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Abstract

This paper introduces a novel approach to personalised federated learning within
the X'-armed bandit framework, addressing the challenge of optimising both local
and global objectives in a highly heterogeneous environment. Our method employs
a surrogate objective function that combines individual client preferences with
aggregated global knowledge, allowing for a flexible trade-off between personali-
sation and collective learning. We propose a phase-based elimination algorithm
that achieves sublinear regret with logarithmic communication overhead, making
it well-suited for federated settings. Theoretical analysis and empirical evalua-
tions demonstrate the effectiveness of our approach compared to existing methods.
Potential applications of this work span various domains, including healthcare,
smart home devices, and e-commerce, where balancing personalisation with global
insights is crucial.

1 Introduction

In the rapidly evolving field of machine learning, realising appropriate levels of personalisation
has emerged as a critical challenge. This article addresses this pressing concern within the context
of sequential decision-making, specifically focusing on the X-armed bandit [Bubeck et al.,2011]].
The need for both data aggregation and individual customisation is evident in various domains. For
instance, in the context of healthcare, data can be aggregated across subjects to yield population-level
insights into (e.g., dosage efficacy), but individual differences necessitate personalised treatment.
Similarly, for smart home devices, data aggregation across the clients can result in improved general
policies, but each individual home has different characteristics; privacy should be guaranteed to
encourage the beneficial aggregation of data for the common good, but personalised policies need
to be implemented at individual devices. These scenarios highlight two key concepts: “federated
learning” [Konecny et al., 2016, McMahan et al.l 2017]], which enables data aggregation while
maintaining privacy, and “personalisation”[[Smith et al., [2017]], which tailors strategies to individual
needs. However, the optimal level of personalisation varies across different applications and use-cases;
therefore, a one-size-fits-all approach is insufficient. This article develops a personalised federated
learning framework for the X'-armed bandit, designed to allow flexible trade-offs between global
and individual objectives, enhancing user experience by sharing exploration of the decision space,
aggregating data securely, and facilitating individually beneficial decisions.
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Federated learning (FL) [Konecny et al., 2016, McMahan et al., [2017]] is a distributed learning
paradigm that addresses efficiency and privacy concerns in real-world, unbalanced and non-IID
datasets. As datasets grow and models become more complex, the need to distribute the learning
process across multiple machines has increased. Conventional distributed learning approaches [Ma
et al., 2017, Reddi et al., 2016} Zhang and Lin, [2015} |Shamir et al., 2014]] were designed for well-
regulated environments like data centers, where data is typically balanced and i.i.d. across machines.
However, these methods are ill suited for privacy-sensitive, heterogeneous data found on edge devices
such as smartphones.

FL emerged as a solution to this challenge, enabling the training of models on rich and privacy-
sensitive data from edge clients. In the FL framework, edge clients collaboratively train a shared
global model under the coordination of a central server. This approach preserves the privacy of local
data while reducing communication costs. By leveraging the collective knowledge of edge clients,
FL offers a powerful new paradigm for distributed learning in real-world settings.

While vanilla FL. has shown promise in privacy-preserving distributed learning, it can lead to
suboptimal performance for individual edge clients with heterogeneous local datasets. To address this
limitation, FL with personalisation has been proposed as an extension of the vanilla FL framework.
This approach incorporates client-specific objectives to enhance model performance on heterogeneous
data distributions[Smith et al., 2017, [Wu et al., 2020]].

In personalised FL, the globally trained model serves as a foundation that is further adapted or
fine-tuned to better align with individual clients’ specific data or preferences. This methodology
enables the development of models that are both privacy-preserving and highly tailored to individual
clients, effectively balancing collective knowledge sharing with local specialisation.

1.1 FL and Multi-Armed Bandits

While state-of-the-art FL research has predominantly focused on supervised learning scenarios, there
is a growing interest in extending FL to the multi-armed bandit (MAB) framework [Lai and Robbins}
1985} |Auer et al.,[2002]. The MAB problem is a popular framework for studying decision-making
under uncertainty. In its simplest form, the MAB consists of a set of independent “arms”, each
providing a random reward from its corresponding probability distribution. An agent, without prior
knowledge of these distributions, selects one arm in each round, aiming to maximise the total expected
reward over time. This process necessitates a delicate balance between exploring arms to learn the
unknown distributions and exploiting the current knowledge by choosing the arm that has historically
provided the highest reward. The extension of FL to MAB is particularly relevant for applications
like recommender systems and clinical trials, where decision-making is inherently distributed across
multiple clients.

Unlike centralised MAB models that assume instant data access, the FL approach processes data lo-
cally at each client, thereby reducing communication overhead and enhancing data privacy. However,
federated bandits introduce unique challenges beyond the classical exploration-exploitation trade-off
in centralised models. These challenges include data heterogeneity and privacy preservation[Shi and
Shen, 2021} Shi et al., 2021, |Huang et al., 2021} [L1 et al.| [2024b| Réda et al.| 2022]. In FL scenarios,
collaboration among clients becomes crucial for accurate inference on the global model, especially
given that each client’s data may not be independent and identically distributed. Yet privacy concerns
and communication costs motivate clients to avoid direct transmissions of local data.

Balancing exploration and exploitation while achieving privacy and personalisation requires a complex
yet efficient communication protocol between clients and a central server. While [Shi et al.|[2021]]
have addressed this problem for finite, un-structured action spaces, our work extends the principles of
personalised federated learning to the X'-armed bandit (XAB) problem, addressing the aforementioned
challenges in this richer, continuous action space framework.

The X -armed bandit (XAB) problem is an extension of the classic MAB problem, where the decision-
space is significantly larger and even continuous, involving a potentially infinite number of arms.
Unlike traditional MAB problems which are limited to a discrete set of options, the XAB framework
allows for a broader range of actions, making it particularly suited for complex environments where
actions cannot be easily enumerated. This complexity introduces unique challenges in terms of
exploration and exploitation, as the agent must efficiently navigate a vastly expanded action space to
optimise outcomes. [Bubeck et al., 2011} Kleinberg et al., [2008]



Our research considers the critical addition of personalisation to recent works in federated XABs,
particularly the novel method proposed by L1 et al.| [2024b|]. We realise this through a surrogate
reward function that combines local and global knowledge, inspired by [Hanzely and Richtarik| [2020].
Specifically, we defined a surrogate reward function for each client as a linear combination of their
local reward function and the average reward function across all clients. This formulation inherently
emphasises the importance of integrating global information, which is particularly beneficial in
scenarios where data heterogeneity is significant and global insights are crucial for informed decision-
making. Our approach offers a tunable balance between global and individualised optimisation,
enabling clients to benefit from collective learning while still tailoring the model to their specific
conditions.

While a recent extension [Li et al., [2024a] also considers a personalised variant of federated XAB,
our approaches differ substantively. The approach of |Li et al.|[2024a] seeks to optimise a sum of
local functions directly, rather than personalised mixtures of local and global effects (as we do),
under an assumption that differences among individuals are bounded (via constraints on local reward
functions). This model and assumptions leads to an alternative notion of regret, for which the
theoretical guarantees are ostensibly sharper, but since the settings are different, the results are not
directly comparable. Our framework can capture broader heterogeneity among clients, and allows
improved flexibility since the level of personalisation can be determined by the practitioner rather
than environment alone.

The flexibility of our framework offers significant potential benefits across various domains. In
healthcare applications, it ensures that while general medical insights are derived from aggregated
data, treatment recommendations remain personalised to each patient’s unique medical history and
condition. For smart home devices, our approach allows for the aggregation of usage patterns from
various households while customising device behaviour to suit individual preferences. In e-commerce,
the framework facilitates the tailoring of product recommendations and marketing strategies based on
diverse shopping behaviors, enhancing customer engagement and satisfaction. Crucially, in each of
these scenarios, our model allows the level of personalisation to be adjusted according to the specific
requirements of the setting, striking an optimal balance between collective learning and individual
customisation.

1.2 Main Contributions
Our primary contributions are as follows:

1. We propose a novel personalised federated XAB model that accounts for user preferences
and data heterogeneity. This model is strategically designed to optimise the trade-offs
between communication efficiency and learning performance in a federated bandit setting.

2. We introduce PF-XAB, a novel algorithm tailored to the personalised federated XAB problem.
Key features of PF-XAB include: a) edge clients communicate only their local reward
estimates, preserving privacy of raw observations, b) the algorithm achieves sublinear regret
while maintaining logarithmic communication cost.

3. We provide theoretical analysis demonstrating that PF-XAB achieves sublinear regret bounds
while maintaining logarithmic communication cost.

2 Preliminaries

In this section, we define the framework for our study of the personalised federated XAB problem.
We will outline our model and specific objectives, introducing the key notation and assumptions that
underpin our analysis. For an integer n € N, we let [n] represent the set of integers {1,2,...,n}.
For a set A, |A| denotes the size of set A.

2.1 Problem Formulation

Clients and local models. Let X be the measurable space of arms. We model the problem,
following L1 et al.| [2024b], as a federation of M € N clients, each with access to a distinct
bounded local objective i, (z) : X — [0,1], m € [M]. These objectives may be non-convex, non-



differentiable, and even discontinuous. As we focus on bounded functions, without loss of generality,
we assume these functions are bounded within the unit interval [0, 1].

Given a fixed number of rounds 7', each client queries its local objective oracle once per round
by selecting an arm z,, ; € X in round ¢ € [T]. This evaluation yields a noisy feedback r,, ; =
Hon(ZTm.t) + €m,t. Where €, 4 is a zero-mean, bounded random noise, independent of previous
observations or other clients’ observations. Importantly, the local objectives can capture client-
specific preferences, i.e., ., () and p,(x) are not necessarily equal for distinct clients m and
n.

The global model. The global model is a X'-armed bandit model that shares the search space with
the local models but uses the average of local objectives over all clients as its objective. This average,
known as global objective, is defined as

M
p(zx) = i Z pm(z), € X.

m=1

It is important to note that while the global model represents the average of local models, the global
rewards are not directly accessible to any individual client, as local observations remain private.

The personalised model. In conventional federated learning framework, clients collaborate to
optimise the global objective p. However, this approach may not always align with individual client
interests. To address this, we capture the personalisation aspect via a mixed objective, inspired by
the well-established and popular technique of |Hanzely and Richtarik! [2020] in federated learning
literature.

Similar to [Shi et al., 2021} [Salgia et al., 2023]|, we define a personalised objective y),,, which is a
convex combination of global and local objectives:

Hon (@) = g (@) + (1 = @)u(z), z € X, (M
where « € [0, 1] is the personalisation parameter.

The components of the mixed objective bear similarity to the objectives in [Li et al., 2024bf] and
[Li et al.l 2024a]], however handling the mixed objective brings additional challenges, as well as the
flexibility to capture more diverse sets of clients. The personalisation parameter « allows for explicit
control over the level of personalisation:

* o = 1: Complete personalisation (equivalent to local objective)
* a = 0: Complete reliance on the global model (no personalisation)

* « € (0,1): Balances global knowledge with local preferences

By varying «, we address the trade-off between global and local performance. This model integrates
personalisation while retaining the benefits of global generic knowledge, potentially mitigating
overfitting risks common in fine-tuned models.

It is important to note that optimising this personalised objective is more challenging than scenarios
where clients collectively optimise a generic global objective (a« = 0) or individually focus on local
objectives (v = 1). The mixed nature of the objective introduces complexities in balancing the local
and global information.

In this personalised model, each client aims to optimise its own personalised objective, which is
unique to that client. However, this introduces a significant challenge: the estimation of a client’s
personalised objective 1/, requires knowledge of other clients’ local objectives { /iy } n-£m, Which are
not directly observable by client m.

Specifically, each client m can only directly infer part of its own personalised objective - the
component related to its local objective i.,,,. The global component (1 — «)u(x), which incorporates
information from all clients, remains partially unobservable to individual clients.This limitation
necessitates collaboration and communication among clients under the coordination of a central
server.



2.2 Performance Measure

In our proposed framework, we aim to devise a collaborative optimisation strategy across a federation
of personalised models. We assess the performance of this strategy through the expected cumulative
regret, which is essentially the sum of the individual clients’ regrets, calculated with respect to their
individual personalised objectives. Formally, we define the expected regret as

E|R(T)| =E, iiu%—ii%(wm,t) ;
] - |

t=1 m=1 t=1 m=1

where p/* denotes the optimal value of !, on X. The expectation is taken with respect to randomness
in the sequence of actions, which arises from the stochasticity of local rewards 7, ¢.

It is important to note that in the context of regret, an inevitable increase over time is expected. Our
focus, therefore, lies in understanding and minimising the rate at which this increase occurs, aiming
to minimise the average regret over time.

2.3 Hierarchical Partitioning of Search Space

We employ a recursive partitioning approach denoted by P := {P},;}n,:, which splits X into a
hierarchy of nodes at various depths. The partitioning follows the rule:

Po1 =&, Pri = Phy1,2i-1 Uph+1,2i7

where:

* Each node P, ; is defined by its depth h and index %, corresponding to a specific region
within the discretisation of the search space.

* Foreach h > 0, i > 0 the set {Pp41,2:— j }}:0 consists of two disjoint children nodes of
Ph.i-

* At each depth h, the union of all nodes is equivalent to the entire space X.
The partition is fixed and shared among all clients and the central server prior to the beginning of
the FL process. This ensures a consistent structure for exploration and information sharing across

the federation. While we employ binary partitioning of the space in this work, our principles could
readily be adapted to a k-ary partitioning approach.

This hierarchical partitioning provides a structured approach to exploring the continuous action space
X, facilitating efficient search and information sharing in our federated XAB framework.

2.4 Assumptions

To evaluate the performance of the proposed algorithms, we employ a set of assumptions commonly
used in prior works on X'-armed bandit [Bubeck et al.,[2011,|Gheshlaghi Azar et al., 2014}, |Grill et al.,
2015| |Li et al.| [2024b].

Assumption 2.1. (Dissimilarity Function) The space & is equipped with a dissimilarity function
¢: X? — R such that £(z,y) > 0,Y(z,y) € X? and {(z,x) = 0.

Given a dissimilarity ¢, we define:
* Diameter of any subset A C X: diam(A) := sup,, ,c 4 £(7,y)
* Open ball with a radius r centered at ¢: B(c,r) :={zx € X : {(z,¢) <r}

Assumption 2.2. (Local Smoothness) We assume that there exist 1, v > 0and 0 < p < 1 such
that for all nodes P, ;, Pp, ; € P on depth h,

¢ diam(Pr) < v
o J Th,; € ,Ph,i S.t. Bh,i = B(l’hyi,l/gph) C Ph,i
* BB, =0foralli #j



* For any objective p € {1, ..., pm } we have forall z,y € X,
pt = p(y) < pt = ple) + max{p” — p(x), Lz, y)}-

This assumption pertains to the “smoothness” of the objective functions and ensures that as the depth
increases, the search regions become increasingly fine, allowing for a more detailed exploration of
promising areas within the hierarchical partitioning approach.

Remark 2.3. Similar to the existing works on the X'-armed bandit problem, knowledge of dissimilarity
function / is not required for our algorithm. However, knowledge of the smoothness constants v, p
is necessary.

Remark 2.4. In this setup, we do not impose specific assumptions on clients’ objective functions
beyond the regular smoothness conditions typical in X'-armed bandit literature. This contrasts with
[Li et al.| |2024a]], the only prior research on this problem and most related and similar to ours,
which imposes two additional constraining assumptions (Assumptions 3 and 4 in their work). These
assumptions jointly require that near-optimal points with respect to the global objective are also
near-optimal with respect to all local objectives. Our problem setup is more flexible, allowing for a
wider range of real-world scenarios with varying degrees of data heterogeneity.

3 Algorithm and Analysis

In this section, we introduce a novel phase-based elimination algorithm to address the challenges of
personalised federated XAB. We highlight its distinctive features compared to existing algorithms
and provide a theoretical analysis of its performance.

A bespoke algorithm is sorely necessitated for the personalised federated XAB, as existing XAB
algorithms will fail to meet the challenges of the setting. Unlike the focus on optimisation of the
global objective as explored in works by |Shi and Shen| [2021] and [Li et al.| [2024b]], our interest lies
in simultaneously optimising the personalised objectives of the clients. This task is evidently more
challenging since it can be viewed as a problem of multi-objective optimisation with communication
budget constraint.

Consequently, developing an effective communication strategy that enables an unbiased estimation of
the global objective becomes a critical element of algorithm design. This is particularly important in
scenarios involving a large number of clients. Furthermore, the constraints on communication budget
mean that local rewards are not instantly accessible. As a result, algorithms that depend on immediate
reward feedback, such as HOO[Bubeck et al.| [2011]] and HCT [Gheshlaghi Azar et al.,2014], are not
appropriate for addressing this problem.

In the context of federated bandit algorithms, the requirement for minimal communication overhead
indeed renders algorithms that are built on phase-based elimination techniques appealing[Shi and
Shen, 2021}, |Shi et al., 2021, |Réda et al., 2022|]. Therefore, algorithms such as our own proposal,
which eliminate sub-optimal nodes in phases, are more suitable for the federated XAB problem, as
suggested in works like [[L1 et al., 2024 blla].

3.1 The PF-XAB Algorithm

We now introduce our new phased-elimination algorithm, called Personalised Federated X-Armed
Bandit (PF-XAB), designed to address the challenges outlined above.

The PF-XAB algorithm comprises two components: a client-side algorithm (Algorithm [2)) and a
server-side algorithm (Algorithm [I)). The algorithm operates in dynamic phases, leveraging the
hierarchical partition to gradually identify the optimum by systematically eliminating sub-optimal
nodes within the search domain.

The server acts as a coordinator with two primary functions. It broadcast active nodes .A(p) in
phase p, which represent the collective active nodes across all clients. Additionally, It aggregates
empirical estimates of the local objectives /iy ;) (p) for all active nodes (h, i) € A(p) from clients,
and subsequently broadcasts the empirical estimates of the global objective back to all clients.

On the client side, the algorithm involves a phased interaction with the environment, segmented into
three distinct sub-phases: global exploration, local exploration, and exploitation. During exploration



Algorithm 1 Fed-XAB: server
Input: 7', M
while not reaching the time horizon T" do
Receive A™(p) from all clients

Broadcast A(p) = |J A™(p) and f(p) = JZV[](;%E,E;)
me[M] !
Receive local estimates {fi( ;),m }me[M],(h,i)eA™ (p)
for every (h,i) € A(p) do
_ M
Update fin.q)(P) = 17 Yom—1 A(h.i),m (P)
end for
Broadcast {fi( ;) () } (n,i)eA(p)
p+p+1
end while

sub-phases, clients take actions to construct empirical estimates of their local objective, which are then
communicated to the server. While a client waits for the server to provide the empirical estimates of
the global objective (as other clients may have more exploration to perform), it enters the exploitation
sub-phase, where it simply exploits the best action based on the most recent evaluations.

The algorithm details are presented in Algorithms|[TJand 2] In these algorithms, we use the notation
(h, 1) to index node Py, ; in the partitioning tree. T, (5 ;) denotes the number of pulled samples
from m-th local objective in (h,4). By convention, we always sample the midpoint when playing
a node. Due to the structure of the algorithm, T,,, (5, ; is equal to [Maf(p)] + [(1 — ) f(p)] and
[(1 — «)f(p)] for local and global active nodes, respectively. Consequently, the total number of
samples taken to compute the empirical mean of the personalised objective /i (h) is lower bounded
by [Maf(p)]+M[(1—a)f(p)] > M f(p) and the corresponding confidence bound in elimination

ruleis B, = ¢ ;C/’[gf(&))

3.2 Theoretical Analysis

This section contains our main theoretical analysis and results. Here, we establish an upper bound on
the cumulative regret of the PF-XAB algorithm, operating under the assumptions previously outlined.
Before this statement in Theorem [3.8] several key lemmas are introduced.

We first determine the variance proxy of the empirical estimates of personalised objectives in
Lemma3.3] and use this to construct a high-probability “good event” in Lemma 3.4] under which
the empirical estimates of personalised objectives are sufficiently close to the actual personalised
objectives. Lemmas and demonstrate two key aspects: firstly, that the optimal nodes (those
containing the optimal point) will never be eliminated, and secondly, that all points within the
remaining region are, in fact, sub-optimal. Proofs of the lemmas are deferred to Appendix B.

To proceed we recall some facts concerning sub-Gaussian random variables.

Definition 3.1. (Sub-Gaussian Random Variables) A zero-mean random variable X € R is said to
be sub-Gaussian with variance proxy o2 if E [X] = 0 and its moment generating function satisfies
o2s?
E [exp(sX)] < exp (2>, Vs € R.
Definition 3.2. (Sum of sub-Gaussian Random Variables) If { X, X5, --- , X,,} are independent
n
{03,023, -, 02 }-sub-Gaussian random variables, then Y = 3" a; X;, for any a € R",is a 2(Y)-

=1
sub-Gaussian random variable, where

As discussed, we first establish the sub-Gaussianity of our estimators, and from this build a high-
probability event.



Algorithm 2 PF-XAB: m-th client

Input: partitioning P, time horizon T, client count M, personalization parameter o, stopping
depth H.
Initialize p = 1, A™(1) = {(1,1),(1,2)}
while not reaching the depth H do
Receive A(p) and f(p) from the server.
// Global exploration
for each (h,i) € A(p) sequentially do
Pull the node [(1 — o) f(p)] times and receive rewards {7, (,i).¢}-
Update 8(n.i),m = S(h,i);m T 2t Tm,(hyi),t A Ty hi) = T (nsy + [(1—a) f(p)].
end for
// Local exploration
for each (h,i) € A™(p) sequentially do
Pull the node [Ma f(p)] times and receive rewards {7, (i)}
Update 8(.5),m = S(h,i)ym T 2t Tm,(hyi),t a0 Ty 5y = T (ns) + [Maf(p)].
end for
Calculate fi(,;),m (D) = S(h,i),m/Tm,(n,) for every (h,i) € A(p).
Send {ﬂ(h,i),m(p>}(h,i)€_,4(p) to the server.
// Exploitation
Set (hp, ip) = arg Maxp ;)e Am (p) {ﬂ(h,i),m(p)}~
Pull node (hy, i) until {fis.5) () } (,i)e.A(p) are received from the server.
// Elimination
for all (h,i) € A™(p) do
iy m (P) = fin,iy,m () + (1 = @) fign,i) (P)
end for
Compute the elimination set

EM(p) = {(h, i) € A™(p) such that fi(, ;) .,(p) + v ph < ﬂ'(hmp)?m(p) - 2Bp}

Compute the new set of active nodes
AT (p+1) = {(h +1,2i — j) for j € {0,1}, and all (h,7) € (A™(p) \ Em(p))}

Send A™(p + 1) to the server
p—p+1
end while
Select and play the optimal action for the remainder of the time

Lemma 3.3. (Sub-Gaussian Estimators) Let ﬂ’(h,i) m (D) denote the empirical estimate of u’( hi)

,m

at the end of phase p. Then, ﬂzh 3 m (D) is a sub-Gaussian random variable with variance proxy

/A
AM f(p)

Lemma 3.4. (High Probability Event) Define the good event G as

. m _ log(T
Gr = {Vp € Pp,Vm € [M],Y(h,i) € A™(p) : |ipi).m(P) — ,uzh_’i)’m‘ <c g(T) },

M f(p)

where the right hand side is the confidence bound B, for node Py, ; and ¢ = V2 is a constant. Then
for any fixed t, we have P(Gr) > 1 — 2M?>*T~3

On this high-probability event, we can establish guarantees both that the optimal node will not be
eliminated, and that all other non-eliminated nodes are of a good quality.

Lemma 3.5. (Permanence of Optimal Nodes) Under the assumption that the high probability event
Gt holds, it can be stated for any client m that by the end of phase p € Pr, the node Py, ;= ) will
not be eliminated. This particular node contains the global optimum x},, of the personalised objective



o () at the depth hy,. More precisely, this implies that (hy, iy, ,) will not be included in the set of
eliminating nodes £ m( ).

Lemma 3.6. (Quality of Un-eliminated Nodes) Assuming the high probability event G holds and
flp) = ]2\413%(;,2 , all points in every un-eliminated nodes upon the conclusion of phase p, is at least

12v, p"» -optimal.

To complete the proof of Theorem [3.8] we need one additional concept: that of near-optimality
dimension.

Definition 3.7. (Near-optimality dimension) Given a function f : X — R, the v-near-optimality
dimension, denoted by d (e, ve), is the smallest d > 0 such that there exists C' > 0 such that for any
e > 0, the covering number of e-optimal subset of X, denoted as Xy ., with £-balls of radius ve is
less than C'e—¢

Using the definition of near-optimality dimension, we denote d,,, = d,.; (121, o, vy ph) for every
m € [M].

We now present the central result that establishes an upper bound on the expected cumulative regret
of the PF-XAB algorithm.

Theorem 3.8. (Regret Upper Bound) Suppose that i, () satisfies Assumptions and let d.,
denote the near-optimality dimension of the mixed objective as defined in Definition[3.7] The expected
cumulative regret of the PF-XAB algorithm is bounded above by

E[R(T)] = O(T7+5),
where d' = max{dy,...,dpy}.

Proof. Let 14 denote the indicator function associated with event G. Firstly we decompose the
regret into two terms based on the presence of the good event

M T
T) = Z ZM;:; o 'u/(ht;it)fm Z Z ( M(htﬂt); ) Lay

m=1 t=1 m=1 t=1

M
+>. D (Mﬁfz - /v‘/(ht,nxm) Leag.

Thus E [R(T)] = E [R%(T)] + E [RE"(T)] . o

The second term of expected regret can be bounded as follows by using Lemma

M T
B[R] =k

Z Z( — Wy o), ) ﬂce] < Z ZP G%) < 2M3T 72,

m=1t=1 m=1 t=1

To bound E [RY(T')], we first bound the regret that we incur under the good event within each phase.
This regret could be decomposed into three parts, incurred by three sub-phases that we have in the
proposed algorithm.

P
Z RG expr L expr + Rexpl
pEPT
Here, R¢, o> Bf expr and Réy denote the regret within phase p that incurs to the algorithm in the
global exploration, local exploration and exploitation sub-phases, respectively.

During the global exploration sub-phase, each client has to pull non-optimal arms from the active
nodes of other clients included in A(p). Therefore, the regret term associated to the global exploration
R? can be upper bounded by the length of this sub-phase

G-expr’
EC[REexpr) < [AMI[(1 = ) f(p)] < M - Jmax [A™(P)[(1 =) f(P)].

The nodes in A™(p) are direct descendants of the un-eliminated nodes in A™(p — 1) \ £™(p — 1),
and the size of A™(p—1)\ €™ (p— 1) is bounded by Cp~4m"»-1 by the definition of near-optimality
dimension (Definition[3.7) and Lemma[3.6] Therefore, it means

A" ()] = 204" (p — 1) \ £™(p — 1)] < 2Cp™ P



and results the following bound

_ / 2log(T)
[Ré expr] <JA@I[1—a)f(p)] <2MCp Pooad 2(1 - Q)W
vip=e
_ 8C(1 —204) log(7) p_hp_l(d’+2)_
vip?
Next, we bound the regret incurred in the rest of each phase, given by Ry . + R&,. From Lemma

[3.6l we know that all the actions clients take in these two sub-phases are sub-optimal, thus we can
establish the following upper bound:

EC[RY e + Rop] < 12019"71 x [Maf(p)] x max [ A7 (p)]
< 120"t x 2Ma—2208L) lofgf x 20~ < J0Co8(T) 1O§<T) p -1 (@),
MuZp?ho vip

Having established the key components of proof, we now proceed to the final step of the proof. It
involves determining the depth H at which we will halt exploration and start to do pure exploitation.
The expected regret under the presence of the good event is bounded as follows

ES[R(T)] < 80(1 —o k’g i( ac) i

p=1
p=1

( pf(d’+1))h7’71
+ 12V1p P(T—Tp)
< 162J\/[c(1 - ,oz) log(T) (pf(d,JrQ))H
= (@ — 1)
96 M>aclog(T) (—(d’+1))H
2 (p@ i — ) \P
+ 120" T,

960a log

Mw

where H represents the depth of the partitioning tree by the end of phase P. Thus, the proof concludes
by putting everything together as

o 16Mc(1 — a)log(T) 1 _ H
3 2 (d'+2)
E[R(T)] < 2M°T~* + 22 (@A) 1) (p )

96 M2aclog(T)
D2 (@ — 1

, H
) (pf(d H)) + 120, pFT,

and choosing H such that p? = O(T~1/4'+3),
O

While a bespoke lower bound for the personalised federated XAB problem is not yet available to
assess the tightness of this bound, we can compare our @(T%) to results for similar problems.

Under the more restrictive assumptions of the framework of [Li et al.,|2024a], an o (T ;’71;) upper
bound on regret is achieved by both PF-PNE and our algorithm.

The setting of Theorem is more general, and therefore the slightly increased order of the regret
bound is perhaps unsurprising. In any case, the existence of a method which is competitive under
stronger assumptions and robust enough to attain sublinear regret under our weaker assumptions is
encouraging with a view to real-world challenges where strong assumptions may be challenging to
verify.
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4 Experiments

In this section we evaluate the empirical performance of PF-XAB through a series of experiments
employing synthetic objective functions and real-world dataset. To provide a comprehensive as-
sessment, we benchmark PF-XAB against relevant existing algorithms. Specifically, we compare to
the federated X'-armed bandit algorithm Fed-PNE [Li et al., 2024b] and the personalised federated
X-armed bandit algorithm PF-PNE [Li et al.l 2024a]. Each of these methods adopts a different
notion of regret, reflecting their distinct models, which makes a truly fair comparison challenging.
However, we choose to compare to closest counterparts in the literature, not to suggest their perfect
compatibility with our problem, but rather to illustrate the necessity of a bespoke solution. This
comparison highlights a performance gap when the algorithms of [Li et al.,|2024b]] and [Li et al.|
2024a] are applied to our specific problem domain.Throughout this section, all experiments has been
conducted on a federation with M = 10 clients.

M=10,T=10°a=0.1

~
=)

M=10,T=10%a=05 M=10,T=10%a=0.9

N + 120 + 160
g | e g —_—— B .
= 60 Fed:ENE ) Fed-PNE = 140 Fed-PNE
° [ PRRNE 4 1007 — prpne M — PrPNE -
250 ) w0 5 120
o x 4
@ 40 i o~ Y 100
g S 60 = S 80
230 & s
E] ]
g 60
3 20 £ 40 £
o [s) O 40
@ @ o
o
zo 2 o 2 o0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
t(10%) t(10%) (104

Figure 1: Comparison of Cumulative Regret for PF-XAB, Fed-PNE, and PF-PNE Algorithms on
the Garland Dataset Across Varying Levels of Personalisation «, with M = 10 machines over
T = 2 x 10° Time Steps. Each graph demonstrates the impact of personalisation on the algorithms’
performance, with « representing the degree of personalisation from low (o = 0.1) to high (o = 0.9).

We first conduct a range of experiments on two synthetic objective functions: the Garland and
DoubleSine functions with varying levels of personalisation in the regret definition and in PF-XAB.
These two synthetic functions are frequently used in the experiments of A'-armed bandit algorithms
due to their large number of local optima and extreme non-smoothness [Gheshlaghi Azar et al.|
2014, |Grill et al.l 2015} |Shang et al, 2019, Bartlett et al.l [2019]]. The experimental design takes
the canonical functions as a baseline and modulates these such that each client’s local optimum is
distinct, whereas the global optimum is strategically positioned to be sub-optimal with respective to
the local objectives. The average cumulative regrets of different algorithms are provided in Figure|[T]
and[4] (see Appendix B) for the Garland and DoubleSine functions, respectively. The curves in these
figures represent the averages over 10 independent runs of each algorithm, with the shaded regions
indicating 1-standard deviation error bars.

In addition to our initial experiments with synthetic objective functions, we extended our experiments
to a real-world-inspired scenario using the landmine dataset [Liu et al.,2007]]. This dataset comprises
data from multiple landmine fields, each assigned to a client, with features extracted from radar
images to determine the presence of landmines at each location. Each client aims to optimise their
performance on a classification task, using a Support Vector Machine (SVM) classifier equipped
with RBF kernels. Our experiments explore d = 2 kernel parameters, +y ranging in [0.01, 10], and
the regularisation parameter C, selected from the range [10~%, 10%], forms the domain space of our
experiments. The local objective for each client is defined as the AUC-ROC score of the classifier on
their assigned landmine dataset. The performance of different algorithms in this real-world setting
is illustrated in Figure[2] This figure presents the average cumulative regret of each algorithm with
o = 0.4, showcasing our algorithm’s effectiveness by its ability to achieve the smallest regret. This
outcome not only validates our approach in synthetic settings but also demonstrates its practical
applicability and superiority in handling complex, real-world tasks, such as landmine detection.

In the third and final experiment, our intention was to assess PF-XAB’s performance in achieving a
balance between personalisation and generalisation across the federated landscape. Figure [3]indicates
that PF-XAB successfully converges to optimal choices across different values of «, effectively
demonstrating its proficiency in balancing the trade-off between personalisation and generalisation.
This figure outlines the averaged per-step reward attained by the PF-XAB under varying values of
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Figure 2: Cumulative regret comparison of PF-XAB, Fed-PNE, and PF-PNE on the Landmine dataset.

a € [0, 1]. It benchmarks these results against the theoretical maximums for both global and local
mean rewards, referred to as “best global” and “best local”, respectively.

The analysis encompasses three definition of rewards: personalised, global, and local, each labeled
accordingly and derived by clients’ actions. At o = 0, both personalised and global rewards align with
the optimal global reward, while local rewards are significantly sub-optimal. As « is progressively
increased, the personalised and local rewards trend up, indicating a shift in focus towards optimizing
local rewards, and simultaneously the global reward trends down. At o = 1, both personalised
and local rewards almost approximate the optimal local reward, while the global rewards are poor.
This trend highlights the role of « in mediating a gradual balance between local and global reward
optimization, suggesting its importance in the strategic adjustment of reward focus.

M=10, T=5 x 107

— best local
best global
persanalised

— local

global

Average Reward/Step

Figure 3: PF-XAB averaged per-step reward over varying «. Personalised (green) adepts to «, while
local (red) and global (purple) remain fixed. Blue and yellow lines show optimal local and global
values.

5 Conclusion

In this article we have introduced a new model for personalised, federated, bandit learning on
continuous action spaces, and proposed an effective solution method utilising hierarchical partitioning,
batched decision-making and optimism in the face of uncertainty. Our approach achieves a sublinear
regret (evidenced both theoretically and empirically) and requires minimal communication - ensuring
a good level of privacy in the federated regime.

Our method shows a near-deterministic behaviour in certain problems: we notice little variability in
its regret. This is likely a result of its phased structure - the main decisions (eliminations) of the policy
are made during the small number of communication rounds. If the outcomes of these decisions
are identical same across replications, the expected regret will also coincide. Future work may do
well do explore whether there is scope to speed up exploration through the use of a randomised
policy, e.g. a variant Thompson Sampling for continuous spaces [Kandasamy et al.,|2018 |Grant and
Lesliel 2020], or through the use of ideas from Bayesian Optimisation [Frazier, 2018]] which have
also proven successful in X'-armed-type problems, particularly with smooth functions.
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A Supplementary Proofs

A.1 Proof of Lemma[3.3

Proof. Let N, ;) (p) represent the total count of samples collected from the node P, ;) during phase
p. This total can be broken down into two components: N (gh Z)( p) = [(1 — «)f(p)], the number of

samples acquired during the global exploration sub-phase, and N/ (hi)(P) = [Maf(p)], the number
of samples gathered during the local exploration sub-phase.

The empirical estimate ﬁz hii) () can be decomposed into two parts, namely local estimates and a
global estimate, such that the proxy variance satisfies

& (ﬂ/(h,i),m(]?))
- (‘” 1MQ> 4N<h1,i><p> +<1MQ) 2 ﬁ

Ma+1-a 1 l-—a 1
S( M ) 4(Ma+1—a)f(p>+< M ) 2 41— o))

Ma+1—-a (1—a)(M—-1) 1

AM? f (p) AM2f(p)  4Mf(p)’

where the inequality follows by the required sampling length specified in algorithm.

A.2 Proof of Lemma[3.4]

Proof. in every phase p € Pr and for each client m € [M], the Hoeffding bound can be applied to
the empirical estimate of personalized objective corresponding to each node (h,%) € A™(p)

P( ﬁ/(h,i),m(p) - /‘/(h,z‘),m‘ > 6) < 2exp ( -
252(

where it holds true because ﬂl(h, m(P)isa m-sub-Gaussian random variable, as in Lemma

€2

) — 2exp(—2 M f(p).
N/(h7i)7m(p)>

Consequently, by utilizing a union bound, the probability of event G%., the complement of event G,
can be upper bounded by

Z ﬁ/[: Z P (‘ﬂl(h,i),m(P) - :U'/(h,i),m’ > Bp)

pEPr m=1 (h i)eA™(p)

<2 Z Z Z exp (—2¢*log(T))

p=1m=1 (h,i)eA™(p
T M

=207 YN A (p)

p=1m=1

@

T
< 2T M Y |A(p)| < 2M?T x T2 < 2M*T3,
p=1
where the second inequality is derived from the relation A™(p) C A(p). The third inequality is
based on the fact that the cumulative count of active nodes across all phases is less than or equal to

the total number of samples collected throughout the entire process, considering that each active node
is sampled at least once. O
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A.3 Proof of Lemma3.3]
Proof. Under the assumption of event G, the following inequality holds for every node
Pr,i € A" (p):
—/ /
|M(h,i),m(P) - M(h,i),m| < By. (3)
Consequently, we have the following inequalities for the node with the node Py, ;- . at the comple-
tion of phase p: '
‘a/(hpvirn,p)ﬂ”(p) + Bp + l/lphp Z lu'zhp,i:n,p),”n + lehp
> i (7,) > ,u/(hp,z'p),m “)
> ﬂzhp,ip),m(p) - BPa

where the second inequality follows from the local smoothness property of the objective function in
Assumption and (hy, ip) is the index of node with the highest empirical estimate of personalised
objective for client m. Thus, it can be concluded that (h,, iy, .,) will not be designated for elimination
for client m upon the conclusion of phase p, or in more formal terms, P, = ¢ EM(p).

O

A.4 Proof of Lemma[3.64

Proof. This proof consists of two parts. In the first part, we demonstrate that the mid-point of every
un-eliminated node is at least 6 p»-optimal.

Under event G, for every (h,1) € A™(p) \ £™(p) we have the following sequence of inequalities
Wiy m + V10" 4 2By > i 4 0 (D) + 110" + By
2 lazhp,ip),m(p) - BP
> [ i=),m(P) — Bp Q)
> Mzh*,i*),m — ZBp
> i (23,) = v1p" — 2B,
where (h*,1*) represent the node that contains the global optimum of the personalised objective. The
first and fourth inequalities directly results from event G, and the second inequality follows the fact

that node (h, ¢) has not been designated for elimination at the end of phase p, and the third inequality
follows from the definition of (hy,, 4,) in Algorithm 2]

Selecting an appropriate sampling length would lead to the dominance of optimization error over
statistical error, in more precise terms, this implies that B, < v1p". Therefore, by considering

2
flp) = ch;)fgéz;) , the latter inequality remains true, resulting in the following:

Ly = Mgy m < 2v1p" + 4B, < 6u1p". (6)

In the second part, we use an existing result from [Bubeck et al., 2011]. Let Xy, := {r e X:
f* — f(x) < €} denote the subset of X where the function f is within an € range of its optimal
value f*, representing the e-optimal region for f. According to Lemma 3 from Bubeck et al.
[2011], if a node is cvy p"-optimal, then every point in the corresponding region of that node is
max(2c, ¢ + 1)1y p'-optimal.

Therefore, we can conclude that every point in the set of un-eliminated nodes at the end of phase p is
121, p"-optimal, by the previous inequality. This completes the proof of the lemma.

B Supplementary Experiments
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Figure 4: Cumulative regret of PF-XAB, Fed-PNE, and PF-PNE on DoubleSine dataset. Varying «
(0.1 to 0.9) shows impact of personalisation. M = 10, T' = 2 x 105,
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