
Preview

Many people with disabilities (PwD) use specialised controllers, such as joysticks and accessible
buttons, to interact with digital devices. The 3.5mm audio jack has become the standard interface
for these assistive technology (AT) devices. We present a versatile AT interface that allows a
microcontroller to act as a controller or to have a controller plugged into it, to assist prototyping
new solutions for PwD.

A Versatile Assistive Technology
Interface

Matthew Oppenheim
Lancaster University

Steve Hodges
Microsoft Research

Many people with disabilities (PwD) require specialised controllers, such as joysticks and
accessible buttons, to enable them to interact with digital devices. This includes the applications
they use on computers, tablets and smartphones—for instance to create speech. The 3.5mm audio
socket has become established as the standard physical connector for these assistive technology
(AT) devices. Accessible buttons with a 3.5mm plug are known as ‘access switches’ since they act
as a simple on/off switches. Devices with 3.5mm sockets that are controlled by these access
switches are known as ‘switchable devices’. Many modern digital devices—such as Android and
iOS smartphones—support interaction in this way, using a Bluetooth or USB switchable device
interface along with an operating system interaction mode called ‘switch access’ or ‘switch control’
respectively.

This article details a versatile AT interface board that we have developed to allow a microcontroller
to act as an access switch or as a switchable device. This makes it easier to prototype new solutions
for PwD, whether the aim is to create a new input device—such as a flex sensor that acts as a light-
touch ‘button’—or to create a new switchable device which is to be controlled by existing access
switches. Our board incorporates the same 3.5mm audio socket connectors that most AT devices
and controllers use as an interface. We include two of these sockets, one of which is associated with
each of two separate channels. The functionality of each channel can be independently configured
through software, meaning that our design can operate as two access switches, two switchable
devices or one of each. Existing access switches may be plugged into the board’s sockets, or plug-
to-plug 3.5mm cables may be used to connect the board to an existing switchable device.

We hope that others will see our solution as a resource to help create new assistive technology
projects.

Assistive technology switch interface

The standard connector for assistive technology devices is the same 3.5mm connector that audio
headphones use. An access switch has a 3.5mm plug. A switchable device has a 3.5mm socket.
Table 1 shows the differences between the interfaces for access switches and switchable devices.

Figure 1 shows how a stereo 3.5mm audio plug is configured. When operated, an access switch
connects the tip to the sleeve of the plug; when released the tip and sleeve are disconnected again.
The plug is inserted into the 3.5mm socket on the switchable device to be controlled.

Analog signals are supported too, but are beyond the scope of this article. An explanation of analog
access switches can be found on the Adafruit website7.

The switchable device must be capable of detecting when the tip and sleeve connections on its
3.5mm socket are shorted and when they are open circuit. In this way, the device can react when the
switch is turned on or off.

To enable the 3.5mm sockets on our board to act as access switches, 3.5mm plug-to-plug adapter
cables are used to physically convert the sockets to plugs. These cables only cost a couple of dollars
and are easily sourced from the usual online retailers.

Table 1: Access switch and switchable device setup.

Access switch Switchable device
Physical interface 3.5mm plug 3.5mm socket

Switch closed action
Tip and sleeve
connected

Detects low impedance
between the tip and sleeve

Switch open action
Tip and sleeve
unconnected

Detects high impedance
between tip and sleeve

Leveraging Jacdac

Jacdac 7 is an open-source modular electronics prototyping system under active development by
Microsoft Research and Lancaster University. Jacdac allows small sensors and devices to be
connected together dynamically so that the assembly recognises what is being added or taken away;
in this sense it’s a bit like USB, but cheaper! Each Jacdac module is designed for a specific
function, such as a button or a slider. Modules communicate using a custom protocol over a three-
pin PCB edge connector; the three pins are power, common and signal. They are connected together
using Jacdac cables.

Each Jacdac input module has a cheap microcontroller that identifies that board to a main ‘brain’
module The ‘brain’ module contains a more complex microcontroller that controls the assembly and
can be connected to a PC for programming through USB. As microcontrollers suitable for Jacdac
input modules cost as little as 5 cents each, it is inexpensive to add a microcontroller to each board.
These module microcontrollers are flashed with firmware that implements both the functionality of
the board and the Jacdac communications code that allows the module to act as a part of a Jacdac
assembly. A reference Jacdac board designed in KiCAD can be found on GitHub7. Jacdac kits are
now commercially available from Kittenbot7.

The Jacdac system works with the learn-to-program web-based MakeCode programming platform7.
When Jacdac is used, the MakeCode programming interface automatically populates with the

relevant code blocks for the specific Jacdac modules that are connected. This makes it pretty easy to
develop code to run on a Jacdac brain, such as a BBC micro:bit V2.

Jacdac enables people who do not have a specialist electronics, engineering or coding skill-set to
construct and program novel devices. This makes the Jacdac system an ideal platform for
experimenting with new types of assistive technology devices and to interact with existing assistive
technology devices. All that’s needed is a way to interface Jacdac with the 3.5mm plug in the right
way!

Hardware

We received suggestions from colleagues to make our board capable of handling two channels,
because access switches are often used in pairs. Of course, if more than two channels are needed,
it’s easy to use more than one board. Each 3.5mm socket has three signal traces: tip, ring and barrel.
Each of these signal traces has over-current and over-voltage protection. The over-current protection
is provided by a 10k resistor in series with the signal path to the MCU. The over-voltage protection
is provided by BAT54S Schottky clamping diodes used to protect the Jacdac data line. There are
two BAT54S diodes in a single three-pin package. The diodes are connected to the power and
ground rails as well as the signal trace, so that voltages more than a diode drop above the power rail
or more than a diode drop less than the ground rail are protected against.

The Jacdac interface uses an NCP114ASN330T1G 3.3V low dropout voltage regulator, rated to
300mA, to provide isolation from the Jacdac power rail. The Jacdac power rail is specified to be
3.7V to 5.2V. According to the regulator’s data sheet, the typical dropout voltage with an output of
3.3V and a current output of 300mA is 0.15V, so there is plenty of headroom even if the power rail
is the minimum voltage in the specified range.

The data and power lines from the Jacdac connector have electrostatic discharge (ESD) protection
using RCLAMP0521-P ultra-low capacitance ESD diodes. The two Schottky diodes in another
BAT54S provide over-voltage and under-voltage protection on the data line.

The STM32 was the most suitable MCU available for this project from the range of MCUs that
were part of the Jacdac system at the time the board was designed. The STM32 has sufficient input-
output pins to enable all of the intended functionality without multiplexing. A push button switch
was added onto one of the input pins. At the time of design, one suggested Jacdac requirement was
to require a physical button to be depressed to allow a firmware update on the MCU. This is to
increase security, as requiring a button to be pushed prior to a firmware update helps to prevent a
malicious remote firmware update from occurring.

The final PCBA is shown in Figure 2 and the schematic for the design is shown in Figure 3. KiCad
v6 was used to prepare the schematics and to lay out the PCB. The design files and bill of materials
were sent to JLCPCB.com to manufacture and populate the boards. JLCPCB’s website has
instructions on how to prepare the files needed for manufacture using KiCad, including how to
automate creating the bill of materials by adding their component part numbers to the symbols as an
extra field. Using the components that JLCPCB has in stock enables JLCPCB to supply them and
populate the boards. Receiving fully populated boards saves a lot of time over soldering them up
yourself. The downside is that with a prototype, populating and testing one section at a time can be
a useful way of locating design errors. In the unlikely event that you make any.

How the circuit works as a switchable device
In this mode of operation, each channel needs to behave like a switch. In a previous project, we
made a prototype switch that was tested using an access-switch-to-USB adapter. This adapter is a
standard way of connecting switches to a PC or Apple device to interact with switch-controlled
software. A common use of switch-controlled software is to create speech. However, user feedback
indicated that our prototype switch interface board did not work with all of the different devices that
were tried with it.

Of course, we could not anticipate how the design would be abused in the Real World. The board
may have been connected to a toy adapted for use with an access switch. In this configuration, the
current needed to operate the toy often passes through the switch interface. To ensure that our new
board, presented in this article, works with modified toys like this (unlike our earlier prototype), we
use a TLP240A opto-isolated relay to connect and disconnect the tip and the sleeve of the 3.5mm
connector. In this case, the pins on the STM32 microcontroller (MCU) that connect to the tip and
sleeve in order to detect access switches are configured as inputs which puts them in a high
impedance state. The relay is rated to 500mA of continual current. This setup allows the board to
control switchable devices.

How the circuit responds to a switch
In this second mode of operation, the MCU pin connected to the sleeve of the connector is
configured as an output and set low. Since the pin is configured as an output, it is in a low
impedance state.

The MCU pin connected to the tip of the connector is configured to behave as a button through the
Jacdac configuration script—see Listing 1. The ‘NO_PIN’ parameter means that the button is not
configured to have a backlight. When the attached switch is open or closed, the voltage difference
between the tip and ring varies. This difference is detected as button actuation by the Jacdac
software.

void app_init_services() {

 pin_setup_output(SLEEVE_1);

 pin_set(SLEEVE_1, 0);

 pin_setup_output(SLEEVE_2);

 pin_set(SLEEVE_2, 0);

 button_init(TIP_1, 0, NO_PIN); // button, high/low, backlight

 button_init(TIP_2, 0, NO_PIN);

}

Listing 1: Jacdac service script.

Figure 4 shows the board connected to both an external switch and to a switch-to-USB adapter.
These allowed the board to be verified as responding to an external switch input and that the board

appears as a switch. The rocker switch was connected using a couple of Wago 221 quick connects.
These are great connectors to quickly connect together low frequency devices. As mentioned above,
the switch-to-USB adapter is a standard device used to interface assistive technology switches to
devices with USB.

The voltages at the STM32 pins connected to the tip and sleeve of the 3.5mm connector were
measured, with the attached switch open and closed. The measured voltages were well in
specification for appearing as a logic high or low. The 10k resistors on the signal rails were lowered
in value to around 5.3k by stacking 11k resistors on top of the existing 10k resistors. The voltage
values were measured again and found to be closer to the rail voltages than when using the 10k
resistors on their own. Future designs will replace the 10k resistor with a 4.7k resistor. This value
produces voltages with a better margin of noise immunity, while still giving adequate input current
protection.

Doing some classic resistor bridge calculations showed that the switch sees an input impedance of
about 85 Ohms when the MCU pin it is connected to is set as an output.

The board was verified as working to appear as a switch using the access-switch-to-USB adapter.
One of the most widely used software packages used in assistive technology for creating speech
responded to the channel when it was configured as an open or closed switch. The channel was
verified as being able to pass the 500mA that it is rated to. Over current testing took place. The
failure mode was that the current was throttled and then further reduced as the relay heated. This is
how FETs behave—their resistance increases with temperature, throttling current. Unlike bipolar
transistors where the resistance can decrease with temperature, leading to thermal runaway and
catastrophic failure.

Firmware

The code was written in the C programming language using Visual Studio Code with Debian as the
operating system. It was flashed onto the STM microcontroller on our board using a home-made
Black Magic Probe 7 (BMP).

The BMP is a microcontroller debugger with a built in GNU debugger (GDB) server and UART.
Our home-made BMP was made using a 128k Bluepill board, following the instructions provided
online7. A generic ST-Link v2 bought from eBay was used to flash the necessary firmware onto the
Bluepill board. Be sure to use the 128k version of the Bluepill board to make a BMP or you will not
be able to flash the firmware. Some boards sold as a 64k Bluepill do have 128k of usable RAM, but
finding one of these is a bit of a lottery. We bought a Bluepill that had been reworked to have a 128k
processor from eBay.

The BMP is a useful tool that can run interactively from the command line or from scripts. We
wrote a couple of short scripts to automate loading the hex file produced by compiling the C code
for the board and another to display memory locations from the STM32 flash memory. GUI based
programmers and debuggers offer some convenience, but interacting through the command line
offers a lower level of abstraction from the embedded hardware. There is one less piece of software
in-between you and the target processor that can potentially introduce errors.

JacConnect programming connector
The programming/debugging interface to the board uses the JacConnect7 connector proposed by
Microsoft. The PCB side of this connector is a pattern of five 22mil holes with 50mil pin spacing
and 62mil row spacing. These holes can be seen on the top left of the PCBA shown in Figure 2. The
cable side of the connector is a 0.05” male header. The difference in spacing in-between the header
pins and the spacing of the holes on the board creates enough friction to keep the plug and socket
connected for programming and debugging. The system works well in practice but you need to
make your own programming cable.

Jacdac firmware

One of the goals of Jacdac is to abstract away—to ‘hide’—the intricacies of module firmware.
Instead, we write a simple description of the board’s functionality using pre-existing Jacdac
‘services’. Typically a module does one thing, presenting one of the these services. However, our
assistive technology interface can act as two different devices—as an input for an access switch or
as an output to control a switchable device. This means that each of the two channels on this board
needs to appear as two different services to the Jacdac infrastructure.

To enable each channel to act as two devices, we added a ‘virtual relay’ to each of the channels.
Switching the relay from on to off toggles the functionality of the associated channel.

When the channel is controlling a switch, it exposes a Jacdac relay service and appears as a relay on
the Jacdac web interface. When it the channel is being controlled by a switch, the channel appears
as a button on the Jacdac web interface. Two memory locations in non-volatile memory record the
state that each channel is in. When the functionality of a channel is changed using this virtual relay,
a new value is written to the appropriate memory location. Then the device is restarted through
software. When the board starts up, the values representing each channel’s state are read from non-
volatile memory and the channel is configured accordingly.

Non-volatile memory has a finite number of read-writes, but this number is so high that the
frequency that the channel states are changed poses no risk of causing the memory location to fail
through over-use.

We encountered some issues implementing this functionality. Initially the board was not responding
correctly when the state of a channel was changed. The BMP proved its value with helping to debug
this issue. The debugger allows memory locations to be dumped interactively. By looking at the
memory locations where channel state was being saved, we quickly saw that these memory
locations were already in use. Looking through the linker script, we found that these memory
locations are used by the bootloader—see Listing 2. The memory locations used for saving state
were changed to an unused area of flash memory. The board then worked as expected, with state
saved when the virtual relay is switched and the board resetting with the expected functionality
enabled.

MEMORY {
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 8K
FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 32K - 4K - 0K - 12
}
INCLUDE jacdac-stm32x0/ld/gcc_arm.ld
Listing 2: Linker script, showing that the last 4k of flash is used for the bootloader.

Figure 5 shows a typical display on the Jacdac web interface for our board, showing one channel set
up as a relay to control an external device (switchable device mode) and the second channel
indicating the status of an attached switch (access switch mode).

Discussion

The board we made works well. It’s not realistic to expect a device that is created in low volume to
be as polished as a product that is mass produced. However, will people who use assistive
technology and the technologists who support them accept a self-assembly system like Jacdac? The
technologists who work with assistive technology have an excellent knowledge of assistive
technology devices and how to install these in the best way to assist the people who use them. They
may not have the time or inclination to also assemble and test equipment. On the other hand, the
economics and time spent in manufacturing a new piece of assistive technology which may only be
sold in low-volume make a rapid-prototyping system like Jacdac attractive for getting devices to the
people who need them.

The experience gained in designing and testing an access switch is already being used in the design
of a new assistive technology device.

References

[1] https://learn.adafruit.com/diy-adaptive-game-controllers/interfacing-buttons-and-switches
[2] https://microsoft.github.io/jacdac-docs/
[3] https://makecode.microbit.org
[4] https://circuitcellar.com/research-design-hub/projects/devices-aid-speech-for-people-with-

disabilities/
[5] https://github.com/mattoppenheim/jacdac
[6] https://www.kittenbot.cc/products/kittenbot-jacdac-kit-for-micro-bit
[7] https://arcade.makecode.com/hardware/dbg
[8] https://black-magic.org/index.html
[9] https://github.com/mmoskal/blackmagic-bluepill/

Illustrations

Can we re-draw more like the following, to make it clear that we’re showing how the switch is
wired into the 3.5mm plug? As it currently stands, some might interpret it as how one should
connect to the 3.5mm plug.

Figure 1: How an on/off access switch is wired to a 3.5mm audio socket, then
connected with a 3.5mm audio plug. Note that stereo plugs are commonly used but
it’s also possible to use mono or 4-pole plugs.

Figure 2: Access switch interface PCBA.

Figure 3: Access switch interface schematic.

Figure 4: Testing the board using a switch as an input device and an access-switch-to-USB
adapter as an output.

Figure 5: Jacdac web interface showing the board
with one channel configured as a relay, the other
channel configured as a switch input.

	Preview
	Assistive technology switch interface
	Leveraging Jacdac
	Hardware
	How the circuit works as a switchable device
	How the circuit responds to a switch

	Firmware
	JacConnect programming connector

	Jacdac firmware
	Discussion
	References
	Illustrations

