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Abstract

Context: Quantum computing provides a new dimension in computation, utilizing the principles of
quantum mechanics to potentially solve complex problems that are currently intractable for classical com-
puters. However, little research has been conducted about the architecture decisions made in quantum
software development, which have a significant influence on the functionality, performance, scalability,
and reliability of these systems.

Objective: The study aims to empirically investigate and analyze architecture decisions made during
the development of quantum software systems, identifying prevalent challenges and limitations by using
the posts and issues from Stack Exchange and GitHub.

Method: We used a qualitative approach to analyze the obtained data from Stack Exchange Sites and
GitHub projects - two prominent platforms in the software development community. Specifically, we
collected data from 385 issues (from 87 GitHub projects) and 70 posts (from 3 Stack Exchange sites)
related to architecture decisions in quantum software development.

Results: The results show that in quantum software development (1) architecture decisions are articu-
lated in six linguistic patterns, the most common of which are Solution Proposal and Information Giving,
(2) the two major categories of architectural decisions are Implementation Decision and Technology De-
cision, (3) Software Development Tools are the most common application domain among the twenty
application domains identified, (4) Maintainability is the most frequently considered quality attribute,
and (5) Design Issues and High Error Rates are the major limitations and challenges that practitioners
face when making architecture decisions in quantum software development.

Conclusions: Our results show that the limitations and challenges encountered in architecture decision-
making during the development of quantum software systems are strongly linked to the particular features
(e.g., quantum entanglement, superposition, and decoherence) of those systems. These issues mostly
pertain to technical aspects and need appropriate measures to address them effectively.

Keywords: Architecture Decision, Quantum Software System, Stack Exchange, GitHub, Empirical
Study

1. Introduction

Quantum computing is a rapidly developing technology that is a combination of physics, chem-
istry, mathematics, computer science, and information theory to revolutionize computation and problem-
solving capabilities [1]. Classical computing processes information using classical bits, which can repre-
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sent a value of either 0 or 1. In contrast, quantum computing introduces qubits or quantum bits, which
can represent two-state |0⟩ and |1⟩, serving as the fundamental units of quantum information technology
[2]. As a mature technology, classical computing is making significant contributions to the advancement
of today’s digital world [3][4]. Despite its invaluable contribution to the landscape of computation, clas-
sical computing faces inherent limitations in data encoding, processing, and transmission, particularly
when managing complex tasks such as optimizing energy systems, conducting large-scale simulations, and
enhancing cryptographic security areas - where quantum computing shows enormous potential [5][6][7][8].
As a result, quantum computing has largely been motivated by academic (e.g., institutions like MIT and
Stanford doing research in quantum algorithms) and industrial interests (e.g., companies like Google and
IBM developing quantum technologies) to change the scenery of information technology, and the role
of quantum software architecture has been recognized to bring impactful changes in this transformation
process [9][10][11]. Integrating quantum software architecture and programming with quantum hardware
is a foundational aspect of quantum computing research [12][13]. This integration makes it possible to
develop and execute quantum algorithms designed to utilize quantum bit’s power and solve complex
problems more efficiently than classical algorithms [14]. The most fundamental difference between quan-
tum and classical algorithms lies in their state representation - classical algorithms use probabilities
while quantum algorithms use amplitudes [15]. Therefore, central to the potency of quantum computing
are quantum algorithms, including Shor’s large numbers factoring algorithm [16] and Grover’s quantum
search algorithm [17]. Quantum algorithms are used across various domains, such as cryptography, search
and optimization processes, and solving linear equation systems [18][19]. Quantum programming entails
developing algorithms specifically for quantum computers and reducing the execution costs of quantum
algorithms on future devices [20]. Quantum programs are written using domain-specific programming
languages such as Q# and Silq, and quantum software architecture is important to develop quantum
software systems [21][22]. However, the fields of quantum software architecture and quantum software
engineering are still in their early stages of development [23][24][25]. Compounding this, previous studies
highlight the considerable obstacles that quantum software development grapples with, such as intri-
cate programming paradigms, scarce simulation resources, high error frequencies, a dearth of efficient
debugging tools, and limited software libraries. These obstacles accentuate the intricacies involved in
architecture decisions for quantum software systems [26][27].

In the domain of software, quantum computing is ready to begin renovations “golden age”, changing
the landscape of software engineering [28]. Over the last few years, the development of quantum pro-
gramming languages, algorithms, libraries, and tools has received much attention [29], quantum software
architecture has so far received little attention, which significantly impacts the research and practice of
quantum software systems [30]. Different companies (e.g., Qiskit1 from IBM, Cirq2 from Google Re-
search, Q#3 from Microsoft, and C++4 from Intel) and cloud providers (e.g., Amazon Web Services,
Alibaba Cloud, and Azure Quantum) have already invested in tools as well as programming languages
that allow developers, researchers, and users to solve real-world problems (e.g., risk assessment and
fraud detection in banking, drug discovery, protein folding, supply chain optimization, energy distri-
bution, and advertising scheduling) [31]. Quantum programming languages emphasize computational
and implementation specifics to create executable specifications, yet often fail to incorporate a compre-
hensive, global perspective on the software systems being designed can lead to a reduction in essential
architecture views, potentially compromising the quality and functionality of the final quantum software
product [21][32][33]. Concurrently, quantum computing has an impact on all software life cycle processes
and techniques, and quantum software encounters multifaceted challenges [34], such as making existing
software quantum-safe [35].

Software architecture is the high-level design and organization of a software system, including its
structural components, interactions, and behavior [36]. Software architecture for quantum software sys-
tems structures quantum-intensive systems, utilizing quantum bits and quantum gates as the essential
components and connectors for the software architecture design and implementation [37][38]. The archi-
tecture of a quantum software system is designed through a decision-making process, where the architec-
ture is viewed as a composition of a set of explicit design decisions [39][40]. Decision-making significantly
influences the success or failure of a software system, as a high-quality architecture decision-making

1https://qiskit.org/
2https://quantumai.google/cirq
3https://learn.microsoft.com/en-us/azure/quantum
4https://www.intel.com/content/www/us/en/developer/tools/quantum-sdk/overview.html
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process can lead to desirable results, while a poor-quality architecture and suboptimal architecture de-
cisions more likely lead to undesirable outcomes and even architectural technical debt [41][42]. Making
architecture decisions during the development process of quantum software systems is complex, requiring
a comparative structure to analyze and select among various tools, services, and techniques based on
specific use cases and algorithms [43]. Architecture decisions are increasingly influenced by practitioner
feedback, focusing on hybrid quantum-classical patterns and service orientation to efficiently address
emerging computational challenges in quantum software [44]. Architecture decisions also affect many
aspects of a software system, including its quality (e.g., maintainability, testability, and reliability) of
quantum software development [45]. Recent workshops, such as the Quantum Software Architecture
Workshop (QSA), highlight the growing importance of architectural considerations in the domain of
quantum computing [46]. Despite the essential importance of architecture decisions in the development
of quantum software systems, architecture decisions are unexplored in the area of quantum software
development [45]. Software architects encounter various quantum software architecture limitations and
challenges and should carefully consider overcoming architecture challenges in a quantum software system
[38][30]. Recent studies also identify complex challenges, particularly in quantum software development,
which is directed towards the intricate process of architecting and implementing quantum software sys-
tems, with structural difficulties surfacing even for seasoned architects and developers [44]. To tackle the
challenges of quantum software architecture, the current generation of architects and developers often
find themselves inadequately prepared for the development of quantum software systems [47][48][49].
Despite the myriad of recent literature on quantum software engineering and architecture, a noticeable
gap remains with the lack of empirical studies analyzing critical architecture decision-making within
quantum software systems [30][37][50]. To this end, this study aims to analyze the architecture decisions
as well as the challenges in architecture decision-making associated with quantum software development
from discussions made between developers in GitHub issues and Stack Exchange posts.

To achieve the goal of this study (see Section 3.1), we conducted an empirical study to investigate
architectural decisions made in quantum software development. We collected data from two sources:
GitHub issues (of open-source quantum software projects) and Stack Exchange Q&A sites (Stack Over-
flow, Quantum Computing, and Computer Science). More specifically, we collected 3,185 open and
closed issues (from 192 GitHub projects) and 1494 posts (from the Stack Exchange sites). We manually
filtered out irrelevant issues and posts, and we finally got 385 related issues (from 87 quantum software
projects) and 70 posts from Stack Exchange. Furthermore, we manually extracted data from the 385
related issues and 70 posts and analyzed the extracted data using a predefined classification [51] and the
Constant Comparison method [52] for answering the research questions.

Our study results show that (1)Solution Proposal and Information Giving are the most fre-
quently used linguistic patterns, (2) Implementation Decision and Technology Decision are the two main
types of architecture decisions, (3) Software Development Tool is the most common application domain
identified, (4) Maintainability is the dominant quality attribute considered, and (5) Design Issues and
High Error Rates are the main limitations and challenges when making architecture decisions in quantum
software development.

The contributions of this work: (1) we identified the linguistic patterns practitioners utilized
when making architecture decisions in developing quantum software systems; (2) we investigated several
facets of architecture decisions in quantum software development, such as the categories of decisions
made, the application domains, and the quality attributes considered; (3) we present and discuss the
challenges and limitations developers face while designing quantum software systems; (4) we provide
guidelines to help practitioners design quantum software systems with informed architectural decisions;
and (5) we constructed a dataset [53] that collects the architecture decisions made in quantum software
development.

The rest of this paper is structured as follows: Section 2 presents the background of the study. Sec-
tion 3 describes the research methodology. Section 4 provides the study results, followed by a discussion
of these results in Section 5. Section 6 clarifies the validity threats. Section 7 discusses the related work.
Finally, Section 8 concludes the work with future research directions.

2. Background

In this section, we introduce the background concepts used in this study, including quantum com-
puting, quantum software engineering, and architecture decisions. The overview of the background is
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shown in Fig. 1.

2.1. Quantum computing
Quantum computing is a model of computation that focuses on designing and developing computer-

based systems utilizing the principles of quantum mechanics (e.g., superposition, entanglement, and
interference) to process information.

• Superposition: Superposition is a fundamental principle of quantum mechanics that allows quan-
tum systems, or quantum bits (qubits), to exist simultaneously in multiple states. Unlike classical
bits that can only be 0 or 1 at any one time, a qubit can occupy the states |0⟩ and |1⟩, or any
quantum superposition of these states. This superposition capability represents qubit states within
a matrix format, as illustrated in Equation 1. This capability allows qubits to perform parallel
computations, enhancing computational efficiency and optimizing system performance.

|0⟩ =

1

0

 , |1⟩ =

0

1

 (1)

• Entanglement: Quantum entanglement is a unique feature of quantum physics, which is not
present in classical mechanics. Quantum entanglement uniquely connects quantum bits (qubits),
so the state of one qubit instantly correlates with the state of another, regardless of the distance
between them. Consequently, researchers cannot describe the state of each qubit independently
of the others. Entangled qubits can thus provide a robust synchronization necessary for quantum
computing, which is essential for specific algorithms that require complex correlation patterns.

• Interference: Qubits, the fundamental units of quantum information, can exist in multiple states
simultaneously due to superposition. This characteristic leads to quantum interference, which
reflects the likelihood of qubits assuming specific states upon measurement. Quantum comput-
ing systems, therefore, implement strategies to minimize this interference, aiming to enhance the
precision of their computational outcomes.

Quantum gates are fundamental to quantum computing, analogous to classical logic gates but de-
signed for operations on qubits. These gates manipulate qubits in superposition states and are typically
represented as matrices that execute specific operations on targeted qubits. The most frequently en-
countered gates include the Pauli X (Eq. 2), Pauli Y (Eq. 3), Phase Shift (Pauli Z) gate (Eq. 4), and
the Hadamard gate (Eq. 5). These gates play a foundational role in quantum mechanics, often referred
to as the ‘quantum state basis’, translating algorithmic mathematics into quantum circuits, assessing
state probabilities, and forecasting an algorithm’s performance. For a qubit |X⟩ to be in this state basis,
it must conform to a linear combination represented by |x⟩ = α|0⟩ + β|1⟩, where α and β are complex
numbers ensuring the normalization condition equals 1 that is, |α|2 + |β|2 = 1 This concept is also known
as the superposition of two basis states.

X =

0 1

1 0

 (2)

Y =

0 −i

i 0

 (3)

Z =

1 0

0 −1

 (4)

H = 1√
2

1 1

1 −1

 (5)

In the early 1980s, physicist Richard Feynman proposed the notion of simulating quantum systems
using quantum mechanical processes [54]. Over a couple of decades, quantum computing has transitioned
from theoretical concepts to practical implementations, driven by exponentially increasing computational
potential [55]. This transformation has motivated research into quantum algorithms, error correction,
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and quantum simulation [56]. Quantum computing plays an important role in several fields of computer
science most notably natural language processing [57], machine learning [58], and cyber security [59]. To
realize practical quantum applications, it is essential to have quantum software tools for various design
tasks across multiple abstraction levels, along with practical benchmarks to empirically evaluate and
compare these tools against the current state of the art [60]. However, the development of practical
quantum systems remains difficult due to the lack of reliability requirements of quantum computing
algorithms, physical machines foreseen, and hardware limitations [61]. Quantum Computing as a Ser-
vice (QCaaS) by establishing a reference architecture, demonstrates its practical application through
microservices in the quantum-classic divide and validates its effectiveness and reusability via insights
from professionals in the field of quantum software engineering.
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Figure 1: a) Overview of Quantum Computing Systems, b) Mining Software Repositories [Social (coding) Platforms]

2.2. Quantum software engineering
Quantum Software Engineering (QSE) represents a transformative approach combining the princi-

ples of quantum mechanics with the established practices of software engineering, aiming to design, de-
velop, validate, and evolve software systems and applications fit for the quantum era [44]. The transition
from theoretical concepts to practical implementations in quantum computing has seen significant mile-
stones, such as Google’s demonstration of “quantum supremacy” in October 2019, showcasing quantum
computers solving problems beyond the reach of classical computers [62]. Classical software engineer-
ing involves methods and techniques for developing large-scale software systems, using the engineering
metaphor to highlight a systematic approach that meets organizational requirements and constraints
[63]. On the other hand, QSE signifies a new era of software-intensive engineering activities designed
to develop applications that manage the underlying hardware, enabling the cost-effective and scalable
development of dependable quantum software systems across various domains [27][33]. Compared with
classical software engineering, quantum software engineering has inherent complexity and presents mul-
tifaceted challenges (e.g., the requisite for physics knowledge among developers who often lack software
engineering experience, particularly software processes, quality practices, complex quantum algorithms,
and programming) that emphasize the significance of QSE [64]. The life cycle in QSE is comprehensive,
encompassing quantum requirements engineering, design, implementation, testing, and maintenance, re-
quiring collaborative efforts from both scientific and industry to propel real-world applicability [65]. The
intersection of software engineering and quantum software engineering underscores the necessity for a
tailored software development life cycle, which accentuates the importance of requirements engineering,
particularly in the quantum domain, where it facilitates communication among stakeholders and helps
in comprehending complex application domains [66]. QSE is a growing field of study and Quantum Soft-
ware Architectures (QSA) is a sub-domain of study - both are understudied and face research challenges
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[30]. More specifically, QSE provides the methodologies, techniques, and tools required to systematically
develop, operate, and maintain software for quantum computers, while QSA defines the structure of the
system, including the quantum software components, their properties, and the interfaces and interac-
tions between them that are involved in the design of large-scale quantum software applications and their
implementation on quantum hardware. This task is challenging, requiring software development that
aligns with the laws of quantum comprehension [67][68]. QSA is often characterized by unique challenges
such as defining suitable quantum algorithms, handling quantum data structures, and the crucial task of
choosing suitable quantum hardware for the optimal execution of these software architectures, which are
part of the larger research hurdles within QSE [12][32]. Both the software engineering and software archi-
tecture research communities have been making concerted efforts to cultivate dedicated platforms such
as conferences and workshops. The aim is to define target outcomes, simplify emerging issues, and intro-
duce collective initiatives pertaining to the engineering and architecture planning for the development
and structural design of quantum software [69][46][70]. Recent studies emphasize several particularly
difficult aspects of QSE that diverge from traditional software; including requirements issues and chal-
lenges for architecting, interpreting quantum program outputs, explaining the theory behind quantum
computing code, reducing the understanding gap between quantum and classical computing, and testing
QSE applications, along with pinpointing opportunities that arise from these very complexities [64][71].
QSE seeks to deal with those evolving challenges of quantum software development, requiring particular
architecture decisions within the decision-making process to overcome these challenges [72].

2.3. Architecture decision
Software architecture is a blueprint that guides the development process, ensuring the system’s qual-

ity attributes (e.g., maintainability, performance, scalability) and aligning technical decisions with busi-
ness goals [73]. Classical software architecture is the set of structures of a software system that consists
of the various components, the relationships among those components, and their respective properties,
which are necessary to understand and create the system [36]. Quantum software architecture represents
a novel category of software architecture that can abstract complicated and implementation-specific ac-
tivities while offering architectural descriptions (e.g., components, connections, and configurations) to
design and develop quantum software [38]. In the realm of software engineering and architecture design,
software architecture decisions can be defined as critical design decisions that address significant architec-
ture requirements and are generally considered complex to formulate and potentially expensive to alter
[74]. A comparative analysis reveals that architecture decisions in classical software development focus on
optimizing performance, scalability, and maintainability using deterministic algorithms and well-defined
architecture patterns and binary data structures [75], while architecture decisions in quantum software
development focus on quantum algorithms and well-defined quantum architecture patterns and quantum
data structures to address unique challenges (e.g., algorithms, programming, design, implementation,
and testing), which require suitable architecture decisions [76][77]. The importance of architecture de-
cisions in quantum software systems is also highlighted by a systematic review on software architecture
for quantum computing systems [38]. In many contexts, including the Internet of Things (IoT) [78],
machine learning-based systems [79], and microservices [80], empirical studies and systematic mappings
emphasize the importance of architecture decisions. The documentation, communication, and evalua-
tion of these crucial decisions are made easier by existing models and tools [81]. As new architectural
styles and paradigms arise, these decisions help developers manage common challenges in architecture
design [40]. The relevance of architecture decisions even in cutting-edge fields is reflected in practical
perspectives on agile quantum software development [82]. When software systems become more complex,
understanding, clearly expressing, and making effective architecture decisions are essential for achieving
software quality and meeting stakeholder needs.

3. Research design

3.1. Research goal and research questions
The goal of this study is formulated using a Goal-Question-Metric approach [83]: We aim to ana-

lyze architecture decisions made during the development of quantum software for the purpose of in-
vestigating their decision description and categorization, application domains covered, quality attributes
considered, and the limitations and challenges from the point of view of practitioners in the context
of architecture-related posts and GitHub issues of quantum software systems. In order to perform this
empirical study, we adhered to the recommendations for conducting empirical studies by Easterbrook
et al. [84]. Following the defined goal, we provide five Research Questions (RQs), their rationale (see
Table 1), and an overview of the research process (see Fig. 2) in the subsections below.
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Table 1: Research questions and their rationale

Research Question Rationale

RQ1. How do developers ex-
press architecture decisions made in
quantum software development?

This RQ aims to provide the linguistic patterns used by developers to
express architecture decisions in the development of quantum software
systems. Developers express architecture decisions in quantum software
systems through various linguistic patterns to explain their ideas and com-
municate with their peers on different platforms (e.g., GitHub, Stack Ex-
change). The answer to this RQ can help developers identify architecture
decision-related content in quantum systems development.

RQ2. What types of architecture
decisions are made in quantum soft-
ware development?

This RQ intends to categorize the architecture decisions made in quantum
software systems. Developers make a number of architecture decisions
while developing quantum software systems, and these decisions cover var-
ious aspects of architecture design (e.g., architecture patterns, and technol-
ogy). The answer to this RQ can offer insights into the specific categories
of architectural decisions being made in quantum software systems.

RQ3. What are the application do-
mains of quantum software in which
architecture decisions are made?

This RQ aims to analyze the application domains of quantum software sys-
tems in which architecture decisions are made. Quantum technologies are
widely employed in developing software systems across many application
domains (e.g., optimization, cryptography, materials science, and machine
learning). The answer to this RQ may provide guidance for making archi-
tectural decisions in particular domains.

RQ4. What quality attributes are
considered when developers make
architecture decisions in quantum
software development?

This RQ aims to provide the quality attributes that developers focus on
when making architecture decisions in quantum software development.
Quantum software systems have dedicated concerns and the answer to
this RQ can provide a comprehensive set of quality concerns highlighted
in quantum software development.

RQ5. What are the limitations
and challenges of making architec-
ture decisions in quantum software
development?

This RQ aims to investigate the limitations and challenges developers may
encounter when making architecture decisions for quantum software sys-
tems with related quantum components. Making architecture decisions
in the creation of quantum software still has a number of limitations and
challenges. The answer to this RQ can provide the directions for future
exploration.

3.2. Data collection
We collected and analyzed data from 87 GitHub5 projects and three Stack Exchange6 sites. GitHub

hosts a large number of open-source projects and offers access to rich data from those projects, including
version history and issue tracking data [85]. Stack Exchange sites contain a number of technical Q&A
sites that cover various topics and domains, which include Stack Overflow7, one of the most active Q&A
sites that developers use from all over the world [86]. Quantum Computing Stack Exchange8 site is
a dedicated platform for topics related to quantum computing. Computer Science Stack Exchange9

is specifically tailored to the field of computer science questions. Many researchers have used GitHub
and Stack Exchange sites for quantum software system research. For example, Li et al. [71] explored
the challenges related to Quantum Software Engineering (QSE) by analyzing data from GitHub and
Stack Exchange sites. Their research focused on understanding the broader challenges perceived by
developers in the area of QSE. Additionally, Openja et al. [87] conducted an empirical analysis using
GitHub data to explore the distribution and evolution of technical debt in quantum software, as well as
their correlation with incidences of faults. Moreover, Zhang et al. [88] empirically analyzed architecture
decisions by collecting data from GitHub and Stack Overflow in the development of AI-based systems.
However, our focus is to analyze architecture decisions in quantum software systems. Therefore, we
selected specific GitHub projects and Stack Exchange discussions based on their relevance to quantum
software development to ensure a rich dataset.

1) Data Collection from GitHub Projects

5https://github.com
6https://stackexchange.com/sites
7https://stackoverflow.com/
8https://quantumcomputing.stackexchange.com/
9https://cs.stackexchange.com/
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We followed a two-step process to collect quantum projects hosted on GitHub. First, we identified
a set of quantum projects from GitHub. Then, we collect the issues from these projects.

In the first step, we performed a pilot search with several terms before we decided on the most
appropriate terms for selecting relevant quantum projects on GitHub, namely “quantum” and “quantum
computing”. The search encompassed content within the projects (e.g., name, topics, descriptions, and
README files). We found 74,432 projects by using the keyword “quantum”. In contrast, using the
keyword “quantum computing” resulted in significantly fewer projects (12,401), although with many
irrelevant results such as books10 and other learning resources11. Notably, “quantum computing” is also
a subdomain of the keyword “quantum”. During the search process by using the keyword “quantum”,
we also discovered that the retrieved projects contained the keyword “quantum computing”. Therefore,
we decided to use the keyword “quantum”. To mine those projects, we used GitHub REST API12. We
applied the following selection criteria: 1) projects that contain the word “quantum” (i.e., including the
name, description, topics, and README file); 2) the number of stars ≥ 50; and 3) the number of forks is
≥ 15 to minimize the possibility of including student assignments following the idea of prior studies [89].
We identified 1,226 projects that meet the above selection criteria. Later, we used the following criteria
to filter out our search results [90]. We manually checked the repository (e.g., description, topics, and
README file) and excluded those that pertained solely to quantum documentation or study materials
and tutorials, not written in English, and repositories that are not related to quantum software systems
but merely contain the word “quantum” in their descriptions (e.g., FirefoxColor13). In this step, 879
projects were removed, and 347 projects remained.

In the second step, we initially carried out a pilot search using various keywords that are the same as
the architecture search terms “architect*” (i.e., “architect”, “architecture”, “architectural”, “architecting”,
“architected”), “design*”, and “pattern*” and to search the title and body of the open and closed issues.
We found issues that include the keywords (“architect”, “architecture”, “architectural”, “architecting”,
“architected”,“design”, and “pattern”). Therefore, we decided to use those keywords and searched the
title and body of the open and closed issues of the 347 quantum projects. After searching with the search
terms, we found 3,185 open and closed issues containing the keywords, and those issues came from 192
quantum software projects. We ended up the data collection process from GitHub with 192 quantum
software systems and 3,185 open and closed issues.

Figure 2: Overview of the research process

2) Data Collection from Stack Exchange Sites

To identify relevant posts in the selected Stack Exchange sites, we first conducted a pilot search to

10https://github.com/JackHidary/quantumcomputingbook
11https://github.com/desireevl/awesome-quantum-computing
12https://docs.github.com/en/rest?apiVersion=2022-11-28
13https://github.com/mozilla/FirefoxColor
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Table 2: GitHub Projects, Number of Retrieved Issues, and Number of Related Issues

# GitHub
Project

Num of
Retrieved
Issues

Num of
Related
Issues

Stars # GitHub
Project

Num of
Retrieved
Issues

Num of
Related
Issues

Stars

GP1 Qiskit 285 40 4800 GP45 quantum-core 7 3 2200
GP2 Cirq 212 35 3900 GP46 qupulse 21 3 53
GP3 deepchem 148 23 4600 GP47 Strawberry Fields 7 3 735
GP4 ARTIQ 206 20 372 GP48 azure-quantum-

python
6 2 119

GP5 qmcpack 109 17 245 GP49 deepqmc 3 2 300
GP6 PennyLane 88 14 1900 GP50 DFTK.jl 30 2 356
GP7 Qiskit Metal 122 13 250 GP51 ecosystem 12 2 70
GP8 qsharp 59 11 366 GP52 iqsharp 8 2 126
GP9 liboqs 63 8 1400 GP53 qBraid 8 2 62
GP10 QCoDeS 24 8 266 GP54 Qibo 20 2 271
GP11 PyQuil 31 7 1400 GP55 Qiskit Dynamics 4 2 96
GP12 Qiskit Nature 44 7 239 GP56 QRL 6 2 396
GP13 netket 39 5 450 GP57 QuEST 23 2 382
GP14 psi4 32 5 839 GP58 quisp 33 2 83
GP15 qsharp-language 24 5 233 GP59 tensorcircuit 10 2 250
GP16 QuTiP 30 5 1500 GP60 triqs 17 2 134
GP17 RMG-Py 34 5 329 GP61 Amazon Braket

Python SDK
2 1 254

GP18 Covalent 48 4 500 GP62 Catalyst 8 1 101
GP19 cp2k 49 4 661 GP63 dftbplus 12 1 313
GP20 cuda-quantum 31 4 222 GP64 dwave-cloud-

client
1 1 54

GP21 Microsoft Quan-
tum

5 4 3900 GP65 dwave-hybrid 1 1 76

GP22 Mitiq 32 4 286 GP66 MQT DDSIM 1 1 124
GP23 MQT QMAP 7 4 88 GP67 pennylane-qiskit 2 1 175
GP24 QCFractal 10 4 143 GP68 ProjectQ 7 1 873
GP25 Qrack 29 4 154 GP69 Pulser 14 1 159
GP26 qsharp-runtime 21 4 280 GP70 QCEngine 2 1 141
GP27 Qualtran 25 4 129 GP71 qflex 3 1 97
GP28 QuantumLibraries 40 4 526 GP72 qiskit-aqua 19 1 564
GP29 Stim 14 4 303 GP73 qiskit-ibmq-

provider
13 1 228

GP30 TensorFlow
Quantum

125 4 3800 GP74 qiskit-ibm-
runtime

21 1 95

GP31 tket 31 4 197 GP75 qiskit-ignis 18 1 167
GP32 circuit-knitting-

toolbox
11 3 51 GP76 qiskit-

optimization
5 1 215

GP33 dimod 14 3 120 GP77 qml 13 1 509
GP34 OpenQASM 18 3 1000 GP78 qpic 2 1 136
GP35 OpenQL 15 3 82 GP79 qsim 8 1 361
GP36 OpenSSL 16 3 172 GP80 quacc 7 1 155
GP37 OpenFermion 17 3 1500 GP81 QuantumKatas 20 1 4500
GP38 PQClean 16 3 423 GP82 QUICK 2 1 447
GP39 pyGSTi 31 3 131 GP83 Quilc 29 1 447
GP40 PyRPL 34 3 114 GP84 SIRIUS 2 1 103
GP41 PySCF 52 3 1200 GP85 Tangelo 3 1 98
GP42 QICK 17 3 175 GP86 toqito 12 1 129
GP43 qiskit-

metapackage
29 3 3100 GP87 Yao.jl 14 1 907

GP44 qsharp-compiler 38 3 683
Total 2781 385

construct the search terms. The search terms were then applied to all parts of the posts, including the
title, the question body, and the answers. Before we decided on the most suitable terms for capturing
posts relevant to architecture of quantum software systems, we first performed a pilot search with several
terms, namely “quantum architect” (i.e., “quantum architect”, “quantum architecture”, “quantum archi-
tectural”, and “quantum architecting”), “quantum design”, and “quantum pattern” within all three Stack
Exchange sites. We found posts that include the keywords (“quantum architect”, “quantum design”, and
“quantum pattern”) using the original search terms. Second, Stack Exchange supports the use of wildcard
(*) searches to broaden the search results. We defined “quantum architect*”, “quantum design*”, and
“quantum pattern*” as the initial search terms related to architecture decisions in quantum software.
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Table 3 shows the search terms that were utilized, and the number of posts that were obtained from all
three sites. We retrieved a total of 1,494 posts. Note that a post may contain multiple sets of keywords,
which means that there could be duplicate items in the set of URLs of these posts. After removing the
duplicated posts, we finally got 1,424 unique posts. More specifically, 497 from Stack Overflow, 873 from
Quantum Computing, and 54 from Computer Science Stack Exchange.

Table 3: Stack Exchange Name, Search Term, Retrieved Posts, and Related Posts

# Stack Exchange Name Search Terms Number of Re-
trieved Posts

Number of Re-
lated Posts

SEN1 Stack Overflow “quantum architect*” 148 12
SEN2 Stack Overflow “quantum design*” 260 20
SEN3 Stack Overflow “quantum pattern*” 115 1
SEN3 Quantum Computing “quantum architect*” 356 10
SEN4 Quantum Computing “quantum design*” 455 13
SEN4 Quantum Computing “quantum pattern*” 92 10
SEN5 Computer Science “quantum architect*” 21 2
SEN6 Computer Science “quantum design*” 39 1
SEN6 Computer Science “quantum pattern*” 8 1
Total 1494 70

3.3. Data filtration
In our analysis of GitHub and Sack Exchange sites, we found many issues and posts containing the

terms “architecture”, “design” and “pattern” not only in the context of software architecture and design
but also other contexts, including hardware (e.g., CPU architecture14, GPU architecture15, hardware
design16, and hardware architecture17), when describing their concerns in the GitHub issues and Stack
Exchange posts. We also found that both Stack Overflow and Computer Science Stack Exchange featured
numerous posts with the term “quantum” not only in the context of a quantum software system but
also in other contexts (e.g., Firefox Quantum18, quantum leap19). Therefore, we need to filter the
retrieved 3,185 open and closed issues from 192 quantum software systems and 1,424 posts (497 from
Stack Overflow, 873 from Quantum Computing, and 54 from Computer Science Stack Exchange) and
exclude those posts that are not related to software architecture decisions in quantum software systems.
To do so, we performed context analysis and applied our defined inclusion and exclusion criteria (see
Table 4) to accurately filter out irrelevant issues and posts.

Before the formal filtering (manual inspection), we conducted a pilot filtering adhering to a set of
inclusion and exclusion criteria (see Table 4) to identify GitHub issues and Stack Exchange posts related
to architecture decisions in quantum software systems. Specifically, the pilot filtering process is composed
of the following steps: (1) The first author randomly selected 10 issues from all the issues containing
the keywords retrieved from the selected GitHub projects and 10 posts from the search results of Stack
Exchange search terms; (2) The first and third authors manually checked independently whether the
issues and posts should be included by following our defined criteria (see Table 4); (3) Data labeled by
the two authors were compared, and the level of agreement between the two authors was calculated using
the Cohen’s Kappa coefficient [91]; (4) For any posts and issues that the two authors disagreed with,
the two authors discussed them till an agreement was reached. The Cohen’s Kappa coefficient before
the discussion and resolution of the disagreements for the pilot data filtering was 0.80 for GitHub issues
and 0.76 for Stack Exchange posts, both higher than 0.7. After resolving those disagreements through
discussions, the two authors reached a 100% agreement, indicating a high degree of consistency between
the two authors.

After the pilot data filtering, the first author carried on the formal data filtering with all the issues
retrieved from GitHub projects and all the posts retrieved from Stack Exchange sites based on the

14https://github.com/m-labs/artiq/issues/1757
15https://github.com/Qiskit/qiskit/issues/325
16https://github.com/qiskit-community/qiskit-metal/issues/814
17https://quantumcomputing.stackexchange.com/questions/16221
18https://stackoverflow.com/questions/36007119
19https://cs.stackexchange.com/questions/135237
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Table 4: Inclusion and exclusion criteria to manually identify Stack Exchange posts and GitHub issues related to software archi-
tecture decisions in quantum software systems.

Inclusion criterion

I1. We include a post or issue if it is related to both software architecture decisions [36][74] and quantum
software systems [38]. For instance, if the content covers quantum software architecture patterns, design
principles, structure, components, interactions, and frameworks in the development of quantum software
systems, it will be included.

Exclusion criteria

E1. We exclude a post or issue if it is only related to quantum software systems but not related to software
architecture decisions. For instance, if the content covers general principles of quantum computing, basic
usage of quantum programming languages, quantum hardware, or quantum physics but does not provide
specific architecture decisions.
E2. We exclude a post or issue if it is only related to software architecture decisions but not related
to quantum software systems. For instance, if the content covers classical software architecture, design
patterns, or development methodologies that do not involve quantum computing or quantum-specific com-
ponents.

inclusion and exclusion criteria. As it was easy to distinguish whether the posts and issues matched the
criteria, the first author completed this step alone. There were only 9 issues and posts that the first
author was unsure about, which were then discussed with the third author. After manually filtering
all the candidates, we finally selected 385 related open and closed issues from 87 quantum software
systems that related to architecture decisions in quantum software systems. These projects and their
corresponding retrieved and related issues are detailed in Table 2. Similarly, we retrieved 1,494 Stack
Exchange posts and identified 70 Stack Exchange posts that discussed architecture decisions in quantum
software systems. This includes 33 posts from Stack Overflow, 33 posts from Quantum Computing, and
4 posts from Computer Science sites, as detailed in Table 3.

3.4. Data extraction and analysis
1) Data Extraction

We conducted the data extraction process by identifying the relevant information to be extracted
from the 385 GitHub issues and 70 Stack Exchange to answer our defined RQs (see Table 1). Table 5
outlines the data items extracted from the related posts and issues with the RQs addressed using the
data items. Following this, we conducted both pilot and formal data extraction.

Before the formal data extraction, the first author conducted a pilot data extraction with the
second author. The first author randomly selected 10 GitHub issues and 10 Stack Exchange posts.
The first two authors independently extracted relevant information (i.e., Decision description, Decision
type, Application domain, Quality attribute considered, and Limitation and challenge) as detailed in
Table 5. In the event that disagreements arose, a third author was invited to discuss with the two
authors and reached a 100% agreement. After the pilot data extraction, the first author extracted the
data from the filtered posts and issues independently. To mitigate personal bias, the findings from this
extraction were reviewed and validated by three additional authors of this study. During this process, if
any disagreements appeared, we held a meeting and followed the negotiated agreement approach [92] to
discuss and resolve any disagreement to ensure the accuracy and enhance the reliability of the extracted
data regarding the uncertain portions.

2) Data Analysis

To analyze our extracted data by following several existing studies (e.g., [88]), we employed a
predefined classification [51] and the Constant Comparison method [52] to answer RQ1 and RQ2-RQ5 in
our study. To address RQ1, we employed the predefined classifications of decision description contexts
as described in [51] and [88]. The extracted data (i.e., decision descriptions) was then analyzed to
investigate the linguistic patterns used in expressing architecture decisions. Linguistic patterns refer to
grammatical rules that enable individuals to communicate effectively in a shared language [93]. Drawing
inspiration from the study of Sorbo et al. [51], which categorized six linguistic patterns from development
emails, we applied similar categorizations of linguistic patterns. Additionally, linguistic patterns have
been employed in similar contexts, such as by Zhang et al. [88], to classify architecture decisions in
AI-based systems. By applying a similar procedure (encoding and grouping of comparable codes into
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broader categories), we categorized linguistic patterns relevant to expressing architecture decisions to
answer RQ1. Conversely, to address RQ2-RQ5, we conducted a qualitative analysis using the Constant
Comparison method [52], which is a common technique in Grounded Theory (GT) [94]. GT adopts
a bottom-up approach aimed at generating new theories rather than extending or verifying existing
ones [94]. The constant comparison involves an ongoing process to validate the emerging concepts and
categories, which are refined and saturated until they accurately represent the data [94][52]. We used
constant comparison to examine the different aspects of the data, including codes and categories, to
unveil differences and similarities in the data [95].

We carried out a pilot data analysis for each RQ before the formal data analysis. The pilot data
analysis encompassed several steps, as follows: (1) The first and second authors independently labeled
the content of filtered posts and issues, cross-referencing them with the corresponding data items in
Table 5; (2) The first author reviewed and verified the labeling results from the second author to ensure
the accuracy of data extraction; (3) The first author aggregated all codes into higher-level concepts,
subsequently converting them into distinct categories; (4) To ensure the rigor of our analysis, the other
five authors (the third, fourth, fifth, sixth, and seventh authors) checked and validated the results
from the pilot data analysis. The disagreements were resolved through meetings, utilizing a negotiated
agreement method [92] to enhance the reliability of the pilot data analysis outcomes. In the next step,
The first author carried on with the formal data analysis and followed similar steps used during the pilot
data analysis. To mitigate personal bias and ensure the rigor of our analysis, all the authors checked
and validated the results from the data analysis. During this process, if any disagreements appeared, the
disagreements were fixed in a meeting utilizing the negotiated agreement technique [92] to improve the
reliability of the analysis outcomes, resolving any discrepancies through collaborative discussions with
the first author. A summary of the data analysis approaches is provided in Table 5. We have made all the
data labeling and analysis results available in our replication package [53]. The subsequent paragraphs
outline the specifics of the formal data analysis process:

a) For analyzing RQ1

We adapted predefined classifications from [51] and [88] to address RQ1. The first author manually
analyzed the extracted data for RQ1 (e.g., decision descriptions, see Table 5) from the related (e.g.,
quantum software architecture decisions) issues and posts to answering RQ1 (see Fig. 2). The data was
then examined to investigate the linguistic patterns used in expressing architecture decisions in quantum
software systems. By referring to the categories of linguistic patterns presented in the previous studies,
six main categories were identified. To mitigate personal bias, the identified categories were validated
by all the authors of this study. The disagreements were discussed and resolved in a meeting by using
the negotiated agreement approach [92] to enhance the reliability of the results for RQ1.

b) For analyzing RQ2-RQ5

As abovementioned, we used constant comparison [52] to manually analyze the extracted data (i.e.,
the content of the issues and posts for the RQ2 decision type, the content of the issues and posts for the
RQ3 application domain, the content of the issues and posts for RQ4 quality attribute considered, and the
content of the issues and posts for RQ5 limitation and challenge) as shown in Table 5. With these RQs, we
investigated architecture decisions related to issues and posts. Specifically, regarding the categorization
of the questions, the first author studied the content of each post and issue related to quantum software
architecture by exploring and identifying their main purposes (e.g., decision type, application domain,
quality attribute, and limitation and challenge). The first author rigorously studied the data, summarized
each finding into an easily understood sentence, and assigned a code. These categories, iteratively refined,
encapsulated notable architecture decision types (RQ2), the different application domains where these
decisions come into play (RQ3), the quality attributes developers considered during decision-making
(RQ4), and the challenges faced during architecture decision-making (RQ5). Throughout the coding and
categorization process, we embraced an iterative approach to enhance the accuracy of our categories.
Subsequently, all the authors reviewed and validated the results of the data analysis, including the
concepts and categories. Any disagreements were effectively resolved via the means of a negotiated
agreement approach [92] in meetings to mitigate personal biases. As an output, we procured categories
tied to each research question, representing the richness and complexity of the extracted data. The
detailed elaboration of these categories for each RQ can be found in Section 4 and in Fig. 3.
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Table 5: Data items to be extracted with their description, analysis approaches, and relevant RQs

# Data item Description Data analysis ap-
proach

RQs

D1 Decision description Developers-based description of architec-
ture decisions made in the development
of quantum software systems

Predefined classifica-
tion [51]

RQ1

D2 Decision type A classification of architecture decisions
taken during the development of quan-
tum software systems

Constant comparison RQ2

D3 Application domain Application domains in which architec-
ture decisions are made throughout the
development of quantum software sys-
tems

Constant comparison RQ3

D4 Quality attribute
considered

Considered quality attributes when devel-
opers of quantum software systems make
architecture decisions

Constant comparison RQ4

D5 Limitation and chal-
lenge

The obstacles and difficulties posed by
quantum software development when
making architecture decisions

Constant comparison RQ5

4. Results

In this section, we present the results of the five RQs as outlined in Table 1. We first describe our
methodology for analyzing instances drawn from GitHub issues and Stack Exchange discussions, and we
then present the study results of each RQ. The results of the five RQs are visualized in Fig. 3.

Figure 3: Linguistic Patterns, Architecture Decisions, Application Domains, Quality Attributes, and Limita-
tions&Challenges (results of RQ1 to RQ5)

4.1. RQ1. How do developers express architecture decisions made in quantum software development?
Our approach to answering RQ1 involves multiple stages. First, we collected 1616 instances of

linguistic patterns (1406 from GitHub and 210 from Stack Exchange sites) of how practitioners articulate
architecture decisions during the development of quantum software systems. One GitHub issue and
one Stack Exchange post may identify multiple linguistic patterns because, within a single issue or
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post, practitioners might articulate their architecture decisions in various ways, using different phrases,
terminologies, or contexts. To classify these decision expressions according to their intended objectives,
we utilized a predefined classification scheme based on the linguistic patterns proposed by Sorbo et
al. [51]. In a similar context, Zhang et al. [88] employed linguistic patterns to classify architecture
decisions in the development of AI-based systems. Ultimately, we categorized the extracted architecture
decision expressions into six types of linguistic patterns. Fig. 3a presents the six linguistic patterns and
Table 6 contains these linguistic patterns as well as their examples and respective percentages.

Our analysis revealed that Solution Proposal and Information Giving were the two most common
linguistic patterns, accounting for 35.83% and 32.80% of the instances, respectively. In contrast, Opin-
ion Asking and Problem Discovery received relatively less attention from practitioners when conveying
architecture decisions within the context of quantum software systems. A detailed overview of each of
those categories is provided below:

Table 6: Linguistic patterns of architecture decisions in quantum software systems

Linguistic Pattern Example Count %
Solution Proposal One solution (to do it generically) that would involve a

somewhat major architectural change is to implement a
generic interface to asymmetric encryption then imple-
ment KEX in terms of that for the algorithms it applies
to. (liboqs issue #50)

579 35.83%

Information Giving Currently the hybrid Python/C++ architecture of Psi4 is
in an odd spot where Psi4 itself is a C++ program that calls
an input file as a Python executable. This circular process
will be removed and Psi4 itself will become a Python library
capable of being imported just like any other module. (psi4
issue #468)

530 32.80%

Information Seeking After we have finished the decomposition and local Cova-
lent has a microservice architecture, what should happen
when a user does covalent start? (Covalent issue #186)

264 16.34%

Problem Discovery These two software packages are very problematic: Conda
is very poorly architected/designed. (ARTIQ issue #1471)

121 7.49%

Feature Request Architectures supported in liboqs master branch should be
updated (liboqs issue #751)

107 6.62%

Opinion Asking Please feel free to suggest changes or alternate designs.
(deepchem issue #2059)

15 0.93%

(1) Solution Proposal: Our analysis shows that Solution Proposal is the most frequently used
linguistic pattern. Those solutions are offered as pertinent information or assistance to fellow developers.
This category often encompasses suggestions, recommendations, and best practices tailored to support
and guide peers within the community. In our analysis, developers mentioned Solution Proposal in about
35.83% of the linguistic patterns we collected.

(2) Information Giving: This category relates to developers sharing insights, facts, or knowledge
about architecture decisions. Developers might elucidate the nuances of a quantum algorithm, describe
the interaction between classical and quantum components, or explain design choices made to optimize
quantum coherence. This category embodies the proactive dissemination of architectural knowledge,
ensuring that team members are aligned and informed about the architecture decisions made. In our
analysis, developers mentioned Information Giving in about 32.80% of the linguistic patterns we col-
lected.

(3) Information Seeking: Information Seeking revolves around developers looking to enhance
product quality or gain clarity on specific functionalities within quantum software systems. This might
manifest as questions, requests for clarification, or discussions aiming to understand architecture decisions
better. In our analysis, developers mentioned Information Seeking in about 16.34% of the linguistic
patterns we collected.

(4) Problem Discovery: In Problem Discovery linguistic pattern, developers identify, share, and
discuss new problems, bugs, or issues they encounter in quantum software systems. It highlights the
initial stages of problem-solving, where issues are first recognized and made known to the community.
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In our analysis, developers mentioned Problem Discovery in about 7.49% of the linguistic patterns we
collected.

(5) Feature Request: When making decisions about the architecture design of quantum software
systems, developers may ask for new features or enhancements to already existing libraries and software
tools. These may also include recommendations to improve the functionality, usability, or flexibility of
the systems. In our analysis, developers mentioned Feature Request in about 6.62% of the linguistic
patterns we collected.

(6) Opinion Asking: Opinion Asking involves developers seeking the views, thoughts, or sen-
timents of peers concerning architecture decisions in quantum software systems. It may range from
inquiring about the practicality of a proposed solution to gauging how the community feels about spe-
cific architectural decisions. In our analysis, developers mentioned Opinion Asking in about 0.93% of
the linguistic patterns we collected.

Key Findings of RQ1

Finding 1: Developers represent architecture decisions with six categories of linguistic patterns,
among which Solution Proposal (35.83%) and Information Giving (32.80%) are the two most
frequently employed categories in quantum software development (see the examples in Table 6).

4.2. RQ2. What types of architecture decisions are made in quantum software development?
To answer RQ2, we conducted a comprehensive review of the content pertinent to architecture

decisions in the context of quantum software systems, as gleaned from the accumulated 638 instances of
architecture decisions (553 from GitHub and 85 from Stack Exchange sites). Note that a single post or
issue often contains multiple architecture decisions because developers often explore various aspects of a
problem, seeking information for comprehensive solutions or gathering diverse opinions. Additionally, the
same architecture decision can be discussed multiple times within a post or issue due to its significance or
as a common challenge faced by developers, leading to repetitive exploration for clarity or confirmation.
Therefore, if a post or issue mentions multiple architecture decisions, each decision is counted. However,
repeated mentions of the same architecture decision within a single post or issue were only counted once.
We used the Constant Comparison method [52] to categorize the architecture decisions pertinent to the
development of quantum software systems. Fig. 3b presents 15 types of architecture decisions and Table
7 provides an overview of these types of architecture decisions made in quantum software development,
along with their respective quantities and percentages.

As shown in Table 7, the two common types of decisions are Implementation Decision (22.10%) and
Technology Decision (18.81%). The remaining categories of architecture decisions account for a small
percentage of the architecture decisions (less than 15%). We provide a detailed description of each of
those categories below:

(1) Implementation Decision: Developers need to make informed decisions about implementing
quantum algorithms and operations within their systems. These decisions often involve intricate technical
considerations, such as selecting suitable programming languages and quantum computing platforms and
optimizing code for quantum hardware. Implementation Decisions are found in 22.10% of the architecture
decisions we collected.

(2) Technology Decision: Developers frequently find themselves at a crossroads, needing to
decide which particular quantum technologies should be used due to the rapidly developing aspect of
quantum technologies. These decisions have far-reaching implications for the overall system’s efficiency
and functionality, as selecting the right technology can significantly impact the system’s performance.
We found that Technology Decisions represent 18.81% of the architecture decisions we collected.

(3) Architecture Pattern Decision: Architecture Pattern Decision refers to the high-level or-
ganizational structure and modular design choices developers adopt when designing quantum software
or integrating quantum components within larger systems. We identified the most common architec-
ture patterns in quantum software systems as qubit gate patterns, layer patterns, composite patterns,
decorator patterns, pipe and filter patterns, and transformer patterns. These could include modular
quantum algorithm design, pipeline structures for quantum operations, or layered approaches separating
quantum and classical components. Just as classical systems might leverage patterns like layers or service
orientation, quantum systems require patterns optimized for quantum mechanics. These patterns shape
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Table 7: Types of architecture decisions in quantum software development and their counts & percentages

Decision Type Example Count %
Implementation De-
cision

We designed and implemented an architectural framework
that aims to standardize the interaction of an existing in-
frastructure with IBM Quantum, leveraging the most used
open source technologies. (ecosystem issue #266)

141 22.10%

Technology Decision Also, since the technology of partial measurement/non-
demolition measurement is under development (I believe
in some quantum architectures), may I expect to use this
SDK to change when the technology is mature? (amazon-
braket-sdk-python issue #158)

120 18.81%

Architecture Pattern
Decision

If we are willing to provide extensibility (which sounds rea-
sonable in a pluggable ecosystem), we should shift to a more
suitable pattern such as the observer or pub-sub pattern
(...).Again, the pub/sub or obeserver patterns are exam-
ples of decoupled architectures. (Qiskit #825)

87 13.64%

Component Decision If we want to be strict about the architecture, the log for-
warding component should be a controller. (artiq issue
#691)

67 10.50%

Tool Decision Unfortunately this is something coming from Amber build
system. It compiles cuda source files for all possible archi-
tectures that a given toolkit supports. (QUICK issue #218)

67 10.50%

Data Decision This seems like part of the discussion about long term ar-
chitecture, harmonizing dc.data with tf.data and Tensor-
Graph layers with Keras layers. (deepchem issue #1036)

54 8.46%

Decomposition Deci-
sion

After we have finished the decomposition and local Cova-
lent has a microservice architecture, what should happen
when a user does covalent start? (covalent issue #186)

25 3.92%

Integration Decision I will try integrating quantum layers into existing CNN
architectures (QC post #33215)

21 3.29%

Behavior Decision I would propose not keeping the old behavior, simply to
make the refactor easier and avoid code complexity (as well
as design decisions). (PennyLane issue #226)

17 2.66%

Design Pattern Deci-
sion

Builder Pattern for defining control problems(...).The op-
timize_pulse API takes in a lot of optional arguments.
Wouldn’t it make more sense to use a builder pattern to
define a control problem in a ControlProblem class? (qutip
issue #692)

17 2.66%

Service Decision The sync method in cova-
lent/_results_manager/results_manager.py needs to
be moved and updated to be compatible with the new
covalent services architecture. (Covalent issue #370)

7 1.10%

Testing Decision The assert for the third derivatives in test_einset.cpp fails
due to what looks like some finite precision issue, but the
issue can’t be reproduced on other architectures. Unit test
for thirdderivative components disabled until this issue is
identified. (QMCPACK issue #1218)

7 1.10%

Deployment Decision QPIC is designed to be compatible from Python 2 up to the
latest Python 3 (...). Is already fixed in this repo but not
deployed to PyPI. Could you update the package in PyPI?
(qpic issue #12)

3 0.47%

Containerization De-
cision

I agree that there is a problem (smell) with the design. We
are treating the amount of work as related to the size of the
container when with padding this is not the case. (qmcpack
issue #4290)

3 0.47%

Concurrency Deci-
sion

The architecture implemented at the moment is showing
some issues that are non trivial to fix (...).and then care-
fully design how we want to do concurrency and paral-
lelism. (Qcodes issue #272)

2 0.31%
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the workflow, scalability, and maintainability of quantum systems. In a review of architecture decisions
made in quantum software systems, Architecture Pattern Decisions were discovered in 13.64% of the
architecture decisions we collected.

(4) Component Decision: Quantum software systems, like other software systems, benefit from
modular and well-structured designs. Developers often need to decide how to organize and design system
components, considering factors like quantum modules, quantum layers, and the integration of quantum
and classical components. Component Decision is integral to achieving scalability, maintainability, and
overall system reliability. Component Decisions were identified in 10.50% of our collected architecture
decisions.

(5) Tool Decision: Quantum systems utilize a myriad of tools tailored for quantum-specific tasks.
In the process of developing quantum software, developers commonly have to make an essential decision:
choosing the right toolset or frameworks. This decision deeply influences the system’s overall perfor-
mance, fidelity in simulation, ease of debugging, and efficient resource orchestration. Tool Decisions
were found in 10.50% of the architecture decisions we collected.

(6) Data Decision: Data Decision refers to how quantum data structures and quantum bits
(qubits) are managed, accessed, and manipulated. Given the inherent differences between classical and
quantum data, determining the right strategies for quantum data storage, retrieval, and processing is
essential. This type of decision encompasses selecting appropriate quantum algorithms, choosing between
quantum states, and handling superposition and entanglement. Data Decisions were discovered at 8.46%
of the architecture decisions we collected.

(7) Decomposition Decision: Decomposition Decision pertains to the choices made when break-
ing down complex quantum algorithms or processes into simpler and more manageable components.
Quantum algorithms, given their intricate nature, often need to be decomposed into a series of quantum
gates or subroutines. The decision on how to decompose not only affects the efficiency of the algorithm
but also its compatibility with specific quantum hardware. Such decisions may also involve deciding
the granularity of modules or components, ensuring that the architecture remains modular, scalable,
and maintainable. Decomposition Decisions were identified in 3.92% of the architecture decisions we
collected.

(8) Integration Decision: Integration Decision refers to decisions made concerning how various
software components, modules, or subsystems communicate and work together within quantum software
systems. These decisions can involve the selection of quantum libraries, ensuring compatibility between
classical and quantum sub-systems, or determining how quantum algorithms interface with other software
functionalities. Integration Decisions were discovered at 3.29% of the architecture decisions we collected.

(9) Behavior Decision: Behavior Decision revolves around determining how quantum components
or modules will interact and behave over time. Given that quantum software systems are inherently prob-
abilistic and are susceptible to decoherence and external interference, Behavior Decisions often involve
trade-offs between performance, accuracy, and fault tolerance. Behavior Decisions were discovered at
2.66% of the architecture decisions we collected.

(10) Design Pattern Decision: Design Pattern Decision in quantum software systems involves
strategically selecting and applying design patterns to address common architecture challenges specific
to quantum computing. These patterns help structure the software systems in a maintainable, scalable,
and efficient way, addressing challenges such as state management, circuit construction, and operation
optimization. By understanding and applying these well-known design patterns (e.g., visitor, builder,
and recursive patterns) developers can ensure that their quantum software systems are built on robust ar-
chitectural foundations. Design Pattern Decisions were discovered at 2.66% of the architecture decisions
we collected.

(11) Service Decision: Service Decision pertains to the orchestration of quantum computational
tasks within software frameworks. This involves decisions related to offering quantum functionalities as
modular services or APIs. Considerations of Service Decision include the encapsulation of specific quan-
tum algorithms, the design of interfaces for quantum service interaction, and the efficient management
of quantum data structures. The focus is on the structural organization of quantum services within the
software, ensuring modularity, scalability, and robustness while maintaining the peculiarities of quantum
computation. Service Decisions were identified in 1.10% of the architecture decisions we collected.

(12) Testing Decision: Testing Decision in quantum software architecture refers to the process of
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selecting and designing appropriate testing strategies and practices to verify and validate the functional-
ity, performance, and reliability of quantum software systems. This involves choosing the types of tests
(unit tests, integration tests, etc.), identifying the scope of each test, and determining how to handle
specific challenges related to quantum computing, such as finite precision issues, architecture-specific
behaviors, and the infeasibility of exhaustive testing for large qubit systems. Testing Decisions were
identified in 1.10% of the architecture decisions we collected.

(13) Deployment Decision: Deployment Decision encapsulates strategies and choices regarding
how and where quantum computing applications will be executed and utilized. Further, deployment
decisions extend to defining how quantum solutions are made available to end-users or other systems,
ensuring that the deployment aligns with the computational, security, and performance requirements
of quantum applications. Deployment Decisions were found in 0.47% of the architecture decisions we
collected.

(14) Containerization Decision: Containerization Decision in a quantum software system in-
volves the strategic use of containers to encapsulate and manage the software components and their
dependencies. These decisions focus on ensuring the portability, scalability, and consistency of the quan-
tum software across different environments. Containerization enables developers to package quantum
applications with all necessary libraries and dependencies, ensuring that the application runs seam-
lessly on any platform that supports containers. Containerization Decisions were found in 0.47% of the
architecture decisions we collected.

(15) Concurrency Decision: Concurrency Decision is concerned with managing multiple quan-
tum operations or processes within software frameworks. Concurrency Decisions must consider the
potential simultaneous execution of quantum tasks. This ensures that the quantum software efficiently
utilizes available quantum resources while ensuring the integrity and fidelity of quantum computations.
Concurrency Decisions were discovered at 0.31% of the architecture decisions we collected.

Key Findings of RQ2

Finding 2: Implementation Decision and Technology Decision are the most common decision
types when making architecture decisions in quantum software development. Specifically, Imple-
mentation Decisions account for 22.10%, Technology Decision account for 18.81% of the archi-
tecture decisions we collected (see more details with examples in Table 7).

4.3. RQ3. What are the application domains of quantum software in which architecture decisions are
made?
To answer RQ3, we analyzed the application domains where architecture decisions are made in

the context of the development of quantum software systems. The finding of application domains is
presented in Fig. 3c and summarized in Table 8, which contains 438 instances of application domains
in total (373 from GitHub issues and 65 from Stack Exchange sites). During the data analysis process,
we identified one application domain from each post and issue because our focus was on the primary
application domain in which an architecture decision was made in quantum software systems, and most
of the time the same domain was mentioned multiple times within a post or an issue, and we rarely
found one post or issue that mentioned multiple domains where architecture decisions were made.

We identified 20 application domains, in which Software Development Tools are dominant, account-
ing for 22.15% of the application domains. Quantum Programming Framework represents 19.18% of the
application domains. The remaining application domains account for less than 18% of the application
domains. A detailed description of the top 9 application domains is provided below.

(1) Software Development Tool: Tools are pivotal for designing and building quantum software
systems. These tools, ranging from Integrated Development Environments (IDEs) to debugging plat-
forms, ensure efficient code development, testing, and deployment. In a quantum context, these tools are
specialized to handle quantum-specific challenges, like qubit manipulation and entanglement. Software
Development Tool was found at 22.15% of the application domains we collected.

(2) Quantum Programming Framework: The most common domain is revealed to be the Quan-
tum Programming Framework. This domain holds substantial importance in quantum software systems,
as it forms the foundation for the development of quantum algorithms and applications. It enables
programmers to harness the power of quantum computation by providing the necessary tools, libraries,
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Table 8: The domains of quantum software systems in which architecture decisions are made

Domain Count % Domain Count %
Software Development Tools 97 22.15% Quantum Algorithm Design 10 2.28%
Quantum Programming Framework 84 19.18% Real-Time System 7 1.6%
Optimization and Simulation 78 17.81% Distributed Systems 4 0.91%
Data Processing 40 9.13% Embedded Systems 3 0.68%
Scientific Software 36 8.22% Blockchain Technology 2 0.46%
Quantum Circuit Construction 19 4.34% Desktop Application 2 0.46%
Quantum Cryptography 17 3.88% Game 2 0.46%
Deep Learning Framework 14 3.20% Web Application 1 0.23%
Quantum Compiler 10 2.28% Mobile Application 1 0.23%
Quantum Machine Learning 10 2.28% Manufacturing 1 0.23%

and abstractions, thus facilitating the creation of quantum software solutions. Quantum Programming
Framework was found in 19.18% of the application domains we collected.

(3) Optimization and Simulation: optimization problems are central to quantum software sys-
tems, aiming to model and improve real-world quantum scenarios. By simulating quantum environments,
developers can test algorithms or explore quantum behavior, making decisions about system robustness,
efficiency, and accuracy. Optimization and Simulation instances were found at 17.81% of the application
domains we collected.

(4) Data Processing: Data Processing emphasizes handling and analyzing quantum data, which
can be vastly different from classical data. Architecture decisions here revolve around quantum data
structures, efficient algorithms for quantum data manipulation, and ensuring data integrity. Data Pro-
cessing was identified at 9.13% of the application domains we collected.

(5) Scientific Software: Scientific Software in quantum systems deals with applications tailored
for research and complex computations. These tools are designed to understand and utilize quantum
phenomena, aiding scientists in areas like quantum physics, chemistry, and material science. The archi-
tectural decision here focuses on precision, scalability, and accuracy. Scientific Software was found at
8.22% of the application domains we collected.

(6) Quantum Circuit Construction: Quantum Circuit Construction in quantum software sys-
tems involves the systematic design, creation, and optimization of quantum circuits, leveraging architec-
tural patterns and frameworks that facilitate hardware-software co-organization. This process integrates
considerations of both the logical design of quantum algorithms and the physical constraints and ca-
pabilities of the quantum hardware, ensuring efficient and reliable execution of quantum computations.
Quantum Circuit Construction was found at 4.34% of the application domains we collected.

(7) Quantum Cryptography: This domain is primarily concerned with utilizing the principles of
quantum mechanics to secure communication against any potential interception. It involves techniques
like Quantum Key Distribution (QKD), where cryptographic keys are securely distributed, and eaves-
dropping can be detected. The main architectural decisions in quantum cryptography revolve around
ensuring the security of data during transfer. It is about securing communication channels in a way
that is theoretically immune to any computational hacks, including those using quantum computers.
Quantum Cryptography was found at 3.88% of the application domains we collected.

(8) Deep Learning Framework: Deep Learning Framework can help facilitate the fusion of
quantum computing and neural networks. Such frameworks allow quantum systems to process vast
amounts of data rapidly, making decisions about quantum neural architectures, training methods, and
data-feeding mechanisms. Deep Learning Framework was found at 3.20% of the application domains we
collected.

(9) Quantum Compiler: Those specialized compilers translate high-level quantum programming
languages into machine-level instructions for quantum processors. Decisions in this domain concern
optimization techniques, error corrections, and ensuring the efficient execution of quantum operations.
Quantum Compiler was found at 2.28% of the application domains we collected.
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Key Findings of RQ3

Finding 3: Our analysis of application domains of quantum software in which architecture
decisions are made classified a total of 438 instances into 20 categories. Software Development
Tools are dominant in these categories, accounting for 22.15% of the application domains we
collected (see more details with examples in Table 8).

4.4. RQ4. What quality attributes are considered when developers make architecture decisions in quantum
software development?
To answer RQ4, we extracted data concerning quality attributes. We collected 421 instances of

quality attributes (376 from GitHub Issues and 45 from Stack Exchange posts). We discovered that a
single post or issue mentioned multiple quality attributes when discussing architecture decisions because
quantum software systems, being inherently complex, require developers to consider several quality
attributes simultaneously to ensure robust and effective architecture decisions. If we identified the same
type of quality attributes within the same post or issue, we considered them only once. Subsequently,
we categorized these instances into 19 types of quality attributes, which are presented in Fig. 3d and
detailed in Table 9.

Among these quality attributes, Maintainability appears as the most frequently considered by prac-
titioners, constituting 18.53% of the total instances. Furthermore, Performance and Compatibility are
accounting for 15.68% and 14.25%. Additionally, other quality attributes fall below the 10% mark,
signifying that these quality attributes are the least considered by practitioners in their architecture
decision-making of quantum software development. A detailed description of the top 7 quality attributes
is provided below.

(1) Maintainability: Maintainability refers to the ease with which quantum software systems can
be modified to correct faults, improve performance, or adapt to evolving requirements. This quality
attribute is crucial given the rapid evolution of quantum technologies, where software must be struc-
tured in a way that accommodates frequent updates and enhancements. Achieving high maintainability
requires clear, modular architecture and comprehensive documentation to facilitate future updates, test-
ing, and debugging in the inherently complex quantum computing landscape. In our dataset, developers
mentioned Maintainability quality attribute in about 18.53% of the quality attributes we collected.

(2) Performance: Performance plays a pivotal role as it directly influences the computational
power and efficiency of quantum algorithms. Quantum computers are designed to excel in specific com-
putational tasks, and optimizing performance ensures that these systems can execute complex quantum
algorithms with minimal execution time, making them viable for practical applications such as cryptogra-
phy, optimization, and material science simulations. In our dataset, developers mentioned Performance
quality attribute in about 15.68% of the quality attributes we collected.

(3) Compatibility: Compatibility ensures that quantum software systems can interact with classi-
cal systems, enabling hybrid quantum-classical computing approaches. This quality attribute is crucial
for practical quantum adoption, as quantum computers are often used in conjunction with classical sys-
tems for solving complex problems. In our dataset, developers mentioned Compatibility quality attribute
in about 14.25% of the quality attributes we collected.

(4) Consistency: Consistency plays an important role in quantum software systems, ensuring
that quantum computations produce reliable and reproducible results. Achieving consistent outcomes is
essential in quantum computing, as it guarantees the correctness of quantum algorithms and maintains
data integrity throughout complex quantum operations. Quantum systems must exhibit a high degree
of internal and external consistency to meet the rigorous demands of quantum computing tasks. In our
dataset, developers mentioned Consistency quality attribute in about 8.08% of the quality attributes we
collected.

(5) Complexity: Complexity in quantum software systems refers to the intricacy and difficulty in
ensuring scalability, efficiency, and robust quantum software design. Balancing these factors demands
a profound understanding of both quantum mechanics and software structures, emphasizing the need
for advanced tools and methodologies to navigate the technology landscape. In our dataset, developers
mentioned Complexity quality attribute in about 7.84% of the quality attributes we collected.
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Table 9: The quality attributes considered when making architecture decisions in quantum software development and their
counts & percentages

Quality Attribute Example Count %
Maintainability It would mean a more confused internal architecture, which

would hurt us in maintainability in the long term. (Qiskit
issue #1852)

78 18.53%

Performance First the current design is intrinsically bad performance
for hot loops because we have to look up the state (even if
it doesn’t change). (DFTK.jl issue #313)

66 15.68%

Compatibility The “my foundational program can do many things, how
do I box its capabilities where the QCArchive architecture
views it as separate pieces”. (QCEngine issue #197)

60 14.25%

Consistency Ensure the API is as consistent as possible (both between
PyTorch based models. (deepchem issue #2059)

34 8.08%

Complexity In order to keep Psi4 up to date with best C++11 practices,
reduce complexity (...). Currently the hybrid Python/C++
architecture of Psi4 is in an odd spot where Psi4 itself is
a C++ program that calls an input file as a Python exe-
cutable. (psi4 issue #468)

33 7.84%

Flexibility I think RMG should be designed to not require changes to
the core functionality, but have various inherited classes
that allow for flexibility and robustness. (RMG-Py issue
#1136)

25 5.94%

Usability D-Wave Hybrid is a (Python) framework designed for cre-
ating classical-quantum hybrid workflows with an emphasis
on ease of use. (dwave-hybrid issue #245)

21 4.99%

Reliability MSYS also has straightforward benefits for users, such as
speed and reliability. (ARTIQ issue #1471)

15 3.56%

Security I think it is a very important project for the future of our
security: being able to work with these new algorithms.
(OpenSSL issue #295)

15 3.56%

Functionality The Q# Formatter should have a design specification doc-
ument, written in Markdown like a README, that de-
scribes the functionality of the tool as we want it to be
and details our goals for the tool. (qsharpcompiler issue
#1074)

15 3.56%

Efficiency Samplers use Pauli frames to efficiently handle noisy cir-
cuits behind the scenes, but hide this information in the
Python API. (Stim issues #135)

12 2.85%

Ease of Implementa-
tion

I think we all agree that caching is a good idea; the question
is just how easy it is to implement in the current architec-
ture. (ARTIQ issue #1542)

10 2.38%

Cost and Effort Lots of money has been poured already into Conda (Contin-
uum Analytics, NumFocus) and VS (Microsoft) with such
a shoddy final result, so those tools seem like a dead-end
to me. (ARTIQ issue #1471)

8 1.90%

Modularity We have a good modularity in the compiler, specifically
with respect to the distinctions above. (cuda-quantum issue
#85)

6 1.66%

Scalability Using db will solve the scalability issue and will be able to
handle a large number of request. (QRL issue #1545)

6 1.43%

Interoperability We also get better interoperability with the broader python
ML ecosystem. (deepchem issue #/1036)

5 1.19%

Portability dc.data is one of the hackier parts of DeepChem and
has caused us a good number of scaling and portability
headaches. (deepchem issue #1039)

4 0.95%

Availability Availability of QML tools such as optimizers and different
encoding schemes“ and ”availability of simulators and cir-
cuit visualizers. (QC post #33215)

4 0.95%

Discoverability In addition to the general Q# API Design Principles,
the changes detailed in this proposal follow a few princi-
ples specific to arithmetic representation to help ensure a
consistent and discoverable user experience for developers
working with the Quantum Development Kit. (Quantum-
Libraries issue #337)

3 0.71%
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(6) Flexibility: Flexibility in quantum software systems ensures that the systems can adapt to
varied computational tasks, accommodating different quantum algorithms and protocols. It is vital for
catering to a broad spectrum of quantum applications. In our dataset, developers mentioned Flexibility
quality attribute in about 5.94% of the quality attributes we collected.

(7) Usability: Usability is a key consideration in quantum software systems to facilitate the effec-
tive utilization of quantum resources by developers and end-users. User-friendly interfaces, tools, and
documentation are essential for enabling practitioners to harness the power of quantum computing with-
out requiring an in-depth understanding of quantum mechanics. In our dataset, developers mentioned
Usability quality attribute in about 4.99% of the quality attributes we collected.

Key Findings of RQ4

Finding 4:
We identified 19 categories of quality attributes that are considered by developers when making
architectural decisions in quantum software systems, with Maintainability (18.53%), Performance
(15.68%), and Compatibility (14.25%) being the most considered attributes by developers (see
more details with examples in Table 9).

4.5. RQ5. What are the limitations and challenges of making architecture decisions in quantum software
development?
To answer RQ5, we collected and analyzed a total of 343 instances of limitations and challenges

(320 from GitHub issues and 41 from Stack Exchange posts). During this process, we found that
one GitHub issue and Stack Exchange post may discuss multiple limitations and challenges related to
architecture decision-making in quantum software development. If we found the same limitations and
challenges within the same post or issue, we counted them only once. We finally identified 16 types of
limitations and challenges that developers encounter when making architectural decisions in quantum
software development, as presented in Fig. 3e and detailed in Table 10.

We identified two main types of limitations and challenges: Design Issues and High Error Rates
which practitioners encountered in 25.07% and 11.37% of the limitations and challenges we collected.
Other types were mentioned in less than 10% of the limitations and challenges we collected. A detailed
description of the top 10 limitations and challenges is provided below.

(1) Design Issues: Design Issues are key challenges that developers encounter most when mak-
ing architecture decisions in quantum software development. These challenges arise when developing
quantum algorithms, optimizing quantum circuits, and seamlessly integrating them with components.
Decision-making on design issues is particularly challenging due to the evolving standards and tools in
quantum computing, which require learning and adaptation. To address Design Issues, it is important
for developers to first learn about quantum principles and use quantum algorithms. Developers also need
to consider the specific hardware and software stack being used. In our dataset, developers discussed
Design Issues in about 25.07% of the limitations and challenges we collected.

(2) High Error Rates: High Error Rates in quantum software architecture refer to the frequent oc-
currence of errors during the execution of quantum algorithms, compilation, or deployment of quantum
software systems. High error rates in quantum software architecture are a significant challenge aris-
ing from various sources, including asynchronous operations, build and compilation issues, inadequate
error mitigation techniques, and incorrect configurations. Addressing these errors involves improving
synchronization, enhancing error mitigation techniques, ensuring cross-platform compatibility, correctly
implementing quantum algorithms, managing configurations properly, and conducting thorough testing.
Developers can reduce error rates and build more robust quantum software systems by focusing on these
areas. In our dataset, developers discussed High Error Rates in about 11.37% of the limitations and
challenges we collected.

(3) Performance Issues: Performance Issues in quantum software arise when applications do not
fully leverage quantum speedups, often due to inefficient algorithms or sub-optimal resource utilization.
Developers face these challenges when making architectural decisions because identifying and using quan-
tum advantages requires a deep understanding of both quantum mechanics and the problem domain.
To prevent performance Issues, developers need to focus on algorithm optimization specific to quantum
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Table 10: Limitations and challenges of making architecture decisions in quantum software development, their counts &
percentages

Limitations &
Challenges

Example Count %

Design Issue A CurveManager SoftwareModule replacing pyinstruments
would definitely fit very nicely in this modular architecture.
In this case, there are a lot of design mistakes that we could
avoid with our experience of pyinstruments. (PyRPL issue
#84)

86 25.07%

High Error Rates The build systems has also only seen compilation on half a
dozen architectures and setups, you may encounter errors
in the build process. (psi4 #468)

39 11.37%

Performance Issue The architecture implemented at the moment is showing
some issues that are non trivial to fix: pickling, monitor-
ing, performance, in general seems to hard to grasp for
the users intermittent test failures due to syncing issues.
(QCoDeS issue #272)

32 9.33%

Implementation Is-
sue

Currently the API for KEX makes it a bit difficult to im-
plement a KEM transform like Fujisaki-Okamoto generi-
cally. One solution (to do it generically) that would involve
a somewhat major architectural change is to implement a
generic interface. (liboqs issue #50)

25 7.29%

Complexity Issue While this architecture is fine for the first ARTIQ sys-
tems that were rather small and simple and even for
single-crate Metlino/Sayma systems, it shows limitations
on more complex ones. (ARTIQ issue #778)

24 7.00%

Code Issue Just reproducing the first issue with code that is fully ex-
ecutable: (..). I think the issue here is purely to do with
labelling. When specifying subsystem_list=[1], Dynamics-
Backend is only aware that it has a system labelled by index
1 (and it will internally automatically build some measure-
ment definitions based on this labelling). (qiskit-dynamics
issue #235)

22 6.41%

Bugs Bugs: there are a variety of bugs in the current compiler
which have been known about for a long time. (ARTIQ
issue #1542)

20 5.83%

Compatibility Issue At the same time, we need to plan a transition that doesn’t
entirely break backwards compatibility. (deepchem issue
#1039)

16 4.66%

Data Issue Problem is my data consists of 2 arrays consisting of Dou-
ble numbers representing the real and imaginary parts of
complex numbers. (SO post #55763054)

16 4.66%

Standardization Is-
sue

But until/unless NIST gives a standardized version of that,
we plan to stick with just the KEM formulation. (qmcpack
issue #649)

16 4.66%

Maintenance Issue Supporting it would mean a more confused internal archi-
tecture, which would hurt us in maintainability in the long
term; (Qiskit issue #1852)

13 3.79%

Usability Issue To be honest the BackendConfiguration class is not the
most ergonomic to use. (QC post #28416)

11 3.21%

Integration Issue Integration with Keras: Although they’re very similar, Ten-
sorGraph layers have certain features that it isn’t obvious
to me how to reproduce with Keras layers. (deepchem issue
#1038)

8 2.33%

Security Issue The pseudorandom number generator used by ran-
dom.random(), Mersenne Twister, is not suitable for cryp-
tography or information security. (SO post #63609099)

7 2.04%

Lack of Effort A new interface would provide the most benefit here, but
it would also require the most effort, both in development
and long-term maintenance. (qsim issue #293)

5 1.46%

Noise Issue This feature will enhance the current PyQuil simulator’s
capabilities (noise.py module) by providing a more accurate
representation of noise.(pyquil issue #1575)

3 0.87%
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processing, ensuring that quantum resources are effectively utilized to offer a true computational advan-
tage. In our dataset, developers discussed Performance Issues in about 9.33% of the limitations and
challenges we collected.

(4) Implementation Issues: Implementation Issues in quantum software development primarily
stem from the intricate nature of quantum algorithms and the complexities inherent to nascent technolo-
gies, as illustrated by challenges in integrating quantum algorithms with existing classical computing
systems. Specifically, developers often encounter difficulties when trying to generalize functions or lever-
age advanced features due to hardware-software co-optimization, and practical and robust frameworks
that can seamlessly integrate with various quantum algorithms and protocols. These challenges are mag-
nified by the high complexity of quantum computations, nuances of post-quantum cryptography, and
the infancy of quantum programming languages. To prevent these issues, developers should focus on
fostering adaptive software designs, ensuring rigorous testing and validation of newer features, deepening
collaboration between quantum software communities, and enhancing the flexibility and documentation
of quantum development tools and APIs. In our dataset, developers discussed Implementation Issues in
about 7.29% of the limitations and challenges we collected.

(5) Complexity Issues: Quantum software inherently presents Complexity Issues due to the
multi-faceted nature of quantum mechanics. Developers wrestle with this type of issue when making
architecture decisions, as understanding and managing the intricacies of superposition and entanglement
can be daunting. This complexity makes designing efficient quantum algorithms challenging. To alleviate
Complexity Issues, a deep dive into quantum principles, alongside leveraging abstraction layers and tools
that simplify quantum processes, is indispensable. In our dataset, developers discussed Complexity Issues
in about 7.00% of the limitations and challenges we collected.

(6) Code Issues: Code Issues in quantum software involve problems like unreadable code, lack
of proper documentation, and non-reusability, impeding the functionality or efficiency of applications.
This type of issue is prevalent due to the developing stage of quantum programming languages and
the complex nature of quantum computations. To mitigate code issues, developers should adhere to
best coding practices, including thorough documentation, code reviews, and leveraging classical coding
standards where applicable. In our dataset, developers discussed Code Issues in about 6.41% of the
limitations and challenges we collected.

(7) Bugs: In quantum software systems, Bugs refer to inconsistencies, or unintended behaviors
within the software that hinder its correct or efficient operation. Bugs can arise from a multitude
of sources, including long-standing compiler issues, incorrect dataset creation, and improper support
for certain measurements due to runtime updates. Developers can address these issues by conducting
thorough testing, profiling for resource management, and ensuring backward compatibility with runtime
updates. Addressing Bugs also involves refining unit tests to reflect actual usage patterns, consolidating
coding styles, and improving error messages to reduce user confusion. Regular profiling and debugging,
especially for resource-heavy operations, are crucial in identifying and mitigating these bugs, ultimately
enhancing the reliability and user experience of quantum software systems. Bugs accounts for 5.83 % in
our analysis of quantum software systems.

(8) Compatibility Issues: Compatibility Issues in quantum software development are primar-
ily related to the challenges of creating compatible interfaces between quantum and classical systems.
These difficulties are compounded by the absence of universally accepted quantum programming frame-
works and the significant obstacles in integrating quantum technology with existing IT infrastructures.
Together, these factors pose substantial challenges to the advancement and application of quantum com-
puting in current technological environments. This incompatibility extends to difficulties in data formats,
communication protocols, and system interoperations, which underscore an essential need for enhanced
functionalities across different layers of the software stack as well as improved interfaces between quan-
tum and classical computing environments. In our dataset, developers discussed Compatibility Issues in
about 4.66% of the limitations and challenges we collected.

(9) Data Issues: Data Issues refer to challenges in data encoding, storage, and retrieval using
quantum bits in quantum computing. Developers encounter this type of issue when making architecture
decisions because the intricate process of encoding classical information into qubits is influenced by
the nature and encoding type of data, which can significantly impact the performance of algorithms.
To counteract Data Issues, developers should choose the appropriate qubit data encoding patterns,
understand quantum data operations, and utilize appropriate quantum data structures. In our dataset,
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developers discussed Data Issues in about 4.66% of the limitations and challenges we collected.

(10) Standardization Issues: Standardization Issues affect quantum software development, as
the field suffers from a lack of standardized tools and frameworks. Encouraging collaborative efforts
towards standardizing quantum computing protocols and interfaces, and contributing to community-
driven quantum software libraries can help establish much-needed uniformity. In our dataset, developers
discussed Standardization Issues in about 4.66% of the limitations and challenges we collected.

Key Findings of RQ5

Finding 5:
Design Issues (25.07%) and High Error Rates (11.37%) are the most common challenges in archi-
tecture decision-making in the development of quantum software systems. Other notable issues
include Performance Issues (9.33%), Implementation Issues (7.29%), Complexity Issues (7.00%)
and Code Issues (6.12%) (see the examples in Table 10).

5. Discussion

In this section, we revisit the findings of this study by interpreting the results in Section 5.1 and
discussing their implications for researchers (indicated with the b icon) and/or practitioners (the ♂
icon) in Section 5.2.

5.1. Interpretation of results
5.1.1. RQ1: How do developers express architecture decisions made in quantum software development?

Table 6 presents the linguistic patterns identified in the architecture decisions made during the
development of quantum software systems. These patterns serve as a means to understand the diverse
intentions behind decision expressions, shedding light on the reasoning process that drives the architects
and developers of quantum software systems. Among these linguistic patterns, two arise as particularly
dominant: Solution Proposal and Information Giving. Solution Proposal is crucial for suggesting multiple
solutions to architectural challenges in quantum technologies. Its frequent use underscores its importance
in enriching decision-making processes by exploring alternative pathways. Information Giving plays a
critical role in quantum software development by conveying essential context and insights necessary
for informed decision-making. It facilitates effective communication among architects and developers,
ensuring a comprehensive understanding of technical details. While Solution Proposal and Information
Giving are prominent,Feature Request, Problem Discovery, and Opinion Asking are less frequently utilized
in expressing architecture decisions in quantum software development. These patterns offer potential
avenues for enhancing collaborative decision-making but require further exploration within this context.

5.1.2. RQ2. What types of architecture decisions are made in quantum software development?
Our investigation indicates the presence of 15 types of architecture decisions in the context of quan-

tum software development, as shown in Table 7. The prominent Implementation Decision underscores
the necessity for detailed and precise implementation guidelines in quantum systems. This emphasizes
the importance of thoroughly understanding how to integrate and utilize quantum components, given
their complexity and the current nascent stage of quantum technology. Similarly, Technology Decision
is critical due to the rapid evolution of quantum technologies. Practitioners must navigate a rapidly
changing landscape to select appropriate technologies that align with their specific system requirements.
For instance, selecting a quantum programming framework or backend configuration can significantly
impact system performance and maintainability, as illustrated by the ongoing developments in tools like
Qiskit and OpenQL. Architecture Pattern Decision guides the selection of suitable architectural pat-
terns to meet specific quality attributes like maintainability and performance. This decision is crucial
for ensuring that quantum systems can adapt and evolve over time, accommodating new features and
optimizations without significant rework. Component Decision, which emphasizes modular and layered
architectures, facilitates maintainability and scalability, enabling developers to manage complex sys-
tems more effectively. Tool Decision and Data Decision highlight the importance of selecting optimal
tools and managing data efficiently. Given the significant and dynamic nature of data generated during
quantum computing tasks, these decisions are pivotal for ensuring robust and efficient data handling
and processing. Other architecture decisions within quantum systems encompass Decomposition Deci-
sion.Integration Decision focuses on melding quantum components with traditional systems for smooth

25



data and process interactions. Behavior Decision, Design Pattern Decision, Service Decision, Testing De-
cision, Deployment Decision, Containerization Decision and Concurrency Decision. Collectively, these
decisions underscore the multifaceted considerations that architects and developers need to address while
designing quantum software systems.

5.1.3. RQ3. What are the application domains of quantum software in which architecture decisions are
made?

As illustrated in Table 8, architecture decisions in quantum software development are made in a
total of 20 application domains, in which Software Development Tools are dominant. The prominence
of Software Development Tools is attributed to their critical role in accessing and managing quantum-
specific modules and functionalities required for quantum software systems. These tools facilitate the
development, integration, and optimization of quantum algorithms and applications, leveraging frame-
works that bridge classical and quantum computing paradigms. Quantum-specific software development
environments, such as those provided by Qiskit, Cirq, and PennyLane, enable developers to implement
quantum algorithms, manage quantum states, and interface with quantum hardware effectively. Be-
yond Software Development Tools, Quantum Programming Framework plays a pivotal role in quantum
software architecture decisions, particularly in defining the foundational structures and methodologies
for quantum algorithm implementation. These frameworks encompass libraries, compilers, and runtime
environments tailored to quantum computing requirements, influencing architecture decisions around
algorithm design, optimization techniques, and hardware compatibility. Scientific Software harnessing
the power of quantum mechanics, and Optimization and Simulation solutions that leverage principles of
quantum mechanics. Quantum phenomena also play a pivotal role in domains such as Quantum Cryp-
tography, offering unmatched security features. Likewise, the synergy between quantum mechanics and
artificial intelligence is evident in the Deep Learning Framework domain, where quantum-enhanced neu-
ral networks are under exploration. Quantum technology is causing significant changes (e.g., optimized
quantum algorithms, enhanced computational power, and increased data processing capabilities) in do-
mains like Quantum Compiler, Real-Time System, Distributed System, and Embedded System. Moreover,
Blockchain Technology is witnessing innovative approaches influenced by quantum mechanics, ensur-
ing robust and tamper-proof systems. Traditional Desktop Applications, Web Applications, and Mobile
Applications are also experiencing a transformative phase, with quantum algorithms enhancing their
efficiency and capabilities. Finally, Games in quantum software systems are still in their nascent stages,
but hold the promise of offering incomparable gaming experiences, tapping into the probabilistic nature
of quantum mechanics.

5.1.4. RQ4. What quality attributes are considered when developers make architecture decisions in quan-
tum software development?

As shown in Table 9, we identified 19 types of quality attributes considered by architects when
they make architecture decisions in quantum software development. In our study, two prominent quality
attributes, Maintainability and Performance were mostly discussed in quantum software development.
Maintainability was mentioned 78 times, constituting over 18% of the identified quality attributes, while
Performance was found 66 times, accounting for approximately 15% of the total quality attributes.
Maintainability involves ensuring that the system remains easy to manage and evolves over time. Main-
tainability plays an essential role in quantum software systems since it ensures that quantum software
systems can evolve as technology advances or requirements change. As one developer proposed “I think
the node should be kept minimal and specific for a lot of good architectural reasons. (...) More non-
core features, more on/off settings => more complexity, less maintainability, higher risk” (QRL issue
#1545). Performance is another vital quality attribute for quantum software systems, since Perfor-
mance is crucial for long-term viability and adaptability. Performance is primarily associated with time
behavior, resource utilization, and system capacity. Practitioners in quantum software development are
particularly concerned about factors such as training and computing time, as well as the speed of data
processing. These aspects are crucial for optimizing the performance of quantum software systems, and
suggestions include the adoption of better-distributed architectures to enhance these performance aspects
[96], as mentioned in a GitHub issue “First the current design is intrinsically bad performance for hot
loops because we have to look up the state (even if it doesn’t change)” (DFTK.jl issue #313).

5.1.5. RQ5. What are the limitations and challenges of making architecture decisions in quantum soft-
ware development?

As shown in Table 10, developers encounter 16 types of limitations and challenges during architec-
ture decision-making of quantum software development, in which High Error Rates and Design Issues
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are the main types. Design Issues frequently arise in quantum software development due to e.g., com-
plex quantum technology, quantum software development tools, and quantum programming frameworks.
Quantum software not only requires a redesign of applications, but also mandates a reconceptualization
of the tools and languages used for quantum software development. Furthermore, from a coding per-
spective, there are hurdles to overcome to maintain clarity and scalability in the quantum context, as
highlighted in an issue that states, “This issue is meant to highlight some design issues from the coding
point of view that will make life hard for current and future coders of RMG-Py” (RMG-Py issue #521).
High Error Rates, on the other hand, are tightly intertwined with the intrinsic characteristics of quantum
systems. Given the delicate nature of quantum states and the probabilistic outcomes they produce, en-
suring consistent and efficient performance is a challenge. For instance, a developer noted: “The current
design is an intrinsically bad performance for hot loops because we have to look up the state (even if it
doesn’t change)” (DFTK.jl issue #313). This example touches upon the nuances of state management in
quantum software systems, where even seemingly minor operations can entail significant overheads. In
another context, as quantum algorithms are integrated into larger systems, unpredictable performance
hiccups can occur, as evidenced by the feedback from one developer that “But the performance got slightly
worse (higher variance) or the model crashed due to NaNs” (deepqmc issue #25).

5.2. Implications
5.2.1. Linguistic patterns

Identifying linguistic patterns helps researchers understand architecture decisions de-
cision description, while practitioners can use these insights to improve architecture com-
munication in quantum software projects: The identification of linguistic patterns (e.g., Solution
Proposal, Information Giving, Information Seeking, and less commonly used Feature Request, Problem
Discovery, and Opinion Asking) provides a structured framework for understanding decision-making
processes in quantum software architecture. b For researchers, linguistic patterns enhance the study
of decision-making dynamics, offering insights that can inform the development of improved decision-
support tools and methodologies tailored to quantum software architecture. By analyzing these linguistic
patterns, researchers gain deeper insights into how architectural decisions are formulated, communicated,
and evolved within quantum computing environments. This foundational knowledge can lead to theoret-
ical advancements in decision-making models, contributing significantly to the broader field of software
engineering and quantum computing research. ♂ For industry practitioners, understanding and lever-
aging these patterns fosters better collaboration and communication on architecture among teams in
quantum software development projects. The dominance of Solution Proposal and Information Giving
underscores the importance of fostering flexible and communicative decision-making frameworks within
industry settings. ♂ Practitioners can utilize these insights to streamline decision processes, improve
the quality of architectural solutions, and effectively manage project complexities. Information Seeking
though less frequent, plays a critical role in seeking clarifications and resolving technical uncertainties,
which is essential for optimizing decision-making efficiency. ♂ Practically, integrating features into archi-
tecture tools and platforms that support Solution Proposal, Information Giving, and Information Seeking
can lead to the development of advanced Integrated Development Environments (IDEs) and collaborative
platforms tailored to the needs of quantum software practitioners.

Feature Request, Problem Discovery, and Opinion Asking can be considered by archi-
tects and developers in describing their architecture decisions in quantum software devel-
opment: To advance quantum software architecture effectively, Feature Request, Problem Discovery,
and Opinion Asking were found to be less frequently used for expressing architecture decisions during
the development of quantum software. Feature Request typically outlines a new functionality or en-
hancement being added to the system. The given example, “Pull requests implementing new features:
Datalayer type creation, conversion and dispatch #1338 implementing the data-layer creation, conversion
and dispatcher routines” (QUTIP issues #1278), specifies a technical enhancement, indicating that pull
requests have been made for new data layer functionalities, which are crucial for the data handling capa-
bilities of software systems. Furthermore, Problem Discovery is about identifying and describing issues
or limitations within the current architecture. The example “SIKE not properly disabled on unsupported
architectures” (liboqs issue #1128) highlights a specific issue where a cryptography algorithm SIKE is
not being correctly disabled in environments where SIKE is not supported, potentially leading to errors
or security vulnerabilities. Lastly, Opinion Asking is a linguistic pattern where developers seek feedback
or alternative perspectives on an architecture decision, promoting collaborative decision-making. The
example “Please feel free to suggest changes or alternate designs” (deepchem issue #2059) opens the floor
for community input on the project, which can lead to innovative solutions and shared ownership of the
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project’s evolution. b Researchers and ♂ practitioners are encouraged to integrate these patterns into
their decision-making processes to enhance the agility, robustness, and innovation of quantum software
architectures.

5.2.2. Architecture decisions
Implementation Decisions and Technology Decisions are critical architecture decisions,

requiring deep understanding and strategic planning in quantum software development: The
identified decisions directly influence the structure and functionality of quantum software architectures.
Prominent among these decisions are Implementation Decision and Technology Decision, the complexity
of which is underlined by the need to manage qubit. The intricacies of these decisions require a deep
understanding of quantum components and their integration, contributing to more mature and robust
architecture designs. These decisions do not merely guide the development process; they also ensure
that the architecture can handle the unique requirements of quantum computing. For instance, the
architecture decision-making process becomes intricately complex. b Practitioners often find themselves
at a crossroad, deliberating on the most suitable means to incorporate quantum-related components.
Such as, determining the feasibility of introducing a feature, like caching, within a given architecture
poses questions related to effort, compatibility, and user comprehension, as evidenced in this example
“The C++ API of LLVM is complicated and has poor forward compatibility (...). I think we all agree
that caching is a good idea; the question is just how easy it is to implement in the current architecture (in
terms of implementation effort, as well as ease of understanding for users)” (ARTIQ issue #1542). On
the other hand, Technology Decision delves into the selection and integration of appropriate technologies
that cater to the needs of quantum software systems. b The rapid evolution of quantum technologies
and tools bewilders many practitioners. A case in point is the quandary expressed by a developer,
“What’s the latest in Python LLVM bindings anyway is there one that supports the (C++) IRBuilder
interface?” (ARTIQ issue #1370), where the binding specifics for a language (Python) with a compiler
(LLVM) are in question.

Researchers should innovate methodologies to address challenges, while practitioners
need modular, layered approaches to handle evolving quantum technology: For the research
community, these findings highlight key areas that require further exploration and innovation. b Re-
searchers can focus on developing new methodologies and frameworks to address the identified challenges,
such as creating more effective architecture patterns and optimization techniques for quantum software
systems. This can lead to significant advancements in the field of quantum software engineering. There-
fore, we echo the need for b more empirical studies to fully understand and quantify the benefits of these
insights for quantum software architecture. ♂ For industrial practitioners, Implementation Decisions and
Technology Decisions underscore the importance of strategic planning and continuous learning. The find-
ings also impact design practices, encouraging practitioners to adopt a modular and layered approach
to architecture design. This approach enhances the flexibility and adaptability of quantum software
systems, allowing for easier updates and integration of new technologies. ♂ Practitioners were also faced
with significant challenges when making Implementation Decisions and Technology Decisions during the
development of quantum software, particularly due to the integration of quantum-related components
and the intricate nature of quantum technology, which often leads to critical issues. Consequently, we
suggest that practitioners should carefully consider Implementation Decisions and Technology Decisions
in quantum software development.

5.2.3. Application domains
Researchers should focus on refining integration, developing modular designs, and

implementing advanced error mitigation for reliable quantum software: Our findings have
several key implications for both the academic community and industry professionals. b Researchers
should focus on refining the integration procedures between various quantum programming frameworks
and tools. Ensuring seamless compatibility between different modules and APIs is critical. For example,
“Align current BaseJob API with the specification” (Qiskit issue #933) and “The SDK also provides the
ability to request specific result types on a subset of qubits” (amazon-braket-sdk-python issue #158) illus-
trate the need for continuous improvement in integration to support diverse quantum computing tasks.
Emphasis should be placed on the design and evolution of modular quantum software architectures. The
decomposition and refactoring of components, such as “After we have finished the decomposition and
local Covalent has a microservice architecture” (covalent issue #186), highlight the importance of main-
taining flexibility and scalability in quantum software systems. b Researchers should explore innovative
modular designs to accommodate the evolving requirements of quantum computing. The development

28



of robust error mitigation techniques, as indicated by “Mitiq needs more error mitigation techniques”
(mitiq issue #821), is crucial for improving the reliability and accuracy of quantum computations. b
Researchers should investigate and implement advanced error correction methods to enhance the per-
formance of quantum algorithms. The rapid evolution of quantum computing paradigms necessitates
adaptive and forward-thinking research approaches. Proposals like “This issue is motivated by problems
emerged in #471 (Bayesian ZNE), #477 (Clifford-data regression)” (mitiq issue #517) underscores the
need for continuous adaptation to emerging quantum computing challenges and opportunities.

Practitioners must ensure tool compatibility, create user-friendly interfaces, and adopt
rigorous testing and modern development practices for enhanced quantum software: ♂
Practitioners must ensure the compatibility and coherence of tools and interfaces used in quantum
software development. Issues like “The sync method in covalent/_results_manager/results_manager.py
needs to be moved and updated to be compatible with the new covalent services architecture” (covalent
issue #370) highlight the necessity for ongoing maintenance and updates to ensure smooth operations
across different components. Developing user-friendly and flexible tools is essential for the practical
implementation of quantum software. Statements such as “We are also interested in using the Python
SDK” (Qiskit issue #487) and ”While the actual operation requested is technically possible without going
to a DAG, it doesn’t fit into the compilation tooling architecture of Terra” (Qiskit issue #1852) emphasize
the need for designing tools that are both technically robust and accessible to users. ♂ Practitioners
should adopt rigorous testing and continuous improvement practices. Examples like “Fix unit tests
(locally there is no problem, but travis keeps on failing due to connection issues) modify docs” (pyrpl
issue #350) and “Adapt coverage testing to require 100% of all new code” (circuit-knitting-toolbox issue
#107) illustrate the importance of thorough testing and validation to ensure the reliability of quantum
software systems. The adoption of modern development practices, such as microservices [97] and agile
methodologies [98], can significantly enhance the development process. The shift towards architectures
like “local Covalent has a microservice architecture” (covalent issue #186) demonstrates the benefits of
modular, scalable, and maintainable software architecture designs in quantum system development.

5.2.4. Quality attributes
The quality attributes considered when making architecture decisions in quantum soft-

ware development offer valuable insights for both researchers and practitioners: The quality
attributes delve into the crucial aspects of software architecture in quantum software development. b
Understanding these quality attributes is essential for developing efficient and maintainable quantum
software systems, guiding both the research agenda and practical approaches in quantum software de-
velopment. Therefore, there is a need to provide guidelines for both b researcher and ♂ practitioners.
b Researchers can explore the ways in which quality attributes are considered when formulating ar-
chitectural decisions in quantum software development. b Researchers can also use this knowledge to
focus on the identified quality attributes (e.g., Maintainability, Performance, and Compatibility), tailor-
ing their theoretical frameworks and empirical studies to address the specific challenges and needs in
quantum software architecture. Recognition of the importance of quality attributes in quantum soft-
ware development can be directed towards constructing methodologies and tools that enhance these
quality attributes in quantum software systems. This focus is crucial, given the inherent complexities
of quantum software and the need for integrating quality attributes in quantum software with classical
software paradigms. ♂ Practitioners can utilize our findings of quality attributes to make well-informed
architecture decisions during the development of quantum software. The emphasis on Maintainability,
Performance, and Compatibility as key quality attributes indicates the areas where ♂ practitioners should
focus their efforts. This knowledge assists in creating more robust and efficient quantum software sys-
tems, directly impacting the practical application of quantum technologies. Furthermore, understanding
these quality attributes can aid in making valid architecture decisions, ensuring that quantum software
not only meets technological demands but is also maintainable and compatible to future advancements
and requirements.

5.2.5. Limitations and challenges
Practitioners and researchers face significant Design Issues in quantum software devel-

opment, requiring adaptations of traditional practices and exploration of new frameworks
like layered software architecture: ♂ Practitioners and b researchers alike must grapple with crit-
ical challenges and limitations when making architecture decisions in quantum software development.
These challenges encompass various aspects, prominently including Design Issues that arise from the
unique demands of quantum computing, as mentioned by a developer, “the authors do lay out some of
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the challenges faced when designing quantum computing design tools and programming languages” (CS
post #29032); this indicates recognition of difficulties in adapting traditional software design practices to
the quantum realm and marks the exploration of ♂ practitioners into the field of quantum software, fo-
cusing on the technical and conceptual challenges in designing effective quantum programming languages
and design tools. The proposed solution involves adopting a layered software architecture framework, as
mentioned by a developer, “a Layered Software Architecture for Quantum Computing Design Tools by
Svore et al. lays out a framework that I believe cuts across what you’re getting it” (CS post #29032).
b For researchers, understanding and addressing these challenges pave the way for advancing quantum
software engineering, and the exploration of quantum software design tools and programming languages
marks an important frontier in quantum computing research.

High Error Rates demand advanced error management and innovative error mitiga-
tion techniques to improve reliability in quantum software development: Another prominent
challenge identified in this study is the management of High Error Rates inherent in quantum software
systems. A notable example of this challenge is encountered in quantum chemistry simulations where
high error rates can lead to inaccuracies in computational results, as mentioned by a developer, “The
build systems have only seen compilation on half a dozen architectures and setups, so you may encounter
errors in the build process” (Psi4 issue #468). To mitigate this challenge, one potential solution was
discussed by a developer, “In addition, python-based error messages will be more expressive and accurate.
For users who enjoy the current Psithon interface, the current Psi4 Psithon parsing equipment will be
moved to a script named ‘psi4’ in the binary location. This will allow all current Psi4 input files to be run
normally” (Psi4 issue #468). In this example, python-based error messages can be more expressive and
accurate, thereby simplifying the debugging process and addressing High Error Rates. Addressing High
Error Rates challenges requires a dedicated focus on developing advanced error management techniques.
Therefore, ♂ practitioners should implement enhanced error management capabilities within their quan-
tum software systems. b Researchers should explore innovative methodologies for error mitigation and
correction to improve the reliability of quantum software systems.

Design documentation is crucial to avoid failure in quantum software: Both b researchers
and ♂ practitioners in the field of quantum software development can benefit significantly from recogniz-
ing the importance of design documentation. As highlighted by one developer, “the absence of a design
document enumerating realistic use cases hides the design goals and blurs the definition of done” (Qiskit
issue #825), the absence of a design document that includes realistic use cases can obscure the design
goals and make it challenging to define project completion. b Therefore, it is crucial for researchers
to create design documentation that clearly outlines the intended objectives, realistic use cases, and
specific requirements of quantum software systems. This design documentation serves as a roadmap
for development and helps avoid misalignment between the design goals and the actual implementation
of quantum software systems, preventing discrepancies and misunderstandings during the development
process. ♂ Practitioners can rely on design documentation to understand the intended functionality
and requirements of the quantum software system. With well-defined documentation that enumerates
realistic use cases, b researchers and ♂ practitioners can better understand the design goals and the
definition of project completion. This clarity can lead to more successful outcomes and prevent the
failures of quantum software systems.

5.2.6. Relationship between the RQs
Critical application domains: The most critical application domains in quantum software in

which Implementation Decisions are made include: Software Development Tools, Quantum Program-
ming Frameworks, Optimization and Simulation, Data Processing, and Scientific Software. Software
Development Tools have the highest number of Implementation Decisions (27 out of 125), representing
21.6%. This indicates a strong focus on tools that support the development process. Quantum Pro-
gramming Frameworks with 23 (18.4%), this domain emphasizes the importance of frameworks that fa-
cilitate quantum programming. Optimization and Simulation accounts for 17 Implementation Decisions
(13.6%), showing the significance of optimizing and simulating quantum systems. Scientific Software
with 10 (8%), this domain highlights the role of scientific applications in quantum computing. Data
Processing holding 8 (6.4%), this domain underlines the necessity for efficient data handling in quantum
software. These findings underscore the critical roles that Software Development Tools and Quantum
Programming Frameworks play in the architecture of quantum software. ♂ Practitioners should focus
on selecting and utilizing tools that enhance Maintainability and Performance, given their significant
impact on the success of quantum software applications.
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Key quality attributes: The analysis of quality attributes reveals the following insights: Main-
tainability has the highest frequency of Implementation Decisions (36 out of 228), accounting for 15.8%.
It highlights the importance of maintaining the software over time. Performance with 34 Implementation
Decisions (14.9%), performance is a key concern in quantum software development. Compatibility has
30 Implementation Decisions (13.2%), emphasizing the need for software to function well with other
systems. Consistency holding 22 Implementation Decisions (9.6%), consistency is crucial for ensuring
reliable and predictable software behavior. Complexity with 19 Implementation Decisions (8.3%), man-
aging complexity is essential for developing efficient quantum software. b These quality attributes (e.g.,
Maintainability, Performance, Compatibility) highlight critical research areas in quantum software where
further research is needed. ♂ Understanding these quality attributes is crucial, guiding practitioners to
make suitable architectural decisions when developing quantum software systems.

Limitations and challenges: Design Issues appeared as the most prevalent challenge, accounting
for 48 out of 228 Implementation Decisions (21.1%). This high frequency underscores the common
occurrence of design-related challenges in quantum software development. Performance Issues with
20 Implementation Decisions (8.8%), performance issues are a significant challenge. Implementation
Issues accounts for 19 Implementation Decisions (8.3%), indicating difficulties in the implementation
process. Complexity Issues holding 11 Implementation Decisions (4.8%), complexity remains a notable
challenge in quantum software development. High Error Rate challenge has 8 Implementation Decisions
(3.5%), highlighting the issue of errors in quantum software. Addressing these challenges is crucial for
advancing the field and developing robust quantum software systems. The challenges identified, such as
Design Issues (21.1%) and Performance Issues (8.8%), provide a clear direction for future studies. b
Researchers can delve deeper into these areas to develop innovative solutions that address architecture
related limitations and challenges, thereby advancing the state of quantum software development.

6. Threats to validity

6.1. Construct validity
Construct validity refers to whether our measurement tools accurately assess the intended properties

[99]. In this study, we encountered two potential challenges to construct validity: search term selection
and manual analysis. Search term selection: The retrieval of related issues from GitHub and related posts
from Stack Exchange sites (including platforms such as Stack Overflow, Quantum Computing Stack
Exchange, and Computer Science Stack Exchange) relies on keyword-based searches. When it came
to selecting search keywords for finding GitHub issues and Stack Exchange posts, we faced challenges
related to the construct validity of our data collection. One significant concern was whether the keywords
we initially chose would capture all the relevant issues and posts or if some valuable information might
be missed. To address this potential threat, we took a proactive approach by conducting pilot searches
using alternative search terms before using the original terms discussed in Section 3.2. This iterative
process allowed us to refine our keyword choices, ensuring that we cast a wider net and minimize the
risk of incomplete data, thus safeguarding the construct validity of our study. Manual data handling:
The stages of data handling in our study, which involve manual processes and thus risk subjectivity and
bias, are as follows: (1) Labeling– To minimize bias in this stage, we implemented a two-step approach.
Initially, we performed a pilot labeling on both GitHub issues and Stack Exchange posts. This was done
prior to the formal labeling to identify potential biases and inconsistencies. Furthermore, we established
the inclusion and exclusion criteria to objectively decide which posts or issues should be included in our
study. (2) Extraction: The pilot data extraction process was a collaborative effort primarily between
the first and second authors. To ensure accuracy and consistency, the first author conducted a thorough
recheck of the extraction results. This step was crucial to maintain the integrity of the data extraction
process. If any discrepancies were found, the third author participated in discussions with the first two
authors to help reach a consensus; (3) Analysis: To mitigate the threat of data analysis, we used two
qualitative techniques (predefined classification and the Constant Comparison method) to analyze the
extracted data and answer the RQs. Moreover, we attempted to minimize this threat by performing a
pilot data analysis before the formal formal data analysis. The first and second authors independently
categorized content from filtered posts and issues, cross-referencing the filtered posts and issues with the
corresponding data items in Table 5. The first author then consolidated these codes into higher-level
concepts and categories, while the other authors reviewed and validated the pilot data analysis results,
resolving disagreements through the negotiated agreement method [92] to enhance reliability.
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6.2. External validity
External validity encompasses the extent to which the outcomes of a study can be applied and

verified in diverse settings, thereby assessing the generalization of the findings. One primary factor influ-
encing external validity is the selection of data sources. In our effort to mitigate this potential limitation,
we deliberately opted for two widely recognized developer communities, namely GitHub and Stack Ex-
change as the primary sources for extracting architecture decisions in the realm of quantum software
development. It is important to note that GitHub and Stack Exchange have consistently served as piv-
otal resources in empirical software engineering investigations. Previous research endeavors (e.g., [100]
and [101]) have demonstrated that insights obtained from GitHub and Stack Exchange data enjoy a high
degree of validation and resonance among practitioners. This strong alignment between research findings
and real-world experiences bolsters our confidence in the representatives of these platforms for studying
architecture decisions in quantum software development. Furthermore, it is important to acknowledge
that quantum computing is an emerging field still in its early stages compared to traditional software
systems. As a result, the datasets available in this domain are often of limited sample size. For instance,
Openja et al. [87] conducted an empirical study on technical debt and faults in open-source quantum
software systems using a dataset of 118 projects, highlighting the constraints and realities of research in
this emerging field. This situation further emphasizes the importance of our study, which expands the
initial dataset and continues to contribute to the understanding of quantum software architecture. The
specific nature of our dataset reflects the current landscape of quantum software systems, which presents
unique challenges for empirical research on this topic. We also acknowledge that encompassing more
data sources would enhance the study’s external validity.

6.3. Reliability
Reliability, in the context of our research methodology, pertains to the degree of consistency exhibited

by the chosen approach in yielding results. In order to mitigate the potential threat to reliability, a
preliminary data labeling exercise was carried out independently by two authors on a sample consisting
of 10 GitHub issues and 10 Stack Exchange posts. The assessment of inter-rater reliability was conducted
through the calculation of Cohen’s Kappa coefficient, yielding values of 0.80 for GitHub issues and 0.76 for
Stack Exchange posts. Both of these coefficients exceed 0.7, indicating a satisfactory level of agreement
between the participating authors. To further enhance the reliability of the process encompassing data
labeling, data extraction, and data analysis, any disparities or inconsistencies that arose were resolved
through constructive discussions involving the first author and other authors. To foster transparency and
enable validation of our study findings, we have made the entire dataset, along with the corresponding
data labeling outcomes for GitHub issues and Stack Exchange posts, readily available [53]. This provision
ensures that other researchers can scrutinize our work and verify the consistency and reliability of our
data handling and analysis procedures.

7. Related work

7.1. Quantum software development
In recent years, quantum software development has gained significant attention in the software

engineering community, reflecting the growing importance of quantum computing. Khan et al. [38]
conducted a systematic review to examine the software architecture for quantum computing systems.
Their work provides a comprehensive overview of existing architectures of quantum software systems,
highlighting the advancements and challenges in this domain. Truger et al. [102] explored the intersection
of warm-starting and quantum computing through a systematic mapping study, shedding light on how
quantum computing can benefit from optimizing initialization procedures. Haghparast et al. [103] took
a developer’s perspective to identify the challenges in quantum software engineering and mapped these
challenges to a proposed workflow model, offering insights into the practical issues developers face in
this field. Yue et al. [30] examined the challenges and opportunities in quantum software architecture,
highlighting key considerations in designing quantum computing software. Felderer et al. [64] explored
software engineering challenges in quantum computing through the First Working Seminar on Quantum
Software Engineering (WSQSE 2022), providing valuable insights into this evolving domain. Finally,
Zhao et al. [104] made a contribution to the field of quantum programming by introducing Bugs4Q, which
is a novel benchmark suite comprising forty-two real and manually validated Qiskit bugs extracted from
prominent platforms such as GitHub, StackOverflow, and Stack Exchange. These bugs are supplemented
with test cases that facilitate reproducing erroneous behaviors, and these bug scenarios are invaluable
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for systematically evaluating debugging and testing methodologies for quantum programs. These papers
collectively contribute to the understanding of quantum software development, addressing various aspects
such as software architecture, optimization, workflow models, challenges, and benchmarking in quantum
computing systems.

7.2. Decisions in software engineering
Decisions are either explicitly presented in knowledge management tools or implied in various tex-

tual artifacts. Extensive research has been conducted to understand and analyze decisions and decision-
making in software engineering. Li et al. [105] conducted an exploratory study on the Hibernate de-
veloper mailing list, analyzing 9,006 posts to uncover insights into decision expressions, classification,
rationale, approaches, related software artifacts, and the trend of decision-making over time. Their find-
ings revealed that decisions in open-source software development are typically expressed as Information
Giving, Solution Proposal, and Feature Request, with the main categories being Design Decision and
Requirement Decision. In a separate study, Bi et al. [106] investigated how developers use architecture
and design patterns concerning quality attributes and design contexts, revealing previously unknown
relationships among these elements. Zhang et al. [88] conducted an empirical study on architecture
decisions in AI-based systems development. They analyzed the data from Stack Overflow and GitHub,
revealing that architecture decisions in AI are expressed through various linguistic patterns, with So-
lution Proposal and Information Giving being common. Their study identified Technology Decision,
Component Decision, and Data Decision as primary decision types, with a focus on Performance as the
key quality attribute. It also highlighted Design Issues and Data Issues as significant challenges in the
architecture decision-making of AI-based systems. Waseem et al. [80] introduced decision models aimed
at assisting microservices practitioners in selecting appropriate patterns and strategies for Microservices
Architecture (MSA). These models cover four key MSA design areas, including microservices applica-
tion decomposition, security, communication, and service discovery. To create these models, the authors
conducted an extensive literature review and evaluated their effectiveness through interviews with 24
practitioners, and the results show that these decision models were found to be valuable tools for guiding
microservices patterns and strategy selection. Shahin et al. [107] explored the visualization of architec-
tural design decisions, focusing on the use of the Compendium tool to improve understandability and
communication in architectural design. Lastly, Liu et al. [108] provided insights into the decision-making
of students in requirements engineering course projects, emphasizing the importance of understanding
the characteristics of decision-making during various stages of requirements engineering. These works
collectively contribute to our understanding of decision-making in software engineering, encompassing
diverse facets such as decision expression, architecture patterns, visualization, and decision-making in
the software development process.

7.3. Architecture decisions in quantum software development
Khan et al. [38] conducted a systematic review to delve into the architectural aspects of quantum

software development. Their study provides insights into how architectural processes, modeling nota-
tions, design patterns, tool support, and challenging factors impact quantum software architecture. The
authors highlighted the transformation of quantum bits (Qubits) into architectural components, offering
a fresh perspective on architectural decisions in quantum computing systems. Sodhi et al. [45] investi-
gated Quantum Computing Platforms (QCPs) from a software engineering perspective. They proposed
a QCPs architecture and a programming model and evaluated the impact of QCPs characteristics on
Quality Attributes (QAs) and Software Development Life Cycle (SDLC) activities. Their findings sug-
gest that QCPs are best suited for specialized applications like scientific computing, with some QAs,
such as maintainability and reliability, being negatively affected by certain QCPs characteristics (e.g.,
limitations in qubit state transmission, hard dependencies on quantum algorithms, and restrictions on
copying and deletion of qubit states). Furthermore, Khan et al. [109] researched agile practices in
quantum software development and delved into the challenges and applicability of agile practices in this
domain. While their work primarily focuses on the adoption of agile practices, it also indirectly touches
on limitations and challenges in quantum software development. Their study demonstrated that agile
software development practices have the potential to address some of the challenges inherent in quantum
software development, but it also highlighted new obstacles that impede their effective incorporation.
This research offers valuable insights into the landscape of challenges faced when making architecture
decisions in quantum software development.

Distinguished from the before mentioned research, our investigation delved into a comprehensive
analysis of architectural decision-making within quantum software development. Specifically, our study
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encompassed an examination of the expressions and classifications of architecture decisions, the diverse
application domains in which these decisions manifest, the critical quality attributes that factor into
decision-making, as well as the formidable limitations and challenges encountered during this archi-
tectural process. To conduct this exploration, we conducted data mining across Stack Exchange and
GitHub, amassing valuable insights into the intricacies of quantum software development’s architectural
landscape.

8. Conclusions

Quantum software architecture refers to the design and organization blueprint for quantum software
systems that leverage the principles of quantum computing to solve specific problems or tasks. It focuses
on addressing the challenges and limitations inherent to quantum computation, providing a structured
approach to building applications that leverage the power of quantum technologies. Architecture deci-
sions are essential for architects and developers to make informed design choices during the development
of quantum software systems, and once a system is developed, it can be challenging and costly to change
at the architecture level. This research aimed to explore the architecture decisions within the context
of quantum software development. Specifically, we conducted an empirical study on GitHub issues and
Stack Exchange posts to explore architecture decisions in quantum software development from practi-
tioners’ perspectives. We used a keyword-based search to collect data from GitHub and Stack Exchange.
Finally, we got 385 GitHub issues and 70 Stack Exchange posts which include 33 Stack Overflow posts,
33, Quantum Computing Stack Exchange posts, and 4 Computer Science Stack Exchange posts. We
manually extracted architecture decisions related to quantum software systems to investigate decision
expressions, decision types, involved application domains, quality attributes considered, and limitations
and challenges encountered in architecture decision-making of quantum software development. The main
results are that:

• In quantum software development, architecture decisions are expressed through six distinct linguis-
tic patterns, with Solution Proposal and Information Giving being the most prevalent. Solution
Proposal constitutes 35.83%, while Information Giving accounts for 32.80% of the linguistic pat-
terns used. Conversely, Opinion Asking and Problem Discovery are relatively less used in the
linguistic patterns we collected.

• Architecture decisions primarily fall into two major categories: Implementation Decision and Tech-
nology Decision. Specifically, Implementation Decision represents 22.10%, and Technology Decision
accounts for 18.81% of architecture decisions we collected.

• Software Development Tools stand out as the most common application domain among the twenty
domains identified, representing 22.15% of the application domain we collected.

• Two important quality attributes considered in architectural decision-making of quantum soft-
ware systems are Maintainability (18.53%) and Performance (15.68%) of the quality attributes we
collected.

• Practitioners in quantum software development face significant limitations and challenges. Design
Issues are prominent, accounting for 25.07%, while High Error Rates are a notable concern at
11.37% of the limitations and challenges we collected.

The findings of this study offer valuable insights to researchers and practitioners. By identifying
common linguistic patterns, major decision categories, prevalent application domains, and critical quality
attributes, this research equips professionals in quantum software systems with a deeper understanding
of the made architectural decisions. Additionally, it highlights common challenges of making architecture
decisions in quantum software development, such as design and performance issues, providing researchers
and practitioners with the awareness needed to address these issues.

In the next step: (1) We intend to conduct a comparative study of architecture decisions on GitHub,
Stack Exchange, and other platforms like developer mailing lists, aiming to reveal insights into the
current focus of architecture decision-making in quantum software systems, including its advantages
and deficiencies. (2) To provide a comprehensive perspective, we will validate and extend the proposed
taxonomy of architecture decisions using a practitioner survey or interview, collecting insights from
professionals actively engaged in quantum software development. (3) Finally, our overarching goal is to
address the limitations and challenges identified in this study. We aim to develop decision models for
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selecting architecture patterns and strategies in architecting quantum software systems, contributing to
more informed and effective architecture decision-making in quantum software development.
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We have shared the link to our dataset in the reference [53].

Acknowledgements

This work has been partially sponsored by the National Natural Science Foundation of China (NSFC)
under Grant No. 62172311 and the Special Fund of Hubei Luojia Laboratory. The authors would also
like to acknowledge the financial support from the China Scholarship Council.

References

[1] S. T. Marella, H. S. K. Parisa, Introduction to Quantum Computing, IntechOpen, 2020.

[2] M. Steffen, D. P. DiVincenzo, J. M. Chow, T. N. Theis, M. B. Ketchen, Quantum computing: An
ibm perspective, IBM Journal of Research and Development 55 (5) (2011) 13–1.

[3] S. Lloyd, Ultimate physical limits to computation, Nature 406 (6799) (2000) 1047–1054.

[4] V. Mavroeidis, K. Vishi, M. D. Zych, A. Jøsang, The impact of quantum computing on present
cryptography (2018), arXiv preprint arXiv:1804.00200.

[5] J. Gruska, Quantum computing challenges, Mathematics Unlimited—2001 and Beyond (2001)
529–563.

[6] A. Ajagekar, F. You, Quantum computing for energy systems optimization: Challenges and op-
portunities, Energy 179 (2019) 76–89.

[7] S. Vyakaranal, S. Kengond, Performance analysis of symmetric key cryptographic algorithms,
in: Proceedings of the 10th International Conference on Communication and Signal Processing
(ICCSP), IEEE, Tamilnadu, India, 2018, pp. 0411–0415.

[8] W. Li, Quantum-accelerated big data analytics on cloud platforms: Leveraging quantum computing
for large-scale data processing, Journal of Big-Data Analytics and Cloud Computing 9 (1) (2024)
14–24.

[9] R. Srivastava, I. Choi, T. Cook, N. Team, Commercial prospects for quantum computing.

[10] K. Svore, A. Cross, A. Aho, I. Chuang, I. Markov, Toward a software architecture for quantum com-
puting design tools, in: Proceedings of the 2nd International Workshop on Quantum Programming
Languages (QPL), Turku, Finland, 2004, pp. 145–162.

[11] A. Bhasin, M. Tripathi, Quantum computing at an inflection point: Are we ready for a new
paradigm, IEEE Transactions on Engineering Management 70 (7) (2023) 2546–2557.

[12] B. Weder, J. Barzen, F. Leymann, M. Zimmermann, Hybrid quantum applications need two or-
chestrations in superposition: A software architecture perspective, in: Proceedings of the 18th
IEEE International Conference on Web Services (ICWS), IEEE, Chicago, IL, USA, 2021, pp. 1–13.

[13] A. J. McCaskey, E. F. Dumitrescu, D. Liakh, M. Chen, W.-C. Feng, T. S. Humble, A language and
hardware independent approach to quantum–classical computing, SoftwareX 7 (2018) 245–254.

[14] J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2 (2018) 79.

[15] E. Strubell, An introduction to quantum algorithms, COS498 Chawathe Spring 13 (2011) 19.

[16] D. Willsch, M. Willsch, F. Jin, H. De Raedt, K. Michielsen, Large-scale simulation of shor’s
quantum factoring algorithm (2023), arXiv preprint arXiv:2308.05047.

35



[17] A. Mandviwalla, K. Ohshiro, B. Ji, Implementing grover’s algorithm on the ibm quantum com-
puters, in: Proceedings of the 6th IEEE International Conference on Big Data (BigData), IEEE,
Seattle, WA, USA, 2018, pp. 2531–2537.

[18] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information 2 (1) (2016) 1–8.

[19] A. W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations, Physical
Review Letters 103 (15) (2009) 150502.

[20] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, M. Troyer, K. Svore,
Quantum programming languages, Nature Reviews Physics 2 (12) (2020) 709–722.

[21] J. Zhao, Quantum software engineering: Landscapes and horizons (2020), arXiv preprint
arXiv:2007.07047.

[22] S. M. Sundaram, T. R. Murgod, Quantum software engineering and technology, in: Technology
Road Mapping for Quantum Computing and Engineering, IGI Global, 2022, pp. 102–116.

[23] N. Dey, M. Ghosh, A. Chakrabarti, Liqui|>: A functional quantum software architecture
and tool suite for quantum computing developed by microsoft research (2020), arXiv preprint
arXiv:2010.08053.

[24] B. K. Behera, T. Reza, A. Gupta, P. K. Panigrahi, Designing quantum router in ibm quantum
computer, Quantum Information Processing 18 (2019) 1–13.

[25] R. Courtland, Google aims for quantum computing supremacy [news], IEEE Spectrum 54 (6)
(2017) 9–10.

[26] C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopoulos, C. Eichler,
A. Wallraff, L. Geck, A. Kruth, J. Knoch, H. Bluhm, K. Bertels, The engineering challenges in
quantum computing, in: Proceedings of the 20th Design, Automation, and Test in Europe (DATE),
IEEE, Lausanne, Switzerland, 2017, pp. 836–845.

[27] S. Ali, T. Yue, R. Abreu, When software engineering meets quantum computing, Communications
of the ACM 65 (4) (2022) 84–88.

[28] M. Piattini, G. Peterssen, R. Pérez-Castillo, Quantum computing: A new software engineering
golden age, ACM SIGSOFT Software Engineering Notes 45 (3) (2021) 12–14.

[29] M. A. Serrano, J. A. Cruz-Lemus, R. Perez-Castillo, M. Piattini, Quantum software components
and platforms: Overview and quality assessment, ACM Computing Surveys 55 (8) (2022) 1–31.

[30] T. Yue, W. Mauerer, S. Ali, D. Taibi, Challenges and opportunities in quantum software archi-
tecture, in: Software Architecture: Recent Trends in Software Architecture, Springer, 2023, pp.
45–52.

[31] B. Kommadi, Quantum computing solutions: Solving real-world problems using quantum comput-
ing and algorithms, Springer, 2020.

[32] E. Moguel, J. Berrocal, J. García-Alonso, J. M. Murillo, A roadmap for quantum software engi-
neering: Applying the lessons learned from the classics, in: Proceedings of the 1st International
Workshop on Software Engineering & Technology co-located with the 1st IEEE International Con-
ference on Quantum Computing and Engineering (Q-SET@QCE), Colorado, USA, 2020, pp. 5–13.

[33] M. Piattini, M. Serrano, R. Perez-Castillo, G. Petersen, J. L. Hevia, Toward a quantum software
engineering, IT Professional 23 (1) (2021) 62–66.

[34] A. García de la Barrera, I. García-Rodríguez de Guzmán, M. Polo, M. Piattini, Quantum software
testing: State of the art, Journal of Software: Evolution and Process 35 (4) (2023) e2419.

[35] L. Zhang, A. Miranskyy, W. Rjaibi, G. Stager, M. Gray, J. Peck, Making existing software quantum
safe: A case study on IBM Db2, Information and Software Technology 161 (2023) 107249.

[36] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 3rd Edition, Addison-Wesley
Professional, 2012.

36



[37] X. Zhao, X. Xu, L. Qi, X. Xia, M. Bilal, W. Gong, H. Kou, Unraveling quantum computing
system architectures: An extensive survey of cutting-edge paradigms, Information and Software
Technology 167 (2024) 107380.

[38] A. A. Khan, A. Ahmad, M. Waseem, P. Liang, M. Fahmideh, T. Mikkonen, P. Abrahamsson,
Software architecture for quantum computing systems - a systematic review, Journal of Systems
and Software 201 (2023) 111682.

[39] A. El Azzaoui, M. M. Salim, J. H. Park, Secure and reliable big-data-based decision making using
quantum approach in iiot systems, Sensors 23 (10) (2023) 4852.

[40] A. Jansen, J. Bosch, Software architecture as a set of architectural design decisions, in: Proceedings
of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA), IEEE, Pittsburgh,
Pennsylvania, USA, 2005, pp. 109–120.

[41] I. Malavolta, H. Muccini, S. R. V, Enhancing architecture design decisions evolution with group
decision making principles, in: Proceedings of the 6th International Workshop on Software Engi-
neering for Resilient Systems (SERENE), Springer, Budapest, Hungary, 2014, pp. 9–23.

[42] Z. Li, P. Liang, P. Avgeriou, Architectural technical debt identification based on architecture
decisions and change scenarios, in: Proeedings of the 12th Working IEEE/IFIP Conference on
Software Architecture (WICSA), IEEE, Montreal, QC, Canada, 2015, pp. 65–74.

[43] D. Vietz, J. Barzen, F. Leymann, K. Wild, On decision support for quantum application develop-
ers: categorization, comparison, and analysis of existing technologies, in: Proceedings of the 21st
International Conference on Computational Science (ICCS), Springer, Krakow, Poland, 2021, pp.
127–141.

[44] A. Ahmad, A. A. Khan, M. Waseem, M. Fahmideh, T. Mikkonen, Towards process centered archi-
tecting for quantum software systems, in: Proceedings of the 1st IEEE International Conference
on Quantum Software (QSW), IEEE, Barcelona, Spain, 2022, pp. 26–31.

[45] B. Sodhi, R. Kapur, Quantum computing platforms: Assessing the impact on quality attributes and
sdlc activities, in: Proceedings of the 18th IEEE International Conference on Software Architecture
(ICSA), IEEE, Stuttgart, Germany, 2021, pp. 80–91.

[46] J. Barzen, F. Leymann, S. Feld, M. Wimmer, 2nd workshop on quantum software architecture
(QSA), in: Proceedings of the 19th IEEE International Conference on Software Architecture Com-
panion (ICSA-C), IEEE, Los Alamitos, CA, USA, 2022, pp. 128–128.

[47] Y. Naveh, Quantum software development is still in its infancy (2021).

[48] U. Awan, L. Hannola, A. Tandon, R. K. Goyal, A. Dhir, Quantum computing challenges in the
software industry. a fuzzy ahp-based approach, Information and Software Technology 147 (2022)
106896.

[49] I. Polian, A. G. Fowler, Design automation challenges for scalable quantum architectures, in:
Proceedings of the 52nd Annual Design Automation Conference (DAC), ACM, San Francisco, CA,
USA, 2015, pp. 1–6.

[50] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, C. H. Alderete, Full-stack, real-
system quantum computer studies: Architectural comparisons and design insights, in: Proceedings
of the 46th International Symposium on Computer Architecture (ISCA), ACM, Phoenix, AZ, USA,
2019, pp. 527–540.

[51] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora, H. C. Gall, Development
emails content analyzer: Intention mining in developer discussions, in: Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, Lincoln,
NE, USA, 2015, pp. 12–23.

[52] R. W. Grove, An analysis of the constant comparative method, Internation Journal of Qualitative
Studies in Education 1 (3) (1988) 273–279.

37



[53] M. S. Aktar, P. Liang, M. Waseem, A. Tahir, A. Ahmad, B. Zhang, Dataset for the paper: Archi-
tecture decisions in quantum software systems: An empirical study on stack exchange and github,
https://doi.org/10.5281/zenodo.10050560, 2024.

[54] R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics
21 (6/7).

[55] D. A. Sofge, A survey of quantum programming languages: History, methods, and tools, in: Pro-
ceedings of the 2nd International Conference on Quantum, Nano and Micro Technologies (ICQNM),
IEEE, Sainte Luce, Martinique, France, 2008, pp. 66–71.

[56] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, Y. Su, Toward the first quantum simulation with
quantum speedup, Proceedings of the National Academy of Sciences 115 (38) (2018) 9456–9461.

[57] B. Coecke, G. de Felice, K. Meichanetzidis, A. Toumi, Foundations for near-term quantum natural
language processing (2020), arXiv preprint arXiv:2012.03755.

[58] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learn-
ing, Nature 549 (7671) (2017) 195–202.

[59] D. Tosh, O. Galindo, V. Kreinovich, O. Kosheleva, Towards security of cyber-physical systems
using quantum computing algorithms, in: Proceedings of the 15th International Conference of
System of Systems Engineering (SoSE), IEEE, Budapest, Hungary, 2020, pp. 313–320.

[60] N. Quetschlich, L. Burgholzer, R. Wille, Mqt bench: Benchmarking software and design automation
tools for quantum computing, Quantum 7 (2023) 1062.

[61] F. T. Chong, D. Franklin, M. Martonosi, Programming languages and compiler design for realistic
quantum hardware, Nature 549 (7671) (2017) 180–187.

[62] J.-F. Bobier, M. Langione, E. Tao, A. Gourevitch, What happens when ‘if’turns to ‘when’in quan-
tum computing?, Boston Consulting Group.

[63] H. Van Vliet, H. Van Vliet, J. Van Vliet, Software engineering: principles and practice, Vol. 13,
John Wiley & Sons Hoboken, NJ, 2008.

[64] M. Felderer, D. Taibi, F. Palomba, M. Epping, M. Lochau, B. Weder, Software engineering chal-
lenges for quantum computing: Report from the first working seminar on quantum software engi-
neering (WSQSE 22), ACM SIGSOFT Software Engineering Notes 48 (2) (2023) 29–32.

[65] M. A. Akbar, A. A. Khan, S. Mahmood, S. Rafi, Quantum software engineering: A new genre of
computing (2022), arXiv preprint arXiv:2211.13990.

[66] K. Dwivedi, M. Haghparast, T. Mikkonen, Quantum software engineering and quantum software
development lifecycle: a survey, Cluster Computing (2024) 1–19.

[67] M. De Stefano, F. Pecorelli, D. Di Nucci, F. Palomba, A. De Lucia, Software engineering for
quantum programming: How far are we?, Journal of Systems and Software 190 (2022) 111326.

[68] D. Wecker, K. M. Svore, Liqui|>: A software design architecture and domain-specific language for
quantum computing (2014), arXiv preprint arXiv:1402.4467.

[69] R. Abreu, S. Ali, T. Yue, First international workshop on quantum software engineering (q-se
2020), ACM SIGSOFT Software Engineering Notes 46 (2) (2021) 30–32.

[70] J. M. Murillo, J. Garcia-Alonso, E. Moguel, J. Barzen, F. Leymann, S. Ali, T. Yue, P. Arcaini,
R. Pérez, I. G. R. de Guzmán, et al., Challenges of quantum software engineering for the next
decade: The road ahead (2024), arXiv preprint arXiv:2404.06825.

[71] H. Li, F. Khomh, M. Openja, et al., Understanding quantum software engineering challenges an
empirical study on stack exchange forums and github issues, in: Proceedings of the 37th IEEE
International Conference on Software Maintenance and Evolution (ICSME), IEEE, Luxembourg,
2021, pp. 343–354.

38

https://doi.org/10.5281/zenodo.10050560


[72] M. A. Akbar, A. A. Khan, S. Rafi, A systematic decision-making framework for tackling quantum
software engineering challenges, Automated Software Engineering 30 (2) (2023) 22.

[73] S. Ducasse, D. Pollet, Software architecture reconstruction: A process-oriented taxonomy, IEEE
Transactions on Software Engineering 35 (4) (2009) 573–591.

[74] H. Van Vliet, A. Tang, Decision making in software architecture, Journal of Systems and Software
117 (2016) 638–644.

[75] A. Ramírez, J. R. Romero, S. Ventura, A comparative study of many-objective evolutionary al-
gorithms for the discovery of software architectures, Empirical Software Engineering 21 (2016)
2546–2600.

[76] D. Selva, B. Cameron, E. Crawley, Patterns in system architecture decisions, Systems Engineering
19 (6) (2016) 477–497.

[77] L. Nallamothula, Selection of quantum computing architecture using a decision tree approach, in:
Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS), IEEE,
Thoothukudi, India, 2020, pp. 644–649.

[78] A. Alreshidi, A. Ahmad, Architecting software for the internet of thing based systems, Future
Internet 11 (7) (2019) 153.

[79] H. Muccini, K. Vaidhyanathan, Software architecture for ml-based systems: What exists and what
lies ahead, in: Proceedings of 1st IEEE/ACM Workshop on AI Engineering - Software Engineering
for AI (WAIN), IEEE, Madrid, Spain, 2021, pp. 121–128.

[80] M. Waseem, P. Liang, A. Ahmad, M. Shahin, A. A. Khan, G. Márquez, Decision models for
selecting patterns and strategies in microservices systems and their evaluation by practitioners, in:
Proceedings of the 44th IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), Pittsburgh, PA, USA, 2022, pp. 135–144.

[81] M. Shahin, P. Liang, M. R. Khayyambashi, Architectural design decision: Existing models and
tools, in: Proceedings of the Joint 8th Working IEEE/IFIP Conference on Software Architecture
and 3rd European Conference on Software Architecture (WICSA/ECSA), IEEE, Pittsburgh, PA,
USA, 2009, pp. 293–296.

[82] A. A. Khan, M. A. Akbar, A. Ahmad, M. Fahmideh, M. Shameem, V. Lahtinen, M. Waseem,
T. Mikkonen, Agile practices for quantum software development: Practitioners perspectives (2022),
arXiv preprint arXiv:2210.09825.

[83] V. R. B. G. Caldiera, H. D. Rombach, The goal question metric approach, Encyclopedia of Software
Engineering (1994) 528–532.

[84] S. Easterbrook, J. Singer, M.-A. Storey, D. Damian, Selecting empirical methods for software
engineering research, in: Guide to Advanced Empirical Software Engineering, Springer, 2008, pp.
285–311.

[85] V. Cosentino, J. L. C. Izquierdo, J. Cabot, A systematic mapping study of software development
with github, IEEE Access 5 (2017) 7173–7192.

[86] A. Barua, S. W. Thomas, A. E. Hassan, What are developers talking about? an analysis of topics
and trends in stack overflow, Empirical Software Engineering 19 (2014) 619–654.

[87] M. Openja, M. M. Morovati, L. An, F. Khomh, M. Abidi, Technical debts and faults in open-source
quantum software systems: An empirical study, Journal of Systems and Software 193 (2022) 111458.

[88] B. Zhang, T. Liu, P. Liang, C. Wang, M. Shahin, J. Yu, Architecture decisions in ai-based systems
development: An empirical study, in: Proceedings of the 30th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), IEEE, Taipa, Macao, 2023, pp. 616–
626.

39



[89] M. Waseem, P. Liang, M. Shahin, A. Ahmad, A. R. Nassab, On the nature of issues in five open
source microservices systems: An empirical study, in: Proceedings of 25th International Conference
on Evaluation and Assessment in Software Engineering (EASE), ACM, Trondheim, Norway, 2021,
pp. 201–210.

[90] J. Di Rocco, D. Di Ruscio, C. Di Sipio, P. Nguyen, R. Rubei, Topfilter: an approach to recom-
mend relevant github topics, in: Proceedings of the 14th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), ACM, Bari, Italy, 2020, pp. 1–11.

[91] J. Cohen, A coefficient of agreement for nominal scales, Educational and Psychological Measure-
ment 20 (1) (1960) 37–46.

[92] J. L. Campbell, C. Quincy, J. Osserman, O. K. Pedersen, Coding in-depth semistructured inter-
views: Problems of unitization and intercoder reliability and agreement, Sociological Methods &
Research 42 (3) (2013) 294–320.

[93] A. R. da Silva, D. Savić, Linguistic patterns and linguistic styles for requirements specification:
Focus on data entities, Applied Sciences 11 (9) (2021) 4119.

[94] K.-J. Stol, P. Ralph, B. Fitzgerald, Grounded theory in software engineering research: a critical re-
view and guidelines, in: Proceedings of the 38th International Conference on Software Engineering
(ICSE, IEEE, 2016, pp. 120–131.

[95] L. R. Hallberg, The “core category” of grounded theory: Making constant comparisons, Interna-
tional Journal of Qualitative Studies on Health and Well-being 1 (3) (2006) 141–148.

[96] A. Koziolek, Automated improvement of software architecture models for performance and other
quality attributes, Vol. 7, KIT Scientific Publishing, 2014.

[97] A. Ahmad, M. Waseem, P. Liang, M. Fehmideh, A. A. Khan, D. G. Reichelt, T. Mikkonen,
Engineering software systems for quantum computing as a service: A mapping study (2023), arXiv
preprint arXiv:2303.14713.

[98] C. Yang, P. Liang, P. Avgeriou, A systematic mapping study on the combination of software
architecture and agile development, Journal of Systems and Software 111 (2016) 157–184.

[99] P. Ralph, E. Tempero, Construct validity in software engineering research and software metrics,
in: Proceedings of the 22nd International Conference on Evaluation and Assessment in Software
Engineering (EASE), ACM, Christchurch, New Zealand, 2018, pp. 13–23.

[100] A. R. Nasab, M. Shahin, S. A. H. Raviz, P. Liang, A. Mashmool, V. Lenarduzzi, An empirical
study of security practices for microservices systems, Journal of Systems and Software 198 (2023)
111563.

[101] F. Tian, P. Liang, M. A. Babar, How developers discuss architecture smells? an exploratory
study on stack overflow, in: Proceedings of the 16th IEEE International Conference on Software
Architecture (ICSA), IEEE, Hamburg, Germany, 2019, pp. 91–100.

[102] F. Truger, J. Barzen, M. Bechtold, M. Beisel, F. Leymann, A. Mandl, V. Yussupov, Warm-starting
and quantum computing: A systematic mapping study (2023), arXiv preprint arXiv:2303.06133.

[103] M. Haghparast, T. Mikkonen, J. K. Nurminen, V. Stirbu, Quantum software engineering challenges
from developers’ perspective: Mapping research challenges to the proposed workflow model (2023),
arXiv preprint arXiv:2308.01141.

[104] P. Zhao, Z. Miao, S. Lan, J. Zhao, Bugs4q: A benchmark of existing bugs to enable controlled
testing and debugging studies for quantum programs, Journal of Systems and Software 205 (2023)
111805.

[105] X. Li, P. Liang, T. Liu, Decisions and their making in oss development: An exploratory study using
the hibernate developer mailing list, in: Proceedings of the 26th Asia-Pacific Software Engineering
Conference (APSEC), IEEE, Putrajaya, Malaysia, 2019, pp. 323–330.

40



[106] T. Bi, P. Liang, A. Tang, Architecture patterns, quality attributes, and design contexts: How devel-
opers design with them, in: Proceedings of the 25th Asia-Pacific Software Engineering Conference
(APSEC), IEEE, Nara, Japan, 2018, pp. 49–58.

[107] M. Shahin, P. Liang, M. R. Khayyambashi, Improving understandability of architecture design
through visualization of architectural design decision, in: Proceedings of the 5th Workshop on
Sharing and Reusing Architectural Knowledge (SHARK), ACM, Cape Town, South Africa, 2010,
pp. 88–95.

[108] T. Liu, P. Liang, C. Yang, Z. Xiong, C. Wang, R. Li, Understanding the decision-making of students
in requirements engineering course projects, in: Proceedings of the 1st Software Engineering Edu-
cation Workshop (SEED) co-located with the 26th Asia-Pacific Software Engineering Conference
(APSEC), CEUR-WS.org, Putrajaya, Malaysia, 2019, pp. 1–8.

[109] A. A. Khan, M. A. Akbar, A. Ahmad, M. Fahmideh, M. Shameem, V. Lahtinen, M. Waseem,
T. Mikkonen, Agile practices for quantum software development: Practitioners’ perspectives,
in: Proceedings of the 2nd IEEE International Conference on Quantum Software (QSW), IEEE,
Chicago, IL, USA, 2023, pp. 9–20.

41


	Introduction
	Background
	Quantum computing
	Quantum software engineering
	Architecture decision

	Research design
	Research goal and research questions
	Data collection
	Data filtration
	Data extraction and analysis

	Results
	RQ1. How do developers express architecture decisions made in quantum software development?
	RQ2. What types of architecture decisions are made in quantum software development?
	RQ3. What are the application domains of quantum software in which architecture decisions are made?
	RQ4. What quality attributes are considered when developers make architecture decisions in quantum software development?
	RQ5. What are the limitations and challenges of making architecture decisions in quantum software development?

	Discussion
	Interpretation of results
	RQ1: How do developers express architecture decisions made in quantum software development?
	RQ2. What types of architecture decisions are made in quantum software development?
	RQ3. What are the application domains of quantum software in which architecture decisions are made?
	RQ4. What quality attributes are considered when developers make architecture decisions in quantum software development?
	RQ5. What are the limitations and challenges of making architecture decisions in quantum software development?

	Implications
	Linguistic patterns
	Architecture decisions
	Application domains
	Quality attributes
	Limitations and challenges
	Relationship between the RQs


	Threats to validity
	Construct validity
	External validity
	Reliability

	Related work
	Quantum software development
	Decisions in software engineering
	Architecture decisions in quantum software development

	Conclusions

