methodology, Writing - review and
editing. Aakash Ahmad: Conceptualization, Methodology,
Writing - review and editing. Mojtaba Shahin: Concep-
tualization, Methodology, Writing - review and editing.
Muhammad Waseem: Methodology, Writing - review and
editing.

References
Akbar, M.A., Khan, A.A., Liang, P., 2023. Ethical aspects of chatgpt

in software engineering research. IEEE Transactions on Artificial
Intelligence .

Al Madi, N., 2023. How readable is model-generated code? examining
readability and visual inspection of github copilot, in: Proceedings of
the 37th International Conference on Automated Software Engineering
(ASE), ACM. pp. 1–5.

Amin, M.M., Cambria, E., Schuller, B.W., 2023. Will affective computing
emerge from foundation models and general artificial intelligence? a first
evaluation of chatgpt. IEEE Intelligent Systems 38, 15–23.

Asare, O., Nagappan, M., Asokan, N., 2023. Is github’s copilot as bad
as humans at introducing vulnerabilities in code? Empirical Software
Engineering 28, 129.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D.,
Jiang, E., Cai, C., Terry, M., Le, Q., et al., 2021. Program synthesis with
large language models. arXiv preprint abs/2108.07732 .

AWS, 2024. Amazon Q Developer: The most capable genera-
tive AI–powered assistant for software development. https://

aws.amazon.com/q/developer/?nc1=h_ls.
Barke, S., James, M.B., Polikarpova, N., 2023. Grounded copilot: How

programmers interact with code-generating models. Proceedings of the
ACM on Programming Languages 7, 1–27.

Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E.,
Lowdermilk, T., Gazit, I., 2023. Taking flight with copilot: Early insights

X Zhou et al.: Preprint submitted to Elsevier Page 20 of 22

https://aws.amazon.com/q/developer/?nc1=h_ls
https://aws.amazon.com/q/developer/?nc1=h_ls

Problems, Causes and Solutions of Using GitHub Copilot

and opportunities of ai-powered pair-programming tools. ACM Queue
20, 35–57.

Campbell, J.L., Quincy, C., Osserman, J., Pedersen, O.K., 2013. Coding in-
depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement. Sociological Methods & Research 42, 294–
320.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., Kaplan,
J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R.,
Krueger, G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B.,
Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M.,
Winter, C., Tillet, P., Such, F.P., Cummings, D., Plappert, M., Chantzis,
F., Barnes, E., Herbert-Voss, A., Guss, W.H., Nichol, A., Paino, A.,
Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V., Morikawa,
E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer, K.,
Welinder, P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I.,
Zaremba, W., 2021. Evaluating large language models trained on code.

Chen, X., Ye, J., Zu, C., Xu, N., Zheng, R., Peng, M., Zhou, J., Gui, T.,
Zhang, Q., Huang, X., 2023. How robust is gpt-3.5 to predecessors? a
comprehensive study on language understanding tasks. arXiv preprint
arXiv:2303.00293 .

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement 20, 37–46.

de Dieu, M.J., Liang, P., Shahin, M., Khan, A.A., 2023. Characterizing
architecture related posts and their usefulness in stack overflow. Journal
of Systems and Software .

Eclipse, 2019. Eclipse Code Recommenders. https://

projects.eclipse.org/projects/technology.recommenders.
El aoun, M.R., Li, H., Khomh, F., Openja, M., 2021. Understanding

quantum software engineering challenges an empirical study on stack
exchange forums and github issues, in: Proceedings of 37th IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).

Fu, Y., Liang, P., Tahir, A., Li, Z., Shahin, M., Yu, J., 2024. Secu-
rity weaknesses of copilot generated code in github. arXiv preprint
arXiv:2310.02059 .

Gartner, 2023. Gartner Identifies the Top 10 Strategic Technology Trends
for 2024. https://www.gartner.com/en/newsroom/press-releases/2023-
10-16-gartner-identifies-the-top-10-strategic-technology-trends-

for-2024.
GitHub, 2024a. About GitHub Copilot Enterprise. https:

//docs.github.com/en/copilot/github-copilot-enterprise/overview/
about-github-copilot-enterprise.

GitHub, 2024b. Configuring network settings for GitHub Copi-
lot. https://docs.github.com/en/copilot/configuring-github-copilot/
configuring-network-settings-for-github-copilot.

GitHub, 2024c. GitHub Copilot Trust Center. https://

resources.github.com/copilot-trust-center//.
GitHub, 2024d. GitHub Copilot · Your AI Pair Programmer. https:

//github.com/features/copilot.
Gustavo, S., Hammond, P., Teo, N., Ramesh, K., Brendan, D.G., Siddharth,

G., 2023. Lost at c: A user study on the security implications of large
language model code assistants, in: Proceedings of the 32nd USENIX
Security Symposium (USENIX Security), USENIX. pp. 2205–2222.

Huang, H., Wu, S., Liang, X., Wang, B., Shi, Y., Wu, P., Yang, M., Zhao, T.,
2023. Towards making the most of llm for translation quality estimation,
in: Proceedings of the 12th Natural Language Processing and Chinese
Computing (NLPCC), Springer.

Imai, S., 2022. Is github copilot a substitute for human pair-programming?
an empirical study, in: Proceedings of the 44th International Conference
on Software Engineering (ICSE): Companion, IEEE. pp. 319–321.

Jaworski, M., Piotrkowski, D., 2023. Study of software developers’ experi-
ence using the github copilot tool in the software development process.
arXiv preprint abs/2301.04991 .

Jiang, J., Wang, F., Shen, J., Kim, S., Kim, S., 2024. A survey on large
language models for code generation. arXiv preprint arXiv:2406.00515
.

Liang, J.T., Yang, C., Myers, B.A., 2024. A large-scale survey on the
usability of ai programming assistants: Successes and challenges, in:

Proceedings of the 45th International Conference on Software Engineer-
ing (ICSE), ACM. pp. 1–13.

Luan, S., Yang, D., Barnaby, C., Sen, K., Chandra, S., 2019. Aroma: Code
recommendation via structural code search. Proceedings of the ACM on
Programming Languages 3, 1–28.

Mastropaolo, A., Pascarella, L., Guglielmi, E., Ciniselli, M., Scalabrino,
S., Oliveto, R., Bavota, G., 2023. On the robustness of code generation
techniques: An empirical study on github copilot, in: Proceedings of the
45th International Conference on Software Engineering (ICSE), IEEE.
p. 2149–2160.

MITRE, 2023. CWE - Common Weakness Enumeration. https://

cwe.mitre.org/index.html.
Moradi Dakhel, A., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais,

M.C., Jiang, Z.M., 2023. Github copilot ai pair programmer: Asset or
liability? Journal of Systems and Software 203, 111734.

Nguyen, N., Nadi, S., 2022. An empirical evaluation of github copilot’s
code suggestions, in: Proceedings of the 19th IEEE/ACM International
Conference on Mining Software Repositories (MSR), IEEE. pp. 1–5.

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., Karri, R., 2022. Asleep
at the keyboard? assessing the security of github copilot’s code contri-
butions, in: Proceedings of the 43rd IEEE Symposium on Security and
Privacy (S&P), IEEE. pp. 754–768.

Peng, S., Kalliamvakou, E., Cihon, P., Demirer, M., 2023. The impact of ai
on developer productivity: Evidence from github copilot. arXiv preprint
abs/2302.06590 .

Pope, T., 2024. Copilot.vim. https://github.com/github/copilot.vim.
Robillard, M., Walker, R., Zimmermann, T., 2010. Recommendation

systems for software engineering. IEEE Software 27, 80–86.
Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case

study research in software engineering. Empirical Software Engineering
14, 131–164.

Siddiq, M.L., Majumder, S.H., Mim, M.R., Jajodia, S., Santos, J.C., 2022.
An empirical study of code smells in transformer-based code generation
techniques, in: Proceedings of the 22nd International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM), IEEE. pp.
71–82.

Sobania, D., Briesch, M., Rothlauf, F., 2022. Choose your programming
copilot: A comparison of the program synthesis performance of github
copilot and genetic programming, in: Proceedings of the 24th Genetic
and Evolutionary Computation Conference (GECCO), ACM. pp. 1019–
1027.

Stol, K.J., Ralph, P., Fitzgerald, B., 2016. Grounded theory in software
engineering research: a critical review and guidelines, in: Proceedings
of the 38th International conference on software engineering (ICSE),
ACM. pp. 120–131.

Tabnine, 2024. Tabnine - The AI code assistant that you control. https:

//www.tabnine.com/.
Vaithilingam, P., Zhang, T., Glassman, E.L., 2022. Expectation vs. ex-

perience: Evaluating the usability of code generation tools powered by
large language models, in: Proceedings of the 42nd CHI Conference on
Human Factors in Computing Systems (CHI) Extended Abstracts, ACM.
pp. 1–7.

Wang, C., Hu, J., Gao, C., Jin, Y., Xie, T., Huang, H., Lei, Z., Deng, Y.,
2023a. How practitioners expect code completion?, in: Proceedings of
the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FES),
ACM. pp. 1294–1306.

Wang, R., Cheng, R., Ford, D., Zimmermann, T., 2023b. Investigating and
designing for trust in ai-powered code generation tools. arXiv preprint
abs/2305.11248 .

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S.,
Yogatama, D., Bosma, M., Zhou, D., Metzler, D., Chi, E.H., Hashimoto,
T., Vinyals, O., Liang, P., Dean, J., Fedus, W., 2022. Emergent abilities
of large language models. arXiv preprint arXiv:2206.07682 .

Weisz, J.D., Muller, M., Houde, S., Richards, J., Ross, S.I., Martinez,
F., Agarwal, M., Talamadupula, K., 2021. Perfection not required?
human-ai partnerships in code translation, in: Proceedings of the 26th
International Conference on Intelligent User Interfaces (IUI), ACM. p.

X Zhou et al.: Preprint submitted to Elsevier Page 21 of 22

https://projects.eclipse.org/projects/technology.recommenders
https://projects.eclipse.org/projects/technology.recommenders
https://www.gartner.com/en/newsroom/press-releases/2023-10-16-gartner-identifies-the-top-10-strategic-technology-trends-for-2024
https://www.gartner.com/en/newsroom/press-releases/2023-10-16-gartner-identifies-the-top-10-strategic-technology-trends-for-2024
https://www.gartner.com/en/newsroom/press-releases/2023-10-16-gartner-identifies-the-top-10-strategic-technology-trends-for-2024
https://docs.github.com/en/copilot/github-copilot-enterprise/overview/about-github-copilot-enterprise
https://docs.github.com/en/copilot/github-copilot-enterprise/overview/about-github-copilot-enterprise
https://docs.github.com/en/copilot/github-copilot-enterprise/overview/about-github-copilot-enterprise
https://docs.github.com/en/copilot/configuring-github-copilot/configuring-network-settings-for-github-copilot
https://docs.github.com/en/copilot/configuring-github-copilot/configuring-network-settings-for-github-copilot
https://resources.github.com/copilot-trust-center//
https://resources.github.com/copilot-trust-center//
https://github.com/features/copilot
https://github.com/features/copilot
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://github.com/github/copilot.vim
https://www.tabnine.com/
https://www.tabnine.com/

Problems, Causes and Solutions of Using GitHub Copilot

402–412.
Wilkinson, L., 2024. GitHub Copilot drives revenue growth amid sub-

scriber base expansion. https://www.ciodive.com/news/github-copilot-
subscriber-count-revenue-growth/706201/.

Yetistiren, B., Ozsoy, I., Tuzun, E., 2022. Assessing the quality of github
copilot’s code generation, in: Proceedings of the 18th International
Conference on Predictive Models and Data Analytics in Software En-
gineering (PROMISE), ACM. pp. 62–71.

Zhang, B., Liang, P., Feng, Q., Fu, Y., Li, Z., 2024. Copilot refinement:
Addressing code smells in copilot-generated python code. arXiv preprint
arXiv:2401.14176 .

Zhang, B., Liang, P., Zhou, X., Ahmad, A., Waseem, M., 2023. De-
mystifying practices, challenges and expected features of using github

copilot. International Journal of Software Engineering and Knowledge
Engineering 33, 1653–1672.

Zhao, S., 2023. GitHub Copilot Chat. https://github.blog/2023-12-
29-github-copilot-chat-now-generally-available-for-organizations-

and-individuals/.
Zhou, X., Liang, P., Zhang, B., Li, Z., Ahmad, A., Shahin, M., Waseem,

M., 2024. Dataset of the Paper “Exploring the Problems, their Causes,
and Solutions of AI Pair Programming: A Study with Practitioners of
GitHub Copilot”. https://doi.org/10.5281/zenodo.11080113.

Ziegler, A., Kalliamvakou, E., Li, X.A., Rice, A., Rifkin, D., Simister, S.,
Sittampalam, G., Aftandilian, E., 2024. Measuring github copilot’s
impact on productivity. Communications of the ACM 67, 54–63.

X Zhou et al.: Preprint submitted to Elsevier Page 22 of 22

https://www.ciodive.com/news/github-copilot-subscriber-count-revenue-growth/706201/
https://www.ciodive.com/news/github-copilot-subscriber-count-revenue-growth/706201/
https://github.blog/2023-12-29-github-copilot-chat-now-generally-available-for-organizations-and-individuals/
https://github.blog/2023-12-29-github-copilot-chat-now-generally-available-for-organizations-and-individuals/
https://github.blog/2023-12-29-github-copilot-chat-now-generally-available-for-organizations-and-individuals/
https://doi.org/10.5281/zenodo.11080113

