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Autism spectrum disorders (ASD) are a heterogenous set of syndromes characterised by
social impairment and cognitive symptoms. Currently, there are limited treatment options
available to help people with ASD manage their symptoms. Understanding the biological
mechanisms that result in ASD diagnosis and symptomatology is an essential step in
developing new interventional strategies. Human genetic studies have identified common
gene variants of small effect and rare risk genes and copy number variants (CNVs) that
substantially increase the risk of developing ASD. Reverse translational studies using
rodent models based on these genetic variants provide new insight into the biological
basis of ASD. Here we review recent findings from three ASD associated CNV mouse
models (16p11.2, 2p16.3 and 22q11.2 deletion) that show behavioural and cognitive phe-
notypes relevant to ASD. These models have identified disturbed excitation-inhibition
neurotransmitter balance, evidenced by dysfunctional glutamate and GABA signalling, as
a key aetiological mechanism. These models also provide emerging evidence for seroto-
ninergic neurotransmitter system dysfunction, although more work is needed to clarify
the nature of this. At the brain network level, prefrontal cortex (PFC) dysfunctional con-
nectivity is also evident across these models, supporting disturbed PFC function as a key
nexus in ASD aetiology. Overall, published data highlight the utility and valuable insight
gained into ASD aetiology from preclinical CNV mouse models. These have identified key
aetiological mechanisms that represent putative novel therapeutic targets for the treat-
ment of ASD symptoms, making them useful translational models for future drug discov-
ery, development and validation.

Introduction
Autism spectrum disorders (ASD) are a heterogenous set of syndromes characterised by social impair-
ments and communication deficits, often accompanied by restrictive, repetitive behaviours and inter-
ests and altered sensory processing [1]. The prevalence of ASD diagnosis has increased over recent
decades. In 2020 prevalence was estimated at ∼1 in 34 children in the U.S.A., an increase from 1 in 68
in 2010, with diagnosis being four times more common in males than females [2]. Given the complex-
ity and multifactorial nature of ASD there is no singular disease mechanism that underlies diagnosis.
However, research has identified key aetiological mechanisms that contribute to the risk of developing
ASD, highlighting some of the central biological mechanisms involved. This review summarises
several key ASD risk factor mechanisms, with a focus on recent insights gained from rodent models
based on genetic risk for ASD and the impact on neurotransmitter system function.

The genetic risk basis of ASD
Heritability estimates for ASD range from 40% to 90% [3,4], emphasising the central importance of
genetic risk. Environmental risk factors, such as maternal smoking, advanced paternal age and
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prenatal maternal infection are also important [5–7], with at least some of these interacting with genetic risk
[8]. Protective modifiable factors in relation to an individual’s neurodevelopmental trajectory are also import-
ant, and diagnostic outcome is often dissociated from genetic risk. Such protective factors include a healthy
maternal body weight (both pre- and during pregnancy), good maternal nutrition and breastfeeding [9–12].
The genetic architecture of ASD risk is highly complex and polygenic in nature. In most cases, ASD results

from the interaction of multiple common genetic risk variants, with each variant individually contributing a
very small increase in risk. Genome Wide Association Studies (GWAS) with very large sample sizes have been
key in identifying common gene polymorphisms that contribute to an increased risk of developing ASD. These
studies have provided important new insights into some of the key biological mechanisms contributing to ASD
risk, including genetic mutations that impact neuronal gene transcription (ASH2L, BCL11A, KANSL1, SOX7,
SRRM4, XRN2), brain development (BLK, BTG1, CNTN5, DSCAM, FOXP1, KIZ, MMP2, NTM, WDR73,
WNT3, XKR6), inflammation (C2CD4A, IFI16, MFHAS1, NFKB2), the stress response (CRHR1), neuronal cell
activity (DPP10, KCNN2) and synaptic (CNTNAP5, DDHD2, SEMA3G, SNCA) and neurotransmitter system
(GABBR2, GRIN2A, PAFAH1B1, RASGEF18B) function [13–15].
In addition to common gene variants of small effect, single genes and copy number variants (CNVs),

wherein chromosomal segments are either deleted or duplicated, that substantially increase the risk of develop-
ing ASD have also been identified (Table 1). CNVs have received particular interest following the observation
that rare and de novo CNVs are more prevalent in ASD populations [16,17]. CNVs result in a gain or loss of
genetic material that vary in size from tens of thousands to millions of nucleotides, altering the number of
copies of a particular gene (e.g. 2p16.3 deletion, NRXN1) or multiple genes (e.g. 16p11.2 deletion/duplication,
∼29 genes), depending on the CNV. Importantly, some genes located in CNV regions associated with ASD
have been independently identified as having common variants that are also associated with ASD diagnosis
[14,18,19]. The Simon’s Foundation Autism Research Initiative (SFARI) Gene database provides a valuable,
extensive database that rationalises the contribution of risk genes and CNVs for ASD (https://gene.sfari.org).

Genetic rodent models relevant to ASD
Due to their small effect size, genetic rodent models based on risk SNPs in common gene variants, such as
those identified as being associated with ASD by GWAS, have not yet been prioritised. To ensure translatability,
preclinical rodent models with high construct validity are required. In the context of risk SNPs in common
gene variants, such genetic models would optimally be based on multiple risk gene polymorphisms, which is
technically challenging. Future preclinical work in ASD will no doubt benefit from the development of
SNP-based, polygenic risk gene models with high construct validity. Instead, preclinical rodent models for ASD
based on single risk genes and CNVs with high penetrance have been prioritised, in part due to the technical
capability of generating these models but also due to the predicted pronounced impact of these genetic changes
in terms of neurobiology and translational phenotypes (Figure 1). One potential limitation of this approach is
that the observations made may not be more broadly translational to the general ASD population, due to the
relative rarity of these mutations. However, the hope is that key aetiological mechanisms can be identified and
prioritised for drug development by integrating observations across multiple CNV and risk gene models. In
addition, these models offer the advantage that they have high construct validity for individuals who harbour
the specific genetic mutation, aligning with a personalised-medicine focus for drug development and the
opportunity to develop new interventions for individuals harbouring these mutations. In addition, many CNVs
affect multiple genes (e.g. 16p11.2 deletion/duplication) and so align with the polygenic risk basis of ASD,
which potentially confers a higher overall construct validity and generalisability to these models in comparison
with those based on single risk gene mutations.

Risk mechanism insights from CNV models
Utilising rodent models based on risk CNVs has been fundamental in improving our understanding of the key
biological mechanisms implicated in the neurobiology of ASD. Often, surprising and unexpected alterations in
neurobiology emerge from these CNVs, particularly at the systems-level, due to their complex effects on neuro-
developmental processes and trajectories. This highlights the essential utility of risk CNV rodent models, and
other risk gene models, in addressing the challenges of understanding ASD aetiology and in the drug develop-
ment process for these disorders. Here we review a range of recent insights gained from three rodent models
based on CNV deletions associated with an increased risk of developing ASD, with a focus on the impact at
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Table 1. Single risk genes and CNVs that substantially increase the risk of ASD diagnosis. Part 1 of 2

Monogenic
disorder/CNV
syndrome Gene(s) involveda

ASD odd’s ratio (OR)/
hazard ratio (HR)/%
population

Key biological mechanisms
and phenotypic outcomes

Fragile X Fragile X messenger
ribonucleoprotein 1 (FMR1)

- Transcriptional regulation
including the regulation synaptic
mRNAs (Darnell et al., 2011,
PMID: 21784246) [77]

Rett’s syndrome Methyl-CpG binding protein 2
(MECP2)

- Regulation of neuronal
transcriptional programmes
(Tillotson and Bird, 2020, PMID:
31629770) [78]

2p16.3 deletion Neurexin-1 (NRXN1) ∼14.9 OR (Matsunami
et al., 2013, PMID:
23341896 [34]; Wang
et al., 2017, PMID:
29045040 [35]; Yuen
et al., 2017, PMID:
28263302 [79])

Synaptic protein which binds to
post-synaptic partners to
regulate synaptic maturation and
function, including glutamate
synapse function (Gomez et al.,
2021, PMID: 33420412 [36];
Sudhof, 2017, PMID: 29100073
[37])

16p11.2
deletion/
duplication

∼29 genes including
Mitogen-activated protein kinase
3 (MAPK3), Thousand and one
amino-acid kinase 2 (TAOK2),
Major Vault Protein (MVP)

Deletion =∼38.7 OR
Duplication =∼20.7 OR
(Walsh and Bracken,
2011, PMID: 21289514
[80])

MAPK3: Extracellular signal
regulated kinases essential for
cell proliferation, differentiation,
and cell cycle progression
(Boutros, Chevet & Metrakos,
2008, PMID: 18922965 [81])
TAOK2: Activates the p38 kinase
cascades through activation of
MEK kinases (Chen et al., 1999,
PMID: 1047253 [82]). Regulates
the cytoskeleton and dendrite
formation (de Anda et al., 2012,
PMID: 22683681 [83];
Nourbakhsh et al., 2021, PMID:
34879262 [84]). Loss induces
ASD-relevant phenotypes in
mice (Richter et al., 2019, PMID:
29467497 [85]). MVP: neuronal
function incompletely
understood, regulates ERK
signalling. Regulates brain
morphology and modified
anxiety-like behaviour in mice
(Kretz et al., 2023, PMID:
37968726 [86]). KCTD13:
Regulates neuronal development
(Kizner et al., 2020, PMID:
31402430 [87]) and excitatory
neurotransmission (Gu et al.,
2023, PMID: 37142655 [88]).

15q13.3
deletion/
duplication

∼6 genes including Cholinergic
receptor nicotinic alpha 7
subunit (CHRNA7), OTT-domain
containing protein 7A (OTUD7A),
Transient receptor potential
cation channel subfamily M
member 1 (TRPM1)

Deletion: ∼10% affected
individuals have an ASD
diagnosis (Lowther et al.,
2015, PMID: 25077648
[89]; Breakpoint
BP4-BP5).

CHRNA7: Nicotinic acetylcholine
receptor subunit, modulates
glutamatergic (Stone, 2021,
PMID: 34111447 [90]) and
GABAergic (Lin et al., 2014,
PMID: 24983521 [91])
transmission. OTUD7A: putative
deubiquitinating enzyme that
localises to dendritic spines.

Continued
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the systems-level, including the impact on cognition, behaviour, brain network connectivity and neurotransmit-
ter system function.

16p11.2 deletion
One of the first and most common CNVs associated with ASD is located at 16p11.2, with both deletions and
duplications conferring increased ASD risk [19–21]. Interestingly, there is evidence for clinical heterogeneity
between 16p11.2 deletion and duplication carriers, with duplication carriers more likely to be diagnosed with

Table 1. Single risk genes and CNVs that substantially increase the risk of ASD diagnosis. Part 2 of 2

Monogenic
disorder/CNV
syndrome Gene(s) involveda

ASD odd’s ratio (OR)/
hazard ratio (HR)/%
population

Key biological mechanisms
and phenotypic outcomes

Regulates glutamatergic synapse
development (Kozlova et al.,
2022, PMID: 35931052 [92])
and deletion induces
ASD-relevant behavioural
phenotypes in mice (Yin et al.,
2018, PMID: 29395075 [93]).
TRPM1: divalent cation (Ca2+,
Mg2+, Zn2+) permeable channel,
potentially interacts with
glutamate mGluR6 in neurons
(Shen et al., 2012, PMID:
22586107 [94]) and deletion
induces ASD-relevant
phenotypes in mice (Hori et al.,
2021, PMID: 33785025 [95]).

22q11.2
deletion/
duplication

∼90 genes (∼40 protein coding
expressed in brain) including
T-Box transcription factor 1
(TBX1), DiGeorge syndrome
critical region 8 (DGCR8),
Proline dehydrogenase (PRODH)

∼2.95 HR (Olsen et al.,
2018, PMID: 29886042
[96])

TBX1: encodes transcription
factors regulating developmental
processes (Papaioannou et al.,
2014, PMID: 25294936 [97]).
Heterozygous deletion impairs
myelination, reduces postnatal
progenitor cells in hippocampus
and impairs cognitive flexibility
(Hiramoto et al., 2022, PMID :
34737458 [98]). DGCR8:
Regulates microRNA biogenesis
(Burger and Gullerova, 2015,
PMID: 26016561 [99]).
Influences brain development
and heterozygous deletion
impacts on GABAergic signalling
and neuronal network plasticity
(Amin et al., 2017, PMID:
29146941 [100]). PRODH:
Regulates proline metabolism.
Prodh deficient mice show
altered glutamate and GABA
function (Paterlini et al., 2005,
PMID: 16234811 [101]) and
Prodh depletion impacts on
neuronal morphology (Yao et al.,
2024, PMID: 37815900 [102]).

A selection of genes and CNVs associated with an increased risk of developing ASD, with a focus on those with a large number of cases that have
currently been relatively well characterised in rodent models.aA few select genes of interest shown for polygenic CNVs only. A more extensive list of
risk genes and CNVs is available at http://gene.sfari.org.
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attention deficit hyperactivity disorder (ADHD) and psychotic symptoms than individuals carrying a 16p11.2
deletion [22]. This suggests that there is uncharacterised, mechanistic heterogeneity between deletion and dupli-
cation at this locus, that results in differential risk for ADHD and psychotic psychopathology, and potentially
to ASD symptomatology, which is yet to be studied in detail. In addition to ASD, 16p11.2 CNVs are associated
with intellectual disability and epilepsy [23,24], which may result from disturbed excitation-inhibition (E-I)
neurotransmitter balance in the brain, as discussed below.
Mouse models with a 16p11.2 deletion analogous to human carriers, which results in haploinsufficiency of

∼29 genes (including Taok2, Mapk3 and Mvp, Table 1) show ASD-relevant behavioural phenotypes including
hyperactivity and repetitive circling behaviours [25]. Interestingly, enhanced cognitive abilities have also been
shown in 16p11.2 deletion mice in terms of visual attentional processing [26], suggesting that the model reflects
both key behavioural deficits and some of the enhanced cognitive abilities reported in individuals with ASD,
such as increased visual search ability [27]. In terms of brain network connectivity, there is evidence for the
widespread functional brain network dysconnectivity in 16p11.2 deletion mice, that includes abnormal pre-
frontal cortex (PFC) connectivity, which parallels that seen in human individuals with 16p11.2 deletion and
those with ASD [26,28]. In addition, there is evidence for widespread E-I neurotransmitter system imbalance in
16p11.2 deletion mice [26,29,30] with some behavioural (activity and social) deficits corrected by the E-I
neurotransmission modulator N-acetyl cysteine [31]. Moreover, there is also emerging evidence for serotonergic
dysfunction as a consequence of 16p11.2 deletion, with the hyperactivity and social deficits in these animals
corrected by the 5-HT1B/1D/1F receptor agonist eletriptane [31], sociability deficits reversed by MDMA and the
5-HT1B agonist CP-94,253 [32], and performance in the forced swim test rescued by the 5-HT2A receptor
antagonist volinanserin (MDL 100 907) [33]. Despite these pharmacological observations, the cellular and
molecular basis of serotonin (5-hydroxytryptamine, 5-HT) system dysfunction in this model has not yet been
characterised. This would certainly be of interest, to further understand its role in ASD symptom risk.

Figure 1. Translational rodent models based on genetic risk factors for ASD provide new mechanistic insight into the

aetiological basis of the disorder.

Risk genes identified in human genetic studies have identified common variants of small effect (such as SNPs) and rare highly

penetrant risk genes and CNVs. Rodent models based on risk CNVs identified in human studies have shown these risk genes

impair neurotransmitter system function, particularly in terms of E-I (glutamate-GABA) balance, and potentially in serotonin

system function. This neurotransmitter system dysfunction contributes to abnormal brain metabolism/function and brain

network connectivity, which underscores abnormal behaviour and cognition, including deficits in social and executive function.
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2p16.3 deletion
2p16.3 deletions, involving heterozygous deletion of the NRXN1 gene, substantially increase the risk of develop-
ing ASD [20,34,35]. The vast majority of 2p16.3 deletions identified impact on the longer NRXN1α isoform,
while leaving the shorter NRXN1β isoform intact, resulting in heterozygous NRXN1α deletion. NRXN1α is a
presynaptic protein that interacts with a diverse range of post-synaptic binding partners to regulate synaptic
maturation and efficacy [36,37].
Mouse models based on decreased NRXN1α expression have identified a range of behavioural phenotypes

relevant to ASD, and to human individuals with the 2p16.3 deletion. This includes delayed development,
abnormal communication (ultrasonic vocalisations) and impaired memory and executive cognition [38–40]. In
addition, Nrxn1α heterozygous (Hz) deletion in mice induces deficits in brain metabolism and network con-
nectivity that have translational relevance to the alterations seen in individuals with ASD, including reduced
PFC metabolism and abnormal PFC connectivity [40,41]. Evidence from Nrxn1α Hz mice also supports dis-
turbed balance in terms of excitatory (glutamatergic) and inhibitory (GABAergic) neurotransmitter system
function in the brain [40], and the regulation of E-I balance by Nrxn1α is supported in other mouse models
[42,43]. Altered E-I balance in Nrxn1α Hz mice parallels the disturbed E-I balance reported in individuals with
ASD, and data from cultured human cortical neurons from ASD patients with NRNX1 heterozygous deletion
supports neuron hyperexcitability and abnormal glutamatergic function [44]. Emerging data from Nrxn1α Hz
mice also support potentially dysfunctional serotonergic signalling [40], which may parallel dysfunctional sero-
tonin activity in individuals with ASD [45]. More work is needed to define the nature of serotonin system dys-
function that results from Nrxn1α heterozygosity and whether serotonergic drugs can correct some of the
behavioural phenotypes observed. This could include testing some of the serotonergic drugs that have previ-
ously been found to be beneficial in 16p11.2 deletion mice.

22q11.2 deletions
Genetic deletions at 22q11.2, resulting in DiGeorge (velocardiofacial) syndrome, have been relatively well char-
acterised and are associated with increased risk of developing ASD, and a range of other brain disorders,
including schizophrenia [46,47]. The typical ∼3.0 Mb 22q11.2 deletion region contains ∼90 genes, including 46
protein coding genes with confirmed expression in the human brain [48].
Mouse models that either partially or fully replicate the ∼3.0 Mb deletion seen in most patients, have been

generated [49]. These mouse models demonstrate a range of behavioural phenotypes and cognitive deficits
which parallel those seen in individuals with ASD, including impaired social memory and circadian rhythms
[49–51]. In terms of brain network connectivity, abnormal PFC connectivity has been reported in 2q11.2
mouse models [52,53] and is also found in humans with the 22q11.2 deletion [54]. Studies in both humans
with the deletion and 2p11.2 deletion mouse models also support disturbed E-I neurotransmitter system
balance because of the deletion, with alterations in both glutamate and GABAergic neurotransmission sup-
ported [55–57], although effects on glutamate are not always found in patients [58]. While several studies have
characterised the impact of 22q11.2 deletion on dopaminergic function in the brain, given that the dopamine
degrading enzyme Catechol-O-methyltransferase is coded for in the 22q11.2 region and its independent associ-
ation with schizophrenia (reviewed in [59]), very few studies have characterised the impact on serotoninergic
function. However, lower urine serotonin levels have been reported in individuals with 2q11.2 deletion, which
were found to positively correlate with IQ [60] and recent evidence supports a potential positive effect of long-
term selective serotonin reuptake inhibitor (SSRI) treatment on cognition in children and adolescents with the
deletion [61]. Thus, further study on the impact of the 2q11.2 deletion on serotonin neurotransmitter system
function is certainly warranted.

Summary: integrating observations across multiple risk
gene models to identify risk mechanism and drug target
prioritisation
Observations across the CNV models outlined above support a role for altered synaptic function, E-I balance
and potential serotoninergic dysfunction as key alterations underlying ASD symptomatology. While E-I imbal-
ance has been relatively well characterised, further work on the potential role of disturbed serotonin system
function in these CNV models is needed. While E-I balance is more studied, important gaps in our
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understanding of how E-I balance is altered across these models remain, particular in terms of (i) the brain
regions most affected, (ii) the molecular aspects of glutamate and GABA neurotransmitter system function
most impacted, (iii) the relationship of these changes to functional outcomes, and (iv) the conserved nature of
these specific changes across the different models. More systematic, granular, and integrated work across these
models is required to further elucidate the conserved changes in E-I function and their relationship to behav-
ioural and cognitive outcomes. This seems particularly important given evidence supporting the potential effi-
cacy of drugs targeting E-I balance for some ASD symptoms [62,63].
The emerging data supporting serotonergic dysfunction across these models is also of particular interest

given the diverse data supporting serotonergic dysfunction in people with ASD and in other ASD-relevant
animal models. Observations in humans with an ASD diagnosis include reduced serotonin-reuptake transporter
(SERT) availability, lower expression of the 5-HT degrading enzyme mono-amine oxidase A (MAOA) and
complex, subtype-dependent alterations in 5-HT receptor expression (reviewed in [45]). In addition, data sup-
porting the ability of drugs targeting the serotonergic system to relieve some ASD symptoms, particularly SSRIs
that block SERT [64,65], also implicate dysfunction of this neurotransmitter system in ASD, although positive
effects are not always found [66] and the evidence for some ASD symptom domains is very limited. The sero-
tonin system, a monoamine, modulatory neurotransmitter system, originates from cells located in the raphé
nuclei of the brainstem with extensive projections to the forebrain and brainstem in both humans and rodents
(Figure 1) [67,68]. Thus, the serotonin system innervates and modulates activity in a range of brain regions
known to be dysfunctional in ASD, including the PFC and hippocampus [69,70]. The serotonin system utilises
a diverse range of receptors, ordered into seven families (5-HT1–7), in its signalling, with some acting primarily
as post-synaptic effectors (e.g. 5-HT2) and others with functions as both post-synaptic effectors and autorecep-
tors (e.g. 5-HT1A) that modulate serotonin release [71]. A range of receptor agonists and antagonists, with vari-
able selectivity, are available to target these receptors, supporting the tractability of the serotonin system as a
therapeutic target in ASD (https://www.guidetopharmacology.org [72]). The serotonin system also regulates a
wide range of behavioural and cognitive processes relevant to ASD symptomatology, including vulnerability to
social stress [73], repetitive/compulsive behaviours [74] and the regulation of executive function [75], further
supporting the potential of targeting the serotonin system to relieve these symptoms in ASD. Given the emer-
ging data supporting serotonin system dysfunction in the CNV models considered in this review, further work
is required to understand the changes present and the specific molecular aspects of serotonin system signalling
that are of putative therapeutic value in these models and ASD.
Converging evidence across multiple CNV models also supports the PFC as an important locus of brain

network dysfunction, paralleling PFC dysfunctional connectivity in ASD [76]. This PFC dysfunction likely con-
tributes to the higher-order cognitive, emotional, motor and interoceptive processing alterations experienced by
individuals with ASD. Thus, pharmacological interventions that aim to restore PFC function and connectivity
to alleviate these symptoms are of particular interest. The above consideration of the available literature high-
lights the utility of combining observations made across multiple genetic models relevant to ASD in identifying
key aetiological mechanisms and prioritising these for drug validation. This integration is particularly import-
ant given that penetrance for any given CNV is incomplete and the prevalence of ASD symptom heterogeneity
in both individuals harbouring these CNVs and those with an ASD diagnosis. While conserved changes across
models may be insightful in terms of prioritising targets for the drug development process, divergences
between models are also of interest. There is considerable heterogeneity in symptomatology across individuals
with an ASD diagnosis, that likely results in part from underlying genetic risk and the resultant changes in
neurobiology. This is very poorly understood. Thus, identifying mechanisms that diverge across mouse models
may be useful in informing the neurobiological basis of symptom heterogeneity in ASD.

Future directions
Insight into the risk genes that underly ASD has provided valuable new information into the aetiological
mechanisms that underlie the condition and have identified novel targets for drug development aimed at
improving symptoms. However, several challenges remain, including the generalisability of observations made
in models based on rare single risk genes and CNVs. While integrating information from multiple models to
identify conserved mechanisms may overcome these challenges, particularly in the context of prioritising the
focus of future drug development for ASD, developing new genetic rodent models with high construct validity
and broad generalisability, based on multiple risk gene variants of small effect, will also be important.
Integrating existing and new genetic models with established environmental risk factor manipulations will also
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be useful, providing new insight into mechanisms that regulate genetic penetrance. In addition, future work sys-
tematically characterising the diversity of biological mechanisms underlying symptom heterogeneity in ASD,
and the relevance of different risk factor models to these, is required.

Perspectives
• Understanding the biological mechanisms underlying the risk of developing ASD is an essen-

tial step in developing novel therapeutics. Human genetic studies and rodent models based
on rare but highly penetrant genetic risk factors have been fundamental in improving our
understanding of the mechanistic basis of ASD.

• Integrating information from multiple rodent transgenic risk models, including CNV models,
has identified key aetiological mechanisms in ASD risk. Observations made in CNV models
support altered synaptic function, E-I neurotransmitter balance and abnormal brain network
connectivity as key ASD risk mechanisms.

• Emerging evidence from CNV models also supports serotonergic dysfunction in ASD, but this
remains underexplored. To date, polygenic common gene variant, environmental and modifi-
able risk factor preclinical models have been relatively under-utilised. Future studies using
these models will likely provide valuable new insight into the mechanistic basis of ASD and
will be useful in the drug development and validation process.
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