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HARDer-Net: Hardness-Guided Discrimination
Network for 3D Early Activity Prediction

Tianjiao Li, Yang Luo, Wei Zhang, Lingyu Duan, and Jun Liu

Abstract—To predict the class label from a partially observable
activity sequence can be quite challenging due to the high degree
of similarity existing in early segments of different activities.
In this paper, an innovative HARDness-Guided Discrimination
Network (HARDer-Net) is proposed to evaluate the relationship
between similar activity pairs that are extremely hard to dis-
criminate. To train our HARDer-Net, an innovative adversarial
learning scheme has been designed, providing our network with
the strength to extract subtle discrimination information for
the prediction of 3D early activities. Moreover, to enhance the
adversarial learning scheme efficacy of our model for 3D early
action prediction, we construct a Hardness-Guided bank that
dynamically records the hard similar samples and conducts
reward-guided selections of these recorded hard samples using
a deep reinforcement learning scheme. The proposed method
significantly enhances the capability of the model to discern fine-
grained differences in early activity sequences. Several widely-
used activity datasets are used to evaluate our proposed HARDer-
Net, and we achieve state-of-the-art performance across all the
evaluated datasets.

Index Terms—Early Activity Prediction, 3D Skeleton Data,
Action/Gesture Understanding, Hardness-Guided Learning.

I. INTRODUCTION

S an important and prevalent research topic in the field of
human behavior understanding, early activity prediction
focuses on predicting the class label before action is entirely
performed, and it has many real-world applications including
online interactions between humans and robots, autonomous
vehicles, and surveillance systems [1]-[3]. Existing studies
[4]-[12] indicate that 3D skeletal structure data, readily ob-
tainable from low-cost depth cameras, provides a concise yet
effective representation of human behaviors. Therefore, the
primary objective of this paper is to accurately predict the
action categories before human activities are fully executed
given 3D skeleton data, which is also known as 3D early
activity prediction.
In the context of 3D early activity prediction, observation
is confined to the initial parts of the sequences, instead of the
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entire skeleton sequence (as in 3D activity recognition) which
contains adequate discrimination information. Consequently,
predicting human activities in very early stages is a much more
challenging task compared to a typical action recognition task.
More specifically, in the context of the early prediction of
human activities, the beginning segments observed in many
activities can be very similar, which merely contain minor
differences, which are hard for the prediction models to
perceive.

Therefore, these partially observable segments containing
inadequate discrimination information can be easily miscate-
gorized. For instance, as shown in Fig. 1, the action “pointing
to someone” can be wrongly classified into the action “shaking
hand” with only slight differences at the early stage (e.g.,
20% observation ratio). We refer to segments that are prone to
misprediction as hard instances, and interference classes are
classes that hard instances are readily mispredicted into. Sim-
ilarly, a pair consisting of a hard instance and the interference
class is termed a hard pair.

In order to address the challenge of the 3D early activity pre-
diction problem, many researchers [2], [13] attempt to distill
the global information of the full sequence of activity, which
possesses additional information on discrimination, in order
to aid in the prediction of activity from the partial sequence
of activity, which contains less discriminative information.
Although the previous approaches [1], [3], [14] have made
remarkable progress, most of these works do not explicitly
address the issue of discrimination for hard pairs, which is
to identify and exploit the slight yet significant discrepancies
within each hard pair to improve early activity prediction
performance.

As we have already highlighted, the subtle differences be-
tween the partial observations of the hard instance and the cor-
responding interference class give rise to higher “hardness” of
3D early activity prediction task. Therefore, to ensure accurate
predictions of partially observed human actions, a recognition
model should be capable of grasping the relationship existing
in confusing hard pair samples and scrutinizing the inherent
subtle differences that can be adopted for discrimination.

In light of this, we develop a discriminative model to
explicitly exploit the intrinsic discrimination information be-
tween the hardest instance and its corresponding interfer-
ence class, namely Harderness-Guided Discrimination Net-
work (HARDer-Net), for 3D early activity prediction. To be
more specific, as part of our HARDer-Net, a Hardness-Guided
bank (HG bank) is developed to be capable of adaptively
recording and sampling the hard pairs during the model
learning procedure. Notably, the proposed HG bank is a
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Shaking
hand

Pointing to
someone

Timeline A

Fig. 1. The figure above illustrates two examples of activities taken from the NTU RGB+D dataset [4]. It is possible to easily differentiate these two activities
using adequate discrimination information if their complete sequences are observed, however when these two activities are observed at an early stage (e.g.,
only 20% of the sequence is observed), they are almost the same (showing only subtle discrimination information, as indicated in the red boxes).

reward-driven reply memory. This means that our newly de-
signed HG bank provides the most informative hard pairs that
can directly boost prediction performances. Concretely, the
selection of hard pairs is transformed into a decision-making
process. We utilize the deep Q-Network (DQN) algorithm
[15], [16] and set the prediction accuracy as final reward,
which enables our prediction model to focus on maximizing
the action prediction performances. Unlike random selection
that deployed in our previous conference paper [17], which
makes uninformed choices without any strategic consideration,
our newly-designed HG bank can continuously evaluate and
update the value of actions based on their potential to ob-
tain higher prediction accuracy. This reward-centric approach
ensures that each selection of hard pairs is optimized to
enhance ultimate rewards, leading to better action prediction
performances. By focusing on those hard pairs that contain
subtle yet significant cues, the proposed HG bank effectively
boosts overall efficiency and effectiveness.

Then the selected representative hard pairs are sent to a
feature generator, which is designed to explore the relationship
between a hard instance and its corresponding interference
class. The proposed feature generator is able to produce
perplexing but conceivable features for the hard instance con-
ditioned on its similarities to the corresponding interference
class. Followed by the feature generator, a class discriminator
is introduced to empower the prediction model with the ability
to discriminate the perplexing features of the hard instance
from its corresponding interference classes. Accordingly, the
generated features get increasingly confusing when viewed
from the perspective of its interference class as the adversarial
learning process going, thereby enhancing the ability of the
class discriminator in exploiting the minor discrepancies inside
of the features of hard pair samples for class discrimina-
tion. Consequently, the proposed HARDer-Net with its class
discriminator as the classifier is highly effective at dealing
with hard pairs that are usually remarkably challenging to

distinguish using existing early activity prediction models.
The major contributions of this paper can be summarized
as follows:

e We propose the Hardness-Guided Discrimination Net-
work, namely HARDer-Net, to alleviate the high sim-
ilarity issue by explicitly mining the subtle differences
between the hard instance and its corresponding inter-
ference class via an adversarial learning scheme.

o A Hardness-Guided bank is also introduced to record the
hard pairs on the fly and to adaptively select the most rep-
resentative pairs by using a reward-driven DRL strategy,
to directly promote the action prediction performances.

e The proposed HARDer-Net achieves promising perfor-
mances across four challenging datasets for 3D early
activity prediction, which demonstrates the efficacy of our
method.

This paper is an extension of our previous conference paper
[17]. We clarify the innovations and improvements in the
following aspects: (1) Improved RL-based Hard Sample
Mining: In our original submission, we introduced two major
innovations which are (i.) a HI-IC bank mechanism to store
hard example pairs, and (ii.) an adversarial learning scheme to
exploit the subtle differences between these pairs. However, in
our original submission, the hard pairs are randomly selected
from the HI-IC bank, which may ignore the most representa-
tive pairs in the bank. To address this issue, in this submission,
we introduce the upgraded Hardness-Guided (HG) bank which
employs a deep reinforcement learning (DRL) scheme to guide
the training process directly with the rewards. Compared to the
original randomly-sampled HI-IC bank, the updated HG bank
is able to select the most informative and representative hard
pairs; (2) New Theoretical Insights: In this submission, our
newly-designed HG bank is reward-driven replay memory and
the reward is provided by the ultimate goal, i.e., the recognition
performance. Therefore, encouraged by the reward, the HG
bank is able to provide the most representative hard pairs
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containing informative subtle cues that can directly boost the
action prediction performances; (3) More Comprehensive
Evaluations: In the original submission, we provided detailed
experimental analyses on NTU RGB+D and FPHA. However,
in this submission, to further comprehensively evaluate the
efficacy of our method. We extended two additional datasets,
i.e., SYSU 3D HOI and UCF101, which are widely accepted
in early action prediction. As shown in the experiment section
in this submission, our HARDer-Net outperforms other state-
of-the-art approaches significantly. Also, we have conducted
extensive ablation experiments on our newly designed HG
bank across all four datasets. The results demonstrate that the
DRL-based reward-driven HG bank can help to exploit more
informative subtle cues to benefit the ultimate early action
prediction performances.

Below is a summary of this paper. In section II, we discuss
the related works. In section III, we describe in greater detail
our proposed HARDer-Net for 3D early action prediction. In
section IV, we provide the experimental results and compre-
hensive analyses. At the end, we present the conclusion in
section VL.

II. RELATED WORK

Human Activity Recognition. Human activity recognition,
a focal point of interest within the deep learning community,
attracts the attention of numerous researchers and stands as
a prevalent research topic. There exist many approaches [4],
[18]-[22] for recognizing 3D human activity utilizing RNN
and LSTM-based architectures. Besides, convolutional neural
networks (CNNs) [23]-[25] and self-attention networks [26]
are also developed for human action recognition. Recently,
graph convolutional networks (GCNs) have gained increasing
popularity in recent years and been investigated in representing
human actions [27]-[32] due to the powerful representative
capabilities. Yan et al. [28] presented the utilization of spatial-
temporal Graph Convolutional Networks (GCN) for the pur-
pose of addressing 3D human activity recognition tasks. Shi
et al. [27] introduced an adaptive GCN that flexibly learns the
topology of each layer in the graph and advances performance
by adding second-order data from the original skeleton data as
an additional input stream. Besides, Chen et al. [33] proposed
a hierarchical pyramid structure designed to effectively model
multi-scale spatio-temporal information and integrate action
information of various granularities.

Early Human Activity Prediction. As opposed to full-
length human activity recognition, which can access the
whole activity sequences containing abundant discrimination
information, early human activity prediction can only observe
partial segments of activity sequences from the beginning. This
inherent limitation renders the early activity prediction task
considerably more challenging in comparison to the typical
activity recognition task. There have been several approaches.
Most of the existing approaches [1]-[3], [13], [34]-[43] focus
on alleviating the information gaps better the full-length and
partial-length activity sequences. Ke et al. [13] introduced to
rely on partial activity sequences for gaining latent local infor-
mation and full activity sequences for gaining latent global in-
formation. Wang et al. [2] proposed a method for transferring

knowledge from long-term to shorter-term activity sequences
through a teacher-student learning architecture. Guan et al.
[43] constructed transformer-based model by adopting two
transformer encoders for extracting features of observed and
unobserved actions respectively. Zheng et al. [44] introduced
an adversarial knowledge distillation (AKD) to transfer the
knowledge from a teacher network (optimized by full videos)
to a student network (optimized by partial videos). Then a
discriminator is employed to encourage the features produced
by the student network to approach the features learned from
full videos by the teacher network, to enhance the latent
representations. However, in our HARDer-Net, we propose
to record those hard samples that may cause ambiguities
in an HG bank and search for the most informative pairs
for our adversarial learning scheme via deep reinforcement
learning. Besides, in our adversarial learning scheme, we aim
to generate ambiguous latent features to boost the recognition
abilities in distinguishing subtle cues for our prediction model.

Nevertheless, the existing works mentioned above do not
primarily focus on promoting the discrimination capability of
the prediction model by exploiting the extremely similar hard
pair samples, which is considered to be a limitation of early
activity prediction. In contrast to these works, we establish an
HG bank to memorize the hard pair samples explicitly and
dynamically and propose an innovative HARDer-Net condi-
tioned on adversarial learning, which enables our prediction
model to discriminate hard pair samples by comprehending
the relationships between them.

Hard Example Learning. It is widely recognized that
explicitly learning from hard examples could be beneficial to
the model learning process [45]-[52]. To be more specific,
Shrivastava et al. [46] introduced an example mining system
that autonomously selects challenging data in order to enhance
the performance of object classification. Felzenszwalb et al.
[51] proposed an iterative procedure for fixing the latent values
for positive examples and optimizing the objective function of
the latent SVM for the handling of hard negative examples
using a margin-sensitive SVM.

Different from the aforementioned approaches that focus on
learning certain hard examples, we concentrate on improving
the capacity to analyze slight discrimination information inside
of hard pairs, which is comprised of a hard instance and
its relevant interference class. Here note that we utilize the
adversarial learning scheme to pair the mispredicted activity
segments with their interference classes. In addition, an HG
bank is further created to memorize the hard pairs, aiming to
iteratively expedite comprehension of relationships and subtle
differences within the pairs. In this way, the early activity
prediction model becomes more discriminative.

Reinforcement Learning. Reinforcement learning (RL)
[53], [54] focuses on maximizing the cumulative rewards by
training a decision maker (i.e., an agent) to take consecutive
actions in a prescribed environment. To map the states from a
high-dimensional space to a relatively low-dimensional space,
deep reinforcement learning (DRL) is further proposed to
combine deep neural networks and traditional reinforcement
learning algorithms together, i.e., representing the decision-
making process using deep neural networks. For instance,
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Fig. 2. Overall framework of our end-to-end HARDer-Net. It is established using a substitutable feature encoder (such as a CNN [13] or GCN skeleton
encoder [27] which encodes partial sequence features). As indicated by the red arrows in both the training and inference phases, partial activity sequences
(P) are transmitted to the encoder, and then to the classifier, for the purpose of obtaining classification scores determining the criteria for storing hard pairs
in our HG bank. As shown by the green arrows indicating the adversarial learning phase, the HG bank adaptively provides a hard pair which contains a hard
instance and an interference class sample for feature encoding, resulting in an increased capability for our prediction model to identify minor differences
within each hard pair by employing adversarial learning. The grey arrow presents the introduction of “ambiguous label” based on hard instance and its
interference class. With respect to our HG Bank, the black arrows indicate that the state s and reward r are transferred from our two discriminators to the
DOQN to generate the action a for sampling the hard pairs. As for the training phase of the deep reinforcement learning network part, the DQN is trained

using tuples (s, a, s’, r) that have been saved in replay memory.

DQN [16], which is cast as an extension of the traditional Q-
learning algorithm [55], applies deep neural networks in order
to approximate the action-value function. The effectiveness
of RL-based approaches has been substantially demonstrated
in various computer vision domains, including video object
segmentation [56] and Vision-and-language Navigation [57].

III. METHOD
A. Problem Formulation

Considering a full-length action sequence S = {s;}7_;,
where s; represents the t;; frame, and 7' denotes the length
of the action sequence. We follow the previous works [1],
[13] and divide the full action sequence S into N segments,
each of which then contains % action frames. Thus a partial
sequence is denoted as P = {s;}7_,, where 7 = i - & and
1 < N. Here we define the observation ratio r; = ﬁ And the
early action prediction task aims to identify the action class
ceC=1{1,2,..,C} to which the partial activity sequence P
corresponds, under varying observation ratios.

B. Hardness-Guided Discrimination Network

1) Overview: As depicted in Fig. 2, our proposed Hardness-
Guided Discrimination Network (HARDer-Net) consists of
two primary components, the Adversarial Hardness-Guided
Discrimination Learning Scheme and the Hardness-Guided

Bank (HG Bank). As aforementioned, certain activities can ex-
hibit notable similarities during their initial stages. Therefore,
the 3D early activity prediction performances are prone to the
deficiency of adequate discrimination information, particularly
in scenarios where observation ratios are low. By designing
an HG bank, we present an innovative method to explicitly
memorize the hard pairs which are vulnerable to insufficient
discrimination information. In the meantime, we introduce the
Adversarial Hardness-Guided Learning scheme to explore the
correlation between each hard pair, i.e., the hard instance and
the relevant interference class. Through iteratively memorizing
and exploiting the hard pairs, our prediction model can extract
subtle yet discriminative information within the feature space
to enhance the accuracy of recognition.

2) Adversarial Hardness-Guided Discrimination Learning
Scheme: With the aim of generating confusing yet plausible
features based on the hard pairs, a feature generator is intro-
duced to harness the association between the hard instance
and their respective interference class. Besides, to boost the
capability of our network to extract minor discrimination in-
formation, a class discriminator (D) is further constructed to
differentiate between the synthesized latent features regarding
the hard instance and the corresponding interference class.

Through the introduced adversarial hardness-guided learn-
ing scheme, the synthesized latent features of the hard in-
stance become increasingly perplexing regarding its inter-
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ference class, resulting in an increased ability for the class
discriminator to utilize the slight discrimination information
to differentiate between the confounding hard instance and
the corresponding interference class. In this way, adversarial
learning strengthens the effectiveness of the prediction model
for discrimination.

Feature Generator. We aim to construct a feature generator
(G) that leverages the association between the hard instance
and its interference class, thereby creating latent features that
are challenging and obscure to predict, but at the same time
preserve inherent information associated with the original hard
instance.

To be more specific, for each hard instance (P) in our
established HG bank, we adaptively sample an interference
instance (P') from the interference class accordingly. In this
manner, paired hard samples (P? and P’) are produced. We
then feed the P and P! to the feature encoder (E) and
generate the paired features (f"%"¢ and fintem).

As an integral aspect of our design, our objective is to
produce latent features (f'?**"') regarding the hard instance
which are quite perplexing and confusing concerning the
interference class. Thus, besides providing the hard features
(fhard) of the hard instance (P') to the generator (G), we
treat the features (f¥"**") from the interference instance (P
as the supplemental information and feed them to G, as
demonstrated in Fig. 2. Then the generated latent features
fletent from G are therefore extremely confusing and difficult
to discriminate with regard to P and P’.

Additionally, to aid the learning process of feature generator
G, an “ambiguous label” is further added to the hard instance
for the purpose of ensuring that f!***™* are ambiguous and
sufficiently challenging. The following is the explanation for
“ambiguous label”. Typically, a one-hot vector is utilized for
the representation of the ground-truth label. To be specific,
in the one-hot vector of the category j, the j;; element is
assigned 1 and the remaining places are all assigned 0. In con-
trast to the use of one-hot label, we represent the “ambiguous
label” as a vector y™°, in which two elements corresponding
to the ground-truth category of the hard instance and its
interference class are assigned a value of 0.5 each, with all
other elements being set to 0.

The use of “ambiguous label” (y™) can be treated subse-
quently as a limitation that makes the generated latent features
(f'atenty ambiguous in regard to these two classes. Following
is a formulation of this constraint:

K
‘C(Smb _ Z yzmb log giatent (1)
k=1
where K represents an aggregate number of active categories,
and g'®*°"t is generated by the class discriminator which
processes the generated latent features (f!%**™) to perform
classification.

Eq. (1) assures all generated potential features are suf-
ficiently obscure. Nonetheless, as previously stated, fletent
needs to still be credible with inherent information preserved
simultaneously. For this purpose, a real-or-fake restraint is
applied on f!®*¢"t to ensure its plausibility, along with a mean-
absolute-error restraint to force f!e**™t close to the f"em<,

Eq. (2) is the formulation of the mean-absolute-error re-
straint (LS ) with the aim of reducing the gap between
flatent and fhard Eq. (3) is the formulation of the real-or-fake
restraint (Lf’o f), introduced by the RealOrFake Discriminator
(D7) as a measure to ensure that two types of features (the
original features (f"*"®) and the generated features (f!e*¢"t))
reside within the same feature domain.

L‘,G

. latent __ phard
con — Hf f Hl

2
L7,p = Ellog D" (f1)] + Ellog[L — D™/ (fletent)]]
3)
Finally, combining Eq. 2, Eq. 3 and Eq. 1, we can formulate
the objective function for our generator (G) as follows:

EG = E(Eon + Alﬁ(’?of + )‘Q‘Cilz;mb (4)

Class Discriminator. In order to achieve high discrimina-
tion power, we propose a class discriminator (D) that can
differentiate the latent features (f'***"*) produced by each
hard instance from the interference class. As part of our
class discrimination learning process, we apply a classification
constraint (EDCLS) on D°* to encourage it to assign the proper
label (y) of the initial hard instance on the basis of the baffling
latent features (fletent):

K
EDcls _ Z i - log yAéatent
k=1

Subsequently, as adversarial learning proceeds, the gener-
ated latent features (f'***"?) that represent the original hard
instance get increasingly confusing in terms of its interference
class (i.e., consisting of fewer and fewer differentiation details
for D to distinguish classes). Nonetheless, the more ambigu-
ous latent features (f'**™*) further augment the capability
of D* to understand the remaining minor discriminative
information in the generated latent features f!?**"* in order
to differentiate it from the corresponding interference class,
i.e., D gains increasing power in extracting the relatively
subtle discrimination information that is required for better
class classification.

Notably, in addition to integrating f'***" to train D*, we
also feed the original features (f°"%) of original samples into
D¢ during adversarial learning, which is illustrated in Fig.
2. It follows that the objective function below would also be
applicable to the learning of D*

o)

K
£050 = = i -log gt (©)
k=1
Previously, we described the adversarial learning scheme as
retaining the original features and generating new ones within
the same domain. This kind of training scheme that combines
Eq. (5) and (6 allows for stabilizing the training of the overall
network, thereby providing an effective D® to extract minor
discrimination information from both the f'et¢™* as well as
the f"” to distinguish classes. As a result, the derived class
discriminator D¢, which has a great deal of power to extract
subtle discrimination information and thus efficiently classify
the hard instances from its corresponding interference classes,
is able to function as the ultimate activity prediction classifier.
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Algorithm 1: HARDer-Net

Input: Partial activity sequences (P) and ground-truth
labels (c¢7)

while not converge do

Backbone learning and HG Bank Filling
Calculate fo"° by E;

Calculate §°7* by Des;

Calculate L]B)Ti with Eq. (6);
Update E and D*;
if rank-1(3°"") | = ¢™ then
PH « P
el « rank-1(9);
H < {PH; I}
end
end
Adversarial HARDer-Net Learning
Freeze E;
Adaptively select and sample P and P! by
I,
Calculate "¢ and fi"*°" by E;
Calculate fletnt by G;
Calculate £P”" and [,Dm'f;
Freeze G; Update Drof and Dels;
Calculate £C;
Freeze D"°/ and D*; Update G;
Freeze G and D"°7; Update D°'* and Hi;

end
end

3) Hardness-Guided Bank (HG Bank): In our framework,
rather than randomly choosing a hard pair for feature en-
coding, we propose a Hardness-Guided bank (H) to capture
the benefit information obtained from each selection of hard
pairs in the process of training. Specifically, we utilize a
Reinforcement Learning framework to adjust each pick of hard
pair by calculating the corresponding cumulative reward, as
illustrated in the top half of Fig. 2. Consequently, our model
is able to identify the exact categories into which hard partial
activity sequences may be simply mispredicted.

Fig. 2 illustrates the elementary network structure, which is
composed of a feature encoder E that extracts features from
the partially-observed activity sequence of the experiment, and
a classifier (referred to as class discriminator in Fig. 2) that is
responsible for the task of prediction. Specifically, the encoder
firstly processes each partial activity sequence (P) to extract its
original features f°"*. The original features f°"* are then used
by the class discriminator to determine the prediction scores
y. If the class discriminator incorrectly predicts the class of
the partial sequence instance (P) with prediction scores g, we
treat the activity class c¢,, obtaining the rank-one prediction
score in ¢ as the desired interference class (c') with regard
to P, since ¢, contains the most ambiguous details regarding
P. The incorrectly predicted partial activity sequence (P) with
inadequate discrimination information is defined as the hard
instance (PH) that can be assembled with ¢! into a hard pair.

Obtained hard pairs will then be deposited into the HG bank,
which is shown in Fig. 2.

With plenty of hard pairs collected, HG bank further
presents a DQN algorithm [15], [16] to adaptively select hard
pairs for adversarial learning. Specifically, in this design, our
state s is defined as the mean value of hidden states at the last
layer of the RealOrFake Discriminator (D7°7). This is because
that in the DQN algorithm, the state s should aid in selecting
actions that maximize final rewards. The RealOrFake Dis-
criminator is designed for encouraging the feature generator
to produce ambiguous yet hard-to-distinguish latent features.
And the latent features can encourage the Class Discriminator
to achieve higher prediction performances. Thus, the features
of the RealOrFake Discriminator, that are directly related to
the model accuracy, can be used as the state s. Next, since
we consider the selection of hard pairs as a decision-making
process, we then represent the choosing of hard pairs as our
action a, and following previous methods [15], [16] we utilize
the e-greedy policy to balance the exploration and exploitation.
Moreover, to boost the performance of our class discriminator,
we focus on the prediction accuracy of the Class Discriminator
(D'*) and apply it to illustrate the extent to which the action
has improved the discrimination performance. Therefore, the
prediction accuracy, which aims to be directly boosted, is set
as our reward r for each training iteration.

Therefore, conditioned on the current state s of the RealOr-
Fake Discriminator, our HG bank is able to estimate the Q
value. Then following typical DQN [15], [16], we use e-greedy
policy to generate action a, i.e., to select the most informative
hard pairs from the HG bank to maximize the final reward
which is the prediction accuracy. The process is formulated as
Eq. 7. And through this conjecture of the future, our HARDer-
Net can learn the action-value function Q* which corresponds
to the optimal policy, and the mean absolute error constraint
is formulated in Eq. 8:

Q"(s,a) = By [R(s, a) +ymax(Q7(s',a"))|(s,a)] (D)

Léon = 11Q7(5,al0) = (R + ymax(Q'(s', a"))|(s, a))]|x
(®)

where Q represents the target Q function, the parameters
of which are intermittently updated based on the latest 6, thus
stabilizing the learning process.

C. Implementation Details

In the HARDer-Net training cycle, two phases are involved,
specifically backbone training with HG bank augmentation and
adversarial learning.

Backbone training & HG bank filling. Fig. 2 illustrates
our network’s main elements: a class discriminator D¢ and
an encoder E. Eq. (6) can be used as a basis for training
this backbone. Initially, an encoder [E extracts a mini-batch
of original partial activity sequences, denoted as P, with a
batch size of B to fill the HG bank. Afterward, the class
discriminator calculates predicted scores that function as a
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Fig. 3. Detailed structure of Generator and Discriminator. The first row demonstrates the detailed structure of the CNN-based backbone, and the second row

demonstrates the detailed structure of the GCN-based backbone.

metric for depositing hard pairs into our HG bank, for
example, if a sample is incorrectly predicted, the sample with
its incorrect prediction class is collected together as a hard
pair that will be subsequently stored in our HG bank.

Adversarial learning scheme. Prior to adversarial learning,
we first freeze the encoder E. Then we sample r B hard pairs
based on learned policy from the HG bank, in which 0 <
r < 1. If no sufficient pairs in the HG bank, we sample and
repeat all pairs in the HG bank to reach rB. Conversely, if
there are enough pairs, we apply the first-in-first-out scheme to
choose rB hard pairs from the HG bank. Conditioned on the
interference class associated with each chosen hard pair, we
randomly sample an instance belonging to this interference
class as P!. After that, P¥ and P! are processed through
the encoder E for feature extraction. The encoded features
fhard and fi™eT are subsequently input into the generator
G to obtain latent features f!2%°™*. After obtaining the latent
features fl“tent, we send them into two discriminators, i.e.,
the RealOrFake discriminator D"°/ and the class discriminator
D¢, together with ground-truth action labels for the purpose
of updating the model parameters. At last, the f!%**" and
the ambiguous label are utilized for updating G. The overall
training process is demonstrated in Alg. 1.

Testing. The red arrows presented in Fig. 2 indicate that a
segmented skeleton sequence is fed to our encoder for feature
extraction during the inference phase. We afterward input these
features to ID* to predict the activity. Considering that D is
capable of exploiting minute discrimination information that
plays a significant role in differentiating hard samples from
corresponding interference classes, the proposed network is
capable of achieving an unprecedented level of accuracy in
3D early activity prediction tasks.

IV. EXPERIMENTS

Evaluations of the proposed method are conducted on the
NTU RGB+D dataset [4], the First Person Hand Action
(FPHA) dataset [58], the SYSU 3D Human-Object Interaction
(HOI) dataset [59] and the UCF-101 dataset [60]. Detailed
experiments are conducted on these four datasets as follows.

o NTU RGB+D dataset contains a vast collection of data
on 3D action recognition and prediction, which has
been applied to many applications. From 60 categories
of activities, the dataset comprises over 56 thousand
videos and more than 4 million frames. It features human
skeletons, each consisting of 25 joints depicted in a three-
dimensional format. As a result of the large number
of baffling samples at the beginning of the activity
sequences, this dataset presents a substantial challenge
for 3D early action prediction. Two standard evaluation
protocols are available in the NTU RGB+D dataset: the
Cross Subject evaluation protocol (CS) and the Cross
View evaluation protocol (CV). In our experiment, we
apply the Cross Subject protocol following existing work
[13] by assigning 20 subjects for training and the remain-
ing 20 for testing.

o First Person Hand Action (FPHA) dataset [58] repre-
sents a challenging dataset of 3D hand gestures. There
are six subjects represented in the dataset, each capturing
first-person hand activities involving interactions with
3D objects. It comprises an extensive collection of over
100,000 frames, spanning 45 unique categories of hand
activities. An individual hand skeleton consists of 21
joints and is characterized using 3D coordinates. We
assess the effectiveness of our framework using the FPHA
dataset conforming to the standard evaluation protocol as
[58], involving 600 600 training and 575 testing activity
sequences.

o SYSU 3D Human-Object Interaction (HOI) dataset is a
widely recognized RGB-D activity dataset that focuses on
human-object interactions. In the dataset, twelve different
activities are assigned to 40 subjects, and participants
operate one of six different objects for each activity:
besom, phone, wallet, chair, bag, and mop. On SYSU
3DHOI we investigate our method according to [61] and
sequences executed by one-half of the subjects are uti-
lized for learning the model parameters, while sequences
executed by the remaining half serve to test the model.

o UCF-101 dataset is a challenging and unconstrained
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