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HARDer-Net: Hardness-Guided Discrimination
Network for 3D Early Activity Prediction

Tianjiao Li, Yang Luo, Wei Zhang, Lingyu Duan, and Jun Liu

Abstract—To predict the class label from a partially observable1

activity sequence can be quite challenging due to the high degree2

of similarity existing in early segments of different activities.3

In this paper, an innovative HARDness-Guided Discrimination4

Network (HARDer-Net) is proposed to evaluate the relationship5

between similar activity pairs that are extremely hard to dis-6

criminate. To train our HARDer-Net, an innovative adversarial7

learning scheme has been designed, providing our network with8

the strength to extract subtle discrimination information for9

the prediction of 3D early activities. Moreover, to enhance the10

adversarial learning scheme efficacy of our model for 3D early11

action prediction, we construct a Hardness-Guided bank that12

dynamically records the hard similar samples and conducts13

reward-guided selections of these recorded hard samples using14

a deep reinforcement learning scheme. The proposed method15

significantly enhances the capability of the model to discern fine-16

grained differences in early activity sequences. Several widely-17

used activity datasets are used to evaluate our proposed HARDer-18

Net, and we achieve state-of-the-art performance across all the19

evaluated datasets.20

Index Terms—Early Activity Prediction, 3D Skeleton Data,21

Action/Gesture Understanding, Hardness-Guided Learning.22

I. INTRODUCTION23

AS an important and prevalent research topic in the field of24

human behavior understanding, early activity prediction25

focuses on predicting the class label before action is entirely26

performed, and it has many real-world applications including27

online interactions between humans and robots, autonomous28

vehicles, and surveillance systems [1]–[3]. Existing studies29

[4]–[12] indicate that 3D skeletal structure data, readily ob-30

tainable from low-cost depth cameras, provides a concise yet31

effective representation of human behaviors. Therefore, the32

primary objective of this paper is to accurately predict the33

action categories before human activities are fully executed34

given 3D skeleton data, which is also known as 3D early35

activity prediction.36

In the context of 3D early activity prediction, observation37

is confined to the initial parts of the sequences, instead of the38
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entire skeleton sequence (as in 3D activity recognition) which 39

contains adequate discrimination information. Consequently, 40

predicting human activities in very early stages is a much more 41

challenging task compared to a typical action recognition task. 42

More specifically, in the context of the early prediction of 43

human activities, the beginning segments observed in many 44

activities can be very similar, which merely contain minor 45

differences, which are hard for the prediction models to 46

perceive. 47

Therefore, these partially observable segments containing 48

inadequate discrimination information can be easily miscate- 49

gorized. For instance, as shown in Fig. 1, the action “pointing 50

to someone” can be wrongly classified into the action “shaking 51

hand” with only slight differences at the early stage (e.g., 52

20% observation ratio). We refer to segments that are prone to 53

misprediction as hard instances, and interference classes are 54

classes that hard instances are readily mispredicted into. Sim- 55

ilarly, a pair consisting of a hard instance and the interference 56

class is termed a hard pair. 57

In order to address the challenge of the 3D early activity pre- 58

diction problem, many researchers [2], [13] attempt to distill 59

the global information of the full sequence of activity, which 60

possesses additional information on discrimination, in order 61

to aid in the prediction of activity from the partial sequence 62

of activity, which contains less discriminative information. 63

Although the previous approaches [1], [3], [14] have made 64

remarkable progress, most of these works do not explicitly 65

address the issue of discrimination for hard pairs, which is 66

to identify and exploit the slight yet significant discrepancies 67

within each hard pair to improve early activity prediction 68

performance. 69

As we have already highlighted, the subtle differences be- 70

tween the partial observations of the hard instance and the cor- 71

responding interference class give rise to higher “hardness” of 72

3D early activity prediction task. Therefore, to ensure accurate 73

predictions of partially observed human actions, a recognition 74

model should be capable of grasping the relationship existing 75

in confusing hard pair samples and scrutinizing the inherent 76

subtle differences that can be adopted for discrimination. 77

In light of this, we develop a discriminative model to 78

explicitly exploit the intrinsic discrimination information be- 79

tween the hardest instance and its corresponding interfer- 80

ence class, namely Harderness-Guided Discrimination Net- 81

work (HARDer-Net), for 3D early activity prediction. To be 82

more specific, as part of our HARDer-Net, a Hardness-Guided 83

bank (HG bank) is developed to be capable of adaptively 84

recording and sampling the hard pairs during the model 85

learning procedure. Notably, the proposed HG bank is a 86
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Fig. 1. The figure above illustrates two examples of activities taken from the NTU RGB+D dataset [4]. It is possible to easily differentiate these two activities
using adequate discrimination information if their complete sequences are observed, however when these two activities are observed at an early stage (e.g.,
only 20% of the sequence is observed), they are almost the same (showing only subtle discrimination information, as indicated in the red boxes).

reward-driven reply memory. This means that our newly de-87

signed HG bank provides the most informative hard pairs that88

can directly boost prediction performances. Concretely, the89

selection of hard pairs is transformed into a decision-making90

process. We utilize the deep Q-Network (DQN) algorithm91

[15], [16] and set the prediction accuracy as final reward,92

which enables our prediction model to focus on maximizing93

the action prediction performances. Unlike random selection94

that deployed in our previous conference paper [17], which95

makes uninformed choices without any strategic consideration,96

our newly-designed HG bank can continuously evaluate and97

update the value of actions based on their potential to ob-98

tain higher prediction accuracy. This reward-centric approach99

ensures that each selection of hard pairs is optimized to100

enhance ultimate rewards, leading to better action prediction101

performances. By focusing on those hard pairs that contain102

subtle yet significant cues, the proposed HG bank effectively103

boosts overall efficiency and effectiveness.104

Then the selected representative hard pairs are sent to a105

feature generator, which is designed to explore the relationship106

between a hard instance and its corresponding interference107

class. The proposed feature generator is able to produce108

perplexing but conceivable features for the hard instance con-109

ditioned on its similarities to the corresponding interference110

class. Followed by the feature generator, a class discriminator111

is introduced to empower the prediction model with the ability112

to discriminate the perplexing features of the hard instance113

from its corresponding interference classes. Accordingly, the114

generated features get increasingly confusing when viewed115

from the perspective of its interference class as the adversarial116

learning process going, thereby enhancing the ability of the117

class discriminator in exploiting the minor discrepancies inside118

of the features of hard pair samples for class discrimina-119

tion. Consequently, the proposed HARDer-Net with its class120

discriminator as the classifier is highly effective at dealing121

with hard pairs that are usually remarkably challenging to122

distinguish using existing early activity prediction models. 123

The major contributions of this paper can be summarized 124

as follows: 125

• We propose the Hardness-Guided Discrimination Net- 126

work, namely HARDer-Net, to alleviate the high sim- 127

ilarity issue by explicitly mining the subtle differences 128

between the hard instance and its corresponding inter- 129

ference class via an adversarial learning scheme. 130

• A Hardness-Guided bank is also introduced to record the 131

hard pairs on the fly and to adaptively select the most rep- 132

resentative pairs by using a reward-driven DRL strategy, 133

to directly promote the action prediction performances. 134

• The proposed HARDer-Net achieves promising perfor- 135

mances across four challenging datasets for 3D early 136

activity prediction, which demonstrates the efficacy of our 137

method. 138

This paper is an extension of our previous conference paper 139

[17]. We clarify the innovations and improvements in the 140

following aspects: (1) Improved RL-based Hard Sample 141

Mining: In our original submission, we introduced two major 142

innovations which are (i.) a HI-IC bank mechanism to store 143

hard example pairs, and (ii.) an adversarial learning scheme to 144

exploit the subtle differences between these pairs. However, in 145

our original submission, the hard pairs are randomly selected 146

from the HI-IC bank, which may ignore the most representa- 147

tive pairs in the bank. To address this issue, in this submission, 148

we introduce the upgraded Hardness-Guided (HG) bank which 149

employs a deep reinforcement learning (DRL) scheme to guide 150

the training process directly with the rewards. Compared to the 151

original randomly-sampled HI-IC bank, the updated HG bank 152

is able to select the most informative and representative hard 153

pairs; (2) New Theoretical Insights: In this submission, our 154

newly-designed HG bank is reward-driven replay memory and 155

the reward is provided by the ultimate goal, i.e., the recognition 156

performance. Therefore, encouraged by the reward, the HG 157

bank is able to provide the most representative hard pairs 158
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containing informative subtle cues that can directly boost the159

action prediction performances; (3) More Comprehensive160

Evaluations: In the original submission, we provided detailed161

experimental analyses on NTU RGB+D and FPHA. However,162

in this submission, to further comprehensively evaluate the163

efficacy of our method. We extended two additional datasets,164

i.e., SYSU 3D HOI and UCF101, which are widely accepted165

in early action prediction. As shown in the experiment section166

in this submission, our HARDer-Net outperforms other state-167

of-the-art approaches significantly. Also, we have conducted168

extensive ablation experiments on our newly designed HG169

bank across all four datasets. The results demonstrate that the170

DRL-based reward-driven HG bank can help to exploit more171

informative subtle cues to benefit the ultimate early action172

prediction performances.173

Below is a summary of this paper. In section II, we discuss174

the related works. In section III, we describe in greater detail175

our proposed HARDer-Net for 3D early action prediction. In176

section IV, we provide the experimental results and compre-177

hensive analyses. At the end, we present the conclusion in178

section VI.179

II. RELATED WORK180

Human Activity Recognition. Human activity recognition,181

a focal point of interest within the deep learning community,182

attracts the attention of numerous researchers and stands as183

a prevalent research topic. There exist many approaches [4],184

[18]–[22] for recognizing 3D human activity utilizing RNN185

and LSTM-based architectures. Besides, convolutional neural186

networks (CNNs) [23]–[25] and self-attention networks [26]187

are also developed for human action recognition. Recently,188

graph convolutional networks (GCNs) have gained increasing189

popularity in recent years and been investigated in representing190

human actions [27]–[32] due to the powerful representative191

capabilities. Yan et al. [28] presented the utilization of spatial-192

temporal Graph Convolutional Networks (GCN) for the pur-193

pose of addressing 3D human activity recognition tasks. Shi194

et al. [27] introduced an adaptive GCN that flexibly learns the195

topology of each layer in the graph and advances performance196

by adding second-order data from the original skeleton data as197

an additional input stream. Besides, Chen et al. [33] proposed198

a hierarchical pyramid structure designed to effectively model199

multi-scale spatio-temporal information and integrate action200

information of various granularities.201

Early Human Activity Prediction. As opposed to full-202

length human activity recognition, which can access the203

whole activity sequences containing abundant discrimination204

information, early human activity prediction can only observe205

partial segments of activity sequences from the beginning. This206

inherent limitation renders the early activity prediction task207

considerably more challenging in comparison to the typical208

activity recognition task. There have been several approaches.209

Most of the existing approaches [1]–[3], [13], [34]–[43] focus210

on alleviating the information gaps better the full-length and211

partial-length activity sequences. Ke et al. [13] introduced to212

rely on partial activity sequences for gaining latent local infor-213

mation and full activity sequences for gaining latent global in-214

formation. Wang et al. [2] proposed a method for transferring215

knowledge from long-term to shorter-term activity sequences 216

through a teacher-student learning architecture. Guan et al. 217

[43] constructed transformer-based model by adopting two 218

transformer encoders for extracting features of observed and 219

unobserved actions respectively. Zheng et al. [44] introduced 220

an adversarial knowledge distillation (AKD) to transfer the 221

knowledge from a teacher network (optimized by full videos) 222

to a student network (optimized by partial videos). Then a 223

discriminator is employed to encourage the features produced 224

by the student network to approach the features learned from 225

full videos by the teacher network, to enhance the latent 226

representations. However, in our HARDer-Net, we propose 227

to record those hard samples that may cause ambiguities 228

in an HG bank and search for the most informative pairs 229

for our adversarial learning scheme via deep reinforcement 230

learning. Besides, in our adversarial learning scheme, we aim 231

to generate ambiguous latent features to boost the recognition 232

abilities in distinguishing subtle cues for our prediction model. 233

Nevertheless, the existing works mentioned above do not 234

primarily focus on promoting the discrimination capability of 235

the prediction model by exploiting the extremely similar hard 236

pair samples, which is considered to be a limitation of early 237

activity prediction. In contrast to these works, we establish an 238

HG bank to memorize the hard pair samples explicitly and 239

dynamically and propose an innovative HARDer-Net condi- 240

tioned on adversarial learning, which enables our prediction 241

model to discriminate hard pair samples by comprehending 242

the relationships between them. 243

Hard Example Learning. It is widely recognized that 244

explicitly learning from hard examples could be beneficial to 245

the model learning process [45]–[52]. To be more specific, 246

Shrivastava et al. [46] introduced an example mining system 247

that autonomously selects challenging data in order to enhance 248

the performance of object classification. Felzenszwalb et al. 249

[51] proposed an iterative procedure for fixing the latent values 250

for positive examples and optimizing the objective function of 251

the latent SVM for the handling of hard negative examples 252

using a margin-sensitive SVM. 253

Different from the aforementioned approaches that focus on 254

learning certain hard examples, we concentrate on improving 255

the capacity to analyze slight discrimination information inside 256

of hard pairs, which is comprised of a hard instance and 257

its relevant interference class. Here note that we utilize the 258

adversarial learning scheme to pair the mispredicted activity 259

segments with their interference classes. In addition, an HG 260

bank is further created to memorize the hard pairs, aiming to 261

iteratively expedite comprehension of relationships and subtle 262

differences within the pairs. In this way, the early activity 263

prediction model becomes more discriminative. 264

Reinforcement Learning. Reinforcement learning (RL) 265

[53], [54] focuses on maximizing the cumulative rewards by 266

training a decision maker (i.e., an agent) to take consecutive 267

actions in a prescribed environment. To map the states from a 268

high-dimensional space to a relatively low-dimensional space, 269

deep reinforcement learning (DRL) is further proposed to 270

combine deep neural networks and traditional reinforcement 271

learning algorithms together, i.e., representing the decision- 272

making process using deep neural networks. For instance, 273



SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

Original Feature

Hard Feature

Interference Feature Latent Feature

Replay Memory

DQN
Action a

Replay with (s, a, s', r)

𝑓𝑜𝑟𝑖

𝑓𝑖𝑛𝑡𝑒𝑟

𝑓ℎ𝑎𝑟𝑑

𝑓𝑙𝑎𝑡𝑒𝑛𝑡

HG Bank

Ambiguous Label: 𝑦𝑎𝑚𝑏

Fig. 2. Overall framework of our end-to-end HARDer-Net. It is established using a substitutable feature encoder (such as a CNN [13] or GCN skeleton
encoder [27] which encodes partial sequence features). As indicated by the red arrows in both the training and inference phases, partial activity sequences
(P ) are transmitted to the encoder, and then to the classifier, for the purpose of obtaining classification scores determining the criteria for storing hard pairs
in our HG bank. As shown by the green arrows indicating the adversarial learning phase, the HG bank adaptively provides a hard pair which contains a hard
instance and an interference class sample for feature encoding, resulting in an increased capability for our prediction model to identify minor differences
within each hard pair by employing adversarial learning. The grey arrow presents the introduction of ”ambiguous label” based on hard instance and its
interference class. With respect to our HG Bank, the black arrows indicate that the state s and reward r are transferred from our two discriminators to the
DQN to generate the action a for sampling the hard pairs. As for the training phase of the deep reinforcement learning network part, the DQN is trained
using tuples (s, a, s′, r) that have been saved in replay memory.

DQN [16], which is cast as an extension of the traditional Q-274

learning algorithm [55], applies deep neural networks in order275

to approximate the action-value function. The effectiveness276

of RL-based approaches has been substantially demonstrated277

in various computer vision domains, including video object278

segmentation [56] and Vision-and-language Navigation [57].279

III. METHOD280

A. Problem Formulation281

Considering a full-length action sequence S = {st}Tt=1,282

where st represents the tth frame, and T denotes the length283

of the action sequence. We follow the previous works [1],284

[13] and divide the full action sequence S into N segments,285

each of which then contains T
N action frames. Thus a partial286

sequence is denoted as P = {st}τt=1, where τ = i · T
N and287

i ≤ N . Here we define the observation ratio ri =
i
N And the288

early action prediction task aims to identify the action class289

c ∈ C = {1, 2, ..., C} to which the partial activity sequence P290

corresponds, under varying observation ratios.291

B. Hardness-Guided Discrimination Network292

1) Overview: As depicted in Fig. 2, our proposed Hardness-293

Guided Discrimination Network (HARDer-Net) consists of294

two primary components, the Adversarial Hardness-Guided295

Discrimination Learning Scheme and the Hardness-Guided296

Bank (HG Bank). As aforementioned, certain activities can ex- 297

hibit notable similarities during their initial stages. Therefore, 298

the 3D early activity prediction performances are prone to the 299

deficiency of adequate discrimination information, particularly 300

in scenarios where observation ratios are low. By designing 301

an HG bank, we present an innovative method to explicitly 302

memorize the hard pairs which are vulnerable to insufficient 303

discrimination information. In the meantime, we introduce the 304

Adversarial Hardness-Guided Learning scheme to explore the 305

correlation between each hard pair, i.e., the hard instance and 306

the relevant interference class. Through iteratively memorizing 307

and exploiting the hard pairs, our prediction model can extract 308

subtle yet discriminative information within the feature space 309

to enhance the accuracy of recognition. 310

2) Adversarial Hardness-Guided Discrimination Learning 311

Scheme: With the aim of generating confusing yet plausible 312

features based on the hard pairs, a feature generator is intro- 313

duced to harness the association between the hard instance 314

and their respective interference class. Besides, to boost the 315

capability of our network to extract minor discrimination in- 316

formation, a class discriminator (Dcls) is further constructed to 317

differentiate between the synthesized latent features regarding 318

the hard instance and the corresponding interference class. 319

Through the introduced adversarial hardness-guided learn- 320

ing scheme, the synthesized latent features of the hard in- 321

stance become increasingly perplexing regarding its inter- 322
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ference class, resulting in an increased ability for the class323

discriminator to utilize the slight discrimination information324

to differentiate between the confounding hard instance and325

the corresponding interference class. In this way, adversarial326

learning strengthens the effectiveness of the prediction model327

for discrimination.328

Feature Generator. We aim to construct a feature generator329

(G) that leverages the association between the hard instance330

and its interference class, thereby creating latent features that331

are challenging and obscure to predict, but at the same time332

preserve inherent information associated with the original hard333

instance.334

To be more specific, for each hard instance (PH ) in our335

established HG bank, we adaptively sample an interference336

instance (P I ) from the interference class accordingly. In this337

manner, paired hard samples (PH and P I ) are produced. We338

then feed the PH and P I to the feature encoder (E) and339

generate the paired features (fhard and f inter).340

As an integral aspect of our design, our objective is to341

produce latent features (f latent) regarding the hard instance342

which are quite perplexing and confusing concerning the343

interference class. Thus, besides providing the hard features344

(fhard) of the hard instance (PH ) to the generator (G), we345

treat the features (f inter) from the interference instance (P I )346

as the supplemental information and feed them to G, as347

demonstrated in Fig. 2. Then the generated latent features348

f latent from G are therefore extremely confusing and difficult349

to discriminate with regard to PH and P I .350

Additionally, to aid the learning process of feature generator351

G, an “ambiguous label” is further added to the hard instance352

for the purpose of ensuring that f latent are ambiguous and353

sufficiently challenging. The following is the explanation for354

“ambiguous label”. Typically, a one-hot vector is utilized for355

the representation of the ground-truth label. To be specific,356

in the one-hot vector of the category j, the jth element is357

assigned 1 and the remaining places are all assigned 0. In con-358

trast to the use of one-hot label, we represent the “ambiguous359

label” as a vector yamb, in which two elements corresponding360

to the ground-truth category of the hard instance and its361

interference class are assigned a value of 0.5 each, with all362

other elements being set to 0.363

The use of “ambiguous label” (yamb) can be treated subse-364

quently as a limitation that makes the generated latent features365

(f latent) ambiguous in regard to these two classes. Following366

is a formulation of this constraint:367

LG
amb = −

K∑
k=1

yamb
k · log ŷlatentk (1)

where K represents an aggregate number of active categories,368

and ŷlatent is generated by the class discriminator which369

processes the generated latent features (f latent) to perform370

classification.371

Eq. (1) assures all generated potential features are suf-372

ficiently obscure. Nonetheless, as previously stated, f latent
373

needs to still be credible with inherent information preserved374

simultaneously. For this purpose, a real-or-fake restraint is375

applied on f latent to ensure its plausibility, along with a mean-376

absolute-error restraint to force f latent close to the fhard.377

Eq. (2) is the formulation of the mean-absolute-error re- 378

straint (LG
con) with the aim of reducing the gap between 379

f latent and fhard. Eq. (3) is the formulation of the real-or-fake 380

restraint (LG
rof ), introduced by the RealOrFake Discriminator 381

(Drof ) as a measure to ensure that two types of features (the 382

original features (fhard) and the generated features (f latent)) 383

reside within the same feature domain. 384

LG
con = ||f latent − fhard||1 (2)

385

LG
rof = E[logDrof (fhard)] + E[log[1− Drof (f latent)]]

(3)

Finally, combining Eq. 2, Eq. 3 and Eq. 1, we can formulate 386

the objective function for our generator (G) as follows: 387

LG = LG
con + λ1LG

rof + λ2LG
amb (4)

Class Discriminator. In order to achieve high discrimina- 388

tion power, we propose a class discriminator (Dcls) that can 389

differentiate the latent features (f latent) produced by each 390

hard instance from the interference class. As part of our 391

class discrimination learning process, we apply a classification 392

constraint (LDcls

) on Dcls to encourage it to assign the proper 393

label (y) of the initial hard instance on the basis of the baffling 394

latent features (f latent): 395

LDcls

= −
K∑

k=1

yk · log ŷlatentk (5)

Subsequently, as adversarial learning proceeds, the gener- 396

ated latent features (f latent) that represent the original hard 397

instance get increasingly confusing in terms of its interference 398

class (i.e., consisting of fewer and fewer differentiation details 399

for Dcls to distinguish classes). Nonetheless, the more ambigu- 400

ous latent features (f latent) further augment the capability 401

of Dcls to understand the remaining minor discriminative 402

information in the generated latent features f latent in order 403

to differentiate it from the corresponding interference class, 404

i.e., Dcls gains increasing power in extracting the relatively 405

subtle discrimination information that is required for better 406

class classification. 407

Notably, in addition to integrating f latent to train Dcls, we 408

also feed the original features (fori) of original samples into 409

Dcls during adversarial learning, which is illustrated in Fig. 410

2. It follows that the objective function below would also be 411

applicable to the learning of Dcls
412

LDcls

ori = −
K∑

k=1

yk · log ŷorik (6)

Previously, we described the adversarial learning scheme as 413

retaining the original features and generating new ones within 414

the same domain. This kind of training scheme that combines 415

Eq. (5) and (6 allows for stabilizing the training of the overall 416

network, thereby providing an effective Dcls to extract minor 417

discrimination information from both the f latent as well as 418

the fori to distinguish classes. As a result, the derived class 419

discriminator Dcls, which has a great deal of power to extract 420

subtle discrimination information and thus efficiently classify 421

the hard instances from its corresponding interference classes, 422

is able to function as the ultimate activity prediction classifier. 423
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Algorithm 1: HARDer-Net
Input: Partial activity sequences (P ) and ground-truth

labels (cτ )

while not converge do
Backbone learning and HG Bank Filling

Calculate fori by E;
Calculate ŷori by Dcls;
Calculate LDcls

ori with Eq. (6);
Update E and Dcls;
if rank-1(ŷori) ! = cτ then

PH ← P ;
cI ← rank-1(ŷ);
H ← {PH ; cI} ;

end
end
Adversarial HARDer-Net Learning

Freeze E;
Adaptively select and sample PH and P I by
H;

Calculate fhard and f inter by E;
Calculate f latent by G;
Calculate LDcls

and LDrof

;
Freeze G; Update Drof and Dcls;
Calculate LG;
Freeze Drof and Dcls; Update G;
Freeze G and Drof ; Update Dcls and H;

end
end

3) Hardness-Guided Bank (HG Bank): In our framework,424

rather than randomly choosing a hard pair for feature en-425

coding, we propose a Hardness-Guided bank (H) to capture426

the benefit information obtained from each selection of hard427

pairs in the process of training. Specifically, we utilize a428

Reinforcement Learning framework to adjust each pick of hard429

pair by calculating the corresponding cumulative reward, as430

illustrated in the top half of Fig. 2. Consequently, our model431

is able to identify the exact categories into which hard partial432

activity sequences may be simply mispredicted.433

Fig. 2 illustrates the elementary network structure, which is434

composed of a feature encoder E that extracts features from435

the partially-observed activity sequence of the experiment, and436

a classifier (referred to as class discriminator in Fig. 2) that is437

responsible for the task of prediction. Specifically, the encoder438

firstly processes each partial activity sequence (P ) to extract its439

original features fori. The original features fori are then used440

by the class discriminator to determine the prediction scores441

ŷ. If the class discriminator incorrectly predicts the class of442

the partial sequence instance (P ) with prediction scores ŷ, we443

treat the activity class cr1 obtaining the rank-one prediction444

score in ŷ as the desired interference class (cI ) with regard445

to P , since cr1 contains the most ambiguous details regarding446

P . The incorrectly predicted partial activity sequence (P ) with447

inadequate discrimination information is defined as the hard448

instance (PH ) that can be assembled with cI into a hard pair.449

Obtained hard pairs will then be deposited into the HG bank, 450

which is shown in Fig. 2. 451

With plenty of hard pairs collected, HG bank further 452

presents a DQN algorithm [15], [16] to adaptively select hard 453

pairs for adversarial learning. Specifically, in this design, our 454

state s is defined as the mean value of hidden states at the last 455

layer of the RealOrFake Discriminator (Drof ). This is because 456

that in the DQN algorithm, the state s should aid in selecting 457

actions that maximize final rewards. The RealOrFake Dis- 458

criminator is designed for encouraging the feature generator 459

to produce ambiguous yet hard-to-distinguish latent features. 460

And the latent features can encourage the Class Discriminator 461

to achieve higher prediction performances. Thus, the features 462

of the RealOrFake Discriminator, that are directly related to 463

the model accuracy, can be used as the state s. Next, since 464

we consider the selection of hard pairs as a decision-making 465

process, we then represent the choosing of hard pairs as our 466

action a, and following previous methods [15], [16] we utilize 467

the ϵ-greedy policy to balance the exploration and exploitation. 468

Moreover, to boost the performance of our class discriminator, 469

we focus on the prediction accuracy of the Class Discriminator 470

(Dcls) and apply it to illustrate the extent to which the action 471

has improved the discrimination performance. Therefore, the 472

prediction accuracy, which aims to be directly boosted, is set 473

as our reward r for each training iteration. 474

Therefore, conditioned on the current state s of the RealOr- 475

Fake Discriminator, our HG bank is able to estimate the Q 476

value. Then following typical DQN [15], [16], we use ϵ-greedy 477

policy to generate action a, i.e., to select the most informative 478

hard pairs from the HG bank to maximize the final reward 479

which is the prediction accuracy. The process is formulated as 480

Eq. 7. And through this conjecture of the future, our HARDer- 481

Net can learn the action-value function Q∗ which corresponds 482

to the optimal policy, and the mean absolute error constraint 483

is formulated in Eq. 8: 484

Qπ(s, a) = Es′ [R(s, a) + γ max
a′

(Qπ(s′, a′))|(s, a)] (7)

LH
con = ||Q∗(s, a|θ)− (R+ γ max

a′
(Q∗

(s′, a′))|(s, a))||1
(8)

where Q represents the target Q function, the parameters 485

of which are intermittently updated based on the latest θ, thus 486

stabilizing the learning process. 487

C. Implementation Details 488

In the HARDer-Net training cycle, two phases are involved, 489

specifically backbone training with HG bank augmentation and 490

adversarial learning. 491

Backbone training & HG bank filling. Fig. 2 illustrates 492

our network’s main elements: a class discriminator Dcls and 493

an encoder E. Eq. (6) can be used as a basis for training 494

this backbone. Initially, an encoder E extracts a mini-batch 495

of original partial activity sequences, denoted as P , with a 496

batch size of B to fill the HG bank. Afterward, the class 497

discriminator calculates predicted scores that function as a 498
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Fig. 3. Detailed structure of Generator and Discriminator. The first row demonstrates the detailed structure of the CNN-based backbone, and the second row
demonstrates the detailed structure of the GCN-based backbone.

metric for depositing hard pairs into our HG bank, for499

example, if a sample is incorrectly predicted, the sample with500

its incorrect prediction class is collected together as a hard501

pair that will be subsequently stored in our HG bank.502

Adversarial learning scheme. Prior to adversarial learning,503

we first freeze the encoder E. Then we sample rB hard pairs504

based on learned policy from the HG bank, in which 0 <505

r ≤ 1. If no sufficient pairs in the HG bank, we sample and506

repeat all pairs in the HG bank to reach rB. Conversely, if507

there are enough pairs, we apply the first-in-first-out scheme to508

choose rB hard pairs from the HG bank. Conditioned on the509

interference class associated with each chosen hard pair, we510

randomly sample an instance belonging to this interference511

class as P I . After that, PH and P I are processed through512

the encoder E for feature extraction. The encoded features513

fhard and f inter are subsequently input into the generator514

G to obtain latent features f latent. After obtaining the latent515

features f latent, we send them into two discriminators, i.e.,516

the RealOrFake discriminator Drof and the class discriminator517

Dcls, together with ground-truth action labels for the purpose518

of updating the model parameters. At last, the f latent and519

the ambiguous label are utilized for updating G. The overall520

training process is demonstrated in Alg. 1.521

Testing. The red arrows presented in Fig. 2 indicate that a522

segmented skeleton sequence is fed to our encoder for feature523

extraction during the inference phase. We afterward input these524

features to Dcls to predict the activity. Considering that Dcls is525

capable of exploiting minute discrimination information that526

plays a significant role in differentiating hard samples from527

corresponding interference classes, the proposed network is528

capable of achieving an unprecedented level of accuracy in529

3D early activity prediction tasks.530

IV. EXPERIMENTS531

Evaluations of the proposed method are conducted on the532

NTU RGB+D dataset [4], the First Person Hand Action533

(FPHA) dataset [58], the SYSU 3D Human-Object Interaction534

(HOI) dataset [59] and the UCF-101 dataset [60]. Detailed535

experiments are conducted on these four datasets as follows.536

• NTU RGB+D dataset contains a vast collection of data 537

on 3D action recognition and prediction, which has 538

been applied to many applications. From 60 categories 539

of activities, the dataset comprises over 56 thousand 540

videos and more than 4 million frames. It features human 541

skeletons, each consisting of 25 joints depicted in a three- 542

dimensional format. As a result of the large number 543

of baffling samples at the beginning of the activity 544

sequences, this dataset presents a substantial challenge 545

for 3D early action prediction. Two standard evaluation 546

protocols are available in the NTU RGB+D dataset: the 547

Cross Subject evaluation protocol (CS) and the Cross 548

View evaluation protocol (CV). In our experiment, we 549

apply the Cross Subject protocol following existing work 550

[13] by assigning 20 subjects for training and the remain- 551

ing 20 for testing. 552

• First Person Hand Action (FPHA) dataset [58] repre- 553

sents a challenging dataset of 3D hand gestures. There 554

are six subjects represented in the dataset, each capturing 555

first-person hand activities involving interactions with 556

3D objects. It comprises an extensive collection of over 557

100,000 frames, spanning 45 unique categories of hand 558

activities. An individual hand skeleton consists of 21 559

joints and is characterized using 3D coordinates. We 560

assess the effectiveness of our framework using the FPHA 561

dataset conforming to the standard evaluation protocol as 562

[58], involving 600 600 training and 575 testing activity 563

sequences. 564

• SYSU 3D Human-Object Interaction (HOI) dataset is a 565

widely recognized RGB-D activity dataset that focuses on 566

human-object interactions. In the dataset, twelve different 567

activities are assigned to 40 subjects, and participants 568

operate one of six different objects for each activity: 569

besom, phone, wallet, chair, bag, and mop. On SYSU 570

3DHOI we investigate our method according to [61] and 571

sequences executed by one-half of the subjects are uti- 572

lized for learning the model parameters, while sequences 573

executed by the remaining half serve to test the model. 574

• UCF-101 dataset is a challenging and unconstrained 575
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RGB video-based dataset widely used for the understand-576

ing of human action, pose, and behavior. The dataset577

comprises a total of 13,320 full videos, encompassing578

101 distinct action classes that have been categorized579

into 101 content-based categories. The entire video clip580

collection consists of over 27 hours, categorized into five581

distinct types (body movement, human-human interac-582

tion, human-object interaction, playing instruments, and583

sports). For UCF-101, we employ the same setting as584

[62] by training with the initial 15 groups of videos,585

conducting validation using the subsequent three groups,586

and finally, performing testing on the remaining videos.587

Evaluated Models. To assess the effectiveness of our588

method, we consider three variants, specifically “w/o589

HARDer-Net”, “HARDer-Net w/o RL” and “HARDer-Net”.590

(1) “w/o HARDer-Net”: In fact, here is the backbone model591

of our network, which is composed of the feature encoder and592

the classifier; (2) “HARDer-Net w/o RL”: Here is the proposed593

3D early activity prediction model (HARDer-Net) with the594

Hardness-Guided bank. However, the hard pairs are randomly595

selected from the HG Bank, i.e., HARD-Net in our previous596

conference paper; (3) “HARDer-Net”: Here is our proposed597

3D early activity prediction model with an elaborate Hardness-598

Guided bank structure that further enhances the performance599

of our framework for 3D early action prediction. Note that600

here the hard pairs are selected by using our reinforcement601

learning scheme.602

To evaluate the HARDer-Net, we build our proposed method603

over two baseline encoders, specifically, CNN [63] and GCN604

[27], corresponding to Tab. V. Detailed descriptions of both605

baseline encoders are provided in their respective papers [27],606

[63]. In addition, we follow Radford et al. [64] in designing607

our generator and RealOrFake discriminator, and the class608

discriminator is implemented on the strength of multi-layer609

perceptron. Moreover, The weights λ1 and λ2 in Eq. (4) are610

both set to 1.611

The experiments are all performed using the Pytorch frame-612

work with a single GeForce RTX 3080 Ti GPU. We set the613

batch size B to be 128. Adam [65] optimizer is utilized in614

the training of our end-to-end network with the initial learning615

rate set to 2×10−4. For the highly large NTU RGB+D dataset616

and UCF-101 dataset, we set the Hardness-Guided bank size617

to 5000, and for the small FPHA dataset and SYSU 3DHOI618

dataset, we set it to 100. Every time the network learning619

algorithm is run, an appropriate ratio of r (4 : 1) is established620

with the original instances and the hard pair instances utilized621

in the learning of our network.622

Network Architecture. To generate latent features (f latent)623

from hard features (fhard) and interference features (f inter),624

a feature generator is designated to investigate the relation-625

ship between hard instances and corresponding interference626

classes. The remarkable thing is GCN and CNN backbones627

generate widely different features. Consequently, two similarly628

constructed deep networks are proposed in Fig. 3, where blue629

blocks represent convolutional layers with 1 × 1 kernel size630

(for CNN backbone) and fully connected layers (for GCN631

backbone), respectively. Meanwhile, orange blocks represent632

the non-linear activation functions. Take the experiment on633

TABLE I
QUANTITATIVE RESULTS (%) COMPARISON ON THE NTU RGB+D

DATASET (CROSS-SUBJECT). OUR METHOD OUTPERFORMS THE
BACKBONE MODEL (“W/O HARDER-NET”) SIGNIFICANTLY.

FURTHERMORE, IT OUTPERFORMS STATE-OF-THE-ART 3D EARLY
ACTIVITY PREDICTION METHODS BY A WIDE MARGIN. REFER TO FIG. 4

FOR VISUALIZATION.

Observation Ratios

Methods 20% 40% 60% 80% 100% AUC

Ke et al. [23] 8.34 26.97 56.78 75.13 80.43 45.63
Jain et al. [20] 7.07 18.98 44.55 63.84 71.09 37.38
Aliakbarian et al. [21] 27.41 59.26 72.43 78.10 79.09 59.98
Wang et al. [2] 35.85 58.45 73.86 80.06 82.01 60.97
Pang et al. [66] 33.30 56.94 74.50 80.51 81.54 61.07
Weng et al. [3] 35.56 54.63 67.08 72.91 75.53 57.51
Ke et al. [13] 32.12 63.82 77.02 82.45 83.19 64.22
Li et al. [67] 38.18 71.19 82.25 86.33 87.20 -
Wang et al. [68] 42.53 72.64 83.12 86.75 87.21 70.67

w/o HARDer-Net 37.82 67.87 79.22 83.39 84.52 66.91
HARDer-Net w/o RL 42.39 72.24 82.99 86.75 87.54 70.56
HARDer-Net 43.22 72.43 83.17 87.00 87.80 70.87

the NTU-RGB+D dataset as an example: in our generator, 634

we feed the concatenated fhard ∈ R64×7×7 and f inter ∈ 635

R64×7×7 into convolutional layers to obtain the corresponding 636

f latent ∈ R64×7×7. In the next step, we incorporate f latent
637

as input to our discriminator to enhance its capability to 638

distinguish them from their corresponding interference class. 639

HG bank is identified to map the last layer of hidden states 640

fstate ∈ R256 in our RealOrFake discriminator into the action 641

faction ∈ R5120 for selection of preserved hard pairs. Note 642

that in both architectures, fhard and f inter are concatenated 643

and then processed by the feature generator in order to achieve 644

the latent features f latent that have the same shape as fhard
645

and f inter. 646

In our HARDer-Net, the proposed HG bank aims to intelli- 647

gently sample the stored hard pairs in the original bank space. 648

As the adversarial learning phase progresses, HG bank selects 649

feature pairs that provide more valid information for our 650

discriminator to lift its discrimination capacity. Namely, HG 651

bank successfully reduces the interference of futile information 652

to model training caused by random selection. 653

A. Experiments on the NTU RGB+D Dataset 654

First, we make a comparison of the proposed HARDer- 655

Net against the state-of-the-art approaches utilizing the NTU 656

RGB+D dataset. Results of the Cross Subject protocol in- 657

volving different observation ratios are presented in Tab. I 658

and Fig. 4. As illustrated in Tab. I, our proposed HARDer- 659

Net consistently shows the highest performance across all 660

observation ratios, demonstrating the efficiency of HARDer- 661

Net. Especially when the observation ratio is low, our method 662

outperforms the state-of-the-art work and the backbone model 663

significantly. As the significant improvements indicate, our 664

approach is effective for detecting subtle but meaningful 665

distinctions concerning discrimination. 666

Furthermore, we also apply the area under the curve, 667

abbreviated AUC, to estimate the comprehensive performance 668



SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

Fig. 4. An analysis of the performance of 3D early activity prediction task
on NTU RGB+D datasets. A large margin of improvement is achieved by our
method over existing methods.

TABLE II
QUANTITATIVE RESULTS (%) COMPARISON ON THE FPHA DATASET WITH

STATE-OF-THE-ARTS. REFER TO FIG. 5 FOR VISUALIZATION.

Observation Ratios

Methods 20% 40% 60% 80% 100% AUC

LSTM [3] 54.26 63.30 69.22 72.17 74.43 64.11
Weng et al. [3] 59.65 65.91 70.43 73.57 74.96 66.66
Wang et al. [68] 73.74 82.78 83.48 83.48 84.00 77.12

w/o HARDer-Net 62.26 74.61 79.65 82.09 83.48 72.17
HARDer-Net w/o RL 71.83 82.78 86.09 87.13 87.30 78.56
HARDer-Net 76.70 85.39 87.65 88.70 87.83 80.71

of our proposed HARDer-Net, measuring the average precision669

across various observation ratios following [3], [21], [66].670

Additionally, as evidenced in Tab. I, our method attains671

the highest average AUC score of 70.87%, when compared672

with existing methods as well as the backbone model (“w/o673

HARDer-Net”). It is worth noting that our HARDer-Net674

exceeds the backbone model by a margin of 3.96%, demon-675

strating that the constructed adversarial learning scheme is676

effective at understanding and perceiving subtle differences677

inside of hard classes and assisting the class discriminator678

in discriminating hard instances. It’s noteworthy that when679

compared with “HARDer-Net w/o RL”, our full HARDer-Net680

still outperforms by a notable margin. This demonstrates that681

using the proposed RL-based selecting scheme, the selection682

of hard pairs is driven by the reward, i.e., the recognition683

accuracy. And this further explicitly boosts the recognition684

performances of our HARDer-Net.685

B. Experiments on the FPHA Dataset686

As part of our investigation of the competency of our687

proposed HARDer-Net on 3D gesture datasets, we conduct688

comprehensive experiments on the FPHA dataset. As shown689

in Fig. 5 and Tab. II, our proposed HARDer-Net outperforms690

Weng et al. [3] consistently in all ranges of observation ratios.691

Fig. 5. An analysis of the performance of 3D early activity prediction task
on FPHA datasets.

TABLE III
QUANTITATIVE RESULTS (%) COMPARISON ON THE SYSU 3DHOI

DATASET WITH STATE-OF-THE-ARTS. REFER TO FIG. 6 FOR
VISUALIZATION.

Observation Ratios

Methods 20% 40% 60% 80% 100% AUC

Jain et al. [69] 31.61 53.37 68.71 73.96 75.53 57.23
Ke et al. [70] 26.76 52.86 72.32 79.40 80.71 58.89
Kong et al. [71] 51.75 58.83 67.17 73.83 74.67 61.33
Ma et al. [72] 57.08 71.25 75.42 77.50 76.67 67.85
Aliakbarian et al. [73] 56.11 71.01 78.39 80.31 78.50 69.12
Hu et al. [14] 56.67 75.42 80.42 82.50 79.58 71.25
Ke et al. [74] 58.81 74.21 82.18 84.42 83.14 72.55
Wang et al. [62] 63.33 75.00 81.67 86.25 87.92 74.31
Li et al. [67] 63.46 80.93 87.92 90.38 90.47 -
Wang [68] 65.00 81.67 86.67 89.17 89.25 78.01

w/o HARDer-Net 62.92 80.83 85.42 87.08 87.50 76.50
HARDer-Net w/o RL 63.75 81.25 85.83 87.92 87.92 77.06
HARDer-Net 65.00 81.67 86.25 88.33 88.33 77.59

As compared to the baseline model, with very low ob- 692

servation ratios and inadequate discrimination information in 693

the early stages, our HARDer-Net achieves the most notable 694

performance gains by 14.44% at the 20% observation ratio 695

and 10.78% at the 40% observation ratio, since it is capable 696

of mining minor discrepancies. 697

Another observation is that the AUC score of action predic- 698

tion decreases at the ending stages. One possible explanation 699

for this issue is that some frames at the end of the skeleton 700

sequence contain postures and motions that have little relation 701

to the class label of the current action. 702

C. Experiments on the SYSU 3DHOI Dataset 703

A comprehensive study has been conducted using a trendy 704

RGB-D activity dataset named SYSU 3DHOI to illustrate 705

the effectiveness of the HARDer-Net respecting the 3D early 706

action prediction problem. As presented in Tab. III and Fig. 6, 707

our proposed HARDer-Net yields the highest performance 708
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Fig. 6. An analysis of the performance of 3D early activity prediction task
on SYSU 3D HOI datasets.

TABLE IV
QUANTITATIVE RESULTS (%) COMPARISON ON THE UCF-101 DATASET.

REFER TO FIG. 7 FOR VISUALIZATION.

Observation Ratios

Methods 10% 30% 50% 70% 90% AUC

MSRNN [14] 68.01 88.71 89.25 89.92 90.23 80.89
Wu et al. [75] 80.24 84.55 86.28 87.53 88.24 80.57
Wu et al. [76] 82.36 88.97 91.32 92.41 93.02 84.66
Wang et al. [62] 83.32 88.92 90.85 91.28 91.31 84.27
Wang et al. [68] 88.45 89.85 92.18 93.18 92.89 86.22

w/o HARDer-Net 83.19 91.12 93.29 93.97 94.21 86.20
HARDer-Net w/o RL 84.19 91.46 93.47 94.32 94.77 86.62
HARDer-Net 87.26 92.65 94.32 94.79 95.11 87.72

among all of the observation ratios compared with Wang et709

al. [62].710

Furthermore, due to the ability of our HARDer-Net to711

extract minor discrepancies in contrast with the baseline model712

under low observation ratios and lacks sufficient discrimination713

information, it further enhances the early prediction perfor-714

mance with the gain of 2.08% at 20% observation ratio. The715

performance gains show that driven directly by the reward, the716

selected hard pairs enable our recognition model to exploit the717

minor yet significant differences, which can further improve718

the recognition accuracy.719

We also note that an increase in the observation ratio from720

80% to 100% does not correspond with an improvement in721

the prediction accuracy of the proposed HARDer-Net model.722

A potential reason is that the model is already overfitted when723

the observation ratio is at 80% owing to the limitation of the724

dataset size, leading to more data observations that no longer725

raise the performance of our HARDer-Net.726

D. Experiments on the UCF-101 Dataset727

To extensively evaluate the proposed HARDer-Net on the728

3D early action recognition dataset, we evaluate our model729

on five different observation ratios (10%, 30%, 50%, 70%,730

Fig. 7. An analysis of the performance of 3D early activity prediction task
on UCF-101 datasets.

90%) on the UCF-101 dataset. Comparisons with existing 731

approaches [14], [62], [75], [76] are presented Tab. IV for 732

various observation ratios. 733

The comparison results show that by using the HG bank to 734

adaptively select hard pairs for adversarial learning, a signifi- 735

cant improvement has been achieved in the 3D early activity 736

prediction performance of our HARDer-Net. In this regard, the 737

novel method we propose has proven to be highly effective in 738

lessening the interference of insignificant information to model 739

training caused by random selection of preserved hard pairs. 740

Additionally, as shown in Tab. IV, the accuracy of 100% 741

observation ratio outperforms the accuracy of 80% observation 742

ratio, which indicates that for the UCF101 dataset, when 743

number of observed frames increases, more discriminative 744

human motion details are revealed, thereby enhancing the 745

prediction performances of 100% observation ratio. However, 746

when compared to SYSU 3DHOI dataset (shown in Tab. III), 747

we observed that performances for 80% observation ratio and 748

100% observation ratio are identical. We presumed that the 749

final 20% video frames in the SYSU 3DHOI dataset possi- 750

bly do not contribute sufficient representative discrimination 751

information in predicting human actions. 752

It is also worth noting that, for both UCF101 and SYSU 753

3DHOI datasets, the proposed HADRer-Net achieves promis- 754

ing prediction accuracy across all observation ratios when 755

compared with existing approaches. This demonstrates that 756

our reward-driven HG bank mechanism is able to adaptively 757

capture the representative subtle cues for different datasets 758

containing heterogeneous characteristics. 759

E. Ablation Study 760

This section presents an extensive ablation study based on 761

the NTU-RGB+D dataset to verify the best setting for our 762

proposed model’s components, following existing works [2], 763

[3], [13], [66] in the early activity prediction community. 764

Impact of Bank Size. We proceed to assess the performance 765

of the HG bank across a range of bank sizes. In HARDer-Net, 766
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Fig. 8. A comparison of the impacts of different HG bank sizes. Generally,
when the size of our proposed HG bank increases from 1000 to 5000, our
model’s performance increases and peaks, but further expansion of the bank
size does not enhance its performance.

HG bank takes responsibility for storing hard pairs generated767

in the training process and sampling suitable items for the ad-768

versarial learning scheme. If the size of our proposed HG bank769

is not large enough, it will not hold sufficient information for770

adversarial learning; conversely, if we set the bank with a large771

size, it will contain a quantity of irrelevant items, thus reducing772

the efficiency of HG bank’s sampling. A representation of the773

results can be found in Fig. 8. The AUC, a metric quantifying774

average precision across all observation ratios, exhibits a rapid775

increase from a small to a large bank size, before stabilizing776

at a sufficiently large size (e.g., size 5000). In this case, the777

additional performance gain is restricted when the inherent778

threshold is reached, due to the total number of hard pairs in779

the dataset.780

Impact of proportions between original features and781

latent features for training. We find that the optimum ratio782

for original features and the latent features is 4:1 in our783

experimental results displayed in Fig. 9.784

The reason for this is that if we utilize excessive amounts of785

original features for network training, our adversarial learning786

scheme will extract less meaningful information for better787

discrimination. The use of too many latent features for training788

may however reduce the performance of our HARDer-Net789

relative to the original samples. Furthermore, small differences790

in the performance of various ratios (1:1 to 6:1) suggest that791

the HARDer-Net does not exhibit sensitivity to ratios. As792

shown in Fig. 9, our HARDer-Net achieves AUCs that are793

within a narrow range (70.6% to 70.9%), demonstrating its794

robustness against ratios. Furthermore, it is noteworthy that795

all of these AUC values surpass the baseline performance of796

66.9% by a substantial margin, which serves as strong proof797

of the effectiveness of our HARDer-Net.798

Impact of Backbone Encoder. Tests of our framework have799

been extensively conducted on CNN and GCN backbones and800

the proposed approach has been shown to be effective. As801

shown in Tab. V, In both backbone models, our HARDer-802

Net enhances early prediction performance, especially when803

observation ratios are extremely low. The results of this study804

indicate that our HARDer-Net has the capacity to exploit805
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Fig. 9. A comparison of the impacts of varying the proportion of original
samples and hard pair samples in HG bank used to train networks. It is shown
that our model achieves the highest AUC score when the proportion of the
original sample size to the hard pair sample size is 4:1.

TABLE V
PERFORMANCE GAIN (%) ON NTU RGB+D DATASET (CROSS-SUBJECT)

BROUGHT BY OUR HARDER-NET WITH DIFFERENT BACKBONES.

Observation Ratios

Backbone Methods 20% 40% 60% 80% 100%

CNN backbone [13]
w/o HARDer-Net 34.01 63.16 75.87 81.39 82.24

HARDer-Net 36.52 65.63 77.81 82.88 83.98

∆ +2.51 +2.47 +1.94 +1.49 +1.74

GCN backbone [27]
w/o HARDer-Net 37.82 67.87 79.22 83.39 84.52

HARDer-Net 43.22 72.43 83.17 87.00 87.80

∆ +5.40 +4.56 +3.95 +3.61 +3.28

relatively minor discrimination information for the purpose of 806

3D early activity prediction. 807

However, we would like to clarify that our previous con- 808

ference submission, HARD-Net, is established on 2S-AGCN 809

backbone [27], while the most recent works conduct their 810

experiments on MS-G3D backbone [77] which is a more 811

powerful GCN. Therefore, to make a fair comparison, we 812

replace the 2S-AGCN [27] in our HARDer-Net with MS-G3D 813

[77] and the performances are shown in Tab. VI. The exper- 814

imental results demonstrate that our HARDer-Net achieves 815

state-of-the-art performances when compared with the most 816

recent works using the same backbone network, which further 817

demonstrates the efficacy of our HARDer-Net. 818

TABLE VI
QUANTITATIVE RESULTS (%) COMPARISON ON THE NTU RGB+D

DATASET (CROSS-SUBJECT) USING MS-G3D AS BACKBONE FEATURE
ENCODER.

Observation Ratios

Methods 20% 40% 60% 80% 100% AUC

ERA [78] 53.98 74.34 85.03 88.35 88.45 73.87
UPS [79] 53.25 75.06 85.35 - - -
Magi-Net [80] 46.68 75.11 84.87 88.12 88.72 72.77
TODO-Net [81] 45.95 74.37 84.61 87.71 88.62 72.32

HARDer-Net 54.11 75.03 85.40 88.71 88.74 74.24

Impact of choice of states for the HG bank. To search for 819

the optimal states for the reward-driven HG bank, we design 820
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three different states: (1) s1 is defined as the mean value of821

hidden states at the last layer of the Class Discriminator Dcls;822

(2) s2 is defined as the mean value of the latent features;823

(3) s2 is defined as the mean value of hidden states at the824

last layer of the RealOrFake Discriminator Drof . The results825

are shown in Tab. VII. As we can see in Tab. VII, compared826

with our previous conference submission, i.e., “HARDer-Net827

w/o RL”, our newly-designed HG bank consistently achieves828

better performances. Also, when defining the hidden features829

from the RealOrFake Discriminator Drof as state s, our830

HARDer-Net obtains the highest prediction performance. This831

is possibly because the hidden features from the Drof contain832

ambiguous information from the hard pairs which enables our833

prediction to mine the subtle cues and further improve the834

accuracy.835

TABLE VII
QUANTITATIVE RESULTS (%) COMPARISON ON DIFFERENT STATES FOR

HG BANK.

Observation Ratios

Methods 20% 40% 60% 80% 100% AUC

HARDer-Net w/o RL 42.39 72.24 82.99 86.75 87.54 70.56
HARDer-Net w/ s1 43.01 72.39 83.00 86.80 87.60 70.72
HARDer-Net w/ s2 42.87 72.40 83.04 86.90 87.61 70.73
HARDer-Net w/ s2 43.22 72.43 83.17 87.00 87.80 70.87

Impact of ϵ. In typical DQN [15], [16], the ϵ-greedy policy836

is used to decide whether to select the top-1 action or to837

randomly explore non-optimal actions, with the purpose of838

encouraging the robustness of learned models. Therefore, we839

conduct ablation experiments on how often the model should840

explore and how often the model should exploit further as841

shown in the Tab. VIII. In our previous conference submission,842

i.e., “HARDer-Net”, the bank is conducting random explo-843

ration every time. When we gradually increase the chance of844

exploitation, the prediction performances improve accordingly.845

This means that by explicitly focusing on those informative846

hard pairs, our model can learn more robust representations847

that benefit the action prediction. It’s also noteworthy that848

when we linearly decay the chance of exploration (ϵ), our849

HARDer-Net performs the best. The reason might be that at850

the beginning stages, the model has not been optimized well851

thus it needs to explore more samples. As the training process852

going, the model can easily identify those “easy” samples and853

it needs to exploit those really hard samples with subtle cues854

to boost the prediction abilities.855

TABLE VIII
QUANTITATIVE RESULTS (%) COMPARISON ON DIFFERENT ϵ SCHEDULING

FOR ϵ-GREED POLICY.

Observation Ratios

Methods 20% 40% 60% 80% 100% AUC

HARDer-Net w/o RL 42.39 72.24 82.99 86.75 87.54 70.56
ϵ = 0.5 42.69 72.14 83.02 86.85 87.64 70.63
ϵ = 0.1 43.20 72.33 83.15 86.98 87.76 70.83
Linear ϵ 43.22 72.43 83.17 87.00 87.80 70.87

Visualization of HG bank selection. As shown in Fig. 10, 856

the sample (a), which is selected by our HG bank, originally 857

belongs to the “Wipe Face” but is wrongly classified into 858

“Cross Hands in Front”. The only difference between these 859

two actions lies in the subtle cues of hand gestures. (For better 860

demonstration, the action sample (b) belongs to the “Cross 861

Hands in Front” category.) Therefore, this demonstrates that 862

our reward-driven HG bank focuses on those truly represen- 863

tative hard pairs, which can further encourage the prediction 864

model to exploit the minor yet significant cues to obtain better 865

prediction performances. 866

Cross Hands in Front

(a) Hard Sample and Interference Class (b) Sample from “Cross Hands in Front”

Fig. 10. Qualitative analysis of the hard pairs selected by HG bank.

Efficiency Analysis. The number of parameters increases 867

approximately by 3.2% and the inference time increases by 868

2% on Nvidia RTX 3080 Ti. This shows that our HARDer-Net 869

achieves much better performances with trivial computational 870

costs increasing. 871

V. DISCUSSION 872

In this research, we employ a Hardness-Guided Discrimi- 873

nation Network (HARDer-Net) which iteratively memorizes 874

and exploits hard pairs susceptible to inadequate discrimi- 875

nation information. This is achieved through the implemen- 876

tation of an innovative adversarial hardness-guided learning 877

scheme, paired with a Hardness-Guided (HG) Bank. More 878

precisely, the adversarial hardness-guided learning scheme en- 879

ables the network to discern and extract subtle yet meaningful 880

discrimination information within the feature space, conse- 881

quently enhancing the precision of predictions. Concurrently, 882

the Hardness-Guided Bank, augmented by a hardness-guided 883

deep reinforcement learning mechanism, refines the selection 884

process of hard pairs with a primary focus on optimizing 885

recognition accuracy. As a result, our advanced HARDer- 886

Net exhibits a distinct superiority over existing state-of-the-art 887

models on four challenging datasets, as illustrated in Tables I 888

to IV. 889

Nonetheless, our proposed HARDer-Net also reveals certain 890

limitations. For instance, within the FPHA dataset, the AUC 891

score for action prediction diminishes in the final stages, 892

potentially due to some frames at the end of the skeleton 893

sequence containing postures and motions unrelated to the 894

class label of the current action. Alternatively, it is plausible 895

that 80% of the skeleton sequence contains sufficient data for 896
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our model to render accurate predictions. Moreover, in the897

SYSU 3DHOI dataset, there is no corresponding growth in898

prediction accuracy when the observation ratio increases from899

80% to 100%, suggesting a potential overfitting issue at higher900

observation ratios due to the limitations of the dataset.901

For future research, it would be beneficial to explore ways to902

address the identified limitations. One approach could involve903

refining the sensitivity of our model to the latter stages of904

activity sequences, thereby ensuring the maintenance of accu-905

rate predictions even when the availability of discrimination906

information diminishes. Furthermore, expanding the datasets907

or diversifying the data sources could partially mitigate the908

overfitting issues observed at higher observation ratios.909

VI. CONCLUSION910

We have proposed a new Hardness-Guided Discrimination911

Network (HARDer-Net) for 3D early activity prediction. This912

network allows explicit probes into the associations between913

a readily mispredicted instance, called hard instance, and its914

corresponding class into which it is wrongly classified, called915

interference class. Further, an adversarial learning scheme916

is constructed to extract slight differences within this hard917

instance - interference class pair through the generation of918

ambiguous and less discriminative latent features conditioned919

upon the given pair to represent original hard instances.920

Besides, a deep reinforcement learning-based HG bank is921

designed to adaptively select hard pairs from retained pairs922

for adversarial learning to enhance the performance of our923

network. Additionally, we construct a class discriminator to924

differentiate the latent features derived from the corresponding925

interference classes. Taking advantage of such a framework926

design, HARDer-Net achieves superior performance in com-927

parison with the state-of-the-art approaches on four challeng-928

ing datasets.929
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