
ROTA-I/O: Hardware/Algorithm Co-design for Real-Time I/O
Control with Improved Timing Accuracy and Robustness

Zhe Jiang†, Shuai Zhao‡, Ran Wei¶, Xin Si†, Gang Chen‡, Nan Guan∥
†SouthEast University, China, ‡Sun Yat-Sen University, China,

¶Lancaster University, United Kingdom, ∥City University of Hong Kong, China

Abstract—In safety-critical systems, timing accuracy is the
key to achieving precise I/O control. To meet such strict timing
requirements, dedicated hardware assistance has recently been
investigated and developed. However, these solutions are often
fragile, due to unforeseen timing defects. In this paper, we
propose a robust and timing-accurate I/O co-processor, which
manages I/O tasks using Execution Time Servers (ETSs) and a
two-level scheduler. The ETSs limit the impact of timing defects
between tasks, and the scheduler prioritises ETSs based on
their importance, offering a robust and configurable scheduling
infrastructure. Based on the hardware design, we present an ETS-
based timing-accurate I/O schedule, with the ETS parameters
configured to further enhance robustness against timing defects.
Experiments show the proposed I/O control method outperforms
the state-of-the-art method in terms of timing accuracy and
robustness without introducing significant overhead.

I. INTRODUCTION

Input/Outputs (I/Os) are a vital part of safety-critical sys-
tems [1], [2], [3], as these systems rely on I/Os to interface
with sensors and actuators that need to either perceive a
hazard in time or make manoeuvres to avoid a hazardous
situation [4]. For instance, spacecraft attitude control systems
rely on precise and time-sensitive I/O operations to obtain and
adjust the attitude of the spacecraft [5], while autonomous
vehicle engines depend on accurate I/O tasks for optimal fuel
injection [6]. A lack of I/O accuracy often leads to imprecise
control of devices and less effective environmental readings
being collected [7]. Hence, it is necessary to ensure that
I/O operations behave correctly: (i) with timing accuracy –
being executed at exact time instants (or at least within a
small margin) to achieve precise control [8], [7]; and (ii) with
robustness – having the capability to deal with unexpected
timing defects to maximise control accuracy [9], [10], [11].

In industry, timing-accurate and robust I/O control is man-
dated by many globally recognised safety standards, including
ISO 26262 [1] and DO-178C [12]. As explicitly stated in
clause 4 of ISO 26262, “I/Os (e.g., sensors and actuators)
must exhibit correct timing, accuracy, and robustness” [1].
Additionally, clause 6 of the standard elaborates on the system-
level failures that can arise from timing defects in I/O control,
underscoring the importance of such requirements.

However, achieving timing accurate I/O control is ever-
challenging due to unexpected timing defects, including ill-
defined I/O-centric calculations [13], underestimated WCET,
and transient failures triggered by harsh environments, as

Corresponding author: Shuai Zhao, zhaosh56@mail.sysu.edu.cn.

recognised by Davids and Burns [9] in typical safety-critical
systems. These unforeseen timing defects [14] can funda-
mentally compromise I/O’s timing accuracy by disrupting the
well-arranged precise execution sequences of I/O tasks (e.g.,
produced by methods in [15], [16], [17], [18], [8], [7]), and
subsequently, cascading disruptions throughout the I/O, lead-
ing to system failures and even catastrophic consequences [1].

Software approaches that consider timing accuracy (e.g.,
[16], [17], [18]) often provide carefully-planned I/O schedules
on easily analysable platforms, e.g., uniprocessors and parti-
tioned systems using isolation. However, these methods have
proven to be extremely difficult to achieve for both timing
accuracy and robustness on modern platforms, due to ever-
increasing hardware and architectural complexities. On such
platforms, the significant uncertainty about I/O transmissions,
e.g., communication delays and resource contentions [19],
[20], [21] occurring from software applications (instigation)
to hardware devices (execution) [8], can directly disable any
pre-planned schedule with an expected task arrival time.

Hardware approaches [22], [23], [8], [7] usually employ
dedicated assistants to manage I/O operations in proximity
to the devices. By bringing stringent scheduling close to the
devices, these approaches mitigate transmission uncertainty,
ensuring timing accuracy under some use cases. However, to
realise such management, these solutions rely on an idealistic
assumption that “the timing behaviours of the I/O operations
must be well-defined” [8], [7]. For systems with timing defects,
the scheduling produced by the above approaches would be
entirely violated (as explained above). Thus, in more realistic
application scenarios, it is important, but also challenging, to
achieve timing-accurate and robust I/O management.
Contributions. In this paper, (i) we propose a device-coupled
co-processor (ROTA-I/O) that manages I/O operations directly
at the hardware level, featuring configurable Execution Time
Servers (ETSs) and a scalable two-level scheduler. The ETSs
provide temporal isolation between I/O tasks, prohibiting
defect propagation. The scheduler dispatches I/O operations
hierarchically using the ETSs, establishing a scheduling infras-
tructure. (ii) With the new hardware, we present an ETS-based
scheduling method (namely ROTA-Sched) that schedules I/O
tasks and configures the ETSs, achieving real-time I/O control
with accuracy and robustness. (iii) We built a systematic
full-stack framework from the System-on-Chip (SoC) to the
Instruction Set Architecture (ISA) and programming model,
forming a complete solution for real-time I/O control.

ar
X

iv
:2

40
9.

14
77

9v
1

 [
cs

.A
R

]
 2

3
Se

p
20

24

Local
Scheduler

Local
Scheduler

ETS

(a) Hardware architecture (b) Abstracted concept of ROTA-I/O

(c) Software structure

Global Scheduler

ROTA-I/O

ETS

Isolated
Virtual

Platform

 ISA Driver

Kernel Mode
User Mode

R
O

TA
-Sch

ed

(d) ISA Format (SID: ETS ID; TID: Task ID)
 RTOS

t

t

t

SOTA (ideal case)

SOTA

ROTA-Sched
overrun

overrun

overrun

overrun

deadline miss

Terminated by ETS due
to capacity limit

Normal execution

Exact accurate

Finish

Deadline miss

Executed by ETS

Quality-based

ETS termination

Timing defects

(e) Illustrative example of ROTA-Sched

0

OpcodeSID (5 bits)TID (5 bits)

1267111231

Service (20 bits)

Fig. 1: A conceptual overview of ROTA-I/O (square: router; circle: core; rectangle: ROTA-I/O; triangle: device; curved arrows:
tasks with different timing guarantees; ETS: Execution Timer Server): (a) ROTA-I/O serves as a co-processor, enabling I/O
management at hardware; (b) ROTA-I/O features sets of ETSs and a two-level scheduler, limiting the impact of timing defects
while offering a configurable scheduling infrastructure; (c) ROTA-Sched schedules tasks and configures ROTA-I/O using (d)
the dedicated ISA; (e) an illustrative mechanism of ROTA-Sched, improving I/O robustness and accuracy.

We deployed our proposed solution on the Xilinx VC709
FPGA and examined it using various metrics. Experimental
results show that compared to State-of-the-Art (SOTA) real-
time controllers, ROTA-I/O improves acceptance ratio and
control quality by 22.61% and 42.32% respectively, on average
(maximum: 2.18x and 3.06x). Synthesising a ROTA-I/O yields
less than 3% hardware overhead of a full-featured processor.
Organisation. Sec. II describes the overview of ROTA-I/O.
Sec. III presents the architectural design of ROTA-I/O. Based
on the hardware, the ROTA-Sched is proposed in Sec. IV.
Sec. V presents the experimental results. Finally, Sec. VI
provides the related work, and Sec. VII concludes the paper.

II. ROTA-I/O: OVERVIEW

A. Top-level Concepts

To achieve timing-accurate and robust control for the
I/Os, we adopted a hardware/algorithm co-designed approach
(Fig. 1) that tightly couples I/O management to the devices
and enables hierarchical scheduling with temporal isolation.
Below, we detail the design and scheduling concepts.
Design concepts. We designed the I/O co-processor (ROTA-
I/O) with groups of Execution Time Servers (ETSs) and a
two-level scheduler (Fig. 1(b)). The ETSs manage the I/O
tasks and establish an isolated environment for their execution,
effectively realising dedicated Virtual Platforms (VP) for task
execution [24], [25]. With the two-level scheduler, I/O tasks
are prioritised in a hierarchical manner: a global scheduler
distributes the time budget from the physical platform to the
VPs and determines the scheduling parameters (see scheduling
concepts) of the VP in each ETS; each ETS then has a local
scheduler to prioritise the tasks allocated to that VP using the
distributed budget. The design concepts have the following
properties to ensure timing-accurate and robust I/O control:

TABLE I: Examples of the ISA for ROTA-I/O control (Priv:
1 and 0 indicate the kernel and user modes, respectively).

Instruction Priv Description
c.set, rs1, rs2 1 Set rs1 budget to ETS rs2.
c.enr, rs1, rs2 1 Enroll ETS rs2 with a start time of rs1.
p.ld, rs1, rs2 0 Pre-load the task addressed in rs1 to ETS rs2.
i.ld, rs1, rs2 0 Imm-load the task addressed in rs1 to ETS rs2.
i.run, rs1 0 Run the pre-loaded task addressed in rs1.

• ROTA-I/O facilitates the I/O management being tightly
coupled with the devices. This effectively bypasses most
of the uncertainty associated with I/O transmissions.

• The ETSs handle I/O tasks independently, which provides
temporal isolation, hence the propagation of unexpected
timing defects on the system is prevented.

• The two-level scheduler is responsive to the system and
environmental changes: for changes to one I/O task, the
corresponding ETS can be configured and updated locally,
without affecting the remaining systems; for changes to
the taskset, the ETS-based allocation and schedule of I/O
tasks can be updated globally.

Scheduling concepts. With the new hardware design, an ETS-
based scheduling algorithm (ROTA-Sched) was developed to
configure the ETSs and coordinate the executions of I/O tasks
on the ETSs. For a given I/O taskset, the algorithm determines
the parameters for the ETSs, including the start time, budget,
etc. This information is used by the global scheduler to manage
the executions of the ETSs. The task execution order in each
ETS is then produced by ROTA-I/O. If the budget of an ETS
has been exhausted due to timing defects, the scheduler will
terminate its tasks to mitigate the impact of timing defects
on the following ETSs, so that both robustness and timing
accuracy can be guaranteed.

B. ISA Support

In coping with the reconfigurable characteristics of ROTA-
I/O, we developed a dedicated ISA to abstract control inter-
faces for the software, where the instructions are classified
into three categories (see Tab. I): c-type instructions (c.x())
for ETSs’ configurations, i-type instructions (i.x()) for tasks
requiring immediate-loading, and p-type instructions (p.x())
for tasks requiring pre-loading. For instance, c.set() and
c.enr() respectively assign the time budget and the start
offset of an ETS, whereas both p.ld() and i.ld() are used
for loading I/O tasks. The main distinction between these load-
ing instructions lies in their operational scope: i.ld() in-
cludes both the I/O operations and their scheduling parameters,
facilitating immediate task execution. By contrast, p.ld()
loads only the I/O operations, with task execution delayed
until the scheduling parameters are defined by i.run()
(see Sec. IV-C for details). Given that the c.set() can
cause device contention and bus congestion, it is designed as a
privileged instruction, executable only by an operating system
(OS) or a hypervisor with a global view of the system.

To ensure ISA coding and decoding efficiency, we stan-
dardised a uniform format for these instructions. Fig.1(d)
demonstrates the ISA format in four sections: the bottom 2
bits serve as the opcode, indicating the instruction type; the
subsequent 10 bits represent the operated ETS and tasks; and
finally, the top 20 bits convey specific service information.

C. Programming Model

With the new ISA introduced above, ROTA-I/O can be pro-
grammed through three phases, i.e., initialisation, execution,
and adaptation. In the initialisation phase, ROTA-Sched first
determines the ETS parameters, ROTA-I/O then configures the
ETSs using c.set() and c.enr(), with I/O tasks being
pre-loaded via p.ld(). In the execution phase, processors
send run-time I/O tasks to ROTA-I/O using i.ld() or trigger
the pre-loaded tasks using i.run(), ROTA-I/O then manages
these tasks according to the given configurations. Moreover,
when a change occurs in the environment or the system,
e.g., the increased arrival rate of a task, an adaptation will
be triggered, where ROTA-Sched is invoked to identify the
affected ETSs and reconfigure their scheduling parameters
using c.set().

D. Integrating ROTA-I/O into a SoC

Deploying ROTA-I/O shifts I/O management from the OS
kernel (as in conventional embedded/computer architectures)
to the hardware, resulting in architectural changes. Fig.1(a)
depicts the integration of ROTA-I/O in a multi-/many-core
SoC. Specifically, the ROTA-I/O is physically connected to the
device, establishing a scheduling infrastructure for accurate
and robust control. We also connect ROTA-I/O to the home
port of a router via physical links to construct communication
channels and timing synchronisation with processors. Through
these connections, tasks running on the processors can inter-
communicate with ROTA-I/O utilising the ISA in Section II-B.

L-SE_2

L-SE_3

L-SE_n

G-SE

L-SE_1HasT?

[TID-SCH, P-Len]

C
o

m
p

lete

Find_Next_Job

[TID, P-Len,
Prio-T]

SID

Opcode

Opcode

Standardised/Customised Protocol Translator

SE

ROTA-I/O

Router/Interconnect

c.ets()

Server_1

Mini-D

Loader

Local-SEStorer

SRAM Bank

Addr

0x0000

0x0001

...

0x001F

0x0020

...

0xFFFF

I/O Jobs

Packet_1

Packet_2

...

Packet_31

...

...

...

R
D

 IFC
W

R
 IFC

32 Bits

Addr

Data

Addr

Data

Empty

I/O Pool

32-bit
Data path

<32-bit
Data path

Control
path

Configure
Path

Register

i.ld(), p.ld(), p.run()

b

a

c

I/O Device

Fig. 2: Top-level micro-architecture of ROTA-I/O (Mini-D:
mini decoder; Prio-S/T: priority of server/task; TID: task
ID; TID-SCH: scheduled TID): a tasks are maintained in
an SRAM-based I/O pool, allowing prioritisation; b nested
schedulers prioritise the I/O tasks hierarchically; c scheduled
tasks are translated into physical signals for the device control.

At the software level, we deploy a Real-Time Operating
System (RTOS) in the kernel space, offering a real-time en-
vironment for applications that require timing guarantees (see
Fig. 1(c)). Given ROTA-I/O’s comprehensive I/O management,
we replace the default I/O manager within the RTOS using a
new ISA-compatible driver, providing abstract access inter-
faces for the applications. The implementation of the driver
is straightforward. This forwards tasks and the scheduling
parameters of ETSs (e.g., the period and the budget of an
ETS) to ROTA-I/O by interpreting the ISA.
Evidently, ROTA-I/O provides the key to guaranteeing I/O
timing accuracy and robustness against unexpected timing
defects. We now detail the micro-architecture of ROTA-I/O.

III. ROTA-I/O: MICRO-ARCHITECTURE

The ROTA-I/O design introduces a set of ETSs and a two-
level scheduler, limiting the propagation of timing defects and
constructing a configurable scheduling infrastructure. The top-
level micro-architecture of ROTA-I/O is depicted in Fig. 2,
consisting of three key components: an I/O pool, a Scheduling
Engine (SE), and a protocol translator. The I/O pool (Fig. 2. a)
buffers I/O tasks loaded by the processors and supports random
access to them, allowing task prioritisation. The SE (Fig. 2. b)
creates two nested priority queues to schedule I/O tasks in a
hierarchical manner. The translator (Fig. 2. c) interprets I/O
tasks into specific control signals in the physical layer. As the
ROTA-I/O micro-architecture is designed to be compatible with
various underlying protocol translators, either standardised or
customised translators can be directly instantiated. Next, we
introduce the design details of the I/O pool and the SE.

Server Container_3 (SC_3)

HasT?

Reset

CFG

CLK

R

C

V

T

B-Timer RV

T

SID Prio-SSID

[SID, Prio-S]
SC_1

Server Container_2 (SC_2)

Prio-S

Scheduling
Logic

SID-SCH

Find_Next_Job

C

SID
-SC

H

C

SID-SCH

SID-SCH

SID-SCH

SID-SCH

[SID, Prio-S]

[SID, Prio-S]

CLK

HasT?

HasT?

Reset

CFG

C
FG

Global Scheduling Engine (G-SE)

0x00

(Optional)
Pipeline

C

S-Timer

CLK

Hyp_Start?

Parameter Register

B/S-Timer

Su
b

0x00
0x01

Period/Budget
Reset_Value

Current_Value[S]tatus_Port

[C]fg_Port

[R]eset_Port

[T]rigger_Port

a

b

c

bb

Fig. 3: G-SE micro-architecture (refer to Fig. 2 for legends;
SID-SCH: scheduled ETS ID; C: comparator): a SCs are
one-to-one associated to an ETS, featuring a parameter register
to maintain the ETS’s priority, and b a pair of count-down
timers to manage the budget; c the ETSs’s status is collected
and prioritised, and the results are broadcasted to L-SEs.

A. I/O Pool

The micro-architecture of the I/O pool (Fig. 2. a) contains
a dual-port SRAM, a pair of SRAM controllers and a FIFO
queue. The SRAM stores the I/O tasks, decomposed as specific
I/O operations. We use the memory address (12 bits) to index
these I/O operations – the upper 7 bits represent the Task
ID (TID), and the lower 5 bits give the release order of
I/O operations with the same TID. We connect the SRAM
controllers to each of the SRAM ports, behaving as a storer
and a loader. During execution, when the I/O pool receives
a p.ld() or an i.run() instruction, the payload will be
written into the corresponding addresses of the SRAM using
the storer. In addition, when the I/O pool receives the task ID
scheduled by the SE, the I/O operations will be read from the
SRAM using the loader and are then pushed into the FIFO
queue for subsequent execution by the protocol translator.

B. Scheduling Engine (SE)

The micro-architecture of the SE (Fig. 2. b) constructs two
nested priority queues: an upper-level one, i.e., Global SE (G-
SE), prioritises ETSs, deciding which ETS can execute the I/O
task at a specific time point, while a lower-level one, i.e., Local
SE (L-SE), prioritises the I/O tasks within an ETS, executing
them according to their priority.
Global SE (G-SE). We designed the G-SE (Fig. 3) using a
collection of Server Containers (SCs) and scheduling logic.
The SCs are logically one-to-one linked to with an ETS,
maintaining the priority and time budget of the ETS. In each
SC (Fig. 3. a), a dedicated parameter register is employed to
store the Server ID (SID) and priority of the ETS. In addition,
a pair of count-down timers are deployed to manage the time

Task Info Block (TIB)

...... ...

...... ...

0x130x08 0x08

P-LenTID Prio-T

0x070x01 0x01

0x1F0x04 0x05

0x080x02 0x03

Prio-T

0x00

C

C

C

C

C

Scheduling Logic

Local Scheduling Engine 1 (L-SE_1)

G-SE

HasT?

T-Para

SID

[TID
-SC

H
, P

-Len
]

Local Scheduling Engine 2 (L-SE_2)

Local Scheduling Engine n (L-SE_n)

HasT?

[TID-SCH, P-Len]
[TID-SCH
, P-Len]

SID-SCH

HasT?

T-Para

T-Para

(Optional)
Pipeline

Opcode

[TID-SCH, P-Len]

HasT?

HasT?

a

b

Fig. 4: L-SE micro-architecture (refer to Fig. 2 for legends; T-
Para: task parameters; TID-SCH: scheduled task ID): a task
parameters in the same ETS are stored in a TIB, implemented
using a register chain; b all entries of the TIB are compared,
identifying the task with the highest priority and returning the
TID to G-SE, forming the final scheduling decision.

budget assigned to the ETS — a Budget-Timer (B-Timer)
holds the ETS’s time budget, and a Start-Timer (S-Timer)
maintains the refresh time point within each hyper-period
(Fig. 3. b). Inside each timer, two registers are deployed to
store the reset and current values. At the interfaces, three input
ports and one output port are introduced. The input ports are
used to program, reset and trigger the timer, and the output
port reveals the status of the timer, i.e., whether the current
value is greater than ‘0’. With that, the timer’s reset value
can be updated using the c.cfg() instruction through its
program port; the timer’s current value is reset when its reset
port equals ‘0’, and reduced by one when its trigger port meets
a rising edge. To refresh an ETS with a preserved budget, the
reset values in S-Timer and B-Timer are set as the refresh
time point and the time budget (by ROTA-Sched in Sec. IV).
We link the B-Timer’s reset port to the S-Timer’s status port,
and the S-Timer’s reset port to the global clock. This resets
the S-Timer at the start of every hyper-period and resets the
B-Timer when the S-Timer counts to ‘0’.

The scheduling logic collects the status of the ETSs and
prioritises them. To achieve this, the SC register is aggregated
with the B-Timer output using an AND gate, which checks
whether the SC is supplying enough time budget for its
associated ETS. If the ETS has enough time budget, the SID
and priority of the ETS are returned; otherwise, 0 is returned.
The scheduling logic utilises pure combinational circuits to
compare filtered results (Fig. 3. c), selecting the SC and
routing its SID to the L-SEs in a fixed cycle.
Local SE (L-SE). We designed the L-SE (Fig. 4) using a
Task Info Block (TIB) and scheduling logic. The TIB records
the parameters of the tasks buffered in the ETS, decomposed

from the header of the p.ld() and i.run() instructions,
including TID, P-Len and priority (Fig. 4. a). We implement
the TIB using a register chain to allow parallel accesses. The
scheduling logic deploys combinational circuits to collect the
task parameters from the TIB and prioritises them (Fig. 4. b),
returning the TID of the task with the highest priority. Lastly,
a multiplexer is employed to gather scheduling results from
both the G-SE and L-SE. The outputs of the L-SEs and the
G-SE are connected to the multiplexer’s data ports and control
port, respectively, forming the final scheduling decision.

C. Design Trade-Offs

Using a two-level micro-architecture to design the scheduler
ensures scalability, providing the opportunity to extend its
capacity for handling more ETSs, so that the developer only
needs to deploy additional L-SEs and SCs (in the G-SE) to
manage the introduced contentions. As the L-SE and SC are
encapsulated in dedicated hardware modules and initialised
independently, their integration will not introduce significant
critical paths. However, as increasingly more modules are
integrated, critical paths may emerge due to the heightened
complexity of prioritisation. A practical solution to address
this issue is to incorporate pipeline stages in the scheduling
logic, as demonstrated in Fig.3. c and Fig. 4. b .

To further improve resource efficiency, it is possible to de-
velop a monolithic scheduler to manage all tasks collectively.
However, this approach would result in a substantial increase
in combinational logic, potentially causing critical paths. This
becomes particularly pronounced when scaling the scheduler
to support more ETSs, ultimately compromising system-wide
scalability. In Sec. V-E, we provide a quantitative analysis
demonstrating that the proposed micro-architecture can be
scaled without leading to any critical paths.

In Sec. V-E, we provide a quantitative analysis demon-
strating that the proposed micro-architecture can be scaled to
support over 32 cores, without bringing any critical path.

IV. ROTA-Sched: AN ETS-BASED SCHEDULE

This section presents the ETS-based schedule (ROTA-Sched)
constructed based on the ROTA-I/O. By utilising the ETSs
provided by ROTA-I/O, the ROTA-Sched allocates and sched-
ules the I/O jobs in a hyperperiod on ETSs to mitigate the
impact of interference caused by timing defects [26], [9],
[27], improving both timing accuracy and robustness of ROTA-
I/O. The ROTA-Sched is constructed based on the system
model in Sec. IV-A with two major steps: (i) allocation
and scheduling of jobs in ETSs, and (ii) configuration of
scheduling parameters of ETSs. The first step (Sec. IV-B)
produces a job-level schedule for I/O tasks which provides
timing predictability and improved accuracy. The second step
(Sec. IV-C) determines the scheduling parameters for ETSs
to further mitigate the impact of timing defects on I/O jobs,
enhancing the robustness of ROTA-I/O. With the two steps,
we provide a complete ETS-based scheduling solution that
achieves robust and timing-accurate I/O control. Notations
introduced in this section are summarised in Tab. II.

(a) Curved

𝑉!
"!#

𝑉(Φ! , 𝑡)

𝑉!"$%

𝛿! 𝐷𝑡
𝑉!"!#

𝑉(Φ! , 𝑡)

𝑉!"$%

𝛿! 𝐷𝑡
(b) Half-curved

𝑉!"!#
𝑉(Φ! , 𝑡)

𝑉!"$%

𝛿! 𝐷𝑡
(c) Multi-curved

𝑉!"!#
𝑉(Φ! , 𝑡)

𝑉!
"$%

𝛿! 𝐷𝑡
(d) Linear

0 0

0 0

Fig. 5: Example timing-accurate models of I/O tasks (x-axis:
time relative to the release of a task; y-axis: the resulting I/O
control quality given a time instant t).

A. System Model

The system has n periodic I/O tasks, denoted Γ =
{τ1, τ2, ...τn}, where each task contains a series of sequential
I/O operations on ROTA-I/O. An I/O task is defined by τi =
(Ci, Ti, Di, δi,Φi), in which Ci is the worst-case execution
time; Ti is the period; Di is the deadline with Di = Ti; δi
denotes the ideal start offset of τi that achieves the maximum
I/O operation quality, i.e., the exact timing accuracy; and Φi

is the timing-accurate model associated with τi.
In a hyper-period TH of the system, a task τi can raise up

to Ni = TH\Ti jobs, denoted as {τ1i , τ2i , ..., τ
Ni
i }. Notation

τ ji is the jth job of τi, which has a release time of rji =
Ti × (j − 1), a deadline of dji = rji +Di, an ideal start offset
of δji = Ti × (j − 1) + δi, and an actual offset θji determined
by ROTA-Sched. Jobs on ROTA-I/O are executed under a list
schedule non-preemptively.
Timing-accurate Model. Different from [7], which uses a
global timing-accurate model for all tasks to quantify the
operation quality, tasks in this work can have different models.
Fig. 5 presents four example timing-accurate models. For
instance, Fig. 5(a) shows a typical timing-accurate model [28],
[29] that can be found in fuel injection in control systems [6]
and the data sampling in automotive systems [30]. Fig. 5(b)
depicts a model for systems with more strict timing require-
ments, e.g., the radar scanning in a supersonic fighter [31].
To reflect this generality, we let function V (Φi, t) denote the
quality of τi (and its jobs) based on Φi and a start time t.
Task τi yields the maximum I/O control quality if it starts
at the ideal time, i.e., V max

i = V (Φi, δi). We assume that
Φi has a single time instant that leads to the exact timing
accuracy, and all jobs of τi share the same Φi. In addition,
a predictable I/O task can obtain a minimal quality of V min

i

(e.g., V min
i = V (Φi, Di)), and a deadline miss leads to zero

quality or a negative penalty value.
ETS Model. As described in Sec. II, the tasks in the ROTA-
I/O are executed using the ETSs to prevent the propagation of
timing defects between tasks in two ETSs. An ETS in ROTA-
I/O is defined by Sk = {Tk, λk, αk}, in which Tk gives the

Algorithm 1: ETS-based I/O allocation and schedule.

1 ▷ Decomposing confliction graphs

2 while ||E||> 0 do
3 τ ji = argmaxi,j{ζ

j
i | ∀τ ji ∈ G};

4 Gx = G \ τ ji ;
5 end
6 ▷ Schedule exact-accurate jobs on S∗

7 for each τ ji ∈ G, earliest δji first do
8 Sk = {αk = δji , λk = Ci};
9 S∗ = S∗ ∪ Sk; G(Sk) = {τ ji };

10 θji = δji ; ΓH = ΓH \ τ ji ;
11 end
12 ▷ Schedule quality-based jobs on S¬

13 generate each Sk for S¬ using the free time spaces
between the ETSs in S∗;

14 for each Sk ∈ S¬, the earliest αk first do
15 Γk = {τ ji | rji < αk + λk ∧ dji > αk,∀τ ji ∈ ΓH};
16 for each τ ji ∈ Γk, the earliest dji first do
17 if τ ji is feasible with G(Sk) on Sk then
18 G(Sk) = G(Sk) ∪ τ ji ;
19 ΓH = ΓH \ τ ji ;
20 end
21 end
22 end
23 if ΓH ̸= ∅, return infeasible;
24 Optimise θji of all τ ji of each Sk ∈ S¬ based on Φi

using a linear search;
25 return {S∗, S¬};

period, λk denotes the budget, and αk is the start time. Once
Sk is started, its budget is consumed with the passage of time.
When the budget is exhausted, Sk is terminated along with
all its unfinished tasks. Each time when Sk is released, the
budget of Sk is replenished to λk. To describe the relationship
between ETSs and I/O jobs, we let function G(Sk) denote a
set of jobs that are allocated to Sk.

B. Allocation and Scheduling of Jobs in ETSs

For a given set of I/O jobs in a hyper-period (denoted ΓH),
ROTA-Sched produces a feasible ETS-based list schedule with
guaranteed timing predictability and improved accuracy. To
achieve this, ROTA-Sched identifies the set of exact timing-
accurate jobs that can yield the highest total quality (i.e.,
with exact timing accuracy), and assigns a dedicated ETS to
guard the execution of each exact-accurate job. The remaining
jobs are then scheduled to improve their quality based on Φi,
where several (quality-based) jobs can share one ETS. This
protects jobs in one ETS from the timing defects in other
ETSs and limits the propagation of timing defects within this
ETS. Below, we first detail the identification of the timing-
accurate jobs and then present the allocation and scheduling
of jobs in the ETSs. The constructed ETS-based allocation and
scheduling process of I/O jobs is presented in Alg. 1. Notations

TABLE II: Notations introduced for constructing ROTA-Sched.

Notation Description
Γ, ΓH The sets of I/O tasks and their jobs in a hyperperiod.
S∗, S¬ The sets of ETSs that manage the execution of exact-

accurate and quality-based jobs.
τi A periodic I/O task with an index of i.
Ci, Ti, Di The worst-case execution time, period, and deadline τi.
Φi, δi The timing-accurate model and the exact-accurate start

offset of τi.
V (Φi, t) The quality given Φi and a start offset t of τi.
V

max/min
i The maximum/minimum quality of τi.

τ ji The jth job of τi in a hyperperiod.
rji , dji , δji The release time, deadline, and the exact-accurate (best-

case) start offset of τ ji .
ζji Total quality from jobs affected by τ ji if it starts at δji .
θji The actual start offset of τ ji decided by ROTA-Sched.
Sk An ETS with an index k.
αk , Tk , λk The start time, releasing period, and capacity of Sk .
G(Sk) The set of I/O jobs being assigned to Sk .
|| · || The size of a given set or list.

S∗ and S¬ denote the ETSs that manage the execution of the
exact-accurate and quality-based jobs, respectively.
Exact-accurate Jobs. To identify the exact-accurate jobs, a
conflict graph G is formulated assuming each job τ ji ∈ ΓH

is executed at the ideal offset δji . Then, for two jobs with an
execution conflict, an edge is added to indicate they cannot
start at their δji simultaneously. Let E(τ ji) denote the jobs
connected to τ ji , the total quality of jobs that τ ji can affect if
it starts at δji (represented by ζji) is computed by Equation 1.

ζji =
∑

τ l
x∈E(τj

i)

V max
x (1)

With G and ζji ,∀τ
j
i ∈ ΓH obtained, the algorithm starts

by decomposing G iteratively to identify the exact-accurate
jobs based on ζji (lines 2-5). In each iteration, the τ ji with
the maximum ζji is removed from G, indicating it cannot
be executed with exact timing accuracy, with the condition
that τ ji can be fitted between the exact-accurate jobs (if
possible). Otherwise, no feasible solution would be found
during the allocation phase for the quality-based jobs. This
process repeats until jobs left in G are not connected with each
other, i.e., ||E||= 0, which are identified as exact-accurate (i.e.,
θji = δji). This in general increases the number of exact timing-
accurate jobs. For each exact-accurate job τ ji , a dedicated
ETS Sk is assigned to manage its execution with a start time
αk = δji and an initial budget λk = Ck (lines 7-11).
Quality-based Jobs. With S∗ constructed, a set of ETSs
for the quality-based jobs (i.e., S¬) are generated using the
free time space between the ETSs in S∗. The αk and λk

of each Sk ∈ S¬ are initialised based on the start time
and length of the corresponding space (line 13). For each
Sk ∈ S¬, the algorithm takes the unallocated jobs that are
active during Sk (i.e., ΓK in line 15) and always tries to
allocate the job with the earliest dji to Sk (lines 16-21). A
simple feasibility test is used to decide the acceptance or
rejection of this allocation based on the remaining capacity
of Sk, the allocated jobs G(Sk), and dji (line 17). If feasible,

τ ji is added to Sk with the earliest possible start offset (lines
18-19). This in general increases the success ratio of the
allocation. With the mapping of jobs decided, for each job
in S¬ with the latest θji first, the algorithm postpones θji
if a higher quality can be achieved based on Φi to further
improve the operation quality of the system (where possible,
without affecting other jobs using a linear search, line 24). The
algorithm finishes and returns both the S∗ and S¬ with the
allocation and scheduling of the I/O jobs embedded. Finally,
the I/O jobs are registered to the associated ETS on ROTA-
I/O using the instruction p.ld, τ ji , Sk introduced in Tab. I, in
which τ ji ∈ G(Sk),∀Sk ∈ S∗ ∪ S¬.
Verification. The proposed ROTA-Sched is conducted on each
I/O job in a hyper-period and returns a list schedule of the
jobs, in which the schedule verifies whether a job can meet
its deadline along with the scheduling process. Thus, similar
to the job-level schedule in [32], [7], the scheduling algorithm
also serves as the timing verification method of the system, in
which the system is schedulable if a feasible solution can be
obtained by Alg. 1, assuming there exist no timing defects.
Discussion. The time complexity of Alg. 1 is O(n2), as at
most (||ΓH ||×||ΓH ||) iterations are required to deconstruct G
(i.e., generation of S∗) and to allocate as well as schedule
jobs in S¬. The algorithm returns a feasible ETS-based
I/O scheduling solution that improves timing accuracy. If an
unexpected timing defect occurs, its impact on I/O jobs is
effectively restricted to one ETS, preventing the cascading
disruptions on other ETSs in the system. However, jobs within
the ETS could miss their deadlines or be terminated (if the
ETS capacity is exhausted), due to the timing defect. Below,
we present the configuration of ETS parameters that further
enhance the robustness by mitigating the impact of timing
defects on the produced schedule.

C. Configuration of ETS Parameters

Initial Configuration. Based on the allocation and schedule
of I/O jobs determined by Alg. 1, the second step of ROTA-
Sched produces the scheduling parameters of the ETSs, i.e.,
the start time αk, the capacity λk, and the period Tk for each
Sk ∈ S∗ ∪ S¬. The αk is given by the earliest start offset
of jobs in G(Sk), i.e., αk = min{θji | ∀τ ji ∈ G(Sk)}. An
initial capacity of Sk can be obtained by Equation 2, which
is calculated based on (i) αk and (ii) the latest finish time
of jobs in G(Sk). As the ETSs are generated for a complete
hyper-period, all ETSs in the system have the same period of
Tk = TH . In addition, as requested by the scheduler in ROTA-
I/O, an earlier ETS (or job) is assigned with a higher priority.

λk = max{θji + Ci | ∀τ ji ∈ G(Sk)} − αk (2)

Additional Capacity of Sk. With the above parameters, the
ETSs can be scheduled using a list scheduler (as described in
Sec. III-B), in which Sk is always dispatched at αk and finishes
at αk+λk in each hyperperiod. This provides a necessary time
budget for the execution of the jobs in Sk, and eliminates the
propagation of timing defects that occur in Sk to the following
ETSs, as the execution of Sk cannot exceed λk regardless of

the impact from timing defects. However, for jobs in Sk, this
capacity is insufficient to cope with unexpected timing defects
within Sk, leading to unfinished job executions.

To mitigate the impact of timing defects within an ETS,
an additional budget is provided to cope with the execution
delay, allowing jobs in the ETS an extra chance to finish
executions within their deadlines. However, this could result
in a delay to the following ETSs (and the I/O jobs). Thus, to
enable this additional budget while not jeopardising the real-
time guarantee of the system, the following two bounds are
computed first, for each Sk ∈ S∗ ∪ S¬:

• the highest delay that Sk can incur, denoted as Υk; and
• the largest slack between Sk and the next ETS (say
Sk+1), denoted as Ψk.

The first bound implies that a certain amount of addi-
tional capacity can be provided to the previous ETS (if re-
quired), without causing immediate deadline misses in Sk (see
Lemma 1). The second provides a limitation on such capacity
that prevents potential deadline misses in the following ETS
(i.e., Sk+1) due to the transitive delay effect from Sk.

Lemma 1. For a given Sk ∈ S∗ ∪ S¬, the highest delay that
Sk can incur is Υk = min{dji − θji − Ci| ∀τ ji ∈ G(Sk)}.

Proof. Given a list schedule of I/O jobs in Sk (see Alg. 1,
where each job is executed based on an explicit start offset),
the worst-case delay effect occurs if all jobs are tightly
executed, i.e., without any timing gap between the execution of
two jobs. In this case, a delay of Υk on αk can directly impose
the same amount of latency on θji of each job in Sk, leading
to deadline misses for jobs with θji +Ci+Υk > dji . Therefore,
to provide timing guarantee, Υk ≤ min{dji − θji −Ci},∀τ ji ∈
G(Sk) must hold, hence, the lemma follows.

Lemma 2. For Sk and Sk+1, the largest slack between Sk

and Sk+1 is Ψk = (αk+1 + min{Υk+1,Ψk+1}) − αk − λk.
For the last Sk, Ψk = TH − αk − λk.

Proof. First, given two consecutive ETSs Sk and Sk+1, the
largest lack between them appears when Sk has the earliest
finish (i.e., αk + λk), whereas Sk+1 has the latest start. Then,
for Sk+1, its latest start offset is bounded by both Υk+1 and
Ψk+1, because (i) the bound of Υk+1 prevents deadline misses
in Sk+1 (proved in Lemma 1), and (ii) Ψk+1 imposes a bound
on the transitive delay of the following ETSs (if they exist)
that avoids further deadline misses.

Based on Lemmas 1 and 2, Theorem 1 describes the
additional capacity of Sk (denoted as ωk) without affecting
the timing of I/O jobs in the system.

Theorem 1. For a given Sk, it can execute using an additional
capacity of ωk = min{Υk+1,Ψk+1} without jeopardising the
timing guarantee of the system.

Proof. Following Lemmas 1 and 2, this theorem can be proved
using straightforward counterexamples. If ωk = Ψk+1 >
Υk+1, the delay imposed on Sk+1 from Sk would cause
direct deadline misses of I/O jobs in Sk+1. This is proved

in Lemma 1. Otherwise, i.e., ωk = Υk+1 > Ψk+1, the delay
incurred by Sk+1 can transitively affect the execution of the
following ETSs, leading to further deadline misses. This is
proved in Lemma 2. Therefore, the theorem holds.

As with Ψk, the computation of ωk starts from the last
Sk ∈ S∗ ∪ S¬ with ωk = min{Υk+1, (T

H − αk − λk)}, and
calculates ωk for each Sk backwards to provide the maximum
additional capacity possible when being required. With the
support of this additional capacity, jobs in Sk can execute until
the time instant αk+1 + ωk with an additional budget up to
Ψk, i.e., the slack between the finish of Sk and the latest start
of Sk+1. In addition, by taking Υk+1 and Ψk+1 into account
when computing ωk, we prevent potential deadline misses due
to the transitive delay effect on the following ETSs, i.e., the
start of Sk+1 is delayed with a bound of ωk.

With ωk obtained, the final capacity of Sk is determined as
λk = max{θji +Ci | ∀τ ji ∈ G(Sk)}−αk+ωk based on Equa-
tion 2. This provides an extra execution budget for Sk to cope
with unforeseen timing defects, while not endangering the
timing requirements of I/O jobs. Based on the ISA constructed
in Sec. II-B, the computed αk, λ, and Tk of Sk ∈ S∗∪S¬ can
be configured in ROTA-I/O using instructions c.enr, αk, Sk

and c.set, λk, Sk, respectively (see Tab. I).
To this end, we constructed ROTA-Sched that schedules the

I/O jobs on ETSs provided by the ROTA-I/O. The proposed
ROTA-Sched provides the promised timing-accurate I/O con-
trol without timing defects. More importantly, using ETSs
with the additional capacity, ROTA-Sched enhances robustness
against unforeseen timing defects, as described in Theorem 2.

Theorem 2. ROTA-Sched can tolerate an interference of ω =
min{ωk | ∀Sk ∈ S∗ ∪ S¬}.

Proof. For a given Sk ∈ S∗ ∪ S¬, it can cope with an addi-
tional interference of at most ωk without causing a deadline
miss in Sk+1 (if it exists). This is proved in Theorem 1. Hence,
the system can at least cope with a minimum interference of
ω due to timing defects, while not affecting the timing of I/O
jobs of other ETSs with ω ≤ min{ωk | ∀Sk ∈ S∗ ∪ S¬}.
Therefore, the theorem follows.

Following directly from this theorem, ROTA-Sched can
tolerate an interference of ω while guaranteeing the timing of
each I/O job (including those in the ETS with timing defects)
if ω < min{min{ωk,Υk} | ∀Sk ∈ S∗∪S¬}. Under this case,
the interference caused by timing defects in Sk is not higher
than the maximum delay that Sk can incur (i.e., Υk). Hence,
jobs in Sk can meet their deadlines, as proved in Lemma 1.

Finally, it is worth noting that an early ETS that consumes
the extra budget (incurs timing defects) can result in less
additional budget for later ones, i.e., dynamic use of the
additional capacity. However, this will not jeopardise the
temporal isolation provided by the ETSs, which is effectively
bounded by Ωk for Sk so that the predictability of jobs in
later ETSs is not affected. That is, the extended execution of
an ETS will not cause any additional deadline misses in later
ETSs. For instance, if Sk executes until αk+1 + ωk, Sk+1

will have a reduced additional capacity as it must be finished
at αk+1 + λk+1 regardless of the delay. By contrast, if Sk

finishes execution before αk+1, Sk+1 can still start at αk+1

with improved timing accuracy. This increases the success
ratio of the system, where a job can execute and deliver using
the additional budget when timing defects occur. This is further
justified in Sec. V-C by experimental results.

V. EVALUATION

Experimental platform. We built the ROTA-I/O on a Xilinx
VC709 evaluation board. The I/O controller was implemented
using Chisel (v.3.4) and connected to a 5 × 5 mesh type
NoC (Fig. 1 (a)). As well as the ROTA-I/O, the NoC also
contained 8/16 open-source RISC-V processors [33], shared
L2 cache (512 KB), external memory (4 GB), and I/O devices.
We instantiated the processors with a 5-staged pipeline and
single-width dispatch. All the hardware elements were syn-
thesised, placed, and routed using Xilinx Vivado (v.2022.2).
The software executing on the processors (OS, drivers, and
applications) was compiled using a RISC-V GNU tool-chain
(v.2022.11). We selected FreeRTOS (v.10.4) as the OS kernel,
with the modifications that were introduced in Sec. II-D. To
enable comparisons, we introduced 3 Baseline Systems (BSs)
on similar hardware, replacing ROTA-I/O with different I/O
controllers: BS|RTOS [34] is a legacy BS with the standard
I/O controller, leaving I/O scheduling and management to the
RTOS at software level; BS|GPIOCP [8] and BS|RTIOC [7]
were built upon the SOTA real-time I/O controllers with
different methodologies (see Sec. VI). All systems ran at 100
MHz due to the use of an FPGA as a prototyping platform.

A. Hardware Overhead

Experimental setup. We configured ROTA-I/O to support 8
ETSs and compared its overhead with a standard Ethernet
controller and the real-time controllers used in the BS|RTOS,
BS|GPIOCP and BS|RTIOC, respectively. The Ethernet con-
troller was chosen from the Xilinx IP library with default set-
tings, and the GPIOCP and RT-IOC were instantiated to ensure
the same capacity with ROTA-I/O. In addition, to examine the
overhead from a system perspective, we compared ROTA-I/O
against two general-purpose RISC-V processors (Rocket [33]
and Boom [35]). Rocket was configured using the settings
described in the experimental platform. Boom had all the fea-
tures of the Rocket processor, with the extra support of 3-width
instruction-level parallelism. All components were compared
using LUTs, registers, and BRAMs. All components were
synthesised and implemented by Xilinx Vivado (v.2022.2)
and compared using Look-Up-Tables (LUTs), registers, and
BRAMs. Since these metrics were evaluated using various
units, we the results using the Ethernet controller: 4,393 LUTs,
5,113 registers, 2 DSPs and 16KB BRAMs.
Obs 1. ROTA-I/O used less hardware than other controllers.
From the SoC’s perspective, the overhead was trivial.

This observation is given in Fig. 6(a), the implementation
of ROTA-I/O consumed similar hardware compared to the
standard Ethernet controller: 108.2% LUTs, 83.9% registers,

Kernel Driver LUTs

Boom 32 43.33

Rocket 8 4.653539722

BS|RTOS 97 57 1

BS|GPIOCP 78 35 1.168677441

BS|RTIOC 83 38 1.314591395

Proposed 80 42 1.082176189

Proposed 42 80 122

BS|HW-RT-IOC 38 83 121

0

25

50

75

100

125

Kernel Driver

0

0.5

1

1.5

2

2.5

LUTs Registers BRAMs

BS|RTOS BS|GPIOCP BS|RTIOC Proposed

(a) Hardware overhead (y-axis: normalised overhead) (b) Software overhead (y-axis: KB)

Fig. 6: Analysis of hardware and software overheads.

TABLE III: System schedulability under varied U .

U = 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pr = 0, Pe = 0

BS|GPIOCP 0.69 0.42 0.23 0.09 0.02 0.01 0.00
BS|GA 0.99 0.95 0.84 0.69 0.53 0.38 0.20

BS|RT-IOC 0.87 0.73 0.59 0.41 0.28 0.19 0.10
Proposed 0.86 0.70 0.55 0.38 0.21 0.11 0.05

Pr = 0.3, Pe = 0.5
BS|GPIOCP 0.59 0.3 0.1 0.03 0.00 0.00 0.00

BS|GA 0.74 0.45 0.22 0.08 0.01 0.00 0.00
BS|RT-IOC 0.72 0.45 0.24 0.09 0.02 0.00 0.00
Proposed 0.77 0.53 0.33 0.17 0.06 0.02 0.00

100.0% BRAMs. When compared to the other SOTA real-time
controllers, ROTA-I/O demonstrated lower overhead across
all metrics: GPICOP (92.6% LUTs, 74.4% registers, 50%
BRAMs) and RT-IOC (82.3% LUTs, 72.9% registers, 50%
BS‘RAMs). The improvement is attributed to the resource-
efficient micro-architecture introduced in Sec. III. From the
SoC’s view, ROTA-I/O’s overhead is negligible: when com-
pared with the general-purpose Rocket and Boom cores,
ROTA-I/O only required 20% and 3% overhead, respectively.

B. Software Overhead

Deploying ROTA-I/O requires kernel changes and a new
driver (Sec. II-D), hence we examined the software overhead.
Experimental setup. We examined the software overhead
via run-time memory footprint, with consideration of the OS
kernel and the I/O drivers (unit: KB). The vanilla kernel used
in the examined systems was fully featured with the software
I/O manager and essential I/O drivers [34]. The memory size
tool was RISC-V GNU tool-chain.
Obs 2. ROTA-I/O consumed less software than BS|RTOS. Its
overhead was similar to BS|GPIOCP and BS|RTIOC.

In Fig. 6(b), the OS kernel and drivers required by ROTA-I/O
consumed 32 KB (20.8%) less memory than the software solu-
tion due to its hardware-implemented I/O management. Com-
pared to other solutions, the memory usage of ROTA-I/O was
similar: 107.9% (BS|GPIOCP) and 98.7% (BS|RTIOC).

C. I/O-level Timing Performance

This section evaluates the timing performance of the pro-
posed I/O control method against the BSs and the Genetic
Algorithm described in [7] (BS|GA) that optimises the timing
performance of I/O tasks. As with [7], the timing accuracy
was measured as the percentage of exact-accurate jobs and
operation quality based on Φi normalised by the maximum
quality achievable (i.e.,

∑
τj
i ∈ΓH Vmax).

0 0.4 0.8 1.2 1.6 2 3
0

0.2

0.4

0.6

0.8

1
BS|GPIOCP BS|GA
BS|RT-IOC Proposed

(a) Percentage of exact-accurate jobs (y-axis)
0 0.4 0.8 1.2 1.6 2 3

0

0.2

0.4

0.6

0.8

1

BS|GPIOCP
BS|GA
BS|RT-IOC
Proposed

(b) Normalised operation quality (y-axis)

Fig. 7: Timing accuracy with U = 0.6, Pr = 0.3 (x-axis: Pe).

0.2 0.3 0.4 0.5 0.6 0.7
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

BS|GPIOCP
BS|GA
BS|RT-IOC
Proposed

BS|GPIOCP
BS|GA
BS|RT-IOC
Proposed

(a) Percentage of exact-accurate jobs (y-axis) (b) Normalised operation quality (y-axis)

Fig. 8: Timing accuracy with Pr = 0.3, Pe = 0.5 (x-axis: U).

Experimental setup. The number of I/O tasks was set to
n = [4, 16], and the utilisation of tasks was generated by the
UUniFast algorithm [36] with a total system utilisation given
by U = 0.05 × n. For each τi, Ti was generated randomly
with a uniform distribution with a hyper-period of 1440ms,
and Di = Ti. The Φi of a task was randomly chosen from
examples in Fig. 5, with Vmax and Vmin randomly decided
from [1, 100] and [0, Vmax], respectively. In addition, two
control variables were defined for timing defects: Pr controlled
the percentage of jobs that incurred timing defects and Pe

gave the interference incurred by such a job, quantified as
Ci × (1 + Pe). For each system configuration, 1,000 systems
were randomly generated and evaluated.
Obs 3. ROTA-I/O showed higher schedulability and timing
accuracy compared to SOTA methods with timing defects.

This observation is seen in Table III and Fig. 8, showing the
resulting system schedulability and timing accuracy under var-
ied U , respectively. Table III shows that the BS|GPIOCP was
constantly outperformed by other methods due to its simple
FIFO-based scheduling strategy [7]. In addition, we noticed
that although ROTA-I/O shows a slightly lower schedulability
than BS|RTIOC without timing defects, it outperforms all
SOTA methods when timing defects occur. This is because the
BS|RTIOC produces the schedule by a bin-packing approach,
without considering the tightness of deadlines of I/O jobs,
hence, is more fragile to timing defects. BS|GA tends to
produce a tight schedule where jobs are executed close to each
other. Thus, although BS|GA has the highest schedulability
when Pr = Pe = 0, it showed the most pronounced fall
with timing defects. By contrast, the ETS-based schedule (i.e.,
ROTA-Sched) that explicitly executes the job with the earliest
dji first (line 16 in Alg. 1), hence, is less likely to be affected
by timing defects compared to SOTA methods.

In addition, as shown in Fig. 8, ROTA-I/O demonstrated both
a higher percentage of exact-accurate jobs and the strongest
overall quality in the general case, especially when the system

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9

BS|RTOS

BS|GPIOCP

BS|RTIOC

Proposed

(a) 8-core systems (x-axis: U; y-axis: SR).

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9

BS|RTOS

BS|GPIOCP

BS|RTIOC

Proposed

(b) 32-core systems (x-axis: U; y-axis: SR).

0

0.2

0.4

0.6

0.8

1

8-core 32-core

BS|RTOS BS|GPIOCP BS|RTIOC Proposed

(c) I/O-QoS (y-axis: normalised I/O-QoS).

Fig. 9: Case study, evaluating system-level real-time performance (in (a) and (b)) and I/O quality (in (c)).

TABLE IV: Acceptance ratio with U = 0.6 and Pr = 0.3.

Pe = 0 0.4 0.8 1.2 1.6 2.0 3.0
BS|GPIOCP 1.00 0.99 0.97 0.94 0.88 0.8 0.43

BS|GA 1.00 0.99 0.95 0.91 0.82 0.72 0.38
BS|RT-IOC 1.00 0.98 0.96 0.92 0.84 0.75 0.40
Proposed 1.00 0.99 0.98 0.96 0.93 0.92 0.87

was heavy-loaded (U ≥ 0.6). This is because, with the ETSs
applied, ROTA-I/O effectively mitigates the impact of timing
defects on the start offset of the I/O jobs, leading to higher
timing accuracy compared to the SOTA methods. By contrast,
the timing accuracy of the SOTA methods was significantly
undermined by timing defects. For instance, BS|GA (the
method with the highest quality in [7]) was outperformed by
both BS|RTIOC and BS|GPIOCP as shown in Fig. 8 in the
general case. This observation revealed the impact of timing
defects on existing timing-accurate I/O schedules, and justified
the necessity for developing robust I/O control methods.
Obs 4. ROTA-I/O improves robustness compared to SOTA
methods when impact of timing defects becomes significant.

This observation is seen in both Table IV and Fig. 7,
which report the acceptance ratio (the percentage of jobs that
meet their deadlines) and the timing accuracy of systems that
are deemed schedulable by the competing methods, with an
increasing impact (i.e., Pe) of timing defects. From the results,
ROTA-I/O showed both a higher acceptance ratio and timing
accuracy compared to SOTA methods. For instance, ROTA-I/O
outperformed BS|RTIOC by 22.61% and 42.32% on average
(2.18x and 3.06x when Pe = 3), in terms of acceptance
ratio and operation quality, respectively. One notable reason is
that, with the additional budget assigned for the ETSs, ROTA-
I/O allows more jobs to finish while providing the necessary
temporal isolation for jobs in the following ETSs. This justified
the dynamic use of the additional budget (see Sec. IV-C). By
contrast, the SOTA methods do not take unexpected interfer-
ence from timing defects into account. Thus, these methods
are highly sensitive to timing defects, which significantly affect
their pre-planned schedule and resulting timing performance,
especially when Pe ≥ 1.2 as shown in Fig. 7.

D. System-level Real-time Performance

We evaluated the system-level real-time performance of
the systems using an automotive case study. Specifically, we
configured all systems with either 8 or 32 cores and executed

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

Proposed
SoC
SoC+Proposed

0

100

200

300

400

500

0 1 2 3 4 5

Proposed
SoC

(b) Maximum frequency (y-axis: MHz).(a) Aara (y-axis: percentage of platform).

Fig. 10: Scalability (x-axis: ηcore for black lines, ηio for grey lines).

two distinct sets of tasks: (i) 10 automotive safety tasks
selected from the Renesas automotive use case database, such
as CRC and RSA32; and (ii) 10 function tasks from the
EEMBC benchmark, including FFT and speed calculation. We
slightly modified these tasks to generate raw data externally,
which was then transmitted to the system under test via an
Ethernet connection (1 Gbps). The results were subsequently
transmitted back using two FlexRay channels (10 Mbps). The
value of Φi for each I/O task was randomly chosen from the
examples provided in Fig. 5, with Vmax and Vmin set within the
ranges of [1, 100] and [0, Vmax], respectively. Each task was
associated with a predefined period and an implicit deadline.
Additionally, we introduced synthetic workloads to potentially
adjust the overall system utilisation. These workloads, akin to
the function tasks, were derived from the EEMBC benchmark.
However, since the execution time of a task can be influenced
by various factors, the addition of synthetic workloads pro-
vided only a target utilisation (U) for the system.
Experimental setup. We executed the systems 200 times
under varying target utilisation [50%, 100%], at intervals of
5%. Each experimental trial lasted 200 seconds, with [10, 20]
hardware faults randomly injected to the I/O controllers, de-
laying the I/Os’ execution. For a fair comparison, we ensured
that both the input data and the injected faults were identical
across all tested systems. We evaluated the systems using
Success Ratio (SR) and Quality of I/O Services (QoS-I/O).
The SR recorded the percentage of trials that were executed
successfully (i.e., without deadline miss of any safety and
function task), under a specified target utilisation. The QoS-
I/O reports the average quality among all I/O tasks.
Obs. 5. Deploying ROTA-I/O increased overall real-time per-
formance than baseline systems with improved I/O quality.

As shown in Fig. 9(a), (b), and (c), when the examined
systems were configured using the same settings, our proposed

system consistently outperformed the BSs in terms of SR and
I/O-QoS. The reasons for these improvements are two-fold: (i)
the approach of hardware/algorithm co-design enhances the
efficiency of I/O management (see Sec.III); (ii) the micro-
architecture of ROTA-I/O isolates ETSs and prevents the
propagation of timing defects – aligned to Obs. 3.
Obs. 6. With the increased complexity of the SoCs (i.e., the
core numbers), all systems exhibited a decline in SR.

This pattern is given by the comparison between Fig. 9(a)
and Fig. 9(b). The reduction in SR stems from the additional
on-chip interference and resource contention introduced by
the growing number of processors and tasks - characteristic
challenges in all multi/many-core systems, particularly when
multiple tasks rely on the I/Os. Even so, in 32-core systems,
ROTA-I/O consistently achieved the highest SRs, highlighting
the effectiveness and applicability of ROTA-I/O in complicated
many-core SoCs. To further mitigate such decline, it is nec-
essary to consider the NoC contentions and interference to
facilitate an end-to-end optimisation [37], [38], [39].

E. System-level Scalability

We acknowledge that the design scalability impacts its
feasibility; hence, we performed a scalability analysis.
Experimental setup. The same method described in Sec.V-A
was adopted to implement an SoC with a scaling number of
processor cores and I/Os. In addition, we introduced scaling
factors: ηcore and ηio to control the number (2η) of cores
and I/Os in the system. As the number of cores increases,
the associated I/O pool and L-SEs in a ROTA-I/O also expand
to buffer and schedule more tasks. Conversely, an increase in
the number of I/Os requires a corresponding increase in the
number of ROTA-I/Os for additional device management.

First, we compared the scalability of area consumption
between the legacy SoC (built upon standard ETH controllers)
and the ROTA-I/O-based SoCs. The area consumption was
normalised by the overall area of the platform. We then
examined the maximum frequency of the ROTA-I/O and the
SoC using varying ηcore and ηio.
Obs. 7. ROTA-I/O’s area was almost unaffected by ηcore and
linearly scaled by ηio. Also, implementing ROTA-I/O in multi-
/many-core SoCs did not impact the maximum performance.

As seen in Fig.10(a), when systems were scaled with ηcore,
the area consumption of ROTA-I/O was nearly constant. When
scaled with ηio, the area of ROTA-I/O increased linearly,
demonstrating the micro-architecture’s hardware scalability.
Furthermore, as illustrated in Fig. 10(b), in all examined cases,
ROTA-I/O’s maximum frequency was always higher than the
baseline SoCs. This indicates that ROTA-I/O did not become
a critical path of the entire SoC design, and therefore did not
limit the maximum performance of the system.

F. Summary

Based on the observations given in all experiments, ROTA-
I/O showed robustness by coping with timing defects under
both synthesised systems and a real-world case study, im-
proving timing predictability and accuracy compared to SOTA

methods, without consuming significantly more resources than
SOTA I/O controllers. In addition, the scalability of ROTA-I/O
is demonstrated using real-world implementations, validating
both the applicability and the effectiveness of the proposed
solution on large-scale industrial applications.

VI. RELATED WORK

Research into real-time I/O design and verification mehtods
in multi-/many-core systems has been investigated from the
perspective of both the software and hardware.
Software-based I/O scheduling. Conventional safety-critical
systems rely on an OS or a hypervisor to manage the I/Os [10].
Hence, software approaches aimed at satisfying I/O timing
demands have typically modified the OS kernel [16], [17],
[18] or the hypervisor [40], [41] to integrate I/O-aware task
scheduling and mapping strategies [42], avoiding unnecessary
contentions and trying to execute I/O operations as accurately
as possible. A considerable amount of work has contributed
to this research domain by developing different task mapping
and scheduling methods, e.g., reserving I/O bandwidths for
software tasks according to their workload [15], [18], and
applying a time utility function to schedule tasks at or close to
their ideal offsets [43], [44]. However, as explained in Sec. I,
software solutions are becoming difficult to apply to modern
systems, due to the never-ending increase in hardware and
architectural complexity, e.g., many-core systems with mesh
Network-on-Chips (NoCs). Such complexity introduces sig-
nificant uncertainty to I/O transmissions, e.g., communication
delays and resource contentions through the system, making
accurate control extremely tough to achieve from the software.
I/O-aware NoCs. At the NoC level, a commonly used method
to improve real-time performance of I/O transactions is the
duplication of communication channels. For instance, such
duplicated channels were particularly deployed for different
types of I/O devices, e.g., cameras [45] and display de-
vices [46]. Similarly, Jiang et al. [37], [47] introduced a bypass
channel, termed “I/O ring”, facilitating more efficient data
routing (one cycle level) between processors and all types of
device. Distinct from merely duplicating communication chan-
nels, bandwidth reservation has also been studied to ensure
service for particular tasks or transactions. This involves the
interconnect assigning priorities to each hardware element and
allocating bandwidth accordingly. For example, dedicated AXI
controllers reserve bandwidth for high-priority devices [38],
[48], [39], [49]. However, these methods solely focused on
schedulability and average throughput of I/Os, without any
attention paid to the key factors of timing accuracy and
robustness.
Hardware-assisted I/O management. At the I/O level, ded-
icated assists have been developed and manufactured by dif-
ferent semiconductor vendors. For example, a programmable
real-time unit has been developed by TI [23] and a time
processor unit by NXP [22]. These controllers are physically
connected to I/O devices and handle I/O operations directly at
the hardware level. Since I/O management is deployed close to
I/O devices, it effectively avoids I/O transmission uncertainty,

and hence, provides the potential for achieving I/O timing
predictability and accuracy. Leveraging the hardware support,
Jiang et al. [8] and Zhao et al. [7] presented different config-
uration methods that ordered the execution of I/O operations,
specifying the start time of each I/O task (i.e. a series of I/O
operations). Similarly, Guerra and Fohler [28] introduced a
gravitational pendulum model that assigned higher “gravity” to
I/O tasks with higher importance to improve their unity. These
methods achieved a certain amount of timing predictability and
accuracy for I/O control in their system models [28] and in
work using their assumptions [8], [7]. However, as discussed
in Sec. I, these approaches are fragile and would be entirely
undermined by the interference of many timing defects.

VII. CONCLUSION

This paper presents a real-time I/O controller named ROTA-
I/O using a hardware/software co-design approach. ROTA-
I/O supports configurable ETSs and a two-level scheduler to
establish the scheduling infrastructure that can prevent the
propagation of timing defects between ETSs. Based on ROTA-
I/O, an ETS-based I/O scheduling method named ROTA-Sched
was constructed to mitigate the impact of timing defects,
hence, improving both robustness and timing accuracy. Experi-
mental results demonstrated that ROTA-I/O outperforms SOTA
methods without consuming significantly more hardware re-
sources. In future work, we plan to tape out the ROTA-I/O
with safety-critical micro-controllers in a real chip to examine
its energy efficiency under different application scenarios.
Lessons learned. Different from the conventional solutions
that attempted to manage I/O timing defects solely through
hardware design (e.g., physical isolation [50]) or software
techniques (e.g., virtualisation [50]), this work shows that
using a hardware/algorithm co-designed approach, timing ac-
curacy and robustness can be effectively improved with light
overhead. The constructed ROTA-I/O and ROTA-Sched provide
key insights and effective means that foster a collaborative en-
vironment between the hardware and the schedule for real-time
systems that neither discipline could achieve independently.

VIII. ACKNOWLEDGEMENT

The authors would like to thank the anonymous review-
ers for their insightful and helpful feedback. This work is
supported by the National Natural Science Foundation of
China (NSFC) under Grant 62472086, Grant 62072478, Grant
62302533, and Grant 62472086, Natural Science Foundation
of Jiangsu Province under Grants BK20243042, Guangdong
Basic and Applied Basic Research Foundation under Grant
2024A1515010240, Guangzhou Fundamental Research Funds
under Grant SL2023A04J00996, the Start-up Research Fund
of Southeast University under Grant No. RF1028624005, and
the Fundamental Research Funds for the Central Universities.
This paper was written during the birth of Zhe Jiang’s first
baby – Zhe Jiang would like to thank his wife (Yanting Dai)
and daughter (Anyu Jiang) for the joy they have brought.

REFERENCES

[1] I. ISO, “26262: Road vehicles-functional safety,” 2018.
[2] J. L. Hennessy, Computer architecture: a quantitative approach, 2011.
[3] Z. Jiang, N. C. Audsley, and P. Dong, “Bluevisor: A scalable real-time

hardware hypervisor for many-core embedded systems,” in 2018 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2018, pp. 75–84.

[4] N. Borgioli, M. Zini, D. Casini, G. Cicero, A. Biondi, and G. Buttazzo,
“An I/O virtualization framework with i/o-related memory contention
control for real-time systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 4469–
4480, 2022.

[5] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. P. Chen,
“Six-DOF spacecraft optimal trajectory planning and real-time attitude
control: a deep neural network-based approach,” IEEE transactions on
neural networks and learning systems, vol. 31, no. 11, pp. 5005–5013,
2019.

[6] J. Mossinger, “Software in automotive systems,” IEEE software, vol. 27,
no. 2, p. 92, 2010.

[7] S. Zhao, Z. Jiang, X. Dai, I. Bate, I. Habli, and W. Chang, “Timing-
accurate general-purpose I/O for multi-and many-core systems: Schedul-
ing and hardware support,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[8] Z. Jiang and N. C. Audsley, “GPIOCP: Timing-accurate general purpose
I/O controller for many-core real-time systems,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017,
pp. 806–811.

[9] R. I. Davis and A. Burns, “Robust priority assignment for fixed priority
real-time systems,” in Proc. of RTSS, 2007.

[10] A. Burns and A. J. Wellings, Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX, 2001.

[11] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM computing surveys (CSUR), vol. 43,
no. 4, pp. 1–44, 2011.

[12] L. Rierson, Developing safety-critical software: a practical guide for
aviation software and DO-178C compliance. CRC Press, 2017.

[13] Z. Ballard, C. Brown, A. M. Madni, and A. Ozcan, “Machine learning
and computation-enabled intelligent sensor design,” Nature Machine
Intelligence, vol. 3, no. 7, pp. 556–565, 2021.

[14] A. Burns, R. I. Davis, S. Baruah, and I. Bate, “Robust mixed-criticality
systems,” IEEE Transactions on Computers, vol. 67, no. 10, pp. 1478–
1491, 2018.

[15] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “I/O contention aware
mapping of multi-criticalities real-time applications over many-core
architectures,” in 22nd IEEE Real-Time and embedded Technology and
Applications symposium (RTAS 2016), 2016, pp. pp–25.

[16] J.-E. Kim, M.-K. Yoon, R. Bradford, and L. Sha, “Integrated modular
avionics (IMA) partition scheduling with conflict-free i/o for multicore
avionics systems,” in 2014 IEEE 38th Annual Computer Software and
Applications Conference. IEEE, 2014, pp. 321–331.

[17] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha, “Real-time
I/O management system with cots peripherals,” IEEE Transactions on
Computers, vol. 62, no. 1, pp. 45–58, 2011.

[18] N. Kim, S. Tang, N. Otterness, J. H. Anderson, F. D. Smith, and D. E.
Porter, “Supporting I/O and IPC via fine-grained os isolation for mixed-
criticality real-time tasks,” in Proceedings of the 26th international
conference on real-time networks and systems, 2018, pp. 191–201.

[19] B. B. Brandenburg, “Multiprocessor real-time locking protocols,” in
Handbook of Real-Time Computing. Springer, 2022, pp. 347–446.

[20] S. Zhao, “A FIFO Spin-based Resource Control Framework for Symmet-
ric Multiprocessing,” Ph.D. dissertation, The University of York, 2018,
http://etheses.whiterose.ac.uk/21014/.

[21] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software engineering journal, vol. 8, no. 5, pp. 284–292, 1993.

[22] https://www.nxp.com/eTPU, TPU, accessed Nov. 17, 2022.
[23] http://www.ti.com/tool/pru-swpkg, PRU, accessed Nov. 17, 2022.
[24] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky,

“Realizing compositional scheduling through virtualization,” in 2012
IEEE 18th Real Time and Embedded Technology and Applications
Symposium. IEEE, 2012, pp. 13–22.

http://etheses.whiterose.ac.uk/21014/
https://www.nxp.com/eTPU
http://www.ti.com/tool/pru-swpkg

[25] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in RTSS 2003. 24th IEEE Real-Time Systems Symposium,
2003. IEEE, 2003, pp. 2–13.

[26] ——, “Compositional real-time scheduling framework,” in 25th IEEE
International Real-Time Systems Symposium. IEEE, 2004, pp. 57–67.

[27] R. I. Davis and A. Burns, “Robust priority assignment for messages on
controller area network (CAN),” Real-Time Systems, vol. 41, pp. 152–
180, 2009.

[28] R. Guerrra and G. Fohler, “A gravitational task model for target sensitive
real-time applications,” in 2008 Euromicro Conference on Real-Time
Systems. IEEE, 2008, pp. 309–317.

[29] R. Guerra and G. Fohler, “A gravitational task model with arbitrary
anchor points for target sensitive real-time applications,” Real-Time
Systems, vol. 43, pp. 93–115, 2009.

[30] S. Liu, B. Yu, N. Guan, Z. Dong, and B. Akesson, “Real-time scheduling
and analysis of an autonomous driving system,” in Proceedings of RTSS
2021 Industrial Challenge Problem, pp. 1–47, 2021.

[31] H. Mei, “Real-time stream processing in embedded systems,” Ph.D.
dissertation, University of York, 2017.

[32] P. Chen, W. Liu, X. Jiang, Q. He, and N. Guan, “Timing-anomaly free
dynamic scheduling of conditional DAG tasks on multi-core systems,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 18,
no. 5s, pp. 1–19, 2019.

[33] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, vol. 4, pp. 6–2, 2016.

[34] https://www.freertos.org, FreeRTOS, accessed July. 15, 2023.
[35] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The

3rd generation berkeley out-of-order machine,” in Fourth Workshop on
Computer Architecture Research with RISC-V, vol. 5, 2020, pp. 1–7.

[36] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-time systems, vol. 30, no. 1, pp. 129–154, 2005.

[37] Z. Jiang, X. Dai, R. Wei, I. Gray, Z. Gu, Q. Zhao, and S. Zhao, “NPRC-
I/O: A NoC-based real-time I/O system with reduced contention and
enhanced predictability,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2023.

[38] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Is your bus arbiter really fair? restoring fairness in axi interconnects
for fpga socs,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[39] M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. But-
tazzo, “A bandwidth reservation mechanism for AXI-based hardware
accelerators on FPGAs,” in 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019), 2019.

[40] E. Missimer, K. Missimer, and R. West, “Mixed-criticality scheduling
with I/O,” in 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS). IEEE, 2016, pp. 120–130.

[41] R. West, Y. Li, E. Missimer, and M. Danish, “A virtualized separation
kernel for mixed-criticality systems,” ACM Transactions on Computer
Systems (TOCS), vol. 34, no. 3, pp. 1–41, 2016.

[42] D. Casini, A. Biondi, G. Cicero, and G. Buttazzo, “Latency analysis of
I/O virtualization techniques in hypervisor-based real-time systems,” in
2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2021, pp. 306–319.

[43] J. Wang and B. Ravindran, “Time-utility function-driven switched
ethernet: Packet scheduling algorithm, implementation, and feasibility
analysis,” IEEE Transactions on Parallel and Distributed Systems,
vol. 15, no. 2, pp. 119–133, 2004.

[44] P. Li, B. Ravindran, and E. D. Jensen, “Adaptive time-critical resource
management using time/utility functions: Past, present, and future,” in
Proceedings of the 28th Annual International Computer Software and
Applications Conference, vol. 2. IEEE, 2004, pp. 12–13.

[45] B. Parten, Y. Lee, B. Quach, L. Myers, W. Ray, and W. Maung, “Multi-
channel peripheral interconnect supporting simultaneous video and bus
protocols,” 2017, US Patent.

[46] P. R. Chandra, K. C. Kahn, E. Galil, E. Kugman, N. Zolotov, V. Yu-
dovich, Y. Dishon, and E. Bagelman, “Multi-protocol tunneling over an
I/O interconnect,” 2014, US Patent.

[47] Z. Jiang, X. Dai, S. Zhao, R. Wei, and I. Gray, “Many-core real-time
network-on-chip I/O systems for reducing contention and enhancing
predictability,” in Proceedings of Cyber-Physical Systems and Internet
of Things Week 2023, 2023, pp. 227–233.

[48] F. Hebbache, M. Jan, F. Brandner, and L. Pautet, “Shedding the shackles
of time-division multiplexing,” in 2018 IEEE Real-Time Systems Sym-
posium (RTSS). IEEE, 2018, pp. 456–468.

[49] Z. Jiang, K. Yang, N. Fisher, I. Gray, N. C. Audsley, and Z. Dong, “Axi-
icRT : Towards a real-time axi-interconnect for highly integrated socs,”
IEEE Transactions on Computers, vol. 72, no. 3, pp. 786–799, 2022.

[50] C. Herber, A. Richter, H. Rauchfuss, and A. Herkersdorf, “Spatial and
temporal isolation of virtual can controllers,” ACM SIGBED Review,
vol. 11, no. 2, pp. 19–26, 2014.

https://www.freertos.org

	Introduction
	ROTA-I/O: Overview
	Top-level Concepts
	ISA Support
	Programming Model
	Integrating ROTA-I/O into a SoC

	ROTA-I/O: Micro-architecture
	I/O Pool
	Scheduling Engine (SE)
	Design Trade-Offs

	ROTA-Sched: An ETS-based Schedule
	System Model
	Allocation and Scheduling of Jobs in ETSs
	Configuration of ETS Parameters

	Evaluation
	Hardware Overhead
	Software Overhead
	I/O-level Timing Performance
	System-level Real-time Performance
	System-level Scalability
	Summary

	Related Work
	Conclusion
	Acknowledgement
	References

