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Abstract

In this thesis, we study a discrete dynamical system provided by the deformation

of cluster mutations associated with cluster algebras of finite Dynkin diagrams of

type A2N (N ≥ 3), C2(∼= B2), B3, B4, D4 and D6. In the first part of the thesis,

we show that the corresponding cluster algebras exhibit a remarkable periodicity

phenomenon, known as Zamolodchikov periodicity. We present a particular

deformation, which is a novel approach introduced by Hone and Kouloukas. This

procedure modifies cluster mutation in such a way that it preserves the natural

presymplectic form in cluster algebras. For the cases of type C2, B3, D4, we

construct Liouville integrable maps defined by the specific composition of deformed

cluster mutations and show that the new cluster algebras emerge by considering

Laurentification, which is a lifting of the map into a higher-dimensional space where

the Laurent property is exhibited. The corresponding deformed integrable maps are

also closely related to Somos-type recurrences.

In particular, we prove the integrability of the birational map defined by a

sequence of mutations in cluster algebra of type A2N . We examine the deformation

of discrete dynamics in cluster algebra of type A6 and compare the result associated

with the type A4 case. Following this, we introduce a local expansion operation on

quivers, which provides a special family of quivers corresponding to specific types

of cluster algebras. We demonstrate that these cluster algebras are obtained by

lifting the deformation of type A2N maps via Laurentification. We also show that

the discrete dynamics in the new cluster algebras, induced from cluster algebras of

type A2N , B4 and D6 via deformation, admit the tropical (max-plus) analogue of

the system of homogeneous recurrences. This allows us to calculate the exact degree

growth of the discrete dynamical system.
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Chapter 1

Introduction

Cluster algebras are a class of commutative algebras, constructed as subalgebras

of rational function fields, which were introduced by Fomin and Zelevinsky in

[1]. These algebras are built differently from many other commutative algebras as

cluster algebras are not presented with generators and relations from the beginning.

Instead, to define cluster algebras, we start with initial data, given by two objects,

• initial cluster variables, n distinguished generators x = (x1, . . . , xn) and

• an exchange quiver Q, a finite directed graph with n nodes which does not

contain loops or oriented 2-cycles.

The pair of objects (x, Q) is called an initial seed. Then we apply a special iterative

process called mutation to produce more cluster variables and exchange quivers.

Continued application of the mutation process results in constructing the algebra,

which is called the associated cluster algebra, as the subalgebra of Q(x1, . . . , xn)

generated by all the cluster variables.

Fomin and Zelevinsky further extended the notion of mutation to define the

alternative version known as a Y-seed pattern [2, 3]. This introduces coefficient

variables. Similar to cluster mutation, the coefficient variables have their own

dynamics described by the mutation.

Along with the Laurent phenomenon (or Laurent property), which says that
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every cluster variable can be expressed as a Laurent polynomial in the initial (or

indeed any) seed (rather than just being a rational function), the other main result

they obtained is the classification of cluster algebras of finite type. A cluster algebra

is said to be of finite type if it has only finitely many cluster variables. Such cluster

algebras are classified by quivers that are orientations of a Dynkin diagram of a

finite dimensional semisimple Lie algebra.

These results raised the importance of the question of studying the recurrence

relation which is given by mutations in Y-seeds. Such a relation is equivalent

to the difference equation known as a Y-system. Y-systems were discovered by

Zamolodchikov in [4] and he showed that the solutions of the difference equation

are also solutions of the Bethe ansatz equation associated with conformal theories

of ADE scattering diagrams. Furthermore, it was observed that the solutions

appeared to be periodic with a particular period; this was known as Zamolodchikov’s

periodicity conjecture. In [5], this was investigated via the cluster algebra setting

and Fomin and Zelevinsky showed a specific product of mutations exhibited

Zamolodchikov periodicity, which we discuss in Section 2.1.5.

In [6], Marsh and Fordy introduced the periodicity phenomenon for particular

quivers, which is known as mutation periodic that is a feature that the associated

quiver remains to be invariant up to permutation of labellings i.e. µirµir−1 · · ·µi1Q =

ρ(Q), where ρ is a permutation of the nodes. Following it, Hone and Fordy in [7]

(and Nakanishi in [8]) used the notion of mutation periodicity and introduced the

birational map between seeds, referred to as the cluster map, which induces the

new cluster variables but preserves the quiver. There exist unique cases of cluster

maps such that the initial seed is fixed under a particular number of iterations of

mapping, which is referred to as periodic cluster maps. In this thesis, we consider the

cluster map which possesses Zamolodchikov periodicity. The notion of cluster maps

establishes a connection between cluster algebras and discrete integrable systems.

What is an integrable system? In the world of physics, physical processes can be

described by differential equations whose solutions provide a better understanding of

unknown phenomena. Most continuous models using differential equations cannot

be solved exactly and require analysis with numerical approximation. However,
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there exist particular models that allow for direct integration without numerical

methods. Models with this special feature are referred to as integrable systems.

There are various notions of integrability, for instance: compatibility conditions

for the Lax pairs, exhibiting regular motion, and existence of a complete set of

conserved quantities (first integrals). Thus there is no general definition for an

integrable system as the notion varies depending on the context. Here, we consider

the specific case, known as a Liouville integrable system, which is, roughly speaking,

a dynamical system whose motion is constrained by a sufficient number of conserved

quantities which are invariant under the dynamics and are in involution with respect

to the associated Poisson bracket. In Section 2.2, we review the definition in the

context of Hamiltonian system.

The notion of Liouville integrability can be transferred to a discrete dynamical

systems, defined by iteration of mappings. This leads us to the identification of

a discrete integrable system (see [9, 7]). From the view of the discrete system,

the iteration of cluster maps can be regarded as a discrete dynamical system; one

can identify an associated discrete integrable system in the sense of the Liouville

integrable map introduced in [9] (see further detail in section 2.2). Over the years,

the relationship between cluster algebras and discrete integrable systems has been

studied and produced numerous interesting methods and results up to this point.

Recently, Hone and Kouloukas [10] introduced deformation of coefficient-free

cluster mutation which preserves the symplectic form that is compatible with

mutation. They showed that the composition of deformed mutations can be regarded

as a symplectic cluster map and thus enables us to discover a family of new discrete

integrable systems. However a problem arises upon applying the deformation, that

is, it ends up destroying the Laurent property of the cluster map, which is an

essential property of cluster algebras. In order to resolve the problem, they took a

specific procedure, Laurentification (a term coined by Hamad et al. in [11]), that is,

lifting the system to a higher dimensional system where the Laurent property exists.

This was established by constructing the transformation through the p-adic methods

introduced by Kanki in [12] which is analogous to the singularity confinement test

[13]. As a result, they presented several examples, including deformed integrable
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cluster maps associated with Dynkin types A2, A3 and A4, which can be successfully

lifted to higher dimensional integrable cluster maps, where Laurent property holds.

1.1 Outline

The main aim of this thesis is to study a special families of discrete integrable

systems which emerged from the iteration of Dynkin type cluster maps equipped

with periodicity property via the deformation procedure of [10].

Chapter 2 reviews definitions and results related to cluster algebras and discrete

integrable systems. This chapter provides the necessary background for exploring

results in the later chapters. We then review the deformation of cluster mutation

introduced in the paper [10]. Following on from this, we consider several examples

of integrable deformation of type A2 and A4 cluster maps to see how singularity

analysis can be used in the process of Laurentification which lifts deformed map to

cluster algebra of higher rank whose seed is extended by frozen variables.

Chapter 3 is based on the paper [14] which is joint work with Jan Grabowski

and Andrew Hone. We begin the analysis of cluster maps associated to type A2N in

general and show that the periodic cluster map associated to type A2N is integrable

(Theorem 3.1.5). Next we examine the base case for our “inductive” approach,

namely type A6 and compare it with type A4. We see that the Laurentification of

the former is obtained from that of the latter by insertion of a particular quiver,

in a form of local expansion. By successive local expansions, we can construct an

associated family of quivers that are corresponding to the deformation of type A2N

maps via Laurentification. In the final part of the chapter, we examine the degree

growth of the deformed type A2N to perform one of the integrability tests, algebraic

entropy.

Chapter 4 is based on the paper [15] which is joint work with Andrew Hone

and Mase Takafumi. In this chapter we consider an integrable deformation of the

C2 cluster map and show that this lifts to a cluster algebra of rank 5 extended by

a single frozen variable. We apply the same procedure to periodic maps of type
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B3 and D4. We will see that each case admits two distinct deformations that are

integrable. This is a novel situation which was not seen in other known cases. We

prove that the discrete dynamics, induced by the deformed maps, are closely related

to Somos-5 and (a special case of) Somos-7 recurrence

Chapter 5 concerns deformation of periodic cluster maps associated with type B4

and D6. We show that these maps can be lifted to cluster maps via Laurentification.

We show that the degree growth of these deformed maps is quadratic, which lead

us to conjecture that they are integrable.
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Chapter 2

Preliminaries

2.1 Cluster algebras

In this section, we will define mutation, which has two aspects: quiver mutation

and cluster mutation and introduce an example to see the construction of cluster

algebras (see [1, 16, 3, 17] for further details of cluster algebras). We follow by

introducing the features of cluster algebras: Laurent phenomenon and finite type

cluster algebras; we observe that the features were used to link the cluster algebras

with root systems, Zamolodchikov periodicity and mutation periodicity.

2.1.1 Quiver and matrix mutation

Let Q = (V,E) be a quiver with n nodes, V = {1, 2, . . . , n} and directed edges

E. We assume that Q does not possess any loops or oriented 2-cycles. However,

multiple edges between nodes are allowed and when there are many edges between

two vertices we write
i−→ as a shorthand for i parallel arrows.

Definition 2.1.1. Let Q be a quiver. Quiver mutation at node k, to obtain the new

quiver µk(Q), is performed by following the steps below:

1. For each full subquiver i
p−→ k

q−→ j, insert a (multiple) edge i
pq−→ j
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2. Reverse all arrows which are connected to k, j
q−→ k

p−→ i

3. Remove any 2-cycles which are formed by inserting arrows.

Example 2.1.2 (Quiver mutation at node 2).

2 2 2 2

3 1 3 1 3 1 3 1

As we assumed that the quiver has no 2-cycles and no loops, then we can identify

a n× n skew-symmetric matrix which corresponds to the quiver.

Remark 2.1.3. The applet authored by Bernhard Keller, available at

https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/, can be used

as a graphical tool to help compute quiver mutations. Throughout this thesis, we have

done so and outputs from it appear in e.g. Figure 2.4.

Definition 2.1.4. Let Q be a quiver with n vertices and no 2-cycles and no loops.

Then one can encode this quiver in the n × n skew-symmetric integer matrix B =

B(Q) by setting the matrix entry bij to be the number of arrows i to j. Then we

refer to this matrix B as an exchange matrix.

As the quiver Q can be represented by the exchange matrix B = B(Q), one can

formulate the quiver mutation in terms of entries of B, giving µk(B). We refer to

this formula as matrix mutation (see [17, 3, 16]).

Definition 2.1.5. Let B be an exchange matrix and let B′ = µk(B) be the new

exchange matrix obtained by applying mutation to the exchange matrix B in direction

k. The entries of B′, b′ij, are given by

b′ij =

−bij if i = k or j = k

bij +
1
2
(|bik|bkj + bik|bkj|) otherwise

(2.1)

Alongside quiver (correspondingly, matrix) mutation, cluster variables transform

under cluster mutation.
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Definition 2.1.6. Let F be the field of rational functions in n independent variables

x1, . . . , xn over C and set x = (x1, . . . , xn) ∈ Fn. The cluster mutation of x in

direction k is µk(x) = (x1, . . . , xk−1, x
′
k, . . . xn) where x′k is the element defined by

the expression,

µk(xk) = x′k =
1

xk

 n∏
j=1
bjk>0

xbjk +
n∏
j=1
bjk<0

x−bjk

 (2.2)

This expression is known as a (coefficient free) exchange relation.

Note that we could work over other base fields than C but we will restrict to this

choice to employ geometric methods later.

Given an initial seed (x, B) of size n, one can apply the mutations in n possible

directions. This results in n new seeds. In succession, the mutations can be applied

to each such seed in n possible directions again, and so on. It is important to note

that consecutive mutations in the same direction do not yield anything new. This

is due to the mutation being involutive: µ2
i = id. Then, in this way, we may label

the vertices of a rooted n-valent tree by clusters. Note that in general mutations

on different vertices do not commute (in the sense that µi ◦ µj ̸= µj ◦ µi) unless

the vertices are “far apart” (i.e. are at least distance 2 apart in the quiver). Then

one can produce the collection of cluster variables which are induced by iterated

cluster mutations in all directions; the set of all cluster variables obtained in this

way generates the so-called cluster algebra.

Definition 2.1.7 (Cluster algebra, [1]). The cluster algebra A(x, B) is the C-

subalgebra of the field F whose generating set is the set of all cluster variables

produced by all possible sequences of mutations applied to the initial seed (x, B).

Note that if x is of size n (so B is an n× n matrix), we say (x, B) is of rank n.

Example 2.1.8. Begin with the initial seed (x, B), where x = (x1, x2) and the

exchange matrix

B =

 0 1

−1 0


14



The mutation in the direction 1, µ1(x, B) = (x′, B′), where
(
x′1, x

′
2

)
(
x′1, x

′
2

)
=

(
1 + x2
x1

, x2

)
, B′ =

0 −1

1 0

 = −B

Since the mutation returns the initial seed if we apply the mutation in the same

direction as previously, the next mutation should be in direction 2. The mutation

µ2(x
′) =

(
x′′1, x

′′
2

)
,

x′′1 = x′1

x′′2 =
1 + x′1
x′2

=
1 +

(
1+x2
x1

)
x2

=
1 + x1 + x2

x1x2

and

µ2(B
′) = B

Applying mutation in sequence yields the following cluster variables,

x1 x2 B

µ1(x, B)
1 + x2
x1

−B

µ2µ1(x, B)
1 + x1 + x2

x1x2
B

µ1µ2µ1(x, B)
1 + x1
x2

−B

µ2µ1µ2µ1(x, B) x1 B

µ1µ2µ1µ2µ1(x, B) x2 −B

We reach the seed ((x2, x1),−B) after a sequence of five mutations. Notice that

this seed ((x2, x1),−B) can be obtained from the initial seed ((x1, x2), B) by swapping

the labels 1 and 2 i.e. the entries of B, b12 ↔ b21 and x1 ↔ x2. Following on

from ((x2, x1),−B), the sequence of mutations generates cluster variables which are
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already found, and the seed will eventually be returning to the initial seed. Hence

associated cluster algebra is given by

A(x) = C
[
x1, x2,

1 + x2
x1

,
1 + x1
x2

,
1 + x1 + x2

x1x2

]

Notice from the above example that all the cluster variables are given by

Laurent polynomials in initial variables xi for i = 1, . . . n. This is one of the most

significant features of the cluster algebras such that cluster variables, obtained from

the sequence of mutations, are expressed as Laurent polynomials in initial cluster

variables. This is known as the Laurent phenomenon, stated as follows.

Theorem 2.1.9 (Laurent phenomenon (see [1] )). Every cluster variable generated

by the cluster mutations is in the Laurent polynomial ring in its initial cluster

variables.

2.1.2 Cluster algebra with coefficients

It is possible to generalize the notion of a cluster algebra by introducing coefficients.

In order to define this, let us consider the general class of exchange matrices as

follows.

Definition 2.1.10. An n × n integer matrix B is called a skew-symmetrizable

exchange matrix if there exists an integer diagonal matrix D, which satisfies

(DB)T = −DB. We refer to such a matrix D as a skew-symmetrizer.

Note that D is the identity matrix if B is a skew-symmetric matrix. The

notion of cluster algebras can be extended by introducing frozen variables in

clusters, that are extra variables which do not mutate. We call a cluster x̃ =

(x1, x2, . . . , xn, xn+1, . . . , xn+m) an extended cluster, formed by mutable cluster

variables x1, . . . , xn and the frozen variables xn+1, . . . , xn+m. If the (n + m) × n

matrix B̃ has upper n × n submatrix a skew-symmetrizable matrix, then we call

B̃ an extended exchange matrix. Thus we obtain a cluster algebra with initial

seed (x̃, B̃) generated by cluster variables induced by the sequence of mutations
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µk(x̃, B̃) = (x̃′, B̃′) where x̃′ = (x1, . . . , x
′
k, . . . , xn, xn+1, . . . , xn+m) and B̃

′ are given

by the cluster mutation,

x′kxk = αk

n∏
j=1
bjk>0

x
bjk
j + βk

n∏
j=1
bjk<0

x
−bjk
j (2.3)

where the coefficients are

αk =
n+m∏
j=n+1
bj,k>0

x
bj,k
j , βk =

n+m∏
j=n+1
bj,k<0

x
−bj,k
j (2.4)

and the matrix mutation is defined by (2.1). Note that the formulas for x̃′ and

B̃′ are the same as previously given except that the range of indices is now from

1 to n + m. We refer to these more general cluster algebras as cluster algebras of

geometric type.

There is an another form of expression for cluster algebra of geometric type. To

define it, we need the notion of tropical semifield.

Definition 2.1.11. A semifield is an abelian multiplicative group with the operation

⊕ which satisfies the property of commutative, associative and distributive under

multiplication i.e. a(b⊕ c) = ab⊕ ac

Definition 2.1.12. Let P be semifield. Then P is tropical if the operation ⊕ of any

Laurent polynomials yields following∏
i

xaii ⊕
∏
j

x
bj
j =

∏
k

x
min(ai,bi)
k (2.5)

for xi ∈ P .

Let P be a tropical semifield defined by generators xn+1, . . . , xn+m and let ZP

be group ring of P over Z. By setting the F to be a field of rational functions

ZP (x1, . . . , xn). One can define alternative version of the cluster algebra of geometric

type.

Definition 2.1.13 (Coefficient variables). Let P be tropical semifield and let

A(x̃, B̃) be cluster algebra of geometric type with initial seed consisting x̃ =

(x1, x2, . . . , xn, xn+1, . . . , xn+m) and (n+m)× n exchange matrix B̃. The variables

yi =
n+m∏
j=n+1

x
bji
j ∈ P (2.6)
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are called coefficient variables such that

yk
1⊕ yk

=
n+m∏
j=n+1
bj,k>0

x
bj,k
j ,

1

1⊕ yk
=

n+m∏
j=n+1
bj,k<0

x−bj,k (2.7)

It turns out that the coefficient variables yj evolve along the orbits of mutations.

We call these as Y-patterns (Y-system) stated below.

Definition 2.1.14. Let (y, B) be the initial seed formed by coefficient variables y =

(y1, y2, . . . , yn) and (n+m)×n extended exchange matrix B. Then applying mutation

µk on the initial seed produces a new seed (y′, B′) consisting of new exchange matrix

B′ given by (2.1) and

y′j =


y−1
k if j = k

yj(1⊕ yk)bjk if j ̸= k and bjk > 0

yjy
−bjk
k (1⊕ yk)bjk if j ̸= k and bjk < 0

(2.8)

2.1.3 Cluster algebra of finite type

In Example 2.1.8, we demonstrated that a specific sequence of mutations returned

to the initial seed and thus had a finite number of cluster variables. Unlike most

cluster algebras, which are formed by infinitely many cluster variables, this is a

unique feature that certain types of cluster algebras possess. Such cluster algebras

are referred to as cluster algebras of finite type.

Definition 2.1.15 (Cluster algebra of finite type). A cluster algebra is said to be

of finite type if it has finitely many seeds.

Recall that new cluster variables depend on the entries of the exchange matrix.

It may be good to think that the characteristics of cluster algebras are determined

by the structure of the exchange matrix (or quiver Q). Therefore a cluster algebra

A(x0, B) being finite type entirely depends on the form of its exchange matrix B (or

quiver Q). One of Fomin and Zelevensky’s important results is the characterisation

of the exchange matrices, or quivers, corresponding to the cluster algebra of finite
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type (see Theorem 1.5 in [5]). It turns out that the above case is closely related to

the Cartan matrices corresponding to the graphs called Dynkin diagrams (shown in

Figure 2.1) which classifies the finite dimensional semi-simple Lie algebras (Cartan-

Killing type).

Definition 2.1.16 (Cartan matrix). An integer square symmetric matrix A = (aij)

is a Cartan matrix if and only if it satisfies the following properties:

• all diagonal entries aii in the matrix are 2

• off-diagonal entries aij < 0 for any i ̸= j

• there exists an diagonal matrix D = diag(d1, . . . , dn) with di > 0, satisfying

(DA)T = DA (skew-symmetrizable)

Furthermore, if the third condition includes the additional property, aijaji ≤ 3 for

i ̸= j (Positive definite), then the Cartan matrix is of finite type.

The Cartan matrices are closely related to exchange matrices as each exchange

matrix can be encoded to the Cartan matrix, shown below.

Definition 2.1.17. The Cartan counterpart A of the exchange matrix B is given

by

aij =

2 if i = j

−|bij| if i ̸= j

(2.9)

One can see the above relation from the Dynkin diagram in Figure 2.1. For

instance, for type An, the Cartan matrix can be represented by the connected graph

such that edges between i and j in the graph correspond to components aij ̸= 0 of

the matrix.

Note that there is an equivalence relation between two distinct exchange matrices

which are related by sequence of mutations, stated as follows.

Definition 2.1.18 (Mutation equivalent). The exchange matrices B and B′ are

mutation equivalent if there exists a sequence of mutations that transforms B to B′

and vice versa.
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In addition to the result above, it was shown in [5] that there exists a isomorphism

between the cluster algebras whose exchange matrices are mutation equivalent, as

stated below.

Theorem 2.1.19 (Theorem 1.7 in [5]). Let B and B̂ be exchange matrices such

that their associated Cartan counterparts A(B) and A(B̂) are Cartan matrices of

finite type Dynkin diagrams. Then corresponding cluster algebras, A(x, B) and

A(x, B̂) are isomorphic if and only if A(B) and A(B̂) are equal up to simultaneous

permutation of rows and columns.

Therefore, based on the fact that there exists a cluster algebra for each Dynkin

diagram, Fomin and Zelevensky in [5] found the following result.

Theorem 2.1.20 (Theorem 1.8 in [5]). A cluster algebra is of finite type if and only

if it is equipped with an exchange matrix which is mutation equivalent to a matrix

whose Cartan counterpart corresponds to the Dynkin diagram.

An:

Bn:

Cn:

Dn:

G2:

F4:

E6:

E7:

E8:

Figure 2.1: Dynkin diagrams

20



2.1.4 Root systems and cluster algebras

In this section, we will briefly cover the notions of root systems and show how they

are related to cluster algebras. We mainly follow the reference [18] written by Marsh.

Definition 2.1.21. Let V be a finite dimensional vector space, equipped with the

bilinear map (inner product) (·, ·) : V × V → R. Then V is Euclidean space if the

map (·, ·) satisfies the following properties:

• symmetric i.e. (α, β) = (β, α)

• positive definite i.e. (α, α) > 0

Let us consider the hyperplane H, that is, an orthogonal complement to one-

dimensional subspace of V , Hα = {v ∈ V |(α, v) = 0 for α ∈ V, α ̸= 0}. Here we

concentrate on a reflection in the hyperplanes.

Definition 2.1.22 (Reflection). Let V be a finite dimensional vector space with

inner product (·, ·). A reflection on V is a linear map r : V → V such that

rα(β) = β − 2(α, β)α

(α, α)

which illustrates the reflection on the hyperplane Hα with α being a normal vector

i.e.

• If β ∈ Hα, rα(β) = β, β is orthogonal to α

• If β = α then rα(α) = α− 2α = −α, which is on the opposite side of the α

The group generated by the reflections in V is known as a reflection group, W .

Definition 2.1.23 (Root system). Let V be a Euclidean space which is equipped

with the inner product (·, ·). Then a root system Φ ⊂ V is a set of vectors (or roots)

which satisfy the following conditions:

• Φ spans V ;
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• For α ∈ Φ, s ∈ R, s · α ∈ Φ if and only if r = ±1 ;

• For α, β ∈ Φ, rα(β) ∈ Φ.

A root system Φ admits a standard basis Π = {αi : i ∈ I} , called a simple root

system, which spans Φ i.e. α = c1α1 + c2α2 + · · ·+ cnαn. Given the choice of simple

root system Π, we call the subset of root system Φ+ ⊂ Φ a positive root system if it

contains only positive roots e.g. +αi, α1+α2. Similarly, we refer the subset Φ− ⊂ Φ

a negative root system if it consists of negative roots e.g. −αi,−α1 − α2.

Example 2.1.24 (Type A2). Let us consider R3 equipped with standard basis

e1, e2, e3 and inner product satisfying the relation (ei, ej) = δij for i, j ∈ Z4. Then

one can show that the following set

Φ = {e2 − e1, e3 − e2, e3 − e1, e1 − e2, e2 − e3}

= {α1, α2, α1 + α2,−α1,−α2,−α1 − α2}
(2.10)

together with the simple root system Π = {α1, α2} is a root system. It is clear that

the first and second conditions hold; one can show that it also holds for the third

condition by direct calculation of the reflection roots,

rα1(α2) = α2 −
2(e2 − e1, e3 − e2)α1

(e2 − e1, e2 − e1)
= α2 + α1

The reflections: rα2(±α1) = ±α1 ± α2, rα2(±α1) = ±α1 ± α2, rα1(α1 + α2) = α2,

rα2(α1 + α2) = α1, rα1(±α1) = ∓α1. Therefore the root system is closed under the

reflection. The root system can be depicted as

α1 + α2α2

−α2

α1−α1

−α1 − α2

The corresponding positive root system Φ+ = {α1, α2, α1 + α2} whereas the negative

root system Φ− = {−α1,−α2,−α1 − α2}.

The set of reflections forms a group which is associated with the root system.
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Definition 2.1.25 (Weyl group). Let Φ be a root system. Then the finite group

generated by the reflections,

W = {rα|α ∈ Φ}

is known as the Weyl group (or reflection group) associated with the root system Φ.

Definition 2.1.26 (Coxeter group). Let W be a Weyl group generated by the

reflections r1, r2, . . . , rn. The group W is said to be a Coxeter group if it has a

presentation,

W =
{
r1, . . . , rn|r2i = e, (riri+1)

2 = e, (rirj)
3 = e, i ̸= j

}
Example 2.1.27. The Weyl group of type Al has presentation,

W (Al) =
{
r1, . . . , rn|r2i = e, (riri+1)

2 = e, (rirj)
3 = e, i ̸= j

}
Let Φ be the root system associated with a finite type Dynkin diagram and let

A(x, B) be a cluster algebra of rank n with initial cluster x and exchange matrix B

whose Cartan counterpart is the Cartan matrix of the Dynkin diagram. The root

system and cluster algebra are deeply connected as shown in the Theorem below.

Theorem 2.1.28 (Theorem 1.9 in [5]). Let us consider the cluster algebra of finite

type A(x, B) which consists of cluster variables,

x[α] =
N [x]

xd

Let Φ≥−1 be an almost positive root system which consists of the roots of the positive

root system Φ+ and negative of a simple system Π i.e. Φ≥−1 = Φ+ ∪ {−Π}. Then

there is a bijection between almost positive roots α ∈ Φ≥−1 and the denominator of

cluster variables as follows.

xd = xd11 x
d2
2 · · ·xdnn ←→ α = α1d1 + α2d2 + · · ·+ αndn

Example 2.1.29 (Type A2). Example 2.1.8 showed that the cluster algebra of type

A2 is generated by the following variables.

X =

{
x1, x2,

1 + x2
x1

,
1 + x1
x2

,
1 + x1 + x2

x1x2

}
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Furthermore in Example 2.1.24, the positive definite root system Φ≥−1 yields,

Φ≥−1 = {−α1,−α2, α1, α2, α1 + α2}

We begin with the associating initial cluster variables with the negative simple roots,

x[−α1] = x1, x[−α2] = x2 (2.11)

Then it is clear that there is correspondence between cluster variables and roots as

follows:

x[α1] =
1 + x2
x1

, x[α2] =
1 + x1
x2

, x[α1 + α2] =
1 + x1 + x2

x1x2

Therefore there is a bijection X ←→ Φ≥−1

2.1.5 Relation with Zamolodchikov periodicity

In Example 2.1.8, we observed that the specific sequence of mutations takes us

back to the initial seed: such composition of mutations is said to be periodic. By

incorporating the relation between roots and the denominator vector, Fomin and

Zelevensky in [19] proved that the periodicity in cluster algebra of finite type can

be equivalent to Zamoldchikov periodicity [4]. In other words, there exists a certain

sequence of mutations which is periodic with period h + 2 where h is the Coxeter

number. Here we follow the work of [19].

We begin with considering a particular quiver Q whose structure is equivalent

to the bipartite graph. Let us define ϵ : [1, n]→ {−1,+1} to partition the set of its

vertices I into two subsets,

I+ = {i ∈ I : ϵ(i) = +1}, I− = {i ∈ I : ϵ(i) = −1}

where each vertex in I+ is a source and each vertex in I− is a sink. Then vertices

within in I+ are not connected by the edges, and this also applies to the I−. Then

the corresponding exchange matrix admits entries bij,

bij > 0 =⇒

ϵ(i) = +1

ϵ(j) = −1

We refer to corresponding matrix as a bipartite exchange matrix. For example
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Q1
+ + +− −

i1 i2 i3 i4 i5

where i1, i3, i5 ∈ I+ and i2, i4 ∈ I−

Now let us consider the mutation on the bipartite seed. As mentioned above,

each vertex in I+ is incident to only with vertices in I− and vice versa. Then when we

apply mutations, for instance, only on the vertices of I+, each will reverse the arrows

of edges incident to each vertex in I+, which results in producing the quiver whose

edges are reverse of the ones in the original quiver. Thus quiver returns to Q after

applying mutations on the other vertices in I−. Hence there exists a unique sequence

of mutations which preserves the structure of the quiver. We can see this from the

quiver Q1 above that the composition mutations µi3µi1(Q) = −Q (arrows reversed),

and then applying mutations µi4µi2 take us back to the original quiver µi4µi2(−Q) =

Q. Such composed mutations give discrete dynamics on the bipartite quiver, and it

is known as the bipartite belt.

Definition 2.1.30 (Bipartite belt). The composed mutations on the initial seed

(x0, B0) induce the following iterations,

· · · → (x0, B0)→ (x0, B1 = −B0)→ · · · (2.12)

(xm, (−1)mB) = µ−µ+ · · ·µ+µ−︸ ︷︷ ︸
rfactors

(x0, B0) (2.13)

In this context, let µ+ and µ− be composition of mutations on the vertices I+

and I− respectively.

µ+ =
∏

ϵ(i)=+1

µi, µ− =
∏

ϵ(i)=−1

µi (2.14)

Note that the composed mutations µ− and µ+ are well defined as there is no edge

connected between the nodes in the same set, and thus mutations in the product τ+

and τ− commute. Given the xi,m+1 = xi,m with ϵ(i) = (−1)m, the cluster variables

under sequence of mutations µ−µ+ can be formulated as

xj,m+1xj,m−1 =
∏

ϵ(i)=−ϵ(j)

x
−aij
i,m + 1 (2.15)
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with ϵ(j) = (−1)m−1. Such difference equation is known as T-system.

Recall Theorem 2.1.28, that for cluster algebra of finite type, the denominators

of cluster variables are bijective to the roots α = c1α1 + c2α2 + · · · + cnαn in the

associated root system Φ≥−1. This implies there exists a sequence of reflections rα

which is analogous to the sequence of mutations µ+µ−.

Let Φ be an irreducible root system such that the associated Cartan matrix is

irreducible (which implies that Cartan matrix can be encoded into Dynkin diagram)

and let W be the associated Coxeter group. The indexing set I of a connected Φ

can be separated into two disjoint sets I+ and I− so that associated sequence of

reflections can be separated into

τ+ =
∏

ϵ(i)=+1

ri, τ− =
∏

ϵ(i)=−1

ri (2.16)

where ri are simple reflections and I± = {i ∈ I : ϵ(i) = ±1} i.e. I = I+ ∪ I−. Then

the actions of τ± can be expressed as

τ±(αj) =

−αj if j ∈ I±

αj −
∑

j ̸=i aijαi if j ∈ I∓
(2.17)

where αj are simple roots in Φ and aij = 2(αi, αj)/(αi, αi). The product of the two

compositions of reflections above, τ = τ−τ+ forms an element in associated Coxeter

group, known as the Coxeter element which has order h, referred to as the Coxeter

number.

Let us consider the almost positive root system Φ≥−1 = Φ+ ∪ {−Π}, which

consists of positive roots Φ+ and negative simple roots {−Π}. We can define

modified version of τ±, that is, σ : Φ≥−1 → Φ≥−1 expressed by

σϵ(αi) =

αi if αi = −αj for j ̸∈ Iϵ

τ±(αi) otherwise

(2.18)

Following on from above, we introduce w0 expressed as

w0 = σ−σ+ . . . σ±σ∓
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. The number of factors of w0 is the Coxeter number h if w0 satisfies w0(αi) = −αk
with k ∈ I (see [2] for the details). By using this fact, Fomin and Zelevinsky showed

the following result.

Theorem 2.1.31 (Theorem 2.16 in [2]). The order of σ−σ+ is equal to h+2
2

if

w0 = −1, and equal to h+ 2 otherwise.

This result can be illustrated by continuing the previous Example 2.1.29.

Example 2.1.32 (Type A2). The cartan matrix for type A2 is given by 2 −1

−1 2

 (2.19)

We set the simple root system for type A2 by Π = {α1, α2} with indices: ϵ(1) =

+1 and ϵ(2) = −1. The associated root system Φ≥−1 is given by the sequence of

reflections as follows.

−α1 α1 α1 + α2 α2 −α2

σ+ σ− σ+ σ−

−α2 α2 α1 + α2 α1 −α1

σ− σ+ σ− σ+

It is clear that

w0(−α1) = σ+σ−σ+(−α1) = α2

w0(−α2) = σ−σ+σ−(−α2) = α1

Hence iteration returns to simple roots after applying

(σ−σ+)
5(−αi) = −αi for i ∈ {1, 2}

which matches with the result in Theorem 2.1.31.

Combining Theorem 2.1.28 and exchange relation (2.15) with Theorem 2.1.31

leads to a result identical to Zamolodchikov periodicity conjecture, which confirms

the statement mentioned at the beginning of this section.

Theorem 2.1.33 ([19]). Let A(x, B) be a cluster algebra of finite type together

with exchange matrix B whose Cartan counterpart is the Cartan matrix of Dynkin
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diagram. The cluster mutations µ = µ−µ+ (2.15) satisfy the two cases of periodicity

such as

• period h+2
2

µ
h+2
2 (x, Q) = (x, Q) (2.20)

if associated roots αi satisfies w0(αi) = −αi

• period h+ 2,

µh+2(x, Q) = (x, Q) (2.21)

otherwise.

Remark 2.1.34. The periodicity conjecture holds for Y-seed pattern. In [19], they

defined a new piecewise linear function which is analogous to the function (2.18) and

showed that it is closely related to the Y-seed pattern. This results in showing that

coefficient variables yi satisfy the periodicity conjecture. Further detail can be found

in [3, 2].

Remark 2.1.35. In the literature [5], it was shown that any quivers, which have

the orientation of Dynkin diagram, also satisfy the results.

Remark 2.1.36. In [8], Nakanishi and the other authors considered the general

version of T- and Y-systems and proved the periodicities via several approaches.

2.1.6 Periodicity in Quiver and Cluster maps

In the previous section, we observed that there exists periodicity in dynamics given

by mutations µ−µ+, preserving the structure of the quiver. Such periodicity is

essential to define a specific biratinal map between clusters x and x′, known as a

cluster map. In this section, we explore the the notion of periodicity in quiver/matrix

mutations introduced by Fordy and Marsh [6], and Nakanishi [8].

Definition 2.1.37 (Mutation periodic). Let Q be a quiver with n vertices. Then

the quiver is mutation periodic with period m if there exists a sequence of quiver
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mutations which is equivalent to cyclic permutation of the labelling of the quiver Q

i.e.

µimµim−1 · · ·µi2µi1(Q) = ρm(Q)

for N ≥ m, where ρ : (1, 2, . . . , N)→ (N, 1, 2, . . . , N − 1) is the cyclic permutation.

Example 2.1.38 (Type A2). The quiver associated with type A2 is drawn as

1 2

The mutation µ1 on the quiver is equivalent to a reversing arrow. Permutating the

labels will return the quiver to its original position.

Example 2.1.39 (Somos-4 quiver). Let us consider the quiver which generates

Somos-4 sequence (see formula (4.22) in the section 4.1.2 and see [20] for the

further detail) . If we apply the mutation µ1 on the quiver, followed by permutation

ρ1 = (1, 2, 3, 4) and rotating, we recover the initial quiver.

1 2

34

1 2

34

µ1 ρ1

4 1

23

In a more general setting, the periodicity of the exchange matrix was defined by

Nakanishi [8] as follows.

Definition 2.1.40. Let Q be a quiver with n vertices and let ρ̂ be permutation of the

indices I = {1, 2, . . . , n} of Q. Then the quiver is ρ̂-period if there exists sequence

of mutations satisfying the relation below

µimµim−1 · · ·µi2µi1(Q) = ρ̂(Q)

Example 2.1.41. The sequence of mutations transforms the following quiver,

29



2 3

4

56

1
µ5µ1

2 3

4

56

1

If we permute the labellings of the right-hand side quiver by ρ = (1, 2, 3, 4, 5, 6), we

retrieve the original quiver.

In the examples above, we have shown that a particular type of quivers satisfies

µir · · ·µi1(Q) = ρ(Q) for some integers r > 0 and some permutation ρ. Suppose

we define the map φ = ρ−1µir · · ·µi1 ; then the map preserves the structure of the

quiver. This induces a birational map that we refer to as a cluster map.

Definition 2.1.42 (Cluster map). Let (x, Q) be an initial seed with an initial cluster

x = (x1, . . . , xn) and mutation periodic quiver Q i.e. µim · · ·µi1(Q) = ρ(Q) for some

m > 0 and some permutation ρ. Then

φ = ρ−1µimµim−1 · · ·µi2µi1

is a birational map such that

φ : Cn → Cn

x = (x1, . . . , xn) 7→ x′ = (x′1, . . . , x
′
n)

(2.22)

where x′ = (x′1, . . . , x
′
n) is new cluster given by φ(x). Such a map is called a cluster

map.

Example 2.1.43. The cluster map corresponding to quiver in the Example 2.1.38

is given by

φ : (x1, x2)→ (x2,
1 + x2
x1

) (2.23)

Remark 2.1.44. Notice that a single mutation is not identified as a single birational

map. This is because the exponent of each cluster variable in the exchange relation

changes along the mutations. Furthermore, each mutation cannot be specified simply

by the integers labelling a sequence of mutations; it is specified by discrete steps in

an n-valent tree. However periodicity enables the sequence of mutations, that return

us to the initial exchange matrix, to be identified as the birational mapping.
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2.2 Integrable cluster maps

A discrete dynamical system can be described by the points induced by the finite

iteration of mapping (discrete mapping i.e. xn+1 = φ(xn)). For example, the orbits

given by iteration of the cluster map φ : Cn → Cn can be considered as a discrete

dynamical system. Therefore the notion of integrability [9] in discrete systems can

be applied to the cluster map by introducing the suitable Poisson bracket that is

compatible with the cluster algebra structure.

In this section, we consider the notion of integrability for cluster algebras,

introduced in [20, 7]. By mainly following the references [21, 22], we begin with

some basic facts regarding the Poisson bracket defined on the manifold and see

the rank of the Poisson bracket (or Poisson tensor) forms a connection between

the Poisson and the symplectic manifold. This brings us to the notion of Liouville

integrable system.

2.2.1 Poisson bracket, symplectic form and symplectic leaves

Definition 2.2.1 (Poisson bracket, Poisson manifold). Let M be a smooth real

manifold and let f, g, h ∈ C∞(M) be smooth functions defined on M . A Poisson

bracket is skew-symmetric bilinear map {·, ·} : C∞(M)× C∞(M)→ C∞(M) which

satisfies the properties,

1. Leibiniz rule: {fg, h} = f{g, h}+ {f, h}g

2. Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

Then the smooth manifold M with the Poisson structure {·, ·}, satisfying the above

properties is known as a Poisson manifold.

In the local coordinates x = (x1, . . . , xn), the explicit form of the Poisson bracket

between smooth functions f, g is written as

{f, g} =
∑

Pij(x)
∂f

∂xi

∂g

∂xj
(2.24)
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where the coefficients

Pij(x) = {xi, xj} (2.25)

are entries of the n× n skew-symmetric matrix. Note that the rank of the Poisson

structure (or Poisson bracket) is determined by rank of the matrix (Pij). This

implies the rank of Poisson structure is equal to the dimension of the manifold if it

is full rank.

The explicit form of the Poisson bracket (2.24) and Leibiz rule suggests that we

can use a vector field to express the Poisson bracket as follows

XH(·) = {·, H} = PdH (2.26)

Such a vector field is called a Hamiltonian vector field. The Poisson bracket (2.24)

can be represented as a tensor product of the form

{f, g} =
∑
i,j

(
Pij(x)

∂

∂xi
⊗ ∂

∂xj

)
(df, dg) (2.27)

as ∂
∂xi

are dual to dxi. Therefore the Poisson bracket can be represented as

{f, g} = π(df, dg) (2.28)

where π : T ∗
xM × T ∗

xM → R is called a Poisson tensor. Equivalently one can define

a linear map π̂ : T ∗
xM → TxM such that π̂ = π(df, ·). Then any Hamiltonian vector

field can be written as Xf = Pdf = π̂(df). So the map π̂ can be treated as a

Poisson structure.

Next, let us consider the following notion of a map between two Poisson

manifolds.

Definition 2.2.2 (Poisson map). Let (M, {·, ·}M) and (N, {·, ·}N) be Poisson

manifolds and let x = (x1, x2, . . . , x2n) be local coordinates of M . Then a map

φ : N →M is a Poisson map if it satisfies

φ∗{xi, xj}M = {φ∗xi, φ
∗xj}N (2.29)

Definition 2.2.3 (Poisson submanifold). A submanifold N ⊆ M of a Poisson

manifold M is called a Poisson submanifold if there exists a Poisson bracket on

N such that the inclusion map N
i
↪−→M is a Poisson map.
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2.2.2 Symplectic manifolds

Suppose the rank of Poisson tensor (the rank of the matrix Pij(x)) at any point

x on M is maximal i.e. rank(P) = dim(M) = n. Then it turns out that the

corresponding Poisson manifold can be identified as a symplectic manifold.

Definition 2.2.4 (Symplectic manifold). A smooth manifold S is a symplectic

manifold if it is equipped with bilinear form ω : TxM × TxM → R, expressed as

ω =
∑
i,j

ωijdxi ∧ dxj (2.30)

which is a closed (dω = 0) and non-degenerate 2-form, called a symplectic form.

The coefficient ωij is given by

ωij = ω

(
∂

∂xi
,
∂

∂xj

)
(2.31)

One can define a linear map ω̂ : TxM → T ∗
xM such that ω̂ = ω(Xf , ·) = df .

This implies that the symplectic form satisfies the following form

w(Xf , Xg) = {f, g} (2.32)

This relation gives rise to

ω(Xf , Xg) = ω(Pdf,Pdg) = ω(P(ω̂(Xf ),P(ω̂(Xf )) (2.33)

Therefore this indicates that the symplectic structure is the inverse of the Poisson

structure in non-degenerate case. Similar to the Poisson case, one can define the

map on symplectic manifold as following

Definition 2.2.5 (symplectic map). Let (M,ωM) and (N,ωN) be symplectic

manifolds of 2m dimension and let x = (x1, x2, . . . , x2n) be local coordinates of M .

Then a map φ : N →M is a symplectic map if it satisfies

φ∗ωM = ωN (2.34)

For non-degenerate cases, the symplectic and Poisson structures are closely

related by (2.32). Following this, the birational map can be either Symplectic
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or Poisson map depending on its domain and codomain (Symplectic manifold or

Poisson manifold).

On the other hand, if rankP = 2r < n = dim(M), then there exist m = n− 2r

independent functions Ck such that {Ck, f} = 0 for any arbitrary function f , which

are called Casimir functions. Since the Poisson bracket can be represented as a

Hamiltonian vector field (2.26) and we have Xf (Ck) = 0, Casimir functions are

constant along the flow of Hamiltonian vector fields i.e. the Hamiltonian vector

fields are tangent to Poisson submanifolds

Si = {x ∈M : Ci(x) = constant} (2.35)

Each submanifold Si is known as a symplectic leaf, endowed with the symplectic

form defined by (2.32).

Definition 2.2.6 (Symplectic leaf). The symplectic leaf Sp containing the point p is

a set of points q which are connected to p by the piecewise curve where each segment

is a trajectory of a Hamiltonian vector field.

Theorem 2.2.7 ([22]). LetM be an n-dimensional Poisson manifold which has rank

m < n Poisson tensor. Then each symplectic leaf Mi of M is a Poisson submanifold

if rank(P ) = dim(Mi).

2.2.3 Liouville integrable systems and integrable maps

On each symplectic leaf Si, if we set the variables to be xi = Ci for i = {2r, . . . ,m},

then the Poisson tensor Pij becomes a (2r+m)× (2r+m) matrix, which consists of

the 2r×2r non-degenerate Poisson matrix and zero rows and columns. This implies

one can lower the dimension of Si; the local coordinates on each symplectic leaves

are (x1, . . . , x2r) and the Poisson tensor has rank 2r which is equal to the dimension

of the symplectic leaf. Suppose there exists r independent functions Ii which are in

involution with respect to the Poisson bracket {Ii, Ij} = 0. Then

XIi(Ij) = 0 (2.36)
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Therefore the level set is tangent to the flow, induced by vector fields XIi .

Furthermore, the vector fields commute which leads to the following definition.

Definition 2.2.8 (Liouville integrable system). Let M be 2n dimensional Poisson

manifold with full rank Poisson bracket. If there exist n first integrals which

are constant along the Hamiltonian vector fields, satisfying {Ii, Ij} = 0, then the

Hamiltonian system, produced by Hamiltonian vector fields XIi, is called a Liouville

integrable system.

With the notion of the Poisson map defined above, one can state the discrete

version of the Liouville integrable system, introduced in [9].

Definition 2.2.9 (Liouville integrable map). Let A(x, B) be a cluster algebra of

rank n where the B is an n × n exchange matrix and x is an n-tuple of cluster

variables. Suppose φ : Cn → Cn is a cluster map. Given P a Poisson tensor of rank

2r, the map φ is integrable if there exist

• n− 2r Casimir functions Ck, i.e. φ∗(Ck) = Ck satisfying {Ck, f(x)} = 0 for all

functions f(x)

• r first integrals hj, j = 1, . . . , r (φ∗(hj) = hj) such that {hi, hj} = 0.

2.2.4 Poisson brackets and symplectic forms for cluster

algebras

Now we reviewed Poisson and symplectic structure for general manifold, let us

consider the specific case of cluster algebras of rank n where B is an n × n

exchange matrix and D is an n × n diagonal matrix, skew-symmetrizer, satisfying

(DB)T = −(DB). In the case of cluster algebras, we are interested in Poisson

brackets taking a particularly nice form on the clusters

{xi, xj} = Pijxixj (2.37)

where P = (Pij) is a n×n skew-symmetric matrix, which is referred to as a Poisson

matrix. The terminology for a bracket of this form is log-canonical Poisson bracket,

as coined by Gekhtman, Shapiro and Vainshtein [23].
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Definition 2.2.10. For a cluster algebra A(x, B), a Poisson bracket {·, ·} is said

to be mutation compatible if the bracket between any clusters is restricted to log-

canonical form.

Let us assume that the exchange matrix B has a maximum rank (non-degenerate

matrix det(B) ̸= 0). Imposing the condition of mutation compatible, one can obtain

the following result (the further details can be found in [23, 24]

Theorem 2.2.11 ([24]). Assume that B is skew-symmetrizable with skew-symmtrizer

D and that B is of maximum rank, the Poisson matrix can be written as

P = λDB−1, λ ∈ Q (2.38)

In addition to this, the product PB is mutation invariant.

The fact that the Poisson structure P is directly proportional to the inverse of

the exchange matrix B enables us to identify the cluster map as a Poisson map,

stated in Definition 2.2.2.

Suppose we wish to adapt the notion of Poisson map to the case of cluster

algebras. One can show that single mutation µk satisfies the following relations,

µ∗
k{xi, xj} = Pijx̃ix̃j

{µ∗
kxi, µ

∗
kxj} = {x̃i, x̃j} = P̃ijx̃ix̃j

The cluster mutation µk is Poisson if and only if the corresponding Poisson matrix is

invariant under µk. As already noted in the section 2.1.6, this cannot happen for a

single mutation µk. However, since the cluster map is constructed by the periodicity

of the exchange matrix B (φ(B) = B), then the relation (2.38) suggests that the

cluster map also preserves the Poisson matrix P , and hence it is a Poisson map.

The above result can be attained if rank(B) = n (full rank). Conversely, for

the rank(B) < n, it turns out the map can be reduced to a symplectic cluster map,

defined by cluster algebra of lower rank. The latter will be explained in the next

section.

In the same way that there is a Poisson bracket compatible with cluster algebra,

an associated symplectic form also exists. This was also shown in [23] that there
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exists a symplectic form in cluster algebra, which is written in the log-canonical

form,

ω =
∑
i<j

bij
xixj

dxi ∧ dxj =
∑
i<j

bijd log xi ∧ d log xj (2.39)

It is mutation compatible i.e., the cluster mutation µk : ((x1, . . . , xN), B) →

((x̃1, . . . , x̃N), B̃) yields ω̃ =
∑

i<j b̃ijd log x̃i ∧ d log x̃j. Note that if the exchange

matrix is degenerate then the bilinear form (2.39) is pre-symplectic form; when it

is non-degenerate, we have an honest symplectic form. Similar to the Poisson case,

the cluster map is symplectic map since it preserves the associated exchange matrix

that is equivalent to φ∗ω = ω.

2.2.5 Symplectic reduction in cluster algebras

For the non-degenerate case with rank(B) = n, the coefficient matrix of the

symplectic form ω is the inverse of the Poisson matrix as P = B−1. In the setting

above, the cluster map can be either a Poisson or a symplectic map. On the other

hand, for the degenerate case rank(B) < n, it is Poisson but not symplectic. Recall

that a Poisson manifold equipped with a degenerate Poisson bracket is foliated by

symplectic leaves. With the related ideas, there is a canonical way to reduce the

Poisson map to a symplectic map via the symplectic form. The following result was

shown in the Theorem 2.6 in [7]

Theorem 2.2.12 (Symplectic reduction). In the degenerate case rankB = 2r < N ,

there exists rational map π,

π : CN → C2r

x = (x1, . . . , xN) 7→ y = (y1, . . . , y2r)
(2.40)

equivalent to

yj = xv =
∏
j

x
v
(i)
j

j , v(i) ∈ ImB (2.41)

which reduces the φ to the symplectic map φ̂ satisfying the following relation,

π · φ = φ̂ · π

depicted by
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CN CN

C2r C2r

φ

π π

φ̂

In addition to this, the symplectic form ω̂ associated with φ̂ is given by π∗ω̂ = ω,

which ie expressed by following

ω̂ =
∑
i<j

b̂ij
yiyj

dyi ∧ dyj (2.42)

Example 2.2.13 (Somos-5). To see the application of Theorem 2.2.12, let us

consider one of the examples that has been considered in the paper [7, 20].

B =



0 1 −1 −1 1

−1 0 2 0 −1

1 −2 0 2 −1

1 0 −2 0 1

−1 1 1 −1 0


(2.43)

It is periodic µ1 = ρ(B) for permutation ρ = (1, 2, 3, 4, 5); this gives rise to the

cluster map

φ : (x1, x2, x3, x4, x5)→(x2, x3, x4, x5, x6)

= (x2, x3, x4, x5,
x2x5 + x3x4

x1
)

(2.44)

where we labeled the new variable as x6. If we repeat the same procedure over the

iteration of cluster maps, we can write non-linear recurrence

xn+5xn = xn+1xn+4 + xn+2xn+3 (2.45)

which is known as Somos-5 recurrence. Since the matrix has rank 2, ImB is spanned

by the three basis vectors

e1 = (1,−2, 1, 0, 0)T , e2 = (0, 1,−2, 1, 0)T , e3 = (0, 0, 1,−2, 1)T (2.46)

We choose

v1 = e1 − e2

= (1,−1,−1, 1, 0)T ,

v2 = e2 − e3

= (0, 1,−1,−1, 1)T

(2.47)
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Then image vectors v1, v2 generates π,

π : C5 → C2

x = (x1, x2, x3, x4, x5) 7→ u = (u1, u2)
(2.48)

where the new variables are given by

u1 =
x1x4
x2x3

, u2 =
x2x5
x3x4

(2.49)

This induces the following reduced cluster map,

φ̂ : (u1, u2)→ (u′1, u
′
2) = (u2,

u2 + 1

u1u2
) (2.50)

Denoting u′2 = u3, the expression from the second component of (2.50) is written as

u3u2u1 = u2 + 1 (2.51)

We repeat the process for each step; the subsequent iteration of φ̂ gives

un+1unun−1 = un + 1 (2.52)

Note that since we label new variables as xn+5 = φ(xn) for any n > 0, the

substitutions in (2.49) can be written as

un =
xnxn+3

xn+1xn+2

. (2.53)

Then substituting the variable directly into the above expression will give us the

recurrence (2.45).

On reduced space, the map φ̂ is in fact a Liouville integrable map as there exists

an invariant function,

I = u1u2 +
1

u1
+

1

u2
+

1

u1u2
(2.54)

Remark 2.2.14. In the example above, the level set defined by the invariant function

I is a biquadratic curve of genus 1. This suggests that the reduced cluster map (2.50)

is a special case of map, known as QRT map introduced in [25] (see the Remark 4.1.2

in the section 4.1.1 for brief background of QRT map).
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2.3 Integrability detection

Here we will introduce several algebraic methods which were developed for identi-

fying integrable systems among the discrete dynamical systems. In each section,

we will review each method, which is a crucial factor for the results in the later

chapters.

2.3.1 Singularity analysis of difference equations

In this section, we introduce a heuristic approach in a discrete system, called the

singularity confinement test, which was introduced as an algebraic tool detecting

integrability. We follow the reference [26] and consider particular examples to

demonstrate the process of the test.

The singularity confinement test was proposed by Grammaticos, Ramani and

Papageorgion in [13] in order to assess the integrability of a discrete dynamical

system. The motivation for such criterion came from the local singularity analysis

of the solutions of ODEs, called the Painlevé test, which was used to detect the

ordinary differential equations with the Painelevé property (solutions of the ordinary

differential equation possessing removable singularities).

In [27], Ablowitz, Ramani and Segur made a conjecture that there exists a

connection between non-linear integrable PDEs and non-linear ODEs with the

Painlevé property such that any ODE which emerged from the reduction of an

integrable PDE is of Painlevé type. Then, passing the Painlevé test gives a necessary

condition for the integrability of the system. Thus Grammaticos, Ramani and

Papageorgion in [13] adapt these notions for discrete systems to identify the discrete

analogue of Painlevé equations by performing the singularity confinement test. Let

us consider the following examples to see the procedure.

Example 2.3.1 (Lyness recurrence). The autonomous difference equation

xn+2xn = axn+1 + b

is known as the Lyness recurrence, where a and b are non-zero parameters. It is
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clear that one of the potential singularities of the equation is xn = 0. By setting

suitable initial data, the iteration of the recurrence reaches the singularity. Let us

assume that the step n0 iteration gives xn0 = 0 and xn0+1 = u (finite regular value).

Then the further iterations give

xn0+2 =
axn0+1 + b

xn0

=∞

xn0+3 =∞+
b

u
=∞

xn0+4 =
∞
∞

+
b

∞

As one can see ∞
∞ is an ambiguity term (a true singularity, with loss of information).

To resolve it, we study the neighbourhood of the singularity by introducing the small

quantity ϵ. Thus let xn0 = ϵ; then

xn0 = ϵ

xn0+1 = u

xn0+2 = (au+ b)ϵ−1

xn0+3 =
a(au+ b)

u
ϵ−1 +

b

u

xn0+4 =
a2

u
+O(ϵ)

xn0+5 =

(
a3 + bu

a(au+ b)

)
ϵ+O(ϵ2)

xn0+6 =
bu

a2
+O(ϵ)

Notice that xn0+4 is no longer an ambiguity term and now it is well defined. As

ϵ→ 0, the sequence given by the iteration is

(· · · , ϵ, u, ϵ−1, ϵ−1, a2/u, ϵ, b, . . . )

(· · · , 0, R,∞,∞, R, 0, R, · · ·)

The sequence above is referred to as the associated singularity pattern. The

iteration enters 0 and then it passes through poles xi = ∞ and zeroes xj = 0,

after which the next iteration depends on the initial value u. We call this singularity

confined.
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Note that the difference equation above can be represented by a two-dimensional

complex birational map of the form

ψ :

x1,n
x2,n

→


x2,n

b+ ax2,n
x1,n


In [28], Lafortune and Goriely defined the singularity confinement property for

discrete mappings.

Definition 2.3.2 (Singularity confinement). For the class of N-dimensional bira-

tional maps of the form

ψ:


x1,n

x2,n
...

xN,n

→

x1,n+1

x2,n+1

...

xN,n+1


a singularity of the map is defined as a point y = (y1, y2, . . . , yN) where the right-

hand side of the map is undefined. This singularity is said to be confined if there

exists a positive integer M such that limx→y ψ
M(x) = ψ0 exists.

Now we consider an example of particular relevance to us; we will shortly see

that it arises from a deformed A2 cluster map.

Example 2.3.3. Consider

ψ:

x1
x2

→


1 + a1x2
x1

x1 + a2(1 + a1x2)

x1x2

 (2.55)

This birational map has two singularities x1 = 0 and x2 = 0. We begin singularity

analysis with the singularity x1 = 0. Once again we study the singularity by

introducing the small quantity 0 < ϵ < 1. By setting the initial data x1 = u, x2 =
−1 + ϵu

a1
, the next iteration of the map reaches

(
ϵ,
(1 + ϵa2)a1
ϵu− 1

)
, where it is at a

42



singularity:
−(a1 − 1)(a1 + 1)ϵ−1 − a21(u+ a2)

a2(a1 − 1)(a1 + 1)

a1
ϵ−1 +

ua2 + a22 − 1

a1

→

−a2 + ϵ(u+ a2)a2 +O(ϵ2)

ϵ
−(a2 − 1)(a2 + 1)a1
a2(a1 − 1)(a1 + 1)

+O(ϵ2)



→


− 1

a2
+O(ϵ)

−a22 + u(a21 − 1)a2 + a21
a1(a22 − 1)

+O(ϵ)


As ϵ→ 0, the sequence becomes∞

∞

→
−a2

01

→


− 1

a2

−a22 + u(a21 − 1)a2 + a21
a1(a22 − 1)

 (2.56)

Therefore there exists a limit limx→y ψ
M(x) ̸= 0, which is non-vanishing. Therefore

the singularity is confined.

For the case of the singularity x2 = 0, we take the same procedure with the initial

iterates x1 = a2(1 + a1u)/(ϵu− 1) and then ϵ→ 0 give us the following sequence of

iterations, −a2
∞

→
 ∞

(a1 − a1a22)/(a22 − 1)

→
 0

−1/a1

→
R
R

 (2.57)

where R is some non-zero regular value. Therefore both singularities are confined.

Example 2.3.3 showed that this particular map possesses the confinement

property. In addition to this, one can show that the map (2.55) is Liouville

integrable, as there exists a first integral that is invariant under the map, given

by

x1 +
1

x1
+
a21
x1

+
a1
a1x2

+
a1a2
x2

+
a1
x1x2

+
a1x1
x2

+
a1x2
a2

+
a1x2
x1

(2.58)

From these examples, it may appear that the confinement property leads to finding

an integrable map, but in fact, this is not the correct statement. This was shown

by Hietarinta and Viallet in [29], who provided a counter-example, passing the

confinement property test but non-integrable in the sense of degree growth (see the

section 2.3.3).
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2.3.2 Singularity pattern via p-adic analysis

There is an alternative procedure to find a singularity confinement pattern by

considering birational maps over the completion of Q of p-adic integers (p is a

prime number). In this section, we consider the arithmetic version of singularity

confinement, introduced in [12, 30]. We begin with a brief introduction of p-adic

integers (following [31, 32]) which is necessary for understanding the process of p-

adic analysis.

Any x ∈ Q can be uniquely written as

x = pv(x)
a

b
(2.59)

where v(x), a, b ∈ Z and a, b are coprime integers, which are not divisible by the

prime p. The p-adic norm is defined as ∥x∥p = p−v(x).

Definition 2.3.4 (Field of p-adic numbers). The field of p-adic numbers is the

completion Qp, that is, field Q endowed with p-adic norm ∥·∥p

Definition 2.3.5 (p-adic expansion). The expansion of rational number α ∈ Qp in

powers of p is called p-adic expansion. i.e.

α =
∞∑

n=n0

αnp
n (2.60)

where n0 ∈ Z ∪ {∞} and 0 ≤ αn ≤ p− 1

Note that for n0 ̸= 0, (2.60) can be written as pn0(
∑∞

n=0 αn0+np
n) in the form of

(2.59). Hence it is clear that vp(α) = n0.

Lemma 2.3.6. Let
∑∞

n=n0
αnp

n be p-adic expansion of α ∈ Qp. Then

α =
k−1∑
n=n0

αnp
n (mod pk)

= αn0p
n0 + αn0+1p

n0+1 + · · ·+ αk−2p
k−2 + αk−1p

k−1 (mod pk)

(2.61)

for all k > 0 where the remaining terms vanishes

Example 2.3.7 (5-adic expansion of 3
2
). Since

∥∥3
2

∥∥
5
= 1, it is 5-adic integer and

its 5-adic expansion must be in the following form.

3

2
= α0 + α1(5) + α2(5)

2 + . . . (2.62)
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To determine the coefficients αi, we begin with the case k = 1 in Lemma 2.3.6,

3

2
= α0 (mod 5)

Following congruence is equivalent to α0 =
3
2
(mod 5)→ 2α0 = 3 (mod 5). For the

remainder of the division to be 3, the only choice of α0 must be 4. If we proceed to

k = 2, the expansion can be written as

3

2
= 4 + 5α1 (mod 52)

Once again, rearrange the expression and obtain −5
2
= 5α1 (mod 25). Dividing by 5

and reordering yield the simplified congruence −2α1 = 1 (mod 5). Therefore fixing

α1 = 2 solves the expression. Repeating the same procedure for other cases k, gives

5-adic expansion,
3

2
= 4 + 2 · 5 + · · · (2.63)

One can verify that the left-hand side of the expression is indeed 3
2
.

Definition 2.3.8 (Ring of p-adic integers).

Zp =
{
x ∈ Qp : |x|p ≤ 1 ⇐⇒ v(x) ≥ 0

}

The ring of p-adic integers Zp has a unique maximal ideal,

p = pZp = {x ∈ Zp : vp(x) ≥ 1}

Following this, one can define a ring homomorphism between Zp and congruence

classes Zp/pZp,
π̂ : Zp → Zp/pZp ∼= Fp

x 7→ x̂
(2.64)

for which the following relation holds:

π(x± y) = x̂+ ŷ, π(x±y±) = x̂±ŷ± (2.65)

This map is called reduction modulo p.

We can extend the reduction by replacing the domain with Qp\{0}. Above,

we already noted that any elements in Qp can be expressed as x = pvp(x)x′ =
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pvp(x)
∑

i=0 αip
i by p-adic expansion. Thus the reduction of x ∈ Qp\{0} modulo

prime p is given by

x 7→ π(x) =


0 vp(x) > 0

∞ vp(x) < 0

α0 = R vp(x) = 0

(2.66)

where R is a non-zero regular value.

Example 2.3.9. Going back to Example 2.3.7, the reduction of 3/2 modulo 5 gives

π(3/2) = 4.

Example 2.3.10 (Reduction modulo 5). The 5-adic expansion of 1/10 yields the

following form,
1

10
= 3 ·

(
1

5

)
+ 2 + 2 · (52) + · · · (2.67)

The reduction of 1/10 modulo 5 gives π(1/10) =∞.

Now let us consider reduction modulo p of rational mappings xn+1 = φ(xn) i.e.

φ:


x1,n

x2,n
...

xN,n

→

x1,n+1

x2,n+1

...

xN,n+1

 (2.68)

where xi,n ∈ Qp(x1, . . . , xN) for i ∈ {1, . . . N}. If we apply the reduction to φ, then

we obtain a reduced map x̂n+1 = φ̂(x̂n) ∈ FNp which satisfies π̂ · φ = φ̂ · π̂ (depicted

in the figure 2.2). Such a reduction is known as a good reduction in [12].

xn0 xn0+1

x̂n0 x̂n0+1

φ

π̂ π̂

φ̂

Figure 2.2: Good reduction

However, in particular cases (π(xj,n) = ∞), the reduction is not well defined.

Note that this coincides with the situation of singularity analysis, that is, the iterates

xn0 ∈ Qp yielding p-adic norm, |xn0|p > 1, corresponds to the ϵ−1 in the singularity

analysis. In [12], the notion analogous to Definition 2.3.2 is introduced as follows
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Definition 2.3.11 (Almost good reduction). Let φ be rational map φ : QN
p → QN

p ,

shown at (2.68). The reduction modulo p is said to be almost good if there exists a

positive integer m0 such that lim
m→m0−n0

π̂(φm(xn0)) = φ̂m0−n0(x̂n0) = x̂m0

xn0 xn0+1 xn0+2 xm0−1 xm0

x̂n0 x̂n0+1 x̂n0+2 x̂m0−1 x̂m0

φ

π̂

φ

π̂

φm0−n0−3

π̂

φ

π̂ π̂

φ̂ φ̂ φ̂m0−n0−3 φ̂

Let us again consider the map ψ in Example 2.3.3 to see the process.

Example 2.3.12. Setting initial clusters (x1, x2) = (1, 1) and the parameters to be

a1 = 2 and a2 = 3, we consider the orbit given by iteration of the map ψ as shown

in the table below,

n 1 2 3 4 5 6 7

x1,n 1 3 7
33

5 · 7
5 · 103
32 · 11

3 · 11 · 401
29 · 103

11 · 29 · 419
3 · 137 · 401

x2,n 1 2 · 5 11

5

22 · 29
7 · 11

7 · 137
3 · 29

2 · 3 · 3049
103 · 137

17 · 432 · 103
401 · 3049

where each iteration is factored into primes.

We can see that for p = 7, 103, 401 etc., the p-adic norm for x1,n and x2,n exhibits

the patterns

|x1,n|p : 1, p
−1, p, 1, 1

|x2,n|p : 1, 1, p, p
−1, 1

(2.69)

As for the prime p = 5, 11, 29, 137 etc., the pattern is

|x1,n|p : 1, 1, 1, p, p
−1, 1

|x2,n|p : 1, p
−1, p, 1, 1, 1

(2.70)
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If we take xi,n modulo p then the sequences (2.69) and (2.70) are analogous to the

following singularity pattern: ϵ

R

→
ϵ−1

ϵ−1

→
R
ϵ

→
R
R

 (2.71a)

R
ϵ

→
 R

ϵ−1

→
ϵ−1

R

→
 ϵ

R

→
R
R

 (2.71b)

which is identical to the pattern, shown in Example 2.3.3.

2.3.3 Algebraic entropy

Recall that the singularity confinement test was insufficient to detect the inte-

grability of the system as there exists a counter-example which is non-integrable

(exhibiting chaotic behaviour) but still passes the test. There is an alternative

algebraic test which is a stronger integrability indicator than the singularity

confinement test. This test involves an algebraic quantity called algebraic entropy,

introduced by Bellon and Viallet in [33],

ε = lim
n→∞

log dn
n

(2.72)

where dn = deg(φn) is given by the maximum degrees of the components of φn i.e.,

the entropy is determined with the growth of the degrees dn. As we observed in the

previous examples, the rational expression becomes more complex as we iterate the

map on initial data. If there were no factorisation, then the degree would have grown

exponentially. In the iteration, the cancellation of common terms occurs between

the numerator and denominator, reducing the complexity of the expression. Thus

the factorisation reduces the growth rate of degree dn. In many cases, it was shown

in [33][29],

• Exponential growth represents chaotic behaviour

• Polynomial growth represents regular behaviour

Particularly, the degree with polynomial growths corresponds to zero entropy, ε =

0. From observation of many integrable maps, it is conjectured that zero entropy
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indicates integrability. Therefore the amount of cancellations in the iteration decides

the entropy.

It is well known that the calculation of algebraic entropy is very complicated in

general. However, it was shown in [7] that the complexity of calculation is reduced

in the cluster setting, which allows us to find the tropical max plus relation analogue

of the exchange relation. To comprehend the mechanism, here we follow [7], that is,

the exact growth of the degree of cluster maps associated with the period 1 exchange

matrix.

Let us consider a cluster algebra A(x, B) of rank n. Recall that due to

the Laurent phenomenon, any cluster variables generated by cluster mutation are

expressed as Laurent polynomials in the initial cluster, which take the form

xi,n =
Pn(x)

xdi,n
(2.73)

where Pl(x) is a polynomial in the initial cluster x0 with positive coefficients and

xdi,l =
∏

j x
dj,l
j with denominator vector di,l(xi,l) = (d1,l, . . . dn,l). From exchange

relation, we can see that homogeneity degree of numerator Pn(x) is equal to the

homogeneity degree of xi,n plus 1. This implies that the d-vector in the monomial

is sufficient to determine the growth of the degree of iterates.

To find the d-vector, it is important to remark that the variable arising from the

exchange relation is a subtraction-free rational expression due to total positivity of

cluster algebras [34]. Thus, upon substituting the (2.73) directly into the exchange

relation (2.2) and comparing the denominator of each side of it, we can see that di,l

satisfies the following relation,

dk,l′ + dk,l = max

∑
i=1
bi,k>0

bikdi,l , −
∑
i=1
bi,k<0

bikdi,l

 (2.74)

which is expressed as (max,+) expression corresponding to (2.2).

Remark 2.3.13. Simply speaking, the (max,+) algebra is constructed from an

ordinary algebra equipped with operations addition and multiplication through
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tropical method in mathematics [35, 36] which replaces the operations as following

a+ b→ max(a, b)

a× b→ a+ b

One of the approaches representing tropical method is ultradiscretization that is

process of transforming the difference equations into the (max,+) expression through

a limiting procedure i.e setting each dependent or independent variable xi = e
Xi
ϵ and

using identity of the limit

lim
ϵ→0

ϵ log
(
e

X1
ϵ + e

X2
ϵ

)
= max(X1, X2) (2.75)

allow us to rewrite the difference equation as (max,+) expression, which is also

known as ultradiscrete equation . This limiting process was introduced by Takahashi

and Satsuma in [37] for which they used to show the connection between ultradiscrete

KdV equation and specific type of Celluar Automata (CA), the box ball system. Over

the years, this procedure has been useful in the various aspects of discrete integrable

systems. In this thesis, ultradiscretization is the key for finding the leading order of

degree growth which will be seen in the later chapters. If the reader is interested in

ultradiscretization in further detail, please have a look [38]

Example 2.3.14 (Algebraic entropy of Somos-5 sequences). We follow the work in

[39]. Recall from Example 2.2.13, the Somos-5 recurrence relation

xn+5xn = xn+1xn+4 + xn+2xn+3 (2.76)

which can be obtained by the iteration of the period 1 cluster map. By setting the

degree vector d(xn) = dn = (dn, dn+1, . . . , dn+5), one can express tropical analogue

of (2.76) as follows

dn + dn+5 = max (dn+1 + dn+4 , dn+2 + dn+3) (2.77)

If we subtract dn+4 + dn+1 from both sides of the equation, we obtain

dn + dn+5 − dn+4 − dn+1 = max ( dn+2 + dn+3, 0)

Following from above, we set variable Un = dn+4 + dn+1 − dn+2 − dn+3, which is

tropical analogue of the substitution (2.53); the expression becomes

Un+1 + Un−1 = [Un]+ (2.78)
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where [Un]+ = max(Un, 0). Notice that this expression is ultradiscrete version of the

recurrence (2.53) given by the reduced map in Example 2.2.13.

With fixing the initial degree vector d1 = −1 (equivalent to U0 = −1), a direct

calculation of first three iterations of (2.77) shows by inspection that un = un+3.

Hence un has period 3, or in other words Un satisfies the relation

(S3 − 1)Un = 0 (2.79)

where S is the shift operator that sends n → n + 1. By imposing the condition to

(2.78), then we have

(S3 − 1)(S + S−1)Un

= (S3 − 1)(S + S−1)(S4 + S − S2 − S3)dn

= S(S + 1)(S2 + 1)(S2 + S + 1)(S − 1)3dn = 0

(2.80)

By solving the characteristic equation for S, we obtain the d-vector dn whose leading

order term is given by

dn = αn2 +O(n) (2.81)

for some constant α > 0. Since n grows faster than logdn as n→∞, the algebraic

entropy of Somos-5 recurrence relation is 0. Hence the entropy indicates that it is

integrable, which matches the result in Example 2.2.13.

Remark 2.3.15. In accordance of [40], the complexity of iterations xn+1 = φ(xn),

over field of rational Q, can be measured by the height function, that is,

H(xm) = max {|u|, |v|}

where u and v are numerator and denominator of xm, and they are coprime. Then

the same author in [40] introduced an alternative version of algebraic entropy, which

is known as Diophantine integrability: the discrete dynamics given by xn+1 = φ(xn)

is Diophantine integrable if the logarithmatic of heights h(xm) = log(H(xm)) grows

slower than polynomial in m. This is immediate approach to check the growth of

complexity.
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2.4 Deformation of cluster mutations

In this section, we will briefly review the deformation theory which preserves the

presymplectic form, introduced by the Hone and Kouloukas [10]. Let us consider

the exchange relation (2.2) and express it in the following form:

x′j =

x
−1
k fk(M

+
k ,M

−
k ), for j = k

xj, for j ̸= k

(2.82)

where fk : F × F → F is a differentiable function and

M+
k =

N∏
i=1

x
[bik]+
i , M−

k =
N∏
i=1

x
[−bik]+
i (2.83)

Note that if fk(M
+
k ,M

−
k ) =M+

k +M−
k , then the mutation is the ordinary coefficient-

free cluster mutation (2.2). In [10], Hone and Kouloukas introduced such functions

f in order to extend the definition of cluster mutation µk, while still wishing to

maintain the property of preserving the pre-symplectic form ω. The first key lemma

and theorem in this setting are the following.

Lemma 2.4.1 ([10]). If (x′, B′) = µk(x, B
′) is defined as in (2.82) and (2.1), then

the symplectic form ω is preserved, i.e.∑
i<j

b′ij
x′ix

′
j

dx′i ∧ dx′j =
∑
i<j

bij
xixj

dxi ∧ dxj (2.84)

if and only if

fk(M
+
k ,M

−
k ) =M+

k gk

(
M−

k

M+
k

)
(2.85)

for some differentiable function gk : F → F

Theorem 2.4.2 ([10]). Let µil , . . . , µi2µi1 be a sequence of generalised mutations of

the form (2.82) such that

µil · · ·µi2µi1(B,x) = (B, x̃)

with fij being of the form (2.85). Then φ:x → x̃ is such that φ∗ω = ω, for ω

log-canonical as per (2.39).
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Thus exchange matrices that are periodic under a particular sequence of

mutations (or more generally, are periodic up to a permutation) give rise to

parametric cluster maps that preserve the pre-symplectic form ω. In other words,

by adjusting the function f in (2.85), one can generalise the symplectic cluster

map. Furthermore, if the map is integrable then one can find a family of deformed

integrable maps. Let us consider several examples of the deformed integrable maps.

Example 2.4.3 (Dynkin type A2). Let us consider the cluster algebra of type A2

which is constructed by initial data formed by the initial cluster x = (x1, x2) and the

exchange matrix

BA2 =

0 −1

1 0

 (2.86)

The matrix is invariant under the action of the sequence of mutations µ2µ1, i.e.

µ2µ1(BA2) = BA2. This composition of mutations enables us define a cluster map

φA2 = µ2µ1 such that it preserves the two-form

ωA2 =
1

x1x2
dx1 ∧ dx2. (2.87)

Note that ωA2 is symplectic form as it is not degenerate. One can confirm that

the map φA2 is periodic with period 5 (i.e. φ5(x) = x) by an explicit calculation.

Alternatively, one can check by Theorem 2.1.33 (stated in Section 2.1.5), that is,

h+ 2 = 3 + 2 = 5, where h = 3 is the Coxeter number of type A2.

Since the map satisfies the condition of Theorem 2.4.1, one can define a new

symplectic map φ̃, which is constructed by the composition of mutations µ̃k for 1 ≤

k ≤ 2, where µ̃k are deformed mutations in the direction k,

µ̃k(xk) = x−1
k M+

k gk

(
M−

k

M+
k

)
(2.88)

with M±
k defined in (2.83).

By setting the function gk(x) = ak + bkx, the mutated variables µ̃k(xk) can be

written as

µ̃k(xk) = x−1
k

(
bkM

−
k + akM

+
k

)
(2.89)

Furthermore by rescaling each cluster variables, xi → λixi for (λ1, λ2) ∈ (C∗)2, we

fix the parameters b1, b2 to be 1; we find the deformed cluster map φ̃A2 = µ̃2µ̃1,
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which takes the form of the map ψ in Example 2.3.3. Due to the theorem 2.4.2, the

deformed cluster map φ̃A2 is symplectic map.

The deformed cluster map φ̃A2, which preserves the symplectic form ωA2, (2.87),

is then ψ as in Example 2.3.3. As mentioned there, the map ψ is integrable as one

can find the first integral (2.58), which is invariant under the map. Thus deformed

map φ̃A2 is integrable.

Example 2.4.4 (Dynkin type A4). The quiver with linear orientation of Dynkin

type A4 can be drawn as

1 2 3 4

Let BA4 be exchange matrix associated with type A4 quiver, which is given by the

skew-symmetric matrix

BA4 =


0 −1 0 0

1 0 −1 0

0 1 0 −1

0 0 1 0

 (2.90)

This matrix has period 4 with respect to a sequence of cluster mutations:

µ4µ3µ2µ1(BA4) = BA4

We define the cluster map φA4 with the composition of mutations above, φA4 =

µ4µ3µ2µ1. Once again, we fix the function fk in the cluster mutation as (2.89) and

then apply the rescaling to the cluster, i.e. xi → λixi, for (λ1, λ2) ∈ (C∗)2 to adjust

the parameters into bi = 1 and ai = 1 for i ∈ {2, 3}. This yields the following

parametric map

φ̃A4 : (x1, x2, x3, x4)→ (x′1, x
′
2, x

′
3, x

′
4)

where the mutated variables x′i are given by the following relations:

µ̃1 : x1x
′
1 = b1 + a1x2

µ̃2 : x2x
′
2 = 1 + x′1x3

µ̃3 : x3x
′
3 = 1 + x′2x4

µ̃4 : x4x
′
4 = b4 + a4x

′
3

(2.91)
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As the Coxeter number for type A4 is 5, one can confirm that the original cluster

map φA4 is periodic with period 7 (φ7
A4
(x) = x). In our case, the periodicity takes

an important role in constructing first integrals which are invariant under the type

A4 cluster map. This property allows us to define the symmetric functions,

I1 =
6∑
j=0

Lj, I2 =
6∏
j=0

Lj (2.92)

where Li = (φ∗)i(x1). The symmetric functions are first integrals associated with

φA4 as they satisfy φ∗
A4
(Ii) = Ii. In addition to this, they are in involution with

respect to the Poisson bracket, i.e.

{xi, xj} = Pijxixj (2.93)

where

P =


0 1 0 1

−1 0 0 0

0 0 0 1

−1 0 −1 0

 (2.94)

With these properties holding, we see that the cluster map φA4 is Liouville integrable.

In the same fashion, one can show that the deformed map φ̃A4 possesses integrability

under certain conditions. The most natural candidates for the first integrals are

(2.92), as the Poisson structure remains as per (2.94). However, they are not

preserved under φ̃A4.

To resolve this problem, we consider expanded first integrals, which are expressed

into a sum of monomials and modify them by inserting arbitrary coefficients into

each term:

Ĩ1 =
∑
i

αiJi, Ĩ2 =
∑
j

βjKj (2.95)

where Ji and Kj are monomials arising from the first integrals I1 and I2 respectively,

and αi, βj are arbitrary coefficients. Then by imposing the condition φ̃∗
A4
(Ĩi) =

Ĩi, one can constrain the coefficients αi, βj and find the necessary and sufficient

conditions for integrability with Ĩi being first integrals. Thus if we fix the parameters
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b1 = 1 = b4, then Ĩ1 and Ĩ2 are first integrals,

Ĩ1 =
1

x1x2x3x4
(a1a4x1x2 + a1a

2
4x1x2x3 + a1x1x2x3 + a1a4x1x2x

2
3 + a1a4x1x4 + a1a4x1x

2
2x4

+ a1a4x3x4 + a1a4x
2
1x3x4 + a4x2x3x4 + a21a4x2x3x4 + a4x

2
1x2x3x4 + a1a4x

2
2x3x4

+ a1a4x1x
2
3x4 + a1a4x1x2x

2
4 + a1x1x2x3x

2
4)

Ĩ2 =
(a1 + x2)(x1 + x3)(x1 + x3)(a4 + x3)(x1x2 + a4x1x2x3 + x1x4 + x3x4 + a1x2x3x4)

x1x22x
2
3x4

(2.96)

Furthermore, by explicit calculation, one can show that they commute with respect

to the Poisson bracket (2.93). This allows us to conclude that the deformed map

φ̃A4 is Liouville integrable.

The examples above show that φ̃A2 and φ̃A4 are integrable symplectic maps.

However, as a result of applying the deformation, the map no longer generates

cluster variables, belonging to a Laurent polynomial ring. Thus in general, the

deformed map is not a cluster map. To restore the property, we require a process

called Laurentification, which will be introduced in the next section.

2.5 Laurentification

In this section, we will introduce a specific projectivization that lifts our deformed

map, which is not given by a cluster algebra structure, hence we do not have Laurent

polynomial expressions for the iterates to a higher dimensional one which is and

does. This lifting is called Laurentification (coined by Hamad et al. [41]) and was

introduced and studied by the authors in ([42],[43]). Thus this procedure helps us

to resolve the problem that emerges from the deformation.

To be a little more concrete, recall that one of the key features of a cluster algebra

is the Laurent phenomenon, where every variable induced by cluster mutation can be

expressed as a Laurent polynomial in the initial cluster variables. This implies that

a cluster map, which is composed of certain mutations, has the Laurent property, in

the following sense.
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Definition 2.5.1 (Laurent property). Let x = (x1, x2, . . . , xn) ∈ Fn be an initial

cluster and let ψ:Cn → Cn be an associated cluster map. Then ψ is said to have the

Laurent property if for all n, the nth iterates of ψ are given by Laurent polynomials

in the Laurent polynomial ring C
[
x±1 , x

±
2 , . . . , x

±
n

]
Notice that the deformed map φ̃A2 in Example 2.4.3 with generic choice of

parameters a1, a2 is not a cluster map. This is because the iteration of the map,

beginning from the initial cluster (x1, x2) yields the new variables

(φ̃A2)
2 : x→


a1a2 + a1x1 + a21a2x2 + x1x2

x2(1 + a1x2)

x1(a1a
2
2 + a1a2x1 + x2 + a21a

2
2x2 + a2x1x2 + a1x

2
2)

(1 + a1x2)(a2 + x1 + a1a2x2)

 (2.97)

which consists of rational expressions whose denominator is no longer monomial as

the parameters prevent the cancellation with the numerator. Thus deformation of

the cluster map destroyed the Laurent property of the undeformed counterpart to

this map.

To restore the property one must try to lift the map to a higher dimensional

space, where the Laurent property is restored.

Definition 2.5.2 (Laurentification). Let φ:CM → CM be a birational map. A

birational map ψ:CN → CN (for some N ≥ M) is said to be a Laurentification of

φ if the map ψ possesses Laurent property and there exists a rational map π : CN →

CM such that φ · π = π · ψ holds.

CN CN

CM CM

ψ

π π

φ

Figure 2.3: Laurentification

Note that there are several methods which fit the description of Laurentification

such as recursive factorization, which was introduced by Hamad and Kamp in [41].

They showed that certain QRT maps, which do not generate the elements of the
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Laurent polynomial ring, can be transformed into Somos-4 and Somos-5 recurrence

relations with periodic coefficients.

Here we take an approach, that is, finding appropriate rational map π defined

by dependent variable transformations, that is, expressed by new variables, tau-

functions e.g. τ, σ. The following transformation can be identified by the singularity

confinement patterns induced by a deformed integrable map. This method was

applied to several examples in [43], [10]. To see the significance of this approach,

let us consider the Laurentification of the deformed maps φ̃A2 and φ̃A4 , which are

shown in Example 2.5.3 and Example 2.5.5 as below.

Example 2.5.3 (Laurentification of φ̃A2). The singularity confinement pattern given

by φ̃A2 (shown in Example 2.3.3) defines a rational map,

π : (τ−1, τ0, τ1, σ0, σ1, σ2, σ3)→ (x1, x2)

which is equivalent to the dependent variable transformation

x1,n =
σnτn+1

σn+1τn
, x2,n =

σn+3τn−1

σn+2τn
(2.98)

where tau-functions τ and σ represent (2.71a) and (2.71b) respectively. Substituting

(2.98) gives the deformed map on the space of tau-functions, ψ̃ = ψ · π, which is

equivalent to the following system of equations

τn+2σn = σn+2τn + a1σn+3τn−1 (2.99a)

σn+4τn−1 = σn+2τn+1 + a2σn+1τn+2 (2.99b)

If the relations above are to be regarded as exchange relations, then there must be

initial data formed by initial clusters and exchange matrix. The initial clusters can

be extracted from (2.99a) and (2.99b), as follows. Let us denote

(τ−1, τ0, τ1, σ0, σ1, σ2, σ3) = (x̃1, x̃1, . . . , x̃7) (2.100)

The presymplectic form ω̃A2 on the space of tau-functions can be written as

ω̃A2 = π∗ωA2 =
∑
i<j

b̃ijd log x̃i ∧ d log x̃j (2.101)
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where the b̃ij are entries of a new exchange matrix,

B̃A2 =



0 1 −1 −1 1 0 0

−1 0 1 1 −1 1 −1

1 −1 0 0 0 −1 1

1 −1 0 0 0 −1 1

−1 1 0 0 0 1 −1

0 −1 1 1 −1 0 0

0 1 −1 −1 1 0 0


(2.102)

Let us consider the extended initial cluster (τ−1, τ0, τ1, σ0, σ1, σ2, σ3, a1, a2) and

extended exchange matrix,

B̂A2 =



0 1 −1 −1 1 0 0

−1 0 1 1 −1 1 −1

1 −1 0 0 0 −1 1

1 −1 0 0 0 −1 1

−1 1 0 0 0 1 −1

0 −1 1 1 −1 0 0

0 1 −1 −1 1 0 0

0 1 1 −1 −1 0 0

−1 −1 0 0 0 1 1



(2.103)

The cluster mutation in direction 4 acting on the initial clusters (2.100) gives a new

cluster:

µ̂4 : (τ−1, τ0, τ1, σ0, σ1, σ2, σ3, a1, a2)→ (τ−1, τ0, τ1, τ2, σ1, σ2, σ3, a1, a2), (2.104)

where the fourth component of the tuple sees σ0 replaced by the new variable

τ2. Note that µ̂j indicate cluster mutations in the cluster algebra associated with

Laurentification of the deformed map. The mutation µ̂4 induces the following

exchange relation

τ2σ0 = τ−1σ3 + a1τ0σ2 (2.105)

Further applying the mutation in the direction 1,

µ1 : (τ−1, τ0, τ1, τ2, σ1, σ2, σ3, a1, a2)→ (σ4, τ0, τ1, τ2, σ1, σ2, σ3, a1, a2) (2.106)
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gives another form of exchange relation

σ4τ−1 = σ2τ1 + a2σ1τ2 (2.107)

Notice that equations (2.105) and (2.106) are (2.99a) and (2.99b) with n = 0

respectively. Applying the mutations in a similar way consecutively onto the initial

seed (x̃, B̂A2), we see that

µ37µ26µ15µ74µ63µ52µ41(x̃, B̂A2) = (x̃
′
, B̂A2), where µij = µiµj, (2.108)

generates a new set of cluster variables x̃′ = (τ6, τ7, τ8, σ7, σ8, σ9, σ10, a1, a2), which

are in the form of (2.105) and (2.106), and moreover the exchange matrix B̂A2 is

invariant under the sequence of mutations. Recall that the exponents of monomials in

exchange relations depend on the entries of the exchange matrix. Thus the mutations

(2.108) acting on the new seed (x̃′, B̂A2) gives cluster variables which are expressed

by (2.105) and (2.106). This implies that by the Laurent phenomenon, variables

induced by the iteration of the deformed map φ̃A2 belong to the Laurent polynomial

ring in the initial tau-variables.

Remark 2.5.4. Note that deformation of type A2 case was considered in [10] with

the cluster map expressed as φA2 = ρ−1µ1 for permutation of labels ρ = (1, 2),

φA2 :

x1,n
x2,n

→


x2,n

b+ ax2,n
x1,n


which corresponds to Lyness recurrence,

xn+2xn = axn+1 + b. (2.109)

Following from the process of p-adic analysis, one can find specific pattern (see

Example 2.3.1) which suggests the structure of tau functions for each variable

xn =
τn+5τn
τn+2τn+3

When we take the same procedure as above, we find the exchange matrix B̃A2 (2.102)

and another version recurrence of Somos type,

τn+7τn = aτn+6τn+1 + bτn+3τn+4 (2.110)

which is special case of Somos-7 recurrence
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Example 2.5.5 (Laurentification of φ̃A4). In order to define the associated rational

map π, we need to determine the singularity structure for the deformed map φ̃A4.

Performing the empirical p-adic method, one can find four types of singularity

patterns as follows

(1) : . . .→ (ϵ, R,R,R)→
(
ϵ−1, ϵ−1, ϵ−1, ϵ−1

)
→ (R,R,R, ϵ)→ . . .

(2) : . . .→ (R,R,R, ϵ)→
(
R,R,R, ϵ−1

)
→
(
R,R, ϵ−1, R

)
→
(
R, ϵ−1, R,R

)
→
(
ϵ−1, R,R,R

)
→ (ϵ, R,R,R)→ . . .

(3) : . . .→ (R, ϵ, R,R)→ . . .

(4) : . . .→ (R,R, ϵ, R)→ . . .

where the ϵ in the pattern (3) and (4) corresponds to the primes which can be seen

only in x3,n and x4,n respectively. Then we define the rational map π,

π : x̃0 = (q0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, σ4, σ5, p0)→ x0 = (x1, x2, x3, x4) (2.111)

which is equivalent to the following dependent variable transformation:

x1,n =
σnτn+1

σn+1τn
x2,n =

pn
σn+2τn

x3,n =
qn

σn+3τn
x4,n =

σn+5τn−1

σn+4τn
(2.112)

where σn, τn, pn, qn correspond to the singularities in (1), (2), (3), (4) respectively.

We define a new initial seed (x̂0, B̂A4), where x̂0 is the extended cluster obtained by

adding frozen variables a1 and a4,

x̂0 = (q0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, σ4, σ5, p0, a1, a4)

and B̂A4 is the deformed exchange matrix, which is depicted by the quiver in Figure

2.4.
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Figure 2.4: Type A4 deformed quiver

Then the deformed map φ̃A4 is Laurentified to the cluster map

ψA4 = φ̃A4π = ρ̂−1
A4
µ2µ1µ11µ5, for ρ̂A4 = (2, 3, 4, 5, 6, 7, 8, 9, 10)

on (x̂0, B̂A4), which generates the cluster variables expressed by the following

recurrence relations:

τn+2σn = σn+2τn + a1pn

pn+1pn = σn+3σn+2τnτn+1 + qnσn+1τn+2

qn+1qn = σn+4σn+3τnτn+1 + pn+1σn+5τn−1

σn+6τn−1 = σn+4τn+1 + a1qn+1

(2.113)

This example follows the working in [10].
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Chapter 3

The cluster map of type A2N

The examples above showed that the singularity confinement patterns of type A2 and

A4 deformed integrable maps allow us to define rational maps π such that ψ = φ̃π

is a cluster map on the space of tau functions.

Therefore it is natural to ask whether Laurentification can be successfully applied

to the defomed integrable maps associated with general type A. We are able to

answer this positively for cluster algebras of type A2N .

3.1 Initial analysis

In this section, we use the same argument from [44] to prove that the cluster map

associated with cluster algebra of type A2N is Liouville integrable map.

The exchange matrix associated to a linear orientation of a Dynkin diagram of
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type A2N can be expressed as

B =



0 1 0 0 0 · · · 0

−1 0 1 0 0 · · · 0

0 −1 0 1 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 −1 0 1 0

0 · · · 0 0 −1 0 1

0 · · · 0 0 0 −1 0


(3.1)

This exchange matrix is mutation periodic with periodicity 2N under the particular

sequence of mutations µ2Nµ2N−1 · · ·µ2µ1. Let φA2N
be the associated birational

map; then φA2N
(B) = B. On the cluster, φA2N

: x → x′ gives the following

exchange relations

x′1x1 = 1 + x2

x′2x2 = 1 + x′1x3

x′3x3 = 1 + x′2x4
...

x′2N−1x2N−1 = 1 + x′2N−2x2N

x′2Nx2N = 1 + x′2N−1

(3.2)

The matrix (3.1) is mutation equivalent to a matrix which represents a bipartite

graph. Therefore due to Zamolodchikov periodicity (Theorem 2.1.33), the map φ

is periodic with period 2N + 3, i.e. (φA2N
)2N+3(x) = x. The sequence of cluster

variables, which are generated by (φ∗
A2N

)i(x1) = Li, are given as follows,

L0 = x1, L1 =
1 + x2
x1

, L2 =
x1 + x3
x2

, · · · , L2N−1 =
x2N−2 + x2N

x2N−1

, L2N =
1 + x2N−1

x2N
,

L2N+1 = x2N ,

L2N+2 =

∏2N−1
i=1 xi +

∏2N−2
i=1 xi +

(∏2N−3
i=1 xi +

(∏2N−4
i=1 xi + · · · (x1x2 + (x1 + (1 + x2)x3)x4) · · ·

)
x2N−1

)
x2N∏2N

i=1 xi
(3.3)

Let P be the standard Poisson structure for type A2N , given by

Pij = (B−1)ij = [i− j]+
N∑
l=1

N∑
k=l

δj,2l−1δi,2k − [j − i]+
N∑
l=1

N∑
k=l

δi,2l−1δj,2k
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where [i− j]+ = max(i− j, 0). Then the associated Poisson bracket is

{xi, xj} = Pijxixj (3.4)

which simplifies to give us the following log-canonical Poisson bracket relations:

{x2r−1, x2s} = x2r−1x2s (3.5)

Using the above, these relations give us the following Poisson bracket relations on

the space of functions Li:

{L0, L1} = L0L1 − 1

{L0, L2j} = −L0L2j for 1 ≤ j ≤ N

{L0, L2j+1} = L0L2j+1 for 1 ≤ j ≤ N

(3.6)

To find further relations, we can use one of the properties of the cluster map, namely,

preservation of the Poisson bracket. For example, let us consider the Poisson bracket

{L0, L1}. By the relation above, L0 and L1 satisfy

{L0, L1} ◦ φA2N
=
{
φ∗
A2N

(L0), φ
∗
A2N

(L1)
}

The left-hand side of the equation can be written as

{L0, L1} ◦ φ = L1L2 − 1

Since φ∗
A2N

will shift the index i of Li by 1, the right hand side is {L1, L2}. Thus

altogether, we obtain the bracket relation

{L1, L2} = L1L2 − 1

Arguing in this way, the Poisson brackets between the Li are given by

{Li, Li+1} = LiLi+1 − 1 for i ≥ 0

{Li, Lj} = (−1)i+j+1LiLj for i+ 1 < j

Combining the Poisson relations above, we can represent the Poisson bracket

{Li, Lj} as the sum of the two homogenous terms, P(2) + P(0). In fact, the two

terms give rise individually to Poisson brackets, {·, ·}2 and {·, ·}0 as the Jacobi

identities are homogeneous.
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Lemma 3.1.1. For i = 0, . . . , 2N + 2, the set of functions Li (3.3) generate a

Poisson subalgebra with the brackets

{Li, Lj} = {Li, Lj}2 + {Li, Lj}0

P(2) +P(0)
(3.7)

The corresponding {·, ·}2 and {·, ·}0 are Poisson brackets, given by

{Li, Lj}2 = C
(2)
ij LiLj, {Li, Lj}0 = C

(0)
ij

where the skew-symmetric matrices C(2) and C(0) are Toeplitz matrices with their top

rows given by C
(2)
1k = (0, 1,−1, . . . , 1,−1) and C(0)

1k = (0,−1, 0, . . . , 0, 1) respectively.

Proof. Immediate from the above relations.

Note that the linear combination of the brackets, {·, ·}2 and {·, ·}0, satisfy the

properties of Poisson bracket, including Jacobian identities i.e.

{
Li, {Lj, Lk}0

}
0
+ {Lj, {Lk, Li}0}0 +

{
Lk, {Li, Lj}0

}
0

+
{
Li, {Lj, Lk}2

}
2
+ {Lj, {Lk, Li}2}2 +

{
Lk, {Li, Lj}2

}
2

+
{
Li, {Lj, Lk}0

}
2
+ {Lj, {Lk, Li}0}2 +

{
Lk, {Li, Lj}0

}
2

+
{
Li, {Lj, Lk}2

}
0
+ {Lj, {Lk, Li}2}0 +

{
Lk, {Li, Lj}2

}
0

= 0

Thus the Poisson bracket on the space of functions generated by the Li can

be split into two distinguished Poisson brackets. Moreover, the property of the

Poisson bracket holds for the linear combination of the Poisson brackets, which is a

compatibility condition for the system to be bi-Hamiltonian, introduced by Magri in

[45]. In accordance with [45, 46], the bi-Hamiltonian structure leads to the existence

of Poisson-commuting first integrals Ij which can be constructed by the so-called

Magri–Lenard scheme, that is, recursion relations

P(0)dIn+1 = P(2)dIn. (3.8)

Since {·, ·}0 and {·, ·}2 are both degenerate and thus there exist Casimir functions

for each Poisson bracket. Starting from the Casimir function I1 for P
(0), the relation
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(3.8) yields the sequence of relations

P0∇I1 = 0

P0∇Ik = P2∇Ik−1 for 2 ≤ k ≤ N

P2∇IN = 0

(3.9)

which ends at the Casimir function IN of P2. One can show that following invariant

functions I1 and IN expressed as

I1 =
∑
j

Lj, IN =
∏
j

Lj, (3.10)

are Casimir functions associated with the Poisson structures P0 and P2 respectively.

Thus by using these Casimir functions above, the relation (3.9) provide N invariant

functions Ik (of degree 2k + 1) associated with the cluster map φA2N
. However, we

need to confirm the consistency of system of equations (compatibility) in (3.9). To

show this, we need to verify that I1 satisfies ∇I1P2∇Ik−1 = 0. We use the argument

mentioned from [44].

Lemma 3.1.2. The Poisson brackets {·, ·}0 and {·, ·}2 satisfy the relation below

{Ii, Ij}0 = {Ii, Ij−1}2 = {Ii+1, Ij−1}0 (3.11)

Proof. Starting from {Ii, Ij}0, we find

{Ii, Ij}0 = (∇Ii)P
(0)(∇Ij) = (∇Ii)P

(2)(∇Ij−1) = {Ii, Ij−1}2

where we used the relation P(0)∇Ik = P(2)∇Ik−1 in (3.9). Thus if we apply the

relations subsequently then

{Ii, Ij−1}2 = (∇Ii)P
(2)(∇Ij−1) = (∇Ii+1)P

(0)(∇Ij−1) = {Ii+1, Ij−1}0

Lemma 3.1.3. Casimir function I1 satisfies the following Poisson bracket relation,

{I1, Ik−1}2 = 0 (3.12)

for 2 ≤ k ≤ N .
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Proof. We use the same reasoning in the proof of Lemma 3.1.2 to obtain the result

above. We apply the relation (3.11) step by step to reach the particular Poisson

bracket, which vanishes due to the anti-symmetric property of the bracket i.e.

{I1, Ik−1}2 = {I2, Ik−1}0 = {I2, Ik−2}2 = · · · = {Im, Im}s = 0

for some 1 ≤ m ≤M and s ∈ {0, 2}

The Poisson bracket (3.12) is ∇I1P2∇Ik−1 = 0. Thus Lemma 3.1.3 implies the

consistency of recurrence in (3.9).

As mentioned above, by general theory, if the relations (3.9) hold, then the

associated first integrals are in involution with respect to the Poisson brackets {·, ·}0
and {·, ·}2, which we record in following.

Lemma 3.1.4. Let Ii be the first integrals which are obtained from the sequence of

relations (3.9). Then

{Ii, Ij}2 = 0 = {Ii, Ij}0 (3.13)

for any i, j.

Proof. We use the same argument used in the proof of Lemma 3.1.3 to show their

involution property. Starting from {Ii, Ij}0 for i < j, we find that

{Ii, Ij}0 = {Ii, Ij−1}2 = {Ii+1, Ij−1}0 = · · · = {Im, Im}s = 0.

One can show that {Ii, Ij}2 = 0 by taking the same steps and hence first integrals

Im are Poisson-commuting with respect to {·, ·}0 and {·, ·}2.

This immediately yields the integrability of the cluster map φA2N
.

Theorem 3.1.5. The periodic cluster map φA2N
associated with type A2N is

Liouville integrable.

It is important to remark that the same method above has been used in [44]. In

this paper, Fordy studied the period 1 cluster map associated with affine type A
(1)
2N

and found the existence of functions periodic under the map. It turns out that the

68



Poisson structures of those functions take a form which is similar to (3.7). Thus

by the Magri–Lenard scheme, the integrability of the map was shown. Soon after,

in [7], Fordy and Hone gave explicit formulæ for Poisson-commuting first integrals

corresponding to the map:

Theorem 3.1.6 ([7]). In the case of affine type A
(1)
2N , there exists periodic functions

Jn+p = Jn, satisfying Poisson bracket relation

{Ji, Jj} = C
(2)
ij JiJj + C

(0)
ij

= P (2) + P (0)

where C(2) and C(0) are Toeplitz matrices (shown in Lemma 3.1.1). The correspond-

ing Casimir function K with respect to the Poisson bracket above given by

(P (2) + P (0))∇K = 0 (3.14)

such that there exist expressions

K(p+3)
n = R(p)K(p+1) with K(2) = Jn K(3) = JnJn+1 − 2 (3.15)

where p = 2N − 1 represents is the period of the function Jn, so Jn = Jn+p, and

R(p) = −1 + Jn+pJn+p+1 − Jn+p
∂

∂Jn
− Jn+p+1

∂

∂Jn+p−1

+ Jn+pJn+p+1
∂2

∂Jn∂Jn+p−1

(3.16)

Moreover, the Poisson matrices are compatible and therefore one can define a bi-

Hamiltonian ladder such that K can be written in the following form:

K =
∑
j=1

(−1)jhj (3.17)

with hj is a homogeneous polynomial of degree 2j − 1. The hj are first integrals

which are in involution with respect to the Poisson bracket.

Note that when we substitute Casimir function (3.17) directly into (3.14), we

can decouple the expression into the system of equations (3.9).

Now we understand that the (undeformed) maps φA2N
of even type A are

integrable cluster maps. Next we consider the deformation of the corresponding

cluster map. As our method will be inductive, in the next section, we will consider

first in detail how the A6 case may be related that of A4, which we have seen earlier.
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3.2 The periodic type A6 cluster map

In this section, we consider the deformation of the periodic cluster map of type A6.

The exchange matrix of (linearly oriented) type A6 is given by

BA6 =



0 −1 0 0 0 0

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

0 0 0 1 0 −1

0 0 0 0 1 0


(3.18)

The corresponding matrix possesses period 6 with respect to a sequence of cluster

mutations:

µ6µ5µ4µ3µ2µ1(B) = B

Given the initial cluster x0 = (x1, x2, x3, x4, x5, x6), let us denote by φA6 the

composition of mutations above i.e. φA6 = µ6µ5µ4µ3µ2µ1. Once more, with

fk(x) = bkM
−
k + akM

+
k in (2.82), we define the modified mutations µ̃k(xk) =

x−1
k

(
bkM

−
k + akM

+
k

)
for k = 1, . . . , 6, which yields deformed map φ̃A6 = µ̃6µ̃5µ̃4µ̃3µ̃2µ̃1

equivalent to the following exchange relations,

µ̃1 : x1x
′
1 = b1 + a1x2

µ̃i : xix
′
i = 1 + x′i−1xi+1 (2 ≤ i ≤ 4)

µ̃5 : x5x
′
5 = b5 + a5x

′
4x6

µ̃6 : x6x
′
6 = b6 + a6x

′
5

(3.19)

where the parameters bi and ai for i = 2, 3, 4 are rescaled to 1 via xi → λixi λi ∈ C∗

for each cluster variable.

For integrability of the deformed map, we know from Section 3.1, that the first

integrals of the original cluster map φA6 can be found by the relation (3.9). By

solving the equations, the corresponding first integrals are Laurent polynomials
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which are given by following:

I1 =
8∑
j=0

Lj,

I2 =
8∏
j=0

Lj,

I3 =
8∑
j=0

LjLj+1(Lj+2 + Lj+4 + Lj+6) +
2∑
j=0

LjLj+3Lj+6

(3.20)

where Li = (φA6∗)i(x1). Recall, as in the Example 2.4.4, the deformed first integrals

are found by modifying each term by attaching an arbitrary coefficient and imposing

the invariance condition φ̃∗
A6
(K) = K which provides the necessary and sufficient

condition.

Adopting the same approach, we can determine the conditions by using computer

algebra (MAPLE): we first rewrite the expression φ̃∗
A6
(K) = K as identity between

two polynomials in x1, x2, x3, x4, x5, x6 and then comparing the coefficients at each

degree produces the system of equations in the coefficient. Then we find that the

system has a solution if and only if the parameters are fixed as b1 = 1 = b5 and

b6a
2
5 = 1. Upon the calculations, we obtain the following three independent rational

functions:

Ĩ1 =
1

a35a6x1x2x3x4x5x6



a1a
2
5a6x1x2x3x4 + a1x1x2x3x4x5 + a1a

4
5a

2
6x1x2x3x4x5

+ a1a
2
5a6x1x2x3x4x

2
5 + a1a

3
5a6x1x2x3x6 + a1a

3
5a6x1x2x3x

2
4x6

+ a1a
3
5a6x1x2x5x6 + a1a

3
5a6x1x2x

2
3x5x6 + a1a

3
5a6x1x4x5x6

+ a1a
3
5a6x1x

2
2x4x5x6 + a1a

3
5a6x3x4x5x6 + a1a

3
5a6x

2
1x3x4x5x6

+ a35a6x2x3x4x5x6 + a21a
3
5a6x2x3x4x5x6 + a35a6x

2
1x2x3x4x5x6

+ a1a
3
5a6x

2
2x3x4x5x6 + a1a

3
5a6x1x

2
3x4x5x6 + a1a

3
5a6x1x2x

2
4x5x6

+ a1a
3
5a6x1x2x3x

2
5x6 + a1a

4
5a6x1x2x3x4x

2
6 + a1a

2
5x1x2x3x4x5x

2
6



Ĩ2 = (a1 + x2)

(
x1 + x3
x2

)(
x2 + x4
x3

)(
x3 + x5
x4

)(
x4 + a5x6

x5

)(
x5 + a25a6

a5

)

·

 a25a6x1x2x3x4x5 + a1a5x2x3x4x5x6 + a5x1x2x3x6
+ a5x1x2x5x6 + a5x1x4x5x6 + a5x3x4x5x6 + x1x2x3x4

a5x1x2x3x4x5x6



Ĩ3 =
P

a1x22x
2
4x

2
5a

3
5x6x

2
3x1a6

(3.21)
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where

P = x2x
2
3x6a

3
6(a1(x2 + x4)x3 + x1(a1 + x2)x4 + a1x2x5)x5x4x1a

7
5 + x3((a1(x2 + x4)x

2
3

+ ((x2x1 + a1(x1 + x5))x4 + x22x5)x3 + x1x5(x2 + x4)(a1 + x2))x2x5x
2
4x1a6

+ x26((x5(a1 + x2)(a1x2 + 1)x4 + a1x2x1)(x2 + x4)x
2
3 + (((a21 + 2)x2 + 2a1)x5x1x

2
4

+ x2(a1x5(x1 + x5)x
2
2 + ((a21 + 1)x25 + x21)x2 + a1(x1 + x5)

2)x4 + 2a1x1x
2
2x5)x3

+ ((a1x
2
2x5 + a1x1 + x2x1)x4 + a1x2x5)x5x1(x2 + x4)))a

2
6a

6
5

+ x6a
2
6x4((x2 + x4)(x5(a1 + x2)(a1x2 + 1)x4 + (x2x

2
5 + 2a1)x2x1)x

3
3

+ ((a1x
2
2x5 + (a21x1 + x5a

2
1 + 2x1 + x5)x2 + (2x1 + x5)a1)x5x

2
4 + x2(a1x

2
2x5 + 2x2x1

+ a1(x
3
5 + 2x1 + 3x5))x1x4 + x22((x1x5 + x25 + 1)x2 + a1(x1x5 + 2))x5x1)x

2
3

+ (((x5a
2
1 + x1 + 2x5)x2 + a1(x1 + 2x5))x4

+ x2((x1x
2
5 + x1 + x5)x2 + a1x1(x

2
5 + 1)))x5x1(x2 + x4)x3 + x21x

2
5(x2 + x4)

2(a1 + x2))a
5
5

+ x3a6(x2(a1(x
2
5 + 1)(x2 + x4)x

2
3 + ((x25 + 1)(x2x1 + a1(x1 + x5))x4

+ (x35 + x5)x
2
2 + a21x2x

2
5)x3 + x1x5(x

2
5 + 1)(x2 + x4)(a1 + x2))x

2
4x1a6

+ x26x5((x5(a1 + x2)(a1x2 + 1)x4 + a1x2x1)(x2 + x4)x
2
3

+ (x1(x
2
2a

2
1 + (a21 + 2)x5x2 + 2a1x5)x

2
4

+ x2(a1x5(x1 + x5)x
2
2 + ((a21 + 1)x25 + x21)x2 + a1(x1 + x5)

2)x4 + 2a1x1x
2
2x5)x3

+ ((a1x
2
2x5 + a1x1 + x2x1)x4 + a1x2x5)x5x1(x2 + x4)))a

4
5 + (a1x1(x2 + x4)(a1x5 + 2)x23

+ (a1x1x2(a1 + x5)x
2
4 + (a1x5(a1 + x5)x2 + x25 + a1(x

2
1 + 1)x5 + 2x21)(a1 + x2)x4

+ a1x1x2(a1x
2
5 + a1 + 3x5))x3

+ a1x1x5(x2 + x4)(x2x4 + 1)(a1 + x5))x2x3x6a6x5x4a
3
5 + x2x3((a1(x2 + x4)x

2
3

+ ((x2x1 + a1(x1 + x5))x4 + x2(x2x5 + a21(x
2
5 + 1)))x3 + x1x5(x2 + x4)(a1 + x2))a6

+ a21x2x3x5x
2
6)x5x

2
4x1a

2
5 + a21x

2
2x

2
4x

2
5x

2
3x1

Then computer-aided calculation (by using MAPLE) enables us to verify the

following.

Theorem 3.2.1. The conditions b1 = 1 = b5 and b6a
2
5 = 1 on the parameters

are necessary and sufficient conditions for Ĩ1, Ĩ2 and Ĩ3 to be first integrals that are

preserved by the type A6 deformed map, i.e. φ̃∗
A6
(Ĩi) = Ĩi, and are in involution with

respect to the Poisson bracket. Hence φ̃A6 is a Liouville integrable map whenever

these conditions on the parameters hold.
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The deformed map φ̃A6 is a Liouville integrable symplectic map, however, it is

no longer a cluster map as the generated variables stop being Laurent polynomial

after some iterations. Therefore once again, we look to lift the deformed map to a

higher dimensional space by Laurentification. Following the same process as in the

previous examples, we study the singularity structures of the deformed map φ̃A6 by

observing the prime factorization of iterates defined over Q. Then we observe the

following singularity patterns:

(1) : . . .→ (ϵ, R,R,R,R,R)→ (ϵ−1, ϵ−1, ϵ−1, ϵ−1, ϵ−1, ϵ−1)→ (R,R,R,R,R, ϵ)

(2) : . . .→ (R,R,R,R,R, ϵ)→ (R,R,R,R,R, ϵ−1)→ (R,R,R,R, ϵ−1, R)

→ (R,R,R, ϵ−1, R,R)→ (R,R, ϵ−1, R,R,R)→ (R, ϵ−1, R,R,R,R)

→ (ϵ−1, R,R,R,R,R)→ (ϵ, R,R,R,R,R)→ . . .

(3) : . . .→ (R, ϵ, R,R,R,R)→ . . .

(4) : . . .→ (R,R, ϵ, R,R,R)→ . . .

(5) : . . .→ (R,R,R, ϵ, R,R)→ . . .

(6) : . . .→ (R,R,R,R, ϵ, R)→ . . .

(3.22)

By introducing the tau-functions τn, σn, pn, rn, qn, wn corresponding to ϵ in each

pattern, one can construct the rational map πA6 : C15 → C6 in the same way as

(2.111) in Example 2.5.5.

Definition 3.2.2. Given the conditions b5 = 1 = b1 and b6a
2
5 = 1, the singularity

confinement patterns in (3.22) enable us to define a rational map πA6, which is

identified as the dependent variable transformation

x1,n =
σnτn+1

σn+1τn
x2,n =

pn
σn+2τn

x3,n =
rn

σn+3τn
x4,n =

qn
σn+4τn

x5,n =
wn

σn+5τn
x6,n =

σn+7τn−1

σn+6τn

(3.23)

where τ and σ represent patterns (1) and (2) respectively. The variables p, r, q, w

correspond to the patterns (3)-(6)

If we substitute these directly into the components (2.91) of φ̃A6 with the

conditions b6a
2
5 = 1, bi = 1 = aj for i = 1, . . . , 5 and j = 2, 3, 4 one obtains
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the following system of equations:

τn+2σn = σn+2τn + a1pn

pn+1pn = σn+3σn+2τnτn+1 + rnσn+1τn+2

rn+1rn = σn+4σn+3τnτn+1 + qnpn+1

qn+1qn = σn+5σn+4τnτn+1 + wnrn+1

wn+1wn = σn+6σn+5τnτn+1 + a5σn+7qn+1τn−1

σn+8τn−1 = b6σn+6τn+1 + a6wn+1

(3.24)

Once again, we begin by presenting the initial data as

(x̃1, x̃2,x̃3, x̃4, x̃5, x̃6, x̃7, x̃8, x̃9, x̃10, x̃11, x̃12, x̃13, , x̃14, x̃15)

= (q0, w0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, p0, r0)

Then the corresponding exchange matrix can be found by reading off the coefficients

of the new pre-symplectic form, π∗
A6
ωA6 . This matrix is given by

B̃A6 =



0 1 0 0 0 0 0 0 1 0 −1 0 0 0 −1

−1 0 1 0 0 0 0 0 0 1 0 −1 1 0 0

0 −1 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 −1 0 1 1 −1 0 0 0 0 1 −1 0 0

0 0 0 −1 0 0 0 −1 0 0 0 0 0 1 0

0 0 0 −1 0 0 0 −1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 −1 0

0 0 0 0 1 1 −1 0 1 0 0 0 0 0 −1

−1 0 0 0 0 0 0 −1 0 1 0 0 0 1 0

0 −1 0 0 0 0 0 0 −1 0 1 0 0 0 1

1 0 −1 0 0 0 0 0 0 −1 0 1 −1 0 0

0 1 0 −1 0 0 0 0 0 0 −1 0 0 0 0

0 −1 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 −1 −1 1 0 −1 0 0 0 0 0 1

1 0 0 0 0 0 0 1 0 −1 0 0 0 −1 0


(3.25)

If this case is similar to that of type A2 and A4, then one would expect to be able

to find an extended exchange matrix which contains entries corresponding to frozen

variables a1, a5 and a6. Then it should be invariant under a certain sequence of

mutation, generating cluster variables expressed by the relations (3.24). However,
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the first few iterations of the recurrence (3.24) give rise to the variable whose

denominator is given by

a25σ0τ−1p0r0q0w0

which shows that the denominator contains the frozen variable.

In cluster mutation, the frozen variables are only apparent in the numerator of

the fraction in a Laurent expression. This indicates with the condition b6a
2
5 = 1,

we cannot generate cluster variables corresponding to the recurrence (3.24). Thus

to achieve our goal, one is required to put further constraints on the parameters.

The simplest choice is to fix b6 = 1 = a5, which satisfies b6a
2
5 = 1. By adjusting the

parameters, this leads to the following theorem.

Theorem 3.2.3. The sequence mutations in a cluster algebra defined by (3.25) with

two frozen variables a1, a6 generates the sequences of tau functions (σn), (pn), (rn),

(wn), (qn), (τn) satisfying

τn+2σn = σn+2τn + a1pn

pn+1pn = σn+3σn+2τnτn+1 + rnσn+1τn+2

rn+1rn = σn+4σn+3τnτn+1 + qnpn+1

qn+1qn = σn+5σn+4τnτn+1 + wnrn+1

wn+1wn = σn+6σn+5τnτn+1 + σn+7qn+1τn−1

σn+8τn−1 = σn+6τn+1 + a6wn+1

(3.26)

which are elements of the Laurent polynomial ring

Z>0

[
a1, a6, σ

±
0 , σ

±
1 , σ

±
2 , σ

±
3 , σ

±
4 , σ

±
5 , σ

±
6 , σ

±
7 , τ

±
−1, τ

±
0 , τ

±
1 , p

±
0 , r

±
0 , w

±
0 , q

±
0

]
Proof. Let us extend the initial data by inserting the frozen variables:

(x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8, x̃9, x̃10, x̃11, x̃12, x̃13, x̃14, x̃15, x̃16, x̃17)

= (q0, w0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, p0, r0, a1, a6)

We add two new rows, whose entries correspond to the frozen variables, to the
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exchange matrix (3.25) to define the extended exchange matrix

B̂A6 =



0 1 0 0 0 0 0 0 1 0 −1 0 0 0 −1

−1 0 1 0 0 0 0 0 0 1 0 −1 1 0 0

0 −1 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 −1 0 1 1 −1 0 0 0 0 1 −1 0 0

0 0 0 −1 0 0 0 −1 0 0 0 0 0 1 0

0 0 0 −1 0 0 0 −1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 −1 0

0 0 0 0 1 1 −1 0 1 0 0 0 0 0 −1

−1 0 0 0 0 0 0 −1 0 1 0 0 0 1 0

0 −1 0 0 0 0 0 0 −1 0 1 0 0 0 1

1 0 −1 0 0 0 0 0 0 −1 0 1 −1 0 0

0 1 0 −1 0 0 0 0 0 0 −1 0 0 0 0

0 −1 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 −1 −1 1 0 −1 0 0 0 0 0 1

1 0 0 0 0 0 0 1 0 −1 0 0 0 −1 0

0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0

0 0 −1 −1 0 0 0 0 0 0 0 1 1 0 0


(3.27)

which can be depicted by the quiver in Figure 3.1.

Figure 3.1: Quiver corresponding to B̂A6

We then apply the mutation sequence µ̂3µ̂2µ̂1µ̂15µ̂14µ̂6 to this quiver. If we

arrange the nodes and edges of the mutated quiver as per Figure 3.2, then one can

see that this is identical to the initial quiver except that specific labels are shifted

by 1. Thus the block mutation µ̂3µ̂2µ̂1µ̂15µ̂14µ̂6 is equivalent to permuting the labels
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of the nodes in Q6 and hence

µ̂3µ̂2µ̂1µ̂15µ̂14µ̂6(Q6) = ρ6Q6 (3.28)

where ρ6 is the permutation

ρ6 =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 4 5 6 7 8 9 10 11 12 13 3 14 15 16 17


= (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

(3.29)

Thus if we apply the mutations in the same order as previously, once again the

structure of the quiver remains the same except the labels of the nodes are shifted.

When we take the inverse of the permutation on each side of (3.28), then we have

ψA6 := ρ−1
6 µ̂3µ̂2µ̂1µ̂15µ̂14µ̂6(QA6) = QA6 (3.30)

and it is clear that the composition of mutations on the left-hand side is a cluster

map. The first iteration of the map gives rise to a new seed, which contains cluster

variables that are expressed by (3.26) with n = 0:

ψA6 : (q0, w0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, p0, r0, a1, a6)

→ (q1, w1, τ0, τ1, τ2, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, p1, r1, a1, a6)
(3.31)

One can see that a single iteration of the map on the initial values is equivalent

to shifting the subscript of the tau functions q, w, τ, σ by 1. Therefore successive

applying the map ψA6 will induce a series of seeds that consist of the cluster variables

(qn, wn, τn−1, τn, τn+1, σn, σn+1, σn+2, σn+3, σn+4, σn+5, σn+6, σn+7, pn, rn, a1, a6)

(3.32)

for n ∈ Z, satisfying (3.26). Therefore every tau function, generated by the

system of recurrences in (3.26), can be obtained by applying ψA6 repeatedly. Hence

τn, σn, pn, wn, qn, rn are in the Laurent polynomial ring by the Laurent phenomenon.
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Figure 3.2: Mutated quiver Q′
A6

= µ3µ2µ1µ15µ14µ6(QA6). It has the same structure

as Figure 3.1 with permuted labellings.

3.3 Local expansion

To investigate generalizing the integrable cluster map to arbitrary even rank, we

begin by exploring the relation between deformed quivers/exchange matrices of type

A4 and type A6. Recall that in Example 2.5.5, we showed that Laurentification of

deformed type A4 lead us to new cluster algebra defined by pair of the initial cluster

(q0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, σ4, σ5, p0, a1, a4) and the exchange matrix illustrated by

Figure 2.4.

Comparison between QA4 and QA6 indicates that QA6 can be obtained from QA4

by local expansion, as illustrated in Figure 3.3, that is by removing edges between

the four-cycle formed by the nodes 1, 7, 8 and 11 in QA4 and including new nodes

and edges in the quiver as per Figure 3.4.
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(a) QA4 (b) QA6

Figure 3.3: Extension from QA4 to QA6

(a) Subquiver in QA4 (b) Subquiver in QA6

Figure 3.4: Local expansion of the subquiver in QA4

Recall that each node in the deformed quiver corresponds to a tau function, e.g.

for QA4 , the sequence of nodes (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) corresponds to the

sequence of functions (q0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, σ4, σ5, p0, a1, a4). As the figures

show, QA6 can be built from QA4 by carrying out the local expansion on the four-

cycle subquiver with nodes corresponding to the functions σ3, σ4, q0 and p0. From

the cluster point of view, the local expansion is equivalent to relabelling σ3, σ4, σ5

as σ5, σ6, σ7 respectively and inserting σ3, σ4, p1 and q1 in a way that the cluster

becomes (q1, q0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, σ4, σ5σ6, σ7, p0, p1, a1, a4).

We will show that this pattern continues: one can recursively apply the same

local expansion by a four-cycle quiver to obtain the deformed quiver QA2N
with

nodes corresponding to

(pN−2
1 . . ., p11, p

0
1, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, . . . , σ2N+1, p

0
2, p

1
2, . . . , p

N−2
2 , a1, a2N)

= (1, 2, 3, . . . , 4N + 3, 4N + 4, 4N + 5)

What does the local expansion tell us? The local expansion above gives insight

into the structure of the tau functions in the xi variables. Let us compare the
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tau functions in type A4 and type A6 cases. In the setting (x̃1, x̃2, . . . , x̃11) =

(q0, τ−1, τ0, τ1, σ0, . . . , σ5, p0), the variables xi,n, induced by the deformed map

associated to type A4, are defined as

x1,n =
x̃5x̃4
x̃6x̃3

, x2,n =
x̃11
x̃7x̃3

, x3,n =
x̃1
x̃8x̃3

, x4,n =
x̃10x̃2
x̃9x̃3

The local expansion above (q0, τ−1, τ0, τ1, σ0, . . . , σ5, p0)→ (q1, q0, τ−1, τ0, τ1, σ0, . . . , σ7, p0, p1)

is equivalent to shifting the subscript of the variables x̃i → x̃i+1 for j = 1, 2, . . . , 7

and x̃j → x̃j+3 for i = 8, 9, 10, 11 and imposing the new variables

x3 =
x̃15
x̃9x̃4

, x4 =
x̃1

x̃10x̃4

Then one obtains the variable transformation in (4.37) whose tau functions are

denoted as (x̃1, x̃2, . . . , x̃15) = (q1, q0, τ−1, τ0, τ1, σ0, . . . , σ7, p0, p1). This suggests that

the recursive local expansion constructs the following xi variables associated to the

type A2N deformed map,

x1 =
x̃N+3x̃N+2

x̃N+4x̃N+1

, x2 =
x̃3N+5

x̃N+5x̃N+1

, x3 =
x̃3N+6

x̃N+6x̃N+1

, . . . ,

xN =
x̃4N+3

x̃2N+3x̃N+1

, xN+1 =
x̃1

x̃2N+4x̃N+1

, xN+2 =
x̃2

x̃2N+5x̃N+1

, . . . ,

x2N−1 =
x̃N−1

x̃3N+2x̃N+1

, x2N =
x̃3N+4x̃N
x̃3N+3x̃N+1

(3.33)

where

(x̃1, x̃2, . . . , x̃4N+3)

= (qN−2 . . . , q1, q0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, . . . , σ2N+1, p0, p1, . . . , pN−2, a1, a2N).

The symplectic form associated to A2N is defined by

ω =
∑
i<j

bijd log xi ∧ d log xj

where bij are entries of the exchange matrix BA2N
(3.1), defined by the following

(BA2N
)ij =


1 if j = i+ 1

−1 if i = j + 1

0 otherwise
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Now,

π∗ω = ω̃

= d log

(
x̃N+3x̃N+2

x̃N+4x̃N+1

)
∧ d log

(
x̃3N+5

x̃N+5x̃N+1

)
+

N+2∑
l=5

d log

(
x̃3N+l

x̃N+lx̃N+1

)
∧ d log

(
x̃3N+(l+1)

x̃N+(l+1)x̃N+1

)
+ d log

(
x̃4N+3

x̃2N+3x̃N+1

)
∧ d log

(
x̃1

x̃2N+4x̃N+1

)
+

N−2∑
m=1

d log

(
x̃m

x̃2N+3+mx̃N+1

)
∧ d log

(
x̃m+1

x̃2N+4+mx̃N+1

)
+ d log

(
x̃N−1

x̃3N+2x̃N+1

)
∧ d log

(
x̃3N+4x̃N
x̃3N+3x̃N+1

)
To simplify the calculation, let us define αi = d log x̃i and fj = α3N+j − αN+j and

gk = αk − αk+2N+3. Then the pre-symplectic form can be re-written as

ω̃ = (αN+3 + αN+2 − αN+4 − αN+1) ∧ (f5 − αN+1)

+

(
N+2∑
l=5

fl ∧ fl+1 − fl ∧ αN+1 − αN+1 ∧ fl+1

)
+ f4N+3 ∧ g1 − αN+1 ∧ g1

+

(
N−2∑
m=1

gm ∧ gm+1 − gm ∧ αN+1 − αN+1 ∧ gm+1

)
+ (gN−1 + αN+1) ∧ (gN − gN+1)

Combining and cancelling, we obtain

ω̃ = (αN+3 + αN+2 − αN+4) ∧ (f5 − αN+1)

+

(
N+2∑
l=5

fl ∧ fl+1

)
+ f4N+3 ∧ g1 +

(
N−1∑
m=1

gm ∧ gm+1

)
+ gN−1 ∧ (α3N+4) + αN+1 ∧ (gN − gN+1)

Therefore ω̃ is expressed as ∑
r<s

b̃rsαr ∧ αs

whose coefficients are entries of the (4N + 3)× (4N + 3) exchange matrix

BA2N
=

 A2N B2N

−BT
2N C2N

 (3.34)
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which is composed of four block skew-symmetric matrices: a (2N + 3) × (2N + 3)

matrix A2N , a (2N + 3)× 2N matrix B2N and a 2N × 2N matrix C2N where

A2N/C2N =



0 1 0 0 · · · 0 1

−1 . . . . . .

. . . 0 1 0 · · · 0 0

0 −1 0

0 0 A4/C4 0
...

...

0 1

0 0 0 · · · −1 0
. . . 0

0 0 0 0 · · · 0
. . . . . . 1

−1 0 0 0 · · · 0 0 −1 0



, B2N =



0 −1 0 0 · · · 0 −1

1
. . . . . .

. . . 0 −1 0 · · · 0 0

0 1 0

0 0 B4 0
...

...

0 −1

0 0 0 · · · 1 0
. . . 0

0 0 0 0 · · · 0
. . . . . . −1

1 0 0 0 · · · 0 0 −1 0



Here, the block matrix has (AN)ij = (A4)ij for N − 2 < i, j < N + 6, (BN)mn =

(B4)mn forN < m < N+6 and 3(N−2)+7 < n < 3(N−2)+12 and (CN)rs = (C4)rs

for 3(N − 2) + 7 < r, s < 3(N − 2) + 12, and

A4 =



0 1 0 0 0 0 0

−1 0 1 0 0 0 0

0 −1 0 1 1 −1 0

0 0 −1 0 0 0 −1

0 0 −1 0 0 0 −1

0 0 1 0 0 0 1

0 0 0 1 1 −1 0


, B4 =



0 −1 1 0

1 0 0 0

0 1 −1 0

0 0 0 1

0 0 0 1

0 0 0 −1

0 0 0 0


, C4 =


0 1 −1 0

−1 0 0 0

1 0 0 0

0 0 0 0



Based on the pattern of local expansion from QA4 to QA6 , we introduce frozen

variables and extend the matrix by extra rows b1 and b2 in which entries are

(b1)i = δi,N+1 + δi,N+2 − δi,N+3 − δi,N+4

(b2)i = −δi,N − δi,N+1 + δi,3N+3 + δi,3N+4

(3.35)
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so that

B̃A2N
= (3.36)

By this calculation and formalisation, we have obtained a description of local

expansion in terms of exchange matrices, corresponding to the graphical description

in terms of quivers.

For the example of A4 to A6, the following exchange matrix

B̃A4 =

 A4 B4

−BT
4 C4

 (3.37)

represents a quiver in which the edges of a subquiver (four-cycle) have been removed

i.e. the beginning and end of off-diagonal entries in each block matrix are set to be

zero. The local expansion in Figure 3.3 is equivalent to inserting new columns and
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rows in each block matrix i.e.

A6 =



0 1 0 · · · 0 1

−1 0

0 A4 0
...

...

0 1

−1 0 0 · · · −1 0


, B6 =



0 −1 0 · · · 0 −1

1 0

0 B4 0
...

...

0 −1

1 0 0 · · · 1 0



C6 =



0 1 0 · · · 0 1

−1 0

0 C4 0
...

...

0 1

−1 0 0 · · · −1 0


Such extension leads to the exchange matrix (3.25), now written as

B̃A6 =

 A6 B6

−BT
6 C6

 (3.38)

3.4 The type A2N deformed periodic cluster map

Earlier we proved that the Laurent property of type A6 deformed map can be

restored by lifting the map into a higher-dimensional cluster map defined on the

space of tau functions, which is done by finding the particular sequence of mutations

preserving the structure of the quiver up to shifting the labels. In this section, we

use a similar procedure to show that there exists a sequence of mutations such that

the structure of the candidate deformed quiver QA2N
(or exchange matrix B̃A2N

, as

constructed in the previous section) is preserved and show that the corresponding

cluster variables can be produced by a two-parameter family of deformed cluster

maps corresponding to type A2N .

Example 3.4.1 (Deformed quiver QA8). Let us consider the initial seed formed by

the initial cluster (x̃1, x̃2, . . . , x̃19) = (q2, q1, q0, τ−1, τ0, τ1, σ0, σ1, . . . , σ9, p0, p1, p2, a1, a8)
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and exchange matrix

B̃A8 =


A8 B8

−BT
8 C8

b
(1)
8 b

(2)
8

 = (3.39)

where

A8/C8 =



0 1 0 0 · · · 0 0 1

−1 0 1 0 · · · 0 0 0

0 −1 0 0

0 0 A4/C4 0 0

0
...

...
...

0 0 1 0

0 0 0 0 · · · −1 0 1

−1 0 0 0 · · · 0 −1 0



, B8 =



0 −1 0 0 · · · 0 0 −1

1 0 −1 0 · · · 0 0 0

0 1 0 0

0 0 B4 0 0

0
...

...
...

0 0 −1 0

0 0 0 0 · · · 1 0 −1

1 0 0 0 · · · 0 1 0



b
(1)
8 + b

(2)
8 =

 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 1 1 0 0 0



Reading off the exchange matrix, the corresponding deformed quiver QA8 can be

drawn and this is depicted in Figure 3.5.
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Figure 3.5: (Candidate) deformed quiver QA8

Recall that the composition of mutations µ3µ2µ1µ15µ14µ6 maintains the form

of the deformed quiver QA6 except that the particular labellings of the nodes are

permuted. Such mutation periodicity was already observed in the type A4 case,

in which the relevant sequence of mutations is µ2µ1µ11µ5. Comparing the cases,

one can deduce the pattern of mutations for the type A8, which is given by

µ4µ3µ2µ1µ19µ18µ17µ7. Then performing the iteration of matrix mutations above gives

rise to the following exchange matrix:

0 1 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 −1

−1 0 1 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0

0 −1 0 1 1 0 0 0 0 0 0 0 0 1 0 −1 0 0 0

0 0 −1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 −1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 −1 −1 0 1 1 −1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 1 −1 0 1 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 1 0 −1

−1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 1 0

0 −1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 1

1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0

0 1 0 −1 −1 0 0 0 0 0 0 0 0 −1 0 1 0 0 0

0 0 1 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 −1 1 0 −1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 −1 0 1

1 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 −1 0

0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 1 0 0 0




(3.40)

Let us compare the mutated matrix (3.40) with (3.39). Then one can see

that there have been changes in certain regions in the matrix, highlighted above.

In the submatrix defined by the orange region, the transformation described by
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mutations is equivalent to cyclic permuting of the matrix, i.e. for the 13-cycle

ρ = (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) cyclic permutation, the entries satisfy

bρ(i)ρ(j) = bi+1,j+1 for 4 ≤ i, j ≤ 16,

with

bi,ρ(16) = bi,1 (or bρ(16),j = b1,j) for i, j ∈ {4, 5, . . . , 16}. (3.41)

As for the green highlighted submatrices, the entries in the upper and lower rows are

shifted to the right by 1. For the left and right end column vectors, the entries are

moved downwards by 1, i.e letting I1 = {1, 2, 3} and I2 = {17, 18, 19} and then

bl,ρ(j) = bl,j+1 for l ∈ I1 ∪ I2, j ∈ {4, . . . , 16}

in agreement with bl,ρ(16) = bl,1. Such a transformation is seen to be the cyclic

permutation of the labels {4, 5, . . . , 16} of the deformed quiver QA8.

Thus by using the same procedure that appeared in the type A6 case, one can

construct the cluster map ψA8 = ρ−1
A8
µ4µ3µ2µ1µ19µ18µ17µ7 which generates the set of

cluster variables

τn+2σn = σn+2τn + a1pn

p0,n+1p0,n = σn+3σn+2τnτn+1 + p1,nσn+1τn+2

p1,n+1p1,n = σn+4σn+3τnτn+1 + p2,np0,n+1

p2,n+1p2,n = σn+5σn+4τnτn+1 + q2,np1,n+1

q2,n+1q2,n = σn+6σn+5τnτn+1 + q1,np2,n+1

q1,n+1q1,n = σn+7σn+6τnτn+1 + q1,nq1,n+1

q0,n+1q0,n = σn+8σn+7τnτn+1 + σn+9q1,n+1τn−1

σn+9τn−1 = σn+7τn+1 + a8q0,n+1

(3.42)

The exchange matrix (3.39) can be found by the pullback of the original symplectic

form by the rational map, that is, substituting the following variable transformation

(3.43) into the symplectic form.

x1,n =
σnτn+1

σn+1τn
x2,n =

p0,n
σn+2τn

x3,n =
p1,n

σn+3τn
x4,n =

p2,n
σn+4τn

x5,n =
q2,n

σn+5τn
x6,n =

q1,n
σn+6τn

x7,n =
q0,n

σn+7τn
x8,n =

σn+9τn−1

σn+8τn

(3.43)
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Then by manipulation of equations in (3.42) and imposing (3.43), we obtain

the original two-parameter family of maps φA8 defined on the initial variables

(x1, x2, . . . , x8). Hence it has been shown that the candidate deformed quiver/exchange

matrix that emerged from the constructive approach allows us to define the cluster

map ψA8 which is obtained by considering Laurentification of deformed map φA8.

As we have seen from the example, the deformed type φA8 map admits a lift to a

higher dimensional cluster map ψA8 which preserves the deformed exchange matrix

(3.39). We now extend this procedure to show that the deformation of type A2N

cluster maps φA2N
can be lifted to a cluster map ψA2N

Following from the cases of type A4, A6 and A8, there exists a specific sequence

of mutation equivalent to a permutation of the vertices:

µτ−1µ̃µσ0(QA6) = ρ(QA6)

where µ̃ = µq0µq1µp1µp2 and ρ is the inverse cyclic permutation of the vertices

(τ−1, τ0, τ1, σ0, . . . , σ5). This begins with a mutation in the direction of σ0, µσ0 ,

followed by the mutations µ̃, then ends with µτ−1 . Recall that the local expansion

on the deformed quiver introduces the new vertices σ, pi and qi and new edges. The

position of the other vertices remains the same.

Proposition 3.4.2. For each deformed quiver QA2N
with vertices

(qN−2, . . . , q1, q0, τ−1, τ0, τ1, σ0, σ1, σ2, . . . , σ2N , σ2N+1, p0, p1, . . . , pN−2)

we have invariance up to cyclic permutation under mutation:

µτ−1µ̃µσ0(QA2N
) = ρ(QA2N

) for µ̃ = µq0 · · ·µqN−2
µpN−2

· · ·µp0 (3.44)

Proof. To see such a phenomenon explicitly, it is convenient for us to approach it

from the exchange matrix perspective instead of quivers. As we are aware from

the matrix (3.36), the local expansion in the matrix includes new entries on the

surrounding block matrices. The non-zero entries bij in the direction of the first

two mutations µp0µσ0 = µ3N+5µN+3 are positioned in the block matrices and their

adjacent columns and rows. The matrix mutation replaces old entries with new,
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µk(B), if bikbkj > 0. Therefore the the transformation only occurs at the block

matrices and their adjacent entries. This implies the first two mutations give the

same result as the lower-rank cases (e.g. type A8).

For the successive mutations, µp1µp0µσ0 = µ3N+6µ3N+5µN+3, the entries in the

direction of the forthcoming mutation, µk,

bi,k = (δi,N+1 + δi,N+2) + (−δi,k+1 − δi,k−1 + δi,k−2N + δi,k−2N+1) (3.45)

and its adjacent entries are written as follows

bi,k−1 = −(δi,N+1 + δi,N+2) + (δi,k + δi,k−2 − δi,k−2N−1 − δi,k−2N)

bi,k+1 = (δi,k−2N+2 − δi,k−2N) + (δi,k − δi,k+2)
(3.46)

From (3.45), one can see there are only two negative entries and the rest of the

entries are positive. This implies that bikbkj > 0 if i or j is k− 1 or k+1. Therefore

the mutation µk does not affect the other entries except the adjacent entries in the

direction k. The matrix mutation µk can be written as

b
(n)
ij = b

(n−1)
ij − 2δj,kb

(n−1)
i,j − 2δi,kb

(n−1)
k,j + sgn(bik)β

(n−1)
ij

for

β
(n−1)
ij = (δj,k+1 + δj,k−1)(δi,N+1 + δi,N+2 + δi,k−2N + δi,k−2N+1)

and it gives rise to the new columns (and rows) in the k−1 and k+1 directions. The

new column b′i,k+1 is bi,k in (3.45) with with the subscript of entries in the second

bracket of each column shifted by 1. As for the new entries in b′i,k−1, the structure is

same as bi,k+1 in (3.46) except the entries (δi,k−2N+2) − δi,k−2N) shifted by 1. From

(3.36), one can observe that the exchange matrix consists of columns, in which the

entries are written as

bi,v = δi,v−2N+1 − δi,v−2N−1 + δi,v−1 − δi,v+1

for 3N + 6 ≤ v ≤ 4N + 2. By comparison, the situation of the next mutation is

similar to the previous mutation. Thereby applying matrix mutations inductively

in the direction p0+l = (3N + 5) + l, for l ∈ {1, . . . , N − 3}, we obtain the following

columns:

bi,(3N+5+m) = δi,N+7+m − δi,N+5+m + δi,3N+4+m − δi,3N+6+m (3.47)
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form ∈ {1, . . . , l − 1}. Furthermore, the mutation in direction 4N+3 brings changes

to the last and first columns, which are given by

bi,4N+3 = −(δi,N+1 + δi,N+2) + (−δi,2N+3 − δi,2N+4 + δi,1 + δi,4N+2)

bi,1 = (δi,N+1 + δN+2) + (−δi,2 − δi,4N+3 + δi,2N+4 + δi,2N+5)
(3.48)

Now the mutations take place on the left side of the exchange matrix, which

begins from µqN−2
= µ1. The columns bi,l in the exchange matrix (3.36) for

l ∈ {2, . . . , N − 2} are structured as

bi,l = δi,l+2N+4 − δi,l+2N+2 + δi,l−1 − δi,l+1 (3.49)

Under the mutation in the direction of the first column, we have the last column

bi,4N+3 written in the form of (3.47) with setting δi,4N+4 = δi,1, and its subsequent

column bi,2 is

bi,2 = (δi,N+1 + δi,N+2) + (−δi,1 − δi,3 + δi,2N+5 + δi,2N+6) (3.50)

Notice that we have the same situation as in the case of the sequence of the mutations

on the right side of the matrix. To be specifically, the entries in bi,2 and its adjacent

columns are arranged in the same way as (3.45) and (3.46). Computing the matrix

mutations µ1 · · ·µN−2 = µqN−2
· · ·µq0 subsequently, we find new columns (bi,s) (1 ≤

i ≤ 4N + 3, 1 ≤ s ≤ N − 2),

bi.s = δi,s−1 − δi,s+1 − δi,s+2N+3 + δs+2N+5

and the next adjacent column bi,N−1 is given by

bi,N−1 = −δi,N−2−δi,N + δi,N+1 + δi,N+2︸ ︷︷ ︸
(A4)i,1

+ δi,3N+2 + δi,3N+3 − δi,3N+4︸ ︷︷ ︸
(−BT

4 )i,1

The mutation in the direction N − 1 gives the column bi,N :

bi,N = −δi,N−1 + δi,N+2︸ ︷︷ ︸
(A4)i,2

+ δi,3N+3︸ ︷︷ ︸
(−BT

4 )i,2

Therefore, combining all the results above, we can say that the composition of

mutations in (3.44) transforms the type A2N deformed exchange matrix (3.34) into
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the following

(3.51)

From the transformed matrix (3.51), one can see the same phenomenon as in

Example 3.4.1 such that 1) the components in the (2N − 1)× (2N − 1) submatrix

which is positioned in the centre of the matrix are cyclically permuted and 2) entries

in the middle of the rows and columns, embedded next to the central submatrix, are

shifted one downwards and upwards by one respectively. Hence we conclude that

the quiver arising from the exchange matrix (3.51) exhibits symmetry such that the

structure of the quiver is the same except that the labels {N,N − 1, . . . , 3N + 5}

are cyclically permuted i.e.

µNµN−1µ̃µ3N+5µN+3(Q2N) = ρ(Q2N) for µ̃ = µN−2µN−1 · · ·µ1µ4N+3µ4N+2 · · ·µ3N+7µ3N+6

where ρA2N
= (N,N + 1, . . . , 3N + 5).

The statement above enables us to define the cluster map which is associated

with the exchange matrix (3.36), that is, we define ψA2N
= ρ−1

A2N
µNµN−1µ̃µ3N+5µN+3

and see that

ψA2N
(BA2N

) = ρ−1
A2N

µNµN−1µ̃µ3N+5µN+3(BA2N
) = BA2N

(3.52)

Let us consider the cluster variables generated by the ψA2N
. Recall that the new

cluster variables are expressed by the exchange relation, in which the old cluster

variables and coefficients appearing in the expression entirely depend on the matrix

entries in the direction of mutation.

91



In the proof of Proposition 3.4.2 above, we see that the transformation given by

the first two mutations µp0µσ0 = µ3N+5µN+3 only occurs in the block matrices and

their surrounding entries. The corresponding matrix entries are written as

bi,N+3 = δi,N+1 + δi,N+5 − δi,3N+5 − δ̂i,4N+4

bi,3N+5 = δi,N+1 + δi,N+2 − δi,N+3 − δi,N+4 + δi,N+5 + δi,N+6 − δi,3N+6

(3.53)

where δ̂i,4N+4 corresponds to the frozen variable. From the results above, we can see

that the column bi,k in the direction of mutation µk, for

k ∈ {1, 2, . . . , N − 2, 3N + 6, . . . , 4N + 3}

are arranged as following

bi,k = (δi,N+1 + δi,N+2) + (−δi,k+1 − δi,k−1 + δi,k−2N + δi,k−2N+1) (3.54)

At the latter end of the sequence of mutations,

bi,N−1 = −δi,N−2 − δi,N + δi,N+2 + δi,3N+2 + δi,3N+3 − δi,3N+4

bi,N = −δi,N−1 + δi,N+2 + δi,3N+3 − δ̂i,4N+5

(3.55)

Thus starting from the initial seed (x̃0, BA2N
), where BA2N

is (3.36) and x̃0 is the

initial cluster

(qN−2,0, . . . , q1,0, q0,0, τ−1, τ0, τ1, σ0, σ1, σ2, . . . , σ2N , σ2N+1, p0,0, p1,0, . . . , pN−2,0)

the n-th iterate of the cluster map ψA2N
generates cluster variables defined by the

relations

τn+2σn = σn+2τn + a1p0,n

p0,n+1p0,n = σn+3σn+2τnτn+1 + p1,nσn+1τn+2

p1,n+1p1,n = σn+4σn+3τnτn+1 + p2,np0,n+1

...

pN−2,n+1pN−2,n = σn+N+1σn+Nτnτn+1 + qN−2,npN−3,n+1

qN−2,n+1qN−2,n = σn+N+2σn+N+1τnτn+1 + qN−3,npN−2,n+1

qN−3,n+1qN−3,n = σn+N+3σn+N+2τnτn+1 + qN−4,nqN−2,n+1

...

q0,n+1q0,n = σn+2Nσn+2N−1τnτn+1 + σn+2N+1q1,n+1τn−1

σn+2N+2τn−1 = σn+2Nτn+1 + a2Nq0,n+1

(3.56)
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We then impose the variable transformations in (3.33) and we find the exchange

relations

x1,nx1,n+1 = 1 + a1x2,n

x2,nx2,n+1 = 1 + x3,nx1,n+1

...

x2N−1,nx2N−1,n+1 = 1 + x2N,nx2N−2,n+1

x2N,nx2N,n+1 = 1 + aNx2N−1,n+1

(3.57)

which are induced by the deformed type A2N map φ̃A2N
= µ2Nµ2N−1 · · ·µ1.
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3.5 Tropical dynamics and degree growth for

Laurentified deformed map

In the previous section, we observed that upon applying Laurentification, one

retrieves a higher dimensional cluster map, possessing Laurent property, from the

type A2N deformed map. However, we didn’t touch the subject of the integrability

of the higher case of deformed maps. The problem is that the calculation for

determining the condition for the parameters becomes more complex as we try to use

the procedure on each modified first integral in each even case. Thus it is difficult

to prove the integrability by constructing invariant functions. Instead, we perform

an algebraic entropy test as an alternative to provide strong evidence that deformed

maps possess integrability. Here we begin with considering the calculation of degree

growth (ref. [7]) of lifted maps, which emerges from the deformation of type A4; we

move onto the higher rank case, type A2N .

3.5.1 Tropical dynamics and degree growth for type A2

deformed map

Recollecting the example 2.5.3, the rational map π, defined by

x1,n =
σnτn+1

σn+1τn
, x2,n =

σn+3τn−1

σn+2τn
, (3.58)

lifts the deformed map φ̃A2 to higher dimensional cluster map ψA2 = ρ−1µ2µ1 which

is equivalent to the system

τn+2σn = σn+2τn + a1σn+3τn−1

σn+4τn−1 = σn+2τn+1 + a2σn+1τn+2

(3.59)

As we are aware that this map possesses Laurent property, we can write the tau

functions generated by the system (3.76) as following

τn =
N

(1)
n (x̂)

x̂dn
, σn =

N
(2)
n (x̂)

x̂en
(3.60)

with N (j)(x̂) ∈ Z[x̂] being polynomials in the initial cluster variables x̂ =

(τ−1, τ0, τ1, σ0, σ1, σ2, σ3, a1, a2) = (x̃i)1≤i≤9, which are not divisible by any of cluster

94



variables x̃i, and the denominator being monomials whose exponent is d-vector

(denominator vector) in Z7. Note that we are not including the component of d-

vector for x̃8, x̃9 as they are frozen variables (they do not emerge in the denominator

of cluster variables). We can assemble the d-vectors of initial cluster x̂ to build the

7× 7 identity matrix,

(d−1 d0 d1 e0 e1 e2 e3) = −I (3.61)

Using the argument from the section 2.3.3, the components of d-vectors (degree

vectors) of the tau functions satisfy the (max,+) tropical version of the exchange

relations (2.74). Therefore the d-vectors dn, en, which arise from (3.59), yields the

following system of equations,

dn+2 + en = max(en+2 + dn, en+3 + dn−1),

en+4 + dn−1 = max(en+2 + dn+1, en+1 + dn+2),
(3.62)

This system permits us to derive the degree growth. To proceed we need to consider

the tropical analogue of variables (3.75) given by the rational map π, as shown

below,

X1,n = en + dn+1 − en+1 − dn, X2,n = en+3 + dn−1 − en+2 − dn, (3.63)

Such quantities leads us to the following result,

Lemma 3.5.1. Given that d-vectors dn, en satisfy the system (3.62), the quantity

Xj,n for j = 1, 2 in (3.63) are induced by the tropical map Xj,n+1 = φtrop(Xj,n),

which is specified by

X1,n+1 = [X2,n]+ −X1,n,

X2,n+1 =
[
[X2,n]+ −X1,n

]
+
−X2,n.

(3.64)

where [Xj,n]+ = max(Xj,n, 0). Given arbitrary initial data (X1,0,X2,0), the orbit of

φtrop is periodic with period 5.

Proof. Firstly, the relations can be found by rearrange (3.62) and rewrite the

equations in terms of Xi,n using (3.63). One can confirm that the map φtrop is

tropical analogue of original cluster map φA2 associated with type A2. This implies

that each quantity Xi,n corresponds to each d-vector of cluster variable xi,n defined
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in cluster algebra of type A2. Furthermore as already noted that the cluster map

is periodic with period 5, and hence the orbits of φtrop is also periodic with period

6. Alternatively, the periodicity also can be found by directly checking case by case

analysis of initial data in different sectors of the plane.

Remark 3.5.2. For the periodicity of the scalar map, one can directly verify by

performing the iteration (3.64). The initial d-vectors (3.61) determines the pair of

vectors of initial values,

X1,0 = (0, 1,−1,−1, 1, 0, 0), X2,0 = (−1, 1, 0, 0, 0, 1,−1) (3.65)

The iteration (3.64) produces subsequent pair of vectors

n X1,n X2,n

1 (0, 0, 1, 1,−1, 1, 0) (1,−1, 1, 1, 0, 0, 1)

2 (1, 0, 0, 0, 1,−1, 1) (0, 1,−1,−1, 1, 0, 0)

3 (−1, 1, 0, 0, 0, 1,−1) (0, 0, 1, 1,−1, 1, 0)

4 (1,−1, 1, 1, 0, 0, 1) (1, 0, 0, 0, 1,−1, 1)

5 (0, 1,−1,−1, 1, 0, 0) (−1, 1, 0, 0, 0, 1,−1)

As one can see in the table, the iterates become initial values after 5th iteration

of (3.64). As another option, when we choose the initial data X1,0 = (−1, 0) and

X2,0 = (0,−1), we have

(−1, 0)→ (1, 0)→ (0, 1)→ (0,−1)→ (1, 1)→ (−1, 0)

(0,−1)→ (1, 1)→ (−1, 0)→ (1, 0)→ (0, 1)→ (0,−1)
(3.66)

This corresponds precisely to the sequence of pairs of d-vectors arising from the

Zamolodchikov periodicity of the orbit of mutations in cluster algebra of type A2

shown in the table in Example 2.1.8(see also Example 2.1.32 ).

In fact, the periodicity of the quantities X1,n and X2,n is the key to determine

the degree growth of d-vectors dn and en, which is shown in the result below,

Theorem 3.5.3. The d-vectors dn and en, which solve the system of equations

(3.62), are elements in the kernel of linear difference operator

L = (T 5 − 1)(T 3 − 1)(T − 1) (3.67)
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where T is shift operator corresponding to n → n + 1. For the tau functions

generated, the leading order of degree growth of their denominators is given by

en =
1

15
(1, 1, 1, 1, 1, 1)n2 +O(n)

dn =
1

15
(1, 1, 1, 1, 1, 1)n2 +O(n)

(3.68)

Proof. In terms of linear operator T , the tropical relations in (3.63) can be expressed

as,

X1,n = (T − 1)dn − (T − 1)en

X2,n = (T −1 − 1)dn + (T 3 − T 2)en

(3.69)

The sum of X1,n +X2,n+1 cancels out the terms of dn and by the Lemma 3.5.1

Len = (T 5 − 1)(T 4 − T 3 − T + 1)en = 0 (3.70)

The solution of the characteristic polynomial gives the solution of recurrence

relations above

en = an2 +O(n) (3.71)

for some constant vector a ∈ Z7. Note that the linear operator L can be rewritten

as

(T 5 − 1)(T 3 − 1)(T − 1)en = 0 ⇐⇒ (T 5 − 1)(T 3 − 1)en+1 = (T 5 − 1)(T 3 − 1)en

(3.72)

This implies (T 5−1)(T 3−1)en is constant in n and it is equal to 30a. To derive the

constant a at the leading order term, we need to calculate more terms en by tropical

relations (3.62) with initial tropical seed (3.61). This gives rises to sequences

e4 = (1, 0, 0,1, 0, 0, 0), e5 = (1, 1, 0, 1, 1, 0, 0), e6 = (2, 1, 1, 2, 1, 1, 0)

e7 = (3, 2, 1, 3, 2, 1, 1), e8 = (3, 3, 2, 4, 3, 2, 1)

Therefore we can calculate the constant term, (3.72),

(T 5 − 1)(T 3 − 1)en = 30a = (2, 2, 2, 2, 2, 2, 2) (3.73)

and fix the vector a. This enable us to determine the leading order behaviour of the

sequence and hence it is given by

en =
1

15
(1, 1, 1, 1, 1, 1)n2 +O(n)
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For degree growth of d-vector dn, we can derive it from the

(T 5 − 1)(T 3 − 1)X1,n = (T 5 − 1)(T 3 − 1)(T − 1)dn −���*
0

Len = 0

Thus for dn satisfying the relation above, we can write

dn = bn2 +O(n) (3.74)

where b is element of Z7. We can specify the coefficient b from the terms, generated

by the (3.62),

(0, 0, 0, 1,0, 0, 0), (1, 0, 0, 1, 1, 0, 0), (1, 1, 0, 2, 1, 1, 0), (2, 1, 1, 3, 2, 1, 1),

(3, 2, 1, 3, 3, 2, 1), (4, 3, 2, 5, 3, 3, 2), (5, 4, 3, 6, 5, 3, 3)

As a result, we can fix the constant vector b from

(T 5 − 1)(T 3 − 1)dn = 30b = (2, 2, 2, 2, 2, 2, 2).

Hence the d-vector dn yields the following expression,

dn =
1

15
(1, 1, 1, 1, 1, 1)n2 +O(n)

Remark 3.5.4. The result suggests that the algebraic entropy of the cluster map is

zero, which hints that the discrete dynamical system given by the deformed cluster

map is integrable. This is indeed true as mentioned in Example 2.4.3, the deformed

map φ̃A2 preserves the first integral (2.58) and hence it is integrable. Thus the result

of the algebraic entropy test verifies the integrability of the deformed A2 map.

3.5.2 Tropical dynamics and degree growth for type A4

deformed map

Recalling the example 2.5.5, given initial cluster

x̂ = (q0, τ−1, τ0, τ1, σ0, σ1, σ2, σ3, σ4, σ5, p0, a1, a4) = (x̃j)1≤j≤13,
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deformed map lifted to higher dimensional cluster map ψA4 = ρ−1µ2µ1µ11µ5 via the

rational map π,

x1,n =
σnτn+1

σn+1τn
x2,n =

pn
σn+2τn

x3,n =
qn

σn+3τn
x4,n =

σn+5τn−1

σn+4τn
(3.75)

which is equivalent to the system,

τn+2σn = σn+2τn + a1pn

pn+1pn = σn+3σn+2τnτn+1 + qnσn+1τn+2

qn+1qn = σn+4σn+3τnτn+1 + pn+1σn+5τn−1

σn+6τn−1 = σn+4τn+1 + a1qn+1

(3.76)

Since the map consists of Laurent property, the tau functions, the system of

equations in (3.76) produces the sequence of tau functions expressed in the form

τn =
N

(1)
n (x̂)

x̂dn
, σn =

N
(2)
n (x̂)

x̂en
, pn =

N
(3)
n (x̂)

x̂fn
, qn =

N
(4)
n (x̂)

x̂gn
(3.77)

where N (j)(x̂) ∈ Z[x̂] is polynomials in the initial cluster variables x̂, and

dn, en, fn,gn ∈ Z11 are d-vectors whose initial data is given by 11 × 11 identity

matrix,

(g0 d−1 d0 d1 e0 e1 e2 e3 e4 e5 g0) = −I (3.78)

With the same argument mentioned in previous section, we can find the (max,+)

tropical relations of the d-vectors, which arose from (3.76), shown as below

dn+2 + en = max(en+2 + dn, fn),

fn+1 + fn = max(en+2 + en+3 + dn + dn+1,gn + en+1 + dn+2),

gn+1 + gn = max(en+3 + en+4 + dn + dn+1, fn+1 + en+5 + dn−1),

en+6 + dn−1 = max(en+4 + dn+1,gn+1),

(3.79)

Let us consider the tropical analogue of variables (3.75) given by the rational

map π,

X1,n = en + dn+1 − en+1 − dn, X2,n = gn − en+2 − dn,

X3,n = fn − en+3 − dn, X4,n = en+5 + dn−1 − en+4 − dn
(3.80)

Then one can show the following result,

99



Lemma 3.5.5. Given that d-vectors dn, en, fn, en holds the system (3.79), the

quantity Xj,n for 1 ≤ j ≤ 4 in (3.80) are induced by the tropical map φtropA4
, which is

specified by

X1,n+1 +X1,n = [X2,n]+,

X2,n+1 +X2,n = [X1,n+1 +X3,n]+,

X3,n+1 +X3,n = [X2,n+1 +X4,n]+,

X4,n+1 +X4,n = [X3,n+1]+.

(3.81)

Given arbitrary initial data (X1,0, X2,0, X3,0, X4,0), the orbit of φtropA4
is periodic with

period 7.

Proof. We can use same reasoning as Lemma 3.64. The above system of equations

can be derived directly from the (3.79) by using the substitution (3.80). One can

see that (3.81) takes form which is identical to (max,+) version of exchange relation

given by the original cluster map φA4 = µ4µ3µ2µ1 in the example 2.4.4. Hence by

the periodicity property of φA2 , we can see that evolution of X1,n is periodic with

period 7. Alternatively, the periodicity also can be found by directly checking case

by case analysis of initial data in different sectors of the plane.

We can utilise the periodicity of terms (3.80) to obtain the following result.

Theorem 3.5.6. Let T be linear operator which shifts n → n + 1. The d-vectors

dn and en, which solve the system of equations (3.62), are elements in the kernel of

linear difference operator

L = (T 7 − 1)(T 5 − 1)(T − 1) (3.82)

where T is shift operator corresponding to n → n + 1. For the tau functions

generated, the leading order of degree growth of their denominators is given by

en =
n2

35
(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2) +O(n)

dn =
n2

35
(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2) +O(n)

qn =
n2

35
(4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4) +O(n)

pn =
n2

35
(4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4) +O(n)

(3.83)
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Proof. By definition (3.80) , we have

X1,n = (T − 1)dn − (T − 1)en

X4,n+1 = −(T − 1)dn + (T 6 − T 5)en

Followed by the periodicity of the terms, the sum X1,n+X4,n+1 produces the linear

difference equation,

Len = (T 7 − 1)(T 6 − T 5 − T + 1)en

= (T 7 − 1)(T 5 − 1)(T − 1)en = 0

Therefore, given that en satisfy Len = 0, from the formula of X1,n above we find

(T 7 − 1)(T 6 − T 5 − T + 1)dn = 0.

Similarly, we can find the relations of d-vectors gn and fn from the relations X2,n

and X3,n in (3.80) respectively. Then we have

Lgn = LX2,n + Len+2 + Ldn = 0

Lfn = LX3,n + Len+3 + Ldn = 0

Altogether, solving the linear difference equation above gives the expression for d-

vectors whose leading order term is n2 with some constant coefficient, en = an2 +

O(n). We now consider the sequences of d-vectors, emerged from the iteration of

(3.79), are given by

e6 = (1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1)T

e7 = (1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1)T

e8 = (1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 2)T

e9 = (2, 1, 1, 1, 2, 2, 1, 1, 0, 0, 3)T

e10 = (3, 2, 1, 1, 2, 2, 2, 1, 1, 0, 3)T

e11 = (4, 3, 2, 1, 3, 2, 2, 2, 1, 1, 4)T

e12 = (5, 3, 3, 2, 4, 3, 2, 2, 2, 1, 5)T

e13 = (6, 4, 3, 3, 5, 4, 3, 2, 2, 2, 7)T

Note that from the sequences above, we can see the components of en taking the

form

en = (e(1)n , e
(2)
n+2, e

(2)
n+1, e

(2)
n , e

(3)
n+5, e

(3)
n+4, e

(3)
n+3, e

(3)
n+2, e

(3)
n+1, e

(3)
n , e(4)n ) (3.84)
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which holds following relation,

(T 7 − 1)(T 5 − 1)en = (4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4)T = 70a

This enables us to fix the constant coefficient a, which lead us to the d-vector

en = an2 +O(n) =
n2

35
(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2)T +O(n)

Similarly as (3.84), the sequence of d-vector dn takes particular form

dn = (d(1)n , d
(2)
n+2, d

(2)
n+1, d

(2)
n , d

(3)
n+5, d

(3)
n+4, d

(3)
n+3, d

(3)
n+2, d

(3)
n+1, d

(3)
n , d(3)n )

whose components are given by

d(1)n : 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 7, 8, 9

dn : 0, 0,−1, 0, 0, 0, 1, 1, 2, 2, 2, 3, 4, 5, 5

d(2)n : 0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 4, 4, 5, 6, 7

Then we find leading order quadratic growth of d-vector (3.80)

dn =
n2

35
(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2)T +O(n)

Following on the result above, we can determine the coefficient of leading order

terms for the d-vectors gn and fn from the formula of X2,n,X3,n in (3.80) together

with periodicity as following

gn ∼ en+2 + dn ∼ 2an2

fn ∼ en+3 + dn ∼ 2an2

with same constant a. We claim the result (5.24).

Remark 3.5.7. For homogenous degree of left and right hand side of relation (3.76)

to be consistent, the homogeneous degree for qn and pn must be twice the degree of

τn and σn. Hence the degrees of gn and fn should grow twice as fast as dn and en ,

which matches the result above.

102



3.5.3 Algebraic entropy of Laurentified cluster map ψA2N

Following the process of which we viewed in the previous section, we set the initial

d-vectors(
g
(N−2)
0 , . . . ,g

(0)
0 ,d−1,d0,d1, e0, e1, . . . , e2N+1, f

(0)
0 , . . . f

(N−2)
0

)
= −I (3.85)

associated with initial cluster

x̃ = (x̃j) = (qN−2,0, . . . , q0,0, τ−1, τ0, τ1, σ0, σ1, . . . , σ2N , σ2N+1, p0,0, . . . , pN−2,0)

Recall that we have shown that the map ψA2N
given by (3.56) corresponds to the

mutations in a cluster algebra. By Laurent property, we can write the tau functions

generated by ψA2N
in the form

τn =
N

(1)
n (x̃)

x̃dn
, σn =

N
(2)
n (x̃)

x̃en
, pj,n =

N̂
(j)
n (x̃)

x̃f
(j)
n

, qj,n =
Ñ

(j)
n (x̃)

x̃g
(j)
n

, (3.86)

Using the same argument in the previous section above, we find that the correspond-

ing d-vectors satisfy the ultradiscrete version of the system of exchange relations

(3.56), which is given by

dn+2 + en = max(en+2 + dn, f
(0)
n ),

f
(0)
n+1 + f

(0)
n = max(en+3 + en+2 + dn + dn+1, f

(1)
n + en+1 + dn+2),

f
(1)
n+1 + f

(1)
n = max(en+4 + en+3 + dn + dn+1, f

(2)
n + f

(0)
n+1),

...

f
(N−2)
n+1 + f

(N−2)
n = max(en+N+1 + en+N + dn + dn+1,g

(N−2)
n + f

(N−3)
n+1 ),

g
(N−2)
n+1 + g

(N−2)
n = max(en+N+2 + en+N+1 + dn + dn+1,g

(N−3)
n + f

(N−2)
n+1 ),

g
(N−3)
n+1 + g

(N−3)
n = max(en+N+3 + en+N+2 + dn + dn+1,g

(N−4)
n + g

(N−2)
n+1 ),

...

g
(0)
n+1 + g

(0)
n = max(en+2N + en+2N−1 + dn + dn+1, en+2N+1 + dn−1 + g

(1)
n+1),

en+2N+2 + dn−1 = max(en+2N + dn+1,g
(0)
n+1)

(3.87)
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For the next step, we introduce the quantities Xi which are analogous to the tropical

version of variable transformation (3.33), as shown below.

X1,n = en + dn+1 − en+1 − dn,

X2,n = f
(0)
n − en+2 − dn,

...

XN,n = f
(N−2)
n − en+N − dn,

XN+1,n = g
(N−2)
n − en+N+1 − dn,

...

X2N−1,n = g
(0)
n − en+2N−1 − dn,

X2N,n = en+2N+1 + dn−1 − en+2N − dn

(3.88)

By defining these quantities, the system (3.87) can be expressed as discrete

equations in (3.89), which is identical to the (max,+) relations obtained from the

ultradiscretization of the cluster map φA2N
. Then this leads to the following result.

Lemma 3.5.8. The combination of d-vectors defined by (3.88) satisfy the tropical

analogue of deformed A2N map φ̃A2N
(3.57), given by the following system of

equations,

X1,n+1 +X1,n = [X2,n]+

X2,n+1 +X2,n = [X1,n+1 +X3,n]+
...

X2N−1,n+1 +X2N−1,n = [X2N−2,n+1 +X2N,n]+

X2N,n+1 +X2N,n = [X2N−1,n]+

(3.89)

which we specify by the tropical map φtropA2N
. Given arbitrary initial data (Xj,0)1≤j≤2N ,

the orbit of the φtropA2N
is periodic with period 2N + 3.

Proof. The (max,+) relations (3.89) can be directly derived from the structure of

quantities (3.88) and the tropical analogue (ultradiscrete) of exchange relations

(3.57) which gives (3.87). Notice that (3.89) is indeed a (max,+) relation of

undeformed cluster map φA2N
. As we are aware that the map φA2N

possess

periodicity with period 2N + 3 due to Zamolodchikov periodicity. Hence the

components of φtropA2N
is periodic with period 2N + 3 i.e.(φtrop

A2N
)2N+3Xn = Xn.

By using the periodicity, one can calculate the degree growth of d-vectors.
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Theorem 3.5.9. The d-vectors dn, en,g
(i)
n , f

(i)
n satisfying the (max,+) relations

(3.87), are solution of following linear difference equation,

(T 2N+3 − 1)(T 2N+1 − 1)(T − 1)rn = 0 (3.90)

for rn = dn, en,g
(i)
n , f

(i)
n . For the tau functions generated, the leading order of degree

growth of their denominators is given by

dn =
1

(8N2 + 16N + 6)
a1n

2 +O(n), en =
1

(8N2 + 16N + 6)
a2n

2 +O(n),

g(i)
n =

1

(4N2 + 8N + 3)
a3n

2 +O(n), f (i)n =
1

(4N2 + 8N + 3)
a4n

2 +O(n)
(3.91)

where a = (ai)1≤i≤4N+3 whose entries ai = 4 for i = {1, . . . , N − 1}∪{3N + 5, . . . , 4N + 3}

and ai = 2 for i = N − 1, . . . 3N + 4.

Proof. Given the shifting operator T : n→ n+1, the first and last relation in (3.87)

can be written as

X1,n = (T − 1)dn − (T − 1)en,

X2N,n+1 = −(T − 1)dn + (T 2N+2 − T 2N+1)en
(3.92)

Addition of these two terms, followed by applying the periodicity property i.e.

(T 2N+3 − 1)(Xi,n)i=1,2 = 0, produces the linear difference equation,

(T 2N+3 − 1)(T 2N+1 − 1)(T − 1)en = 0

=⇒ (T − 1)3(
2N+2∑
i=0

T i)(
2N∑
i=0

T i)en = 0
(3.93)

It is clear that the corresponding characteristic polynomial has root λ = 1 with mul-

tiplicity 3, and the other roots are λ = −1, exp{2kπ/(2N + 3)}, exp{2lπ/(2N + 1)}

for k ∈ Z2N+2 and l ∈ Z2N . Thus for constant a, the leading order of en takes the

form

en = an2 +O(n) (3.94)

as n → ∞. Since the linear expression holds for en, the constant vector a satisfies

the linear relations,

(T 2N+3 − 1)(T 2N+1 − 1)en = (8N2 + 16N + 6)a (3.95)

By inductive method, one can deduce the constant vector a = (ai)1≤i≤4N+3 whose

entries ai = 4 for i = {1, . . . , N − 1} ∪ {3N + 5, . . . , 4N + 3} and ai = 2 for i =

N − 1, . . . 3N + 4.
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By using the first relation in (3.92) together with periodicity ofX1,n , the d-vector

en satisfies same linear relation as dn, which shown by

(T 2N+3 − 1)(T 2N+1 − 1)X1,n = (T 2N+3 − 1)(T 2N+1 − 1)(T − 1)dn︸ ︷︷ ︸
=0

− (T 2N+3 − 1)(T 2N+1 − 1)(T − 1)en

= 0

Then

dn = an2 +O(n) (3.96)

We can impose (3.94) and (3.96) into Xi,n for 2 ≤ i ≤ 2N − 1 and obtain the

expression of other d-vectors whose leading order term is polynomial n2. Then by

inductive approach, we can show the required result (3.91).

Since the growths of degree of the variables is quadratic, the entropy gives zero.

Hence the result leads us to conjecture that deformed type A2N cluster map is

Liouville integrable.
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Chapter 4

Deformation of cluster type: C2,

B3 and D4

4.1 An integrable deformation of the C2 cluster

map

In this section, we will consider the deformation of the periodic cluster map, which

is constructed by the cluster algebra of type C2.

4.1.1 Deformed C2 map

The Cartan matrix for the C2 root system is

C =

 2 −1

−2 2

 ,

and this is the companion to the exchange matrix B = (bij) given by

B =

 0 1

−2 0

 . (4.1)

which is obtained from C by removing the diagonal terms and adjusting the signs

of the off-diagonal terms appropriately (with the requirement that if bij ̸= 0, then
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bji should have the opposite sign). The latter matrix is skew-symmetrizable, since

for D = diag(1, 2) we have that

Ω = BD = (ωij)

is the skew-symmetric matrix. Skew-symmetrizability of B is seen from the fact

that Ω = BD is skew-symmetric, where D = diag(1, 2) gives

Ω =

 0 2

−2 0

 . (4.2)

Starting from an initial cluster x = (x1, x2), we consider a pair of deformed

mutations, of the form

µ̃1 : (x1, x2) 7→ (x′1, x2), x′1x1 = a1x
2
2 + b1,

µ̃2 : (x′1, x2) 7→ (x′1, x
′
2), x′2x2 = a2x

′
1 + b2.

(4.3)

One can confirm that, after applying the corresponding pair of matrix mutations,

namely µ1 followed by µ2, according to the rule (2.1), the exchange matrix (4.1) is

mutation periodic under the composition of mutations, that is to say

µ2µ1(B) = B

So, this is similar to the situation for skew form constructed from the exchange

matrix in previous cases (e.g.symplectic form (2.87) associated with type A2 in

Example 2.4.3). By a minor variation on Theorem 1.3 in [10] and adjusting the

presymplectic structure to the skew-symmetrizable setting (see [24], for instance),

the map φ̃C2 = µ̃2µ̃1 composed from the pair of deformed mutations preserves the

log-canonical two-form

ω =
∑
i<j

ωij
xixj

dx1 ∧ dx2 = 2d log x1 ∧ d log x2 (4.4)

The latter is the skew form build from the coefficients of the matrix Ω in (4.2),

which is obtained from skew-symmetrization of (4.1). In other words, φ̃∗
C2
(ω) = ω.

In addition to this, the two form (4.4) is non-degenerate as (4.1) is not singular,

which suggests that deformed C2 cluster map is symplectic for arbitrary values of

the parameters ai, bi. However, note that when these parameters take the generic
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values, the composition of deformed mutations, φ̃C2 is not a cluster map, because it

does not generate Laurent polynomial in x1, x2.

The original undeformed mutations obtained from the exchange matrix (4.1),

which generate the cluster algebra of type C2, are recovered by setting all the

parameters to 1. Since the Coxeter number of C2 is 4, Zamolodchikov periodicity

implies that the cluster map φC2 = µ2µ1 has period 3 = 1
2
(4 + 2), so that

φC2 = µ2µ1 (φ̃ with a1 = b1 = a2 = b2 = 1) =⇒ φ3(x) = x.

Therefore due to the periodicity, for any function f : C2 → C, the associated

symmetric function given by the product over an orbit, that is

Kf (x) =
2∏
j=0

(φ∗)j(f)(x) =
2∏
j=0

f((φ∗)j(x)),

which are invariant under cluster map φC2 . Here we consider

K =
2∏
j=0

(φ∗)j(x2) = x2 +
2

x2
+
x1
x2

+
x2
x1

+
1

x1x2
. (4.5)

Before proceeding further with the general deformed case, for arbitrary non-zero

parameters ai, bi, we apply the rescaling xi → λixi to each cluster variables with

suitable choice of parameters (λ1, λ2) ∈ (C∗)2, so that a1 = 1 = a2 to simplify

the calculations. With the remaining parameters b1, b2 fixed, the iteration of the

deformed map φ̃C2 is given by a system of recurrences

x1,n+1x1,n = x22,n + b1,

x2,n+1x2,n = x1,n+1 + b2.
(4.6)

An invariant function for the deformed map φ̃C2 can be constructed by following the

same procedure, shown in the Section 3.2 (or Example 2.4.4), whereby we modify

each Laurent monomial in (4.5) by inserting arbitrary coefficients κi in front of each

monomial, so that we have

K̃ = x2 +
κ1
x2

+
κ2x1
x2

+
κ3x2
x1

+
κ4
x1x2

(4.7)

Next, we proceed to impose the condition of invariance on K̃, that is φ̃∗(K̃) =

K̃, which constrains the coefficients κi and bi. This gives rise to a necessary and

sufficient condition for the deformed map (4.6) to be Liouville integrable, leading to

the following result,
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Theorem 4.1.1. The necessary and sufficient condition for a rational function of

the form (4.7) to be first integral for the map defined by (4.6) is

b1 = b2 = β (4.8)

in which case K̃ is given by

K̃ = x2 +
1 + β

x2
+
x2
x1

+
β

x1x2
(4.9)

Hence the deformed symplectic map φ̃ given by

φ̃C2 : C2 → C2

x = (x1, x2) 7→ x′ = ( (x2)
2+β
x1

,
x′1+β

x2
)

(4.10)

is Liouville integrable whenever the condition (4.8) holds.

Proof. The proof of the above result follow from an explicit calculation, which can

be carried out by using a computer algebra package such as MAPLE: assuming that

a first integral of the form (4.7) exists, the equation φ∗(K̃) = K̃ can be rewritten as

an identity between two polynomials in x1, x2, and then comparing coefficients at

each degree yields a set of linear equations in the coefficients κi; this linear system

has a solution if and only if (4.8) holds.

Remark 4.1.2. Notice that the family of level sets of the first integral (4.9), given

by fixing the value K̃ = κ̃,

x1(x2)
2 + (1 + β)x1 + (x1)

2 + (x2)
2 + β = κ̃x1x2,

is a pencil of biquadratic curves, that is, one paramter family of curves. This suggests

that we can construct a map of QRT type [47, 25], which is defined by the two

involutions :

Vertical switch : iv : (x1, x2)→ (x1, x
†
2)

Horizontal switch : ih : (x1, x2)→ (x†1, x2)
(4.11)

where x†1, x
†
2 are points on the curve which intersect with horizontal/vertical line,

respectively. The QRT map is composed of the switches,

φQRT = iv ◦ ih (4.12)
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By using Vieta’s formula for the product of roots of a quadratic, the horizontal and

vertical switch can be written as

ih : x1 → x†1 =
b+ x22
x1

iv : x2 → x†2 =
b+ x1
x2

(4.13)

Comparison with the formula (4.10), shows that in this case, the transformation µ1

is the horizontal switch and µ2 is the vertical switch. Hence the map coincides with

the QRT map φQRT . For the full details of QRT map, we direct the reader to [47,

25].

We have seen that, when the parameters satisfy the constraints (4.8), the

symplectic map given by (4.6) is Liouville integrable. However, as mentioned above,

general deformed cluster map is not itself a cluster map and this continues to be

true for the constrained version (4.10), as the variables generated by the map are

not elements of the Laurent polynomial ring. To resolve this issue, we must go to

a step further, and try to apply Laurentification, analogously to what was carried

out in the previous sections. We once again consider an empirical version of p-adic

analysis, which is done by inspecting the prime factorization of the terms given by

the iteration. With the choice of values for the initial cluster, (x1, x2) = (1, 1),

and parameters, b1 = 2 = b2, we find the prime factorizations of numerators and

denominators of successive terms, as in the below:

n x1,n x2,n

1 3 5

2 32 11
5

3 19
52

3·23
5·11

4 569
112

5·811
3·11·23

5 172·107
32·232

11·8089
3·23·811

6 139·3299
8112

3·7·23·23039
811·8089

7 457737691
80892

13·173·811·3793
7·23039·8089

8 3·457·81689827
72·230392

53·41·39461·8089
7·13·173·23039·3793

We can see that for each of the primes p1 = 5, 11, 23, 8089 (for instance), the p-adic
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norm for x1,n and x2,n exhibit the patterns

|x1,n|p1 : 1, 1, p
2, 1, 1

|x2,n|p1 : p
−1, p, p, p−1

(4.14)

Furthermore the prime p2 = 19, 569, 107, 139, 3299, appear successively as factors in

the numerator of x1,n but not in x2,n. This suggests that there exists singularity

patterns,

Pattern 1 : . . .→ (R, 0)→ (R,∞1)→ (∞2,∞1)→ (R, 01)→ . . .

Pattern 2 : . . .→ (01, R)→ . . .

(4.15)

where R is a regular (non-zero) finite value. Then we introduce two tau-functions,

τn ≡ 0 (mod p1) and σn ≡ 0 (mod p2), which are associated with Pattern 1 and

Pattern 2, respectively. Then we define a monomial rational map π : C5 → C2,

which is specified by the following transformation of dependent variables:

x1,n =
σn
τ 2n+1

, x2,n =
τnτn+3

τn+1τn+2

(4.16)

If the two expressions (4.16) are substituted directly into the components (4.6) of φ

with the paramter constrained so that b1 = β = b2, one obtains following system of

recurrence relations,

σnσn+1 = βτ 2n+1τ
2
n+2 + τ 2nτ

2
n+3

τnτn+4 = βτ 2n+2 + σn+1

(4.17)

If we iterate the latter pair of equations with initial values (σ0, τ0, τ1, τ2, τ3) =

(1, 1, 1, 1, 1) and β = 2, then we obtain a pair of integer sequences, with the first

few terms presented in the following table:

n 0 1 2 3 4 5 6 7

σn 3 9 19 569 30923 458561 457737691 111996752817

τn+4 5 11 69 811 8089 161273 8530457 202237625

This table provides initial evidence that this system (4.17) has the Laurent

property. Furthermore we can observe that the primes appearing as isolated factors

in each of these integer sequences are the same ones that were identified as factors

of numerators and denominators in the preceding table.
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The system of recurrence relations (4.17) can be interpreted as iteration of a

birational map ψ : C5 → C5 which is interwined with φ via π, that is,

ψ : (σ0, τ0, τ1, τ2, τ3)→ (σ1, τ1, τ2, τ3, τ4), φ · π = π · ψ

Then we would like to identify the initial data for the map ψ as an initial cluster

in a seed for a cluster algebra of rank 5, so that x̃ = (x̃1, x̃2, x̃3, x̃4, x̃5). To verify

that Laurent property holds when the deformed map φ̃C2 is lifted to the map ψ on

the space of tau functions, we need to find a cluster algebra structure defined by

an initial seed (x̃, B̃C2), for a suitable exchange matrix B̃C2 ∈ Mat5(Z). We will

then proceed to show that this extends to a seed (x̂, B̂C2), where the initial cluster

x̂ = (x̃, β) includes the parameter β as a frozen variable, and B̂C2 is an extended

6× 5 exchange matrix (with an additional row to incorporate the frozen variable).

To start with, we apply the pullback of the symplectic form (4.4) by the rational

map π, π∗ω,

ω̃ = π∗ω =
∑
i<j

ω̃ij,

which gives rise to a new skew-symmetric matrix,

Ω̃ = (ω̃ij) =



0 −2 2 2 −2

2 0 −4 0 0

−2 4 0 −4 4

−2 0 4 0 0

2 0 −4 0 0


(4.18)

Similar to the matrix in (4.2), the Ω̃ can be expressed as a product Ω̃ = B̃C2D̃ of

skew-symmetrizable matrix B̃C2 and diagonal matrix D̃. By post-multiplying by the

diagonal matrix D̃−1 = diag(1, 1/2, 1/2, 1/2, 1/2), this gives the exchange matrix

B̃C2 = Ω̃D̃−1 = (B̃ij) =



0 −1 1 1 −1

2 0 −2 0 0

−2 2 0 −2 2

−2 0 2 0 0

2 0 −2 0 0


(4.19)

Now observe that if we apply the composition µ̂2µ̂1 for the latter exchange
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matrix, applying the mutation µ̂1 associated with index 1 followed by the mutation

µ̂2 associated with index 2, then the initial cluster x̃ = (σ0, τ0, τ1, τ2, τ3) gets

transformed to µ̂2µ̂1(x̃) = (x̃′1, x̃
′
2, x̃3, x̃4, x̃5) = (σ1, τ4, τ1, τ2, τ3), where the new

cluster variables σ1, τ4 are obtained from a single iteration of each of the recurrences

in (4.17), setting n = 0 and β = 1 therein. To generate the general sequence

of mutations for tau functions that corresponds to (4.17) with arbitrary β, it is

necessary to extend the initial cluster to x̂ = (x̃, β) by inserting the frozen variable

β, and then a further calculation shows that we can define the extended exchange

matrix

B̂ =



0 −1 1 1 −1

2 0 −2 0 0

−2 2 0 −2 2

−2 0 2 0 0

2 0 −2 0 0

−1 0 0 0 1


, (4.20)

which is obtained by inserting an extra row at the bottom of (4.19). The form of the

recurrence system (4.17) also requires that we permute the cluster variables after

applying the two mutations µ̂1 and µ̂2.

Theorem 4.1.3. Let ρ be the permutation (2345). Then ψC2 = ρ−1µ̂2µ̂1 is a cluster

map that fixes the extended exchange matrix B̂C2. Iteration of ψ generates two

sequences of tau functions (σn), (τn) satisfying the system (4.17). The tau functions

are elements of Z>0[β, σ
±1
0 , τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 ].

Proof. Consider the cluster algebra with initial cluster x̂ = (σ0, τ0, τ1, τ2, τ3, β) and

extended exchange matrix B̂C2 . One can see that, by applying cluster mutation

to (σ0, τ0, τ1, τ2, τ3, β) = (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6) in direction 1, mutation µ̃1 gives the

exchange relation

σ1σ0 = βτ 21 τ
2
2 + τ 20 τ

2
3 ,

producing the new cluster µ̂1(x̂) = (σ1, τ0, τ1, τ2, τ3, β) and the mutated exchange

114



matrix (B̂C2)1 = µ̂1(B̂C2) given by

(B̂C2)1 =



0 1 −1 −1 1

−2 0 0 2 0

2 0 0 −2 0

2 −2 2 0 −2

−2 0 0 2 0

1 −1 0 0 0


.

Following this up with a mutation in direction 2, applying µ̃2 gives the new cluster

variable τ4 defined by the following relation:

τ4τ0 = βτ 22 + σ1.

The new cluster is then µ̂2µ̂1(x̂) = (σ1, τ4, τ1, τ2, τ3, β). Therefore applying the

composition of mutations µ̂2 and µ̂1 generates this pair of exchange relations,

which corresponds to a single iteration of the map ψC2 , but requires an additional

cyclic permutation of the middle 4 variables to obtain ψ(x̂) = (σ1, τ1, τ2, τ3, τ4, β).

Furthermore, we see that the combination of two matrix mutations is equivalent to

a permutation of order 4 acting on the corresponding 4 non-frozen labels, namely

ρ = (2345), i.e.

µ̂2µ̂1(B̂C2) = P1B̂C2P2 = ρ(B̂C2)

where P1 and P2 are row and column permutation matrices

P1 =



1 0 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


, P2 =



1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0


(4.21)

Thus we have shown that the extended exchange matrix B̂ given by (4.20) is cluster

mutation periodic in the generalized sense defined in [8], so that ψC2(B̂C2) = B̂C2 ,

where the cluster map ψC2 = ρ−1µ̂2µ̂1 generates two sequences of tau functions

satisfying the coupled system (4.17). Hence, by the Laurent phenomenon in the
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cluster algebra, it follows that iteration of the map ψ on the space of tau functions

produces Laurent polynomials that are elements of Z>0[β, σ
±1
0 , τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 ]

(where each monomial that appears has a positive integer coefficient, due to

positivity [34, 48]).

Remark 4.1.4. Note that Dynkin type C2 and B2 diagrams are isomorphic to each

other. Then corresponding two exchange matrices can be obtained from each other

by permutation of rows and columns. This implies that the undeformed cluster map,

defined in the type C2 case, can be constructed in the cluster algebra of type B2. This

leads to the conclusion that, in the case of type B2, we can obtain the same result,

presented above.

Remark 4.1.5. In a similar manner to the section 3.5, we can measure the algebraic

entropy of the discrete dynamical system defined by iteration of ψC2. By using the

periodicity of the original (undeformed) cluster map φC2 and tropical method, one

can explicitly show that degree growths of the ψC2 is quadratic (the calculation can

be seen [15]), which suggest its algebraic entropy is equal to zero. This confirms that

the deformed type C2 map possesses integrability.

4.1.2 Connection with Somos-5 and (special) Somos-7 re-

currences

Recall Remark 2.5.4 in the section 2.5 , it was briefly mentioned that the tau

functions generated by the cluster map associated with the deformed type A2 map

satisfy the particular Somos-7 relation. Similarly, there is a close connection between

the sequence of tau functions given by (4.17) and the Somos type sequence. Here,

we show the Somos-5 and Somos-7 recurrences hold for the sequence of τn satisfying

(4.17). We start by introducing the general formula of Somos recurrence.

The sequence (xn) induced by a quadratic recurrence,

xn+kxn =

⌊k/2⌋∑
j=1

αjxn+jxn+k−j (4.22)

is known as the Somos-k sequence. In particular, there are particular cases of Somos-

type recurrences which fit into the framework of cluster algebras, namely that the
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recurrences have s sum of two monomials on the right-hand side of (4.22). One such

case is the Somos-5 recurrence relation, which is written in the form,

τnτn+5 = α̃τn+1τn+4 + β̃τn+2τn+3

It turns out that the Somos-5 recurrence can be reduced to a certain QRT map (see

[49], for instance), equivalent to the recurrence,

un+1unun−1 = α̃un + β̃ (4.23)

where un takes the form of substitution x2,n in (4.16). We refer to the above iteration

as Somos-5 QRT map. The substitution allows us to establish a connection between

the system (4.17) and a suitable Somos-5 recurrence relaion.

Theorem 4.1.6. The sequence of τn generated by the iteration of (4.17) satisfies

Somos-5 relation with coefficients, that are constant along each orbit, given by

τnτn+5 = ζτn+1τn+4 + θτn+2τn+3 (4.24)

where coefficients are

ζ = 1− β, θ =
β((βτ 21 + σ0)τ

2
2 + τ 20 τ

2
3 )(τ

2
1 + σ0)

σ0τ0τ1τ2τ3
= βK̃, (4.25)

with K̃ being the value of the first integral (4.9). Hence un = x2,n satisfies the

Somos-5 QRT map (4.23) with coefficients α̃ = ζ, β̃ = θ as in (4.25) along any

orbit of the deformed C2 map (4.10).

Proof. The first three iterations of the Somos-5 sequence can be represented as the

matrix form as 
τ0τ5 τ1τ4 τ2τ3

τ1τ6 τ2τ5 τ3τ4

τ2τ7 τ3τ6 τ4τ5


︸ ︷︷ ︸

M


1

−ζ

−θ

 = 0 (4.26)

As the vector v =
(
1,−η,−θ

)T
is non-zero, det(M) = 0 is a necessary condition

for the tau functions τn obtained from (4.17) to satisfy (4.24). With the help of

MAPLE software, we can easily confirm that the relation holds. The coefficients ζ

and θ can be found by computing the kernel ofM , which turns out to be independent
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under shifting the indices of each tau function (n→ n+1): to be precise, ζ = 1−β

is just a constant (independent of tau functions), while

θ =
β((βτ 21 + σ0)τ

2
2 + τ 20 τ

2
3 )(τ

2
1 + σ0)

σ0τ0τ1τ2τ3
,

but this is just β times the first integral (4.9) lifted to the space of tau functions.

Hence the vector v is constant along each orbit, and remains in the kernel of the

matrix M when the replacement τn → τn+1 is made for each tau function appearing

therein.

We have seen that, subject to the condition b1 = β = b2, the variable un =

x2,n satisfying one half of the system (4.6), also satisfies the Somos-5 QRT map

(4.23) with appropriate coefficients α̃, β̃. This suggests that each invariant curve for

the deformed map φ̃, given by a level set of (4.9), is birationally equivalent to a

corresponding elliptic curve associated with a level set of the Somos-5 QRT map.

According to [50], each such curve is also isomorphic to a curve that corresponds to

a level set of the Lyness map

wn+1wn−1 = ζ̃wn + θ̃ (4.27)

which is a birational map of the plane corresponding to the deformed integrable

map of type A2 (forthmentioned at Remark). (for suitable ζ̃ and θ̃), which is the

integrable deformation of the periodic map of type A2. Applying the results from

[50], it can be shown that the iterates x2,n of the deformed C2 map φ̃ are also

associated with the Lyness map, via the transformation

wn = x2,n +
θ

ζ
=

1

ζ

τn−1τn+4

τn+1τn+2

.

The above substitution is consistent with the fact that τn satisfies the bilinear

recurrence

τn+7τn = ζ̃τn+6τn+1 + θ̃τn+3τn+4. (4.28)

which a special type of Somos-7 recurrence, namely the same as (2.110) associated

with the Lyness map (2.109). This is another type of Somos sequence generated by

a sequence of mutations in a cluster algebra of rank 7 (for further detail see [6] and

[7]). The same Somos-7 relation will also be seen to appear in the next section.
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Remark 4.1.7. Another way to see that the existence of the special Somos-7 relation

(4.28) follows from Theorem 4.1.6, is to apply a result from [49], which says that

every Somos-5 sequence also satisfies a Somos-k relation of odd order, for each odd

integer k ≥ 7: so every Somos-5 is also a Somos-7. The converse is not quite true,

however: every Somos-7 does satisfy a relation of Somos-5 type, but generically it

has one coefficient that is periodic with period 3, rather than having two constant

coefficient (the result is proved in Appendix B of [15]).

4.2 An integrable deformations of the periodic

map for B3

In this section, we consider the deformation of a 3D periodic cluster map which

arises from mutations in the cluster algebra of type B3. The original cluster map in

3 dimensions has period 4 = 1
2
(6 + 2), which is 1

2
× (Coxeter number + 2), and as

before our aim is to construct parameter-families of deformations of this map that

result in a periodic dynamics that is Liouville integrable. However, in contrast to

all the examples previously considered, for the B3 we find that there is more than

one distinct family of deformations that is integrable (in fact, precisely two distinct

1-parameter families, up to obvious equivalence via scaling transformations).

4.2.1 Deformed map B3

For the B3 root system, the Cartan matrix is

C =


2 −2 0

−1 2 −1

0 −1 2

 ,

which is the companion of the skew-symmetrizable exchange matrix,

B =


0 2 0

−1 0 1

0 −1 0

 ,
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Skew-symmetrizability of B is seen from the fact that Ω = BD is skew-symmetric,

where D = diag(2, 1, 1) gives

Ω =


0 2 0

−2 0 1

0 −1 0

 .

We now consider the sequence of deformed mutations

µ̃1 : (x1, x2, x3) 7→ (x′1, x2, x3), x′1x1 = b1 + a1x2,

µ̃2 : (x′1, x2, x3) 7→ (x′1, x
′
2, x3), x′2x2 = b2 + a2(x

′
1)

2x3,

µ̃3 : (x′1, x
′
2, x3) 7→ (x′1, x

′
2, x

′
3), x′3x3 = b3 + a3x

′
2,

(4.1)

where aj, bj are arbitrary parameters. With a generic choice of these parameters, the

Laurent property no longer holds for these mutations, so the map φ̃B3 = µ̃3 · µ̃2 · µ̃1

does not have the Laurent property; moreover, it is no longer completely periodic

with period 4 (generically, it defines an automorphism of infinite order of the field

of rational functions on C3). However, by a slight extension of Theorem 1.3 in [10]

(generalizing from the case of skew-symmetric B to the skew-symmetrizable case), it

is not hard to see that this deformed version of φ̃B3 preserves the same presymplectic

form ω.

Before considering the deformed case (4.1) further, there are two ways to simplify

the calculations. Firstly, assuming the case of generic parameter values aibi ̸= 0 for

all i, we apply the scaling action of the three-dimensional algebraic torus (C∗)3,

given by xi → λi xi, λi ̸= 0, and use this to remove three parameters, so that we

may set

ai → 1, i = 1, 2, 3,

without loss of generality, but keep bi arbitrary for i = 1, 2, 3. Having simplified

the space of parameters, the map φ̃B3 is equivalent to the iteration of the system of

recurrences

x1,n+1x1,n = x2,n + b1,

x2,n+1x2,n = x21,n+1x3,n + b2,

x3,n+1x3,n = x2,n+1 + b3.

(4.2)

Secondly, since we are in an odd-dimensional situation where necessarily det(Ω) = 0

and ω is degenerate, we can apply Theorem 2.2.12 to reduce the deformed map to
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2D symplectic map. By using

kerΩ =< (1, 0, 2)T >, imΩ = (kerΩ)⊥ =< (0, 1, 0)T , (−2, 0, 1)T >,

we can generate the one-parameter scaling group (x1, x2, x3)→ (λx1, x2, λ
2x3), λ ∈

C∗ (obtained from the null vector field x1∂x1 + 2x3∂x3 by exponentiation), and the

projection π : C3 → C2 onto its monomial invariants,

π : y1 = x2, y2 =
x3
x21
.

On the (y1, y2)-plane, φ̃B3 induces the reduced map φ̂B3 , such that π ·φB3 = φ̂B3 · π,

where

φ̂B3 :

 y1

y2

 7→
 y−1

1 ((y1 + b1)
2y2 + b2)

y−1
1

(
1 + b3y1+b2

y2(y1+b1)2

)  . (4.3)

The reduced map is symplectic, that is to say φ̂∗(ω̂) = ω̂, where the non-degenerate

two-form preserved by φ̂ is

ω̂ = d log y1 ∧ d log y2, π∗ω̂ = ω. (4.4)

In the original case where all parameters are 1, the reduced map (4.3) with

b1 = b2 = b3 = 1 has period 4, because x2,n+4 = x2,n and x3,n+4/x
2
1,n+4 = x3,n/x

2
1,n

for all n. In that case we can construct two functionally independent first integrals

in the plane, K(i), K(ii) say. Here we will just focus on one of these, namely

K(i) :=
∑3

i=0(φ̂
∗
B3
)i(y1)

= y1y2 + y1 + 3y2 + 3y2
y1

+ y2
y21

+ 5
y1

+ 1
y2

+ 2
y21

+ 2
y1y2

+ 1
y21y2

,
(4.5)

which satisfies φ̂∗
B3
(K(i)) = K(i) when b1 = b2 = b3 = 1.

Next, we modify K(i) by inserting constant coefficients in front of each of the

Laurent monomials in y1, y2 that appear, fixing the coefficient of the first term to

be 1 without loss of generality, to obtain

K̂ = y1y2 + c1y1 + c2y2 + c3
y2
y1

+ c4
y2
y21

+
c5
y1

+
c6
y2

+
c7
y21

+
c8
y1y2

+
c9
y21y2

. (4.6)

If we assume that these modified first integrals are preserved by the deformed map

φ̂B3 given by (4.3), then this puts a finite number of constraints on the coefficients

ci and the parameters bi, which leads to finding necessary and sufficient conditions

for the deformed symplectic map to be Liouville integrable. Thus we obtain the

following result.

121



Theorem 4.2.1. For the deformed symplectic map (4.3) to admit a first integral

of the form (4.6), it is necessary and sufficient that the parameters bi should satisfy

either

b1 = b2, b3 = 1, (4.7)

or

b2 = b3 = b21. (4.8)

If we fix b1 = β, then in the case that the constraint (4.7) holds, the first integral

takes the form

K̂1 = y1y2+y1+(2β+1)y2+β(β+2)
y2
y1

+β2 y2
y21

+
3β + 2

y1
+

1

y2
+

2β

y21
+

2

y1y2
+

1

y21y2
, (4.9)

while in the case that (4.8) holds, the first integral is

K̂2 = y1y2+y1+(2β+1)y2+β(β+2)
y2
y1

+β2 y2
y21

+
2β2 + 2β + 1

y1
+

1

y2
+
2β2

y21
+
β2 + 1

y1y2
+

β2

y21y2
.

(4.10)

Hence the map φ̂B3 given by (4.3) is Liouville integrable whenever either condition

(4.7) or (4.8) holds.

Thus we arrive at two 1-parameter families of integrable maps of the plane

associated with the deformation of the B3 cluster map, namely

φ̂
(1)
B3

:

 y1

y2

 7→
 y−1

1 ((y1 + β)2y2 + β)

y−1
1

(
1 + 1

y2(y1+β)

)  , (4.11)

which has the first integral K̂1 given by (4.9), and

φ̂
(2)
B3

:

 y1

y2

 7→
 y−1

1 ((y1 + β)2y2 + β2)

y−1
1

(
1 + β2(y1+1)

y2(y1+β)2

)  , (4.12)

with the first integral K̂2, as in (4.10).

Remark 4.2.2. Each map has an invariant pencil of genus 1 curves of degree 5 and

bidegree (3, 2); that is too high for a QRT map, where the bidegree is (2, 2) [47].

Remark 4.2.3. Clearly the maps coincide for β = 1 when the map is completely

periodic with period 4 (corresponding to a pencil of elliptic curves with 4-torsion).

However, it seems that the maps cannot be birationally conjugate to one another for
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other values of β; one way to see this is to look at the j-invariants of the curves in

each pencil, which are rational functions of β and the value of the invariant K̂j = κ

(for j = 1, 2, respectively): the factorizations of the two different j-invariants have

polynomial factors in their denominators that appear with quite different degrees, and

this could be used to show that there is no automorphism of C(β, κ) which transforms

one elliptic fibration into the other; or perhaps there is a geometrical way to see this

more easily. It is possible to see that the two maps cannot be conjugate to one

another more directly, by considering the fixed points: for generic β, in the affine

plane C2 the map (4.11) has three fixed points outside the line y1 = 0 where it is

singular, whereas the map (4.12) only has one fixed point outside this line.

4.2.2 The deformed φ̂
(1)
B3

for B3

Let us consider the deformed map (4.11), which is rewritten in the form of

recurrences

y1,n+1y1,n = (y1,n + β)2y2,n + β

y2,n+1y2,ny1,n(y1,n + β) = (y1,n + β)y2,n + 1
(4.13)

Following the same process as in the previous section, we study the singularity

structures of the deformed map (4.11) by observing the p-adic properties of iterates

defined over Q. With the choice of values for parameters β = 5, the iteration

starting from initial data (x1, x2) = (1, 1) gives a particular orbit, as shown in the

table below:

n y1,n y2,n

1 41 7
2·3

2 181
3

22

7·23

3 127
3·23

3
24·7

4 547
7·23

32·23
59

5 61·503
7·59

7·232
23·32·132

6 73·3527
132·59

73·59
232·2729

7 479·683
132·2729

132·592
2·3·73·17·131

8 43·1427·3847
3·17·131·2729

22·134·2729
592·97·277
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From the table, we can see that the primes p1 = 3, 23, 59, for instance, provide a

specific sequence of p1-adic norms as follows.

|x1,n|p1 : 1, p1, p1, 1, 1, 1, 1

|x2,n|p1 : p1, 0, p
−1
1 , p−2

1 , p21, 0, p
(4.14)

, while the prime p2 = 41, 43, 61, 73, 181, 127, 479, 503, 547, 683, 1427, 3527, 3847,

appearing only in y1,n, corresponds to isolated values of n where |x1,n|p2 = p2. Then

we find that there are two singularity patterns for (y1,n, y2,n), namely

Pattern 1 : . . .→ (R,∞1)→ (∞1, R)→ (∞1, 01)→ (R, 02)→ (R,∞2)→ . . .

Pattern 2 : . . .→ (0, R)→ . . .

(4.15)

This indicates that the y1,n and y2,n can be written in terms of tau functions τn and

ηn as

y1,n =
ηn

τn+2τn+3

, y2,n = ρn
τ 2n+1τn+2

τ 2nτn+4

, (4.16)

where the quantity ρn is an additional prefactor. However, substituting these

expressions directly into (4.13) gives rise to relations between tau functions that

are not in the form of cluster exchange relations. So in addition to p-adic analysis,

we proceed to consider the singularity patterns more closely via explicit analysis

with the introduction of a small quantity ϵ.

A discrete dynamical system defined by a birational map can have two types

of singularities: the points in phase space at which the map is undefined, and the

points where the Jacobian of the map vanishes. From (4.11), one can see that

the deformed map φ̂
(1)
B3

possesses a singularity at y1 = −β. Performing singularity

analysis by setting y1,n = −β + ϵ, we find the confined singularity pattern−β
C

→
−1
∞1

→
∞1

−1

→
∞1

01

→
−1

02

→
−β
∞2

→
 C ′

−1/β

,
(4.17)

where C,C ′ are regular values, and when ϵ → 0 the subsequent terms are not

indeterminate (they are generic, regular values). By comparing (4.17) with (4.15),

it is clear that (4.17) corresponds to Pattern 1, but with more detail revealed. The
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detailed form of the singularity pattern suggests another way to relate y1,n to the

tau function τn, after shifting by the parameter β, expressing it as

y1,n = −β + ϑn
τn+5τn
τn+3τn+2

, (4.18)

where ϑn is another prefactor. Defining a new variable wn = y1+β leads to a system

of three recurrence relations, expressed in terms of wn, y1,n and y2,n. Furthermore,

subtracting the first relation in (4.13) from wn times the second and removing a

common factor of y1,n results in simplifying the recurrence for y2,n, yielding the

three equations

wn = y1,n + β,

y1,n+1y1,n = w2
ny2,n + β,

y2,n+1y2,nw
2
n = y1,n+1 + 1.

(4.19)

Theorem 4.2.4. Under the iteration of (4.19), the quantity wn satisfies the Lyness

recurrence

wn+1wn−1 = α̃wn + β̃, (4.20)

where the coefficients along each orbit of the map φ̂1 are α̃ = 1 − β and β̃ =

βK̂1 + 2β2 + β + 1.

Proof. By following the same approach as used in the proof of Theorem 4.1.6, after

setting the prefactor ϑn → 1 in (4.18), one can show that τn satisfies a special

Somos-7 relation of the same form as (4.28), namely

τn+7τn = α̃τn+6τn+1 + β̃τn+3τn+4. (4.21)

where α̃ = 1 − β, and the coefficient β̃ is given as above in terms of β and the

conserved quantity K̂1. Then from (4.18) and the first relation in (4.19), it is clear

that wn is given in terms of the tau function τn by

wn =
τn+5τn
τn+3τn+2

, (4.22)

and from this it is an immediate consequence that wn satisfies the Lyness recurrence

(4.20) with these coefficients, which are constant along each orbit.

As noted in the previous section, the special Somos-7 recurrence (4.21) corre-

sponds to a cluster algebra of rank 7, where (τn) is a sequence of cluster variables
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and the coefficients α̃, β̃ are regarded as frozen variables; and in that setting, the

associated exchange matrix has rank 2 (for further details, see [7]). In the discussion

of the deformed C2 map, we already noted that there is a close connection between

this special Somos-7 relation and Somos-5. This leads to a related result for the

map defined by (4.13).

Theorem 4.2.5. Under iteration of (4.13), the quantity vn = y1,n + 1 satisfies the

Somos-5 QRT map, in the form

vn+1vnvn−1 = α̂vn + β̂ (4.23)

where the coefficients along each orbit of the map φ̂1 are given by α̂ = K̃1 + β + 3

and β̂ = (β − 1)α̂.

Proof. This result, including the above formulae for the coefficients α̂, β̂, is a

consequence of Theorem 1 in [50], which states that each invariant curve of the

Lyness map is birationally equivalent to an invariant curve corresponding to the

Somos-5 QRT map, and hence there is a direct correspondence between the orbits

of the two maps, whenever the parameters of the maps related to each other in

a specific way. See also Proposition B.2 in the appendix B section of the paper

[15].

Recall from the discussion around Theorem 4.1.6 that a substitution of the form

vn =
τ̂n+4τ̂n+1

τ̂n+3τ̂n+2

(4.24)

relates (4.23) directly to the Somos-5 recurrence, that is

τ̂n+5τ̂n = α̂τ̂n+1τ̂n+4 + β̂τ̂n+2τ̂n+3. (4.25)

Now the substitution (4.24) and the definition of the quantity vn implies that

y1,n = −1 + τ̂n+4τ̂n+1

τ̂n+3τ̂n+2

,

but in general this is not compatible with the substitution (4.22) that relates wn to

a solution of (4.21), in the sense that the tau functions τn and τ̂n need not be the
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same, but rather are related by a gauge factor that depends on n. Rather, the most

general way to relate vn to τn is to write

vn = y1,n + 1 = ξn
τn+4τn+1

τn+3τn+2

, (4.26)

with another prefactor ξn that depends on n. It will turn out that, with an

appropriate choice of gauge, this quantity is periodic with period 3. (See Theorem

4.2.6 below, and also Appendix B of [15] for the further detail)

Observe that, with the extra variable v added to y1, y2 and w, the map defined

by (4.13) is equivalent to iteration of a system of four equations, namely

wn = y1,n + β,

y1,n+1y1,n = w2
ny2,n + β,

vn = y1,n + 1,

y2,n+1y2,nw
2
n = vn+1,

(4.27)

and upon substituting for y1, y2 from (4.16), for w from (4.18), and for v from

(4.26) the most general set of relations between the tau functions is found to be the

following:

ϑn τn+5τn = β τn+3τn+2 + ηn,

ηn+1ηn = ρn(ϑn)
2 τ 2n+5τ

2
n+1 + β τn+4τ

2
n+3τn+2,

ξnτn+4τn+1 = τn+3τn+2 + ηn,

ρn+1ρn(ϑn)
2 = ξn+1.

(4.28)

Theorem 4.2.6. There is a choice of gauge which fixes ϑn → 1 in the system (4.28),

and implies that ξn+3 = ξn and ρn+6 = ρn for all n, with

5∏
i=0

ρi =
3∏
j=1

ξj = K̂1 + β + 3. (4.29)

In that case, the system corresponds to a lift of the deformed B3 map φ̂1 to a

birational map on an extended space of tau functions, that is

Φ : (τ0, τ1, τ2, τ3, τ4, η0, ρ0, β) 7→ (τ1, τ2, τ3, τ4, τ5, η1, ρ1, β), (4.30)

where the sequences (τn), (ηn) possess the Laurent property, but the periodic

coefficients ρn do not.
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Proof. By definition, in the context of the tau function formulae (4.16), a gauge

transformation is any transformation of the tau functions which leaves the variables

y1,n, y2,n invariant. If we make the replacement τn → gn τn, where the dependence

of gn on n is arbitrary, then clearly replacing ηn → gn+2gn+3 ηn leaves y1,n the

same, while replacing ρn → g2ngn+4g
−2
n+1g

−1
n+2 ρn leaves y2,n unchanged. Now in (4.18),

regardless of what non-zero prefactor ϑn appears to begin with, we can always make

the replacement ϑn → gn+2gn+3g
−1
n g−1

n+5ϑn = 1; to be precise, this is achieved by

specifying any solution of a linear difference equation of order 5 for log gn. With

that choice of gauge, the variable wn is given in terms of τn by (4.22), and the

sequence (τn) satisfies the special Somos-7 recurrence (4.21), as in the proof of

Theorem 4.2.4. However, as already mentioned above, in general the prefactor ξn

appearing in (4.26) cannot be simultaneously fixed to be 1 (rather, fixing ξn → 1,

so that τn satisfies the Somos-5 relation (4.25), is a different gauge choice). Thus,

in the “Somos-7 gauge”, where θn = 1, the system of recurrences (4.28) becomes

τn+5τn = β τn+3τn+2 + ηn,

ηn+1ηn = ρn τ
2
n+5τ

2
n+1 + β τn+4τ

2
n+3τn+2,

ξn+1 τn+5τn+2 = τn+4τn+3 + ηn+1,

ρn+1ρn = ξn+1

(4.31)

(having shifted n→ n+1 in the third relation). In the above, an extended “cluster”

of initial data, including the fixed parameter (“frozen variable”) β, is given by

(τ0, τ1, τ2, τ3, τ4, η0, ρ0, β), and via (4.16) this fixes initial data y0 = (y1,0, y2,0) for

the map φ̂
(1)
B3
. Now iterating each of the equations (4.31) one by one, in order,

starting from n = 0, produces in turn τ5, η1, ξ1, ρ1, giving the image of the lifted

map Φ as in (4.30). Notice that the intermediate step of finding ξ1 can be skipped:

for each n, by combining the last two relations, we have

ρn+1ρn =
τn+4τn+3 + ηn+1

τn+5τn+2

.

Hence the first two relations in (4.31) appear like a pair of cluster exchange relations,

with one of them having a coefficient ρn that is non-autonomous (dependent on

n). Upon iteration of the map Φ, we obtain the three sequences (τn), (ηn), (ρn),

which together specify the orbit yn = (φ̂
(1)
B3
)n(y0), as well as the sequence (ξn) of

intermediate values, which appear in the formula (4.26) for the quantities vn. Now

128



consider the ring of Laurent polynomials

R = Z[β, τ±1
0 , τ±1

1 , τ±1
2 , τ±1

3 , τ±1
4 , η±1

0 , ρ±1
0 ].

Direct calculation of three steps of Φ shows by inspection that ξ1, ξ2 ∈ R, and

ξ3 =
τ3τ2 + η0
τ4τ1

= ξ0 ∈ R,

hence the sequence (ξn) has period 3, or in other words (T 3 − 1) ξn = 0 (where T

denotes the shift operator that sends n→ n+1). Then, upon taking logarithms on

both sides of the fourth relation in (4.31), we have

(T + 1) log ρn = log ξn+1 =⇒ (T 3 − 1)(T + 1) log ρn = 0

=⇒ (T 6 − 1) log ρn = (T 3 − 1)(T 3 + 1) log ρn = 0,

hence the sequence (ρn) has period 6, as required. However, while ρ0, ρ1, ρ5 ∈ R, we

find that ρ2, ρ3, ρ4 ̸∈ R: the latter three terms have non-monomial factors appearing

in their denominators, so they cannot be cluster variables. A direct calculation shows

that the product of three adjacent ξn is

ξ1ξ2ξ3 = K̂1 + β + 3 ∈ R,

where here K̂1 is used to denote the value of the invariant along an orbit of the

lifted map Φ, considered as a function of τ0, τ1, τ2, τ3, τ4, η0, ρ0, β; hence K̂1 ∈ R,

and using the fourth relation in (4.31) once more, we see that the latter product is

equal to ρ0ρ1ρ2ρ3ρ4ρ5, so (4.29) holds, as required. Next, we claim that τn, ηn ∈ R.

To see this, we just need to show that τn ∈ R for all n, since if this holds then

the first relation in (4.31) implies immediately that ηn = τn+5τn − β τn+3τn+2 ∈ R.

So we consider the aforementioned fact that, due to the gauge choice, τn satisfies

the special Somos-7 recurrence (4.21), which has coefficients α̃, β̃, and there is an

associated Lyness invariant quantity (see [50], for instance), which we denote by K̃.

Then, by a minor modification of Theorem 3.7 in [51] and its proof, it follows that

the Somos-7 recurrence has the strong Laurent property, in the sense that τn ∈ R̃

for all n ≥ 0, where

R̃ = Z[α̃, β̃, K̃, τ±1
0 , τ±1

1 , τ±1
2 , τ±1

3 , τ4, τ5, τ6].
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(For further details, see Theorem B.5 in the appendix B section of the paper [15] )

By inspection of the first two iterates of Φ, we can verify directly that τ5, τ6 ∈ R,

while from Theorem 4.2.4 we have α̃ = 1 − β, β̃ = βK̂1 + 2β2 + β + 1 and a short

explicit calculation with computer algebra shows that K̃ = K̂1 + 2β + 2. Since, as

already noted, K̂1 ∈ R on an orbit of Φ, it follows that α̃, β̃, K̃ ∈ R, hence R̃ is

a subring of R. Thus we see that τn ∈ R for n ≥ 0, and an analogous argument

extends this to n < 0 and completes the proof of the theorem.

Remark 4.2.7. The first two relations in (4.31) resemble exchange relations in a

cluster algebra, but the third and fourth relations (which define ρn) do not. Thus, the

sequence of tau functions cannot be produced by cluster exchange relations with frozen

variables alone. Nevertheless, this can be considered an “almost Laurentification” of

the deformed map: the tau functions τn and ηn are Laurent polynomials, while the

periodic quantities ρn only contain a finite number of non-monomial factors in their

denominators, so this is an example of the extended Laurent property [52], where

only a finite extension of the ring R is required. The coefficients ρn are reminiscent

of y-variables in a cluster algebra with coefficients, which can be used to generate

non-autonomous difference equations, including those of discrete Painlevé type [53,

54]. We have attempted to construct the relations (4.31) from a suitable Y-system,

by pulling back the two-form (4.4) to derive an associated exchange matrix (cf. the

formulae (4.44), (4.45) and (4.46) for the case of the map φ̂2 below), but as yet we

have not succeeded in doing this in a consistent way.

4.2.3 The deformed map φ̂
(2)
B3

for B3

The action of the deformed map φ̂
(2)
B3

given by (4.12) is equivalent to iteration of the

coupled pair of recurrences

y1,n+1y1,n = w2
ny2,n + β2,

y2,n+1y2,ny1,nw
2
n = w2

ny2,n + β2(y1,n + 1),
(4.32)

where for convenience we made use of the same variable wn = y1,n + β as in the

previous discussion of the map φ̂
(1)
B3
. Subtracting the first relation from the second

gives rise to a simplified relation for y2,n+1, and thus iterates of the map are generated
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by the system of four relations

wn = y1,n + β,

y1,n+1y1,n = w2
ny2,n + β2,

vn+1 = y1,n+1 + β2,

y2,n+1y2,nw
2
n = vn+1,

(4.33)

where, in contrast to (4.27), there is a different definition for the quantity vn =

y1,n + β2.

Subject to the parameter value β = 5 together with initial values (y1,0, y2,0) =

(1, 1), the orbits of the system (4.33) provide a specific sequence of rationals shown

in the table below:

n y1,n y2,n wn vn

1 61 43
2·32 2 · 3 · 11 2 · 43

2 32 · 19 2·72
112·43 24 · 11 22 · 72

3 32·17
43

307
27·72

24·23
43

22·307
43

4 16927
72·43

13·43·2677
232·307

2·3·23·199
72·43

2·13·2677
72·43

5 11·211·1283
72·307

72·19·43·88261
2·32·13·1992·2677

2·3·199·2557
72·307

2·19·88261
72·307

6 3·9403·11273
12·307·2677

2·72·307·3401731
19·88261·25572

23·67·271·2557
13·307·2677

22·43·3401731
13·307·2677

7 3·23712415183
13·19·88261·2677

13·307·853·9152173·2677
25·672·2712·3401731

23·67·271·2498599
13·19·88261·2677

22·72·853·9152173
13·19·88261·2677

8 537664578593509
19·88261·3401731

13·19·37·661·1663·88261·27241·2677
853·9152173·24985992

2·32·47·61·4391·2498599
19·88261·3401731

2·37·307·661·1663·27241
19·88261·3401731

By looking into the prime factorization of the rationals, we observe that p1-adic

norm, for the primes p1 = 13, 43, 307, 2677, 88261 (for instance), follow the pattern

|y1,n|p1 : 1, 1, p1, p1, 1, 1, 1, 1

|y2,n|p1 : p
−1
1 , p1, 1, p

−1
1 , p−1

1 , 1

|wn|p1 : 1, 1, p1, p1, 1, 1

|vn|p1 : p
−1
1 , 1, p1, p1, 1, p

−1
1

(4.34)

, whereas for the primes p2 = 23, 199, 271, 2557, 2498599, appearing in y2,n and wn,

give the following pattern

|y2,n|p2 : 1, p
2
2, 1

|wn|p2 : 1, p
−1
2 , p−1

2 , 1
(4.35)
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and the primes p3 = 17, 19, 61, 211, 1283, 16927, 9403, 11273, 23712415183 only

emerge in y1,n, which gives the p2-adic norm |y1,n|p2 = p−1 for particular values

of n. Then we can see the corresponding singularity patterns in the orbits of

(y1,n, y2,n, wn, vn), which are confined.

Pattern 1 : . . .→ (R, 0, R, 0)→ (R,∞, R,R)→ (∞, R,∞,∞)

→ (∞, 0,∞,∞)→ (R, 0, R,R)→ (R,R,R, 0)→ . . .

Pattern 2 : . . .→ (R,R, 0, R)→ (R,∞2, 0, R)→ . . .

Pattern 3 : . . . ,→ (0, R,R,R), . . . .

(4.36)

We introduce tau functions τn, σn and ηn which correspond to Patterns 1,2 and 3,

respectively, such that y1,n, y2,n, wn = y1,n + β and vn = y1,n + β2 can be written as

y1,n =
ηn

τn+2τn+1

, y2,n =
τn+4τn+1τn
σ2
nτn+3

, wn =
σn+1σn
τn+2τn+1

, vn =
τn+4τn−1

τn+2τn+1

(4.37)

Note that the structure of tau functions in the variable vn can be verified with fourth

equation (4.33) i.e.

y2,n+1y2,nw
2
n =

τn+5τn
τn+3τn+2

= y1,n+1 + β2 = vn+1

Upon inspecting the structure of a particular singularity further by approaching it

in the limit of a small parameter ϵ → 0, one can see that the singularities of y1,n

and y2,n in Pattern 1 correspond to the sequence C

− β2(C+1)
C2+2βC+β2

→
−β2

01

→
−1
∞1

→
∞1

−1

→
∞1

01

→
−1

01

→
−β2

C ′


(4.38)

with C,C ′ being regular values, which propagates from the point
(
C,− β2(C+1)

C2+2βC+β2

)
where the Jacobian of the deformed map φ̂

(2)
B3

is zero. Noting that the value y1 = −1

appears in the singularity pattern, we can consider another variable un = y1,n + 1,

and find that

un = y1,n + 1 = ξn
τn+3τn
τn+2τn+1

, (4.39)

where the prefactor ξn cannot be removed without a change of gauge, which would

modify the form of some of the expressions in vn of (4.37). Notice that the ratios of

tau functions in vn of (4.37) and (4.39) are identical to the substitutions associated

with the Lyness map and Somos-5 QRT map, respectively. This suggests that the
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quantities vn = y1,n + β2 and un = y1,n + 1 should provide solutions of these maps

under iteration, as described by the following statement.

Theorem 4.2.8. The quantities vn generated under iteration of the system of

recurrences (4.33) satisfy the Lyness map which is equivalent to the recurrence

vn+1vn−1 = γvn + δ, (4.40)

where the coefficients along each orbit of the φ̂
(2)
B3

are specified by γ = 1 − β2 and

δ = β2K̂2 +2β(β3 +1), and the associated sequence of tau functions (τn) related via

vn in (4.37) satisfies the Somos-7 recurrence

τn+7τn = γ τn+6τn+1 + δ τn+4τn+3. (4.41)

The corresponding iterates of un = y1,n + 1 satisfy the Somos-5 QRT map which is

given by the recurrence

un+1unun−1 = γ̂un + δ̂, (4.42)

where γ̂ = K̂2 + 2β + 2 and δ̂ = (β2 − 1)γ̂.

Proof. This follows from analogous arguments to those used in proving Theorem

4.2.4 and Theorem 4.2.5. For a more detailed explanation of the connection between

the Lyness map (4.40) and the Somos-5 QRT map (4.42), see Proposition B.2 in the

second appendix of [15].

The tau function expressions (4.37) can be substituted directly into (4.33), giving

rise to the system of equations

σn+1σn = βτn+2τn+1 + ηn,

ηn+1ηn = τn+4τnσ
2
n+1 + β2τn+3τ

2
n+2τn+1,

τn+5τn = β2τn+3τn+2 + ηn+1.

(4.43)

Since the three recurrences above are all of the right form for an exchange relation, it

appears likely that their iteration can be described by a sequence of cluster mutations

in an appropriate cluster algebra. To verify this is the case, we set the initial cluster

to be

x̃ = (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7) = (η0, σ0, τ0, τ1, τ2, τ3, τ4),
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and then determine a new exchange matrix via the pullback of the symplectic form

(4.4) by the rational map π̃ : C7 → C2 defined by the equations for (y1,0, y2,0) ∈ C2

given by setting n = 0 in (4.37). As a result, one finds a presymplectic form on the

space of tau functions, written in terms of the cluster variables x̃j for 1 ≤ j ≤ 7 as

ω̃ = π̃∗ω =
∑
ij

Ω̃ijd log x̃i ∧ d log x̃j,

where the 7× 7 matrix Ω̃ is given by

Ω̃ =



0 −2 1 1 0 −1 1

2 0 0 −2 −2 0 0

−1 0 0 1 1 0 0

−1 2 −1 0 1 1 −1

0 2 −1 −1 0 1 −1

1 0 0 −1 −1 0 0

−1 0 0 1 1 0 0


. (4.44)

Given the skew-symmetric matrix Ω as above, a skew-symmetrizable exchange

matrix B̃B3 such that B̃B3D̃ = Ω̃ can be determined by post-multiplying with the

diagonal matrix D̃−1 = diag(1, 1/2, 1, 1, 1, 1, 1), to obtain

B̃B3 = Ω̃D̃−1 = (B̃ij) =



0 −1 1 1 0 −1 1

2 0 0 −2 −2 0 0

−1 0 0 1 1 0 0

−1 1 −1 0 1 1 −1

0 1 −1 −1 0 1 −1

1 0 0 −1 −1 0 0

−1 0 0 1 1 0 0


(4.45)

The matrix B̃B3 above generates a coefficient-free cluster algebra, but both the

parameter β and its square appear in front of some of the terms in (4.43). To

incorporate this into the exchange relations, we extend the initial cluster by adding

the frozen variable x̃8 = β and adjoining an extra row with entries (0, 1, 0, 0, 0, 0,−2)

to the exchange matrix B̃B3 . Then we can obtain the following statement, which

constitutes the Laurentification of the deformed B3 map φ̂
(2)
B3
.
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Theorem 4.2.9. Let (x̂, B̂B3) be given as an initial seed which is composed of the

extended initial cluster

x̂ = (x̃j)1≤j≤8 = (η0, σ0, τ0, τ1, τ2, τ3, τ4, β)

together with the associated extended exchange matrix

B̂B3 =



0 −1 1 1 0 −1 1

2 0 0 −2 −2 0 0

−1 0 0 1 1 0 0

−1 1 −1 0 1 1 −1

0 1 −1 −1 0 1 −1

1 0 0 −1 −1 0 0

−1 0 0 1 1 0 0

0 1 0 0 0 0 −2



, (4.46)

and consider the permutation ρ = (34567). Then the iteration of the cluster

map ψB3 = ρ−1µ̃3µ̃1µ̃2 is equivalent to the system of recurrences (4.43), and for

all n ∈ Z the tau functions ηn, σn, τn are elements of the Laurent polynomial ring

Z
[
β, η±1

0 , σ±1
0 , τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 , τ±1

4

]
, with positive integer coefficients.

Proof. Let us consider the seed (x̂′, B̂′
B3
) = µ̂3µ̂1µ̂2(x̂, B̂B3) that arises from applying

the sequence of mutations µ̂3µ̂1µ̂2 to the given initial seed, where (as usual) we use

µ̂j to denote mutations in the cluster algebra associated with Laurentification of the

deformed map. The new cluster is x̂′ = (x̃′1, x̃
′
2, x̃

′
3, x̃4, x̃5, x̃6, x̃7, x̃8), where the new

cluster variables (with primes) are obtained from the exchange relations

x̃′2x̃2 = x̃8x̃4x̃5 + x̃1,

x̃′1x̃1 = (x̃8)
2x̃4(x̃5)

2x̃6 + (x̃2
′)2x̃3x̃7,

x̃′3x̃3 = (x̃8)
2x̃5x̃6 + x̃1

′,

(4.47)
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while the mutated exchange matrix B̂′
B3

= µ̂3µ̂1µ̂2(B̂B3) is given by

0 −1 1 1 1 0 −1

2 0 0 0 −2 −2 0

−1 0 0 0 1 1 0

−1 0 0 0 1 1 0

−1 1 −1 −1 0 1 1

0 1 −1 −1 −1 0 1

1 0 0 0 −1 −1 0

0 1 −2 0 0 0 0



. (4.48)

For the new cluster variables, if we identify x̃1
′ = η1, x̃2

′ = σ1, x̃3
′ = τ5 and replace

all variables x̃i for 4 ≤ i ≤ 8 with the corresponding tau functions and frozen

variable from the original cluster x̂, then we find that the exchange relations (4.47)

are equivalent to the recurrence formulae (4.43) for n = 0. As for the exchange

matrix B̂′
B3
, we can rewrite it in the following way:

µ̂3µ̂1µ̂2(B̂B3) = P1B̂B3P2 = ρ(B̂B3).

In the above, the action of the permutation ρ = (34567) is equivalent to applying

the row and column permutation matrices

P1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1



, P2 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 1 0 0 0 0


. (4.49)

Hence we see that the cluster map defined by ψB3 = ρ−1µ̂3µ̂1µ̂2 satisfies ψB3(B̂B3) =

BB3 , and its action on any cluster is equivalent to the shift n→ n+1 on the indices

of the tau functions. Since they are cluster variables, these tau functions exhibit

the Laurent property. Moreover, the coefficients of the Laurent polynomial cluster

variables are positive integers, due to the positivity property [34, 48].
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Remark 4.2.10. By adapting the procedure in the section 3.5, we can measure the

algebraic entropy of the discrete dynamical system defined by iteration of ψB3. In

[15], we used the fact that the tau function τn satisfies Somos-7 recurrence, namely

(4.41), to simplify the calculation of the degree growth for tau functions. As a result,

we showed that the degree growth is quadratic.

4.3 An integrable deformation of the periodic

map for D4

In this section, we consider the deformation of a 4D cluster map which is composed

of mutations in the cluster algebra of type D4. We will show that there are two

essentially different choices of the deformation parameters that yield a discrete

integrable system, each of which lifts to a cluster map in higher dimensions via

Laurentification.

4.3.1 Deformed D4 cluster map

The Cartan matrix for the D4 is
2 −1 0 0

−1 2 −1 −1

0 −1 2 0

0 −1 0 2

 (4.1)

The corresponding exchange matrix is

B =


0 −1 0 0

1 0 −1 −1

0 1 0 0

0 1 0 0

 (4.2)
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The deformed mutations with parameters aj, bj for 1 ≤ j ≤ 4 take the form

µ̃1 : (x1, x2, x3, x4) 7→ (x′1, x2, x3, x4), x1x
′
1 = b1 + a1x2

µ̃2 : (x
′
1, x2, x3, x4) 7→ (x′1, x

′
2, x3, x4), x2x

′
2 = b2 + a2x3x4x

′
1

µ̃3 : (x
′
1, x

′
2, x3, x4) 7→ (x′1, x

′
2, x

′
3, x4), x3x

′
3 = b3 + a3x

′
2

µ̃4 : (x
′
1, x

′
2, x

′
3, x4) 7→ (x′1, x

′
2, x

′
3, x

′
4), x4x

′
4 = b4 + a4x

′
2

(4.3)

The deformed map φ̃D4 = µ̃4µ̃3µ̃2µ̃1 reduces to the original cluster map when we

fix the parameters ai = 1 = bi for all i. The Coxeter number for D4 is 6, and the

periodicity for the cluster map is period 4 = 1
2
(6 + 2), i.e.

φD4 · (x, B) = (φD4(x), B) (with aj = 1 = bj) =⇒ φ4
D4
(x) = x. (4.4)

As usual, we can reduce the number of parameters in the problem by rescaling each

of the cluster variables independently, xi → λixi, and choose the scalings so that the

parameters aj are removed and the sequence of deformed mutations can be rewritten

as

x1,n+1x1,n = x2,n + b1,

x2,n+1x2,n = x3,nx4,nx1,n+1 + b2,

x3,n+1x3,n = x2,n+1 + b3,

x4,n+1x4,n = x2,n+1 + b4

(4.5)

Since the exchange matrix is skew-symmetric, by the result of Theorem 1.3 in [10]

the deformed map preserves the presymplectic form ω given by

ω =
1

x1x2
dx1 ∧ dx2 +

1

x2x3
dx2 ∧ dx3 +

1

x2x4
dx2 ∧ dx4. (4.6)

Now since B is degenerate and of rank 2, one can reduce the birational map φ from

4D to a 2-dimensional symplectic map. The null space and image of B are given by

ker(B) =< (1, 0, 0, 1)T , (1, 0, 1, 0) >, im (B) =< (0, 1, 0, 0)T , (−1, 0, 1, 1)T > .

(4.7)

Hence the null distribution of the presymplectic form ω is spanned by the two

commuting vector fields v1 = x1∂x1 + x4∂x4 and v2 = x1∂x1 + x3∂x3 . The space of

leaves of the null foliation has local coordinates

y1 = x2, y2 =
x3x4
x1

(4.8)
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Then the rational map defined by

π : C4 → C2

x = (x1, x2, x3, x4) 7→ y = (y1, y2)
(4.9)

reduces the cluster map φD4 to the 2D symplectic map

φ̂D4 : C2 → C2

y = (y1, y2) 7→
(
(b1 + y1)y2 + b2

y1
,
(b4 + y2)y1 + b1y2 + b2)((b3 + y2)y1 + b1y2 + b2)

y2y21(b1 + y1)

)
,

(4.10)

which is intertwined with φD4 via π, so that

φ̂D4 · π = π · φD4 , φ̂∗
D4
(ω̂) = ω̂,

where π∗(ω̂) = ω is the pullback of the symplectic form

ω̂ =
1

y1y2
dy1 ∧ dy2 (4.11)

under π. When all of the parameters bi = 1, the reduced map φ̂D4 has period 4, and

one of the first integrals associated with this map takes the form

K =
3∑
i=0

(φ̂∗
D4
)i(y1) =

(1 + y1)
3 + (2 + 5y1 + y31)y2 + (1 + y1)

2y22
y21y2

(4.12)

By applying the same procedure as in the previous examples, we suppose that there

is an analogous first integral that is compatible with the deformed map (4.10), taking

the form

K̃ = y1 + α1y2 +
α2y1
y2

+
α3y2
y1

+
α4

y2
+
α5

y1
+
α6y2
y21

+
α7

y2y1
+
α8

y21
+

α9

y2y21
(4.13)

where αj are undetermined parameters. Then imposing the requirement that K̃

should be preserved, so that φ̂∗
D4
(K̃) = K̃, constrains these parameters and leads

us to find necessary and sufficient conditions for the map φ̂D4 to be integrable, as

follows.

Theorem 4.3.1. For the deformed symplectic map φ̂D4 to admit the first integral

(4.13), it is necessary and sufficient for the parameters bi to satisfy one of the

following sets of conditions:

(1) b2 = b4 = b1b3; (4.14a)
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(2) b1 = b2 = b3b4; (4.14b)

(3) b2 = b3 = b1b4. (4.14c)

Hence in each of these cases, the deformed map φ̂D4 given by (4.10) is Liouville

integrable, preserving the function

K̃ = y1 + y2 +
y1
y2

+ (b1+1)y2
y1

+ b3+b4+1
y2

+ b1+b2+b3+b4+1
y1

+ b1y2
y21

+ b3b4+b3+b4
y1y2

+ 2b2
y21

+ b3b4
y21y2

(4.15)

Remark 4.3.2. Observe that the form of the original deformed mutations (4.5)

remain invariant under switching x3 ↔ x4, b3 ↔ b4, and similarly for the form

of the reduced map φ̂D4 in (4.10) and the first integral (4.15) when these last two

parameters are switched. Hence cases (1) and (3) are equivalent to one another, and

(1) and (2) are really the only two distinct cases to consider in Theorem 4.3.1.

For the two essentially distinct cases of the reduced map obtained by deformation

of the D4 cluster map, as identified in the preceding theorem, we have two 2-

parameter families of integrable maps given by φ̂
(1)
D4
, φ̂

(2)
D4

respectively, where

φ̂
(1)
D4

: (y1, y2) 7→
(

(b1+y1)y2+b1b3
y1

, [(b1+y1)y2+b1b3(y1+1)]·[y2+b3]
y21y2

)
(4.16)

φ̂
(2)
D4

: (y1, y2) 7→
(

(b3b4+y1)y2+b3b4
y1

, [(b4+y2)y1+b3b4(y2+1)]·[(b3+y2)y1+b3b4(y2+1)]

b4y21y2(b3b4+y1)

)
(4.17)

where the coefficients in each map are fixed in cases (1) and (2), respectively. The

corresponding invariant functions K̃1, K̃2 are given by

K̃1 =y1 + y2 +
y1
y2

+
(b1 + 1)y2

y1
+
b3 + b1b3 + 1

y2
+
b1 + 2b1b3 + b3 + 1

y1
+
b1y2
y21

+
b3(b1b3 + b1 + 1)

y1y2
+

2b1b3
y21

+
b1b

2
3

y21y2
,

(4.18)

K̃2 =y1 + y2 +
y1
y2

+
(b3b4 + 1)y2

y1
+
b3 + b4 + 1

y2
+

2b3b4 + b3 + b4 + 1

y1
+
b3b4y2
y21

+
b3b4 + b3 + b4

y1y2
+

2b3b4
y21

+
b3b4
y21y2

,

(4.19)

which are the particular relevant cases of the function (4.15). The level sets of each

of the latter functions gives a pencil of plane curves, of which the generic member
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has genus 1 and hence corresponds to an elliptic curve. It turns out that the two

functions above become equivalent to one another when b3 = 1, upon identifying the

remaining parameters b1 and b4 in each case, although the associated maps φ̂1, φ̂2

remain distinct from one another.

Remark 4.3.3. Since both sets of curves corresponding to K̃1 and K̃2 have bidegree

(3,2), they do not correspond to QRT maps, which come from curves of bidegree

(2,2) (that is, biquadratic curves).

4.3.2 The deformed map φ̂
(1)
D4

for D4

The iteration of the deformed map φ̂
(1)
D4

can be written as the following system of

recurrence relations:

y1,n+1y1,n = (b1 + y1,n)y2,n + b1b3

y2,n+1y2,ny
2
1,n = ((b1 + y1,n)y2,n + b1b3(y1,n + 1))(y2,n + b3).

(4.20)

Using the p-adic method used in previous cases, we set the values of parameters

b1 = 2, b3 = 3, and initial variables of y to be (y1,0, y2,0) = (1, 1); observe the orbit

of the φ̂
(1)
D4
, that is, a sequence of rational numbers.

n y1,n y2,n

1 32 22 · 3 · 5

2 2 · 37 22·7
3

3 29
3

47
23·3·7

4 23
23·3

19·167
23·47

5 12149
23·47

3·5·11·17·43·67
19·47·167

6 3·73·2069
47·167

24·33·13·33347
11·17·43·67·167

7 2·53·10247
43·67·167

47·1009·248309
33·13·43·67·33347

As one can see from the table, the primes p1 = 47, 67, 167, 33347, 248309 do make

appearances in both y1,n and y2,n. The p-adic norms for such primes:

|y1,n|p1 = 1, 1, 1, p1, p1, 1, 1

|y2,n|p1 = 1, p−1
1 , p1, p1, 1, p

−1
1 , 1

(4.21)
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. There exists primes p = 17, 19, 1009, 103979 in y1,n, which do not emerge in y2,n

, and conversely primes p = 23, 29, 37, 12149, 2067 which do only show up in y1,n .

Then we find the following three patterns of singularity in the orbits of (y1,n, y2,n):

Pattern 1 : . . .→ (R, 01)→ (R,∞1)→ (∞1,∞1)→ (∞1, R)→ (R, 01)→ (R,R)→ . . .

Pattern 2 : . . .→ (01, R)→ . . .

Pattern 3 : . . .→ (R, 01)→ (R,∞1)→ . . .

(4.22)

By associating a tau function with each pattern, so that τn, rn, σn correspond to

Patterns 1,2,3 respectively, we are led to the change of variables

y1,n =
rn

τn−1τn
, y2,n =

σn+1τn−2τn+2

σnτnτn+1

. (4.23)

If we directly substitute these variables into the recurrences (4.22), then we obtain

the relations

rn+1rn =
(b1τn−1τn + rn)σn+1τn−2τn+2 + b1b3τn−1τ

2
nτn+1σn

σn

σn+2τn+3

=
[b1b3σnτnτn+1 + b1σn+1τn−2τn+2] · [(b1τn−1τn + rn)σn+1τn−2τn+2 + b1b3σnτnτn+1(τn−1τn + rn)]

b1r2nτn−2σn
.

(4.24)

To simplify the above relations and decouple them in such a way that they

represent exchange relations, it is helpful to observe the full singularity pattern in

4D, which emerges from applying the sequence of deformed mutations (4.5) subject

to the conditions b2 = b4 = β = b1b3. Once again, we adjust the initial variables

x1,0 = x2,0 = x3,0 = x4,0 = 1 and the parameters b1 = 2, b3 = 3; we obtain the

sequences of x1,n, x2,n, x3,n, x4,n through the iteration, shown as below,
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n x1,n x2,n x3,n x4,n

1 3 32 22 · 3 3 · 5

2 11
3

2 · 37 7·11
22·3

24

3

3 22·3·19
11

29
3

23·19
7·11

47
24

4 5·7·11
22·32·19

23
23·3

5·7·11
26·3

2·167
3·47

5 3·19·71
2·5·7·11

12149
23·47

23·3·17·71
5·7·47

3·5·43·67
24·167

6 5·72·11·97
22·3·47·71

3·73·2069
47·167

32·5·72·13·97
22·17·71·167

24·33347
43·47·67

7 22·3·17·23·71·109
5·72·97·167

2·53·10247
43·67·167

22·17·23·71·109·1009
32·5·72·13·43·67·97

47·248309
167·33347

8 32·5·72·13·97·1459
17·23·43·67·71·109

3371·94513
43·67·33347

32·5·72·13·97·1459·103979
17·23·71·109·1009·33347

5·7·167·544097
43·67·248309

From the table, observe that particular primes (for instance p = 47, p = 19,

29, which correspond to τn, σn, rn, respectively ) appearing in each of the integer

sequences are the same ones that were emerged in the numerators and denominators

in the preceding table. In addition to this, we can see there are certain primes that

do not appear in the y coordinates, for instance, the primes p = 11, 71, 97, arising

in the numerator of x1,n and x3,n. From this, we can define a transformation on the

level of the x-variables via p-adic method, given by

x1,n = ρn
σn
τn−1

x2,n =
rn

τn−1τn
x3,n = ρn

σn+1

τn
, x4,n =

τn−2τn+2

τn−1τn+1

, (4.25)

where the extra prefactor ρn corresponds to an additional singularity pattern,

appearing only on this level. By a short calculation, one can confirm that these

new formulae are consistent with the expression for y2,n previously given in (4.23),

since we have

y2,n =
x3,nx4,n
x1,n

=
σn+1τn−1

σnτn
· τn−2τn+2

τn−1τn+1

=
σn+1τn−2τn+2

σnτnτn+1

,

as required. Thus, with the parameters constrained as in (4.14a), the iteration of

the deformed map (4.5) is equivalent to a system of four relations, namely

ρn+1ρnσn+1σn = b1τn−1τn + rn, (4.26a)

rn+1rn = ρn+1ρnσ
2
n+1τn+2τn−2 + b1b3τn+1τ

2
nτn−1 (4.26b)

ρn+1ρnσn+2σn+1 = b3τn+1τn + rn+1 (4.26c)

τn+3τn−2 = b1b3τnτn+1 + rn+1 (4.26d)
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By incorporating the above relations into (4.24), and eliminating ρn, we obtain

recurrence relation for σn+2 as shown below,

σn+2τn+3 =
[b1b3σntntn+1 + b1σn+1tn−2tn+2] · [

(4.26a)︷ ︸︸ ︷
(b1τn−1τn + rn)σn+1τn−2τn+2 + b1b3σnτnτn+1(τn−1τn + rn)]

b1r2nτn−2σn

=
[b1b3σntntn+1 + b1σn+1tn−2tn+2] ·

[
ρn+1ρnσ

2
n+1σnτn+2τn−2 + b1b3σnτn+1τ

2
nτn−1 + b1b3σnτn+1τnrn)

]
b1r2nτn−2σn

=
[b1b3σntntn+1 + b1σn+1tn−2tn+2] · [σn

(4.26b)︷ ︸︸ ︷
(ρn+1ρnσ

2
n+1τn+2τn−2 + b1b3τn+1τ

2
nτn−1)+b1b3σnτn+1τnrn]

b1r2nτn−2σn

=
[b1b3σntntn+1 + b1σn+1tn−2tn+2] · [σnrn+1rn + b1b3σnτn+1τnrn]

b1r2nτn−2σn

=
[b1b3σntntn+1 + b1σn+1tn−2tn+2] · [σnrn

(4.26d)︷ ︸︸ ︷
(rn+1 +Bτn+1τn)]

b1r2nτn−2σn

=
[b1b3σntntn+1 + b1σn+1tn−2tn+2] · [σnrnτn+3τn−2]

b1r2nτn−2σn

=⇒ σn+2rn = b3σnτnτn+1 + σn+1τn−2τn+2 (a)

(4.27)

We take same approach as above to eliminate ρn in the second relation (4.26b),

which gives

rn+1σn+2rn = (b3τnτn+1 + rn+1)σn+1τn+2τn−2 + b1b3σn+2τn+1τ
2
nτn−1.

Then substituting the σn+2rn (a) directly into above expression gives rise to the

relation as following

=⇒ rn+1

(a)︷ ︸︸ ︷
σn+2rn = (b3τnτn+1 + rn+1)σn+1τn+2τn−2 + b1b3σn+2τn+1τ

2
nτn−1

=⇒ b3rn+1σnτnτn+1 + rn+1σn+1τn+2τn−2 = (b3τnτn+1 + rn+1)σn+1τn+2τn−2 + b1b3σn+2τn+1τ
2
nτn−1

=⇒ rn+1σn = σn+1τn+2τn−2 + b1σn+2τnτn−1

Hence we are able to decouple the expressions into a total of three recurrences, which

all take the form of exchange relations, given by

σn+2rn = b3σnτnτn+1 + σn+1τn−2τn+2

rn+1σn = σn+1τn+2τn−2 + b1σn+2τnτn−1

τn+3τn−2 = b1b3τnτn+1 + rn+1.

(4.28)

Next, in order to confirm that this gives a cluster map defined on a suitable space

of tau functions, we need to build an appropriate exchange matrix which produces
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(4.28) via a sequence of mutations. Firstly, let us combine the initial tau functions

into a cluster in a seed for a coefficient-free cluster algebra, by setting

(x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8) = (σ0, σ1, r0, τ−2, τ−1, τ0, τ1, τ2),

and let π̃1 : C8 → C2 be the rational map defined by (4.23). Then, upon taking the

pullback of the symplectic form (4.11) by π̃1, we find

ω̃ = π̃∗
1(ω̂) =

∑
1≤i<j≤8

b̃
(1)
ij d log x̃i ∧ d log x̃j (4.29)

where the coefficients are combined into the matrix B̃
(1)
D4

= (b̃
(1)
ij ) given by

B̃
(1)
D4

=



0 0 −1 0 1 1 0 0

0 0 1 0 −1 −1 0 0

1 −1 0 −1 0 1 1 −1

0 0 1 0 −1 −1 0 0

−1 1 0 1 0 −1 −1 1

−1 1 −1 1 1 0 −1 1

0 0 −1 0 1 1 0 0

0 0 1 0 −1 −1 0 0



. (4.30)

We proceed to add two extra rows, associated with the frozen variables b1 and b3,

to the bottom of the exchange matrix (4.30), which will result in the construction

of the extended exchange matrix B̂
(1)
D4

shown in (4.31) below. Figure 4.1 depicts the

quiver associated with the full matrix B̂
(1)
D4
.

Theorem 4.3.4. Given the extended initial cluster

x̂ = (x̃j)1≤j≤10 = (σ0, σ1, r0, τ−2, τ−1, τ0, τ1, τ2, b1, b3),

and the permutation ρ1 = (123)(45678), the iteration of the cluster map ψ
(1)
D4

=

ρ−1
1 µ̂4µ̂1µ̂3 defined by the extended exchange matrix B̂

(1)
D4

in (4.31) with square

submatrix (4.30) is equivalent to the system of recurrences (4.28), which generates

elements of Z>0

[
b1, b3, σ

±1
0 , σ±1

1 , r±1
0 , τ±1

−2 , τ
±1
−1 , τ

±1
0 , τ±1

1 , τ±1
2

]
Proof 4.3.5. Let us consider the initial seed (x̂, B̂

(1)
D4
) containing the extended initial
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Figure 4.1: Extended quiver associated with the deformed D4 cluster map ψ
(1)
D4

cluster x̂ as above, with the corresponding extended exchange matrix given by

B̂
(1)
D4

=



0 0 −1 0 1 1 0 0

0 0 1 0 −1 −1 0 0

1 −1 0 −1 0 1 1 −1

0 0 1 0 −1 −1 0 0

−1 1 0 1 0 −1 −1 1

−1 1 −1 1 1 0 −1 1

0 0 −1 0 1 1 0 0

0 0 1 0 −1 −1 0 0

−1 0 0 0 0 0 0 1

0 1 −1 0 0 0 0 1



. (4.31)

Applying cluster mutation µ̂3 at node 3, followed by µ̂1 and µ̂4, will give the exchange

relations

x̃′3x̃3 = x̃10x̃1x̃6x̃7 + x̃2x̃4x̃8,

x̃′1x̃1 = x̃2x̃4x̃8 + x̃9x̃3
′x̃5x̃6,

x̃′4x̃4 = x̃9x̃10x̃6x̃7 + x̃1
′,

(4.32)

which have the same form as the expressions in (4.28). Under this sequence of

mutations, the extended exchange matrix B̂
(1)
D4

satisfies the relation

µ̂4µ̂1µ̂3(B̂
(1)
D4
) = ρ1(B̂

(1)
D4
) = P1B̂

(1)
D4
P2
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where the action of the permutation ρ1 = (123)(45678) on the rows/columns is

represented by the matrices

P1 =



0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



, P2 =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0



. (4.33)

It follows that B̂
(1)
D4

is preserved by the action of the associated cluster map, that

is ψ
(1)
D4
(B̂

(1)
D4
) = B̂

(1)
D4
, where ψ

(1)
D4

= ρ−1
1 µ4µ1µ3, and the combination of the inverse

permutation with the exchange relations in (4.32) precisely corresponds to the shift of

index n→ n+1 acting on the tau functions in each cluster, reproducing the iteration

of the system (4.28). Hence this cluster map is a Laurentification of the deformed

D4 map φ̂
(1)
D4
, generating Laurent polynomials in the initial cluster variables, and

positivity for skew-symmetric cluster algebras [34] implies that their coefficients are

positive integers.

Remark 4.3.6. The subquiver in Figure 4.1 consisting of the 8 unfrozen nodes is

mutation equivalent to another particular quiver presented by Okubo, which enables

a q-Painlevé VI equation to be constructed from an appropriate combination of

coefficient mutations [54].

4.3.3 The deformed map φ̂
(2)
D4

for D4

Let us now consider iteration of the map φ̂
(2)
D4

given by (4.17), which can be written

as the recurrence

y1,n+1y1,n = (b3b4 + y1,n)y2,n + b3b4

y2,n+1y2,ny
2
1,nb4(b3b4 + y1,n) = ((b4 + y2,n)y1,n + b3b4(y2,n + 1))((b3 + y2,n)y1,n + b3b4(y2,n + 1)).

(4.34)
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Repeating the same procedure as in the previous sections,

n y1,n y2,n

1 13 24·3·5
7

2 2·3·59
7

52·23
7·19

3 659
7·19

23·37
2·32·11·19

4 41·157
2·32·11·19

7·479·607
2·32·11·31·47

5 1181·8623
2·32·11·31·47

5·19·109·167·4493
7·31·47·29009

6 13·100445747
31·47·29009

22·32·5·7·11·911·76379
19·29·58693·29009

7 2·3·11700760949
29·58693·29009

26·7·31·47·263·3623·2957
3·11·29·71·1155961·58693

For the prime p1 = 19, 47, 29009, 58693 , the p1-adic norms follows the pattern:

|y1,n|p1 : 1, p1, p1, 1

|y2,n|p1 : p1, p1, 1, p
−1
1 , p1

(4.35)

There are isolated primes p2 = 23, 37, 479, 607 and p3 = 13, 59, 659, 1181 appearing

in numerator of y1,n and y2,n, respectively. Thus we find three singularity patterns

which arise from orbits of (4.34), namely

Pattern 1 : . . .→ (R,∞1)→ (∞1,∞1)→ (∞1, R)→ (R, 01)→ (R,∞1)→ (R,R)→ . . .

Pattern 2 : . . .→ (01, R)→ . . .

Pattern 3 : . . .→ (R, 01)→ . . . .

(4.36)

By relating the singularities appearing in each pattern with new variables, we define

the following variable transformation, in an attempt to Laurentify the deformed

map φ̂2:

y1,n =
η̂n

τ̂n−1τ̂n
, y2,n =

ρnτ̂n−2

τ̂n+1τ̂nτ̂n−3

(4.37)

By substituting these expressions into (4.34), we find a rather complicated system

of equations: in particular, the resulting expression for the product ρn+1ρn cannot

be considered as an exchange relation, as it is not immediately given as a binomial

expression in the other variables. To resolve this problem, we follow the same

procedure as described in the preceding section (section 4.3.2), where we look at
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the singularity patterns in the original 4D deformed map (4.5) with b1 = b2 = b3b4,

and introduce variable transformations corresponding to these. The table below

represents

n x1,n x2,n x3,n x4,n

1 7 13 3 · 5 24

2 19
7

2·3·59
7

24·23
3·5·7

3·53
24·7

3 22·32·11
19

659
7·19

3·53·37
24·19·23

25·232
3·53·19

4 31·47
22·32·7·11

41·157
2·32·11·19

23·232·607
33·53·11·37

53·37·479
26·3·11·232

5 2·7·29009
19·31·47

1181·8623
2·32·11·31·47

3·54·37·479·4493
24·232·31·47·607

25·232·109·167·607
3·53·31·37·47·479

6 19·29·58693
22·32·11·29009

13·100445747
31·47·29009

24·232·109·167·607·76379
3·54·37·479·4493·29009

3·55·7·37·479·911·4493
24·232·109·167·607·29009

7 22·32·11·71·1155961
29·31·47·58693

2·3·11700760949
29·58693·29009

24·3·55·72·37·479·911·4493·2957
232·29·109·167·607·76379·58693

24·232·109·167·263·607·763793623
55·7·29·37·479·911·4493·58693

Similarly to the situation above, one can observe the primes which we recognise

from the sequences of rationals in (y1,n, y2,n), but there is further detail which can

not be seen in the 2D system. Notice that the prime p = 37, for instance, begins

to appear at the numerator of x3,3; it appears again in denominator of the next

rational x3,4. This situation occurs recursively after x3,4. In similar way as preceding

statement, the same prime appears in x4,n except the pattern starts at x3,4. In other

words, in terms p-adic norm, |x3,3|p = p−1 and then for m > 3, whenever |x3,m|p = p

, then |x4,m|p = p−1 or vice vera. One can also observe similar case happening in

x4,n. As soon as we move to 2D system, the primes cancel out and only single prime

remains throughout the sequence e.g. p = 37 exists only in y2,3 = (x3,3x4,3)/x1,3. We

associate the primes exhibiting those pattern with new tau function ξn. Altogether

it suggests that xi should be expressed as

x1,n =
τ̂n+1τ̂n−3

τ̂nτ̂n−2

, x2,n =
η̂n

τ̂nτ̂n−1

, x3,n =
r̂nξn
τ̂n

, x4,n =
σ̂n
τ̂nξn
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where ξn satisfies ξnξn+1 = σ̂n
r̂n
. By directly substituting these variables into (4.5),

we find a system of equations written as follows:

τ̂n+2τ̂n−3 = b3b4τ̂nτ̂n−1 + η̂n,

η̂n+1η̂n = r̂nσ̂nτ̂n−2τ̂n+2 + b3b4τ̂n+1τ̂
2
n τ̂n−1,

r̂n+1σ̂n = b3τ̂nτ̂n+1 + η̂n+1,

σ̂n+1r̂n = b4τ̂nτ̂n+1 + η̂n+1.

(4.38)

Also, by observing the singularity pattern for y1,n explicitly from (4.34), one can

see that y1,n should satisfy the relation

w1,n := y1,n + b3b4 =
τ̂n+2τ̂n−3

τ̂nτ̂n−1

, (4.39)

which is in agreement with what is found by combining (4.37) with the first

recurrence in (4.38). Furthermore, by setting ρn = r̂nσ̂n, the relation for ρn+1ρn

obtained from (4.34) follows by taking the product of the last two expressions in

(4.38).

Using the above, we can consider (y1,0, y2,0) = (y1, y2) and define a rational map

π̃2 : C8 → C2 by

π̃2 : y1 =
η̂0

τ̂−1τ̂0
, y2 =

σ̂0r̂0τ̂−2

τ̂1τ̂0τ̂−3

.

The exchange matrix describing the cluster dynamics (4.38) is found by pulling

back the symplectic form ω̂, as in (4.11), via the rational map π̃2, to obtain the

presymplectic form

ω̃ = π̃∗
2(ω̂) =

∑
i<j

b̃
(2)
ij

x̃ix̃j
dx̃i ∧ dx̃j.

Now if we choose to order the coordinates and identify them with variables in a

coefficient-free cluster algebra as

(x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8) = (τ̂−3, r̂0, η̂0, σ̂0, τ̂−1, τ̂0, τ̂1, τ̂−2),

then we see that the map π̃2 is equivalent to π̃1 defined by (4.23) in case (1) above,

so that

y1 =
x̃3
x̃5x̃6

, y2 =
x̃2x̃4x̃8
x̃1x̃6x̃7
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and the exchange matrix with entries b̃
(2)
ij is identical to the one obtained previously,

that is

B̃
(2)
D4

= B̃
(1)
D4

(4.40)

as in (4.30).

Figure 4.2: Extended quiver associated with the deformed D4 cluster map ψ
(2)
D4

To obtain an extended version of B̃
(2)
D4

that includes b3, b4 as frozen variables and

reproduces (4.38) from a suitable sequence of mutations, we need to construct two

extra rows as in (4.41) below. The result of this is represented by the quiver in

Figure 4.2, with two frozen nodes.

Theorem 4.3.7. Given the extended initial cluster

x̂ = (x̃j)1≤j≤10 = (τ̂−3, r̂0, η̂0, σ̂0, τ̂−1, τ̂0, τ̂1, τ̂−2, b3, b4),

and the permutation ρ2 = (24)(18567), the iteration of the cluster map ψ
(2)
D4

=

ρ−1
2 µ̂2µ̂4µ̂3µ̂1 defined by the extended exchange matrix B̂

(2)
D4

in (4.41) with square

submatrix (4.30) is equivalent to the system of recurrences (4.38), which generates

elements of Z>0

[
b3, b4, r̂

±1
0 , η̂±1

0 , σ̂±1
0 , τ̂±1

−3 , τ̂
±1
−2 , τ̂

±1
−1 , τ̂

±1
0 , τ̂±1

1

]
.

Proof 4.3.8. From (4.40) we note that the coefficient-free cluster algebra is identical

to that specified by the same 8 × 8 exchange matrix as was found in case (1)

previously, but we need to extend it in such a way that, once b3 and b4 are included

as frozen variables, it is compatible with the four relations in (4.38) (whereas in case
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(1) there were only thee relations). In this way, we construct a 10 × 8 extended

exchange matrix B̂
(2)
D4

from B̃
(2)
D4

= B̃
(1)
D4
, given by

B̂
(2)
D4

=



0 0 −1 0 1 1 0 0

0 0 1 0 −1 −1 0 0

1 −1 0 −1 0 1 1 −1

0 0 1 0 −1 −1 0 0

−1 1 0 1 0 −1 −1 1

−1 1 −1 1 1 0 −1 1

0 0 −1 0 1 1 0 0

0 0 1 0 −1 −1 0 0

−1 1 0 0 0 0 0 0

−1 0 0 1 0 0 0 0



, (4.41)

and we note that the last two rows are different from B̂
(1)
D4

in (4.31) (as can be seen

by comparing Figures 4.1 and 4.2). Such an extended exchange matrix is invariant

under the following

Applying a sequence of mutations, starting with mutation µ̂1 at node 1 and

successively mutating at nodes 3,4 and 2, we find that the nodes are permuted by

the given permutation ρ2, so that

µ̂2µ̂4µ̂3µ̂1(B̂
(2)
D4
) = ρ2(B̂

(2)
D4
),

which is equivalent to the action of a suitable pair of row/column permutation

matrices acting on B̂
(2)
D4
. Hence the overall action of ψ

(2)
D4

= ρ−1
2 µ̂2µ̂4µ̂3µ̂1 leaves

B̂
(2)
D4

invariant, and it is straightforward to check that the corresponding combination

of cluster mutations with a permutation is equivalent to one iteration of the relations

(4.38). Then as usual, because they are cluster variables, the iterates are elements

of the corresponding ring of Laurent polynomials, with positive integer coefficients.

Remark 4.3.9. Since the subquiver with 8 unfrozen nodes in Figure 4.2 is the same

as that in Figure 4.1, it is also mutation equivalent to the quiver associated with the

q-Painlevé VI equation in [54].

Remark 4.3.10. The degree growth for the tau functions can be determined in

both cases ψ
(1)
D4

and ψ
(2)
D4

by proceeding in the same way as in the section 3.5 (the

calculation can be found in [15]).
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4.3.4 Connection with special Somos-7 relation

As we have already seen in examples of deformations in type A and B, on fixed level

sets the orbits of suitable tau functions satisfy a special Somos-7 relation, which is

related to the Lyness map. There is also a corresponding Somos-5 relation, although

the details of this are a bit more subtle (see Appendix B in [15]). We find a similar

result for the deformed maps of type D4.

Theorem 4.3.11. For each integrable case of the deformed D4 map, the variable

wn = y1,n + β satisfies the Lyness map in the form

wn+1wn−1 = (1− β)wn + δ, (4.42)

where in case (1) we have

β = b1b3, δ = βK̃1 + 2β2 + b1 + b3,

on each level set of the invariant function K̃1 given in (4.18), while in case (2) the

parameters are specified by

β = b3b4, δ = βK̃2 + 2β2 + b3 + b4,

with K̃2 as in (4.19). Furthermore, in case (1) we can express wn by the formula

wn =
τn+2τn−3

τnτn−1

, (4.43)

where the tau function τn satisfies the special Somos-7 relation

τn+7τn = (1− β)τn+6τn+1 + δτn+4τn+3, (4.44)

and for case (2) we have the same expression as (4.43) except that τn is replaced by

τ̂n, where the latter satisfies the same relation (4.44) but with the modified expression

for β and δ, as above. Similarly, in each case the quantity

ŵn = y1,n + 1

satisfies the Somos-5 QRT map, in the form of the recurrence

ŵn+1ŵnŵn−1 = ζŵn + θ, (4.45)

where, for the appropriate value of β in each case, the coefficients are given by

θ = (β − 1)ζ with

case (1) : ζ = K̃1 + b1 + b3 + 2, case (2) : ζ = K̃2 + b3 + b4 + 2.
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The proof of the preceding statements is very similar to what was done before

for the other examples, so it is omitted.
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Chapter 5

Higher rank type B and D cluster

maps

Up to this point, we have shown that the cluster maps of initial type B and D

admit the deformation. However, as we move onto a higher-order case, the process

of finding the integrability conditions of the parameters in a deformed map becomes

more complex since we need to build a sufficient number of invariant functions which

are in involution with respect to the Poisson bracket defined by the inverse of the

skew-symmetric matrix. We have attempted the same procedure used in the type

A case by using the periodicity of the map, but as yet, we have not succeeded

in finding compatible first integrals. However, it does not imply that one cannot

proceed further. From the several successful cases in the previous chapters, we could

see that the complexity of iteration of the maps (measured by the height function)

reduces significantly when the integrability condition is imposed. On the other

hand, the numerator and denominator grow exponentially if we set other parameter

conditions. This suggests there is a relatively close relation between integrability

conditions and Laurentification.

In this chapter, we consider the deformation of cluster algebra associated with

type B4 and D6 with certain parameter conditions analogous to the conditions in

type B3 and D4 cases.
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5.1 Deformed B4 cluster map

The Cartan matrix for the type B4 is
2 −2 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

 (5.1)

which is Cartan counterpart of the following exchange matrix,

BB4 =


0 2 0 0

−1 0 1 0

0 −1 0 1

0 0 −1 0

 (5.2)

The following sequence of the deformed mutations

µ1 : (x1, x2, x3, x4) 7→ (x′1, x2, x3, x4), x1x
′
1 = b1 + a1x2

µ2 : (x
′
1, x2, x3, x4) 7→ (x′1, x

′
2, x3, x4), x2x

′
2 = b2 + a2x3(x

′
1)

2

µ3 : (x
′
1, x

′
2, x3, x4) 7→ (x′1, x

′
2, x

′
3, x4), x3x

′
3 = b3 + a3x4x

′
2

µ4 : (x
′
1, x

′
2, x

′
3, x4, ) 7→ (x′1, x

′
2, x

′
3, x

′
4), x4x

′
4 = b4 + a4x

′
3

(5.3)

provides a birational map φ̃B4 which fixes the exchange matrix BB4 . The original

cluster map ( deformed map with parameters fixed with 1) is periodic with period

5,

φB4 · (x, B) = (φB4(x), B) and φ5
B4
(x) = x (5.4)

as the Coxeter number for type B4 is 8 i.e. (8+2)/2 = 5. Both original and deformed

maps preserves the following symplectic form,

ω =
2

x1x2
dx1 ∧ dx2 +

1

x2x3
dx2 ∧ dx3

+
1

x3x4
dx3 ∧ dx4

(5.5)

To ease the process of calculation, we rescale the variables i.e. xi → λixi in a way

that the parameters ai = 1. Then the deformed mutations can be rewritten as

x1,n+1x1,n = x2,n + b1

x2,n+1x2,n = x3,nx
2
1,n+1 + b2

x3,n+1x3,n = x4,nx2,n+1 + b3

x4,n+1x4,n = x3,n+1 + b4

(5.6)
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Suppose we impose the condition on the parameters, that is , b2 = b21 = b3 = b4,

We set initial variables xi = 1 and b1 = 5 and perform the iteration. This produce

the iterates which can be written in terms of prime numbers, shown in the table.

n x1,n x2,n x3,n x4,n

1 2 · 3 61 2 · 43 3 · 37

2 11 32 · 19 13 · 17 2·41
37

3 24 331 127
37

2·263
41

4 3 · 7 22·43
37

3·337
41

2·509
263

5 17
37

9857
37·41

33·733
537·263

31·4243
37·509

6 2·33·19
41

71·127·239
41·263

2·97·223·337
41·509

33·37·559297
31·41·4243

7 2153
263

35·129119
263·509

89·109·127·977
31·263·4243

2·19·41·653·751
32·263·559297

8 22·612
509

1433·5935759
31·509·4243

7·149·6941549
32·509·559297

2·263·62129·6997
19·509·653·751

One can observe from the table that the growth of the number of digits in

numerator and denominator is stable which suggests possibility of lifting the φ̃B4 to

the new coordinate system. For the prime p1 = 37, 41, 263, 509 , the p-adic norms

follows

|x1,n|p1 : 1, 1, 1, 1, 1, p1, 1, 1, 1, 1

|x2,n|p1 : 1, 1, 1, 1, p1, p1, 1, 1, 1, 1

|x3,n|p1 : 1, 1, 1, p1, p1, 1, 1, 1, 1, 1

|x4,n|p1 : 1, p
−1
1 , p1, 1, 1, 1, p1, p

−1
1 , 1

(5.7)

The prime p2 = 11, 17, 19, 2153 only emerge at x1,n and not at the other variables

. The other prime numbers p3 = 19, 61, 331, 9857 and p4 = 13, 17, 127, 337 appear

at x2,n , x3,n and x4,n respectively. Let us introduce new variables τ ≡ 0 (mod p1),

σ ≡ 0 (mod p2), η ≡ 0 (mod p3) and ξ ≡ 0 (mod p4). Altogether suggests that

variable transformations (equivalent to the rational map π : C9 → C4) possess the

following form,

x1,n =
σn
τn+1

, x2,n =
ηn

τn+1τn+2

, x3,n =
ξn

τn+1τn+3

, x4,n =
τnτn+5

τn+1τn+4

(5.8)

This lifts the higher dimensional map ψB4 , which can be represented as the system
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of recurrence relation,

σn+1σn = βτn+1τn+2 + ηn

ηn+1ηn = β2τn+1τ
2
n+2τn+3 + ξnσ

2
n+1

ξn+1ξn = β2τn+1τn+2τn+3τn+4 + τnτn+5ηn+1

τn+6τn = β2τn+2τn+4 + ξn+1

(5.9)

Upon labeling initial variables, x̃ = (ξ0, σ0, τ0, τ1, τ2, τ3, τ4, τ5, η0) = (x̃1, x̃2, . . . , x̃9),

we apply pull back of symplectic form ω by the rational map to obtain the new

symplectic form, expressed with x̃i for 1 ≤ i ≤ 9,

ω̃ = π∗ω =
∑
ij

Ω̃ijd log x̃i ∧ d log x̃j

which yields 9× 9 skew-symmetric matrix,

ΩD6 =



0 0 1 0 1 0 −1 1 −1

0 0 0 −2 −2 0 0 0 2

−1 0 0 1 0 1 0 0 0

0 2 −1 0 1 0 1 −1 −1

−1 2 0 −1 0 1 0 0 0

0 0 −1 0 −1 0 1 −1 1

1 0 0 −1 0 −1 0 0 0

−1 0 0 1 0 1 0 0 0

1 −2 0 1 0 −1 0 0 0



(5.10)

If we post-multiplying the Ω̃ with D̃ = diag(1, 1/2, 1, 1, 1, 1, 1, 1, 1), we obtain the

skew-symmetrizable matrix

B̃B4 =



0 0 1 0 1 0 −1 1 −1

0 0 0 −2 −2 0 0 0 2

−1 0 0 1 0 1 0 0 0

0 1 −1 0 1 0 1 −1 −1

−1 1 0 −1 0 1 0 0 0

0 0 −1 0 −1 0 1 −1 1

1 0 0 −1 0 −1 0 0 0

−1 0 0 1 0 1 0 0 0

1 −1 0 1 0 −1 0 0 0



(5.11)
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One can confirm that this is exchange matrix, which provide coefficient free cluster

algebra, whose cluster variables are expressed by the relation (5.9) with β = 1. We

add the extra row (frozen vertices) to the exchange matrix and thus we obtain the

following result.

Theorem 5.1.1 (Laurentification of the deformed map). Let (x̂, B̂B4) be initial seed

which is composed of extended initial cluster

x̂ = (ξ0, σ0, τ0, τ1, τ2, τ3, τ4, τ5, η0, β)

= (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8, x̃9, x̃10)
(5.12)

together with the associated extended exchange matrix

B̂B4 =



0 0 1 0 1 0 −1 1 −1

0 0 0 −2 −2 0 0 0 2

−1 0 0 1 0 1 0 0 0

0 1 −1 0 1 0 1 −1 −1

−1 1 0 −1 0 1 0 0 0

0 0 −1 0 −1 0 1 −1 1

1 0 0 −1 0 −1 0 0 0

−1 0 0 1 0 1 0 0 0

1 −1 0 1 0 −1 0 0 0

0 1 0 0 0 0 0 −2 0



(5.13)

and consider the permutation ρ = (345678). Then the iteration of cluster map ψB4 =

ρ−1µ3µ1µ9µ2 is equivalent to the recurrence (5.9), and for the tau functions σn, ηn,

ξn, τn are elements of the Laurent polynomial ring Z>0

[
β, σ±

0 , η
±
0 , ξ

±
0 , τ

±
0 , τ

±
1 , τ

±
2 , τ

±
3 , τ

±
4 , τ

±
5

]
.

Proof. The mutation µ̃2µ̃9µ̃1µ̃3 acting on the initial seed (x̂, B̂B4) produces the

new cluster (mutated variables) x̂ = (x̃′1, x̃
′
2, x̃

′
3, x̃4, x̃5, x̃6, x̃7, x̃8, x̃

′
9), where the new

cluster variables are given by following exchange relations

x̃′2x̃2 = x̃10x̃4x̃5 + x̃9

x̃′9x̃9 = x̃210x̃4x̃6x̃7 + x̃1(x̃
′
2)

2

x̃′1x̃1 = x̃210x̃4x̃5x̃6x̃7 + x̃3x̃8x̃
′
9

x̃′3x̃3 = x̃210x̃5x̃7 + x̃′1

(5.14)
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along with the mutated exchange matrix

B̂B4 =



0 0 1 1 0 1 0 −1 −1

0 0 0 0 −2 −2 0 0 2

−1 0 0 0 1 0 1 0 0

−1 0 0 0 1 0 1 0 0

0 1 −1 −1 0 1 0 1 −1

−1 1 0 0 −1 0 1 0 0

0 0 −1 −1 0 −1 0 1 1

1 0 0 0 −1 0 −1 0 0

1 −1 0 0 1 0 −1 0 0

0 1 −2 0 0 0 0 0 0



(5.15)

When we substitute the tau functions (5.12) into the exchange relations (5.14) and

replace mutated variables x̃′1 x̃
′
2, x̃

′
3, x̃

′
9 with ξ1,σ1, τ6, η1, we obtain (5.9) with n = 0.

The mutated exchange matrix can be derived from the exchange matrix via

permutating the rows and columns by P1 and P2,

µ̃3µ̃1µ̃9µ̃2(B̂B4) = ρ(B̂B4) = P1B̂B4P2 (5.16)

where permutation ρ = (345678) can be represented by 10× 10 and 9× 9 matrices,

P1 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



, P2 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1


(5.17)

Hence the iteration of the cluster map ψB4 = ρ−1µ̃3µ̃1µ̃9µ̃2 on the initial cluster x̂

induces cluster variables which are expressed in the form of recursion (5.14).
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5.2 Tropicalization and degree growth for de-

formed B4 map

In the previous example, we have seen that the deformation of type B4 cluster

map can be lifted to higher dimenisonal cluster map via Laurentification with the

condition of parameters b2 = b21 = b3 = b4. However, we have not yet to prove the

integrability of the deformed map. In this section, we consider the calculation of

the degree growth by using tropical method which we applied in the type A2N case.

This provides us positive indication that the deformed type B4 map is integrable.

Due to the Laurent property of the cluster map, the sequence of tau-functions

τn, σn, ηn and ξn, generated by ψB4 (5.9), can be expressed as

τn =
N

(1)
n (x̂)

x̂dn
, ξn =

N
(2)
n (x̂)

x̂en
, σn =

N
(3)
n (x̂)

x̂fn
, ηn =

N
(4)
n (x̂)

x̂gn
(5.18)

with initial d-vectors of the initial cluster variables (non frozen variables) identified

by the 9× 9 identity matrix.

(e0 f0 d0 d1 d2 d3 d4 d5 g0) = −I (5.19)

Upon substituting the expression (5.18) into (5.9) and compare the denominator

on each side, we obtain the relation which d-vectors holds:

fn+1 + fn = max(dn+1 + dn+2,gn),

gn+1 + gn = max(dn+1 + 2dn+2 + dn+3, en + 2fn+1),

en+1 + en = max(dn+1 + dn+2 + dn+3 + dn+4,dn + dn+5 + gn+1),

dn+6 + dn = max(dn+2 + dn+4, en+1),

(5.20)

To determine the degree growths of d-vectors, as usual, we introduce the tropical

analogues of the substitutions (5.8), which takes the form,

X1,n = fn − dn+1, X2,n = gn − dn+1 − dn+2,

X3,n = en − dn+1 − dn+3, X4,n = dn + dn+5 − dn+1 − dn+4

(5.21)

Then we can use these substitution to derive the tropical version of the expressions

(5.6) generated by deformed map φ̃B4 , as stated in below.
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Lemma 5.2.1. The structure of Xj,n in (5.21) satisfy the tropical analogue of

deformed map φB4 which is given by the following system of (max,+) equations:

X1,n+1 +X1,n = [X2,n]+,

X2,n+1 +X2,n = [X1,n+1 +X3,n]+,

X3,n+1 +X3,n = [X2,n+1 +X4,n]+,

X4,n+1 +X4,n = [X3,n+1]+.

(5.22)

where [a]+ = max(a, 0). Given arbitrary initial values (Y1,0, Y2,0), the quantities Xj,n

is periodic with period 5.

As mentioned above the structure of d-vectors in (5.21) and periodicity of Xj,n

allow us determine the growths of d-vector, shown below.

Theorem 5.2.2. Let T be linear operator which shifts n → n + 1. The d-vectors

en,dn,fn and gn, which solve the system of equations (5.20), are elements of the

kernel of linear difference operator

L = (T 5 − 1)(T 4 − 1)(T − 1) (5.23)

where T is shift operator corresponding to n → n + 1. For the tau functions

generated, the leading order of degree growth of their denominators is given by

dn =
n2

40
a+O(n), fn =

n2

40
a+O(n)

en =
n2

20
a+O(n), gn =

n2

20
a+O(n)

(5.24)

where a = (2, 2, 1, 1, 1, 1, 1, 1, 2)T .

Proof. The expression for X4,n can be written as

(T 4 − 1)(T − 1)dn = X4,n.

Then by applying Lemma 5.2.1, we have

Ldn = (T 5 − 1)(T 4 − 1)(T − 1)dn = (T 5 − 1)X4,n = 0

which shows dn is kernel of linear operator L.

Lfn = LX1,n + Ldn+1 = 0
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where we used the fact that X1,n has period 5, from the same lemma. Similarly, the

expression X2,n and X3,n gives

Lgn = LX2,n + Len+2 + Ldn = 0

Lfn = LX3,n + Len+3 + Ldn = 0

The solution of the difference equations gives the expression for d-vectors whose

leading order terms expressed by

dn = a1n
2 +O(n), en = a2n

2 +O(n),

fn = a3n
2 +O(n), gn = a4n

2 +O(n)

Now we first consider determining the constant coefficient a1 in dn. The expression

of linear operator Ldn = 0 suggests that

(T 5 − 1)(T 4 − 1)(dn+1 − dn) = 0 ⇐⇒ (T 5 − 1)(T 4 − 1)dn = constant

Furthermore since difference equation above can be written as dn+9−dn+5−dn+4+

dn = constant, substituting the dn = a1n
2+O(n) directly into such equation results

annihilating the O(n) term. Thus the constant term above is in fact vector 40a1.

To find the a1, we consider the sequence of d-vectors induced by the relations in

(5.20) with the initial data (5.19). We look at the sequence of dn given by

d6 = (1, 2, 1, 0, 0, 0, 0, 0, 1)T

d7 = (1, 2, 1, 1, 0, 0, 0, 0, 2)T

d8 = (2, 2, 1, 1, 1, 0, 0, 0, 2)T

d9 = (2, 2, 2, 1, 1, 1, 0, 0, 2)T

d10 = (3, 4, 2, 2, 1, 1, 1, 0, 3)T

d11 = (4, 6, 3, 2, 2, 1, 1, 1, 5)T

d12 = (5, 6, 3, 3, 2, 2, 1, 1, 6)T

Based on the observation of dn vectors, we can denote each vector components of

dn as

dn = (d(1)n , d(2)n , d
(3)
n+5, d

(3)
n+4, d

(3)
n+3, d

(3)
n+2, d

(3)
n+1, d

(3)
n , d(4)n ) (5.25)
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d(1)n : 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, . . .

d(2)n : 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 6, 6, 6, 8, 10, 12, 12, . . .

d(3)n : 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, . . .

d(4)n : 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 3, 5, 6, 6, 7, 9, 11, 12, . . .

For any value, explicit calculation of the difference equation dn+9−dn+5−dn+4+dn

using the data above gives vector (2, 2, 1, 1, 1, 1, 1, 1, 2)T . Then, by combining this

with the other results above, we have

(T 5 − 1)(T 4 − 1)en = (2, 2, 1, 1, 1, 1, 1, 1, 2)T = 40a

which fixes the constant vector a1. Hence we find

dn =
n2

40
(2, 2, 1, 1, 1, 1, 1, 1, 2)T +O(n)

For the other d-vectors, we can take the same procedure since they are in the same

situation such that they are elements in kernel of linear operator L. Alternatively,

one can use the formula for X1,n,X2,n,X3,n in (5.21) and their periodicity,

fn = dn+1 +X1,n = a1n
2 +O(n),

gn = dn+1 + dn+2 +X1,n = 2a1n
2 +O(n),

en = dn+1 + dn+3 +X3,n = 2a1n
2 +O(n).

We obtain the expression for d-vectors whose leading order is quadratic. Hence we

obtain the desired outcome.

Upon applying the algebraic entropy test, we are led to the conjecture that

deformed type B4 map is Liouville integrable map.
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5.3 Deformed D6 cluster map

The Cartan matrix for the type D6 is

2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 −1

0 0 0 −1 2 0

0 0 0 −1 0 2


(5.26)

which is corresponding to the following exchange matrix,

B =



0 1 0 0 0 0

−1 0 1 0 0 0

0 −1 0 1 0 0

0 0 −1 0 1 1

0 0 0 −1 0 0

0 0 0 −1 0 0


(5.27)

Let us consider the deformation of the composition of cluster mutations µ6µ5µ4µ3µ2µ1

which is shown as below.

µ1 : (x1, x2, x3, x4, x5, x6) 7→ (x′1, x2, x3, x4, x5, x6), x1x
′
1 = b1 + a1x2

µ2 : (x
′
1, x2, x3, x4, x5, x6) 7→ (x′1, x

′
2, x3, x4, x5, x6), x2x

′
2 = b2 + a2x3x

′
1

µ3 : (x
′
1, x

′
2, x3, x4, x5, x6) 7→ (x′1, x

′
2, x

′
3, x4, x5, x6), x3x

′
3 = b3 + a3x4x

′
2

µ4 : (x
′
1, x

′
2, x

′
3, x4, x5, x6) 7→ (x′1, x

′
2, x

′
3, x

′
4, x5, x6), x4x

′
4 = b4 + a4x5x6x

′
3

µ5 : (x
′
1, x

′
2, x

′
3, x

′
4, x5, x6) 7→ (x′1, x

′
2, x

′
3, x

′
4, x

′
5, x6), x5x

′
5 = b5 + a5x

′
4

µ6 : (x
′
1, x

′
2, x

′
3, x4, x

′
5, x6) 7→ (x′1, x

′
2, x

′
3, x

′
4, x

′
5, x

′
6), x6x

′
6 = b6 + a6x

′
4

(5.28)

As usual, the deformed map φ̃D6 = µ̃6µ̃5µ̃4µ̃3µ̃2µ̃1 transforms back to original cluster

map φD6 = µ6µ5µ4µ3µ2µ1 when we fix the parameters ai = 1 = bi for all i = 1, . . . , 4.

Furthermore, since Coxeter number h for the type D6 is 10, the periodicity for the

cluster map is period 6,

φD6 · (x, B) = (φD6(x), B) and φ6(x) = x (5.29)
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The symplectic form ω, that is invariant under the deformed map, takes a following

form,

ω =
1

x1x2
dx1 ∧ dx2 +

1

x2x3
dx2 ∧ dx3

+
1

x4x5
dx4 ∧ dx5 +

1

x4x6
dx4 ∧ dx6

(5.30)

Like several previous examples, we can rescale each cluster variables (i.e. xi → λixi)

to adjust the parameters in a way that the (5.28) can be rewritten as

x1,n+1x1,n = x2,n + b1,

x2,n+1x2,n = x3,nx1,n+1 + b2,

x3,n+1x3,n = x4,nx2,n+1 + b3

x4,n+1x4,n = x5,nx6,nx3,n+1 + b3

x5,n+1x5,n = x4,n+1 + b5

x6,n+1x6,n = x4,n+1 + b6

(5.31)

From the exchange matrix BD6 , (5.27), one can see that it is degenerate and

possess rank 4. Thus we consider the null and column space of BD6 given by following

ker(B) =
{
(1, 0, 1, 0, 0, 1)T , (1, 0, 1, 0, 1, 0)T

}
,

im (B) =
{
(0, 1, 0, 0, 0, 0)T , (−1, 0, 1, 0, 0, 0)T , (0,−1, 0, 1, 0, 0)T , (0, 0,−1, 0, 1, 1)T

}
(5.32)

The vectors in im (B) leads to constructing new variables y1, y2, y3, y4 i.e.

y1 = x2, y2 =
x3
x1
, y3 =

x4
x2
, y4 =

x5x6
x3

(5.33)

which reduces the deformed map into the 4D symplectic map i.e.

φ̂ : (y1, y2, y3, y4)→ (y′1, y
′
2, y

′
3, y

′
4) (5.34)

where the produced variables are written as

y′1 =
(b1 + y1)y2 + b2

y1

y′2 =
y3(b1 + y1)y2 + b2y3 + b3

y2(b1 + y1)

y′3 =
y3(b1 + y1)y2y4 + b2y3y4 + b3y4 + b4

y3(b2 + (b1 + y1)y2)

y′4 =
((b1y2 + y1y2 + b2)y3y4 + b6y1y3 + b3y4 + b4)((b1y2 + y1y2 + b2)y3y4 + b5y1y3 + b3y4 + b4)

y21y
2
3y4((b1y2 + y1y2 + b2)y3 + b3)

(5.35)
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Along the map, the exchange matrix is also reduced to the 4 × 4 skew-symmetric

matrix of the form, 
0 −1 0 −1

1 0 0 0

0 0 0 −1

1 0 1 0


Here we take same step as shown in the type B4 case, that is, we impose certain

parameter condition which yields iterations where the number of factors in both

each numerator and denominator grows slower than exponential growth. Suppose

we impose the condition on the parameters, that is , b1 = b2 = b3 = b4 = b5b6. We

set initial variables yi = 1 and b5 = 2 and b6 = 3 and perform the iteration. This

gives the iterates which can be written in terms of prime numbers, shown in the

table.

n y1,n y2,n y3,n y4,n

1 13 19
7

52

13
22·33·7

19

2 31
7

43
19

2 · 3 · 7 7·47
43

3 127
19

23·3·7·23
73

977
127

5·11·29
22·3·19·23

4 2·33·137
73

13109
7·241

2·23·467
33·19·137

33·52·7·11·13
73·13109

5 5·2797
7·241

47·499
2·3·19·653

3·7·36263
5·73·2797

24·17·19·443
47·241·499

6 94307
2·3·19·653

3·7·257501
73·24107

22·19·23·19259
241·94307

73·13457·5197
32·653·257501

7 3·13117691
73·24107

24·19·211·30559
7·241·269·2011

52·73·2711·62311
32·653·13117691

25·7·23·41·181·241·881
211·30559·24107

8 2·199·980249
241·269·2011

23·13·73·149·1053713
33·7·11·19·653·10289

83·229·241·6317·8681
199·980249·24107

32·11·179·653·98597·14281
23·13·149·269·1053713·2011

9 19·252533·45127
33·7·11·653·10289

59·97·241·605239213
73·7712933·24107

32·11·13·109·653·74857·31627
19·269·252533·45127·2011

5·1543·24107·6089·280759
2·3·7·59·97·605239213·10289

From the table, we see that the number of prime factors increases as polynomial

growths. One can see that the prime numbers p = 73, 241, 653 appears in all
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variables. The corresponding p-adic norm gives the sequence

|y1,n|p = 1, 1, p, 1, 1, p, 1

|y2,n|p = 1, p, 1, 1, p, 1, p−1, p, 1

|y3,n|p = 1, 1, 1, p, 1, p−1, 1, 1

|y4,n|p = 1, 1, p, 1, p−1, 1, 1

(5.36)

There are particular values which emerge in two variables. For p = 31, 137, |y1,n|p =

p−1 and |y3,n|p = p. For p3 = 19, 23, 43, 47, 499, 13109, |y2,n|p = p−1 and |y4,n|p = p.

There are unique primes which do not appear in the other variables. e.g primes

p = 31, 137 emerge only in the y1.

For each variable, there are unique primes which do not appear in the other

variables. e.g primes p = 31, 137 emerge only in the y1. Thus one can observe the

pattern in the iterations in (y1,n, y2,n, y3,n, y4,n)

Pattern 1 : . . .→ (R,∞1, R,R)→ (∞1, R,R,∞1)→ (R,R,∞1, R)→ (R,∞1, R, 01)

→ (∞1, R, 01, R)→ (R, 01, R,R)→ (R,∞1, R,R)→ . . .

Pattern 2 : . . .→ (01, R,∞, R)→ . . .

Pattern 3 : . . .→ (R, 01, R,∞)→ . . .

Pattern 4 : . . .→ (R,R, 01, R)→ . . .

Pattern 5 : . . .→ (R,R,R, 01)→ . . .

(5.37)

Given tau-functions specified by τ ≡ 0 (mod p1), P ≡ 0 (mod p2), Q ≡

0 (mod p3), R ≡ 0 (mod p4), V ≡ 0 (mod p5), J ≡ 0 (mod p6), each symplectic

coordinates can be written as

y1,n =
Pn

τn+2τn+5

, y2,n =
τn+1Qn

τnτn+3τn+6

, y3,n =
τn+2Rn

τn+4Pn
, y4,n =

τn+3VnJn
τn+5Qn

(5.38)

If we substitute the variables into exchange relations, we obtain long expressions

which do not match with exchange relation. Instead, we look at view of original

system in terms of x-variables. We fix the initial cluster variables xi = 1 for i =

1, 2, 3, 4, 5, 6 and set the same paramter values as above. Then iteration yields

sequences shown in the table below,
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n x1,n x2,n x3,n x4,n

1 7 13 19 52

2 19
7

31
7

43
7

2 · 3 · 31

3 73
19

127
19

23·3·7·23
19

977
19

4 241
73

2·33·137
73

13109
7·73

22·23·467
19·73

5 22·3·653
241

5·2797
7·241

2·47·499
19·241

3·36263
73·241

6 24107
22·3·7·653

94307
2·3·19·653

257501
22·73·653

2·23·19259
3·241·653

7 2·7·269·2011
19·24107

3·13117691
73·24107

25·211·30559
241·24107

52·2711·62311
3·653·24107

8 32·7·11·19·10289
2·73·269·2011

2·199·980249
241·269·2011

22·13·149·1053713
3·269·653·2011

2·83·229·6317·8681
269·24107·2011

n x5,n x6,n

1 33 22 · 7

2 22·47
33

33

22

3 33·5·7·29
22·19·47

23·11·47
33·19

4 23·112·47
5·29·73

33·53·13·29
23·11·47·73

5 53·13·29·443
23·112·47·241

28·112·17·47
53·13·29·241

6 26·112·17·47·13457
3·53·13·29·443·653

53·13·29·443·5197
28·3·112·17·47·653

7 53·13·23·29·41·443·881·5197
26·112·17·47·13457·24107

216·7·112·17·47·181·13457
53·13·29·443·24107·5197

8 215·3·7·113·17·47·181·98597·13457
53·13·23·29·41·269·443·881·5197·2011

53·13·23·29·41·179·443·881·5197·14281
216·7·112·17·47·181·269·13457·2011

The prime numbers, appeared in the y variables, once again can be spotted in

the x-variables. e.g p = 73, 241, 653 corresponds to τ , p = 31, 137 associated with

P , p = 19, 23, 43, 47, 499 corresponds to Q. p = 467, 977, 36263 corresponds to R.

There are specific primes in x5 and x6, which cancels out in y4 = x5x6/x3. As we

witnessed in the type D4, we define the new tau function σn which is associated such

primes. Hence by observing singularity pattern, we can construct the tau-function

expressions,

x1,n =
τn+6τn
τn+1τn+5

, x2,n =
Pn

τn+2τn+5

, x3,n =
Qn

τn+3τn+5

x4,n =
Rn

τn+4τn+5

, x5,n =
Vnσn
τn+5

, x6,n =
Jn

τn+5σn

(5.39)

where σnσn+1 = Jn
Vn
. Then directly inputting the variables into the deformed
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mutations produce the following relations,

τn+7τn = b5b6τn+5τn+2 + Pn

Pn+1Pn = b5b6τn+2τn+3τn+5τn+6 +Qnτn+1τn+7

Qn+1Qn = b5b6τn+3τn+4τn+5τn+6 +RnPn+1

Rn+1Rn = b5b6τn+4τ
2
n+5τn+6 + VnJnQn+1

Vn+1Jn = b5τn+5τn+6 +Rn+1

Jn+1Vn = b6τn+5τn+6 +Rn+1

(5.40)

which we denote the relations as iteration of birational maps

ψD6 : (τ0, τ1, τ2, τ3, τ4, , τ5, , τ6, P0, Q0, R0, V0, J0)→ (τ1, τ2, τ3, τ4, τ5, , τ6, τ7, P1, Q1, R1, V1, J1)

(5.41)

Let us set initial tau functions

(x̃1, x̃2, x̃4, x̃5, x̃6, x̃7, x̃8, x̃9,x̃10, x̃11, x̃12) = (τ0, τ1, τ2, τ3, τ4, τ5, , τ6, P0, Q0, R0, V0, J0)

and let π : C12 → C4 defined by (5.39) . By repeating the same process as in the

previous sections, we apply pull back of symplectic form ω by the rational map π; we

construct the exchange matrix, which is essential in defining ψD6 . In addition to this,

we inserts extra rows, (1 0 0 0 0 0 0 0 0 0 − 1 0)T and (1 0 0 0 0 0 0 0 0 0 0 − 1)T ,

at the bottom of the matrix, which results in building extended exchange matrix

B̃D6 , illustrated in Figure 5.1 As a result of the insertion, the parameters b5, b6

Figure 5.1: Extended quiver associated with the deformed D6

appears in the cluster variables generated by mutations in cluster algebra consisting
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the pair: matrix B̃D6 and initial cluster

x̂ = (τ0, τ1, τ2, τ3, τ4, τ5, τ6, P0, Q0, R0, V0, J0, b5, b6)

= (x̃1, x̃2, x̃4, x̃5, x̃6, x̃7, x̃8, x̃9, x̃10, x̃11, x̃12, x̃13, x̃14))

Thus we reaches to the following result.

Theorem 5.3.1 (Laurentification of the deformed map). Let (x̂, B̂D6) be initial seed

which is composed of extended initial cluster

x̂ = (τ0, τ1, τ2, τ3, τ4, τ5, τ6, P0, Q0, R0, V0, J0, b5, b6)

= (x̃1, x̃2, x̃4, x̃5, x̃6, x̃7, x̃8, x̃9, x̃10, x̃11, x̃12, x̃13, x̃14)
(5.42)

together with the associated extended exchange matrix

B̃D6 =



0 0 −1 0 0 −1 0 1 0 0 0 0

0 0 1 0 0 1 0 −1 0 0 0 0

1 −1 0 1 0 0 1 0 0 0 0 0

0 0 −1 0 1 0 0 1 0 0 0 0

0 0 0 −1 0 1 0 0 1 0 −1 −1

1 −1 0 0 −1 0 1 0 0 1 −1 −1

0 0 −1 0 0 −1 0 1 0 0 0 0

−1 1 0 −1 0 0 −1 0 1 0 0 0

0 0. 0 0 −1 0 0 −1 0 1 0 0

0 0 0 1 0 −1 0 0 −1 0 1 1

0 0 0 0 1 1 0 0 0 −1 0 0

0 0 0 0 1 1 0 0 0 −1 0 0

1 0 0 0 0 0 0 0 0 0 −1 0

1 0 0 0 0 0 0 0 0 0 0 −1



(5.43)

and consider the permutation ρ = (1234567)(11, 12) . Then the iteration of

cluster map ψ = ρ−1µ12µ11µ10µ9µ8µ1 is equivalent to the recurrence (5.40), and for

the tau functions τn, Pn, Qn, Rn, Vn, Jn are elements of the Laurent polynomial

ring Z>0

[
b5, b6, P

±
0 , Q

±
0 , R

±
0 , V

±
0 , J

±
0 , τ

±
0 , τ

±
1 , τ

±
2 , τ

±
3 , τ

±
4 , τ

±
5 , τ

±
6

]
.
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5.4 Tropicalization and degree growth for de-

formed D6

In section 3.5.3 and section 5.2, we showed that the degree growth of iteration

of cluster maps (constructed by Laurentification) is quadratic which led us to

conjecture that the deformed type B4 map is integrable. In this section, we proceed

with the same method to find the expression for the d-vectors of cluster variables

generated by the system (5.40) (ψD6) and determine associated algebraic entropy.

As the Laurent property of the cluster map ψD6 holds, we can write the sequence

of tau-functions τn, σn, ηn and ξn as Laurent polynomial in initial cluster x̂ (5.42),

shown below

τn =
N

(1)
n (x̂)

x̂dn
, Pn =

N
(2)
n (x̂)

x̂pn
, Qn =

N
(3)
n (x̂)

x̂qn
,

Rn =
N

(4)
n (x̂)

x̂rn
, Vn =

N
(4)
n (x̂)

x̂vn
, Jn =

N
(4)
n (x̂)

x̂jn

(5.44)

where d-vectors dn,dn,dn,dn is associated with the tau-functions assoicated with

unfrozen variables (τ0, τ1, τ2, τ3, τ4, τ5, τ6, P0, Q0, R0, V0, J0) and have initial data

given by a 12× 12 identity matrix.

(d0 d1 d2 d3 d4 d5 d6 p0 q0 r0 v0 j0) = −I (5.45)

As usual, a direct substitution (5.44) into (5.40) yields the (max,+) relations for the

d-vectors,

dn+7 + dn = max(dn+5 + dn+2,pn),

pn+1 + pn = max(dn+2 + dn+3 + dn+5 + dn+6,qn + dn+1 + dn+7),

qn+1 + qn = max(dn+3 + dn+4 + dn+5 + dn+6, rn + pn+1),

rn+1 + rn = max(dn+4 + 2dn+5 + dn+6,vn + jn + qn+1),

vn+1 + jn = max(dn+5 + dn+6, rn+1),

jn+1 + vn = max(dn+5 + dn+6, rn+1),

(5.46)

Next we introduce quantities which is analogous to the tropical version of (5.39) as
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following,

X1,n = dn + dn+6 − dn+1 − dn+5, X2,n = pn − dn+2 − dn+5,

X3,n = qn − dn+3 − dn+5, X4,n = rn − dn+4 − dn+5,

X5,n = vn + sn − dn+5, X6,n = jn − dn+5 − sn,

(5.47)

along with quantities corresponding to symplectic coordinates yj (5.38), shown

below.

Y1,n = pn − dn+2 − dn+5, Y2,n = dn+1 + qn − dn − dn+3 − dn+6,

Y3,n = dn+2 + rn − dn+4 − pn, Y4,n = dn+3 + vn + jn − dn+5 − qn
(5.48)

Then we can see that Xi,n satisfies ultradiscretized expression of original type D6

((5.31) with all bi = 1) from the (max,+) equations (5.46) as stated in below,

Lemma 5.4.1. The structure of Xj,n in (5.47) satisfy the tropical analogue of

deformed map φB4 which is given by the following system of (max,+) equations:

X1,n+1 +X1,n = [X2,n]+,

X2,n+1 +X2,n = [X1,n+1 +X3,n]+,

X3,n+1 +X3,n = [X2,n+1 +X4,n]+,

X4,n+1 +X4,n = [X5,n +X6,n +X3,n+1]+.

X5,n+1 +X5,n = [X4,n+1]+.

X6,n+1 +X6,n = [X4,n+1]+.

(5.49)

where [a]+ = max(a, 0). Given arbitrary initial values (X1,0,X2,0,X3,0,X4,0,X5,0,X6,0),

the quantities Xj,n and Yi,n are periodic with period 6 for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 6.

Proof. By similar argument in the proof of Lemma 3.5.1, the statement above holds.

It important to remember from the previous sections that the periodicity of

Xi,n (or Yj,n) for all i, is essential in finding the degree growth of d-vectors of tau

functions. By using the periodicity, we obtain the following result.

Theorem 5.4.2. Let T be linear operator which shifts n → n + 1. The d-vectors

en,dn,fn and gn, which solve the system of equations (5.20), satisfy the following
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linear difference equations

Lrn = (T 6 − 1)(T 5 − 1)(T − 1)rn = 0 (5.50)

where T is shift operator corresponding to n→ n+1 and rn = en,dn,fn,gn. For the

tau functions generated, the leading order of degree growth of their denominators is

given by

dn =
n2

60
a+O(n), vn =

n2

60
a+O(n), jn =

n2

60
a+O(n)

pn =
n2

30
a+O(n), qn =

n2

30
a+O(n), rn =

n2

30
a+O(n),

(5.51)

where a = (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1)T .

Proof. Let us consider the quantity X1,n. With the periodicity feature mentioned

in Theorem 5.4.1, we find the expression for dn vectors as follows.

X1,n = (T 6 − T 5 − T + 1)dn

=⇒ (T 6 − 1)X1,n = (T 6 − 1)(T 5 − 1)(T − 1)dn = 0
(5.52)

By a similar argument above, one can show that the d-vectors pn, qn and rn satisfy

the recurrence relation above. As for the rest of d-vectors vn and jn, we first look

at the last two (max,+) relations in (5.46). Subtracting these relations gives rise to

expression

(T − 1)vn = (T − 1)jn. (5.53)

Now applying periodicity in Lemma 5.4.1 to Y4,n, followed by using the recurrence

of dn in (5.52), we have

(T 6 − 1)(T 5 − 1)(vn+1 + jn+1 − vn − jn) = 0 (5.54)

Then substituting the identity (5.53), we find that both vn and jn satisfy the

recurrence in (5.52).

For the rest of proof (determining the coefficients of leading order terms of d-

vectors), we can apply the similar arguments in the proof of Theorem 5.2.2 and

attain the result.

Since the degree growth of each variable is quadratic, associated algebraic entropy

vanishes, which leads to the conjecture that the deformed type D6 map is a Liouville

integrable map.
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Chapter 6

Conclusion

In this thesis, we considered a special class of discrete dynamical systems which

are described by periodic (Zamolodchikov periodicity) cluster maps associated with

Dynkin type A,B and D. This is an extension from the work introduced by Hone

and Kouloukas in [10].

In chapter 2, we began with reviewing background of cluster algebra and discrete

integrable system, which is necessary materials for the later chapters of the thesis.

We were led to one of the main results produced by Fomin and Zelevensky in [19],

which forms a strong link between cluster algebra of finite type and Zamolodchikov

periodicity conjecture [4]. We then studied another notion of periodicity, that

is, mutation periodicity in quiver. The composition of mutations, which fixes

the quiver, can be regarded as a birational map between cluster seeds, which

we call cluster map. This discussion led us to the theory of discrete integrable

system in cluster algebra which is described by iteration of Liouville integrable map

(introduced in [9, 7]). We introduced the singularity confinement test, algebraic

entropy, and p-adic analysis, which are algebraic methods used in detecting the

integrability of the system. In final part of this chapter, we gave a summary of the

deformation of cluster mutations introduced by Hone and Kouloukas in [10].

In chapter 3, we considered the construction of a 2-parameter of deformations of

type A2N cluster maps for all N ≥ 2. We began with considering the cluster algebra
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of type A2N and proved that the specific cluster map is the Liouville integrable

by using Bi Hamiltonian theorem [45] and the results in [7]. Then we showed

that the periodic cluster map associated with type A6 has a 2-parameter integrable

deformation, which can be lifted to a cluster map that is identified by the particular

quiver QA6 consisting 2 frozen nodes and 15 mutable nodes. In comparison with the

quiver QA4 in the type A4 case, we observed that inserting a particular quiver (shown

in Figure 6.5) into the QA4 gives rise to the QA6 . The local expansion gave insight

into the structure of the tau functions in the variable transformations, which led us to

construction of class of quivers arose from the pull-back of symplectic form associated

type A2N , for N ≥ 2. Followed by an inductive approach, we showed that the

(a) QA4 (b) QA6

Figure 6.1: Extension from QA4 to QA6

(a) Subquiver in QA4 (b) Subquiver in QA6

Figure 6.2: Local expansion of the subquiver in QA4

particular structure of this expansion indeed gives Laurentification of the deformed

type A2N cluster map. For the integrability of the map, we used most trusted

integrability detector, algebraic entropy. To use this, we needed to calculate the

degree growth of the Laurentified cluster map (obtained by Laurentification). Due

to the Laurent property and total positivity of cluster algebras, we only needed to

concern the total degree of monomial in each cluster variable for measure the growth.
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To find exact measurements, we used the Zamolodchikov periodicity property of

cluster algebra of finite type. This enabled us to show that the growth of the degree

is quadratic. As a result, its algebraic entropy vanishes. This makes us confident that

the periodic cluster map associated with type A2N admits integrable deformation.

In the chapter 4, we extended the analysis of deformation to other root systems

Dynkin type C2, B3 and D4. Firstly, with the same procedure used in type A

cases, we found an integrable deformed type C2 map, which can be lifted to the

1-parameter family of cluster map on space of tau functions. In addition to the

above, we showed that tau functions, generated by the iteration of the latter map,

satisfy the Somos-5 recurrence relation. As a result of linking it to Somos-5, we were

able to show that it is closely related to a specific QRT map [25], which provides

a special family of discrete dynamical systems. It is important to note that the

deformation of type C2 cluster map gives the same result as the case of type C2

since their Dynkin diagrams are isomorphic to each other. Next, we studied the

case of type B3 and D4. Compared with the results in type A2,A4,A6,C2, each

cluster map associated with type B3 and D4 can be deformed to an integrable map

in more than one distinct way. Nevertheless, there seem to be very close connections

between the two cases obtained for B3; the close connections between the case (1)

and case (2) deformations for D4 are even more apparent, given that the underlying

coefficient-free cluster algebra is the same for both.

In chapter 5, we investigated the next higher rank of type B and D. In contrast

to the cases in the previous chapter, the number of required first integrals (invariant

function) rises as we move onto the higher rank. Unlike the case of type A2N ,

we have not yet found the appropriate first integrals that commute with respect

to the associated log canonical Poisson bracket. From the cases we considered so

far, we observed that the complexity of rational sequences (the size of digits in

numerator and denominator of rationals) of corresponding deformed maps, reduces

considerably when we set the particular conditions for the corresponding deformed

map to be integrable. We were able to see the same phenomenon when we fixed

the parameters analogous to the integrability conditions that appeared in type B3

and D4, respectively. Following from this, we found the several distinct singularity
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patterns which allowed us to perform Laurentification on the type B4 and D6. This

resulted in finding the new cluster map in enlarged space for each case. By carrying

out the same method, used in section 3.5, we showed that the degree growth of each

latter map is quadratic and thus algebraic entropy vanishes. This provides strong

evidence that the deformed maps for type B4 and D6 possess integrability.

In recent studies, we successfully performed Laurentification in the case of type

B6 and D8 , subject to the parameter conditions analogous to the ones in type B4

and D6 respectively. As a result of the procedure, we built an exchange matrix

corresponding to type B6

0 1 0 0 0 0 1 0 −1 0 0 0 −1

−1 0 0 1 0 0 0 1 0 −1 1 0 0

0 0 0 0 −2 −2 0 0 0 0 0 2 0

0 −1 0 0 1 0 0 0 1 0 0 0 0

0 0 1 −1 0 1 0 0 0 1 −1 −1 0

0 0 1 0 −1 0 1 0 0 0 0 0 −1

−1 0 0 0 0 −1 0 1 0 0 0 1 0

0 −1 0 0 0 0 −1 0 1 0 0 0 1

1 0 0 −1 0 0 0 −1 0 1 −1 0 0

0 1 0 0 −1 0 0 0 −1 0 0 0 0

0 −1 0 0 1 0 0 0 1 0 0 0 0

0 0 −1 0 1 0 −1 0 0 0 0 0 0

1 0 0 0 0 1 0 −1 0 0 0 0 0





and the matrix corresponding to type D8, which can be depicted by the quiver in

Figure 6.3. In comparison with the quiver in Figure 5.1, we can see that the quiver

in Figure 6.3 can be constructed by the local expansion procedure (introduced in

section 3.3) as shown in fig 6.4. Then recursive local expansion gave rise to a family

of quivers associated with type D2N represented by the exchange matrix in the figure

6.6. Similarly, for type B case, the expansion, which transforms the exchange matrix

B̃B6 to 4N +2× 4N +1 skew-symmetrizable matrix, was achieved via inserting the

rows and columns, taking the form of the matrix in Figure 6.7. The future work will

be aiming at the complete description of integrable deformation corresponding to

type A, B and D, including odd rank case A2N+1 B2N+1 and D2N+1. We hope this

investigation finds a systematic procedure that enables us to find Poisson commuting

first integrals which admit deformation.
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Figure 6.3: Extended quiver associated with the deformed D8 cluster map ψ2

(a) QD6 (b) QD8

Figure 6.4: Extension from QD6 to QD8

(a) Subquiver in QD6 (b) Subquiver in QD8

Figure 6.5: Local expansion of the subquiver in QD8
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0 0 −1 0 0 −1 0 1 0 0 0 0

0 0 1 0 0 1 0 −1 0 0 0 0

1 −1 0 1 0 0 1 0 −1 0 0 0

0 0 −1 0 1 0 0 0 1 0 −1 0 0 0

−1 0 1 1

−1 0

0 −1

0 1 1 0 −1

0 0 0 0 −1 0 1 0 0 0 1 0 −1 −1

1 −1 0 0 −1 0 1 0 0 1 −1 −1

0 0 −1 0 0 −1 0 1 0 0 0 0

−1 1 0 −1 0 0 −1 0 1 0 0 0

0 0 1 0 −1 0 0 0 −1 0 1 0 0 0

1 0 −1 −1 0

1 1

−1 0 1

0 −1 −1 0 1

0 0 0 0 1 0 −1 0 0 0 −1 0 1 1

0 0 0 0 1 1 0 0 0 −1 0 0

0 0 0 0 1 1 0 0 0 −1 0 0

1 0 0 0 0 0 0 0 0 0 0 −1

1 0 0 0 0 0 0 0 0 0 −1 0





Figure 6.6: Exchange matrix associated with type D2N for N ≥ 3, built from

recursive local expansion. The coloured regions in the matrix are submatrices of

the matrix (5.43)

0 1 1 0 −1 −1

−1

0 1 0 −1

−1 0 0 1 0 0 1 0 −1 1 0

0 0 0 −2 −2 0 0 0 2

−1 0 0 1 0 1 0 0 0

0 1 −1 0 1 0 1 −1 −1

0 1 0 −1 0 1 0 0 0 0 −1

−1 0 1 1 0

−1

−1 0 −1

0 1 0

1 1 1

0 −1 −1 0 1

1 0 0 −1 0 0 −1 0 1 −1 0

1 0 0 −1 0 −1 0 0 0

−1 0 0 1 0 1 0 0 0

0 −1 0 1 0 −1 0 0 0 0

1 0

1 1 0 −1

0 1 0 0 0 0 0 −2 0





Figure 6.7: Exchange matrix associated with type B2N for N ≥ 2, built from

recursive local expansion. The coloured regions in the matrix are submatrices of

the matrix (5.13)
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