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Introduction

This thesis comprises four chapters, each focusing on different aspects of economic

decision-making under risk. It explores various dimensions of risky decision-making,

each contributing uniquely to the various choices we make and the outcomes we

experience in everyday life. We investigate structural patterns in the financial deci-

sions of individuals with impulse control disorders. We analyse how discrepancies

between ex-ante risky financial strategies and ex-post actions can be modeled. Addi-

tionally, we examine how subjects alter their decision-making strategies under time

pressure or when faced with increasingly complex tasks, and identify the structural

models that best explain these changes.

In the first chapter we investigate various functional specifications of well es-

tablished decision-theory models, namely Cumulative Prospect Theory (CPT hence-

forth). Using an existing data set, we seek to determine which specification is able to

best explain the decision-making strategies of individuals with gambling disorders,

and determine whether a parametric specification is able to identify structural pat-

terns that are otherwise not as obvious with non-parametric methods. We find that

a CPT model with a Power utility function and a Prelec two-parameter weighting

function was the data generating process that had the best descriptive and predictive

capacity. We highlight how parametric methods can help in disentangling probabil-

ity distortion from probability elevation, which generated interesting insights into

what characterises the choices of problem gamblers. We identify structural and sta-

tistically significant differences between the risk preferences of problem gamblers

from non-gambling controls.1

The second chapter aims to test the empirical robustness of CPT in a dynamic

setting. Using the theoretical predictions of the Casino Gambling Model, we intro-

duce a three-stage experimental design that estimates risk preferences and classifies

subjects into behavioural types that exist in the literature. We find that existing clas-

sifications are only able to explain the decisions made by a small proportion of the

sample, and so we generate theoretical predictions for a new classification based on

1Chapter 1 is a solo-authored paper.
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our results as well as those found in existing studies. We find that dynamic incon-

sistencies exist, whereby subjects deviate from their ex-ante strategies when making

decisions in real-time. We explore the financial welfare implications of this behav-

ior and discuss how different types and structures of commitment devices can help

overcome these discrepancies.2

The third chapter tests CPT’s explanatory power in tasks where there is increased

time pressure or increased complexity. We propose that when subjects engage in

tasks that overwhelm their cognitive loads, they switch from using sophisticated

compensatory models (like CPT) to using simplification strategies such as heuristics.

We define the theoretical assumptions of a cognitive toolbox model of heuristics and

compare its explanatory power to that of CPT using Bayesian inference techniques.

Our analysis is based on a meta-analysis of six existing data sets that differ in the

domain in which they operate, as well as in their complexity. We find that in more

traditional settings, CPT has more explanatory and predictive power; however, as

the complexity of a task increases, subjects switch to using an adaptive toolbox of

heuristics. We identify the size of toolboxes and the types of heuristics that make

up each toolbox. We create a complexity index based on multiple characteristics of

complexity, and find a positive correlation between complexity and toolbox usage.3

The final chapter is a short chapter which serves as a byproduct of chapter 3. This

chapter expands on the complexity analysis by introducing various decision-theory

models that have since been manipulated to capture complexity preferences. Using

the same Bayesian inference techniques, we test four model variants and again find

that an adaptive toolbox of heuristics is able to best explain choices when complexity

increases.4

2Chapter 2 is a solo-authored paper, where Dr Konstantinos Georgalos provided the experimental
interface on Python.

3Chapter 3 is a co-authored paper with Dr Konstantinos Georgalos.
4Chapter 4 is a co-authored paper with Dr Konstantinos Georgalos.
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3

Abstract

This chapter investigates the explanatory power of risk preferences in elucidating

problem gambling behaviour. We utilise the Ring et al. (2018) choice data, which

examines gambling decisions of three distinct treatment groups: Problem Gamblers

(PG), Habitual Gamblers (HG), and a non-gambler control group (C). Employing

advanced econometric techniques, we assess the efficacy of parametric models in

capturing the behavioural choices of different groups. Specifically, we explore four

model variants of Cumulative Prospect Theory (CPT) alongside a variant of the

Markowitz utility model. Through rigorous model comparisons, utilising Maximum

Likelihood Estimation (MLE) techniques, the Akaike Information Criterion (AIC),

and the Leave-One-Out Cross validation routine (LOOCV), we identify the optimal

data generating process - a CPT framework featuring a flexible power value function

coupled with a two-parameter Prelec (1998) risky weighting function. Our findings

highlight the advantages of parametric approaches while cautioning against the lim-

itations imposed by linear utility and representative agent assumptions. Notably, we

discern distinct patterns among PG, HG, and C groups, revealing that the PGs ex-

hibit pronounced probability distortion in the gain domain, heightened sensitivity

to loss payoffs, and a propensity to underweight probabilities in the loss domain.



4 Chapter 1. Decision-Theory Modelling of Risk Preferences in Problem Gambling

1.1 Introduction

The evolution of decision-theory has allowed for advancements in the modelling of

consumer behaviour. Attempts to mirror the choices of economic agents paramet-

rically has provided deeper insights into how individuals make decisions in var-

ious economic domains. In the context of decision-making under risk, there has

been a focus on parameterising models that assess the utility individuals receive

from varying monetary amounts, how we perceive objective probabilities, and how

individual preferences change when dealing with wins and losses. Tversky and

Kahneman (1992)’s Cumulative Prospect Theory (CPT) combines these components

and is recognised as the most prestigious model of human decision-making to date.

The model has provided explanations for various economic paradox regarding in-

vestor and saver behaviour (Henderson, 2012), as well as explaining health decisions

(Schwartz, Goldberg, and Hazen, 2008), and has provided insights into the relation-

ship between risk preferences and perceptions of climate change (Osberghaus, 2017).

Multiple functional forms of CPT have been put forward to explain the behaviour

of economic agents (Kahneman and Tversky 1979; Prelec 1998; Gonzalez and Wu

1999; Bouchouicha and Vieider 2017). Identifying the explanatory optimal functional

form can provide further insights into the behaviours under investigation. Conduct-

ing empirical investigations that adopt a random functional form without informed

insights may limit the robustness of results if one cannot confirm that the adopted

functional form is the most probable data generating process (Stott 2006). Whereas

applying informed, context-specific functional specifications increases the likelihood

of accurately identifying preferences. We can robustly evaluate the effectiveness of

different specifications by assessing which is able to give the best explanatory and

predictive account of the empirical data. Not only does this allow one to identify the

model that provides the best representation of the data, but will also foster insights

into why competing models were not as effective, what implications this has for the

individual decisions in that context, and how one can optimise the model further to

fit consumer behaviour more accurately.

Behavioural economics has been built on the foundation of bounded rationality
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and individual heterogeneity, so when implementing a functional form, account-

ing for the individual and situational context is key. Whilst examinations on the

effectiveness of functional forms of CPT and other decision-making theories have

taken place (Blondel 2002; Stott 2006), these assessments are based on the more tra-

ditionally “standard” economic agents. The objective of this chapter is to build upon

previous research and determine which functional forms of CPT offer the best ex-

planation of the decision-making processes of individuals typically characterised as

more impulsive and risk-seeking. A number of individuals in our economy deviate

from classical economic theories excessively, and understanding the risk-preferences

of those on the more extreme end of the “rationality spectrum” may provide inter-

esting insights into their decision-making processes.

The subgroup this chapter seeks to examine are those with gambling addictions.

Given the rise in gambling following the coronavirus pandemic, being able to better

characterise the decisions of individuals in this domain may compliment the psy-

chology and neuroscience literature in better understanding the disorder. Gambling

disorders can be as distressing as life-threatening addictions (alcoholism and drug

dependency), yet the adverse implications associated with the impulse-control dis-

order have been overlooked. From an economic perspective, problem gambling has

resulted in the displacement of local residents, productivity losses, increased crime

and higher unemployment rates. Similarly, from a biological welfare perspective, it

has been shown to increase emotional pain, depression and anxiety (National Re-

search Council, 1999). It is also associated with various negative externalities, where

7% of adults in Great Britain reported they were negatively affected by someone

else’s gambling problem (Davies, 2020). The majority of research attempting to bet-

ter understand the problem lies in psychology, neuroscience and medicine, where

these fields have sought to understand why individuals gamble and the pathology

of the addiction. We wish to provide a new complementary approach, using ad-

vanced econometric modelling, to identify if there is a structural association between

individual risk-preferences and being classified as a PG.

This chapter utilises the experimental data of Ring et al. (2018) to identify struc-

tural differences between the risk-preferences of PGs from non-gambling control

groups. The data includes certainty equivalents from lottery choice tasks across
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three treatments groups: Problem Gamblers (individuals with a gambling addic-

tion), Habitual Gamblers (those who gamble but not excessively), and non-gamblers

(those who have never gambled). Using maximum-likelihood estimation approaches,

as well as the cross-validation prediction routine, we fit four CPT specifications and

a Markowitz (1952) model of utility to the experimental data to identify the most

probable data generating process. The chapter highlights the benefits of parametric

approaches, and identifies limitations associated with restrictive assumptions such

as strict linear utility and representative-agent modelling.

We find that subjects in all three groups are best characterised with a power

utility function and a Prelec (1998) two-parameter probability weighting function,

where around 52% of subjects exhibited linear utility. Our results suggest that PGs

differ from non-gambling controls in that they (1) distort probabilities more in the

gain domain, (2) have an increased sensitivity to increases in loss amounts, and (3)

underweight the whole probability spectrum in the loss domain.

The rest of the chapter will proceed as follows: Section 1.2 provides a compre-

hensive review of the literature on the psychology of gambling, and the success of

decision-theory functional forms. Section 1.3 discusses the experimental data. Sec-

tion 1.4 explains the preference functional under consideration. Section 1.5 provides

our methodology. Section 1.6 presents the results, and Section 1.7 provides a con-

cluding discussion.

1.2 Existing Literature

This section will provide a holistic review of the available literature on gambling

addiction and decision-making under risk. Firstly, we will discuss evidence in the

psychology and neuroscience field, providing a focus on why individuals gamble,

and what may be driving the addiction. We will then discuss how the economics

literature, namely in the domain of decision-making under risk, provides compli-

mentary inputs to the research. Specifically, we will address the identification and

characterisation of preferences, and how structural economic frameworks can help

us better understand the decisions of PGs.
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1.2.1 Psychology and Neuroscience

Much of the literature on problem gambling assumes that its impulsivity stems from

neuropsychological impairments (Brand et al., 2005), with a focus on impairments in

the prefrontal cortex domains. In the prefrontal cortex, there are 2 underlying mech-

anisms that could influence risk-taking behaviour: The orbitofrontal (ventromedial)

prefrontal cortex (Brand et al. 2005; Cavedini et al. 2002; Labudda et al. 2007), and

the dorsolateral prefrontal cortex (Bechara et al. 1994; Brand et al. 2005; Gelskov et

al. 2016).

Deficits in the orbitofrontal prefrontal cortex functions are shown to leave indi-

viduals susceptible to uncontrolled behaviour, with hindered feedback processing

mechanisms. This suggests that when presented with new information, PGs are

inclined to neglect or manipulate this information. The information could be the

outcome of a previous bet, or the objective probabilities of winning. Additionally,

this hinders their ability to consider the future consequences associated with their

actions. Cavedini et al. (2002) suggest that there is a link between PG and other

disorders (e.g. OCD, drug addiction) in which they all have a diminished ability to

evaluate future consequences, which can be explained by abnormalities in the or-

bitofrontal cortex function. The concept of feedback processing, and the inability to

evaluate future consequences, are widely recognised in the psychology literature,

and there are arguments that support these as being underlying causes of gambling.

Clark and Dagher (2014) explain that impulsiveness, in a gambling context, can be

characterized by an over-weighting of potential rewards relative to losses. As po-

tential benefits are immediate, but many of the indirect costs (long-term gambling-

related harm) are delayed, individuals with orbitofrontal prefrontal cortex impair-

ments are likely to have disturbances in their feedback processes and thus are unable

to process the potential costs that are associated with their decisions. In turn they

prioritise the immediate potential rewards, which results in increased risk-taking

(Shead, Callan, and Hodgins, 2008). Bechara et al. (1994) tested this idea empirically

and found that individuals with prefrontal deficits had unstable representations of

future outcomes, as they were unable to retain this aspect of information in their

working memory long enough for reasoning strategy to be applied. There is an
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abundance of literature highlighting that PG is in part described by a high sensitiv-

ity for reward and a neglection of future consequences. (see Goudriaan et al. (2004)

for a comprehensive review of the findings.)

Impairments in the dorsolateral prefrontal cortex are also able to explain, in part,

the pathology of problem gambling. Changes in brain activity within this domain

can lead to impairments of planning capacity, and the generation and use of unstable

cognitive strategies that can also result in disadvantageous decision-making (Brand

et al., 2005). PGs can be characterised by hypersensitivity to the most appetitive

and risky bets, which comes from an executive cortico-stratal network including the

dorsolateral prefrontal cortex (Gelskov et al., 2016). Again, the psychology literature

has provided explanations as to how this works. With regards to deficits in one’s

ability to use cognitive strategies or to plan, the term idiosyncratic beliefs has been

widely used to explain impulsive behaviour. Idiosyncratic beliefs are illogical be-

liefs that your subjective understanding of something is more accurate than proven

and objective facts. Delfabbro, Lahn, and Grabosky (2006) tested this empirically on

adolescent problem gamblers and found that idiosyncratic beliefs came to over-ride

more objective considerations in the PG group. The PG group rated themselves as

more skilful than others when gambling on activities where no such skill was possi-

ble. They believed that certain numbers on a six-sided die were easier to obtain, thus

attaining more optimistic views on their chances of winning. Their results coincide

with that of Limbrick-Oldfield et al. (2020) who found that PGs used prior feedback

from gambles to inform their next choice, even though the tasks were completely

independent. Similarly, Lopez-Gonzalez, Griffiths, and Estévez (2020) investigated

PGs and how they perceived the role of knowledge in sports betting markets. Sub-

jects first undertook cognitive behavioural therapy and then were tested for cogni-

tive distortions. Their results showed severe distortions in their ability to distin-

guish between luck and skill. They were convinced that the betting products were

not designed to giver bookmakers an advantage, and that the success of bookmakers

came from their access to better quality sports information. Some participants were

adamant that their addiction obstructed their rational way of thinking and their abil-

ity to use their skillset to predict the game. They felt that when they first saw the
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gamble they were in a rational state, but the addiction took over and they lost con-

trol over the betting. In essence, they believed that if they did not have an addiction,

they could have used their knowledge and skills to increase their winnings. Clark

(2010) identified two beliefs that were prominent in PGs: The near miss effect, and

the effect of personal control. The near-miss effect allows an individual to believe

that if they were “close to winning” on one gamble, then in the next they are sure

to win. This leads to inevitable “loss-chasing” behaviour. Breen and Zuckerman

(1999) show that loss-chasing is identified as a central characteristic of behaviour

in PGs and leads to more frequent involvement, increased persistence and elevated

monetary risk in an effort to salvage their losses. On the other hand, the effect of

personal control allows an individual to believe that their strategic actions and their

knowledge can influence the decision of a gamble, even though these beliefs have

no objective influence on the likelihood of winning. Clark (2010) emphasises that

these cognitive distortions lead to the irrational creation of skill-oriented behaviours

which promote excessive gambling.

The psychology and neuroscience literature have provided evidence into the

“why”, whereas the economics literature, particularly in the field of decision-making

under risk, may offer insights into the “how”. More specifically, it looks to identify

if there are preference-based, structural explanations for excessive gambling.

1.2.2 Economics

This subsection will provide a review of the literature on decision-theory, decision-

making under risk, existing attempts to model consumer behaviour parametrically,

and the limited literature on decision-theoretical approaches to explaining PGs risk

preferences.

Expected Utility Theory (EUT) (Bernoulli, 1738) laid the foundation for under-

standing decision-making under risk and uncertainty. EUT posited that an individ-

ual accepts risk not only by the evaluation of gains and losses, but by the utility

gained from the risky action itself. A key assumption being that marginal utility

diminishes as outcomes increase. Von Neumann and Morgenstern (1947) provided

a modification of EUT which suggested that under 4 axioms of rational behaviour,

an individual who is faced with a risky decision with some probabilistic outcome
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will act as an expected utility maximiser. Despite EUT’s prominence, its descrip-

tive validity has been questioned, with economic paradoxes arising that could not

be explained by its assumptions (Allais 1953). Kahneman and Tversky (1979) devel-

oped Prospect Theory, later adapted to Cumulative Prospect Theory (Tversky and

Kahneman, 1992) which was able to provide explanations for paradoxes that EUT

could not solve, and is recognised as the most complete model for descriptive de-

cisions under risk and uncertainty to date. CPT was formed under three primary

assumptions. The first, initially proposed in the Markowitz (1952) model of utility,

suggests that all outcomes must be evaluated relative to a reference point in wealth,

thereby analysing relative gains and losses rather than absolute gains and losses.

This allowed for the subjective transformation of absolute changes in wealth to rela-

tive changes in utility. The second assumption implies that one evaluates outcomes

using a value function characterised by both loss aversion and diminishing sensitiv-

ity, proposing that individuals tend to be risk seeking (risk averse) in the loss (gain)

domain, and that we experience greater disutility for a loss than the utility gained

for an equivalent gain. The third assumption, originally proposed by Preston and

Baratta (1948), suggests that there is a discrepancy between the objective probability

of an outcome, and the subjective probability we assign to it. Probability distortion,

refers to our subjective overweighting of smaller probabilities and underweighting

of large ones. CPT models this conjecture using a probability weighting function,

which transforms objective probabilities into decision-weights to capture these pref-

erences.

Tversky and Kahneman (1992) suggested that the value function be of a power

form, and provided an original probability weighting function. However, various

functional specifications are able to satisfy the assumptions of CPT, and the litera-

ture has sought to identify the utility and probability weighting functions that are

most empirically plausible and robust (Conte, Hey, and Moffatt, 2011), where the ef-

fectiveness of a functional form has been largely dependent on the decision-making

context.

Stott (2006) provided the first comprehensive examination of which specific forms

of CPT give the best explanatory account of experimental data, placing an emphasis

on accounting for stochastic choices. In other words, capturing the fact that humans
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make mistakes. The results of Stott (2006) identified that a model incorporating a

power value function with a single parameter risky weighting function by Prelec

(1998) provided the most accurate explanatory account of the data. The study em-

phasised that neglecting the parametric approach leaves one at an explanatory dis-

advantage when analysing risk preferences of any kind.

The results obtained from the existing literature concerning which parametric

forms of CPT provide the best explanatory account of data generally favour more

flexible specifications, however it is largely dependent on the structure of choice

tasks at hand. Camerer and Ho (1994) and Birnbaum and Chavez (1997) found that

the flexible power function provides a reliable and accurate representation of the

data, with Balcombe and Fraser (2015) highlighting that the power form was far

superior to the other forms they consider. However, Blondel (2002) found that the

exponential function overruled the power function, whilst Bouchouicha and Vieider

(2017) found the logarithmic utility function dominated the power and exponential

function in a setting where larger payoffs were involved.

Regarding the explanatory performance of various risky weighting functions,

Gonzalez and Wu (1999) found that the two-parameter function adopted by Prelec

(1998), and the ‘linear in log odds’ weighting function (Goldstein and Einhorn, 1987),

performed better than the single parameter functions of Tversky and Kahneman

(1992) and Prelec (1998). Although they highlight that their data structure could not

discriminate between the "linear in log odds" model and the two-parameter Prelec

functional form. The explanatory dominance of two-parameter weighting functions

is further supported by Bleichrodt and Pinto (2000) and Sneddon and Luce (2001)

who argue that two-parameter specifications outperform the single-parameter ones

as a result of their flexibility and ability to disentangle probability distortion from

elevation. Balcombe and Fraser (2015) also find that the two-parameter form of the

Prelec (1998) weighting function was always superior to its nested single-parameter

counterpart. However, Wu and Gonzalez (1996) who pool participant data and

then proceed to fit functional forms find that, whilst the two parameter functions

outperform their nested counterparts, when adjusting for degrees of freedom in

each model, it was in fact the single parameter Tversky and Kahneman (1992) risky

weighted function that outperformed the rest. This exemplifies the importance of
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penalising overly complex models.

Probability distortion is a primary driver of the CPT model, but what if subjec-

tive probabilities are not driving the preferences of PGs. Regarding the argument on

probabilistic education, Smith (2001) find generally (not in relation to problem gam-

bling) that subject error rates in mathematical questions regarding gambling odds

are greater than in standard probability questions. However, Delfabbro, Lahn, and

Grabosky (2006) find little evidence that young PGs have a poorer understanding of

objective odds on gambles, and found that on some tasks concerning binary odds,

the PGs were found to be more accurate than non-gamblers in their sample. Shead,

Callan, and Hodgins (2008) support these claims when struggling to find evidence

that PGs differ from non-gamblers in their understanding of objective probabilities.

Interestingly, Lambos and Delfabbro (2007) find that PGs score higher on a cognitive

bias examination, but were unable to attribute this difference to a poorer knowledge

of objective probabilities or numerical aptitude. Pelletier and Ladouceur (2007) high-

light that the importance of knowledge of mathematics as a protective factor against

excessive gambling is questionable.This does not mean we can rule out probabil-

ity distortion as a driver, but is a meaningful insight into the underlying drivers of

probability distortion.

However, given how little we know about the structural preferences of PGs, it

is important to account for non-CPT models of utility. Specifically, we need to ac-

count for models that do not include probability distortion as a primary driver of be-

haviour. Markowitz (1952) model of utility suggests that individuals use a fourfold

pattern of risk when making decisions over probabilistic outcomes. The framework

suggests that individuals are locally risk seeking in the gain domain over small mon-

etary outcomes, but as the stake size increases, individuals switch to risk aversion.

Whilst in the loss domain, individuals are initially risk averse over small monetary

losses, and then risk seeking as the loss increases. Scholten and Read (2014) highlight

that Markowitz’ conjecture has been overlooked in decision-theory analysis, with

probability distortion being too often the primary focus. However, empirical inves-

tigations have been able to provide support for parametric specifications that satisfy

the assumptions of the fourfold pattern of risk (Abdellaoui, Barrios, and Wakker

2007; Peel and Zhang 2012; Georgalos, Paya, and Peel 2021; Bruhin, Fehr-Duda, and
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Epper 2010; Vieider 2012). The current chapter will assess the explanatory power of

four CPT specifications and a Markowitz specification to gain further insights into

the decision-making processes of PGs.

To the best of our knowledge, there are only two existing attempts to estimate pa-

rameters of decision-theory models in the domain of PGs (Ligneul et al. 2012; Ring

et al. 2018). Both studies involve PGs and non-gambling controls making repeated

decisions between binary monetary lotteries and different sure outcomes. Ligneul et

al. (2012) find that PGs have globally shifted preferences towards risky options, and

that probability distortion differences were not significant. Whilst Ring et al. (2018)

find PGs were only more risk taking in the gain domain, with excessive probabil-

ity distortion prevailing predominantly in the gain domain. We further contribute

to this literature by applying more rigorous econometric estimation and prediction

routines, and by relaxing restrictive assumptions. Firstly, the two aforementioned

studies impose a representative agent assumption, whereby they assume all sub-

jects can be represented as a single agent, without accounting for within-group het-

erogeneity – we relax this assumption and carry out the analysis at the subject-level.

Secondly, both studies impose linear utility assumptions, which restricts the ability

to assess preferences over increasing or decreasing monetary amounts. We allow for

flexible parameters in the value function.

1.3 Experimental Data

We use the experimental data of Ring et al. (2018) which comprises of certainty

equivalents obtained from a choice menu task. The design was initially proposed

by Bruhin, Fehr-Duda, and Epper (2010), and was later adopted by Vieider et al.

(2015) and Bouchouicha et al. (2019). This section will outline the participant selec-

tion process and the experimental design.

The participant selection process included the recruitment of 74 participants with

a mean age of 38.9. This consisted of 25 problem gamblers, 23 habitual gamblers and
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TABLE 1.1: Ring et al. (2018) choice tasks.

Gains Losses
(5, 1/2; 0) (-5, 1/2; 0)
(10, 1/2; 0) (-10, 1/2; 0)
(20, 1/2; 0) (-20, 1/2; 0)
(30, 1/2; 0) (-30, 1/2; 0)
(30, 1/2; 10) (-20, 1/2; -10)
(30, 1/2; 20)
(20, 1/8; 0) (-20, 1/8; 0)
(20, 1/8; 5) (-20, 1/8; -5)
(20, 2/8; 0) (-20, 2/8; 0)
(20, 3/8; 0) (-20, 3/8; 0)
(20, 5/8; 0) (-20, 5/8; 0)
(20, 6/8; 0) (-20, 6/8; 0)
(20, 7/8; 0) (-20, 7/8; 0)
(20, 7/8; 5) (-20, 7/8; -5)

Notes: There are 14 tasks in the gain domain, and 13 in the loss do-
main.

a control group of 26 participants classified as non-gamblers. The participant selec-

tion procedure was based on the Diagnostic and Statistical Manual of Mental Disor-

ders (DSM-IV-TR). From the sample of applicants, 25 fulfilled at least three of the cri-

teria which classified them as problem gamblers, 23 fulfilled less than three but were

gambling at least once a week, being categorised as the habitual gambling control

group, and 26 were gambling less than once a month and were therefore recruited as

the non-gambling control group. The South Oaks Gambling Screen (SOGS) was im-

plemented to obtain a continuous variable for an individual’s gambling behaviour,

thus confirming that the three groups were significantly different with regards to

their SOGS scores. Finally, all three groups were matched based on characteristics

(independent of gambling behaviour) that potentially could have affected task per-

formance: e.g., income, age, education. This chapter uses the data points from 27

of their choice tasks, of which 14 were for pure gains and 13 for pure losses.1 An

overview of the decision task is illustrated in Table 1.1. The binary gambles are

modelled as (x, p; y) where a subject can receive a payoff x with probability p, or

payoff y with probability 1 − p.

1Ring et al. (2018) implement an additional two mixed tasks to estimate loss aversion, however as
our focus is parametric, and we do not wish to over-parameterise the model, we drop these tasks and
focus exclusively on risk preferences; namely utility curvature and probability weighting. Addition-
ally, Ring et al. (2018) find that the loss aversion parameter does not add much to the analysis.
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The choice task set up requires less tasks and less data points compared to tradi-

tional binary choice tasks. Instead of selecting a preference between two binary lot-

teries, subjects were asked to elicit certainty equivalents for each gamble. This was

done by making repeated decisions between binary monetary lotteries and varying

sure monetary amounts. The certainty equivalent represents the point of indiffer-

ence between the lottery and the sure amount. For example, in the first task in the

gain domain of Table 1.1, subjects were presented with an urn with eight balls inside,

numbered one to eight, and told any ball could be chosen at random with equal

probabilities. They were presented with a lottery whereby if balls one to four are

selected, the subject would receive €5, whereas if balls five to eight were selected,

they would receive €0. Subjects were then presented with a list of sure amounts,

ranging from the smallest outcome in the lottery to the largest outcome, so in this

case, from €0 to €5. Subjects were told to select, for each sure amount, whether they

prefer the lottery or the sure amount.2 Subjects could only switch at one point, and

the certainty equivalent was calculated as being the mean of the two values between

which they switched. For example, if at €2.50 and all lower amounts, the subject

preferred the lottery, but at €3, switched to preferring the sure amount, then the cer-

tainty equivalent would be 2.75. As illustrated in Table 1.1, over the 14 tasks in the

gain domain, the payoffs and probabilities varied such as to capture subject level

preferences for changes in outcomes and probabilities. In the loss domain, the tasks

followed the same structure but only for negative monetary amounts. In the gain

domain, payoffs varied between €0 and €30, whilst in the loss domain, payoffs var-

ied between -€20 and €0. In both conditions, probabilities vary by intervals of 0.125,

as the number of balls in the urn was always 8, but the number of balls with which

they could win or lose varied.

Whilst the payoffs were generally low, the relative increments in payoffs may

still have captured sensitivity to outcome changes, as changes from €10 to €30 could

have been viewed as triple the monetary payoff. Similarly, many casino gambles

involve relatively low payoffs. For these reasons, we see it important to relax the

linear utility assumption of Ring et al. (2018), and allow the parameter in the value

2It is likely that subjects would start by selecting the lottery, and as the sure amounts increase
towards €5, switch to preferring the sure amount.
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function to vary freely.

1.4 Preference Functionals

This section will present the 5 model variants under consideration. Parametrically,

Cumulative Prospect Theory’s predictions can be captured by combining two key

functions. The first of which, the utility/value function, evaluates the preference for

a monetary amount that will be given with some probability. The literature suggests

that the function generally exhibits an S-shape (Dacey 2003; Fishburn and Kochen-

berger 1979; Kahneman and Tversky 1979) which represents risk aversion for gains

and risk seeking for losses. Estimating the parameters of the value function allows

us to determine the convexity/concavity of the utility function. The CPT analysis

will focus on four value functions: Power, Exponential, Logarithmic and Linear. The

latter is a replication of the Ring et al. (2018) analysis. The preference functions will

be fit to the data at the subject level to determine the theoretical specification with

the most explanatory power.

The most widely used value function is the power function, primarily due to

its flexibility and facilitation of constant relative risk aversion (CRRA) preferences.

Kahneman and Tversky (1979) propose a power function in their development of

CPT. It forms the basis of a Cobb-Douglas utility function and has been praised on its

explanatory performance in the vast literature (Luce 1991; Tversky and Kahneman

1992; Wakker and Tversky 1993; Stott 2006; Balcombe and Fraser 2015). Equation 1.1

represents its form in the gain domain.

V(x)+ = xrG (1.1)

Where x is the monetary incentive and r is our parameter of interest; represent-

ing an individual’s constant relative risk aversion and is independent of x.3 r must

be greater than 0 to satisfy monotonicity (non-decreasing function) and we can elicit

3The subscript G represents the parameter value in the gain domain, and the subscript L, represents
the parameter value in the loss domain. We assume subjects will have different preference parameters
across the two domains. When we use r, we are referring to the generic risk coefficient independent of
the domain
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FIGURE 1.1: Power function plots

(A) r < 1 (B) r > 1 (C) r = 1

Notes: Plot for when r = 0.65, r = 1.35, and r = 1 respectively.

individual preferences by assessing how r deviates from 1. rG > 1 represents con-

vex preferences in the gain domain, suggesting that marginal utility increases with

payoff increases, and is associated with risk-seeking behaviour. rG < 1 represents

concave preferences in the gain domain, accommodating the notion of diminishing

marginal utility, and is associated with risk-averse behaviour. If r = 1, the subject

is characterised as an expected value maximiser, associated with risk neutrality and

linear utility. Equation 1.2 represents its form in the loss domain, where the same

parameter restrictions apply.

V(x)− = −(−x)rL , if x < 0 (1.2)

However, preferences are reversed, such that rL > 1 represents concavity and

risk-averse behaviour, whilst rL < 1 represents convexity and risk-seeking behaviour.

Figures 1.1a, 1.1b and 1.1c illustrate the power function for when r < 1, r > 1, and

r = 1 respectively.

Ring et al. (2018) impose a linear utility assumption, which is illustrated in Fig-

ure 1.1c. We aim to test the robustness of this assumption, and so in addition to the

flexible power function, we also test its nested counterpart, linear utility, as a sep-

arate specification. The linearity assumption suggests that the value function takes

the form V(x) = x.4

4This assumption neglects changes in preferences over outcomes, and resides in assuming any
changing risk attitudes are a result of probabilistic sensitivity.
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Certainty equivalent (CE) functions will be fitted to each parametric specifica-

tion. A CE refers to the amount of money a decision-maker is happy to receive so

as to be indifferent between a sure monetary outcome and the CPT utility of a gam-

ble. CE’s are advantageous in that they permit a stochastic structure to be developed

and allow for the quantitative measure of preferences, rather than relying solely on

binary choices. The flexible adjustment to subject-level preferences allows for the

estimation and prediction of the point at which a subject will switch from a lottery

to a sure amount. The CE’s are used directly to estimate CPT parameters. Mathe-

matically, the CE of a gamble can be interpreted as the inverse of the expected utility

of a gamble, as in equation 1.3 :

CE = V−1(EU) (1.3)

where EU = p · V(x) + (1 − p) · V(y). V(x) is the utility gained from winning,

V(y) is the disutility received from losing. Whilst p and 1 − p represent the corre-

sponding probabilities of each outcome respectively. The certainty equivalents in

the gain and loss domain are shown in equations 1.4 and 1.5.

ceg(eu) = eu
1

rG (1.4)

cel(eu) = −(−eu)
1

rL (1.5)

ceg is the CE for gains, and cel is the CE for losses. The second value function un-

der examination is the exponential function. This function is able to accommodate

increasing relative risk aversion (IRRA) and constant absolute risk aversion CARA.

Wakker and Tversky (1993) suggest that the value function should always take an

exponential form if preferences are invariant under the addition of a positive con-

stant to outcomes. It has, however, been known to have certain drawbacks in the

form of boundedness of utility. The function takes the form of equations 1.6 and

1.8 in the gain and loss domain, with equations 1.7 and 1.9 as their corresponding

certainty equivalents.

V(x)+ = 1 − e−rGx (1.6)
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ceg(eu) = − log(1 − eu)
rG

(1.7)

V(x)− = −(1 − erLx), if x < 0 (1.8)

cel(eu) =
log(1 + eu)

rL
(1.9)

Where r > 0 to satisfy monotonicity. However, under the assumption that r > 0,

we will only be able to elicit risk averse preferences in gains and risk seeking prefer-

ences in losses. To ensure we can recover the reverse preferences, whilst still ensur-

ing the function is non-decreasing, we follow Wakker (2010) and fit an alternative

form for when r < 0 such that we are able to elicit convex (concave) preferences in

the gain (loss) domain.5 Equations 1.10 and 1.12 are the functional form in the gain

and loss domain, with equations 1.11 and 1.13 as their respective certainty equiva-

lents.

V(x)+ = e−rGx − 1 (1.10)

ceg(eu) = − log(1 + eu)
rG

(1.11)

V(x)− = −(e−rLx − 1), if x < 0 (1.12)

cel(eu) =
log(1 − eu)

rL
(1.13)

This specification permits risk seeking preferences in gains, and risk-averse pref-

erences in losses, to be recovered. When r = 0, the model converges to linear utility.

Figure 1.2 illustrates the convexity and concavity of this function when r > 0 and

r < 0 respectively.

The third value function, well known as the first utility function, was proposed

by Bernoulli in the 18th century and takes a logarithmic form. The logarithmic func-

tion accommodates when incremental utility is proportional to incremental wealth

when measured as a proportion of existing wealth. Simply put, the wealthier an

individual is, the more likely they are to take on risk as long as the rewards are

5Note that Wakker (2010) show there are two ways of doing this. One way is to propose a new
parametric form as we show here, and another is to normalise the function over r, as we do with the
logarithmic function, at which point when r < 0, monotonicity is still satisfied. Both methods are
interchangeable and yield the same results.
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FIGURE 1.2: Exponential function plots.

(A) r > 0 (B) r < 0

Notes: Plots for when r = 0.075 and r = −0.075 respectively.

substantial enough (and vice versa). This function is also able to capture Increas-

ing Relative Risk Aversion (IRRA) and Decreasing Absolute Risk Aversion (DARA)

(Bouchouicha and Vieider, 2017). Although this function has not had as much suc-

cess as the power and exponential functions in the decision-theory literature when

stakes are generally lower, dependent on relative perceptions of payoffs, it still may

play a part in explaining the risk-attitudes of our subjects. Equations 1.14 and 1.16

illustrate the functional form in the gain and loss domain, and the CE′s are equations

1.15 and 1.17.

V(x)+ =
log(1 + rGx)

rG
(1.14)

ceg(eu) =
eeu − 1

rG
(1.15)

V(x)− = − log(1 − rLx)
rL

, if x < 0 (1.16)

cel(eu) = − eeu − 1
rL

(1.17)

Where when r > 0 (r < 0), the function is concave (convex) in gains and convex

(concave) in losses.6 Figure 1.3a and 1.3b illustrate the logarithmic function when

6Without normalising over r, whenever r < 0, monotonicity would not be satisfied, so normalisa-
tion is essential.
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FIGURE 1.3: Logarithmic function plots.

(A) r > 0 (B) r < 0

Notes: Plots for when r = 0.025 and r = −0.025 respectively.

r > 0 and r < 0 respectively.

Cumulative Prospect Theory assumes that a utility function is estimated in con-

junction with a probability weighted function to determine an individual’s subjec-

tive perception of probabilities. The weighted probability function transforms the

probability of obtaining the monetary amount into a decision weight that lies be-

tween 0 and 1. We combine the four aforementioned value functions with equation

1.18: the two-parameter weighting function by Prelec (1998).

w(p) = e−δ(− log(p))γ
(1.18)

Where γ > 0 and δ > 0. The lower bounds have been set to ensure the func-

tion is monotonically increasing. γ represents the curvature of the weighting func-

tion, whilst δ measures the elevation of the weighting function. We assume unique

weighting functions, and therefore unique parameters, in the gain and loss domain.

Gonzalez and Wu (1999) highlight that elevation is logically independent from cur-

vature, and that this should be reflected in two independent variables within the

weighting function. γ, the more commonly used parameter within the weighting

function, represents diminishing sensitivity, thus predicting how the function is con-

cave and then convex, and how subjects become less sensitive to probabilities as they

move away from the reference point probabilities (0 and 1). However, as Gonzalez
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FIGURE 1.4: Prelec (1998) two-parameter weighting function plot

Notes: Plot for when γ = 0.65 and δ = 0.8. γ represents probability
distortion, and δ represents probability elevation.

and Wu (1999) illustrate, this alone provides an incomplete account of the weighting

function, as it does not account for the level of overweighting or underweighting rel-

ative to the objective probability. A function could be concave and then convex, rep-

resented with an inverse S-shaped graph, but we do not know whether this is always

below the 45 degree line, above the 45 degree line, or cutting it at a certain point. It

is δ that captures the absolute value of the weighting function, which represents

global overweighting or underweighting of the probability scale. This represents

the attractiveness of taking risk in the chance domain, where, in the gain domain, a

higher (lower) value of δG represents a shifted downward (upward) weighting func-

tion, a more underweighted (overweighted) probability scale and thus a less (more)

attractive risk. However, in the loss domain, this higher δL represents a more attrac-

tive risk, as the underweighted probability scale makes losses feel less likely. Figure

1.4 illustrates a weighting function where γ = 0.65 and δ = 0.8.

Only the two-parameter function by Prelec (1998) will be fit to the experimental

data. We prioritise this functional form for various reasons: Firstly, due to the ex-

treme, but seemingly ambiguous decisions of problem gamblers, it is important to

model the individual preferences in the most flexible way possible. Therefore, we

wish to provide a specification that can disentangle probability distortion from ele-

vation (Gonzalez and Wu 1999; Abdellaoui, Vossmann, and Weber 2005; l’Haridon

et al. 2010). The literature has illustrated how the two-parameter specifications in
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the probability domain are advantageous when engaging in subject-level analysis.

Secondly, if CPT ends up having an explanatory advantage over models that neglect

probability distortion, pinpointing where in the weighting function this explanatory

power is coming from will contribute to a more holistic analysis. Thirdly, whilst

there are alternative two-parameter risky weighting functions, adopting the two-

parameter Prelec function will permit for more direct comparison of results with the

Ring et al. (2018) analysis. Bouchouicha and Vieider (2017) also confirmed that when

adopting alternative two-parameter functions, their results were unchanged, how-

ever Prelec’s function provided the best-fit to their data.7 This concludes the CPT

specifications included in the analysis.

As aforementioned, the literature suggests that PGs have an adequate under-

standing of objective probabilities in a gambling context, so it is important to assess

the descriptive validity of non-EU models that do not incorporate probability distor-

tion. Markowitz (1952) proposes a four-fold pattern of risk attitudes. For the current

analysis, we employ the parametric form and restrictions of an expo-power specifi-

cation used in the Georgalos, Paya, and Peel (2021) analysis. The expo-power func-

tion was originally proposed by Saha (1993) and has since been proven to capture

the assumptions of the Markowitz model of utility. Peel and Zhang (2012) demon-

strate that assuming a power value function, when the true data-generating process

is of an expo-power form, can lead to misleading implications regarding the prop-

erties of the value function and the degree of probability distortion. Equations 1.19

and 1.20 represent the functional form in the gain and loss domain respectively.

V(x)+ = 1 − e−αGxηG (1.19)

V(x)− = −(1 − e−αL(−x)ηL ), if x < 0 (1.20)

Where, as usual, the first equation is for the gain frame (x > 0) and the second for

the loss frame (x < 0). The power parameter, η, can be interpreted as a measure of

absolute risk aversion (η < 1 → DARA, η = 1 → CARA, η > 1 → IARA), and the

α parameter as a measure of relative risk aversion (α < 0 → DRRA, α > 0 → IRRA).

7We ran a separate horse race between other one and two parameter weighting specifications, but
the two parameter Prelec (1998) function was the most descriptive on all occasions, so we ignore the
other weighting functions in the proceeding analysis.
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FIGURE 1.5: Markowitz (1952) utility function

Notes: This plot represents the fourfold pattern of risk, where η =
1.75 and α = 0.05.

Georgalos et al., (2021) suggest that when η is above unity, or when the agent is

exhibiting IARA preferences, the expo-power function can be categorised as con-

sistent with Markowitz’s conjectures. Under their specification, with η > 1, the

agent is risk seeking over gains when ηG − 1 − αGηGxηG > 0, risk averse when

ηG − 1 − αGηGxηG < 0, and risk-neutral when ηG − 1 − αGηGxηG = 0. Under these

assumptions, if a participant has ηG > 1, they can be categorised as exhibiting pref-

erences that coincide with the Markowitz model of utility. That being, locally risk

seeking then risk averse as stakes increase in the gain domain, and vice versa in loss

domain. Figure 1.5 illustrates the Markowitz model of utility plot for η = 1.75 and

α = 0.05.

Equations 1.21 and 1.22 represent the corresponding certainty equivalents in the

gain and loss domain.

CEG(EU) =

(
− log(1 − eu)

αG

) 1
ηG

(1.21)

CEL(EU) = −
(
− log(1 + eu)

αL

) 1
ηL

(1.22)

The five aforementioned specifications will be fitted to the Ring et al. (2018) data

set to determine which model provides the best fit for each participant in terms of

descriptive and predictive capacity. Additionally, individual parameter estimates
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will be determined based on the data-generating process that is most compatible

with each individual’s decision-making process. The following section will provide

the econometric specification.

1.5 Econometric Specification

Our econometric specification comprises of two main components. The first uses

Maximum Likelihood Estimation (MLE) procedures to determine each models’ ex-

planatory power. The second formulates a Cross Validation routine to determine

each models’ predictive power using Leave-One-Out-Cross-Validation (LOOCV) tech-

niques.

As an additional extension to the Ring et al. (2018) analysis, we proceed to esti-

mate our models using MLE, rather than Non-linear Least Squares (NLS) due to the

advantages it has in terms of using distributional information. It has been shown

that NLS may be less efficient than MLE as it does not use information about the

distribution of the dependent variable (see Greene (2003)). Similarly, MLE has been

shown to produce more reliable estimates in external investigations (Patmanidis et

al., 2019). However, we do not expect differences in results between the two ap-

proaches to be statistically significant.

Similarly, we opt for a parametric approach over a non-parametric approach for

three key reasons. Firstly, given the small sample size, it will be easier to capture

variations in preferences using a parametric approach. Secondly, a key contribution

of our analysis is regarding the relaxation of homogeneity assumptions, so a para-

metric approach is required to highlight variations in our CRRA parameter. Finally,

as the literature on PG risk attitudes is limited, we wish to identify where underlying

characteristics stem from. A parametric approach can disentangle utility curvature,

probabilistic sensitivity, and probability elevation, such as to increase interpretabil-

ity of results.

The analysis will be based on the certainty equivalents calculated at the subject

level over each prospect. This allows us to recover quantitative measures regarding

when an individual will switch from a sure outcome to the risky gamble. Each model

will attempt to estimate parameters given the subject-level certainty equivalents,



26 Chapter 1. Decision-Theory Modelling of Risk Preferences in Problem Gambling

such as to determine a parameter set that maximises the likelihood of observing

the experimental data with some noise. We first develop a stochastic structure to

account for the individual mistakes in decision-making (Bouchouicha and Vieider,

2017). Equation 1.23 are the certainty equivalents predicted by each of our models.

ĉei = V−1(ws(pi) · V(xi) + (1 − ws(pi)) · V(yi)) (1.23)

Where the CE is a function of the win and loss utilities and their respective

weighting of probabilities. Note that for the linear utility specification, V(x) = x,

and under the Markowitz model of utility, w(p) = p. Individual choices are stochas-

tic, and subject-level decisions are subject to some degree of estimation error, so our

actual certainty equivalent, as shown in equation 1.24 will be equal to the CE’s pre-

dicted by our model, plus some error term.

cei = ĉei + ϵi (1.24)

This error term provides a degree of theoretical consistency that each participant

has over all choices made. Consistent choices (a smaller error) will bring the actual

certainty equivalent closer to that predicted by our models. We assume this error

term is normally distributed with mean zero ϵi ∼ N(0, σ2
i ).

To determine each model’s degree of accuracy, we need to estimate σ, the stan-

dard deviation, to deduce how much noise there is in the data for each participant.

When a model’s purpose is to simulate a process that generated the data, some of

the information will inevitably be lost in the process. A standard deviation that is

closer to zero, for a given set of parameters, corresponds to less noise, suggesting the

actual choices are closer to the theoretically optimal ones. To estimate the standard

deviation, we first express the probability density function (PDF), as in equation

1.25 for a given subject and prospect. The PDF is advantageous for this analysis, in

that its value at any point in the whole sample can provide a relative likelihood that

the value of the predicted random variable from the model will equal the variable

generated by the data.
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ψin(θ, σi) =
ϕ

σi

(
ĉei − cei

σi

)
(1.25)

The PDF ψ(.) , is expressed for a given subject n and prospect i, with ϕ being

the standard normal density function. The parameter θ represents the vector of pa-

rameters to be estimated (r, γ, δ, α, η) and σi represents the standard deviation. The

subscript i allows the error to depend on the specific prospect. We do this by al-

lowing it to depend on the difference between the high and low outcome in each

prospect: σi = σ|xi − yi|. By doing this, the error term can account for when there is

a larger gap between the high and low outcomes.

The various specifications are fit at the subject-level to avoid representative agent

violations (Navarro et al., 2006). The parameters are estimated by standard maxi-

mum likelihood procedures. By taking the product of all the density functions across

prospects for each subject, we obtain equation 1.26: the likelihood function:

Ln(θ) = ∏
i∈i,n

ψin(θ, σi,s) (1.26)

The subscript n captures the subject specific likelihood, whilst the subscript s on

the error term allows us to control for heteroskedasticity across the two domains, as

the precision parameters will be different for gains and losses. The log-likelihood

(LL) function, equation 1.27, is obtained by taking log of equation 1.26.

LL(θ) =
N

∑
n=1

log(Ln(θ)) (1.27)

The estimation of this function is referred to as the Maximum Likelihood Es-

timator (MLE), where the maximized parameter values therefore have the highest

likelihood of generating the observed data within the parametric constraints of the

given theory (Stott, 2006).8

We report a measure of goodness of fit, namely the Akaike Information Criterion

(AIC) (Akaike, 1973), to penalise models with more parameters. The explanatory

performance of models is affected by the number of free parameters it obtains, in

8All statistical analyses were performed using R Statistical Software (v4.3.1; R Core Team 2023).



28 Chapter 1. Decision-Theory Modelling of Risk Preferences in Problem Gambling

that under MLE, a more complex model will obtain a stronger, but potentially bi-

ased, measure of fit. AIC is an adjustment technique that accounts for the degrees

of freedom in the model. The AIC identifies which model is descriptively superior

rather than the likelihood of a model being true. The AIC calculates the model’s

prediction error by estimating the relative amount of information lost in any data

generating process, and thereby predicts the relative quality of a statistical model

for a given data set. It uses the maximised log-likelihood whilst accounting for the

number of free parameters in the model, therefore penalizing models that are over-

fitted. The AIC’s will be calculated manually using equation 1.28.

AIC = −2LL(θ) + 2k (1.28)

Where LL(θ) is the maximised log likelihood and k is the number of free param-

eters. After compensating for degrees of freedom, a lower value of the AIC indicates

a better fit to the data.

We estimate parameters in two settings. One in which we assume our parame-

ter estimates are identical in the gain and loss domain, and one in which we relax

this assumption to identify differences across domains. Whilst not estimating loss

aversion directly, we can indirectly identify an individual’s aversion to losses by es-

timating each parameter in the gain and loss domain separately. Additionally, we

wish to assess if a model’s performance is hindered by a homogeneous parameter

assumption. Finally, we look to identify the predictive performance of our models.

When model complexity is high relative to the number of tasks, estimation proce-

dures are susceptible to overfitting. This occurs when the model captures not only

the underlying patterns (signal) but also the random noise in the data, leading to po-

tentially misleading parameter estimates and results. The risk of overfitting is par-

ticularly pronounced when there are many parameters or when non-linear relation-

ships are permitted in the model. To address this issue, we utilise Leave-One-Out

Cross-Validation (LOOCV) to assess how well each model predicts out-of-sample

data.

LOOCV, the most robust and computationally expensive of the cross validation

methods (Stone, 1974), works by first dividing the data set into folds (subsets). These
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comprise of the training sets and the test set. We use MLE to retrieve parameter esti-

mates from the data in the training sets. We then fit these parameters to our various

models to identify their accuracy in predicting the results from our test set. In our

specific case, there are 27 data points, and as LOOCV is a k-fold cross validation

classification in which k = n, we have 27 folds. Therefore, each iteration consists of

estimating on 26 data-points, and using the results to predict the final data point. 27

iterations take place, to ensure each data point acts as the test set. For each subject,

n, we calculate the mean squared error (MSE) of the prediction, for each iteration, j,

using equation 1.29.

MSEnj = (CEnj − ĈEnj)
2 (1.29)

Where CE represents the actual certainty equivalent for the kth element of the

data set, and ĈE represents the certainty equivalent predicted by the model using

the estimates from the training set. MSE assesses how close estimates or forecasts

are to actual values. The squared element of the function ensures our trained mod-

els have no outlier predictions with huge errors by placing a larger weight on said

errors. The mean of each subjects 27 MSE’s is our statistical metric to assess a models

predictive capacity, with a lower MSE representing a more accurate prediction and

a more reliable data generating process.

1.6 Results

This section will provide the results from the three primary focuses of this chapter.

Firstly, we will provide the AIC results from all models at the subject level in the

analysis where we assumed homogeneity over gain and loss domain parameters,

and compare these to the AIC results from all models at the subject level where we

assume heterogeneity in gain/loss parameters. This will highlight the importance

of allowing for heterogeneity across domains. We do not report the standard log-

likelihood coefficients due to our models having different numbers of parameters,
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so to reduce the chances of selecting the wrong optimal model as a result of over-

fitting, we focus primarily on the AIC results which were derived from our log-

likelihood coefficients. Secondly, we will report the MSE results from our cross-

validation prediction routine to identify differences in-sample and out-of-sample.

As a key element of our analysis is to assess the benefits and hindrances of assuming

linearity in utility, we will also report two equivalence tests for our Power model and

our Linear specification. These will comprise of a likelihood ratio test and a data

simulation routine to identify whether individuals adopt linear utility and whether

these assumptions are replicable. Following the model comparison analysis, we will

recover parameters to identify statistically significant differences across groups in

terms of individual risk preferences.

1.6.1 Homogeneity Vs Heterogeneity in Gain and Loss Domain

Starting with our AIC analysis in which we impose homogeneity in risk parameters

across the gain and loss domain, we find that the Power specification’s explanatory

power dominates substantially across subjects and groups. For the Problem Gambler

group, 68% of participants were best categorised with a Power specification, whilst

the Exponential Model and Markowitz model best explained 12% of the Problem

gamblers. The linear utility model was only able to explain the behaviour of 8% of

the problem gamblers, and the Logarithmic model failed to explain the behaviour of

any of the problem gamblers.

For the Habitual gambler group, again the Power specification came forward as

the leading data generating process, accounting for 69.57% of this subgroup, fol-

lowed by the Exponential model, explaining 13.04% of the behaviour in this group,

whilst the Linear Utility Model and the Markowitz model accounted for 8.7% each

of the groups behaviours. The results of the Control group follow the same pattern,

with the Power model explaining the behaviour of 62% of the subjects, followed

by the Exponential model, Linear, and Markowitz model with percentages 15.38%,

15.38% and 7.69% respectively.

We find that these results alter substantially when we allow for heterogeneity in

risk preferences across domains. For the PG group, now 40% are best categorised

by the Exponential specification, 36% with the Power, 16% with a Markowitz model,
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FIGURE 1.6: AIC Results

Notes: Percentage of individuals in each group that are best described
by each model based on AIC results. * represents the same gain/loss

parameter. ** represents different gain/loss parameters.

and 8% with linear utility. Whereas in the HG group, the Linear utility model dom-

inates in terms of descriptive power, accounting for 34.78% of the subjects, with the

power and exponential models accounting for 26.09% of the subjects each, and the

Markowitz model explaining the behaviour of 13.04% of the subjects. Again, the

linear specification dominates for the Control group, accounting for 38.46% of the

subjects’ behaviours, whilst the power model can only explain that of 26.92% of the

subjects, Markowitz explaining 23.08% and the Exponential accounting for 11.54%

of individual behaviour. Figure 1.6 illustrates the results of both the homogeneity

and heterogeneity analysis across each of the 3 groups.

With regards to overall explanatory power and whether it is more effective to

assume heterogeneity or homogeneity in gain/loss parameters, we utilise the like-

lihood ratio test (LRT) between each model that assumes heterogeneity in risk pref-

erences across domains, and its nested counterpart which imposes a homogeneity

assumption. For all 5 of our models, 100% of individuals were better characterised

by a heterogeneous model, with p-values of 0.00 showing for all participants over

all 5 models. We therefore highlight the importance of accounting for heterogeneity

in risk preference parameters across domain. For this reason, our analysis from here

on will relax the homogeneity assumption, and we will only report results from our

heterogeneous specifications.

Throughout the analysis, we identified very similar AIC results for the Power,
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FIGURE 1.7: LOOCV Results

Notes: Percentage of individuals that are best described by each
model based on our cross validation prediction results.

Linear, and Exponential models. We therefore assess the predictive capacity of each

model in case it can illuminate additional insights about the data-generating pro-

cesses.

1.6.2 Out-of-Sample Prediction

Our MSE results, from our LOOCV analysis, show that the Exponential Model, the

Logarithmic Model and the Markowitz specification all struggled to predict the CEs

of subjects, and it was the Linear utility specification and the Power Specification

that prevailed. We find that for the PGs, the linear model and the Power model were

joint top in their predictive power, each predicting the behaviour of 44% of the sub-

jects with the highest accuracy. However, when analysing the HGs and the Control

Group, the linear specification marginally dominates, predicting the behaviour of

52.17% and 61.54% of these groups respectively with the smallest error. The Power

specification accounted for 39.13% of subjects in the HG group, and 38.46% of those

in the Control group. Figure 1.7 illustrates the results from our MSE predictions.

Interestingly, although the exponential model seemed to work well in an ex-

planatory setting, it struggled in prediction; perhaps due to overfitting, which is

likely given the small sample size and limited data points. The majority of subjects

are best explained by either a flexible power utility model, or its nested counterpart,

the linear utility model.
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1.6.3 Equivalence

The similarity in log-likelihoods, AIC statistics, and MSE statistics across the power

model and linear utility model suggests there is potential equivalence between the

two specifications. That being, subjects characterised by the power utility function

may obtain a CRRA parameter that is equal to 1. If this is the case, then we can

confirm that the the linear utility assumption is robust. In this section we test for

equivalence to identify if this holds for all subjects. If it does not hold for all, it

is safer to implement a flexible power function, as if any subjects are characterised

with a non-linear value function, imposing linear utility will inflate their probability

weighting estimates and restrict the reliability of results.

We provide two equivalence measurement techniques. Firstly, we provide the

results of a likelihood ratio test to identify if there are statistically significant dif-

ferences between the Linear utility model and the Power model in terms of their

maximum likelihood coefficients. We then follow Pachur, Suter, and Hertwig (2017)

and use simulations to determine equivalence. This involves estimating parame-

ters using the power model, simulating synthetic data using these parameter coef-

ficients, and then using the synthetic choice data to estimate parameters from the

linear utility model. If simulated estimates are identical to that of the actual esti-

mates, it confirms the hypothesis of equivalence for these subjects (Pachur, Suter,

and Hertwig, 2017), providing support for linear utility. Additionally, it would con-

firm that adopting a flexible power function would not bias the weighting function

parameters for those characterised as linear utility maximisers.

The likelihood ratio test (Vuong, 1989) is a hypothesis test that allows you to

select the "best" model between two nested models. The test uses the log-likelihood

values, at the subject level, to determine if the power model is the statistically more

probable data-generating process. Let us denote the log-likelihood for subject n for

the power model as LLnPower(θ), and the log-likelihood for subject n for the linear

model as LLnLinear(θ). Under the null hypothesis that the true utility function is

linear, we compute the log-likelihood test statistic, Λ, at the subject level as:

Λn = −2 (log LLnLinear(θ)− log LLnPower(θ)) (1.30)
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where Λ follows a chi-squared distribution with degrees of freedom equal to

the difference in the number of parameters between the two models. In our case,

this is 1, Λ ∼ χ2(1). Our likelihood ratio tests show that for 45/74 of the subjects,

the power model was not significantly better than its nested linear utility model

(p > 0.05). For these subjects, we want to test whether their risk aversion parameter

(r) is significantly different from 1 to confirm that their utility is in fact linear. To do

this, we calculate confidence intervals (CI) in the gain and loss domain:

CI = r ± zα/2 · SE(r) (1.31)

where zα/2 ≈ 1.96 is the critical value corresponding to the 95% confidence in-

terval (α = 0.05), and SE corresponds to the error term on r, the risk aversion pa-

rameter. We find that 41 of the 45 participants in the gain and loss domain had

confidence intervals surrounding one. This suggests there are no statistically signif-

icant differences between the power model and the linear utility model for 41/75 of

the subjects.

Finally, for our simulation routine, we estimate parameter sets (θP) using the

power model (P), and simulate synthetic data, DPS, using θP. We then estimate pa-

rameters from data set DLS, using the linear utility model (L). This it to identify if

adopting a power utility function, when an individual has linear utility, biases the

parameter estimates of the probability weighting function. Comparing the simu-

lated estimates to the original parameter estimates of the linear utility model, we

find that p > 0.7 for all parameters of interest (γG, γL, δG, δL). This confirms equiv-

alence, and that implementing a flexible power function will not bias the weighting

estimates. 9

1.6.4 Parameter Estimates

This section recovers and analyses parameter estimates using the Power model. We

decide to utilise the power utility function for all participants for 3 main reasons:

9Additionally, we run a parameter interval test over the full sample to see if the absolute difference
in the parameter values is less than 0.05, we get that γG is equivalent for 61 participants, γL is equiv-
alent for 66 participants, δG for 62 participants, and δL for 69. Therefore for the majority of, but not
all, subjects, a linear utility assumption would not bias the weighting function parameter estimates.
However, it does restrict the identification of outcome sensitivity, where these preferences are likely to
have been picked up by the precision parameters.
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TABLE 1.2: Summary Statistics: µ

Parameters Group µ Welch two sample t-test p-value

PG HG C PG vs HG PG vs C HG vs C

γG 0.548 0.823 0.765 0.042** 0.073* 0.654

γL 0.7079 0.721 0.785 0.459 0.27 0.319

δG 1.03 1.079 1.368 0.408 0.039* 0.0614*

δL 1.2721 0.8574 0.8966 0.015** 0.013** 0.6037

rG 1.982 1.215 1.408 0.07* 0.126 0.776

rL 1.2582 0.872 0.998 0.021** 0.071* 0.828
Notes: Mean parameter values, µ, for each subgroup and subsequent
t-test p-values for group comparisons. * indicates statistical signifi-
cance at the 5% level, and ** indicates statistical significance at the
10% level. Again, the subscript G represents the gain domain, and L,

represents the loss domain.

(1) The linear utility model is a nested counterpart of the power function, so even

if individuals adopt linear utility, this will still be captured in the power model. (2)

Using both the linear model and the power model for estimation based on each in-

dividual’s most accurate data-generating process could lead to inconsistent results.

This is because slight deviations from 1 in our r parameter for subjects with lin-

ear utility may be transferred to the weighting parameters, leading to inconsistent

and incomparable results across subjects and groups. (3) If we use the linear util-

ity model for all subjects, those better characterised by a power value function may

have probability weighting estimates that are biased and overfitted.

The analysis will focus on identifying statistically significant differences between

the three groups in terms of their levels of risk aversion and their subjective per-

ceptions of probabilities (distortion and elevation). In doing so, we can attempt to

uncover the cognitive patterns associated with gambling addiction.

Table 1.2 provides the mean parameter values for each group, as well as the p

values from our Welch two-sample t-test in order to identify if any group differences

are statistically significant.

Given that we find large variations in parameter estimates within-groups, in Ta-

ble 1.3 we report the median values for the preference parameters, as well as the p

values from a Wilcoxon signed rank test (Wilcoxon, 1992).
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TABLE 1.3: Summary Statistics: Median

Parameters Group median Wilcoxon signed rank test p-value

PG HG C PG vs HG PG vs C HG vs C

γG 0.455 0.852 0.75 0.057* 0.0674* 0.7868

γL 0.89 0.764 0.721 0.718 0.947 0.756

δG 0.837 1.045 1.193 0.724 0.048** 0.173

δL 1.289 0.843 0.91 0.044** 0.074* 0.521

rG 1.019 1.059 1.25 0.592 0.99 0.2412

rL 1.288 0.95 1.014 0.052* 0.089* 0.383
Notes: Median parameter values for each subgroup and subsequent
Wilcoxon signed rank test p-values for group comparisons. * indi-
cates statistical significance at the 5% level, and ** indicates statistical
significance at the 10% level. Again, the subscript G represents the

gain domain, and L, represents the loss domain.

Gain Domain CRRA

Contrary to the assumptions of Ring et al. (2018), who first run their parametric anal-

ysis with a linear value function, and then with r = 0.5 and r = 0.75 to confirm the

robustness of their assumption, we find that, with a flexible power value function,

most participants exhibited convex functions in the gain domain (rG > 1), suggest-

ing that marginal utility does not diminish as payoffs increase, and that all groups

were generally more risk seeking than risk averse. Implementing a linear utility

assumption, or only testing where r < 1 will therefore restrict the analysis in pick-

ing up any risk seeking preferences, and consequently transfer these effects to the

probability weighting parameters.

From Table 1.2 we can see that convexity was much more pronounced for the

problem gamblers group, who had a mean rG value of 1.98, as opposed to slightly

more "rational" values of 1.21 and 1.41 for our habitual gambler group and control

group respectively. However, to account for extreme parameter values that some

subjects exhibited, we report the median values, and find that the PG, HG and C

group have median rG values of 1.019, 1.059, and 1.25 respectively. Clearly there was

substantial heterogeneity within each of the groups regarding the CRRA parameter
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in the gain domain, especially in the PG group, where some of the participants ex-

hibited extreme risk seeking behaviour, thereby inflating the group mean. This pro-

vides further support for our subject-level analysis, and is likely why statistically

significant differences between the groups did not prevail. Nonetheless, Figure 1.8a

highlights the convexity in the CRRA function, and illustrates the increased sensitiv-

ity some of the PGs exhibited in the gain domain. As aforementioned, this was not

the case for the whole group, therefore the subject level analysis, as well as relaxing

the linear utility assumption, was appropriate to pick up on this behaviour.

Loss Domain CRRA

When focusing on the loss domain, however, statistically significant difference did

prevail and we find that the PGs have more convex CRRA functions, suggesting an

increased sensitivity to losses, which is widely associated with risk aversion. We can

see that the mean rL value for the problem gamblers was 1.26, as opposed to the neu-

tral/slightly concave values of 0.872 and 0.998 for the habitual gamblers and control

group respectively. The median values coincide with the means, whereby the PGs,

HGs and Cs have median parameter estimates of 1.28, 0.95, and 1.01 respectively.

This result is illustrated in Figure 1.8b. These results combined, emphasise that

some, but not all, PGs are characterised with a higher sensitivity to outcome changes

across all domains. Figure 1.8a and 1.8b illustrate the utility functions for each group

in the gain and loss domain.

Weighting function gains

With regards to the probability distortion parameter, γG, in the gain domain, on av-

erage the PG group had a lower mean and median values (0.548, 0.455) than the

HG and C group (0.832, 0.852; 0.765, 0.75), suggesting that PGs distort subjective

probabilities to a larger degree than the HG and C group, thus exhibiting a more

pronounce S-shape in their weighting function. A difference that is statistically sig-

nificant in both cases. With regards to the probability elevation parameter in the gain

domain, we do not find many differences. The PGs have a slightly lower mean and

median values (1.03, 0.837), than the HG (1.079, 1.045) and C (1.386, 1.193) groups,

but this difference is only statistically significant between the PG and the C group.
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FIGURE 1.8: Mean CRRA plots.

(A) Gain Domain (B) Loss Domain

Notes: Utility function plots of the mean CRRA parameters for each
group in the gain and loss domains. Note the result in the gain do-
main is not statistically significant, but we provide the plot to illus-

trate the extreme risk seeking behaviour of some of the PG group.

Weighting function losses

In the loss domain, when looking at γL, we find no systematic differences between

the groups, which reinforces the results of Ring et al. (2018). However, we do find

systematic differences between the groups when looking at δL. The problem gam-

bler group tend to underweight the probability of a loss at all probability ranges,

represented by a higher mean and median δL value (1.27, 1.29), than the HG and C

groups (0.86, 0.84; 0.9, 0.91). This finding suggests that problem gamblers find the

risks in the loss domain more attractive than non-gambling control groups. Figure

1.9a and 1.9b illustrates this result by plotting the mean parameter values for our

weighting functions.

Comparing results to the Ring et al. (2018) analysis

Comparing our results to those found by Ring et al. (2018), we support their results

regarding probability distortion in the gain and loss domain, however we find some

interesting differences in other areas. Firstly, in the gain domain, whilst Ring et al.

(2018) find that PGs overweight the whole probability scale, we find no systematic

difference in probability elevation between the groups. On the other hand, in the loss
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FIGURE 1.9: Mean weighting function plots.

(A) Gain Domain (B) Loss Domain

Notes: Weighting function plots for group means of the distortion
and elevation parameters in the gain and loss domain.

domain, they find no difference in elevation, however, we find that PGs significantly

underweight the whole probability scale.

These contrasting results are likely due to one of three reasons. (1) The Ring et al.

(2018) parametric analysis was done using NLS, whilst we adopt maximum likeli-

hood estimation routines. (2) They assume a representative agent for each group,

whilst our analysis accounts for heterogeneity at the subject level. (3) They impose

a linear utility assumption, meaning any subject level deviations from linear utility

are likely to be picked up by a parameter in the weighting function. We relax this

assumption.

1.7 Discussion

It is evident that problem gambling, as an impulse-control disorder, entails a great

degree of ambiguity and irrationality in decision-making, therefore if we wish to

understand what characterises their preferences, our modelling and estimation pro-

cedures, as well as our experimental designs, need to be exceedingly robust.

With regards to our functional form analysis, following our Maximum-likelihood

estimation routine, accounting for overfit models using the AIC criterion, a cross-

validation routine to understand predictive power, and two equivalence tests, we
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find that the majority of subjects, across all groups, are best characterised with ei-

ther a variable power value function or its linear nested counterpart. Our parame-

ter analysis and group-comparisons find that PGs are more sensitive to changes in

monetary payoffs in the loss domain than non-gambling controls. Controversially,

this suggests that PGs receive a greater disutility from increases in losses than non-

gamblers. Intuitively, this makes sense, as the focus of gambling is to acquire a desir-

able gain, thus when dealing with pure losses, those that are more familiar with the

feeling of losses, may be more inclined to try and avoid them. In the gain domain,

we find that on average, the three groups do not differ much in their subjective utili-

ties of varying monetary amounts, however we do find that a proportion of the PGs

exhibit particularly high sensitivity to gain amounts. This heterogeneity within the

PG group is not a surprising finding, as the drivers, and therefore characteristics, of

the disorder are likely to differ between different PGs. In this case, it is likely that

for some in the group, their decisions are highly influenced by their risk preferences,

whilst for others, their disorder may be influenced by external factors. We also find

that PGs, when engaging in risky decisions with pure gain amounts, distort prob-

abilities more than non-gamblers. That is, they distort probabilities closer to 0 and

1 more. Additionally, in the loss domain, PGs significantly underweight the whole

probability scale more than non-gamblers. We can think of this as a downward shift

in the weighting function, and represents more risk-seeking behaviour. Abdellaoui,

Vossmann, and Weber (2005) find there was more elevation for loss probabilities

than for gains. A result that coincides with those of our HG and C groups, but op-

poses our findings for the PG group, which suggests that this variable may be an

influential characteristic in problem gambling.

We are particularly interested in the results from the loss domain, as we find

that PGs are more sensitive to outcome changes, but also underweight the proba-

bility scale. Again, whilst this may seem contradictory, when we disentangle the

assumptions that the parameters impose, it provides interesting implications. Com-

bined, these results suggest that PGs have a great disutility for monetary amounts,

however, their subjective perceptions of the likelihood of these losses occurring is

distorted, leading them to take more risks in an attempt to avoid the high loss, even

though the disutility they would receive if they were to lose would be of a greater
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magnitude. A combination of loss aversion and risk-seeking behaviour may be driv-

ing their risky choices.

In addition to contributions in the realm of PGs risk attitudes, we provide a num-

ber of methodological contributions to the literature. Firstly, we emphasise the risks

of imposing restrictive assumptions on structural models; namely linear utility. Al-

though the majority of subjects exhibited linear utility, there were still a large number

of subjects who’s CRRA parameters deviated from one. Imposing this assumption

therefore disregards the heterogeneity of preferences that different individuals have,

and may result in this behaviour being picked up by the probability weighting pa-

rameters. Even though the experimental payoffs were particularly small, there were

still relative increments which can pick up relative attitudes towards monetary in-

creases. A flexible parameter approach allows the model to vary freely, thus not re-

stricting a holistic analysis of behaviour. Especially given the volatility of gambling

disorders, we see a flexible parameter approach as imperative, which is supported

by the increased sensitivity to loss amounts that the PG group exhibited in our anal-

ysis.

Secondly, we recommend the use of subject-level estimation over imposing a rep-

resentative agent assumption. Whilst this is still an ongoing debate in the literature

(Kirman 1992; Nilsson, Rieskamp, and Wagenmakers 2011, pg. 87), due to the lack of

information we have on the risk attitudes of PGs, assuming they are all characterised

by the same decision-making process could be restrictive. In our analysis, especially

in the gain domain, we find that there is significant heterogeneity within PG group.

Pooling individuals will likely restrict the identification of within-group differences.

Thirdly, we highlight the benefits of a parametric analysis in this context. Parametric

approaches are able to account for the stochastic choices that individuals make, and

can disentangle the risk-preference parameters that provide unique implications to

subject’s decisions. Finally, we highlight the importance of assuming different pref-

erence parameters in the gain and loss domain, as subject level preferences varied

substantially across the domains.

On the discussion of experimental designs, Ring et al. (2018)’s introduction of

a third control group (HG’s), allowed for a more precise investigation into how
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psychological disorders influence choice. The identification and separation of reg-

ular gamblers from those with a disorder permitted the direct assessment of PG

behaviour. To the best of our knowledge, it is the only available data set to have

done so. It would be interesting to explore how the same treatment group set up

would operate with higher payoffs and multi-outcome choice tasks, such as to gain

a more comprehensive understanding of the underlying differences between the

groups. Fehr-Duda and Epper (2012) suggest that the primitive nature of certain

choice tasks may hinder a model’s ability to disentangle utility curvature from prob-

ability weighting. Our results further highlight that we require designs that are also

able to disentangle probability distortion from probability elevation. It may be that

multi-outcome decision tasks are required in order to robustly disentangle the three

variables.

As we wanted to avoid over-parameterisation, our analysis did not involve mixed

tasks, therefore we were unable to directly estimate loss aversion. However, given

our findings, it would be interesting to estimate a loss aversion parameter in a more

holistic choice task, with multiple mixed gambles, to determine where significant

differences prevail when gains and losses are at stake simultaneously. An analysis

of gains and losses separately may only capture a fraction of the broader PG be-

haviour, as most real-world gambles are associated with potential gains and losses

simultaneously. Nonetheless, we are still able to provide valuable insights into their

decision-making processes.

The purpose of this research was to tackle both the methodological and policy

implication issues involved in the study of pathological gambling. We therefore

conclude by highlighting the implications that our results provide with regards to

the psychological/ medical issue at hand. Takahashi et al. (2010) have delivered

essential findings regarding individual risk preferences and the neuro-biological na-

ture of the disease. Using positron emission tomography, they directly investigated

whether dopamine D1 and D2 receptors in the brain are associated with the trans-

formation of probabilities into decision weights. They found that individuals with

lower striatal D1 receptor density show a more pronounced overestimation of low

probabilities and underestimation of high probabilities. This could explain in part

as to why pathological gamblers are more sensitive to changes in probabilities in the
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gain domain, thus providing an explanation for their irrational, overly optimistic

nature in an actuarially unfair gambling setting. Moreover, D1 receptors, a natural

regulator of neuronal growth and development responsible for the transmission of

signals between neurons, are believed to be released when certain drugs are taken,

and, when dis-functioning, can cause different diseases and disorders, including

addiction (Mishra, Singh, and Shukla, 2018). The fact that our store of dopamine de-

creases with age also beckons for age as a variable to be included in future studies.

On the other hand, with regards to monetary rewards, Adinoff (2004) looks into

the brains reward system, particularly the mesolimbic pathway, which plays a cru-

cial role in processing rewards and punishment. The study suggests that addic-

tion is associated with heightened sensitivity or dysregulation in this pathway. This

heightened sensitivity might lead to increased responsiveness to gambling-related

rewards/losses, contributing to the addictive behaviour, and providing an explana-

tion as to why we find that PGs have an increased sensitivity to outcome changes

loss domain, and why some PGs have extreme sensitivity to outcome changes in

the gain domain. Interestingly, several neuro-economics studies have proposed that

serotonin and dopamine affect the curvature of the CPT value function (see Berns,

Capra, and Noussair 2007; Takahashi 2008; Zhong et al. 2009).

Finally, it is interesting to reflect upon our finding that PGs had an increased

sensitivity to both outcomes and probabilities in the loss domain, suggesting indirect

loss aversion with risk seeking tendencies. Due the loss domain not entailing any

gains, there is no thrill or reward-seeking potential, and therefore they may be more

loss averse than non-gamblers. Note, we are not implying gambling addiction is

directly associated with a higher sensitivity to losses, as addiction is not a static

problem, it comes from a dynamic sequence of events that leads to vulnerability.

In a static environment, there can be no "loss chasing", which is well recognised as

a driver of gambling addiction (Bibby, 2016), however what we can infer is that it

is not loss chasing alone that characterises PG behaviour, as in a static environment,

increased disutility prevailed for these individuals. Future research calls for the need

to assess these preferences in a dynamic setting that includes mixed gambles such

that we can estimate loss aversion and see how risk seeking behaviour manifests

over time.
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Our findings on the sensitivity problem gamblers have to monetary rewards al-

lows us to provide meaningful policy implications. Increased regulation regarding

reward mechanisms to limit the intensity or frequency of reward-based stimuli may

reduce these effects. Similarly, marketing regulations on tighter restrictions on gam-

bling advertising, especially concerning the use of reward-based messaging, could

help early-stage addicts by mitigating this impact on potentially vulnerable individ-

uals. Whilst with regards to our finding that PGs distort probabilities more in the

gain domain, we advocate for policies that require gambling establishments to pro-

vide clearer and more transparent information about the probabilities of winning

or losing, as well as for marketing to avoid the use of misleading or exaggerated

claims that could reinforce distorted probability perceptions. Due to the subcon-

scious nature of probability distortion, reinforcing the correct objective probabilities

may mitigate some of the effect.

The combination of behavioural economics, psychology, and neuroscience has

potential for ground-breaking discoveries regarding how and why PGs gamble. This

analysis has filled a gap in the existing literature whilst creating new pathways for

future research in terms of measurement procedures, elicitation tasks and a deeper

understanding of the disorder. Risk preference analysis is able to compliment exist-

ing psychological findings in identifying the patterns of choices that PGs make, and

how this may be influencing the addiction.
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Abstract

This chapter investigates dynamically inconsistent choices in decision-making un-

der risk, based on the Barberis (2012) Casino Gambling Model (CGM). The CGM

posits that individuals differ in their awareness of the discrepancy between their in-

tended strategies and actual choices, and their ability to commit to these strategies.

The model classifies subjects into two broader types: Naive, and Sophisticate. Our

three-stage experimental design tests the model’s theoretical predictions for each

type, examining individual dynamic inconsistencies, awareness of self-control is-

sues, demand for pre-commitment, and the impact of semi-binding pre-commitment

strategies on financial welfare. While some subjects align with the model’s theo-

retical assumptions, the majority exhibit behaviour that represents a merger of the

original type classifications. We propose a new type classification and generate the-

oretical predictions for this group. We find higher levels of dynamically inconsis-

tent behaviour than recent studies, both when commitment is, and is not, available.

We show that financial welfare increases with commitment, but only for agents who

would engage in the risky action regardless of commitment availability. Overall, our

findings, along with those from existing studies, suggest that commitment devices

fostering intrinsic motivation may be more effective than those imposed extrinsi-

cally.
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2.1 Introduction

In the intricate landscape of human decision-making lies the everlasting discrepancy

between professed intentions and subsequent behaviours. This inherently complex

phenomenon is regularly referred to as the intention-action gap in the behavioural

science and psychology literature. As humans, we have our own best intentions at

heart, but for some reason, we have an innate inability to stick to ex-ante strategies

or plans that we put in place to optimise our lives. We put in place a cognitive plan

to eat healthily and exercise more, yet we find ourselves eating chocolate and binge

watching our favourite programme. We express our intentions to want to save more,

invest more wisely, or stick to a budget to achieve our financial goals, yet impulsive

spending fosters an immediate deviation from this plan. The psychology literature

has prioritised understanding the cognitive drivers of this behaviour, traditionally

arguing that this “intention-action gap” is a result of self-control, temptation, and

underlying emotional states (Gul and Pesendorfer, 2001). The economics literature,

on the other hand, has sought to characterise these choices based on the expected

utility of competing outcomes, as well as the subjective probability of achieving the

desired goal, to provide context-based explanations of our inconsistent behaviour.

Traditionally, economic theory has been based on the normative assumption of

rationality, suggesting the representative agent will act in exact accordance with

their self-interest. This assumption of “Homo Economicus” has been largely cri-

tiqued (Thaler, 2000), with many empirical and experimental studies providing ev-

idence to oppose these assumptions. Amidst the assumptions of classical economic

theory lies the principle of dynamic consistency, suggesting that a decision-maker

will follow through on a predetermined plan. Multiple experimental studies have

provided evidence of violations of this principle (Cubitt, Starmer, and Sugden 1998;

Busemeyer et al. 2000; Nebout and Dubois 2014), and empirical observations have

shown that these violations play a large role in gambling and investment markets

(Barberis and Xiong, 2009). This behaviour is defined as dynamic inconsistency (DI),

reflecting a changing nature of economic agent’s preferences over time (Moloi and

Marwala, 2020), leading to deviations from initial strategies, and making one sus-

ceptible to intertemporally sub-optimal decisions.
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This chapter studies dynamically inconsistent behaviour in decision-making un-

der risk. When deciding whether to take on a risk, our decision is based on whether

the expected outcomes are more desirable than doing nothing at all. In order to

assess the expected outcomes, we seek to generate a decision-making strategy that

generates a positive expected-outcome distribution. With this strategy in mind, we

have cognitively minimised our potential losses, making the risky action more at-

tractive. In a casino, an individual may enter with the intention of leaving if they

lose 20% of their money, and continue playing if they are winning. With this strat-

egy, the potential gains may outweigh the potential losses, motivating one to enter

a casino. Similarly, an investor may purchase a stock with a strategy whereby they

will liquidate the asset if it depreciates, and hold onto it if it appreciates. Again,

this strategy generates a positive outcome distribution, leading to the purchase of

the stock. In our investor market example, deviations from these trading strategies,

also referred to as the disposition effect, represent a largely documented example

of economic agent discrepancies between planned and actual choices (Shefrin and

Statman 1985; Odean 1998; Weber and Camerer 1998).

This chapter tests the experimental predictions of a theoretical model that aims to

explain this type of behaviour: The Barberis (2012) Casino Gambling Model (CGM).

The model extends Cumulative Prospect Theory (Kahneman and Tversky 1979; Tver-

sky and Kahneman 1992) from its traditionally static environment, by applying its

assumptions to a sequential choice problem to provide an explanation for why indi-

viduals gamble in casinos. It proposes that dynamic inconsistencies in risky choice

arise as a result of probability distortion and loss aversion. Given CPT’s explana-

tory power in a static context, it makes sense that its assumptions should hold in a

dynamic environment (Hotaling and Busemeyer, 2012). The Barberis (2012) model

categorises individuals into behavioural types who differ in their knowledge of their

dynamic inconsistency problem, and their ability to find a means of committing to

their initial strategy. Given an individual’s CPT parameter set (utility curvature,

probability distortion, loss aversion), the model predicts how different behavioural

types will devise an ex-ante strategy, and how they will behave ex-post.

There are studies that have used features of the casino gambling model to elicit

individual preferences for different types of strategies (Ebert and Voigt, 2023), whilst
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others have sought to identify if discrepancies between planned and actual choices

exist using different dynamic choice tasks (Andrade and Iyer 2009; Barkan and Buse-

meyer 1999; Heimer et al. 2023). With regards to the commitment side of the model,

studies have explored how individuals devise optimal stopping rules (Antler and

Arad, 2023), and whether individuals are more likely to accept risk if they are able

to commit to a strategy (Heimer et al. 2023; Hey and Paradiso 2006, Bettega et al.

2023). However, to the best of our knowledge, the theoretical predictions of the

model have never been tested.

This chapter provides an experimental contribution which tests the predictions

of the Barberis (2012) model. With 71 students from Lancaster University, our 3-

stage experimental design aims to test the key assumptions of the model. Following

a parameter estimation routine, we fit subject-level parameters to the various data-

generating processes proposed by the model in order to identify behavioural types.

We find, on average, that the original classifications struggle to identify structural

differences between the types in various settings, and so we proceed by introduc-

ing a new classification that represent the experimental results from the study in

question, as well as results from existing examinations. We find that subjects ex-

hibit dynamic inconsistency, whereby they deviate from their initial strategies ex-

post. Additionally, we find that there is a strong demand for pre-commitment.

When this commitment is only semi-binding, subjects deviate from their ex-ante

pre-committed strategies within the constraint of their commitment plan, exhibiting

further dynamically inconsistent behaviour.

The rest of the chapter proceeds as follows: Section 2.2 discusses the theoreti-

cal framework, highlighting how CPT can be extended to a dynamic setting, and

what this implies for the CGM. Section 2.3 provides our simulation methodology

and results, and Section 2.4 details the experimental design. Section 2.5 explains our

methodology for identifying behavioural types and estimating risk preference pa-

rameters in the Casino Gambling model. Section 2.6 presents our results, Section 2.7

introduces a new behavioural type, and Section 2.8 concludes.
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For a comprehensive review of the literature, which disentangles theoretical con-

tributions to dynamically inconsistent choices in risk-taking, empirical and experi-

mental evidence of these inconsistencies, and intervention options (the use of com-

mitment devices) in experimental and empirical settings that aim to mitigate axiom

violations, please see Appendix A.1.

2.2 Theoretical Framework: Model of Casino Gambling

Our theoretical framework is based on the Barberis (2012) model of casino gambling

which uses a dynamic version of CPT to identify behavioural types and predict how

different types will make risky choices dependent on their CPT parameters. The

model provides an explanation as to why certain individuals may enter a casino,

and why they may continue to gamble in the face of losses. We will start off by

explaining how CPT works in a static environment, such as to familiarise ourselves

with how its core components provide an explanation for dynamic choices.

2.2.1 Static CPT

We now extend the CPT framework introduced in Section 1.4, by incorporating a

loss aversion parameter. For our utility function, we impose a power utility function

and find our first two parameters of interest: α and λ.

u(x) =


xα if x ≥ 0

−λ(−x)α if x ≤ 0
(2.1)

where x represents a monetary amount, and α is our CRRA parameter, which

determines how individuals value various monetary amounts, and is the parameter

which forms our S-shaped utility function. λ is our loss aversion parameter, which

incorporates the assumption that individuals are more sensitive to losses than equiv-

alent gains. The lambda value magnifies the dis-utility of receiving a loss, where

λ ≥ 1. We assume the CRRA parameter α, is equivalent in the gain and loss domain,

where 0 < α < 1.1 Our final parameter of interest, δ, is found in the probability

1This is imposed to replicate the Barberis (2012) analysis.
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weighting function which takes the functional form of that proposed in Tversky and

Kahneman (1992).

w(p) =
pδ

(pδ + (1 − p)δ)
1
δ

(2.2)

where p represents the probability of receiving an outcome (e.g. x), and δ repre-

sents our probability distortion parameter, where δ > 0.278 to satisfy monotonicity,

such that our objective probability p is transformed into the subjective probability

w(p).

Combining the aforementioned elements, we get, for a single monetary amount,

the CPT value function, CPT = w(p) · u(x). A CPT agent will use this function

to assist their decision-making process, in that when making a choice on certain

risky decisions, she will evaluate the CPT values of all the available options and

choose the option that maximises her CPT utility. This is most commonly used in the

experimental literature with binary choice tasks, where individuals have to make a

choice between two specific lotteries.

For example, imagine an agent is asked to make a decision between 2 choices,

A or B. In option A they have a 50% chance of receiving £10, but also a 50% chance

of losing £8, and in option B they can choose to remain at £0 with 100% probability.

These options, or lotteries, are written in the following notation (10, 0.5;−8, 0.5). For

option A the CPT value function would look like:

CPT = w(0.5)u(10)− λ(w(0.5))u(8) (2.3)

If we assume that individuals have parameter values (α, δ, λ) = (0.7,0.8,2), then

the CPT utility of option A is CPT= -2.226, and the CPT utility of option B is CPT

= 0. Therefore the individual in this case would have a preference for option B,

even though the expected value of option A is greater. However, if we ask the same

question, but to an individual who has parameter values (α, δ, λ) = (0.9,0.6,1.1), then

option A would now yield CPT = 0.663, and option B is still CPT = 0, thus preferring

option A. Due to individual differences in how subjects value monetary amounts,

their subjective perceptions of probabilities, and their distaste to losses, some indi-

viduals will engage in riskier activities than others.
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Finally, with regards to the weighting of probabilities, it is important to note how

probabilities are transformed by the weighting function when there are more than

two options. CPT’s rank-dependant probability weighting posits that to obtain a

probability weight πi, in the gain (loss) domain, we take the sum of the probabilities

for all outcomes equal to or greater than (smaller than) xi and apply the weighting

function to each. We then we take the sum of the probabilities of all outcomes strictly

greater than xi, apply the weighting function to each, and then compute the differ-

ence.2 Such that for a lottery (10, 0.3; 5, 0.6; 0, 0.1), we would weight the functions

accordingly:

π(x) =


w(0.3) for x = 10

w(0.3 + 0.6)− w(0.3) for x = 5

1 − w(0.3 + 0.6) for x = 0

(2.4)

2.2.2 Dynamic CPT: Casino Gambling

Barberis (2012) extends CPT to a dynamic setting, and utilises its core assumptions

to provide an explanation as to why certain individuals enter casinos and engage

in gambling activity, even given the negative expected return associated with such

games. The probability distortion component of CPT provides an explanation as

to why individuals engage in buying lottery tickets, as the the overweighting of

extremely low probabilities creates a positively skewed "game". However, Barberis

(2012) highlights that it is not as straightforward to apply this argument to casino

gambles due to their negatively skewed nature. Nonetheless, CPT’s assumptions

still hold.

The framework consists of an experimental casino with T + 1 dates, in which an

individual must first make a decision as to whether they wish to enter the casino,

and then make sequential decisions as to whether to accept or reject a gamble. We

proceed with 5 decision periods (T=5), where in each period, the individual has to

make a choice as to whether to accept or reject a 50:50 bet to win or lose a fixed

amount £h. See Figure 2.1 below for a visual representation of the casino using a

binomial tree. Figure 2.1b gives the visual representation of the tree, and figure 2.1a

2Note that we propose different weighting functions for gains and losses.
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illustrates how we index the nodes of the tree. At time t=0, the individual is at

the far left node of the binomial tree (0,1), and is offered the first 50:50 bet. If it is

turned down, we say they have "declined to enter the casino" and the game is over.

However, if they accept, then nature will decide whether they move up the tree or

down the tree. If nature moves up and to the right (1,1), then they have won £h, but

if nature moves down and to the right (1,2), then they have lost £h. We can think

of this as a coin flip to determine whether you win or lose. At your new position

in the tree, you are then offered the same 50:50 bet again; if you decline, then you

will leave with either £h or -£h dependant on the previous move by nature, but if

you accept the second gamble, then nature will decide whether to move up (down)

and to the right, representing a further win/loss of £h. You then repeat the game

until you either reach time T (the end of the tree), or you decide to leave the game at

some date prior to T. For example, if you win three times in a row and then decide to

leave (W,W,W), then your winnings will be £3h (at node 3,1). If you lose 5 times in

a row (L,L,L,L,L), then your take-home will be -£5h (at node 5,6), if your outcomes

are (W,L,W,L,W), then your take home would be £h (at node 5,3). Getting from t=0

to t=5 is a step by step process, moving from the far left of the tree to the far right of

the tree, making a decision at each stage as to whether to accept or reject the 50:50

gamble.

Barberis (2012) models the tree with 5 decision periods to represent the finite

time-horizon associated with trips to the casino - individuals may run out of money,

or they may need to leave for other commitments; ultimately they will not remain

in the casino forever, and this is captured by our period T. Each node is noted as

a pair of numbers, "(t,j)" following the orginal notation. t ranges from 0 to T and

corresponds to the time period. At the first node at the beginning of the binomial

tree (0,1), t=0. j, on the other hand, ranges from 1 to t+1, and represents the vertical

position of the node. The highest position on any vertical axis is always j=1. Then at

t=1, once the individual has entered the casino and nature has played once, then j=1

if nature moved upwards, and j=2, if nature moved downwards. The lowest node in

any column is therefore j = t+1.

According to the theory, a CPT agent will decide whether to enter or not based

on the CPT value of their specified strategy. A crucial component of our analysis
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FIGURE 2.1: Binomial tree

(A) Visual representation

(0,1)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(1,2)

(2,3)

(3,4)

(4,5)

(5,6)

(3,2)

(4,3)

(5,4)

(4,2)

(5,2)

(3,3)

(4,4)

(5,5)

(2,2)

(5,3)

(B) Indexing

Notes: Panel A illustrates the binomial tree that represents 5 stages of
a sequential decision-making game. Panel B shows how we index the

tree.

is that individuals will devise a strategy that maximises the CPT value of their ac-

cumulating winnings or losses at the moment they decide to leave the casino. This

plan (plan and strategy are interchangeable terms) is initially generated at t=0, and

if they are able to find a plan that yields a CPT value that is greater than 0, then they

will enter. Of course this is dependent on their parameter values. We will now break

each component down, as each plays a role in explaining dynamically inconsistent

choices. Let us start by visualising the payoffs from the binomial tree as a matrix, for

simplicity. See Table 2.1.

There are in total 11 rows to represent payoffs [-10,10] including zero, and 5

columns, representing the time period in which a payoffs can be earned. We use

h = 2 to demonstrate as this was the amount used in our experiment. Since the pay-

off can go either up or down, we set the zero point at the middle of the matrix, and

we allow moves up and down the tree. The highest payoff is therefore in row 1, and
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TABLE 2.1: Payoff matrix

Row Payoff t=0 t=1 t=2 t=3 t=4 t=5
1 10 0 0 0 0 0 10
2 8 0 0 0 0 8 0
3 6 0 0 0 6 0 6
4 4 0 0 4 0 4 0
5 2 0 2 0 2 0 2
6 0 0 0 0 0 0 0
7 -2 0 -2 0 -2 0 -2
8 -4 0 0 -4 0 -4 0
9 -6 0 0 0 -6 0 -6
10 -8 0 0 0 0 -8 0
11 -10 0 0 0 0 0 -10

Notes: The payoff matrix illustrates the payoff an agent would receive
if they were to leave at the respective node.

the lowest payoff in row 11. Following the same structure as the binomial tree, neg-

ative payoffs are in the lower part of the matrix, and the positive payoffs are in the

higher part of the matrix. For any given path that nature can make e.g. L,L,W,L,W

(Lose,Lose,Win,Lose,Win) the row number increases by 1 if L and decreases by 1 if

W, with t increasing by 1 in each period. The higher the row number, the lower the

payoff. We generate paths of length 5 such that there are 25 = 32 potential paths that

nature can select from. Now, for the example path (L,L,W,L,W), we can formulate

Table 2.2.

In this example, and given that the agent’s strategy is to play at every node, then

we can see that they will end at [Row, t] = [7,5] in Table 2.1, generating a payoff of

-2, which is equivalent to node (5,4) in our binomial tree in Figure 2.1b.

However, this is assuming that the individuals plan is to play at every node,

which is unlikely. Remember, individuals will elicit a plan that maximises the CPT

TABLE 2.2: Path and payoff example

Move Row No. t Cum. payoff
L 7 1 h[7,1]=-2
L 8 2 h[8,2]=-4
W 7 3 h[7,3]=-2
L 8 4 h[8,4]=-4
W 7 5 h[7,5]=-2

Notes: The example illustrates the path-dependent cumulative payoff
received throughout a game given the respective moves by nature.
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TABLE 2.3: Decision-nodes

Row t=1 t=2 t=3 t=4 t=5
1 0 0 0 0
2 0 0 0 4 0
3 0 0 3 0
4 0 2 0 8 0
5 1 0 7 0
6 0 6 0 11 0
7 5 0 10 0
8 0 9 0 13 0
9 0 0 12 0
10 0 0 0 14 0
11 0 0 0 0

Notes: Nodes where individuals are required to make a decision

value of their accumulated winnings or losses at the moment they leave the casino.

Let us consider the matrix corresponding to the decision nodes in Table 2.3.

If the individual decides to enter the casino, then there is a possibility that they

will make a decision at any of the 14 decision-nodes in Table 2.3. They will therefore

devise a strategy in which they will either play, or leave, at each of the 14 nodes.

Table 2.4 represents a strategy matrix. Let us denote this matrix as s. This is an 11x4

matrix where the decision-nodes take values 1 or 0, representing "play" and "leave"

respectively. We now ignore the 5th column as no decision is to be made here as

they have to leave the casino at time T, and we ignore the entry decision as the entry

decision is based on the CPT value that will be generated from the optimal strategy,

that is, they will enter if they find a strategy, based on decisions to be made at each

of the 14 nodes, that yields a positive CPT value.

From the strategy in Table 2.4, in any node where there is a 1, then they would

continue playing if they ever arrive at this node, and in the nodes where there is a

0, they would leave the casino with their accumulated winnings up until that node.

However, Table 2.4 only shows one specific strategy, and given that there are 14 po-

tential decision-nodes, excluding the entry decision, and at each decision node there

are two actions they can make (play, leave), we have a total of 214 potential strate-

gies. This equates to 16,384 potential strategies. However, many of these strategies

are not feasible. For example, if in position [8,2] of Table 2.4, their strategy is to

leave (marked with a 0), then any strategies that have 1s in positions [9,3] and [10,4]
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TABLE 2.4: Strategy Matrix "s"

Row t=1 t=2 t=3 t=4
1 0 0 0 0
2 0 0 0 1 0
3 0 0 1 0
4 0 1 0 1 0
5 1 0 1 0
6 0 1 0 1 0
7 1 0 1 0
8 0 0 0 0 0
9 0 0 0 0
10 0 0 0 0 0
11 0 0 0 0

Notes: Matrix form example of 1 out of the 801 feasible strategies a
subject can elicit.

are not feasible, as the agent has already decided to leave the casino prior to these

nodes. Therefore, after we eliminate all non-feasible strategies, we are left with 801

unique and feasible strategies. According to Barberis (2012), an agent calculates the

CPT value of all potential strategies and chooses the one that maximises their utility.

If there is a strategy that provides an outcome distribution with a CPT value that

is greater than 0, then they will enter the casino and plan to play according to that

strategy.

However whether or not they stick to this plan is another matter, where not stick-

ing to their initial plan represents a violation of the dynamic consistency axiom; a

departure that can be rationalised by Cumulative Prospect Theory. For example, let

us suppose that h=2. An individual at t=0 makes a plan as to whether they will

play or leave at each node. Now lets focus on the node (4,5) of the binomial tree as

highlighted in red in Figure 2.2 as an example (in Table 2.1 this is position [10,4]).

From the perspective of t = 4 at node (4,5), an individual deciding to leave the

casino will leave with -£8. If they choose to play, there is a 50% chance of ending

with -£10 at node (5,6) and a 50% chance of ending with -£6 at node (5,5).

From the perspective of t = 0 (0,1), the individual devises a plan considering

the probabilities of reaching different nodes. The probability of reaching the least

desirable node (5,6) is 1/32, and the probability of reaching node (5,5,) is 5/32. Ad-

ditionally, the probability of arriving at node (4,5) is 1/16. When planning at t = 0,

the individual evaluates the choice to play or leave at node (4,5) using equations 2.1
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FIGURE 2.2: Binomial tree decision at node (4,5).

(0,1)

(4,5)

(5,6)

(5,5)

and 2.2 to maximise their CPT utility. CPT suggests that individuals overweight low

probabilities in a rank-dependant manner, making the low probability of -£10 sub-

jectively higher and less appealing. Consequently, many individuals with high prob-

ability distortion parameters would plan to leave at node (4,5) because CPT(Exit) >

CPT(Play).

However, upon actually reaching node (4,5) the probabilities change to 50% for

each outcome. This higher probability is no longer overweighted, leading the agent

to re-evaluate the decision. At this point, for many parameter values, CPT(Play) >

CPT(Exit), making gambling more appealing than initially planned. The discrep-

ancy highlights dynamic inconsistency: the individual’s ex-ante strategy at t=0 was

to exit at node (4,5), but their ex-post choice at t=4 is to continue gambling due to the

changed perception of probabilities.

The analysis of dynamic inconsistencies required two pieces of information: first,

the ex-ante plan at t=0 of an agent, and second, their ex-post behaviour. From this,

we can start to make assumptions about the heterogeneity of individual behaviour.

A primary contribution of the CGM is that it utilises the identification of behavioural

types to explain how and why some individuals enter casinos, why some individu-

als spend too much time in there, and why some do not enter at all. Following the
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Barberis (2012) specification, we proceed with two behavioural types, who differ in

their awareness of their time inconsistencies, and their ability to commit to an initial

plan. The first behavioural type is the "naive" individual, who are not aware of their

time inconsistencies, and believe that their actions will follow their initial t=0 plan,

but when proceeding with the game, they deviate from this plan ex-post. The sec-

ond is the "sophisticate" who is split into two based on whether pre-commitment is

avaiable. The "sophisticate without commitment", unlike the naive, is aware of their

time-inconsistency, however, they are unable to find a way to commit to their initial

strategy, leading to the use of backward induction to develop a strategy at t=0 that

reduces the potential side-effects of their inconsistency. They follow their backwards

induction t=0 plan. The "Sophisticate with commitment" is aware of their time in-

consistencies, but is able to find an exogenous means of committing to their initial

strategy. We assume this is with an external commitment device. Therefore their t=0

strategy is forward looking and will follow the same pattern as a naive individual

with the same risk preference parameters. The main difference is that, because of

their exogenous commitment device, they are able to follow their t=0 strategy in all

periods t>0.

Whether an individual enters the casino, and how they decide to play, is depen-

dant on their behavioural type and their risk preferences, therefore within-group

heterogeneity will still prevail for individuals with different risk preferences. Prior

to being able to identify types and estimate CPT parameters, we need to know for

which parameters will each of the three types enter the casino in the first place. As

we are directly testing the assumptions of the CGM, we initially follow the same pa-

rameter structure. The preference parameters are therefore those aforementioned in

equations 1 and 2, and are α ∈ [0, 1], δ ∈ [0.3, 1] and λ ∈ [1, 4]. For our simulation to

determine the range of preference parameter triples (α, δ, λ), we separate the param-

eter intervals into 20 equally spaced points, such that there are 203 = 8000 potential

parameter triples. For each of the parameter triples we evaluate whether the agent

is able to find a plan for which their CPT value is greater than 0. We will now ex-

pand by showing how each of the behavioural types, dependant on their preference

parameter triples, devises an ex-ante plan, decides whether they or not to enter, and

how they play ex-post.
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FIGURE 2.3: Loss exit strategy example.
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At t=0, a naive agent goes through all potential plans of action, and selects the plan

that maximises their CPT utility. We use the notation S(0,1), to denote the set of all

possible plans at node (0,1) on the binomial tree. For each plan s ∈ S(0,1), we use

the random variable Gs to represent the accumulated winnings or losses that the

individual faces by following the specific plan. For example, if we have the exit

strategy (plan) shown in Figure 2.3 where the black nodes represent the individu-

als exit nodes, then we can solve Gs by filtering through the possible payoffs and

respective probabilities, and sub these into our CPT equations 2.1 and 2.2, to de-

termine the CPT value of this strategy. Figure 2.3 represents a single example of a

loss-exit plan, suggesting that if the individual starts losing, their plan is to exit, and

if they start winning, they plan to continue. We expect this to be a commonly used

plan by our subjects. Again we assume that T=5 and that h = 2. Therefore, from

this plan, the payoffs they could leave the game with are (£10, £6, £2, -£2). However,

all outcomes do not have the same likelihood of occurrence. Whilst some outcomes,

e.g. £10, can only occur with 1 path by nature (W,W,W,W,W), other payoffs, e.g. £6,

can occur with more than one path (W,W,W,W,L), (W,W,L,W,W),(W,W,W,L,W), and
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(W,L,W,W,W). Additionally, some payoffs, e.g. -£2, can occur by the game ending at

more than one of the exit nodes (1,2), (3,3) and (5,4). We therefore simulate the prob-

ability of each outcome occurring, given the strategy3, and yield the accumulated

winnings or losses as: Gs (10, 1/32; 6, 4/32; 2, 5/32;−2, 22/32), which corresponds

to the following CPT function:

CPT(Gs) = u(10)w(1/32)

+ u(6)(w(5/32)− w(1/32))

+ u(2)(w(10/32)− w(5/32))

+ u(−2)w(22/32)

Where the negative outcome has it’s own weighting function, and is not ranked

with the positive outcomes. The individual therefore solves equation 2.5 for each of

the 801 potential plans, and will enter the casino if they are able to find a plan that

creates a gambling experience where the CPT value is greater than 0, given their

preference parameter triple.

max
s∈S(0,1)

CPT(Gs) (2.5)

To determine the number of preference parameter triples for which a naive decision-

maker will enter the casino, we use simulations.4 Running through each of the 801

plans, we calculate the CPT value of each plan for each of the 8000 parameter triplets.

Remember, an important concept is that, because of the weighting function, individ-

uals are able to generate positively skewed gambling experiences from a specific

plan.5 Following the simulation, we find that a naive agent would be willing to

3To do this, we generate paths of length 5 and at each step we check whether the motion went up
or down, calculate the cumulative payoff and check whether according to their plan if they want to
continue or exit the casino. Dependent on this plan, we record the cumulative payoff at the stopping
node, for that particular path. We repeat the process 10,000 times and are able to generate an empirical
distribution which approximates the probability or reaching a particular decision node. Using the
empirical distribution, we can generate the gamble that corresponds to a particular plan. This is easy
to do manually for one gamble, however given there are 32 potential paths, and 801 potential plans, a
simulation is required to yield this for each plan

4Our simulation generates a matrix, with 16 columns, and 801 rows, where each row represents the
gamble that has been generated from a specific plan.

5The type of optimal plan they generate is dependant on their parameter triples, and our simulation
determines the number of parameter triples for which a naive agent enters, and what plan they enter
with (e.g. gain-exit or loss-exit).
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enter the casino for 1792 out of the possible 8000 parameter triples considered. 6

Interestingly, even under the assumption that the naive individual is risk averse,

loss averse and the casino only generates 50:50 bets with zero-expected value, there

are still a wide range of parameter values for which the agent is willing to enter the

casino. We can now classify plans into gain-exit and loss-exit. As aforementioned,

a loss-exit (gain-exit) plan is any in which the expected length of time in a casino,

conditional on exiting with a loss (gain), is less than the expected length of time in

the casino conditional on exiting with a gain (loss). The choice of plan is dependant

on an individuals preference parameter values. For example, an individual with

(α, δ, λ) = (0.2,0.9,1) receives the highest CPT value by generating a gain-exit plan,

whereas an individual with (α, δ, λ) = (0.9,0.6,1.2) maximises their CPT value with a

loss-exit plan. Of the 1792 parameter triples for which a naive agent will enter, 1110

generate a loss-exit plan, and 682 generate a gain-exit plan.

Once a naive enters the casino, they follow the same procedure for all of the

available nodes. As the tree shortens, the number of permissible plans decrease, and

the probability of reaching specific nodes change, therefore naive agents will likely

deviate from their t=0 plan and devise a new strategy that is optimal from their

current time-period.7

For example, let us take the parameter triple (0.9, 0.6, 1.2) again. With these

preference parameters, a naive agent maximises their CPT utility when choosing

the generated loss-exit plan in Figure 2.4a. We can see that as a result of a high

6Note that Barberis (2012) finds that the naive agent enters for 1813 triples. Our results differ for
two reasons. Firstly the Barberis (2012) theoretical analysis is based on h=10. As we run an incentivised
experiment, having a maximum payoff per subject of £50+ is not financially feasible, so we proceed
with h=2. We therefore run our simulation under these figures. However,when we replicate our sim-
ulation with h=10, we get that the naive agent enters for 1763 parameter triples. Secondly, we account
for a special case of when α = 0, as in this case, any increment in payoff would simply yield a utility of
1, which results in a non-increasing utility function. For when α = 0, we take the log of the payoff to
ensure utility is increasing. Nonetheless, when we replicate the simulation with h=10, without taking
the log of utility when α = 0, we find the naive agent enters the casino for 1813 parameter triples and
are able to replicate the original analysis.

7At time t=1, the individual has entered the casino, and are now at node (1,1) or (1,2). From the
perspective of either of these nodes, there are 9 possible future nodes in which they may need to make
a decision, therefore at node (1,1) for example, there are 29 = 512 potential strategies/plans the agent
will consider when deciding upon whether to keep playing or stop. After eliminating non-feasible
nodes, at either of the nodes at t=1 there are 96 potential strategies to consider. If they are able to
generate a new plan, from the perspective of their new position in time t, that yields a CPT value that
is greater than the CPT value they would yield from leaving at that node, then they will play. At t=2, in
node (2,1) for example, there are 5 possible decision-nodes following, so they consider 25 = 32 possible
plans, which becomes 17 potential strategies after eliminating non-feasible nodes. It is easy to see there
are are 4 possible plans at each of the t=3 nodes, and once we get to t=4, we are left with a one-shot
50:50 gamble.
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FIGURE 2.4: Loss exit strategy vs actual play.

(A) Loss Exit Initial Plan (B) Actual Play

Notes: Panel A represents the Loss exit strategy generated by, (α, δ, λ)
= (0.9,0.6,1.2). Panel B represents the models predictions of ex-post
actions given the same parameter triple. Remember a white node

indicates play, and a black node indicates exit.

α, marginal utility does not diminish excessively, so the utility received from the

higher outcomes makes the prospect desirable. There is also a low δ, such that

this subject overweights the tails of the probability distribution to a large degree,

suggesting their subjective likelihood of receiving the desirable higher amount is

increasing, again making the prospect even more attractive. Finally, λ is relatively

low, so the disutility of experiencing a small loss will not suffice as to deter the in-

dividual from seeking out the subjectively likely desirable gain. Therefore, with the

positively skewed outcome distribution generated from their plan in Figure 2.4a,

they decide to enter. However, as they are unaware of their dynamic inconsistency

problem, what they actually do ex-post is illustrated in Figure 2.4b, which represents

a gain-exit strategy, even though they planned to follow a loss-exit strategy.

On the other hand, an individual with preference parameter triples (0.2,0.9,1)

maximises their CPT utility with a gain exit plan, as illustrated if Figure 2.5a. As you

can see, they are deciding to enter with a plan that has a negatively skewed outcome
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distribution. This may sound counter-intuitive, but their parameter values makes

this appealing. As the α is relatively low, it implies the marginal utility they receive

from higher outcomes diminishes rapidly, implying a large loss does not decrease

utility significantly, and a large gain is not much more desirable than a small gain.

Similarly, the low λ means they do not fear the losses excessively. A high δ implies

the low probability of a large loss is barely overweighted, and the low probability

of a larger gain is not that desirable. They therefore find this attractive as the highly

likely small potential gain is desirable, and they are not put off by a small loss. We

can interpret this as a subject wanting to take any gain they can and then leave, but

also that they do not fear losses, so they will keep gambling until they reach that

marginal gain. Again, however, when they enter, they may deviate from this plan

if their updated preferences do not align with their initial strategy. In our example,

their actual play will look like Figure 2.5b, where they only deviate at one point.

Other parameter triples may lead to more extreme deviations, and some may lead

to none at all.

Sophisticate Without Commitment

As defined previously, a sophisticate without commitment is an individual who is

aware that they violate the axiom of dynamic consistency, and whilst it is in their

best intention to try and commit to their t=0 plan, they are unable to find a means of

doing so. As a result, this individual uses backward induction to devise a strategy,

as it is the only way they will be able to generate a plan that they know they can

stick to. This is because, due to the backward induction procedure, the individuals

plan will represent what they "know" they will do in future rounds.

To identify the sets of parameter triples for which a sophisticate will enter the

casino, and to determine the type of plan they follow, we follow a similar exhaustive

search approach as that for the naive individual, except with two main differences:

firstly, the process now begins at the final nodes in t=4 and rolls back to the begin-

ning. This represents the backward induction approach, rather than the forward-

looking approach of the naive individual. Secondly, the set of available gambles is

now parameter specific. That is, instead of generating all possible plans and iden-

tifying which parameter triples give these plans a positive CPT value, we build the
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FIGURE 2.5: Gain exit strategy vs actual play.

(A) Gain-exit Initial Plan (B) Actual Play

Notes: Panel A shows a Gain exit strategy generated by, (α, δ, λ) =
(0.2,0.9,1). Panel B represents a subjects ex-post actions with the same
parameter triple. Remember a white node indicates play, and a black

node indicates exit.

strategy profile from the end of the tree to the start of the tree for a given parameter

set. In other words, we identify for each set of parameters, whether the individual

will gamble or play at each node, starting from t=4, and work backwards to build

the optimal plan.

Using the notation from 2.3, we can think of the sophisticate without commit-

ment’s decision-making process to devise a plan as a 5 step process. In step 1, the

decision maker has to solve the t=4 gambles at nodes 4,8,11,13,14. The gamble at

node 4 is a 50:50 gamble between £10 and £6, against a certain £8. At node 8, it is a

50:50 gamble between £6 and £2, against a sure £4, and so on. The decision-maker,

given her parameter triples, identifies whether they will continue or leave, makes a

note of this decision, and then moves back one period.

In step 2, in t=3, specifically nodes 3,7,10 and 12, she considers both decisions,

conditional on her choice in step 1. For example, at node 3, the individual now
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makes a decision as to whether to continue or gamble, but their CPT value of contin-

uing or leaving is conditional on the choices she knows she will make at nodes 4 and

8. This individual therefore "prunes the tree" and makes a decision. By pruning, we

mean removing branches that she knows she will never reach due to her knowledge

of her future actions. If for example, this individual knows they will leave at node

4, but continue at node 8, then their gamble becomes G = (8, 1/2; 6, 1/4, 2, 1/4).

In step 3, they move back one period again, and now at t=2, they follow the same

procedure, pruning the trees conditional on their decisions in t=3 and t=4, and iden-

tifying their optimal strategy at nodes 2,6 and 9. In step 4 they do the same thing

again at nodes 1 and 5, and in step 5, they identify their optimal choice at node 0.

For each parameter triple, there will be a single optimal plan. As the individual

uses backward induction, their decisions in actual-play will be time-consistent, that

being, they will follow their t=0 strategy.8

Once the individual has completed the backward induction process, they will

have created a mapping of available options given their awareness of their dynamic

inconsistencies. Therefore, for each of the 8000 parameter triples, there is a single

plan. For 646 of these parameter triples, the plan generates a positive CPT value,

and will therefore incentivise the sophisticate to enter the casino under their optimal

plan.9 For all parameter sets for which the sophisticate without commitment enters,

they follow a gain-exit strategy.

Sophisticate With Commitment

The final behavioural group which we examine is that of the Sophisticate with com-

mitment. This individual takes properties from the Naive group and the Sophisti-

cated without commitment group. On the side of the latter, this individual is aware

of their individual time inconsistencies, that is, they know, without assistance, their

ex-ante strategies will not coincide with their ex-post actions. The key difference is

8The main difference between the naive individual and the sophisticate, is that the naive individual
considers every available plan and chooses the plan that maximises their CPT value, whereas the
sophisticate works backwards and prunes the trees based on their triples, and is left with a single plan.
Our simulation generates the corresponding gambles at each node, conditional on individual choices
in future periods.

9As with the naive, we receive a different number of entry triples than Barberis (2012), who receives
753 triples. The reasons for this are explained in the footnote under the naive section, attributed a
different payoff scale, and a log transformation for when α = 0.



68
Chapter 2. Dynamic Inconsistencies in Risky Choice: Testing The Casino Gambling

Model

that the Sophisticate with commitment is able to find an exogenous means of com-

mitting to their initial strategy. The literature refers to this means as a commitment

device. At t=0, this individual therefore solves the same problem as the Naive indi-

vidual, using a forward looking approach to identify the set of strategies, for their

preference parameter sets, that generate a positive CPT value. That is, they solve

equation 2.5. They will enter the casino if they identify a strategy that generates a

positive CPT value over the game, and due to the exogenous commitment device,

they are time consistent and follow this strategy ex-post.

As their t=0 problem is identical to that of the Naive, the sophisticate with com-

mitment enters the casino for the same number of parameter triples as the Naive,

and for the same strategy type, that is, they enter the casino for 1792 of the 8000 pa-

rameter triples, and for 1110 of these they follow a loss-exit strategy, and for 682 of

these they follow a gain-exit strategy. However, when the naive agent proceeds by

deviating from this strategy in t>0, the commitment device assists the sophisticate

with commitment in following this strategy.

The sophisticate with commitment (SC) differs from the sophisticate without

commitment (SNC) in their initial strategy elicitation. Without commitment, a so-

phisticate uses backward induction, mapping their future decisions such that they

can create a strategy, conditional on what they know they will do in the future. With

commitment, the sophisticate is able to adopt a forward looking approach, maximis-

ing their expected outcome distribution as they can rely on the commitment device

to ensure the strategy is carried out. With commitment, the sophisticate will there-

fore enter the casino for more parameter triples than without commitment. Note

that although we imply that Naive, Sophisticate with commitment, and Sophisticate

without commitment, are 3 types of individuals, this is for theoretical purposes. In

reality, the sophisticate is a single classification, and whether they commit or not is

dependant on the availability of a devise. When a devise is available and free to use,

we assume the sophisticate will always opt for the commitment device.

For clarity on commitment devices, this can be any exogenous means of ensur-

ing execution of a plan. In the context of gambling in a casino, this could be leaving

your debit/credit card at home and taking a set amount of cash, essentially setting

an upper bound on how much can be lost. It could be that you arrange to be picked
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up at a set time, imposing a social commitment, and reducing the time spent in the

casino. In our case, we give individuals the choice as to whether or not they would

like to enforce their initial strategy, that being, they elicit an ex-ante strategy by de-

termining, at each of the nodes in Table 2.3, whether they would like to continue or

exit at this node, and if they choose to enforce this strategy, they will automatically

be removed from the game if an "exit" node is reached.

2.3 Simulations

Prior to estimating parameters and identifying types given the predictions of the the-

oretical model, we first generate synthetic data to see if we can robustly recover sim-

ulated parameters. Simply put, if we adopt the design imposed by Barberis (2012),

and generate synthetic data for a parameter set bi and model mi, are we able to re-

cover parameter set bi and classify them as type mi with the design proposed in the

model?

2.3.1 Simulation Methodology: Trembling Binary Choice Model

We now proceed to fit a stochastic structure to the casino task in order to identify

types and estimate CPT parameters. Utilising the assumptions specified in Section

2.2.2 for each types structural behaviour, we use simulations to identify an agent’s

actions dependent on their type and parameter triple. That being, how each type

will generate an ex-ante strategy, whether or not they will enter, how they will play

ex-post, how this differs when given the opportunity to commit, and whether they

opt for commitment.

In order to assess the feasibility of model identification, we need to develop a

stochastic structure to the deterministic decision-making theories, to account for

stochastic behaviour (Stott, 2006). We consider two potential stochastic specifica-

tions. The first, which assumes a constant error term, also known as a tremble, was

introduced by Selten (1975) when discussing the trembling-hand equilibrium, and

has been extended to the “constant error” model of Harless and Camerer (1994) and

Wakker, Erev, and Weber (1994). This assumes a decision-maker will make the cor-

rect decision with probability 1 − ω, and with probability ω, they make a mistake.
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We can interpret this error as a subject temporarily losing concentration at the time

of solving the decision problem, and therefore choosing randomly (Loomes, Moffat,

and Sudgen 2002; Moffatt and Peters 2001).

The second stochastic specification assumes agents make mistakes via some prob-

abilistic rule, where the mistake is a result of a numerical error made in the compu-

tation of the differences between the two or more competing outcomes. This can

be modelled with a Probit transformation (Hey and Orme 1994; Carbone and Hey

2000).

Both stochastic specifications provide important behavioural implications regard-

ing potential error stories in decision-theory modelling. Although Carbone (1997)

finds evidence to reject the constant error approach, Moffatt and Peters (2001) intro-

duce the idea of a combination of the probabilistic rule with a tremble, and find that

following a probabilistic rule, whilst ignoring the tremble, resulted in an upward

bias estimate of the computational error parameter. They suggest that any subject-

level mistakes arising as a result of a “tremble” is picked up by the error term in the

probabilistic rule (we call σ). Loomes, Moffat, and Sudgen (2002) tested this hybrid

specification on existing data sets and found it improved the explanatory power of

the decision-theory models.

A probit transformation is feasible for the naïve’s entry decision and ex-post

choices, as well as the sophisticates ex-ante plan, entry decision, and ex-post choices.

However, given the assumptions of the model, it is not possible to determine a prob-

abilistic rule for the naïve t=0 ex-ante plan, or the sophisticate with commitments t=0

ex-ante plan and ex-post choices. This is because the theory predicts that these sub-

jects do not make node-level decisions when selecting their strategies, instead, they

filter through all 801 potential strategies, and select the strategy that maximises their

CPT value. For this reason, we are unable to determine the probability of a subject

selecting a specific exit-node, but rather we determine the probability of entry based

on the CPT value generated from the optimal strategy. As such, for these node-level

decisions, we impose a constant-error rule. For the decisions that permit a probit

transformation, the constant error is combined with a probabilistic rule. To imple-

ment the stochastic specification, we follow the Moffatt and Peters (2001) stochastic

“trembling binary choice model”.
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The probabilistic rule follows the probit transformation function, whereby we

use the cumulative distribution function (CDF) of the standard normal distribution

to determine the probability of a subject entering or playing. This transforms the de-

terministic choices (enter/don’t enter, play/exit) into a probability between 0 and 1,

depending on the differences in utility between the competing binary options. The

cumulative normal distribution maps the differences in CPT utility to to a proba-

bility of choosing one option over another. Our binary choice error, ϵ, is normally

distributed with mean 0 and standard deviation, σ, ϵ ∼ N (0, σ2).

If we assume the variable y is a binary dependent variable representing whether

the subject played or exited, where y = 1 indicates the individual plays, and y = 0

indicates they exit, then equation 2.6 is the probit transformation model.

P(yi = 1|βi) = Φ(xi, βi)

P(yi = 0|βi) = 1 − Φ(xi, βi) where xi =
CPTenter − CPTexit

σ
and ϵ ∼ N(0, σ)

(2.6)

for i = 1, . . . , n

Where i is a subscript representing subject-level choices, for sample size n. β

represents the vector of parameters to be estimated, and Φ is the standard normal

cumulative distribution function. xi is a vector of explanatory variables representing

the differences in CPT utilities of the binary outcomes with some error. For example,

let us assume that a subject is deciding whether to enter the casino or not. They

have generated a strategy that yields a CPT value of 2.65. Whereas the CPT value

of not playing at all would be 0. We assume the individual will decide to enter if

the difference between the CPT values of the two options, plus a random term, ϵ, is

greater than 0. Therefore, the probability of the subject entering is:

P(y = 1i|βi) = P(CPTenter − CPTdont enter + ϵ > 0|βi) where ϵ ∼ N(0, σ2) (2.7)

In terms of the the standard normal CDF, this becomes:
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P(yi = 1|βi) = Φ
(

CPTenter − CPTno enter

σ

)
(2.8)

With the denominator being the standard deviation of the binary choice error,

ϵ. We can now follow on from equation 2.6 and add the constant error tremble.

The constant error, ω, comes from a subject making a random, non-computational

mistake, whether that be by losing concentration or an external distraction. Inde-

pendently, the constant error can be modelled as:

P(yi = 1|βi) = (1 − ω) · δ + ω · (1 − δ)

P(yi = 0|βi) = ω · δ + (1 − ω) · (1 − δ)
(2.9)

Where δ represents a vector of deterministic predictions of the model and can

take values 0 or 1. 0 represents a non-entry prediction, and 1 represents an entry

prediction. For example, if ω = 0.1, and the deterministic prediction is to enter, then

the probability of entering becomes P(y = 1|β) = 0.9, and the probability of not

entering becomes P(y = 0|β) = 0.1. When ω = 0.5, the subject’s choice is completely

random, whilst ω = 0 suggests the individual is perfectly fit to the proposed data

generating process.

Combining the constant error model with the probit transformation model, we

form our stochastic specification in equation 2.10.

P(yi = 1|βi) = (1 − ω) · Φ(x|βi) +
ω

2

P(yi = 0|βi) = (1 − ω) · (1 − Φ(x|βi)) +
ω

2

(2.10)

Again β is the vector of parameter triples, xi is the vector of explanatory variables

representing the differences in CPT utilities of the binary outcomes. Φ is the cumu-

lative distribution function, and ω represents is the constant error. If omega = 0,

then the stochastic specification becomes the nested standard probit transformation

model, as there is no tremble. However, as ω → 1, the probabilities approach 0.5,

indicating complete random choice.
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To recover parameters and assess each models fit to the data, we use the log-

likelihood function to determine the likelihood that a subjects’ choices can be ex-

plained by the corresponding data generating process. Given the stochastic specifi-

cation, our log-likelihood, for each subject, becomes

LL(Di|βi) =
m

∑
j=1

log( p̂j)

where p̂j =


P if δ = D

1 − P if δ ̸= D

(2.11)

Where Di,j represents the choice of subject i, for a decision j, and P represents the

probabilistic predictions of the theoretical model, as calculated in equation 2.10

We aim to identify the parameters that maximised the likelihood for each model,

and classify types based on the model that recovers the parameter set with the lowest

absolute log-likelihood value.

2.3.2 Simulation Results

Our simulation determined that effective parameter recover was not feasible directly

from the theoretical design. We find that for all 8000 parameter triples for the naive

plan, only 33 of the 801 potential strategy sets emerged as optimal strategies. Mean-

ing that on average, 242 parameter triples predict the same strategy. This result holds

for the naive actual play where across the 8000 parameter triples, there are 28 differ-

ent strategies, such that on average, 285 parameter triples predict the same strategy.

When combining the naive plan and actual play strategies, again we observe sub-

stantial homogeneity in joint strategies across the parameter set.

Again this holds for the sophisticates, in that across the 8000 parameter triples,

there are 7 unique strategies that are adopted. When combining the SC plan and

action (identical to naive plan) with the SNC plan and action, we still find multiple

pairings of the same triples predicting the joint equivalent strategies.

Our results from the simulation confirm this result. We first attempt parame-

ter recovery using the constant error specification. Depending on the parameter

triple simulated, we find that there are sometimes over 200 parameter triples yield-

ing the lowest absolute likelihood value, with parameter intervals spanning the full
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parameter space. Whilst the correct parameter always fell within this range, it was

unidentifiable. Secondly we implement the probabilistic rule to create more vari-

ability in choices, and find, over 1000 simulations, on average we are able to identify

simulated parameter triple less than 50% of the time. When combining the constant

error model with the probabilistic rule, we are able to identify the simulated param-

eter triple slightly more often. Nonetheless, as a result of multiple triples predicting

the same strategies in various conditions, we confirm that direct parameter recovery

was not feasible.

Note, we are not implying this has implications for the empirical validity of the

Barberis (2012) CGM. It does however, have implications for experimental designs

in dynamic decision-making. The objective of this exercise was to inform the exper-

imental design of this chapter, where it is now evident that the Barberis (2012) task

alone will not provide robust estimates. We therefore proceed by estimating param-

eter triples from an independent certainty equivalent elicitation task using a binary

lottery choice task design. Using this routine, our simulations provide support for

the robustness of parameter recovery. We then proceed to fit estimated triples to the

decision-tree design in order to identify types.

2.4 Experimental Design

The experiment took place with 71 students from Lancaster University, where in-

dividuals completed the experiment in the Lancaster University Experimental Eco-

nomics Lab. The experiment comprised of 3 main stages. The first stage was a real

effort task where individuals could earn an endowment to play the game. The sec-

ond stage (the main game), involved playing the 5-period decision-tree, 16 times

over two different settings (8 times in each setting). The third stage was a static

risk preference elicitation task. Each stage will now be explained, with key insights

justifying the design.

2.4.1 Part 1: Real Effort Task

The exploration of loss aversion in experimental settings poses several intricate chal-

lenges. Presenting hypothetical payoffs tends to result in arbitrary choices (Slovic,
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1969), while requiring participants to risk their own funds raises profound ethical

concerns. Moreover, endowing individuals with money results in a lack of per-

sonal attachment, thereby restricting the elicitation of loss aversion and increasing

risk-taking behaviour (Thaler and Johnson, 1990). The most effective method iden-

tified thus far involves employing real-effort tasks (Mccabe et al. 1994; Carpenter

and Gong 2015). This approach allows participants to earn money through straight-

forward, low-effort tasks, fostering a psychological connection to the earnings and

replicating a more genuine loss experience. The endowment effect suggest that in-

dividuals attach a higher subjective value to possessions that they believe “belongs”

to them (Kahneman, Knetsch, and Thaler, 1991). Therefore, the first stage of our ex-

periment will consist of a real-effort task whereby subjects will generate the funds

they need to enter the casino, and to compensate them for any incurred losses in the

later stages. As our intended effect is to make subjects feel more entitled to their

endowment, it is crucial to ensure that the task entails a positive cost of effort for

the subjects. Charness, Gneezy, and Henderson (2018) provide a comprehensive

overview of the real-effort experiments used in the literature. Our task follows a

similar design to that of Abeler et al. (2011) which involves counting the number of

zeros in tables that consisted of 25 randomly ordered 0’s and 1’s. The characteristics

of this task make it pragmatically effective in our setting, as no prerequisite knowl-

edge is required, it is boring and holds no significance, and offers limited learning

opportunities from experience. It is also important to ensure that we do not fatigue

the participants at this stage, thus we restrict the task to being 1 minute long, as was

done in Lezzi, Fleming, and Zizzo (2015).

The participants therefore had 1 minute to complete as many tables as possible,

where for each table they had to choose a number, between 0 and 25, that corre-

sponded to the number of 0’s they identified in the table. Once they had chosen, they

were presented with a new, randomly distributed table, where they had to count

again. Figure 2.6 shows how the table was presented to the subjects. Participants

"passed" the real effort task, and received an endowment of £10, if they answered at

least 4 tables correctly. As it is inevitable that some participants will perform better

than others due to unobserved abilities, assigning endowments based on the specific
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FIGURE 2.6: Real Effort Task

Notes: Subjects were required to identify the number of 0’s in a table.
They had 1 minute to complete as many tables as possible.

number of correctly answered tables would lead to different participants having dif-

ferent endowments for the next stages. Carpenter and Huet-Vaughn (2019) highlight

the hindrances associated with this approach and the likelihood of omitted variable

bias occurring. Therefore, to restrict any unintended effects, we imposed that any

"pass" would result in the earning of a set endowment, such that all participants

would receive either 0 or the same endowment. In this case, if subjects pass, they

will receive an endowment of £10 to play the Barberis casino gamble task, as well as

the risk preference elicitation task. This also served as a competency test, such that

we would only proceed with subjects who had basic numeric reasoning abilities.

2.4.2 Part 2: Casino Play

The second stage of our experiment involved the participants playing in two ver-

sions of the binomial tree game, where in each version, they have to play 8 rounds.

The first version neglects any form of commitment to initial strategies, and the sec-

ond version gives individuals the option to commit. We adopt a within-subject de-

sign, such that all individuals engage in both versions of the game. The two versions,

alongside the within-subject design, are crucial in order to effectively identify the

various behavioural types under consideration, given the theoretical assumptions

of each model. This will become clear shortly.
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FIGURE 2.7: Strategy Selection.

Notes: Subjects were required to select the nodes where they wished
to exit.

Casino "No Commitment"

In the first version of the game, the participants first played three practice rounds in

order to familiarise themselves with the process. After playing the practice rounds,

the subjects were then asked to elicit their initial strategies. More specifically, they

were asked to think as if they had to instruct the computer on how to play on their

behalf, and to select, on an interactive binomial tree, the nodes at which they would

want the computer to leave or continue playing, if they were to land on those nodes.

This was to capture subjects’ initial strategies at t=0. Following Johnson et al. (2021),

subjects made their decisions by giving instructions to the computer. Ebert and Voigt

(2023) highlight that it is crucial that subjects choose the order in which they devise

their strategies by themselves. Given that we wish to differentiate between forward-

looking strategies and backward induction strategies, we allowed for flexible strat-

egy selection. That being, subjects were able to start selecting exit nodes from any

position on the tree. Figure 2.7 illustrates the interactive screen in which they se-

lected their exit nodes.
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FIGURE 2.8: Example Decision Tree Task.

(A) t=1 after a win at t=0 (B) t=2 after a win at t=1

Subjects were informed that there is a 1/n chance that this round could be their

payment round, which would determine their final payoff. This incentive compati-

ble approach ensures they reveal their true strategies.

Following the submission of their initial strategies, they were required to play

8 rounds of the game, where they were not shown their initial strategy, and had to

make a decision, in each round, as to whether they wished to enter the game, and

if so, make sequential decisions at each node dependent on nature’s move. Subjects

were informed that the computer would not play on their behalf, and that one of

these 9 rounds (strategy + 8 rounds) could be selected for real at the end with a

probability of 1/n, and would determine how much they walk away with. Figure

2.8 provides an example from the experimental interface.

Due to there being no form of commitment mentioned or available, this stage

identified whether subjects were merely Naïve, or Sophisticated, based on their ex-

ante strategies, as well as their ex-post choices. Once subjects had completed the 9

rounds, they could move onto the second version.

Casino "Commitment"

In the second version of the game, subjects were required, again, to elicit initial

strategies in the same manner as before, except this time they were told they would

be given the opportunity to enforce this strategy in the game, whereby if they se-

lected "commit" then the software would automatically end the game if they reached

one of the nodes specified as a “leave” node in their initial strategy. The intuition

behind this is explained in the next section. After eliciting their initial strategies,
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subjects then made the decision as to whether they wanted to enter the game or not.

If they entered, they then had to make a decision as to whether they wanted to en-

force commitment to their elicited strategy or not. They then played the game out

for another 8 rounds. Again, any of these 9 rounds (the strategy + 8 games), could

have been selected at random at the end to be played for real.

Rationale and Justification for Design

The theory defines a sophisticate with commitment as an individual who is aware

of their dynamic inconsistencies, but is able to find a form of commitment that as-

sists them in abiding by their initial strategies. A sophisticate without commitment

is an individual who is also aware of their dynamic inconsistencies, but is unable to

find a means of committing to their strategy. We therefore assume that the “commit-

ment device” is exogenous, and that the sophisticate with and without commitment

are the same individual, but in different conditions, and will elicit different ex-ante

strategies based on the condition in which they find themselves. Using this design,

we can elicit different initial strategies for each of the types, and identify structural

differences in how sophisticates play based on whether they have the option to com-

mit and their preference parameter triples. In the “no-commitment” version of the

game, we expect the naïve individuals to elicit a forward-looking strategy, and for

those who enter, to deviate from this strategy ex-post. Whilst a sophisticate will

devise an initial strategy using backwards induction, to account for their dynamic

inconsistencies, and tailor their strategy to how they know they will act in future

periods. They will enter if they are able to find a strategy that yields a CPT value

greater than 0, and will play according to their strategy without deviations. It is

likely a large number of sophisticates will not enter here. In the commitment ver-

sion of the game, the naïve individuals will again elicit a forward-looking strategy,

they will enter, decline the commitment device, and deviate from their strategies ex-

post. However, the sophisticates will now devise a forward-looking strategy, which

would be identical to a naïve strategy with the same preference parameter triples,

and will enter if their strategy yields a CPT value greater than zero. As they are now

able to commit to their ex-ante strategies, they no longer require backward induc-

tion, and there are a larger number of potential strategies that generate a positive
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TABLE 2.5: Risk preference elicitation task.

Gains Losses Mixed
(5, 1/2; 0) (-5, 1/2; 0) (10, 1/2; -x)
(10, 1/2; 0) (-10, 1/2; 0) (5, 1/2; -x)
(10, 1/2; 5) (-10, 1/2; -5)
(10, 1/8; 0) (-10, 1/8; 0)
(10, 7/8; 0) (-10, 7/8; 0)

Notes: The 12 certainty equivalent elicitation tasks. 5 were in gains, 5
were in losses, and 2 were in the mixed domain.

payoff distribution. After entering, they will choose to commit, and the computer

will end the game when they reach their bounds. We expect some sophisticates who

did not enter in the non-commitment version, to now enter given they are granted a

commitment opportunity.

2.4.3 Part 3: Risk Preference Elicitation Task

The final stage of the experiment involved subjects completing a series of certainty

equivalent tasks that allow us to measure their risk and loss preferences in a static

environment. This was required as parameter estimation was not possible from the

sequential casino design.10 To reduce negative effects arising from individual bore-

dom, as well as cognitive fatigue, we avoid multiple binary lotteries and follow the

approach of Bruhin, Fehr-Duda, and Epper (2010), which was later adopted by Viei-

der et al. (2015), Bouchouicha et al. (2019) and Ring et al. (2018), to elicit individual

certainty equivalents. This approach required subjects to complete fewer tasks, as

it involved individuals selecting a value of indifference rather than selecting a pre-

ferred lottery, thereby generating cardinal data instead of ordinal data.

We elicit certainty equivalents for a total of 12 binary prospects, of which 5 are

pure gains, 5 are pure losses, are 2 are mixed. The tasks included in the analysis are

presented in Table 2.5.

Participants were presented with each of the 12 tasks in Table 2.5, where the first

column represents the tasks in the gain domain, column 2 represents tasks in the loss

domain, and column 3 in the mixed domain. The three domains allow for the elic-

itation of three CPT behavioural parameters, namely utility curvature, probability

10See Section 2.3 for more details.
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weighting, and loss aversion. By varying outcomes and probabilities in a structured

way, our simulation routine identified that our 12 task design was able to accurately

estimate risk preferences.

Figure 2.9a shows an example of the instructions for the first task the gain do-

main. In this task, subjects were presented with a lottery, represented with balls on

a screen. They were asked whether they prefer the lottery (15,1/2;0,1/2), or a list of

sure amounts, ranging between the win and loss amount of the lottery. For each el-

ement of the sure amount list, they had to decide whether they preferred the lottery

or that specific sure amount. The point where the individual switched from prefer-

ring the sure amount to preferring the lottery determined the certainty equivalent,

whereby we take the mean of the two values between which they switched. Sub-

jects completed 5 tasks in the gain domain, where payoffs and probabilities varied

across tasks. In the loss domain, the task followed the same format, except with pure

negative outcomes, as shown in figure 2.9b.

In the mixed domain, instead, subjects were presented with a lottery (x,p;y,1-

p), where x and p are given. They had to select the y amount, where y < 0, that

made them indifferent between the lottery, and a certain £0. An example is shown

in Figure 2.9c.

Subjects were informed that one of the tasks would be played out for real, with

probability 1/n, and if selected, would determine their earnings (Show-up fee +

Endowment from Stage 1 +/- Selected task for real).

Every task had the same probability of being extracted for real play. This pro-

vided an incentive to respond according to one’s true preferences, and is the stan-

dard procedure in the literature (Baltussen et al. 2012; Bruhin, Fehr-Duda, and Epper

FIGURE 2.9: Risk preference elicitation task example.

(A) Gains example (B) Losses example (C) Mixed example
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2010; Cubitt, Starmer, and Sugden 1998).

2.5 Methodology

The following section outlines our methodology for recovering parameters from the

risk preference elicitation task, and identifying types using a model prediction exer-

cise.

The risk preference elicitation task recovers subject-level certainty equivalents

for each decision-task. The tasks included gains, losses, and mixed prospects, with

varying monetary amounts and probabilities. Therefore quantitative CEs allow for

the recovery of CPT parameters. We use MLE to estimate parameters. Please refer

back to Section 1.5 for an in depth explanation of the MLE econometric specification.

For each subject, we recover the unique preference parameter triple that corresponds

to their maximised log-likelihood value.

2.5.1 Prediction routine

Given that the parameter triples are estimated with some error in an independent

task, utilising the trembling binary choice model for type identification would add

additional error stories (ω, σ) to the estimation. This would inevitably create exces-

sively noisy results. Instead, we simplify the exercise and adopt a basic prediction

routine.

We aim to evaluate the predictive accuracy of the two models in question: the

naive model, N, and the sophisticate model, S, using the vector of parameters β,

which were estimated using the maximum likelihood estimation routine. For each

parameter set β, we derive theoretical predictions from both models and compare

these predictions against the experimental data.

Let β = (β1, β2, . . . , βk) be the vector of estimated parameters. TN(βi) and TS(βi)

are the theoretical predictions from models N and S respectively, given a parameter

set βi. Finally, D = (D1, D2, . . . , Dn) is the vector of experimental data points, where

each Di corresponds to a vector of subject i′s observed data.
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For each βi ∈ β, we compute the theoretical predictions from both models:

TN = (TN(β1), TN(β2), . . . , TN(βk))

TS = (TS(β1), TS(β2), . . . , TS(βk))

For each data point Dj ∈ Di, for each subject, we calculate the mean squared er-

ror between the experimental data and the theoretical predictions from each model:

MSENi =
n

∑
j=1

(Dj − TN(βi))
2

MSESi =
n

∑
j=1

(Dj − TS(βi))
2

(2.12)

Given that our data comprises primarily of 0s and 1s, we classify types based on

the model that elicits the lowest mean squared error.

2.6 Results

All subjects correctly identified at least 4 tables in the real-effort task, and were there-

fore endowed with £10 in order to complete the experiment.

2.6.1 Parameter Estimates

Our risk preference elicitation task identified early on that most subjects were in fact

risk seeking, and were hitting the bounds of the α parameter, resulting in higher

noise. Given that gambling is associated with risky behaviour, this is intuitive, and

we therefore proceed to estimate types with the upper bound of 1, such as to repli-

cate the Barberis (2012) model, as well as with an upper bound of 2, such that we

are able to capture risk-seeking preferences. We find that, when relaxing the bound

on α, the subject level standard errors on the parameter estimate are statistically sig-

nificantly better (Welch t-test, p<0.05; Mann-Whitney U test: p<0.05). Additionally,

when identifying types by minimising the prediction error between the subject-level

data and the theoretical predictions of the Barberis (2012) model, we find the predic-

tion error is significantly lower (p<0.05) when we allow for risk-seeking behaviour.
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FIGURE 2.10: Kernel Density Estimate Plots.

(A) Kernel Density Estimate
Plot for α

(B) Kernel Density Estimate
Plot for δ

(C) Kernel Density Estimate
Plot for λ

Notes: Panel A is the density estimate for the CRRA parameter, Panel
B is for the probability distortion parameter, and Panel C is for the

loss aversion parameter.

Similarly, we identify that for any λ >2.15, as long as α is greater than 0.1, then

there is no difference in decision-strategies or choices in the theoretical model. For

this reason, we impose an upper bound limit of 2.15 in order to allow for more

variability of lambda within this range.

Prior to classifying types, we analyse the mean and standard deviation of the

parameters over all participants, where we find that (µα, SD), = (0.873,0.379), (µδ,

SD) = (0.564,0.244), and (µλ, SD) = (2, 0.200). Figure 2.10 illustrates the density plot

for each parameters kernel density estimate (Weglarczyk, 2018).

Given that we have now increased the upper bound of α from 1 to 2 in order to

capture risk-seeking preferences, the theoretical predictions of the model will have

changed. More specifically, the number of parameter triples for which a naïve or

sophisticate will enter the casino will have changed. The original specification im-

poses that 0<α<1, 0.3<δ<1, 1<λ<4, however our updated specification now imposes

the following bounds: 0<α<2, 0.3<δ<1, 1<λ<2.15. Additionally, we modify the pa-

rameter intervals for α such there are 40 equally spaced points instead of 20, to allow

for more variability within the bounds. Therefore, we now have 16,000 possible pa-

rameter triples, instead of the original 8000. Under the new parameter intervals, we

find that the naive agent will enter for 11,171 triples, and the sophisticate will enter

for 4823 triples.11

11Note: the increase in the number of parameter triples is not directly comparable to the original
model, as we change both the limits and the number of spaced points. We provide the statistics purely
for reference.
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2.6.2 Type Identification

Based on the estimates from our risk preference elicitation task, we identify that 56

out of the 71 participants were best classified with the naïve model, and 15 out of

the 71 participants are best classified with the sophisticate model. For each subject’s

optimal model, on average, the model predicts 70% of the subject’s node-level deci-

sions correctly. We find that each subjects’ prediction error for their classified model

is statistically significantly better than the predictions from the opposing model (t-

test, p<0.001; Mann Whitney U Test, p<0.001).

2.6.3 Commitment

Regarding commitment decisions, we find that 59/71 participants opted for the com-

mitment device, and 12/71 declined the devise, where 100% of the sophisticates

committed, and 79% of the naïve subjects committed. If we remember the theo-

retical predictions of the model, it states that sophisticates will always choose the

commitment devise when available, but the naïve subjects will decline it. However,

we find that most naives in fact choose to commit. This has interesting implications,

which we will discuss in more detail in Section 2.7.

2.6.4 Parameter/Type Relationship

We now look to see if there is a relationship between risk preferences and subject-

types. Table 2.6 provides the mean (µ), standard deviations (σ) and median (M)

values for the preference parameters at the type level.

TABLE 2.6: Mean and Median parameter values per group.

Naive Sophisticate Significant Differences

µα / σα 0.978 / 0.326 0.479 / 0.3 p < 0.001∗∗

Mα 1.077 0.359 p < 0.001∗∗

µδ / σδ 0.497 / 0.177 0.812 / 0.29 p < 0.002∗∗

Mδ 0.447 1 p < 0.001∗∗

µλ / σλ 2.03 / 0.255 1.903 / 0.3 p = 0.262
Mλ 2.15 2.15 p = 0.381

Notes: Our statistical significance tests are a two-sided Welch Sample
t-test for the means, and Mann Whitney U Test for the medians. **

Represents statistically significant differences at the 5% level.



86
Chapter 2. Dynamic Inconsistencies in Risky Choice: Testing The Casino Gambling

Model

FIGURE 2.11: Group level kernel density estimates.

(A) CRRA parameter: Naive (B) CRRA parameter: Sophisticate

(C) Distortion parameter: Naive (D) Distortion parameter: Sophisticate

Notes: Plots for the Kernel Density Estimates of the CRRA parameter
and the probability weighting parameter for each type.

We find that the naïve group are associated with less risk averse behaviour than

the sophisticates, and in many cases, the naïve subjects exhibited risk seeking be-

haviour (α>1). Additionally, the naïve group tend to distort probabilities more than

the sophisticates. We find no differences in the loss aversion parameters, where all

subjects tend to, as suggested by the theory of loss aversion, receive a disutility for

losses that is double the utility they receive for respective gains. Figure 2.11 provides

the density plots for the CRRA parameter and the probability distortion parameter

for each type.

2.6.5 Entry Parameters

In the experimental setting, subjects were allowed to decide as to whether they

wished to enter the casino at the beginning of each of the 16 rounds. Therefore,

for each subject, we have 16 entry decisions, of which 8 are in the no-commitment
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FIGURE 2.12: Parameter estimates 3D scatter plot.

Notes: Parameter triples elicited by our subjects. A red node indicates
the model classified them as naive, and a blue node, sophisticate.

rounds, and 8 are in the commitment rounds. We find that on average, the naïve

subjects enter the casino 98% of the time in the no-commitment round, and 98% of

the time in the commitment rounds. The sophisticates entered almost 100% of the

time in both the no-commitment and commitment conditions. However, the theo-

retical predictions of the models suggest that only 35/56 of the Naïve’s should have

entered in both the commitment and no commitment conditions, whilst only 2/15

of the sophisticates should have entered.12

Figure 2.12 illustrates the parameter triples for our types, where red nodes il-

lustrate the parameter triples for subjects classified by the model as naive, and blue

nodes denote the sophisticate triples.

2.6.6 Strategy Type

Subjects’ were asked to elicit initial strategies twice: once where commitment was

not offered or ever mentioned (NC Condition), and one in which they were told they

would have the option to make this strategy binding during real play (C Condition).

In the NC setting, we find that 80% of the naives elicit a loss-exit strategy; one in

12There are three potential explanations for this. Firstly, it could be that the contextual independence
of the risk preference elicitation task from the casino task has resulted in biased parameter estimates.
Secondly, it could be that the CGM’s assumption regarding strategy elicitation are hindered. Finally, in
could be in part due to the experimental setting in which they are being asked to gamble, rather than
making the decision in a real-world scenario, which fosters risk-seeking behaviour.
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FIGURE 2.13: Strategy type elicitation.

Notes: The strategy types that subjects elicit in both conditions. Naive
C is a subject classified as naive in the commitment condition. NC

represents no commitment. Soph represents the sophisticate type.

which subjects intend to play for longer in the gain domain than they do in the loss

domain. 11% of the naïve’s elicit a gain exit strategy, and 9% elicit a neutral strategy.

For the sophisticates in the no-commitment setting, 53% elicit a loss-exit strategy,

13% elicit a gain exit-strategy, and 34% elicit a neutral strategy.

In the commitment setting, 90% of naives elicit loss-exit strategies, 4% elicit gain-

exit strategies, and 6% elicit neutral strategies. Whereas for the sophisticates, in the

commitment setting, 60% elicit loss-exit strategies, 7% elicit gain-exit strategies, and

34% elicit neutral strategies. Figure 2.13 provides a graphical representation of the

strategy type frequencies for each subject-type in both of conditions. We do not ob-

serve any tangible differences between the groups, but we do find, aggregating over

all participants, that the availability of a commitment device decreased the likeli-

hood of observing a gain-exit strategy.
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2.6.7 Strategy Changes

We compute the hamming distance between each subjects’ no-commitment strate-

gies and commitment strategies to identify if the availability of a commitment de-

vice led to statistically significant changes in strategy selection (Bookstein, Kulyukin,

and Raita, 2002). Given there are only 14 potential nodes at which participants were

required to make strategy-level decisions, we compute hamming distances at the

subject level. Initially looking at subjects with hamming distances that are greater

than 1, we find that 48% of naives and 40% of sophisticates adopt at least minor

strategy changes. However, if we look at subjects’ with hamming distances greater

than 4, or in other words, subjects who changed their strategies on at least 35% of

the nodes, we find only 12.5% of naives adopted major strategy changes, and over

30% of sophisticates adopted major strategy changes.

Figure 2.14 provides the density of strategy changes at the subject-level for ham-

ming distances greater than 1. Figure 2.14 gives light to the differences in median

strategy changes illustrated in Figures 2.16 and 2.17. It is also interesting to note

that of those sophisticates who do not change their strategy at all, 50% of them have

strategies in which they selected nearly every node (13/14 nodes selected), suggest-

ing their ideal plan would be to almost not enter at all. Yet in the no-commitment

round, they proceed to play in all rounds. This, again, provides insights to the orig-

inal classification of types, and whether the strict "naive" and "sophisticate" classifi-

cations are restrictive. We expand in Section 2.7 on the more flexible generation of a

new type.

Whilst we follow the original Barberis (2012) classification of strategy types (e.g.

gain-exit, loss-exit, symmetrical), we acknowledge that there are deeper classifi-

cations within these strategies. Ebert and Voigt (2023) assign strategy types into

clusters and identify four primary strategy types: Buy-and-hold, Never-start, Take-

profit, Stop-loss. We replicate this analysis with our experimental data to identify

unbiased assignments of strategies across all participants, in both conditions. To

do so, we perform a K-means clustering unsupervised algorithm to identify clus-

ters of subject-level strategies in both conditions. The algorithm partitions data into
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FIGURE 2.14: Strategy changes across conditions.

(A) Naive (B) Sophisticate

Notes: Density of strategy changes from No commitment condition
to Commitment condition. Panel A represents the density of strategy
changes for those classified as Naive, and Panel B, for those classified

as Sophisticate.

K ∈ N+ clusters with high within-cluster similarity and high-between cluster dif-

ferences, where we set K=413. Figure 2.15 illustrates the median clusters found over

all participants in the No Commitment condition.

We find four distinct types of exit strategies. Figure 2.15a (Cluster 1) suggests

subjects would exit anytime they fall into the loss domain, given they had expe-

rienced a gain at some point. We define this behaviour as "Exit Losses Post-Gain".

Whereas Figure 2.15b (Cluster 2) represents "never enter" strategies. Subjects in clus-

ter 3 (Figure 2.15c), look to avoid the extremes, such that any time the monetary pay-

off is 4+, they should take their winnings, and anytime it reaches -4, they should cut

their losses and exit. We classify these subjects as "avoid extremes". Whilst subjects

in cluster 4 (Figure 2.15d), are "pure loss-exit" strategists, that being, they continue

playing for as long as they are objectively winning, and exit after an objective loss in

any period, even if the cumulative earnings represent a gain.

Although we observe strategy changes across the NC and C conditions, the clus-

ters remain almost identical, with the exception of cluster 2 in the C condition, where

subjects play in the first node, and play once more if they win in t=0. We also observe

13Given that Ebert and Voigt (2023) identified four strategy types, and our sample size is limited, we
restrict the number of clusters to 4
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FIGURE 2.15: Median Clusters: NC

(A) Median Cluster 1: NC (B) Median cluster 2: NC

(C) Median Cluster 3: NC (D) Median cluster 4: NC
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TABLE 2.7: K-means clustering segmentation of strategy types.

Cluster Nnc Nc Categorisation Naïvenc Sophnc Naïvec Sophc

1 39 16 Exit in Loss Post-Gain 62.6% 26.7% 23.2% 20%

2 14 13 Never enter 16% 33.3% 14.3% 33.3%

3 9 32 Avoid Extremes 10.7% 20% 48.2% 33.3%

4 9 10 Pure Loss-Exit 10.7% 20% 14.3% 13.3%

Notes: Column 1 represents the cluster number for our k=4 clusters.
Columns 2 and 3 represent the sample size for each cluster, with sub-
script nc indicating it was in the no commitment condition, and sub-
script c indicating it was in the commitment condition. Column 4 pro-
vides the economic interpretation of the each cluster, and columns 5:8
provide the density of each of our types in both the no commitment

and commitment condition.

changes in the density of each cluster.

Table 2.7 provides these results, and provides the density of each type by strategy

classification. Again, we do not find any patterns or statistically significant differ-

ences between the types.

2.6.8 Ex-ante: Methods

A primary assumption of the theoretical model is that the naïve subjects will elicit

strategies with a forward-looking approach in both the no-commitment and the

commitment setting. Whilst the sophisticates should elicit strategies using backward

induction in the no-commitment setting, but switch to a forward-looking approach

in the commitment setting. By disentangling our analysis such as to identify model

prediction rates purely over strategies, we find in the no-commitment setting that

92% of those classified as naïve generated their strategies using more of a forward-

looking approach, whilst for the other 8% it is unclear as to whether they used

backward induction or some other method. 40% of those classified as sophisticates

generated strategies using some form of backward induction.14 In the commitment

setting, the number of naives generating strategies that resemble a forward-looking

14We find that 30% of sophisticates, that are not included in the 40% who use backward induction,
indeed use some form of backward induction in their actual play. Of course this will lead to dynamic
inconsistencies if their initial strategy elicitation did not involve backward induction.
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FIGURE 2.16: Median ex-ante plan for Naive subjects.

(A) No Commitment (B) Commitment

approach now increases to 100%, and interestingly, the number of sophisticates us-

ing backward induction now drops to 11%, providing support for the theoretical

assumptions of the sophisticate type. Aggregating over each type, Figure 2.16 illus-

trates the average strategy used by those classified as naive, in both conditions, and

Figure 2.17 plots the same for those classified as sophisticates. Whilst the strategy

types (e.g. loss-exit / gain-exit) are similar across types, we can see from Figures

2.16 and 2.17 that the strategies at the node-level varied according the theoretical

assumptions of the model. That being, on average, that the availability of a commit-

ment device will not significantly alter the strategies of a naive agent, but it will for

those classified as sophisticated.

2.6.9 Ex-post: Methods

We now analyse the model level predictions for the subject-level actual play. We find

that in the no-commitment setting, 80% of the naive subjects follow the theoretical

assumptions given their type, in that their t>0 ex-post choices resemble a forward

looking approach such that deviations from initial strategies prevail, dependent on
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FIGURE 2.17: Median ex-ante plan for Sophisticate subjects.

(A) No Commitment (B) Commitment

the subject-level parameter triples. However, we find that only 6% of the sophis-

ticates follow their t=0 ex-ante strategy, implying deviations from initial strategies

ex-post, when t>015.

In the commitment setting, however, we find that 100% of sophisticates obtain

relatively low prediction error scores for their actual play - that being, the theoret-

ical predictions of the model, given their parameter triples, are relatively accurate.

On the other hand, 65% of naive subjects satisfy the theoretical predictions of the

model. The rise in prediction error here is likely a result of the commitment de-

vice objectively reducing the time-horizon and subsequently altering the expected

outcome distribution of the gamble. Therefore, as a result of naive subjects opting

for the commitment device, they either exited as a result of the device hitting the

bounds, or they deviated within the devices constraints as a result of a change in the

probabilities and the outcome distribution of the available gamble. Therefore, naive

subjects who committed were likely unable to satisfy the predictions of the original

model.
15Prediction-level assumptions are based on prediction errors of less than 25%
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2.6.10 Strategy type: Ex ante Vs Ex Post

What underpins dynamically inconsistent choice in decision-making under risk is

deviations from initial strategies. An agent may decide to engage in a risky action

as their initial strategy generates a positively skewed outcome distribution. How-

ever, as t increases, distributions evolve, leading to deviations from ex-ante strate-

gies over time. We now analyse whether a subjects’ initial strategy type is carried

out in actual play. In other words, if an individual elicits a loss exit strategy, do they

then proceed to exit more in the loss domain or the gain domain. We find that for

both types, in the no-commitment stage, whilst most subjects enter the casino with

a loss-exit strategy in mind: 80% of the naïve’s and 53% of the sophisticate’s, there

is a notable discrepancy between this strategy type and their actual play. Of those

who are classified as naïve and elicited a loss-exit strategy, 45% exited more in the

gain domain, 35% exited more in the loss domain, and the rest represent symmetri-

cal exit-strategies. Of the sophisticates who elicit a loss-exit strategy, 50% exit more

in the gain domain, 37.5% exit in losses, and the rest are symmetrical. A chi-square

test, and fisher test, confirms in the no-commitment stage, that there is no observed

association between eliciting a loss-exit strategy, and playing in a loss-exit manner

(Naïve: p=0.2603, p=0.266; Sophisticate: p = 0.4638, p=0.6357).

In the commitment round, although commitment devices were technically semi-

binding, in that subjects could still deviate within their bounds, most subjects exited

in the domain that their initial strategy suggested. 68% of Naïve’s stick to their initial

strategy type in actual play (p<0.001, p<0.001), and 73% of sophisticates do also

(p=0.03, p=0.02). Figure 2.18 illustrates the discrepancy between initial strategies

and actual play for the naïve subject in both conditions, and Figure 2.19 illustrates

the same for the Sophisticates.

2.6.11 Dynamic Inconsistencies: NC

As of yet we have discussed deviations from strategy type, but not deviations from

objective strategies at the node-level. In the no-commitment round, we find that 79%

of naive subjects and 67% of sophisticate subjects deviate from their initial plan at

least once. The mean and median number of deviations across the two groups is not



96
Chapter 2. Dynamic Inconsistencies in Risky Choice: Testing The Casino Gambling

Model

FIGURE 2.18: Naive: Strategy type vs actual play.

Notes: Panel A on the left represents the No Commitment condition,
and Panel B on the right represents the Commitment condition.

statistically different (Naive: µ=2.85 M=2; Soph: µ=2.13 M=2) (p=0.246, p=0.297).

However, when we aggregate types and separate subjects into those that opted for

commitment, and those who did not in C condition, we find statistically significant

differences in the NC condition. Remember, at this point, pre-commitment had not

been mentioned, so this is based purely on subject behaviour. For those who have

a demand for commitment (any who opt for commitment in the C condition), the

mean and median number of deviations are 2.54 and 2 respectively, where only 42%

of subjects deviated at more than 2 nodes. However, for those without demand for

commitment, the mean and median number of deviations is 3.5 and 4 respectively.16

The differences in the NC condition are statistically significant at the 10% confidence

level (p=0.1, p=0.1). Figure 2.20 illustrates the kernel density estimates for the num-

ber of deviations per subject, in the NC condition, where we classify subjects into

those who have demand for commitment, and those who do not.

Ebert and Voigt (2023) develop a measure of a subject’s dynamic consistency,

which takes insights from the Fischbacher, Hoffmann, and Schudy (2017) measure

of dynamic consistency, as well as from Odean (1998)’s measure of the disposition

16We also assessed whether there was a correlation between round number (1-8) and number of
deviations, but find no pattern or statistically significant correlation. This held for all groups.
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FIGURE 2.19: Sophisticate: Strategy type vs actual play.

Notes: Panel A on the left represents the No Commitment condition,
and Panel B on the right represents the Commitment condition.

effect. They define the consistency Ci of a subject as:

Ci =
Plan executionsi

Deviation opportunitiesi
= 1 − Deviationsi

Deviation opportunitiesi

Where Ci = 1 if subject i follows their plan in every game, and Ci = 0 if they

never follow their plan. Ebert and Voigt (2023) find the distributions of dynamic

consistency in their study are concentrated above 0.7, with a median of 0.89 over all

studies. Where subjects follow their unconstrained plan for about 86% of sequen-

tial risk-taking actions, implying relatively consistent behaviour. However, in our

setting, we find that the distributions of dynamic consistency have a wider concen-

tration level range. We split our analysis into four subgroups. In the first two, we

divide our sample into the two types, that being naive and sophisticate. As afore-

mentioned, we do not find statistically significant differences between these groups.

For the second two, we instead split our sample into two subgroups: those with, and

those without, demand for commitment. This is to analyse the behaviour of subjects

in the NC condition, but to segment subjects into those that will commit and those

who will not. In Figure 2.21, we provide a violin plot to illustrate the distribution of

the dynamic consistency measure, whilst providing a measure of the density’s per

group.

We can see there is substantially more heterogeneity in dynamic consistency than
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FIGURE 2.20: Deviations from ex-ante strategies: No commitment.

(A) Demand for Commitment (B) No Demand for Commitment

Notes: Kernel Density Estimates for the number of subjects who de-
viated from their initial strategies in the no-commitment setting. Sep-
arated into those who commit in the commitment setting (Panel A),

and those who opt to play without commitment (Panel B).

FIGURE 2.21: Distribution of dynamic consistency measure: No
Commitment

Notes: Distribution of dynamic consistency of four subgroups in the
No Commitment condition. In the first two groups, subjects are sep-
arated into those who commit and those who do not. The second two
groups separate’s subjects into those classified as naive, and those

classified as sophisticate.
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in the Ebert and Voigt (2023) study. For those with demand for commitment, and

those classified as sophisticate, we find their consistency measure is concentrated

above 0.5, with median values of 0.75, and the largest density skewed towards dy-

namic consistency. For those classified as naive there is the largest heterogeneity,

with a median of 0.75 that does not lie within the confidence levels of the mean.

For these subjects, the dynamic consistency measure is concentrated between 0.375

and 0.875. The density of the measure is split between the two bounds of the con-

centration level, suggesting there are potentially two types of individuals within the

original classification of "naive". Interestingly, for the subgroup who did not com-

mit, we find the measure is concentrated between 0.375 and 0.75, with the density

skewed towards the dynamically inconsistent bounds. Given that there are naives

who committed, and naives who did not, it is likely that this has caused the hetero-

geneity in the dynamic consistency measure. Regardless, we find on average our

subjects were less dynamically consistent than those in the Ebert and Voigt (2023)

examination.

Ebert and Voigt (2023) suggest that offering flexible strategies may increase in-

dividuals’ ability to stick to their plan beyond commitment devices that focus on

restricted plans. However, in our setting, where flexible, trailing strategies were

available, subjects still proceeded to deviate. We suggest that the reason subjects

were more dynamically consistent in their setting is because they were able to see

their plan throughout the task. This imposes a form of subconscious commitment.

In other words, if an agent elicits a plan, and they can see the plan, they feel more

obliged to stick to it. In our setting, where subjects were unable to see their plan

following elicitation, we find dynamically inconsistent behaviour. We are not disre-

garding the experimental design of Ebert and Voigt (2023), in fact, combined with

the current study, the two examinations have interesting implications for commit-

ment devise design. As you will see shortly, we still observe relatively dynamically

inconsistent behaviour in our condition in which semi-binding commitment was

available. Whereas in the Ebert and Voigt (2023) assessment, where they indirectly

impose a non-restrictive form of commitment by allowing subjects to visualise their

plans during play, they find dynamically consistent behaviour. Perhaps the subcon-

scious awareness of plans is more powerful than imposing semi-binding limits.
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FIGURE 2.22: Length of play.

(A) No commitment (B) Commitment

Notes: Density plot representing the horizon over which subjects’
continued playing in both conditions: aggregated over all subjects.
Panel A is for the No Commitment condition, and Panel B is the Com-

mitment condition.

2.6.12 Role of Commitment

The existing literature has found conflicting results regarding the availability of com-

mitment and whether this impacts a subjects’ willingness to take on more risk. We

now examine whether there is a relationship between commitment and playing for

longer. Given that we find the majority of subjects in fact enter the casino (98% oc-

currence), and 83% of subjects opt for the commitment device, it is not surprising

that subjects played for longer in the no-commitment rounds than the commitment

rounds. We find that in the no-commitment rounds, the mean length of play per

round was 3.26, whilst in the commitment condition, the mean length of play is 2.53,

where the differences in means and medians per subject, per round, are statistically

significant (p=0.0022, p<0.001). We find no difference between types in their mean

risk-taking behaviour in the no commitment condition (p=0.915) or in the commit-

ment condition (p=0.526). Figure 2.22 plots the kernel density estimates of length of

play for both the no commitment condition and the commitment condition, for all

subjects.
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2.6.13 Dynamic Inconsistencies: C

In the commitment condition we now wish to identify whether subjects are exiting

earlier because they are reaching their commitment bounds, or if they are deviating

from their strategy by exiting before reaching these bounds.

Subjects played in n=8 rounds, where 59% (33/56) of naives, and 80% (12/15) of

sophisticates deviated from their commitment device at least once. That being, they

left the casino before they reached an exit-node from their initial strategy. Again,

this is intuitive, given that the majority of subjects’ elicited loss-exit strategies. With

a loss-exit strategy in place, and with no-commitment, subjects’ are likely to con-

tinue gambling in the loss domain in the hope that they can recover their losses over

the longer time horizon. As the probability of recovering when already in the loss

domain is already small, this probability is likely to be overweighted, resulting in op-

timism and riskier behaviour. However, with a commitment device restricting this

horizon, if the low probability of a steady recovery has disappeared, and instead one

is left with moderate probabilities of gains or losses, with maybe a single period left

to recover their losses, this may lead to the cessation of gambling behaviour earlier

on. Across all participants who opted for the commitment device, subjects deviated

on a mean of 2.42 and median of 2 tasks out of a possible 8. However, we find that

for those subjects who did not opt for the commitment device (all naive), they de-

viated on a mean of 4.25 and median of 4 tasks. Given that it is incredible hard to

impose a hard-commitment device in a gambling setting, a semi-hard device was

implemented, and was shown, on average, to reduce the average gambling time sig-

nificantly (mean: p=0.01, median: p<0.01). Replicating the analysis of Figure 2.21,

but in the commitment condition, we generate the violin plot of the Ebert and Voigt

(2023) measure of dynamic consistency in Figure 2.23.

We can see there are still significant levels of deviation across all groups, where,

inevitably, those who did not commit had dynamic consistency measure’s concen-

trated between 0.3 and 0.675. For those who do commit, whilst the measure has the

highest density around 1, we still observe a concentration of the measure between

0.5 and 0.875. This suggests dynamic inconsistency still prevailed, and therefore

subjects deviated from their commitment devices, as aforementioned. Again, for
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FIGURE 2.23: Distribution of dynamic consistency measure: Com-
mitment

Notes: Distribution of dynamic consistency of four subgroups in the
Commitment condition. In the first two groups, subjects are sepa-
rated into those who commit and those who do not. The second two
groups separate’s subjects into those classified as naive, and those

classified as sophisticate

our type classifications, there is substantial heterogeneity in the level of dynamic

consistency observed. We observe large concentration levels and relatively uniform

density’s for our naive group between 0.3 and 1, and scattered densities for our so-

phisticate group.17

Our results have shown that differentiation between naives and sophisticates in

this environment is ambiguous, in that for many comparisons, the two types, on

average, act in a similar manner, with relatively large standard deviations in mean

differences. We assume that the observed classification of types from our prediction

exercise stems from the risk-preferences elicited coinciding either with their subse-

quent elicitation of strategies, OR their actual play given these parameters. Given

that the design of the casino gambling model does not permit the direct elicitation of

parameters, the true identification of types based on our parameter estimates could

17Additionally, we explore whether there is a link between subject-level risk-preferences and dy-
namic inconsistencies. We find little correlation for each preference parameter in each domain
−0.1 < cor < 0.2, with p values greater than 0.4 for each. However, this is likely due to the het-
erogeneity in preference parameters elicited. Nonetheless we can conclude that we find large degrees
of probability distortion, as well as large deviations from strategies. Additionally, the independence of
the risk preference elicitation task from the casino task is a limitation we acknowledge, which may be
contributing to the lack of correlation between risk preferences and dynamic consistency. Given it was
not feasible to estimate parameters directly from the casino task, the analysis is somewhat restricted in
this domain.
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be restrictive. However, given the identified behaviour of subjects, we can make

interesting insights into type-identification. Most notably, we propose the develop-

ment of a new type: Quasi-naivety.

2.7 Quasi-naive

Evidently there are cases where the two types exhibit explicitly different behaviour,

there are cases where there are no statistically significant differences, and in many

cases, the theoretical assumptions of the model do not hold. Notably, so far we

have identified that many naive subjects opt for commitment, sophisticates used

backward induction for strategy elicitation or actual play, but did not tend to use it

in both, and both types, but more importantly the naive agents, play for longer in

the no-commitment round than the commitment round. Finally, we find that most

subjects deviate from their initial strategies in the no-commitment setting, and in

fact continue to deviate from their strategies, even when commitment is somewhat

binding. Is it that the theoretical assumptions of the model are inaccurate, or do they

merely need re-evaluation.

In this section we propose the development of a new classification, that provides

an explanation for the results observed in the current study, as well those from exist-

ing studies (Heimer et al., 2023). This type stands as a middle-ground agent between

the naive and a sophisticate, and is able to explain why in many cases, the theoreti-

cal predictions of the models attained large error rates. We call this type quasi-naive.

We are not saying that purely naive subjects, and purely sophisticate subjects do not

prevail. In fact we have found explicit support for these assumptions, in that there

are those who did not opt for commitment, generated the same strategy in both

conditions, and deviated from these strategies in actual play, thereby elicited very

small prediction errors (0.14) with the naive model. Similarly, there were those who

elicited strategies using backward induction in the no commitment condition, fol-

lowed this initial strategy, opted for commitment, and elicited a forward-looking

strategy which was followed ex-post, thereby eliciting small prediction errors (0.21)

with the sophisticate model. However, we propose that "strictly naive" and "strictly
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sophisticate" classifications fall on the extreme ends of our type spectrum, with the

majority of participants resembling a merger of the two types.

Quasi-naive subjects appear to be aware of their dynamic inconsistencies. They

opt for commitment, yet still manage to deviate in light of updated preferences. In

fact, they are likely to generate a strategy with commitment that leads to deviations

from initial strategies that may not have occurred without commitment.

Even thought they are aware of their dynamic inconsistencies, a quasi-naive sub-

ject will devise a plan using a forward looking approach. They will enter the casino

if they are able to generate a strategy that yields a positive expected return, given

their preference parameter triples. Without the availability of commitment, quasi

naive agents believe that "this time will be different" in that they are aware of their

dynamic inconsistencies, but believe they have found a way to overcome them. Dai,

Milkman, and Riis (2014) introduce how subjective temporal landmarks create new

mental accounting periods and foster a "fresh start" effect, which is likely influenc-

ing the behaviour of quasi-naive agents. Inevitably, with the adrenaline of the risky

task, their impulses take over and they proceed with a forward looking approach, in

which the outcome distribution, as well as the probabilities of receiving the most de-

sired outcome, change, leading to deviations from initial strategies. This is because

subjects are acting on present time preferences, rather than their t=0 preferences.

Up until this point, the strategies and actions will be the same as the original naive

classification.

However, when commitment is available, quasi naive subjects do not need to

take the risk of believing "this time will be different", and therefore opt for the com-

mitment device. Bettega et al. (2023) and Kurth-Nelson and Redish (2012) have

shown that in many cases, subjects have opted for commitment, even when it is

costly, implying acknowledgement of dynamically inconsistent behaviour. Again,

they generate a strategy using a forward looking approach, that they are now confi-

dent they will abide by, as they have a semi-binding commitment device to enforce

this. This device provides the subjects with an illusion of safety, where they are re-

luctant to acknowledge deviations from strategies that are within the constraints of

the device. They also fail to acknowledge that imposing a commitment device will

alter the outcome distribution of the gamble, which means, as t → 5, the outcome



2.7. Quasi-naive 105

FIGURE 2.24: Example Commitment Strategy.

distribution of the game is not the same as it would be without the device. They have

altered the outcome distribution of their gamble without knowing. For example, let

us work with the strategy in Figure 2.24.

If our quasi naive subject elicits this strategy based on her parameter triple, then

the expected outcome distribution, at a time of t=0 is (£-2, 0.625; £0 ,0.125; £2, 0.09375,

£6, 0.125, £10, 0.03125). The quasi naive subject opts for the commitment device, and

therefore these bounds are binding. As this strategy generates the highest utility

given their parameter triple, they believe there will be no deviations from this plan,

as the commitment device is there to restrict them from gambling in the loss domain

for too long. However, as they still visualise the 5 period game in its original form,

they neglect deviations from newly generated outcome distributions. In reality, the

game has become Figure 2.25a.

Of course this is the intention of the quasi-naive, as they seek to generate an

outcome distribution that yields a positive CPT value. However, if for example, the

quasi-naive agent was to enter and win in t=0, and then lose in t=1, then their new

position would be the red node in Figure 2.25b. At this point in t=2, the quasi naive

agent looks to see if they can generate a strategy that provides a positive outcome

distribution, given their parameter triples, and given the commitment bounds that
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FIGURE 2.25: Pruned Decision Tree.

(A) Pruned Commitment Strategy (B) Position after win in t=0, and loss in t=1.

Notes: Panel A represents the a visual representation of the pruned
tree given a specific commitment strategy. Panel B illustrates where a

subject would land following a win and then a loss.

restrict the full game. If they find a new strategy that generates a positive CPT value,

then they continue playing. If they cannot, then they exit, even if their initial strategy

with commitment was to continue. In their new position, they solve for an optimal

strategy in the game represented in 2.26. The red node in Figure 2.25b is at the same

position as the red node in Figure 2.26, only the latter has pruned the game further

based on moves by nature.

At t=0, their optimal strategy suggests that they should play at this point in t=2,

however, they now re-evaluate the new outcome distribution (-£2, 0.5; £0, 0.25: £2,

0.125, £6, 0.125), and in many cases will find their optimal strategy is now to exit. If

for example we assume parameter triple (α, δ, λ) = (1.6,0.92,2). A quasi-naive agent

with this parameter triple would elicit the optimal strategy illustrated in Figure 2.24.

The utility of entering the casino in t=0 for this agent is CPT = 1.105. Therefore the

quasi-naive agent enters with this strategy and opts for commitment. However, fol-

lowing a win and then a loss, they find themselves at the red node in figure 2.26.

With a newly generated outcome distribution, they assess their CPT utility of con-

tinuing against their CPT utility of exiting, based on their parameter triple and their
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FIGURE 2.26: Pruned decision tree at t=2.

Notes: Following a pruning given the initial strategy, and then a win
in t=0 and loss in t=1, the game now resembles a new decision tree.

current position. They find that the utility of playing, which their initial strategy

advises them to do, is now CPT = -0.03. Whilst the utility of exiting at this point is

0. Therefore, the quasi-naive agent deviates from their initial commitment strategy

and exits the casino. We can see this holds for a wide range of parameter triples

over a wide range of commitment strategies. That being, where a subjects prefer-

ence parameters generates an optimal strategy, commitment is imposed, but as the

horizon shortens, subjects deviate from this strategy. This provides an intuitive ex-

planation for the results found in our experiment, where subjects’ classification into

strictly naive or strictly sophisticate types was enigmatic. Similarly, it provides an

explanation as to why subjects deviated from their soft commitment devices in the

Heimer et al. (2023) study. Thaler and Johnson (1990) implicitly support this claim

when they point out that people take on more risk after a loss, but only if the upside

of the gamble allows them to recover from it and get back to the reference point.

They refer to this behaviour as the "break even" effect.

Of course this is only relevant when there is a soft or semi-binding commitment

device available, rather than a hard one. However, given most real-world applica-

tions of commitment devices are soft, this classification is pivotal. It is possible to

impose a hard commitment device, but this would require a computer playing on

ones behalf, and sticking to the elicited strategy strictly. However, this may change
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a quasi-naive subjects’ mind regarding whether they wish to commit. The liter-

ature has provided research suggesting individuals require some level of control

over financial choices, with Bettega et al. (2023) highlighting that many may feel un-

comfortable with the idea of a commitment device that restricts future control. A

semi-binding or soft commitment device provides this element of control, and the

freedom to make ones own choices within the constraints of the device.

2.7.1 Welfare Implications

It is extremely difficult to devise a binding hard commitment plan in a gambling or

financial setting, as most devises will still allow for deviations within the constraints

of the commitment plan. Dependent on the structure of the task and the commit-

ment device, semi-binding pre-commitment could result in increased risk taking or

reduced risk-taking. In our setting, we find in fact that it reduced risky behaviour,

in that subjects who opted for commitment exited the casino earlier in the commit-

ment condition than the no-commitment condition. However, we also found that

all subjects played in all tasks, so perhaps the inherent risky behaviour of subjects

generates this result.

Of course, increased risk-taking and decreased risk-taking does not always cor-

relate to higher or lower monetary gains or losses. Table 2.8 provides the summary

statistics of the monetary outcome distribution of our subjects. Subjects completed

eight rounds of play in each condition, whereby for each round, there was a mone-

tary outcome. For each subject, we sum their cumulative winnings over each round

and provide four realised moments of the monetary outcome distribution. The max-

imum cumulative payoff possible over 8 rounds is £80, the minimum was -£80, and

the cumulative expected value over each gamble was 0. We analyse outcome dis-

tributions by segmenting subjects into different groups under various settings. Our

first setting is in column 1, where we aggregate over the whole sample space, and

provide the four moments in both the No Commitment condition (rounds 1-8), and

the Commitment Condition (rounds 9-16). In the second setting, in columns 2 and

3, we segment subjects based on the Barberis (2012) classification of types, and again

provide the four moments in both conditions. In the final setting, in columns 4 and
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TABLE 2.8: Four realized moments of the monetary outcome distri-
bution.

All Naïve Soph Didn’t C Did C

Condition NC C NC C NC C NC C NC C

Mean[.] -2.761 -0.958 -2.821 -0.714 -2.533 -1.867 -1 -0.833 -3.119 -0.983

Std[.] 5.538 3.077 5.756 2.735 4.809 4.103 3.954 1.337 5.769 3.329

Skew[.] -0.019 -0.457 0.06 -0.274 -0.456 -0.269 0.647 -1.111 0.035 -0.4

Median[.] -2 0 -2 0 -2 -2 -1 0 -2 0

Notes: Column 1 (ALL) is the whole sample space in the two condi-
tions, column 2 and 3 are segmented into types, and column 4 and 5

are segmented based on their demand for commitment.

5, instead we segment subjects into two groups: those who did not opt for commit-

ment in Part 2, and those who did, and provide the four moments of their outcome

distributions in both conditions.

Again, for the differentiation between naive and sophisticate agents, we do not

find any meaningful statistically significant differences in their outcome distribu-

tions, which is expected given their average lengths of play were similar. We are

particularly interested in the welfare implications of commitment devices that are

not strictly binding, so we now focus on the final two columns of Table 2.8. In-

terestingly, for those who decide not to commit, their losses are relatively low, and

inevitably do not change much over the two conditions. However, for those who

do opt for commitment, subjects are become better off in the commitment condition

than in the no-commitment condition. Panels b and c of Figure 2.27 illustrate how

the semi-binding commitment device shifted the concentration towards the positive

domain and subsequently altered the direction of the skew. We are unable to iden-

tify whether or not the deviations from commitment in fact made subjects better

or worse off, but this is perhaps something future considerations could look into.

Additionally, it would be interesting to observe deviation behaviour in a setting

where subjects may be less inclined to participate without a pre-commitment op-

tion. This would highlight whether semi-binding commitment hinders or benefits
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FIGURE 2.27: Monetary Outcome Distribution Concentrations.

Notes: Subjects are segmented into those who have a demand for
commitment (Did), and those who do not (Didn’t). Results for both
the no-commitment condition (No Commit), and the commitment

condition (Commit).

financial welfare.

Nonetheless, regardless of the observed deviations from commitment within the

constraints of the bounds, the commitment device still managed to shift the concen-

tration of the monetary outcome distribution towards the gain domain.

Heimer et al. (2023) highlight that non-binding limits create an "illusion of com-

mitment" whereby subjects overestimate the efficacy of the device. We observe this

behaviour by the number of deviations from ex-ante commitment strategies. In our

setting, these deviations did not hinder financial welfare, largely due to the risk-

seeking attitudes adopted by our sample and that subjects were willing to gam-

ble regardless of the availability of commitment. However these types of strategies

could lead to increased risk-taking in environments where one may not usually feel

comfortable engaging in the task. In these environments, it is likely that non-binding

or semi-binding commitments could reduce financial welfare. For example, in our

examination, aggregating over all participants, in the no-commitment condition we

find the mean of the monetary outcome distribution is -2.761. Whilst not participat-

ing at all would yield a payoff of 0, subjectively benefiting the subjects financial wel-

fare. The efficacy of commitment devices is therefore largely dependent on whether
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the individual would have engaged in the risky action anyway.

2.8 Discussion

Dynamic inconsistencies in decision-making under risk represent the inability to ad-

here, ex-post, to an ex-ante plan. This chapter sought to provide an explanation for

dynamically inconsistent choices by being the first to directly test the empirical pre-

dictions of the Casino Gambling Model (Barberis, 2012). We show that direct pa-

rameter estimation from the theoretical design is not feasible, so we proceed with

an experimental design that incorporates an independent risk-elicitation task, such

that we can still predict the models primary assumptions. Of course, the static and

independent environment in which parameter recovery takes place calls for ques-

tions concerning the heterogeneity of preferences in different tasks. Nonetheless,

we are able to reveal fascinating insights regarding the structure of dynamically in-

consistent choices, the generated distribution and preferences of ex-ante strategies,

demand for pre-commitment, and how semi binding commitment devices affect fi-

nancial welfare.

Regarding strategy type elicitation, we identify a preference for loss-exit strate-

gies (sometimes referred to as right-biased rules), as has generally been found in the

literature (Antler and Arad 2023; Ebert and Voigt 2023). When commitment is not

available, we find significant deviations from these strategies ex-post, both in terms

of strategy type deviations, as well as node level decisions. We find the majority

of subjects acknowledged they acquired some form of dynamically inconsistent be-

haviour, in that they opted for a commitment device when available. The device was

semi-binding, whereby subjects could not exceed the limits imposed by their strat-

egy, but deviations within the bounds of the strategy was possible. We find that the

majority of subjects deviate from their pre-commitment strategy at least once. We

propose that "pure naivety" and "pure sophistication", defined as those who com-

ply with the theoretical predictions of the CGM, do exist, although these types seem

to represent the more extreme ends of the behavioural classification spectrum. The

majority of subjects, rather, represent a merger of the two types.
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The structural patterns observed from our investigation motivate the generation

of theoretical predictions for a new behavioural type: Quasi-naivety. The theoretical

assumptions imposed for a quasi naive agent are able to rationalise the behaviour

observed by subjects in our experimental setting, as well as the experimental results

from existing studies (Heimer et al. 2023; Bettega et al. 2023). Similarly, these as-

sumptions provide support for the break-even effect of Thaler and Johnson (1990),

whereby subjects take on more risk after a loss, but only if the upside of the gamble

allows them to recover and converge back to the reference point.

We would also like to touch on the role of reinforcement learning and belief up-

dating in experimental investigations. Existing studies have proven that there is ev-

idence of learning throughout experimental investigations (Chen and Hsieh, 2011),

which in turn changes subjects preferences over time. We find that a significant num-

ber of subjects changed their initial strategies across the two conditions. However,

as we impose a within-subject design, we cannot directly assume this a by-product

of commitment or sophistication. It could in fact be that subjects learn further from

the game, and identify instances where they can optimise their strategies based on

updated preferences. Additionally, we find that the majority of subjects opt for com-

mitment, but again, we cannot impose that this is a result of inherent sophistica-

tion. As the commitment condition came after the no-commitment condition for all

subjects, the substantial demand for commitment may have come from subjects up-

dating their beliefs about their intrinsic dynamic inconsistencies, after experiencing

deviations in prior stages. This in turn may have induced classification switches

for many subjects, where a new demand for pre-commitment emerged. In future

investigations it would be useful to control for ordering effects by counterbalanc-

ing the sample size, and allowing half of the subjects to engage in the commitment

condition first, such that one can identify whether the demand for commitment was

exogenous or endogenous. Similarly, it would be interesting to observe the entry

rates for subjects who first had commitment available, but later had it taken away.

As aforementioned, there are various restrictions imposed by eliciting param-

eters via an elicitation task that is independent from the dynamic choice-task. For
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future research that identifies similar restrictions18, we suggest the use of risk prefer-

ence elicitation tasks that are nested within the core experimental task (reduction of

compound lotteries). In our example, results may have been more robust if instead

of using the certainty equivalent risk preference elicitation task, we had selected

gambles from the outcome distributions of all feasible strategies. To elaborate, when

determining the theoretical predictions of the CGM, we were required to generate

the outcome distributions of all 801 feasible strategies. Selecting a sub-sample of

these outcome distributions, and presenting them as static gambles, would increase

the interdependence between parameter recovery and type identification.19

Our findings show that the availability of a commitment device, even when only

semi-binding, increased financial welfare. However, we highlight that the efficacy

of a commitment device is largely dependent on whether the individual would have

engaged in the risky action in the first place. If the commitment device was the de-

terminant in the tie-breaker between entering into the risky decision and not, then

deviations from commitment could in fact reduce financial welfare with respect to

the reference point. Finally, our results, combined with those of Ebert and Voigt

(2023), provide interesting implications for the design of commitment devices. The

combined results suggest that commitment devices that foster an intrinsic motiva-

tion may be more effective than extrinsically imposed commitments. This could also

be an interesting avenue for future experimental investigations, with a between sub-

ject design, and treatment groups with commitment devices that vary based on their

intrinsic or extrinsic nature, rather than varying solely on their level of restrictive-

ness.

18For example where parameter identification is not feasible
19Unfortunately, due to budget constraints, we were unable to re-run the experiment with the new

design.
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Abstract

In an attempt to elucidate the classic violations of expected utility theory, the be-

havioural economics literature heavily relies on the influential work of Tversky and

Kahneman (1992) and Tversky and Kahneman (1975), specifically the Cumulative

Prospect Theory (CPT) model and the Heuristics-and-Biases program. While both

approaches have significantly contributed to our understanding of decision-making

under uncertainty, empirical evidence on the competing approaches remains incon-

clusive. In this study, we investigate the performance of each approach across a wide

range of choice environments and increased cognitive load domains, encompassing

gains, losses, time pressure, and complexity. Utilising data from various studies and

employing Bayesian inference, we assess the performance of CPT in comparison to

an adaptive cognitive toolbox model of heuristics. For subjects classified as tool-

box decision makers, we examine the content (i.e., which heuristics) and the size

of the toolbox (i.e., how many heuristics). Our findings reveal that as the choice

environment objectively increases in complexity, individuals transition from using

sophisticated expectation-based utility models to relying on a set of simplification

heuristics for decision-making. We quantify the relationship between toolbox us-

age and complexity, showing a significant and positive correlation between the two.

Furthermore, our results indicate that as task complexity rises, individuals tend to

employ smaller toolboxes with fewer heuristics for decision-making.
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3.1 Introduction

You are in a casino, and we ask you to choose red or black on a roulette wheel, what

would your strategy for making this choice look like? What about if instead you are

deciding on an insurance product to take out, where you need to consider the pre-

mium cost, coverage, excess, trust, and more. Do we use the same strategies to make

decisions in both situations. With the former, it is fairly straightforward to calculate

the expected return and objective probabilities associated with each choice. With the

latter, it may be more complicated to evaluate the utility received from each com-

ponent and assess it alongside the cost. So would we use simplification strategies

to reduce the complexity of the decision, or would we still attempt to evaluate each

component individually?

The behavioural economics literature on decision-making under risk and uncer-

tainty relies heavily on Tversky and Kahneman (1992)’s Cumulative Prospect The-

ory to explain human choices. It has provided explanations to economic paradoxes

(Allais, 1953), and can flexibly account for individuals’ economic decisions. How-

ever, it remains inconclusive as to whether its assumptions remain as the most de-

scriptive when the environment or characteristics of a task increase the complexity of

the decision. This chapter seeks to determine whether CPT’s explanatory dominance

remains when subjects are presented with tasks that may overwhelm our cognitive

loads. More specifically, we wish to determine whether subjects better explained by

algebraic, expectation-based compensatory models like CPT (Hilbert 2011; Kahne-

man and Tversky 1979; Zindel, Zindel, and Quirino 2014), or simple rules of thumb

(heuristics) (Tversky and Kahneman 1975; Gigerenzer and Gaissmaier 2011), when

under time pressure and increased complexity.

The compensatory models predict overt decisions, combining components of

risk attitudes such as utility curvature, probability weighting and loss aversion.

Whilst heuristics are considered in order to capture the underlying cognitive pro-

cess. These two approaches radically differ in their assumptions and the way they

model decision making, and both have been extensively used in the literature, to

explain a number of paradoxes, such as the Allais paradox, the four-fold pattern, the

certainty effect, the possibility effect, and intransitivities.
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Regarding the compensatory models, it is important to note that within CPT

lies an indirect assumption that individuals have the time and capacity to subcon-

sciously transform probabilities into decision weights, transform outcomes into util-

ities, and mentally endure the future effects of a potential loss. Many real-world

economic choices do not provide the luxury of infinite time horizons, and some may

not have the capacity to evaluate the utility received from all potential outcomes.

On the other hand, there are theories of human cognition assuming that peo-

ple are equipped with a repertoire of heuristics and simplifying processes to solve

the tasks they face in daily life. The literature has modelled this behaviour with

the aid of a cognitive toolbox, from which people might adaptively choose their re-

spective strategies. In the field of judgement and decision making, this concept was

pioneered by Payne, Bettman, and Johnson (1993) arguing that the decision mak-

ers are equipped with a set of strategies and select among them when faced with

a decision; an approach which was later extended in Gigerenzer (2002), modelling

decision making as probabilistic draws from a toolbox of heuristic rules. While this

modelling approach has been extensively investigated in the field of psychology

and related studies in various domains, such as resource allocation, estimation and

judgment of frequencies, skill acquisition, and learning processes, there is a notable

absence of empirical evidence regarding the performance of these toolbox models of

cognition, specifically in the context of risky choice. Scheibehenne, Rieskamp, and

Wagenmakers (2013) highlight that while this theoretical framework of a cognitive

toolbox provides a plausible account of intra- and interindividual differences in hu-

man behaviour, it is often unclear how to rigorously test the toolbox framework, how

to quantitatively specify such a model, how to limit the number of toolbox strategies

in the model to avoid the so called strategy sprawl, and how to formally test against

alternative theories. To address these issues comprehensively, the authors propose

the utilisation of Bayesian inference techniques. In this chapter, we adopt the sta-

tistical framework proposed by Scheibehenne, Rieskamp, and Wagenmakers (2013)

to rigorously assess the performance of an adaptive toolbox model of heuristics in

the field of risky choice compared to the benchmark CPT model. We aim to explore

how individuals utilise either compensatory models or simple rules of thumb in var-

ious decision-making domains that may increase ones cognitive load, specifically in
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the gain domain, the loss domain, under time pressure, and when subject to overly

complex tasks.

Interestingly, the the use of heuristics strategies is implicity supported by exist-

ing evidence in the eye-tracking data literature. Multiple studies have used pro-

cess data to investigate and characterise decision strategies (Venkatraman, Payne,

and Huettel 2014, Harrison and Swarthout 2019, Fiedler and Glöckner 2012). Note-

ably, Arieli, Ben-Ami, and Rubinstein (2011) find that the eye patterns of individuals

suggest we compare prizes and probabilities separately, which opposes more holis-

tic cognitive bias model approaches like CPT. This evidence coincides with more

heuristic-type behaviour. It was also found that this effect was more pronounced

when the suggested weighting of probabilities and utilities are more laborious to

compute. Nonetheless, there are studies that say the eye tracking data opposes cer-

tain heuristics (Glöckner and Herbold, 2011), but these studies tend to also rule out

the idea that individuals look to maximise any form of expectations models. How-

ever, they impose the assumption that individuals rely on a single heurstic rather

than a repetoire of heuristics - an assumption we relax.

3.1.1 Research Questions

Our assessment of the explanatory performance of CPT and an adaptive toolbox of

heuristics in tasks of varying complexity will answer the following research ques-

tions.

Research Question 1. Can a toolbox model of simple heuristics explain lottery choices

better relative to a sophisticated compensatory utility model (i.e. CPT)?

Recent literature has primarily focused on one-to-one comparisons between a

single heuristic and a flexible model with free parameters (most commonly CPT),

providing overwhelming support in favour of the latter (Brandstätter, Gigerenzer,

and Hertwig 2006; Rieskamp 2008; Glöckner and Pachur 2012; Balcombe and Fraser

2015; Peterson et al. 2021 ). Nevertheless, this approach ignores the concept of eco-

logical rationality, that is, the fit between a heuristic or decision strategy and a choice

environment which gives the agent the flexibility to adapt her strategy according to



3.1. Introduction 121

the decision task at hand. Various heuristics have been shown to take place simulta-

neously, so to better understand the behaviour of economic agents, it is imperative

to determine which heuristics are used in which circumstances (Campo et al., 2016).

In the field of risky choice, there is a notable scarcity of research examining the

performance of toolbox models. Stahl (2018) investigates whether a toolbox model

of simple heuristic rules can help explain choices under risk relative to expected

utility theory (EUT). The study concludes that [· · · ] if we want to forecast the future

lottery choices of humans and have limited prior data on which to make those forecasts, then

our analysis suggests it would be better to use the Expected Utility Theory-Only model

even if we believe it is not the true data generating process rather than using an overfit-

ted toolbox model. Mohnert, Pachur, and Lieder (2019) develop a model according

to which the decision maker selects a decision strategy for a given choice problem

rationally from a toolbox of strategies and they estimate the content of the toolbox at

the individual level. Their adaptive toolbox model predicted people’s risky choices

better than single strategies and non-adaptive toolbox models, but performed worse

than CPT. Finally, Olschewski and Rieskamp (2021) explore whether time pressure

motivates subjects to use simple, non-compensatory strategies in a risky choice ex-

periment. They assume 3 potential heuristics, and they find a slight but insignificant

increase in the number of participants who resort to heuristics under time pressure,

attributing this to increased noise in subjects’ behaviour1. Nevertheless, prior efforts

to assess toolbox models face obstacles stemming from simplification assumptions

and econometric challenges in accurately characterising and identifying the model.

These simplification issues arise in two primary forms. Firstly, with the exception of

Mohnert, Pachur, and Lieder (2019), existing studies have not allowed for individual

heterogeneity in toolboxes, implying that all subjects employ the same limited set of

3 or 4 heuristics. The second concern, raised by Stahl (2018), revolves around over-

fitting induced by the estimation method. Notably, all the aforementioned studies

employ Maximum Likelihood Estimation (MLE) techniques, which are known to

1A relevant study is He, Analytis, and Bhatia (2022) focusing on the recent literature of collective
model wisdom (model crowds) in decision analysis. It conducts a large scale comparison of 58 promi-
nent models of risky choice and they find that crowds of risky choice models perform better than
individual models. While they include a large number of popular heuristics in the candidate models,
they do not explicitly test toolbox models of heuristics and their approach differs from ours in several
aspects (i.e.type of lotteries, model selection, estimation method, CPT specifications, and number and
type of heuristics).
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produce estimates that are extreme, relatively noisy, and less reliable when com-

pared to more flexible estimation methods, such as Bayesian Hierarchical modelling

or Simulated Maximum Likelihood, that account for behavior at both individual and

population levels. This leads us to our second question:

Research Question 2. What is the best way to quantitatively specify and robustly estimate

a toolbox model of cognition?

Stahl (2018) using both simulated and actual data, suggests that it may be prefer-

able to use the EUT-Only model, even when it is not believed to be the true data

generating process, rather than employing an overfitted toolbox model. Building

on this insight, we re-analyse the same datasets and investigate two potential ex-

planations for this result (1) the choice of estimation method and (2) the nature of

the data. Regarding the former, Bishop (2006, pp. 166) cautions that “the use of

maximum likelihood, or equivalently least squares, can lead to severe over-fitting

if complex models are trained using data sets of limited size”, and goes on to sug-

gest “the phenomenon of over-fitting is really an unfortunate property of maximum

likelihood and does not arise when we marginalize over parameters in a Bayesian

setting”. Using Bayesian inference, we demonstrate that the overfitting issue is sig-

nificantly mitigated, resulting in more robust and reliable estimates. With regards

to the second point, we explore how the nature of the dataset, and in particular the

experimental design, can explain the poor forecasting performance of the toolbox

model. The next question we explore can be summarised as:

Research Question 3. What is the relationship between increased cognitive load and the

utilisation of cognitive toolboxes?

Stahl (2018) analyses the data of Hey and Orme (1994) and Harrison and Rut-

ström (2008) which consist of 3-outcome binary lotteries, in the gain domain, with

only four potential monetary outcomes and varying probabilities. We argue that

this design and decision environment, may be more “user friendly” for expectation

based models (i.e. Expected Utility). We extend our comparison of CPT and Toolbox

models in various domains and conditions, specifically looking to explore whether

decision-makers resort to the use of heuristics when the tasks at hand are more cog-

nitively demanding. We therefore, explore the performance of the toolbox model,
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in a number of domains/environments that require more cognitive effort, includ-

ing losses and mixed gambles, time pressure and complexity. Using features of a

dataset such as the number of alternatives in a choice set, the formatting of probabil-

ities and outcomes, or the distribution moments, we set up an index of complexity

which enables us to quantify the relationship between increased cognitive load and

the utilisation of cognitive toolboxes, and show how the two are correlated.

Given the flexibility that our econometric approach offers, we are able to estimate

a large set of models per subject, and identify the combination of number and type

of heuristics that best describe the behaviour of each individual subject. The next

two questions focus on the size and the content of the toolbox model.

Research Question 4. What is the optimal number of heuristic strategies that one should

include in a toolbox?

As aforementioned, the previous literature on toolbox modelling makes the sim-

plification assumption that all the subjects share the same limited and fixed set of

heuristics (3 or 4). We relax this hypothesis and allow the toolbox size to vary be-

tween 2 and 5 heuristics, accommodating individual-specific combinations of size

and heuristic number. Furthermore, the toolboxes can comprise various combina-

tions drawn from a comprehensive set of 11 heuristics extensively studied in the

literature. Next, we inquire into the contents of these toolboxes, identifying which

heuristics are most frequently employed and what insights they provide into the

subjects’ risk preferences.

Research Question 5. What is inside the toolbox?

After identifying all the subjects for whom the toolbox model is the best specifi-

cation, we can not only assess the size of the toolboxes (i.e., the number of heuristics)

but also delve into the content of these toolboxes. This allows us to determine which

heuristics are most frequently employed in different environments and gain insights

regarding the risk preferences of the subjects.

To summarise, we estimate toolbox models of cognition using data from promi-

nent studies in various domains and contexts (i.e., gain, loss and mixed domains,

time pressure, and complexity). These toolbox models comprise a comprehensive
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set of 11 heuristics, and we compare them with four different CPT model specifica-

tions. We identify the domains and environments in which decision makers resort

to the use of simplifying strategies, with the percentage of subjects classified as Tool-

box decision makers, ranging from 2 to 67%. We find that for the subjects classified

as Toolbox decision makers, the majority are using 3 or 4 strategies. Furthermore,

we observe extensive heterogeneity regarding the type of heuristics subjects employ,

with the vast majority resorting to heuristics that provide a safety net (e.g. Minimax

or Least Likely), while risk seeking strategies are least preferred (e.g. Maximax). We

introduce a metric to gauge the complexity of experimental stimuli, and based on

this index, we observe a positive and significant correlation between complexity and

the utilisation of heuristics in addressing risky choice problems. Finally, our analysis

allows us to identify the domains/environments where CPT can explain behaviour

better, which allows us to run a racehorse between different probability weighting

functions, showing that a two-parameter weighting function always performs better

compared to the one-parameter family of weighting functions.

The rest of the chapter is organised as follows. Section 4.2 outlines the theoret-

ical frameworks of the the two competing models, section 3.3 provides the details

of our econometric approach, section 3.4 briefly presents the datasets we employ,

while section 3.5 presents the results. We then conclude. Please see Appendix B.1

for a comprehensive review of the literature on heuristics, the four domains of con-

sideration, and the use of adaptive toolboxes.

3.2 Theoretical Framework

In this section, we present the underlying assumptions of the two decision making

models that we estimate. In our analysis, the value of the outcomes can be positive,

zero or negative, depending on the context and the environment that we explore.

We present the full specification (i.e. the one that accounts for both gains and losses)

which we adapt accordingly. We present both the deterministic assumptions of each

model, as well as the stochastic assumptions we make, in order to take into account

noise and heterogeneity in decision making.
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3.2.1 Cumulative Prospect Theory

The decision maker faces pairs of n-outcome lotteries with outcomes x1 ≤ . . . ≤ xk ≤

0 ≤ xk+1 ≤ . . . ≤ xn and corresponding probabilities p1 . . . pn. Following Tversky

and Kahneman (1992) we assume that a decision maker is endowed with a utility

function u(.), on monetary outcomes with u(0) = 0, and a probability weighting

function w(p), that transforms the objective probabilities into subjective decision

weights. The overall evaluation of a lottery L is given by:

V(L) =
k

∑
i=1

u(xi)π
−
i +

n

∑
j=k+1

u(xj)π
+
j (3.1)

where π+ and π− are the decision weights for gains and losses, respectively. The

decision weights are defined as:

π−
1 = w−(p1)

π+
n = w+(pn)

π−
i = w−(p1 + . . . + pi)− w−(p1 + . . . + pi−1) for 1 < i ≤ k

π+
j = w+(pj + . . . + pn)− w+(pj+1 + . . . + pn) for k < j < n

We assume a CRRA utility function over monetary outcomes of the following

form:

u(x) =


xr

r if x ≥ 0

−λ (−x)r

r if x < 0

(3.2)

where r ≥ 0 is a parameter governing the utility curvature, and λ ≥ 1 is the param-

eter of loss aversion. Previous studies have shown that the power function fits well

experimental data, for the level of monetary payoffs usually used in experimental

studies (see for example Stott 2006; Balcombe and Fraser 2015; Baillon, Bleichrodt,

and Spinu 2020). When we consider losses, in order to avoid the scaling issues that a

domain specific power (CRRA) function causes to the estimation of the loss aversion

parameter, we follow Nilsson, Rieskamp, and Wagenmakers (2011) and assume the

same power coefficient for both gains and losses (see Köbberling and Wakker 2005;
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Wakker 2010; Harrison and Swarthout 2021). For the probability weighting function,

we consider four specifications, the Prelec (1998) one-parameter function:

w(p) = exp(−(− log(p))γ) (3.3)

the Prelec (1998) two-parameter function:

w(p) = exp(−(− log(p))γ)δ (3.4)

the Tversky and Kahneman (1992) function:

w(p) =
pγ

(pγ + (1 − p)γ)1/γ
(3.5)

and the Goldstein and Einhorn (1987) probability weighting function:

w(p) =
δpγ

δpγ + (1 − p)γ
(3.6)

All of the aforementioned specifications allow for an inverse-S shape of the weight-

ing function, with overweighting of low probabilities and underweighting of moder-

ate to high probabilities. The two-parameter families of the weighting function have

the advantage of decomposing probability weighting to both its degree of curvature

and its elevation. For instance, in Equation 3.6, δ > 0 measures the elevation while

γ > 0 measures the degree of curvature of the weighting function (likelihood insen-

sitivity). As δ increases, the function becomes more elevated (exhibiting less overall

risk aversion for gains and more for losses). On the other hand, the smaller γ < 1,

the more curved the probability function, which means that the range of intermedi-

ate probabilities becomes flatter and therefore, exhibiting more rapidly diminishing

sensitivity to probabilities close to the boundaries 0 and 1. As mentioned before, we

allow the parameters of the weighting function to differ between domains, while we

allow for both S and inverse-S shapes of the function.
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To model stochastic choice we assume a logistic Luce (1959) choice rule such that

the probability of choosing lottery A is given by:

P(A > B) =
1

1 + exp(s(V(B)− V(A)))
(3.7)

with s > 0 a choice sensitivity parameter, indicating how sensitively the predicted

choice probability reacts to differences in the utility valuations of the two lotteries

on a cardinal scale, and V(.) the CPT value of the respective lottery.

In the case of lotteries defined purely in the gains domain we take into consider-

ation the Contextual Utility Wilcox (2011) and the predicted probability becomes:

P(A > B) =
1

1 + exp(s(V(B)−V(A)
ν ))

(3.8)

where the normalising term ν is defined as the maximum utility over all prizes in

this lottery pair minus the minimum utility over all prizes in this lottery pair. That

is, the difference between the two lotteries is relative to the range of outcomes found

in the lottery pair. We also note that in the gains domain the model is equivalent to

the Quiggin (1982) Rank Dependent Utility model.

3.2.2 Cognitive Toolbox

Many theories of human cognition assume that people are equipped with a reper-

toire of heuristics and simplifying processes to solve the tasks they face in daily life.

In the literature, this idea has been theoretically modelled with the aid of a cogni-

tive toolbox, from which people might adaptively choose their respective strategies.

In the field of judgement and decision making, this idea was pioneered by Payne,

Bettman, and Johnson (1993) arguing that the decision makers are equipped with a

set of strategies and select among them when faced with a decision, approach which

was later extended in Gigerenzer (2002), modelling decision making as probabilistic

draws from a toolbox of heuristic rules.

Following Scheibehenne, Rieskamp, and Wagenmakers (2013), a toolbox model

can be represented by a set of different psychological processes or strategies f , and

each strategy predicts a particular course of action, depending on the environment
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or the ecology of the domain upon which decisions are made. Independent of the

mechanism behind the strategy selection, the outcome of this process can be mod-

elled with the aid of a mixture proportion parameter β which indicates the probabil-

ity of choosing each strategy in the toolbox. For instance, for a particular toolbox TB

consisting of J strategies, each strategy f j will be selected with probability β j, with

∑J
j=1 β j = 1. For instance, a potential toolbox with 4 strategies would be defined as:

• Pick the lottery with the highest payoff (MAXIMIN) with probability β1

• Avoid the lottery with the lowest payoff (MINIMAX) with probability β2

• Pick the lottery with the highest most likely payoff (MOST LIKELY) with prob-

ability β3

• Pick the lottery with the highest probability of the highest possible payoff

(MOST PROBABLE) with probability 1 − ∑3
i=1 βi

This modelling specification allows for the underlying cognitive process of strategy

selection to remain unspecified, given that the value of the parameter vector β will be

estimated by the data, providing the empirical validation of the latent strategy mix.

Given this mixture specification, the compound probability of choosing lottery A

can be specified based on the sum of the individual likelihoods of each f j, weighted

by the mixture probability β j:

p(A|TB) =
J

∑
j=1

[β j × P(A| f j)] (3.9)

where P(A| f j) is the individual predicted probability of each strategy. Since the

heuristics generate ordinal choice propensities (i.e. deterministic), we follow Bal-

combe and Fraser (2015), Rieskamp (2008) and He, Analytis, and Bhatia (2022) and

assume a constant-error choice rule to capture stochastic choice in the data2. The

constant-error specification, has been widely used in the game-theoretical literature

(i.e. trembling hand) and it has been populated by Harless and Camerer (1994) in the

2Since a heuristic choice rule predicts only deterministically, there is lack of clarity on how the
deterministic prediction of the theory translates into a probability of observing one choice or the other.
Andersen et al. (2010) discuss ways of how one can modify the Priority Heuristic to make it worth
testing against any real data, but they conclude that any modification of this kind would be contrary to
main purpose of the model. We therefore feel that the constant-error stochastic rule is the most natural
one can assume.
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context of risky choice. Since the heuristics generate ordinal choice propensities (i.e.

deterministic), we assume a constant-error choice rule to capture stochastic choice in

the data, where the decision maker chooses with constant probability 1 − ε, the op-

tion that the heuristic prescribes, and with probability ε she makes a mistake3. The

overall likelihood for a given subject is therefore the product, across all the tasks,

of the weighted sum of predicted probabilities across the number of strategies in a

given toolbox. The next modelling choice we need to make, is how many heuristics

to include in a toolbox. The previous literature has assumed an arbitrary, fixed num-

ber of heuristics, which is the same for all the subjects. Nevertheless, Scheibehenne,

Rieskamp, and Wagenmakers (2013) discuss how restricting the repertoire to only a

few strategies would ignore any intra and inter-individual differences through qual-

itatively different processes, and how it can lead to the strategy sprawl problem, if

one assumes too many strategies for a particular subject. In our analysis, we aim

to identify the optimal toolbox for each subject, both in terms of size (how many

strategies) and in terms of content (which strategies). The process we adopt is as

follows. First, we adhere to Glöckner and Pachur (2012) and investigate the perfor-

mance of 11 heuristics as potential components of a cognitive toolbox4. Then, we

calculate all the potential combinations of heuristics. A set of n elements has 2n − 1

potential subsets when the null subset is not taken into consideration. This means

that if one considers all the toolboxes of any size (ranging from toolboxes with only 2

heuristics to toolboxes with all 11 available) it gives in total 2036 potential toolboxes

(excluding the null toolbox and the toolboxes with only one heuristic available). In

order to reduce the number of models to estimate, we consider toolboxes of size up

to 5, giving a total of 1012 toolbox models5. There are different types of heuristics

focusing on one or multiple attributes. Some of the heuristics focus exclusively on

the monetary payoffs, such as the Minimax, the Maximin or the Better than Aver-

age heuristic (outcome heuristics), while others focus on a combination of payoffs

3This is the part P(A| f j) in Equation 4.4.
4The full list of the heuristics along with a description of the choice mechanism behind each heuris-

tic is provided in Table C.1.
5In particular, with 11 available heuristics, there are 55 potential combinations for a toolbox of size

2, 165 for a toolbox of size 3, 330 for a toolbox of size 4, and, 462 for a toolbox of size 5. For example,
with 4 available alternatives J with j ∈ {A, B, C, D} one can form the following toolboxes: (1) nothing,
(2) A or B or C or D, if the size of the toolbox is 1, (3) AB or AC or AD or BC or BD or CD, if size is 2,
(4) BCD or ACD or ABD or ABC, if the size is 3, and; (4) ABCD, if the size is 4.
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and probabilities (dual heuristics), such as the Least Likely, the Most Likely or the

Probable (Brandstätter, Gigerenzer, and Hertwig, 2006). Finally, there are heuristics

for multiple-attribute choice which include the Lexicographic (Gigerenzer and Gold-

stein 1996: Tversky 1972), the Priority (Hill, Raacke, and Park 2017; Todd et al. 1999)

and the Tallying heuristic (Parpart, Jones, and Love 2018; Czerlinski, Gigerenzer, and

Goldstein 1999; Dawes 1979). The latter follow Rubinstein (1988) three-step model,

where the agent applies an algorithmic process of decision making, going through

various degrees of reason, and if two options are similar in terms of one reason (e.g.

dominance) attention is shifted to other reasons (e.g. similarity). A priori, we ex-

pect that decision makers who are using a toolbox to decide, will delegate a small

number of heuristics due to cognitive, time or other limitations. Mohnert, Pachur,

and Lieder (2019) provide support in favour of this modelling choice as they find

that the majority of the estimated toolboxes are of size 4, while research on model

crowds indicates that a number close to five models is optimal (see Makridakis and

Winkler 1983; Ashton and Ashton 1985; He, Analytis, and Bhatia 2022.) and adding

further models diminishes the prediction capacity of the select crowd. In addition,

we do not take into consideration any toolboxes of size one, given that the aim of

this chapter is to relax the assumption that subjects are using a single heuristic and

to avoid this kind of one-to-one comparison that previous research has investigated.

In the next section we describe both the estimation and the model selection method

that we adopt.

3.3 Bayesian Hierarchical Modelling

There are various ways to estimate structural decision making models. The most

common approach is the use of subject level Maximum Likelihood Estimation tech-

niques (MLE). Nevertheless, MLE may generate noisy and unreliable estimates, and

can therefore produce extreme estimates for some subjects if number of observa-

tions is limited. In addition, MLE is susceptible to overfitting and may adjust mostly

noise rather than the actual preferences of the subject, leading to very poor predic-

tive performance of the models. An alternative way is to pool all the data together

and estimate a model for the representative agent, assuming a particular preference
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functional. Nevertheless, several studies have provided evidence against the as-

sumption of a single data generating process and proposed the use of finite mixture

models instead (see Harrison and Rustrom 2008; Fehr-Duda et al. 2010; Conte, Hey,

and Moffatt 2011; Alam, Georgalos, and Rolls 2022). While it is a useful approach in

that it allows one to test the presence of more than one preference functional, they

rely on the extreme assumption of the presence of n representative agents, one for

each assumed preference functional (that is for instance, all EUT subjects share the

same behavioural parameters, all CPT the same and so on).

Scheibehenne, Rieskamp, and Wagenmakers (2013) provide arguments of how

the Bayesian formalism can allow toolbox approaches to be rigorously tested via

the use of the Bayes Factor (Kass and Raftery, 1995), a unifying comparison metric

that quantifies the extend to which data support one model over another, taking

model complexity into account. To mitigate the drawbacks of MLE, we adopt hi-

erarchical Bayesian estimation techniques (see Balcombe and Fraser 2015; Ferecatu

and Önçüler 2016; Baillon, Bleichrodt, and Spinu 2020; Alam, Georgalos, and Rolls

2022 and Gao, Harrison, and Tchernis 2022 for some recent applications of hierar-

chical Bayesian models for choice models under risk and Stahl (2014) for ambiguity

models). The key aspect of hierarchical modelling is that even though it recognises

individual variation, it also assumes that there is a distribution governing this vari-

ation (individual parameter estimates originate from a group-level distribution). A

hierarchical Bayesian model simultaneously estimates the individual level param-

eters, along with the hyper-parameters of the group level distributions. In typical

hierarchical models, the estimates of the low level parameters are pulled closer to-

gether than they would in the absence of a higher-level distribution, leading to the

so called shrinkage of the estimates.

As Baillon, Bleichrodt, and Spinu (2020) highlight, Bayesian Hierarchical mod-

elling is a compromise between a representative agent and subject-level type estima-

tion. It estimates the model parameters for each subject separately, but it assumes

that subjects share similarities and draw their individual parameters from a com-

mon, population level distribution. In that way, individual parameter estimates in-

form each other and lead to a shrinkage towards the group mean that reduces biases

in parameter estimates.
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We follow the Rouder and Lu (2005) and Nilsson, Rieskamp, and Wagenmakers

(2011) set-up and we estimate all the specifications using BHM. Each subject i made

a series of N binary choices in a given dataset and the observed choices vector is

denoted by Di = (Di1 · · · DiN). Every subject is characterised by its own parame-

ter vector Bi and we assume that all the parameters are normally distributed (bi ∼

N(µb, σb)), while for the hyper-parameters we assume normal priors for the mean µb

and uninformative priors (uniform) for σb. For the mixture parameter vector β in the

toolbox model, since it represents a probability distribution and the parameters in β

are not independent from each other, we assume that it is a J-dimension categorical

variable which follows a Dirichlet distribution β ∼ Dirichlet(π) with π a diffuse hy-

per prior parameter for the distribution. We also follow the standard procedure and

transform all the parameters to their exponential form to ensure that they lie within

the appropriate bounds.

The likelihood of subject’s i choices is given by:

P(Di|Bi) =
N

∏
n=1

P(Di,n|Bi)

where P(Di,n|Bi) is the predicted probability for each lottery pair n, as this was pre-

sented in the previous section. Combining the likelihood of the observed choices

and the probability distribution of all the behavioural parameters, the posterior dis-

tribution of the parameters is given by:

P(B|D) ∝ P(D|B)× P(B)

with P(D|B) being the likelihood of observed choices over all the subjects and P(B)

the priors for all parameters in the set B. Monte Carlo Markov Chains (MCMC) were

used to estimate all the specifications. The estimation was implemented in JAGS

(Plummer, 2017). The posterior distribution of the parameters is based on draws

from two independent chains, with 50,000 MCMC draws each. Due to the high level

of non-linearity of the models, there was a burn-in period of 25,000 draws, while to

reduce autocorrelation on the parameters, the samples were thinned by 10 (every

tenth draw was recorded). Convergence of the chains was confirmed by computing
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the R̂ statistic (Gelman and Rubin, 1992).

All the inference and the subsequent comparison of the models is based on the

log Bayes Factor measure (Kass and Raftery, 1995). Bayes factors penalise models

with a large number of parameters, prevent over-fitting, and are a good measure of

the forecasting capacity of each model. The Bayes Factor is defined as exp(LMLFULL −

LMLEUT), where LMLi denotes the log-marginal likelihood of model i. To estimate

the log-marginal likelihoods we use the Newton-Raftery estimator (harmonic mean

of the log-likelihood over all draws after the burn-in period, Newton and Raftery

1994).

3.4 Data Sets

We estimated the models using a wide range of data sets from experimental stud-

ies covering all domains of gains, losses and mixed gambles, as well as cognitive

loaded environments such as time pressed decision making and complexity. Table

3.1 provides a summary of all the data sets we use for our analysis. All data sets

were chosen in a way that they would satisfy the following criteria:

• The experimental designs have been developed with the objective to estimate

structural econometric models and involve a substantial number of tasks per

participant.

• All studies have been incentivised in monetary terms.

• The studies incorporate a wide range of probabilities and outcomes, introduc-

ing various levels of complexity.
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In the gain domain, we analyse experimental data from two studies; Hey and

Orme (1994) and Baillon, Bleichrodt, and Spinu (2020). Hey and Orme (1994) in-

volves 80 subjects deciding over 100 pairwise choice questions. There are 3 out-

comes in each of the lotteries, and these outcomes are held fixed at either £0, £10,

£20 and £30, whilst the associated probabilities are all multiples of 0.125. Baillon,

Bleichrodt, and Spinu (2020) data include the choices of 139 participants from 70 bi-

nary lotteries. Each option in a lottery (Option A or B) has between one and four

possible outcomes (all framed as gains). The payoffs and probabilities in their ex-

periment have been carefully chosen to maximise statistical efficiency and minimise

redundancy. On top of allowing for a wide range of number of outcomes and mag-

nitude of probabilities, the authors ensured that within each choice pair there were

non-matching maximal or minimal outcomes, questions had similar expected value,

and finally, questions were orthogonal to maximise statistical efficiency. It can be

argued that the tasks in Hey and Orme (1994) are relatively less complex than those

in Baillon, Bleichrodt, and Spinu (2020), as the fixed probabilities and payoffs permit

for a simpler design and thus a less computationally challenging cognitive process.

Furthermore, the way the maximum and minimum outcomes have been chosen in

Baillon, Bleichrodt, and Spinu (2020)6 that may generate the appropriate ecology for

an adaptive toolbox.

In the loss domain, we use the data from Glöckner and Pachur (2012) and Har-

rison and Swarthout (2021) for our analysis. Glöckner and Pachur (2012) include

the choices of 66 subjects in 138 pairwise choice problems, where 70 are gains, 30

are losses, and the rest are mixed. The problems involve binary two-outcome lotter-

ies. The tasks were a combination of lottery pairs that have been used in previous

studies to capture various decision making phenomena with tasks being either ran-

domly generated, designed to differentiate between the priority heuristic and CPT,

designed to measure risk attitudes using the Holt and Laury (2002) task, or designed

to measure loss aversion. They generated two sets of 138 tasks and participants

faced either of each sets in two separate sessions. We are using the data from session

1. Harrison and Swarthout (2021) include data from 175 undergraduate students in

6See Appendix B in Baillon, Bleichrodt, and Spinu (2020) for a description of how subsets of the
task set differ in terms of the pairs’ maximum and minimum outcomes.
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100 binary lotteries framed as gains, losses, and mixed outcomes. 16 of the tasks

are mixed and 16 are losses, the rest are gains. Each task consists of lottery pairs

with either 1, 2 or 3 outcomes, where the outcomes are fixed and the probabilities

have been chosen using the indifference curves in the Marschak-Machina triangle,

ensuring maximal discrimination between Expected Utility Theory and CPT.

We now discuss the analysis data from environments that involve increased lev-

els of cognitive load. For our first cognitive loaded domain, that of complexity, we

analyse data from Moffatt, Sitzia, and Zizzo (2015). Their experiment involves 80

subjects making pairwise choices in 54 binary lottery tasks designed to separate

between complexity aversion and risk aversion. The lotteries vary in complexity,

where some involve as little as 3 outcomes, whilst the maximum includes 27 out-

comes, labelling them as simple, complex and very complex. Adopting a structured

procedure, they transformed 3-outcome simple lotteries to complex ones, and from

these complex lotteries they could generate very complex lotteries, based on a simi-

lar procedure. They generate in total 27 lottery pairs (combinations of simple, com-

plex and very complex lotteries) and they present them to their subjects twice, to

test consistency. Here we use the first 27 tasks. All lotteries have the same expected

value. For our second cognitive loaded domain, that being decision making under

time pressure, we make use of Experiment 2 from Olschewski and Rieskamp (2021).

60 subjects faced a battery of binary lotteries in two treatments, no time pressure

(NTP) and time pressure (TP). We analyse data from 150 tasks, where 75 of these

tasks fall in the NTP domain, and the other 75 were under time pressure. The set

of lotteries was identical for the two treatments, but both the order of tasks and the

positioning (left-right) were shown in a randomised order, different for each partic-

ipant. The experimental design controls for the level of complexity of the lotteries

by manipulating the number of outcomes of a gamble. There were three conditions

in total: complex, where both gambles consisted of four outcomes each, safe-easy:

where the safer gamble with lower variance had only two outcomes; and risky-easy,

where the riskier gamble with higher variance had only two outcomes. Both out-

comes and probabilities varied with a random structure. In the time pressure condi-

tion, the average time constraint was set to 4.12 seconds based on reaction times of
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participants from a practice experiment. Whereas during the NTP condition, partic-

ipants had 30 seconds per lottery to make their decision

3.4.1 Complexity Index

In this subsection, we devise an index to explore the relationship between the de-

gree of complexity of the tasks in a particular study and the percentage of subjects

classified as Toolbox decision makers in that study. To this end, we develop a mea-

sure that will help us characterise the degree of complexity of a given dataset. In the

literature, complexity of a task is mostly characterised by the number of alternatives

on the decision maker’s choice set, or the number of payoff outcomes in a particular

lottery (see among others Sonsino, Benzion, and Mador 2002, Moffatt 2016, Zilker,

Hertwig, and Pachur 2020, Fudenberg and Puri 2022). Nevertheless, this measure

ignores the role of the set of attributes of each lottery (or pair of lotteries) that may

affect the degree of complexity a decision maker perceives, and complexity can be

seen as increasing with the number of alternatives and the number of attributes. Re-

cently, researchers have started to include further attributes of a lottery as indicators

of complexity. For instance, Diecidue, Levy, and Ven (2015) accounts for focusing

on both the number of outcomes and the format of the probabilities in a task, distin-

guishing between simple (rounded) and complex (non-rounded) probabilities. Huck

and Weizsäcker (1999) examine how several features of a decision task lead subjects

to deviate from expected value maximisation, including the number of outcomes,

the format of probabilities and outcomes, as well as distribution moments of the

lotteries such as the mean and the variance. While in a similar context, Enke and

Shubatt (2023) construct complexity indices by evaluating the effectiveness of nu-

merous features in forecasting the error rate when identifying the lottery with the

highest expected value in their experiment.

In our index we aim to take into consideration all the features of the decision

tasks that may increase the decision maker’s perception of complexity, along with

the amount of cognitive load. On top of the number of outcomes and probabilities,

we want to take into consideration the presentation format of probabilities and the

degree of similarity between lotteries. Following Huck and Weizsäcker (1999) we

include in the index the following features:
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• Average number of outcomes across all lotteries (avg #outc).

• Average number of outcomes with non-rounded probabilities (non-divisible

by 0.05, avg #probs).

• Average expected value difference between lottery pairs (avg(EVdi f f )).

• Average standard deviation difference between lottery pairs (avg(st.devdi f f )).

• Ratio of unique outcomes over total number of tasks (# outcomes/#tasks).

We define the index Icplx as:

Icplx = avg #outc + avg #probs − avg(EVdi f f )− avg(st.devdi f f ) +
#outcomes

#tasks
(3.10)

Note that the expected value and the standard deviation differences enter the index

with a negative sign. The closer the expected value of two lotteries, the harder is

to make a decision. Likewise, comparing lotteries with similar variance makes the

task of identifying the riskier lottery harder. Therefore, large differences in expected

value and variance reduce the overall complexity score. Finally, experimental de-

signs that involve a large number of tasks, with non-fixed multiple outcomes are

expected to be more cognitively demanding. The index captures this aspect via the

ratio of the total number of unique outcome values in a dataset over the total number

of tasks in this dataset. We normalise the index in the interval [0, 1], with 1 indicating

the highest level of complexity7.

It is possible to assign different weights to each of the attributes, allowing some

to exert a more substantial influence on the overall measure of complexity. Neverthe-

less, estimating these weights would necessitate data on the perceived complexity of

a lottery (or a set of lotteries) based on various attributes. Gathering such data might

7While time pressure increases subjects’ cognitive load, there is no seamless way to capture this
feature in the index. A potential way would be to use the median response time as an indicator,
expecting that low response times correspond to high time pressure. Nevertheless, given that there is
no straightforward relationship between the two, we instead extrapolate the value of the index for the
time pressure data. More specifically, since the tasks in Olschewski and Rieskamp (2021) are identical
for both the TP and the NTP conditions, and since time pressure is expected to put high cognitive
demands, we set the index for the TP condition to be equal to the mean between the NTP index and 1.
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be challenging due to its highly subjective nature8. As for our approach, we prefer

to treat the effect of the various attributes to complexity perception as exogenous.

By doing so, we employ a metric that assigns equal weight to all the attributes.

3.5 Results

This section presents the results of our analysis across three primary areas. Firstly,

we determine whether subjects are better characterised as CPT or adaptive Tool-

box decision makers. Next, among those classified as toolbox users, we ascertain

the number of strategies present in their adaptive toolbox. Finally, we identify the

specific heuristics that dominate the strategic portfolio of our toolbox users.

3.5.1 CPT Vs Heuristics

For the Hey and Orme (1994) data, we find that only 1 out of 80 (1.25%) subjects were

characterised by an adaptive toolbox. The nature of the tasks involved may provide

an explanation to this extreme result. Due to the way the tasks where chosen (fixed

outcomes) and the nature of heuristics, there are several ties between two lotteries,

where the heuristic predicts indifference, which dramatically decreases the model’s

predictive capacity. This may also explain the contradictory results of (Stahl, 2018)9.

Of the remaining 79 subjects (98.75%) who are characterised by CPT, we find

that the GE weighting specification was the best performing for the majority of the

CPT subjects (46%). For our the second gain-domain dataset (Baillon, Bleichrodt,

and Spinu, 2020), we find the number of participants utilising an adaptive toolbox

is substantially larger than in the Hey and Orme (1994) data, with 58 out of 136

8Enke and Shubatt (2023) adopt a similar approach and develop an index for choice complexity
using data from an experiment in which subjects are asked to identify the lottery with the highest
expected value. Their index captures the predicted error rate in identifying the lottery with the highest
expected value where the predictions are computed as convex combinations of choice set features.
They find that the most important features include the excess dissimilarity of the lotteries, the number
of outcomes, the lack of dominance, the presence of compound probabilities and the expected value
difference.

9In fact, for 40/100; 73/100 and 35/100 of the tasks for the 1st, 2nd and 3rd tool respectively, for the
HO dataset, there is a predicted probability of 0.5, as the highest, lowest or highest most likely payoffs
of the two lotteries coincide. Furthermore, this dataset is known in the literature to favour Expected
Utility. As Harrison and Swarthout (2021) highlight, the battery of lotteries deliberately avoided sets
of lottery pairs that had generated“knife-edge” tests of EUT. Their design mantra was to be agnostic
about choice patterns, and see which models best characterized the data, rather than selecting lottery
pairs designed to be hard for EUT per se.
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(43%) being characterised by a toolbox. Although CPT still dominates the decision-

processes of these individuals, the complexity, and subsequent increased cognitive

load, associated with the tasks involved may explain the increase in the toolbox

percentage.

The results from the loss domain are fairly consistent across data sets, with 26%

of subjects in the Harrison and Swarthout (2021), and 20% of subjects in the Glöckner

and Pachur (2012) study fitting to an adaptive toolbox over CPT. Interestingly, of the

remaining subjects in both studies who were better characterised by CPT, 80% in the

Glöckner and Pachur (2012) were best fit by a GE weighting function, and 72% in the

Harrison and Swarthout (2021) were best fit by the PRL2 weighting function. There

is some imbalance regarding the number of the tasks in the gains and losses domain

in the two datasets we are using. In particular, for the Harrison and Swarthout (2021)

dataset, there are 16 tasks on the losses, compared to 68 on the gains domain, while

in the Glöckner and Pachur (2012) data there are 30 losses lotteries against 70 in the

gains domain. Therefore, it is not clear whether the difference in the performance

of the two models is because of the presence of losses, or due to other reasons. To

disentangle the effect of negative payoffs (losses) on behaviour, we repeat the same

exercise estimating the models solely on the gain and the loss domain, and compare

them within domains. For the Harrison and Swarthout (2021) data, we find that

for 21.7% (30.3%) of the subjects, the cognitive toolbox best explains their behaviour

in the gains (losses) domain, while for the Glöckner and Pachur (2012) data, 9.3%

(10.1%) are best characterised by a toolbox model in the gain (loss) domain.

For our more cognitively demanding domains, we find a more pronounced leap

towards the use of adaptive toolboxes. From the results of Olschewski and Rieskamp

(2021), we see the number of individuals using a toolbox of heuristics rises from 27%

in the NTP control, to 48% when they are restricted by time constraints. Therefore

in the NTP condition, 44 subjects (73.3%) are characterised by a CPT specification,

while in the TP condition, CPT can only successfully describe the behaviour of 31

subjects (51.7%). Increased time pressure may have hindered the ability of individ-

uals to subjectively weight utilities and probabilities, thus incentivising the use of

heuristics to make their decisions. Finally, from the results of Moffatt, Sitzia, and

Zizzo (2015), we see a significant switch in decision-processes, as this experimental
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TABLE 3.2: Subject Classifications.

Dataset Domain/Environment Toolbox PRL1 PRL2 TK GE TOTAL

Hey and Orme (1994) Gains 2 11 14 16 37 80

% 0.025 0.140 0.180 0.200 0.463

Baillon, Bleichrodt, and Spinu (2020) Gains 60 22 39 5 10 136

% 0.441 0.162 0.287 0.037 0.074

Harrison and Swarthout (2021) Losses/Mixed 46 9 93 14 13 175

% 0.263 0.051 0.531 0.080 0.074

Glöckner and Pachur (2012) Losses/Mixed 13 2 8 0 41 64

% 0.203 0.031 0.125 0.000 0.641

Olschewski and Rieskamp (2021) Gains 16 15 19 9 1 60

% 0.267 0.250 0.317 0.150 0.017

Olschewski and Rieskamp (2021) Time Pressure 29 9 12 9 1 60

% 0.483 0.150 0.200 0.150 0.017

Moffatt, Sitzia, and Zizzo (2015) Complexity 54 1 4 19 2 80

% 0.675 0.013 0.050 0.238 0.025

Notes: Percentage of subjects classified as Toolbox or CPT per dataset.

design, consisting of extremely complex decision-tasks, meant 68% of individuals

are better characterised by an adaptive toolbox than any of the CPT specifications.

Of the remaining 32% who are better fit to CPT, we find that the TK specification

dominates, fitting the behaviour of 73% of these individuals.

Table 3.2 summarises the results for all the datasets while figure 3.1 illustrates

the percentage of subjects classified as CPT or Toolbox decision maker in ascend-

ing order. It is apparent from the Figure that the two most cognitively demanding

datasets (time pressure and complexity) have the highest frequency of subjects that

resort to heuristics. This result indicates a correlation between the increased cogni-

tive load and subjects using simple rules of thumb to make their decision-making

process easier. We explore this relationship in section 3.5.4.
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FIGURE 3.1: Subject Classifications.

Notes: Percentage of subjects classified as CPT or Toolbox decision
makers per dataset.

After classifying our data sets into two subdomains based on whether they are

associated with an increase in cognitive load (CL) or not (NCL), we find in the NCL

domain that 71% of individuals are better characterised by a CPT specification, and

only 29% are better described by an adaptive toolbox. Whilst in our CL subdomain,

this result changes to 50% for CPT and 50% for the toolboxes, further emphasising

the increased reliance on, or switch to, toolboxes of heuristics when individuals are

constrained by an increased cognitive load.

3.5.2 Number of strategies in a Toolbox

With regards to the optimal number of strategies to include in a toolbox, Figure 3.2

shows how many tools were used by each individual over all data sets.

We can see that, of the 217 participants, over all data sets, who were characterised

as using a cognitive toolbox, 29% had a toolbox of 4 strategies, 29% used 3 strategies,

22% used 2 strategies, and 20% used 5. We separate the analysis into our CL and

NCL domains to disentangle the effect that increased cognitive pressure has on the
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FIGURE 3.2: Number of tools in the toolboxes.

(A) All

(B) High cognitive load

(C) Low cognitive load

Notes: The top panel illustrates the frequency of heuristics in all tool-
boxes, the middle for the case of high cognitive load (time pressure
and complexity) and the bottom panel for the case of low cognitive

load (gains, losses and no time pressure).
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number of strategies individuals use over a series of tasks. We find that, as cogni-

tive load increases, the number of strategies used falls. When the subjects cognitive

resources are restricted, 29% of subjects use 3 strategies and 27% use 2 strategies.

Only 24% and 20% of subjects use 4 and 5 strategies respectively. On the other hand,

when the tasks at hand and respective environment are not cognitively demanding,

32% of subjects use 4 strategies, 29% use 3, 20% use 5, and 19% use 2. This suggests

that when tasks overwhelm ones cognitive capacity, the number of strategies they

can process at once declines, and they are forced to comply with a mere couple of

strategies for all decision-tasks.

From a methodological perspective, our results support the existing literature

in that individual toolboxes tend to hold, on average, around 3-4 strategies, and

that anything over 5 would diminish the predictive capacity of the model (Mohnert,

Pachur, and Lieder 2019, Makridakis and Winkler 1983, Ashton and Ashton 1985,

He, Analytis, and Bhatia 2022).

3.5.3 Which Heuristics are used

Finally, for all participants that are characterised as toolbox users, we extracted

which specific heuristics formed each of their toolboxes to decipher which strategies

were relied on in different enviroments. A graphical representation of our findings

are represented in Figure 3.3. Of the 755 times that heuristics are used over decision-

tasks and subjects, we find that the Minimax was used the most frequently account-

ing for 13% of these decisions. The Least Likely heuristic, Better-than-Average, and

Equiprobable, also accounted for a substantial amount of individual decision pro-

cesses. On the other hand, the Most likely heuristic, Maximin and Tallying were

relied upon the least amount of times, with the latter only showing up in 6% of tool-

boxes. The observed extensive heterogeneity in heuristics used, however, follows a

logical pattern, with the vast majority resorting to heuristics that provide a safety

net, highlighting risk aversion, and with the strategies associated with risk seeking

behaviour being avoided. These results highlight the fact that adaptive toolboxes of

heuristics are still able to capture complex risk preferences.

Figure 3.3 divides these results into two mains: those concerning an increase

in cognitive load and those associated with low cognitive load. This is to depict



3.5. Results 145

the effect an increase on ones’ cognitive load, through time pressure or increased

complexity, has on the strategies adopted. There are two specific results in this do-

main we would like to highlight, regarding The Minimax heuristic and the Priority

Heuristic. When pooling the data from the experiments involving less cognitively

demanding tasks, we see that the Minimax heuristic prevailed, accounting for 69

(15%) of decisions. In this subcategory we also see that the Priority heuristic is only

the 6th/11 most commonly used heuristic, accounting for only 39 (8%) of heuristic

strategies in this domain. However, as time pressure is introduced and the complex-

ity of decision-tasks increase, we find that the use of these strategies switch places

with regards to their dominance in individual decision-processes. In the high cog-

nitive load domain, we find that the use of the Priority heuristic rises to 12% (34 out

of 281 cases), making it the most used strategy in this domain, whilst the use of the

Minimax heuristic falls to almost 10%.

Finally, we separate our results into the “types” of heuristics used in the vari-

ous domains, namely into three domains. The first being monetary payoff heuris-

tics, which consist of the equiprobable, equal-weight, better-than-average, minimax,

and Maximin heuristics. The second being dual heuristics, consisting of the least

likely, most likely, and probable heuristics. The final domain being heuristics with a

lexicographic nature, consisting of the priority heuristic, the lexicographic heuristic

(multiple attribute choice), and the tallying heuristics.

Overall 48% of heuristics used were monetary payoff heuristics, 28% are dual

heuristics, and 24% are the multiple attribute choice heuristics. We find that this

result remains the same across the cognitive load and non-cognitive load domains.

Finally, once we account for the fact that we include more monetary payoff heuristics

than its counterparts and adjust our results so they are directly comparable, these re-

sults change to 36% for monetary payoff heuristics, 34% for dual heuristics, and 30%

for heuristics of multiple attribute choice. This result strengthens our hypothesis that

in the analysis of individual decision-making using adaptive toolboxes, it is crucial

to accommodate toolbox heterogeneity and consider a diverse range of strategies. It

is evident that individuals rely on various heuristics, spanning different categories,

when making economic decisions.
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FIGURE 3.3: Frequency of Heuristics in the toolboxes.

(A) All

(B) High cognitive load

(C) Low cognitive load

Notes: The top panel illustrates the frequency of heuristics in all tool-
boxes, the middle for the case of high cognitive load (time pressure
and complexity) and the bottom panel for the case of low cognitive

load (gains, losses and no time pressure).
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3.5.4 Complexity Index

Figure 3.4 displays the relationship between the complexity index for each dataset

and the percentage of subjects classified as Toolbox decision makers in that dataset.

As expected, datasets with fixed outcomes, rounded probabilities and high differ-

ences in expected values such as Hey and Orme (1994) or Harrison and Swarthout

(2023) generate the lowest complexity score, while datasets with a large number of

outcomes and zero difference in the expected value of the lottery pairs, are the most

complex (i.e. Moffatt, Sitzia, and Zizzo 2015).

FIGURE 3.4: Complexity index per dataset.

The Figure illustrates the positive relationship between complexity and use of

heuristics. Using a Pearson product-moment correlation test, we find that the corre-

lation is positive (ρ = 0.859) and significant (p=0.013). The latter has implications on

the experimental design and stimuli used in various studies, to identify and estimate

preference functionals. While there is a large literature aiming to develop methods

that increase the informative content of experimental data (see for example adaptive

experimental designs) there is a risk that over-complicated designs encourage par-

ticipants to resort to heuristic decision making and therefore, lead to failed efforts to
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identify and estimate the underlying assumed preferences.

3.6 Conclusion

Incorporating environmental dependence into decision-making analysis is crucial

for a comprehensive understanding of individual decision-making processes. Given

that most day-to-day financial and economic decisions involve varying contexts and

environments, it might be unreasonable to suggest that individual strategies and

preferences remain constant. Specifically, when examining contextual environments

demanding greater cognitive effort—whether due to increased complexity or time

pressure in decision making, we propose that the nature of these decisions may

overload an individual’s cognitive capacity, potentially impeding the optimality and

rationality of their choices. Using data from a wide range of studies encompassing

diverse decision domains and environments, we investigate the efficacy of heuris-

tics by estimating and rigorously testing toolbox models of cognition to explain be-

havior. Based on our complexity index, our analysis affirms that as tasks become

objectively more complex, leading to an increase in choice-related cognitive load,

subjects transition from the use of sophisticated expectation-based utility models to

depending on a set of simplification heuristics when making decisions. Our results

also indicate that with increasing task complexity, individuals use smaller toolboxes

with fewer heuristics to make decisions. This is likely the result of a mental short-

cut strategy to mitigate complexity, restricting the number of processable strategies

an individual can handle. Lastly, we demonstrate that individuals employ a com-

bination of various types of heuristics with extensive heterogeneity between sub-

jects. Therefore, when assessing the capacity of toolbox models of cognition, we

recommend incorporating varying types of heuristics, including monetary payoff

heuristics, dual heuristics, and multiple attribute choice heuristics. Our analyses

further support the findings of Stahl (2018): when one is agnostic on what is inside

the toolbox, then she would be better off by assuming an expectation utility model,

rather than a toolbox model with arbitrarily chosen heuristics. While we concentrate

on just two domains that may constrain an individual’s cognitive capacity, every-

day decisions can be affected by numerous factors. These factors include increased
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time pressure, heightened uncertainty, vulnerable emotional states, interruptions or

distractions, or simply a lack of experience. All of these elements can modify an

individual’s strategic process, ultimately leading to changes in their decisions and

outcomes.

From a methodological point of view, we provide the tools on how to efficiently

estimate toolbox models via Bayesian Hierarchical Modelling. This approach per-

mits us to combine the beneficial elements of Maximum Likelihood estimation and

representative agent assumptions (pooling), whilst eliminating the potential of over-

fitting and allowing for heterogeneity in individual preferences and strategies. It

also accounts for the fact that humans share behavioural similarities, which should

be exploited to enhance our understanding of human behaviour. As a by-product

of this research, we estimate four full specifications of CPT and run a horse race

comparison between different weighting functions in a wide range of decision envi-

ronments. Our results indicate that the two-parameter family of probability weight-

ing functions was always ranked best, with the PRL2 having the best performance,

followed by the GE function10. A final contribution is that we provide a measure

of complexity of a dataset and we quantify the relationship between usage of tool-

boxes and complexity, finding a significant and positive relation between the two.

The implications for the design of economic experiments appear to be multifaceted.

Depending on the specific experimental design, it is possible that heuristics may be

encouraged. It is not entirely clear-cut whether simpler designs inherently discour-

age heuristic-based problem-solving, nevertheless, it seems that when confronted

with complexity, potential losses, or increased cognitive effort, subjects may tend to

simplify their decision-making process and resort to heuristics.

Our study also adds to the burgeoning literature on collective model wisdom

(model crowds) in decision analysis. As He, Analytis, and Bhatia (2022) highlight, a

successful application that harnesses collective model wisdom in decision analysis

is Scheibehenne, Rieskamp, and Wagenmakers (2013) who formulate the metaphor

10While there has been some limited research trying to identify the best combination of utility, prob-
ability weighting and stochastic link functions in the gains domain (see Stott 2006; and Balcombe and
Fraser 2015 using the same dataset), there is a lack of a similar comparison in the domain of losses.
Here we provide some initial evidence.
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of the heuristic toolbox in a hierarchical Bayesian framework and show that by in-

corporating multiple heuristics, the toolbox explains behavioral data better than a

single heuristic. Our study is the first to apply this framework to the field of risky

choice.

This raises intriguing avenues for future research, including the exploration of

decision environments beyond those considered here, such as decisions from expe-

rience, or choice under ambiguity, to gain a more comprehensive understanding of

how the interplay between experimental design, cognitive load, and heuristics in-

fluencing decision-making.
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Abstract

In this chapter we aim to investigate how the complexity of a decision-task may

change an agent’s strategic behaviour as a result of increased cognitive fatigue. In

this framework, complexity is defined as a function of the number of outcomes in

a lottery. Using Bayesian inference techniques, we re-analyse data from a lottery-

choice experiment. We quantitatively specify and estimate adaptive toolbox models

of cognition, which we rigorously test against popular expectation-based models;

modified to account for complexity aversion. We find that for the majority of the

subjects, a toolbox model performs best both in-sample, and with regards to its pre-

dictive capacity out-of-sample, suggesting that individuals resort to heuristics when

the complexity of a task overwhelms their cognitive load.

Keywords: Complexity aversion · Toolbox models · Heuristics · Risky choice ·

Bayesian modelling

JEL codes: C91 · D81 · D91



154 Chapter 4. Testing Models of Complexity Aversion

4.1 Introduction

In recent years, the economic environment has witnessed a noticeable surge in com-

plexity, driven by a confluence of interconnected factors. Technological advance-

ments and globalization have expanded choices and convenience, while at the same

time they have introduced overwhelming options that demand more of the con-

sumers’ attention and time. Mortgages, financial products, investment decisions and

cryptocurrencies, all come with a plethora of options and features, that can exacer-

bate consumer decision-making, contributing to their increased cognitive fatigue.

In the field of choice under risk, complexity is represented by the number of

payoff outcomes in a particular lottery. Early research on this topic has found that

complexity aversion is a common attribute in subjects’ behaviour, that is they reveal a

strong preference for simple lotteries over complex ones (lotteries with higher num-

ber of outcomes). Huck and Weizsäcker (1999) and Sonsino, Benzion, and Mador

(2002) were among the first to provide evidence that individuals discriminate heav-

ily against complicated lotteries, such that even when the expected value was fixed,

they still prefer the lotteries with fewer outcomes even when these lotteries have a

higher variance. Moffatt, Sitzia, and Zizzo (2015) estimate the distribution of atti-

tudes towards complexity, finding that 50% are complexity-averse, 33% complexity-

neutral, and only 17% complexity-loving. They also find that this rate of respon-

siveness to complexity reduces with experience to the extent that the average sub-

ject becomes almost complexity neutral by the end of the experiment. This conver-

gence to complexity neutrality does not necessarily mean that the subjects no longer

have a distaste for complex tasks, as it could be that they merely adopted a different

strategy to make their decision, one which meant the complexity of the task was no

longer hindering their decision process (i.e. heuristics).

From a theoretical modelling point of view, various expectation-based utility

models (e.g. mean-variance, Expected Utility, Cumulative Prospect Theory) have

been modified to capture complexity aversion. Moffatt, Sitzia, and Zizzo (2015) test

versions of the mean-variance model, and expected utility, while Fudenberg and
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Puri (2022), propose a model that combines the standard cumulative prospect the-

ory (CPT) model with a complexity cost. This model captured preferences for lot-

teries with smaller number of outcomes and show that both probability weighting

and complexity costs have an important role to play in predicting these risky alter-

natives. Diecidue, Levy, and Ven (2015) find that their results are consistent with

prospect theory, but can also be explained by a population with heterogeneous as-

piration levels. On the other hand, Bernheim and Sprenger (2020) find that PT and

CPT fail rigorous tests that they design, and conclude that there is a possibility the

observed behaviour reflects a combination of standard CPT and a form of complex-

ity aversion linked to heuristics. While Georgalos and Nabil (2023) show that the

descriptive capacity of CPT is decreasing on the level of complexity in a dataset.

Previous research has also suggested that when decisions are more complex, in-

dividuals may avoid making a decision altogether, they might procrastinate, but

more often than not they decide to stick with a default option or strategy (Iyen-

gar and Lepper 2001; Thaler and Sunstein 2009). This lead a strand of the litera-

ture to associate the distaste for complexity with an increase in one’s cognitive load

and therefore, an increase in reliance on simplified strategies or heuristics (rules

of thumb). Venkatraman, Payne, and Huettel (2014) shows that when faced with

multiple-outcome gambles involving probabilities of both gains and losses, people

often use simple heuristics that maximise the overall probability of winning. Cori-

celli, Diecidue, and Zaffuto (2018) find that subjects may employ both a simplifying

strategy and a compensatory strategy, providing evidence in support of a multiple-

strategy approach to decision making.(Oberholzer, Olschewski, and Scheibehenne,

2021) report evidence of complexity aversion, suggesting a tendency to avoid cogni-

tive effort as a potential explanation. Zeisberger (2022) suggest that the more com-

plex the decision problem, the more likely it is the decision-maker will apply heuris-

tics. Further studies have also supported the idea that complexity induces the use of

heuristics with a focus on gain and loss probabilities (Erev et al. 2010; Payne 2005).

While this literature hints towards the increased use of heuristics and simpli-

fication strategies as a response to the increased cognitive load, to the best of our

knowledge, the relationship between heuristic decision making and complexity has

not been thoroughly investigated. This is a gap in the literature that we aspire to
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bridge. In this short chapter, we aim to study the effects of complexity on decision

making and whether the increased complexity, and therefore the increased cogni-

tive fatigue, lead agents to resort to heuristic decision making (following simple

rules of thumb) rather than using complicated expectation utility models that ac-

count for the level of complexity. The heuristics literature assumes that people are

equipped with a repertoire of heuristics (strategies) and simplifying processes (rules

of thumb) to solve the tasks they face in daily life. This idea has been theoretically

modelled with the aid of a cognitive toolbox, from which people might adaptively

choose their respective strategies. Payne, Bettman, and Johnson (1993) argued that

the decision makers are equipped with a set of strategies and select among them

when faced with a decision; an approach which was later extended in Gigerenzer

(2002) who models decision making as probabilistic draws from a toolbox of heuris-

tic rules. Scheibehenne, Rieskamp, and Wagenmakers (2013) propose a model of

strategy selection. More specifically, they suggest a framework on how to quanti-

tatively specify a toolbox model of cognition, and how to rigorously test it using

Bayesian inference techniques. Using data from an experiment designed to elicit

preferences towards risk and complexity aversion, we implement the methodology

suggested in Scheibehenne, Rieskamp, and Wagenmakers (2013) to estimate cogni-

tive toolbox models. We then test these models against popular expectation-based

utility models, modified to account for complexity aversion. We compare the mod-

els based on both their in-sample and out-of-sample (predictive) capacity. We find

that for the majority of the subjects, a toolbox model of simple heuristics has better

descriptive and prescriptive capacity than competing compensatory models.

4.2 Theoretical Framework

In this section we present the theoretical models designed to capture preferences to-

wards complexity and risk. The subjective complexity of a choice task is generally

characterised in the literature by the number of alternatives on the decision maker’s

choice set, or the number of payoff outcomes in a particular lottery (see among oth-

ers Sonsino, Benzion, and Mador 2002, Moffatt, Sitzia, and Zizzo 2015, Zilker, Her-

twig, and Pachur 2020, Fudenberg and Puri 2022). In our comparison, we include
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three expectation-based utility models that have been developed or modified to ac-

count for this type of complexity, as well as a cognitive toolbox of heuristics. We

include the two models tested in Moffatt, Sitzia, and Zizzo (2015), namely the mean-

variance and the Viscusi (1989) Prospective Reference Theory, the Simplicity Theory, a

recent Cumulative Prospect Theory specification to account for complexity, as pro-

posed in Fudenberg and Puri (2022), and a toolbox model of simple heuristic rules,

as proposed in Scheibehenne, Rieskamp, and Wagenmakers (2013) and implemented

in Stahl (2018).

4.2.1 Mean-Variance

This model assumes that the utility function of the decision maker takes into con-

sideration the expected value of the lottery (mean), the variance (exposure to risk),

and its complexity (measured by the number of outcomes). The utility function for

an individual i is given by:

U(p, x) = µ(p,x) − αiσ
2
(p,x) − γiC(p,x) (4.1)

where µ(p,x) is the expected value of the J-outcome lottery L = {p1, x1; · · · ; pJ , xJ}

defined as:
J

∑
j=1

pjxj

σ2
(p,x) is the variance of the lottery defined as:

J

∑
j=1

pj

(
xj − µ(p,x)

)2

and C(p,x) is the measure of complexity of the lottery, operationalised as C=0 for a

sure payoff, C=1 for a simple lottery, C=2 for a complex, and C=3 for a very complex

lottery. The parameter α is closely related to the coefficient of absolute risk aversion,

while γ represents the degree of complexity aversion when γ > 0.
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4.2.2 Prospective Reference Theory

This model assumes that the decision makers do not take the stated probabilities at

face value, but act as Bayesians, and view the prior probability of each outcome of

the lottery L as 1/J. The model follows the same specification as above but replaces

the objective probabilities in the expected value formula with transformed ones of

the form:

p̃j =
δ 1

J + pj

δ + 1
, j = 1, . . . , J; J > 1 (4.2)

The parameter δ defines the degree of probability distortion. When δ → 0 the trans-

formed probabilities coincide with the objective ones. On the contrary, as δ → ∞,

p̃j → 1/J.

4.2.3 Simplicity Theory

Simplicity theory, introduced in Fudenberg and Puri (2022), modifies the CPT model

to account for complexity aversion by introducing a complexity cost that captures a

preference for lotteries with fewer number of outcomes. The CPT-simplicity model

is defined as:

U(p, x) =
J

∑
j=1

u(xj)

[
w

(
j

∑
k=1

pk

)
− w

(
j−1

∑
k=1

pk

)]
− C(|support(p)|)

where C(x) is a three-parameter sigmoid cost function to account for complexity,

specified as:

C(x) =
ι

1 + e−κ(x−ρ)
− ι

1 + e−κ(1−ρ)

with x being the number of outcomes of a lottery, ι the height of the function, ρ the

midpoint of the rise, and κ the slope, with larger values of κ indicating a steeper

slope1. The function satisfies the condition C(1) = 0, while w(.) is the Tversky and

Kahneman (1992) probability weighting function2:

w(p) =
pγ

(pγ + (1 − p)γ)1/γ
(4.3)

1Sigmoid functions have been extensively used in the artificial neural networks literature.
2We also tried different specifications of the probability weighting function (both one and two-

parameter functionals) with TK being the best performing specification.
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Finally, a power (CRRA) utility function is assumed for the monetary payoffs trans-

formation.

4.2.4 Cognitive Toolbox

Following Scheibehenne, Rieskamp, and Wagenmakers (2013), a toolbox model can

be represented by a set of different psychological processes or strategies f , and each

strategy predicts a particular course of action, depending on the ecology of the de-

cision environment. The outcome of this process can be modelled with the aid of

a mixture proportion parameter β, which indicates the probability of choosing each

strategy in the toolbox, where β a vector. For instance, for a particular toolbox TB

consisting of J strategies, each strategy f j will be selected with probability β j, with

∑J
j=1 β j = 1. For instance, a potential toolbox with 4 strategies would be defined as:

• Pick the lottery with the highest payoff (MAXIMAX) with probability β1

• Pick the lottery with the highest minimum payoff(MINIMAX) with probability

β2

• Pick the lottery with the highest most likely payoff (MOST LIKELY) with prob-

ability β3

• Pick the lottery with the highest probability of the highest possible payoff

(MOST PROBABLE) with probability 1 − ∑3
i=1 βi

This modelling specification allows for the underlying cognitive process of strategy

selection to remain unspecified, given that the value of the parameter vector β will be

estimated by the data, providing the empirical validation of the latent strategy mix.

Given this mixture specification, the compound probability of choosing lottery A

can be specified based on the sum of the individual likelihoods of each f j, weighted

by the mixture probability β j:

p(A|TB) =
J

∑
j=1

[β j × P(A| f j)] (4.4)

where P(A| f j) is the individual predicted probability of each strategy. Since the most

distinguishable feature of a toolbox model is its adaptive nature (each individual
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adopts their chosen strategies depending on the choice environment), we deviate

from the standard practice of fixing a pre-determined set of strategies, same for all

the subjects, and allow for heterogeneity between subjects, both in terms of size (how

many strategies) and in terms of content (which strategies). The toolbox models we

investigate can accommodate a variety of heuristics (out of a total of 10 heuristics

extensively utilised in the literature3) and sizes (ranging from 2 to 5 strategies per

toolbox4). We achieve so by estimating, subject-by-subject, every potential toolbox of

size up to 5, that is formed as a combination of a subset of the available 10 heuristics.

This gives in total 627 toolbox models.

4.3 Data

We re-analyse the data from Moffatt, Sitzia, and Zizzo (2015). This dataset involves

80 subjects participating in a 2-phase experiment, where in each phase subjects faced

27 tasks in which they were asked to choose between two lotteries with the same

expected value, but with differing degrees of complexity and risk (phase 2 consisted

of the same 27 tasks presented in a different order). The experiment was incentivised

using the random lottery incentive mechanism. The experimental design builds on

Sonsino, Benzion, and Mador (2002) and Sitzia and Zizzo (2011) single period tasks.

The construction of the lotteries is based on the two tasks presented below. The first

task involves the choice between a sure win (SW) and a simple 3-outcome lottery

(S3).

SW =

 107, with probability 1 S3 =



80, with probability 0.40

100, with probability 0.30

150, with probability 0.30

3We use the heuristics studied in Glöckner and Pachur (2012). In the Appendix there is the full list
of heuristics along with a description of the choice they prescribe.

4Scheibehenne, Rieskamp, and Wagenmakers (2013) discuss how including too many strategies can
lead to the strategy sprawl problem.
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Using the S3 lottery and following a particular procedure 5, it is then possible to

generate a complex lottery, with nine outcomes, and a very complex lottery with 27

outcomes. The new lottery will be more complex, but at the same time safer, since

it will be characterised by lower variance. On top of the SW lottery, they generated

six simple, six complex and six very complex lotteries. Using three simple lotteries,

they first generated three complex and three very complex lotteries. Then, using the

so-called safe version of the simple lotteries, which has decreased spread of the ex-

treme outcomes and unchanged the middle outcome, they constructed three further

complex and three very complex safe lotteries. The pairwise combinations between

a subset of these lotteries, along with the SW lottery, gives the total of the 27 tasks

(see Moffatt, Sitzia, and Zizzo 2015, Table 2a, pp. 152-153 for the full set of tasks).

All lotteries have the same expected value which also contributes to the complexity

of the task.

4.4 Econometric Analysis and Results

We estimate all the models using Hierarchical Bayesian econometric techniques,

which allow for the simultaneous estimation of individual level parameters and the

hyper-parameters of the group level distributions (see Balcombe and Fraser 2015;

Ferecatu and Önçüler 2016; Baillon, Bleichrodt, and Spinu 2020; Alam, Georgalos,

and Rolls 2022 and Gao, Harrison, and Tchernis 2022 for some recent applications

of Bayesian econometrics in risky choice). We compare models both in-sample, and

out-of-sample. In particular, we first compare the models in-sample, based on the

value of the Bayes Factor, using the data from phase 1 of the experiment. We then

compare the models based on their out-of-sample predictive capacity (predicted

log-likelihood) on the phase 2 tasks, using the estimates from phase 1. To capture

stochasticity in choice, we model the error structure assuming a logit link function.

The probability of choosing lottery A is given by:

p(A, B) =
exp(ϕUA(p, x))

exp(ϕUA(p, x)) + exp(ϕUB(p, x))

5To save on space, we briefly describe the process in the online appendix and we refer the interested
reader to the original study (Moffatt, Sitzia, and Zizzo 2015, p.151).
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where U(p, x) is the utility as defined in section 4.2, and ϕ an index of the sensitivity

to differences in utility, to be estimated. The overall likelihood is a Bernoulli distri-

bution that can be expressed as P(D) = ∏ p(A, B)I × (1 − p(A, B))(1−I), where I is

an indicator function, taking the value 1 when the subject chose A, otherwise 0.

For the toolbox model, since the heuristics generate ordinal choice propensi-

ties (i.e. deterministic), we assume a constant-error choice rule to capture stochastic

choice in the data, where the decision maker chooses with constant probability 1− ε,

the option that the heuristic prescribes, and with probability ε she makes a mistake6.

The overall likelihood for a given subject is therefore the product, across all the tasks,

of the weighted sum of predicted probabilities across the number of strategies in a

given toolbox.

Table 4.1 reports the results of the classification. The first column classifies sub-

jects to models based on the value of the Bayes Factor, while the second column,

according to the models’ predictive capacity. In-sample, the toolbox model has the

best performance for 56.3% of the subjects, followed by the mean variance (26.3%),

the simplicity theory (16.3%) and only one subject is characterised by the Prospective

Reference model. A similar pattern is also observed in our out-of-sample prediction

exercise. The toolbox model is best for 60% of the subjects, followed by the mean

variance (16.3%), the Prospective Theory model (13.8%) and the Simplicity Theory

model (10%).

6This is the part P(A| f j) in Equation 4.4.
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TABLE 4.1: Subject Classifications.

Model In-sample Out-of-sample

Toolbox 45 48

% 0.563 0.600

Mean-variance 21 13

% 0.263 0.163

Prospective Reference Theory 1 11

% 0.013 0.138

Simplicity Theory 13 8

% 0.163 0.100

TOTAL 80 80

Notes: Number of subjects for which a model is classified as best,
based on the in-sample fit (Bayes Factor) and the out-of-sample fit

(predicted log-likelihood).

Given the performance of the toolbox model, we next focus on the size and the

content of each toolbox. Figures 4.1 and 4.2, illustrate the distribution of the different

sized toolboxes, both in and out-of-sample. In both cases, the majority of the subjects

(who is classified as toolbox decision makers) uses 4 or 5 heuristics, while very few

use only 2. This size is in line with previous results in the literature (see Makridakis

and Winkler 1983; Ashton and Ashton 1985; He, Analytis, and Bhatia 2022). There

seems to be a slight drop in the size of toolboxes, out-of-sample, which could be the
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effect of learning and increased familiarity with the task.

FIGURE 4.1: Frequency of toolbox sizes (in-sample).

FIGURE 4.2: Frequency of toolbox sizes (out-of-sample).
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Regarding the content of these toolboxes, Figures 4.3 and 4.4 illustrate the dis-

tribution of heuristics across all toolboxes, in and out-of-sample, respectively. Three

heuristics outperformed all others, both in and out-of-sample as they were present

in the majority of the toolboxes, namely, the Minimax (MINI), the Least Likely (LL)

and the Equal Weight (EW). Similarly, the three worst performing heuristics, both

in and out-of-sample were the Maximax (MAXI), the Equiprobable (EQUI) and the

Most Likely (ML). Given the nature of these heuristics, it is easy to infer that subjects

tend to resort to strategies that they will protect them from the worst case scenario

(i.e. worst outcome), while avoid strategies that would expose them to higher lev-

els of complexity. When we compare in and out-of-sample differences, there are

two points worth mentioning: (1) we find strong evidence in favour of the Priority

Heuristic (PRIO), in-sample, a heuristic that has received much attention in the liter-

ature because of its capacity to explain risky choice, and (2) the performance of PRIO

falls massively in the out-of-sample prediction, which can be seen as an indicator a

change in the strategy set that subjects adopt to tackle similar tasks. The PRIO is

a lexicographic strategy that requires several rounds of reason comparing payoffs

and probabilities and is therefore more cognitively demanding compared to simpler

heuristics. This may be a potential explanation of the drop of complexity averse and

seeking subjects that Moffatt, Sitzia, and Zizzo (2015) find in the phase 2 data.
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FIGURE 4.3: Frequency of heuristics (in-sample).

FIGURE 4.4: Frequency of heuristics (out-of-sample).
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4.5 Conclusion

Our analysis highlights the importance of accounting for complexity when deciding

on which explanatory model to adopt to describe individual behaviour. We have

shown that with overly complex tasks comes increased cognitive fatigue in decision-

making; a characteristic which heightens one’s reliance on simple rules of thumb

to make decisions. This results in an adaptive toolbox of heuristics outperforming

other expectation-based models of decision-making, even when complexity aver-

sion is captured within these competing parametric models. We provide a means

of efficiently estimating structural models of decision-making, including a toolbox

model, in-sample via the use of Bayesian Hierarchical modelling, and illustrate the

robustness of these results in their alignment with our out-of-sample prediction re-

sults.

Ironically, analysing strategic processes and preferences in the face of increased

complexity is a complex matter in itself, and it is easy to neglect vital attributes of

complexity. Whilst most studies use the number of alternatives in a choice set as the

key metric, we would urge future research to consider the works of Diecidue, Levy,

and Ven (2015), Huck and Weizsäcker (1999) and Georgalos and Nabil, 2023 who

discuss how the formatting of probabilities and outcomes, the distribution moments

(e.g. variance and mean) and other factors may well fall into the complexity func-

tion. The latter design a metric as a benchmark to determine a data sets complexity

levels.

Finally we would urge future studies to expand decision-tasks beyond binary

lotteries, as research has suggested the impact of complexity on risk taking is largely

dependent on the decision format (Oberholzer, Olschewski, and Scheibehenne, 2021).

Before we jump to conclusions on complexity’s effect on risky decision-making, we

must ensure that numerous tasks of varying contexts and characteristics are exam-

ined, as it may be that the nature of certain tasks lead people to specific solutions.
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Conclusion

We have looked at four chapters focusing on decision-making under risk and

uncertainty. We have shown that parametric methods work well in capturing the

risk preferences of individuals with inherently complex decision-making processes.

Additionally, disentangling probability distortion from probability elevation in the

weighting function changes the narrative of subjective perceptions of probabilities.

We have shown that imposing restrictive assumptions, such as representative agent

or linear utility assumptions, may restrict robust identification of preferences, es-

pecially when the number of data points is low. Additionally, we have generated

interesting insights into dynamic inconsistencies in risky choices, and how proba-

bility distortion plays a role in driving dynamically inconsistent choices. We have

identified that semi binding commitment devices work well in improving financial

welfare, but only when the subject would have taken on the risk anyway. Finally

we have shown that when the complexity of a task increases, whether that be a re-

sult of increased time-pressure, more options, more complex options, or something

else, then individuals switch from using sophisticated compensatory models, to sim-

plification strategies, such as to ease the decision-making process. Our complexity

index illustrates a robust relationship between adaptive toolbox use and tasks of ob-

jectively higher complexity. Similarly we show that a toolbox model works better

than existing decision-theory models, even when adjusted to include a complexity

component.

The research in this thesis has created various pathways for future research. Re-

garding Chapter 1, it would be interesting to extend the analysis to the mixed do-

main, such as to capture loss aversion in problem gambling. Dependent on eth-

ical considerations, a new experimental investigation in a dynamic setting could

generate important insights, such as to capture how problem gamblers preferences

change in light of prior wins or losses. For Chapter 2, it would be useful to re-run

the experiment, but with a risk-elicitation task that resembles the generated out-

come distributions of the dynamic choice task. Similarly, although it would be com-

putationally challenging, extending the analysis to the domain of ambiguity could

be fascinating, such as to replicate more of a trading/stock market environment in
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which probabilities are unknown. For chapter 2, we propose two more avenues for

future research. The first being a similar 2-stage dynamic decision-task, but where

one counterbalances the sample to control for ordering effects, such as to capture

the role of learning, and whether awareness of dynamic inconsistencies comes from

experience. Secondly, we recommend testing various control groups with different

commitment devices that differ in their intrinsic/extrinsic nature rather than their

level of restrictiveness. For chapter 3 and 4, one could delve deeper into the charac-

teristics of complexity and the effect each characteristic has on complexity aversion

and subsequent decision-making processes. Alternatively, given we are one of the

first to identify the explanatory power of an adaptive toolbox model of heuristics in

a risk setting, largely due to the efficacy of Bayesian inference methods, as well as

the heterogeneity of our specification, it is evident that there is a need for more work

on the composition of adaptive toolboxes in various settings.

A key takeaway from this thesis is that decisions made under risk and uncer-

tainty are not homogeneous, and dependent on the nature, domain, and environ-

ment in which decisions take place, we need to account for varying strategic pro-

cesses, as well as the effects of extreme risk preferences, and how preferences evolve

over time. As a starting point, assessing the fit of various models prior to recov-

ering structural parameters gives one an idea of how subjects process the decision-

task. Whilst there are flexible models that have traditionally worked well in many

settings, we live in an evolving and inherently complex economy, and tailoring

decision-theory analysis to the evolving characteristics of decisions will allow economists

to provide higher quality, more relevant, and robust, results and insights.
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Appendix A

Chapter 2 Appendix

A.1 Literature Review

This section provides a comprehensive literature review related to dynamic consis-

tency violations in decision-making under risk, disentangling the existing research

into three primary domains: 1. Theoretical contributions to the dynamic decision-

making under risk literature, 2. Empirical and experimental contributions, 3. The

literature regarding overcoming dynamic consistency violations via the implemen-

tation of commitment devices to optimal stopping problems.

A.1.1 Dynamic Prospect Theory DPT

Traditionally, research into human choices and decision-making under risk has fo-

cused on isolated, static choices that are made independently from one another.

Whilst in reality, most economic choices have some element of inter-connectivity.

Traditionally, game theory posited that in dynamic choice problems, individuals

would devise their solution based on backward induction (Zermelo, 1913), whereby

one maximises their utility by determining their optimal choice at the final stage of

a finite game, and iterate backwards determining optimal solutions at each stage by

eliminating future strategies that will not be played, and forming sub-games (Sel-

ten, 1965). This approach, however, assumes dynamic consistency and sequential

rationality (Kreps and Wilson 1982; Sarin and Wakker 1998; Machina 1989), a notion

that’s assumptions have since been faulted theoretically (Reny, 1992), and experi-

mentally (Binmore et al., 2002). Nonetheless, elements of backward induction have
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been cited in experimental settings since, with Gneezy, Rustichini, and Vostroknu-

tov (2007) finding that individuals initiated with a forward-looking approach (of-

ten referred to as the strategy approach), but after experiencing early losses, they

switched their mode of analysis to backward induction. Similarly, Carbone and Hey

(2001) replayed participants actions to determine how individuals solved dynamic

choice problems and found that individuals used some version of backward induc-

tion, whereby they looked ahead to the final nodes of a decision-tree, but neglected

the principle of optimality. On the other hand, Hey and Lotito (2009) find that the

majority of subjects follow the strategy method over backward induction in their ex-

perimental analysis. The differentiation of behavioural types in the framework we

adopt will further explore whether individuals adopt a strategy approach or back-

ward induction in their dynamic decisions.

Identifying why individuals deviated from their optimal ex-ante strategies be-

came a priority for the behavioural economics literature. The most well-known ex-

planation comes from the discounting literature, in that individuals discount future

periods and exhibit a favourable bias for the present (Harris and Laibson, 2001).

Strotz (1955-56) was the first to suggest that people are more impatient in the short-

run than they are in the long-run, and since then, economists have attempted to

model this behaviour with hyperbolic discounting functions (Ainslie and Haslam

1992, Loewenstein and Prelec 1992, Laibson 1997). This function has been able to

mirror the well documented psychological bias where individuals prioritise short-

term immediate rewards over potentially larger future rewards, with a discount rate

that declines as the horizon increases.

Whilst discounting models provide some explanations for dynamic choices, due

to their focus being on how individuals value rewards over time, it does not in-

herently incorporate probabilities into its core components, and is restricting its ca-

pacity to explain decision-making inconsistencies under risk (Shoji and Kanehiro

2016; O’Donoghue and Rabin 1999). It therefore struggles to fully explain various

behavioural phenomena such as the disposition effect or casino gambling. Heimer

et al. (2023) highlight: "the proposed mechanism for time inconsistency hyperbolic dis-

counting is conceptually distinct from the driver of dynamic inconsistency in risky choice."
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Whilst this area of dynamic literature provides a focus on preferences towards mon-

etary payoffs, a large branch of the static literature provides evidence that many

deviations from "rationality" come as a result of probability distortion (Bruhin, Fehr-

Duda, and Epper, 2010). Similarly, Nebout and Dubois (2014)’s experimental study

into violations of dynamic axioms found that probability levels played an impor-

tant role in violations of dynamic consistency. We therefore wish to focus on risky

decision-making without discounting in order to identify the role probability distor-

tion and loss aversion play on individual dynamic inconsistencies.

Structural static decision-theory models have been extended to dynamic settings

to account for inconsistent dynamic decision-making under risk. Hotaling and Buse-

meyer (2012) extend the basic Decision Field Theory (DFT) framework to the do-

main of dynamic decision making, whereby a decision-maker deliberates by think-

ing about the possible outcomes of each action, and updates their preferences over

time as new information is presented to them, leading to attention switching be-

tween various options until a threshold is reached and one option dominates. This

model proposed a new alternative to backward induction and belongs to a class of

sequential sampling models. Their analysis involved fitting over 100 model speci-

fications to experimental data, and whilst they were unable to identify a universal

classification scheme, they found that there are clear differences in strategies that in-

dividuals use to solve dynamic decision-making, where 3 specific behavioural types

emerged (near-optimal planners, myopic planners, non-planners).

The identification of behavioural types was first formalised by McClennen (1990)

and has been a theme of ongoing importance since, whereby he classifies three be-

havioural types (naive, resolute, sophisticated). Hey and Lotito (2009) seek to iden-

tify these types based on sequential choice problems and found that 50% were naive

(unaware of their dynamic inconsistencies), 40% were resolute (find a way of com-

mitting to their initial strategies), and 10% were sophisticated (aware of their incon-

sistencies but struggle to find a way to commit). Nebout and Willinger (2014) extend

the design of Hey and Lotito (2009) by additionally categorising the different types

based on the dynamic axiom that is being violated (dynamic consistency, consequen-

tialism, reduction of compound lottery). The theme of behavioural type identifica-

tion has also been extended beyond these traditional classifications, with Hey and
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Knoll (2011) recording entire sequences of actions, as in Hotaling and Busemeyer

(2012), and identifying distinct groups in terms of broader qualitative characteristics

(those who ignored information to minimise effort and those who approximated an

optimal strategy). The Alaoui and Fons-Rosen (2021) behavioural classification sep-

arates the personality trait of grit into tenacity and diligence. They find that tenacity

in itself captures the tendency to deviate from ex-ante preferences when this means

accepting defeat. Given the heterogeneity of our population, accounting for het-

erogeneity in behavioural characteristics may provide further insights into where

complex deviations from dynamic axioms originate.

The well renowned Cumulative Prospect Theory (Kahneman and Tversky 1979;

Tversky and Kahneman 1992), provides intuition into why certain behavioural types

are increasingly dynamically inconsistent. Notably, Barberis (2012) provides a the-

oretical model of casino gambling, where he extents CPT to a dynamic setting, and

shows how a combination of probability weighting and loss aversion leads to plausi-

ble time inconsistencies dependent on the classification of a behavioural type, which

in turn provides an explanation as to why some individuals engage in casino gam-

bling, even given the negative expected value of such gambles. In doing so, he de-

fines 3 types, who differ in terms of their awareness of their dynamic inconsistencies,

and their ability to commit to their initial strategies (naive, sophisticate with com-

mitment, sophisticate without commitment). Barberis’ 5-period model forms the

framework for our experimental analysis, and will therefore will be expanded on

in our theoretical framework. This dynamic version of CPT predicts that the same

individual will reject a single fair gamble while accepting the same gamble as part

of a dynamic sequence.

As with any emerging theoretical framework, it has received its setbacks, with

Ebert and Strack (2015) faulting CPT’s predictions in a dynamic framework, and

suggesting that a combination of naivety (an individual who is unaware of their dy-

namic inconsistencies) in tandem with probability distortion, leads to absurd and

unreliable predictions. Their theoretical analysis of the model suggests that these in-

dividuals would gamble forever. Nonetheless, Henderson, Hobson, and Alex (2017)

provide support for the framework, and show that allowing for randomisation can

significantly alter the predictions of their model, and leads to the voluntary cessation
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of gambling in many instances. Additionally, the Ebert and Strack (2015) framework

consists of a continuous-time, infinite horizon model, whereas in real-world settings,

most gambles and financial decisions are finite (we run out of money, time-constraint

on an investment etc.). Ebert (2020) later discusses how an agent will accept gambles

even if they are negatively skewed, as long as the horizon is long enough for them

to generate positive skewness through their plans. Heimer et al. (2023) highlight

that a finite planning horizon restricts the potential skewness of a dynamic loss-exit

strategy. Again, this highlights why, as the horizon shortens, individuals may stop

gambling. Barberis (2012)’s solution is numerical, in which the model is solved using

exhaustive search across Markovian stopping strategies, and due to the probability

weighting embedded in CPT’s value function, Barberis suggests there is no known

analytical solution. However, Hu, Obloj, and Zhou (2022) later turn the problem into

a computationally tractable mathematical program by allowing for randomisation,

and when solving the model analytically, are able to provide support for Barberis’

theoretical predictions for longer time horizons.

The CGM provides an intuitive and applicable account of dynamic decision-

making, and whilst it has received positive affirmation, and researchers have since

tested various elements of the model, its theoretical predictions have never been

directly tested. Considering CPT’s contribution to explanations of other financial

phenomena such as the equity premium puzzle (Benartzi and Thaler, 1995), the low

average return on IPO’s (Barberis and Huang, 2008), and the disposition effect (Bar-

beris and Xiong, 2009), testing the CGM’s key assumptions in an experimental or

empirical setting could provide emerging insights into what characterises our dy-

namic inconsistencies in financial decision-making.

A.1.2 Empirical and Experimental Evidence

Although the Model of Casino Gambling’s theoretical predictions have never been

directly tested, in that no-one as of yet has attempted to estimate CPT parameters

and identify types of individuals based on these parameters in a dynamic setting

of more than 2 periods, features of the model have prevailed to from experimental

analysis in the literature.
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Hey and Panaccione (2011) estimate a Rank Dependant Expected utility model

with a CRRA function and a Quiggin weighting function in a two-period dynamic

choice problem. The examine 4 types: Naive, Sophisticate, Resolute and Myopic,

where the resolute are those who somehow impose their first period preferences on

their future selves (which could be perceived as a sophisticate with commitment)

and myopic individuals are those who act as if each period is their last. Their ex-

perimental analysis finds evidence that most individuals are resolute. Their design

only accounts for 2 periods, thus the extent to which individuals overweight ex-

tremely low probabilities in the future is restricted, and sticking to initial strategies

over a shorter horizon may be perceived as simpler. Similarly, Johnson and Buse-

meyer (2001) in two laboratory experiments find that dynamic inconsistencies in-

crease as the tree length increases, suggesting that increasing the horizon in the Hey

and Panaccione (2011) study may lead to an increase in the number of individuals

being classified as naive. Additionally, their use of RDEU over CPT restricts their

analysis to the gain domain only. Gambling and stock market investments are asso-

ciated with significant losses, and therefore to gain a better understanding of dynam-

ically inconsistent economic choices, incorporating losses and a longer time-horizon

is required.

Heimer et al. (2023) delve deeper into dynamic inconsistencies between planned

and actual choices in both an experimental and empirical setting. Their empirical

investigation, focusing on trading data from a large international online brokerage,

and their experimental investigation using fair symmetrical gambles over multiple

periods, find that there is a substantial discrepancy between people’s risk-taking

intentions and actual behaviour in a dynamic setting. Their results implied that a

dynamic framework featuring probability weighting, reference dependence, and di-

minishing sensitivity, like the CGM, is most consistent with observed behavioural

patterns. Whilst they do not test the theoretical predictions of the casino gambling

model directly, in that they do not seek to identify behavioural types and recover

CPT parameters, their results support the models underlying assumptions, and their

investigation into different commitment plans provides interesting insights for the

model. Similarly, in departure from the Barberis (2012) model, they restrict the sub-

jects’ initial plans to a pair of gain and loss limits. This approach allows subjects
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to define their strategies based on upper or lower bounds in which they wish to

stop playing if these bounds are reached. Ebert and Voigt (2023) utilise the visual

and operational design of the CGM to elicit stopping times and identify individ-

ual preferences for risk-taking strategies. They expand on the research by Heimer

et al. (2023) by allowing subjects to use trailing stopping strategies, which refer to

strategies that are path dependent. Their results suggest that subjects use trailing

stop-loss strategies 3.5 times more than threshold stop-loss strategies. Additionally,

they implement randomisation into the framework, allowing subjects to randomise

their choices, and find that 80% of subjects use randomisation at least once. They

highlight the demand for such randomisation and path dependence by showing

how these mechanisms remained popular even when they incurred an additional

cost. Their results showed that subjects exhibited dynamic consistency, in that they

largely followed their initial pre-specified plans, and suggest that offering flexible

strategies may increase individuals’ ability to stick to their plan beyond commit-

ment devices that focus on restricted plans.

Similarly, Andrade and Iyer (2009) and Barkan and Busemeyer (1999) analyse

individual stopping strategies and how these differ from actual choices, with the

former identifying dynamic inconsistencies in that individuals, contradicting their

initial strategies, ended up betting more after an initial loss. The latter identify the

same pattern in the loss domain, in which individuals become more risk seeking

after a loss, but also that subjects are generally more risk averse after an initial gain.

Again, this opposed the subjects’ initial strategies. Both findings coincide with the

predictions of cumulative prospect theory in a dynamic setting. Thaler and Johnson

(1990) point out that people take on more risk after a loss, but only if the upside of

the gamble allows them to recover from it and get back to the reference point (the

“break even” effect).

Alaoui and Fons-Rosen (2021) explore how grit, tenacity, and self-discipline may

drive deviations from initial strategies, where they elicit strategies by asking sub-

jects for the minimum and maximum limit with which they would not like to sur-

pass, and find that tenacity, where individuals are not willing to accept defeat, in-

fluences individual deviations from ex-ante strategies. Ploner (2017) use dynamic

choice tasks to provide support for the disposition effect when choices are taken
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sequentially, however they find that when choices are planned (pre-commitment)

there is a reversed disposition effect. Imas (2016), instead, looks to disentangle the

effects of changing attitudes over periods dependant on whether an experienced loss

is a realised loss or a paper loss. They show that following a realised loss, individu-

als avoid risk, however if the same loss is instead a paper loss, individuals are more

likely to take on greater risk in the next period.

Barkan (2003) expand on how prior experiences affect dynamic choices in se-

quential games, and suggest that changes in preferences could be explained by changes

in subjective probabilities rather than by the utility associated with a gamble. This

insight suggests that after experiencing a gain in one period, there will be a decrease

in the subjective probability associated with receiving another gain in the proceed-

ing period, providing an explanation for why individuals plan to bet more after a

loss than a gain.

A.1.3 Commitment devices

As of yet, we have discussed the existing evidence on what drives dynamic inconsis-

tencies in risky choice, as well as what characterises these choices, but a co-existing

branch of literature has focused on how one can overcome these discrepancies and

measure individual preferences for pre-commitment to initial strategies. We use

the term "commitment device" to define a means of pre-commiting to one’s initial

plan. The UK government’s Behavioural Insights Team defines a commitment de-

vice as an arrangement entered into voluntarily by an individual that sees them put

in place measures designed to dissuade them from breaking their intentions (BIT,

2021). Strotz (1955-56) was the first economist to formalize a theory of commitment

and to show that commitment mechanisms could be potentially important determi-

nants of economic outcomes.

In decision making under risk, this now focuses on how individuals find a way

to commit to optimal stopping strategies, and identifying preferences for various

levels of commitment. Bettega et al. (2023) suggest that these commitments that

restrict one’s action space are able to minimise deviations from initial strategies that

come as a result of instant gratification.
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Many experimental designs have played around with various types and levels

of commitment devices to gain a better understanding of how this helps overcome

dynamic inconsistencies, as well as how they increase an individual’s willingness

to engage in a risky activity. The literature can be divided into two broader do-

mains: those who assess the effect of commitment on the discrepancy between ini-

tial strategies and actual choices (Trope and Fishbach 2000; Ariely 2002; Houser et al.

2017; Heimer et al. 2023), and those who focus on preferences for commitment and

changes in risk preferences when commitment is available (Antler and Arad 2023;

Hey and Paradiso 2006; Bettega et al. 2023).

Antler and Arad (2023) explore how subjects commit to a cutoff stopping rule

when facing a sequence of lotteries. Their stopping rules involve the individual se-

lection of an upper and lower bound for which their endowment can reach, with a

left biased stopping rule referring to one in which the upper bound (gain) is smaller

than the lower bound (loss), and a right-biased rule as the opposite. They find that

subjects either consistently choose rules with higher upper bounds or consistently

choose rules with lower lower-bounds. They classify subjects into types based on

their tendencies to choose left bias, right bias, moderate, and extreme stopping rules,

and find that the most common stopping rule was left bias and extreme. As their

analysis did not focus on the comparison of ex-ante strategies and ex-post decisions,

their results are in line with the existing literature on actual choices made in a se-

quential process.

On the other hand, Heimer et al. (2023) account for ex-ante strategies in their

analysis of commitment devices, and find that individuals choose ex-ante stopping

rule strategies that are right-biased, but the subject’s actual choices reversed ex-post

and were more highly correlated with left-biased strategies. Additionally, they as-

sess the difference between "soft" commitment plans, and "hard" commitment plans,

where hard plans are binding and soft plans are breakable. An interesting result

highlighted how soft plans can have negative implications, in that the availability of

a soft commitment plan encouraged individuals to engage in a risky decision, where

they would not have otherwise. They identify welfare implications in that subjects

deviated from their soft-commitment plans in real play.

This finding is implicitly supported by Hey and Paradiso (2006) who suggest that
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individuals are likely to engage in riskier activities, and prefer problems where an

element of pre-commitment is available. However, Bettega et al. (2023), who imple-

ment a BART experimental design, find the opposite, in that the availability of soft

and hard commitment devices led to subjects reducing their risk-taking behaviour,

even when the device was non-binding. Psychologically, this result is also intuitive,

in that the decision to deviate from a form of commitment may cause the individual

to reflect on their willpower, which is associated with discomfort and other costs

such as shame or guilt (Benabou and Tirole 2004; Kast, Meier, and Pomeranz 2016).

Whilst the available literature provides a comprehensive examination of the role

commitment devices play in risky choice, they have not yet been used to differ-

entiate between behavioural types, more specifically, to differentiate between how

individuals plan and execute choices dependent on whether they are aware of their

dynamic inconsistencies and if they are able to find a means of committing to their

initial plans. Our focus on commitment falls in the demand side, in identifying if in-

dividuals have a desire to commit, and how the availability of commitment devices

affects initial strategies and demand for risk.
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Chapter 3 Appendix

B.1 Literature Review

This section provides an extensive summary and literature review on heuristics, ex-

isting evidence on the four key domains of consideration, and the development of

adaptive toolboxes.

B.1.1 Heuristics

A heuristic can be thought of as a rule of thumb; a cognitive problem-solving ap-

proach that ignores part of the information with the goal of increasing the speed of

decision-making (Gigerenzer and Gaissmaier, 2011). They simplify our decision-

making process, allowing us to accomplish complex tasks or achieve short-term

goals. How we make decisions is largely dependent on the environment and so-

cial context of the decision-task, therefore when examining an array of choices, it

may be that more than heuristic played a part determining ones decision-strategies.

Multiple heuristics have been shown to operate simultaneously, so to better under-

stand the behavior of economic agents, we need to determine which heuristics are

at play in various choice domains(Campo et al., 2016). See Brandstätter, Gigerenzer,

and Hertwig (2006) for a summary of evidence in favor of heuristics ability to model

cognitive processes.

Glöckner and Pachur (2012) compare different implementations of CPT to 11

different heuristics taken from the works of Brandstätter, Gigerenzer, and Hertwig

(2006) and Payne, Bettman, and Johnson (1993). Table C.1 provides a comprehen-

sive list of heuristics (note, the use of the word “reasons” or “cues” refer to a specific
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mental strategy taken within a heuristic). The current study follows Glöckner and

Pachur (2012) and investigates the performance of 11 heuristics as potential compo-

nents of a cognitive toolbox1.

There are different types of heuristics focusing on one or multiple attributes.

Some of the heuristics focus exclusively on the monetary payoffs, such as the Min-

imax, the Maximin or the Better than Average heuristic (outcome heuristics), while

others focus on a combination of payoffs and probabilities (dual heuristics), such

as the Least Likely, the Most Likely or the Probable. Finally, there are heuristics for

multiple-attribute choice which include the Lexicographic, the Priority and the Tally-

ing heuristic. The latter follow Rubinstein (1988) three-step model, where the agent

applies an algorithmic process of decision making, going through various degrees

of reason, and if two options are similar in terms of one reason (e.g. dominance)

attention is shifted to other reasons (e.g. similarity). This kind of lexicographic type

heuristics, have been quite popular in the literature, given that they are simple strate-

gies that correctly predict classic violations of expected utility theory.

The most widely used heuristic in the literature is the Priority Heuristic. It only

considers a few pieces of information at a time, it assumes that the decision maker

cannot combine information during the process, and it is non-compensatory (Hill,

Raacke, and Park, 2017). This heuristic has received considerate recognition as a

result of its ability to facilitate a wide array of behaviours: risk aversion for gains

(losses) with high (low) probabilities, risk seeking for gains (losses) with low (high)

probabilities, and various other empirically proven decision-making preferences.

The cues within the priority heuristic are ordered by the individual, such that when

a dominant cue is found (going through the order sequentially) the individual stops

and makes their decision based on that specific cue. Todd et al. (1999) proposes

three building blocks (or rules) within the priority heuristic. The first is a search

rule, whereby the individual specifies the direction (or order) in which the cues will

take place (they will go through the order until one option dominates another un-

der a specific cue). The second is the stopping rule, which specifies at what cue the

search stops, and the third is the decision rule, which specifies how the final decision

1The full list of the heuristics along with a description of the choice mechanism behind each heuris-
tic is provided in Table C.1.
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is reached. For the Priority rule, in a lottery type setting, the decision maker is given

four reasons/cues and goes through them in the following order: Minimum gain,

probability of minimum gain, maximum gain, probability of maximum gain. If the

decision-maker is indifferent at the first cue, they move to the second, and continue

until one option can be discriminated.

There are countless heuristics that have been examined throughout the psychol-

ogy and economics literature, and many individuals might use more than one heuris-

tic for different problems depending on the nature of the decision. The lexicographic

heuristic is similar to the priority heuristic in that they both adopt a lexicographic

nature; however, they differ in the order that each attribute is being checked, or in

different criteria that are applied in order to stop the search. Here the individual may

compare the values (or most likely outcomes) of two options, one value at a time

until, again, they are able to discriminate (Gigerenzer and Goldstein 1996; Tversky

1972). The ordering of the cues is dependent on the goal of the choice being made

(Hill, Raacke, and Park, 2017). Similarly, the Tallying heuristic adopts the same lexi-

cographic nature, but in this case differences of the magnitude, or predicted value of

the cues are ignored, and the decision is based purely on tally marks (Parpart, Jones,

and Love 2018; Czerlinski, Gigerenzer, and Goldstein 1999; Dawes 1979).

There are also heuristics that require even less cognitive attention. For exam-

ple, the Minimax (Maximax) heuristics rule is to merely choose the gamble with the

highest minimum outcome (highest outcome). Similarly, the “least likely” (“most

likely”) heuristic identifies each gambles worst outcome (most likely outcome) and

chooses the gamble with the lowest probability of the worst outcome (highest, most

likely outcome) (Glöckner and Pachur 2012;Brandstätter, Gigerenzer, and Hertwig

2006).

B.1.2 Gain Domain

In the field of behavioural economics there are two prevalent ways to model irra-

tional behaviour. The one is to assume that agents suffer from cognitive biases

(Hilbert 2011; Kahneman and Tversky 1979; Zindel, Zindel, and Quirino 2014).
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While they aim to maximise utility, their cognitive biases may lead them to sub-

optimal outcomes and therefore, deviations from rationality. For example, a deci-

sion maker who distorts objective probabilities, may be prone to violations of the

Expected Utility axioms (Machina 1983: Tversky 1975). On the other hand, there is

the literature that assumes that agents are not able to calculate probabilities or ex-

pectations and they therefore resort to simple rules of thumb (heuristics) to inform

their decisions (Gigerenzer and Gaissmaier, 2011). We wish to determine what best

characterises deviations from EU in various contexts and domains.

The gain domain provides an exemplary overview of the comparison of the two

prevailing behavioural approaches, which is why we use the environment of gains

as our baseline domain. Firstly, the gain domain provides the simplest and least

cognitively demanding environment in which individuals can make decisions. Ad-

ditionally, many of the violations of EU have been observed in the gains domain

(Allais and Hagen 1979: Avineri and Prashker 2004), and the majority of studies in

the vast behavioural literature focus mostly on gains.

CPTs traditional S-shaped utility function implying diminishing marginal util-

ity (Dacey 2003; Fishburn and Kochenberger 1979), combined with its probability

distortion component (Preston and Baratta, 1948) has seen a stream of evidence sup-

porting its explanatory power in the gain domain (Stott 2006; Fennema and Wakker

1997; Hey and Orme 1994; Loomes, Moffat, and Sudgen 2002). However, others have

argued that CPT’s flexibility overpowers its descriptive capacity in some contexts,

and that individuals, dependent on the specific environment/context of choice, do

not always rely on compensatory models to make decisions, but rather they use

general rules of thumb and simplification strategies (Brandstätter, Gigerenzer, and

Hertwig, 2006).

B.1.3 Loss Domain

We postulate that individuals behave in a different way when losses are present,

therefore we separate the analysis for gains and losses to account for variability in

behaviour and decision strategies across the two domains. The change in environ-

ment transforms the framing of the decision-task, which in turn re-frames the bene-

fits and consequences of our decisions and has different psychological implications
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to the gain domain.

The additional mental strain of enduring a potential loss may effect ones decision-

strategy (Tom et al. 2007; Thaler 2000; Gal and Rucker 2018), where the increased

stress in this domain may leave subjects relying on simpler strategies to reduce the

pressure and attempt to avoid future losses (Payne, 1976). Zeisberger (2022) find that

decision-makers, in fact, pay explicit attention to loss probabilities in a loss context.

They emphasise that it is crucial to separate this hypothesis from the pure effect of

loss aversion, as their hypothesis regarding a focus on loss probabilities has strat-

egy implications, whilst loss aversion stems from a preference based cognitive bias

model. This result is supported by experimental evidence on individuals providing

a focus on loss probabilities in lottery tasks (Payne, Laughhunn, and Crum 1980;

Lopes and Oden 1999; Sokolowska 2006), implying heuristics are informing individ-

uals decisions.

On the other hand, there are the arguments that CPT indirectly implements the

assumption of a more pronounced focus on loss probabilities into its specification.

Whilst CPT captures the concept of loss aversion either in its loss aversion parame-

ter, or by providing different free parameters for risk aversion in the gain and loss

domains, it has been noted that loss aversion can also be captured by the weighting

function in CPT (Schmidt and Zank, 2005). This idea allows CPT to provide a focus

on loss probabilities, as existing evidence has suggested. CPT and its loss aversion

assumption has successfully explained deviations from Expected utility, and pro-

vided explanations for loss based paradoxes, such as the endowment effect (Thaler,

1980), the equity premium puzzle (Benartzi and Thaler, 1995), and the status quo

bias (Samuelson and Zeckhauser, 1988).

B.1.4 Complexity

An influential component in economic decision-making that can increase an indi-

vidual’s cognitive load is the complexity of the task at hand. Within a binary lottery

setting, there are various characteristics of a decision-task that can influence its com-

plexity. For example, the number of outcomes in a single binary lottery, the number

of binary lotteries to complete, the variance in outcomes within a lottery, the ease of

probabilistic calculations (e.g. 0.5 vs 0.634), etc.
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There is limited literature on how complexity has may alter risky decision-making

strategies in order to simplify the task at hand, with most complexity based studies

focusing on individual preferences (e.g. avoid/neglect the overly complex) (Ober-

holzer, Olschewski, and Scheibehenne, 2021). Whilst this chapter does not focus on

preferences for complexity, insights on preferences has implications for strategy de-

velopment. Evidence suggests that the population is divided between subjects who

respond to complexity and those who are complexity neutral. Moffatt, Sitzia, and

Zizzo (2015) find 67% of their subjects respond to complexity, and the majority of

these display moderate levels of complexity aversion. The distaste for complexity is

largely explained by cognitive overload, which may facilitate simplification strate-

gies if complexity cannot be avoided. Moffatt, Sitzia, and Zizzo (2015) find that this

rate of responsiveness to complexity (67%) falls to 0% by the end of the experiment

(complete complexity neutrality). This convergence to complexity neutrality does

not necessarily mean that the subjects no longer have this distaste for complex tasks,

but rather they found a simplification strategy that made the tasks less complex.

Sonsino, Benzion, and Mador (2002) find that individuals discriminate heavily

against complicated lotteries, such that even when the expected value was fixed,

and this information was disclosed to participants, they still prefer the lotteries with

fewer outcomes even when these lotteries have a higher variance. In many cases

the expected value of the complicated lotteries were higher, yet the simpler lotteries

were still preferred. Fudenberg and Puri (2022) expand on this by discussing how

a uniform distribution over 20 outcomes is seen as more appealing than a lottery

over 19 outcomes that has a higher mean and lower variance if the distribution of

the 19-outcomes lottery is very irregular.

It has also been suggested that when decisions are more complex, individuals

may avoid making a decision altogether, they might procrastinate, but more often

than not they decide to stick with a default option or strategy (Iyengar and Lepper

2001; Thaler and Sunstein 2009). A default option provides an indirect assumption

than an individual has thus resulted to a rule of thumb to inform their decisions,

providing further evidence to support the explanatory power of heuristics.

Fudenberg and Puri (2022), who capture a preference for lotteries with a smaller

number of outcomes, conclude that both probability weighting has an important
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role to play in predicting these risky alternatives. On the other hand, Bernheim

and Sprenger (2020) find that PT and CPT fail rigorous tests that they design. Their

design involved lotteries with varying degrees of complexity and they provide sug-

gestions that there is a possibility the observed behaviour reflects a combination of

standard PT and a form of complexity aversion.

Zeisberger (2022) suggest that the more complex the decision problem, the more

likely it is the decision-maker will apply heuristics. Their results find that individ-

uals provide a primary focus on loss probabilities, which provides support for the

heuristics with lexicographic rules and potentially the “least likely” heuristic. They

find behaviour to be influences by the probabilities of gaining and losing all their

tasks. Further studies have also supported the idea that complexity induces the use

of heuristics with a focus on gain and loss probabilities (Erev et al. 2010; Payne 2005).

Although existing work has provided suggestions of possible strategies adopted

under complexity, there is limited work on the role these strategies play and, more

notably, how many strategies take place over a series of tasks. Venkatraman, Payne,

and Huettel (2014) provide support for the assumption that, when faced with multiple-

outcome gambles involving probabilities of both gains and losses, people often use

simple heuristics that maximises the overall probability of winning. However, from

this they expand on the concept of needing multiple strategies over a single strat-

egy in risky choice. Not only do their results oppose the popular prediction of CPT,

as they find a greater preference for choices that maximise the overall probability

of winning, but they provide arguments that favour an adaptive toolbox of heuris-

tics when tasks become increasingly more complex. They find that the results from

single strategy models (i.e. those that predict risk aversion and loss aversion across

subjects) fail to generalise to more complex gambles.

B.1.5 Time Pressure

Most economic decisions are made within a finite time horizon (e.g. cashing out

a bet, buy/sell an asset, buy/sell a currency). The existing literature examining

this domain of decision-making suggests that individuals, due to a lack of time and

commitment, will rely on shortcuts when making choices (Campo et al. 2016; Payne,
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Bettman, and Johnson 1993. This increase in an individual’s cognitive load may facil-

itate that switch from the thorough analysis of a decision based on cognition (the use

of cognitive biases) to making a choice based on a simple heuristic. Payne, Bettman,

and Johnson (1988) showed that heuristics, in particular the lexicographic rule, were

more accurate than normative procedures (e.g. additive utility) when individuals

had severe time deadlines. Similarly, Payne, Bettman, and Luce (1996) showed

that opportunity cost time pressure meant the subjects in their study adapted their

decision-making procedure by processing less information, being more selective in

their processing, and thus processing more by attribute; all characteristics that pro-

vide support for the use of heuristics in decision-making. Time pressure has also

been manipulated specifically to induce heuristic choice behaviour in consumer de-

cision experiments (Langner and Krengel, 2013).

Olschewski and Rieskamp (2021) study decision-making under time pressure

and the use of heuristic toolboxes. They find that risk preferences or strategy selec-

tion failed to explain the behaviour presented, and that is was down to pure choice

inconsistency. However, in their theoretical framework they predetermine the set of

strategies, such that all subjects have the same toolbox. We relax this hypothesis in

our work, as a less restricted and more heterogeneous framework may provide more

conclusive results regarding the identification of strategies under time pressure.

Saqib and Chan (2015) point out that, under time pressure, individuals see the

maximal possible outcome (e.g., best gain in gain domain and worst loss in loss do-

main) as more likely to happen. In turn, they use that as their reference point and

not the status quo to evaluate decisions. This tendency reverses traditional CPT

risk preferences, as they see only see mediocre gain relative to the maximum gain,

thus framing that outcome as a loss, which results in risk seeking behaviour (and

vice versa for losses). On the other hand, the experimental evidence provided by

Nursimulu and Bossaerts (2014) shows that time pressure leads to purchase impul-

siveness, decreased aversion to variance and sensitivity to expected reward. These

time varying sensitives can result in increased probability distortion and decreased

risk aversion for gains, thus indicating that risk preferences do in fact change when

individuals have a limited time to make decisions. The change in decisions that time
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pressure provokes could also be a consequence of the new, strict, stress induced en-

vironment. Cahlíková and Cingl (2013) examine this effect of stress on risk attitudes

and found that acute psychological stress significantly increased risk aversion. Seen

as time pressure can have a direct effect on stress levels, this is an important result

to note for the proceeding analysis.

B.1.6 Toolbox

As of yet we have discussed heuristics and have mentioned regularly the idea of

multiple heuristics working simultaneously. We will now expand on the concept

of Adaptive Toolboxes of heuristics. In the literature there have been suggested

various heuristics that aim to explain deviations from rationality. However, it is not

clear whether agents resort to the use of heuristics under particular circumstances

and whether they use a unique heuristic or a repertoire of heuristics depending the

nature of the problem at hand. The latter is known as the use of an adaptive toolbox

of heuristics.

As pointed out by Scheibehenne, Rieskamp, and Wagenmakers (2013), a sin-

gle model approach does not assume qualitatively different cognitive processes or

strategies. An adaptive toolbox of heuristics provides a solution to this particular

problem, by pooling together multiple heuristics simultaneously to form a single,

unified model, such that if an individual exhibits more than one heuristic through-

out a decision-making process, the toolbox will be able to fit all heuristics to the in-

dividual’s decisions, rather than choosing a single heuristic with substantial noise.

He, Analytis, and Bhatia (2022), who introduce the idea of crowd models to cap-

ture heuristic behaviour, suggest that each individual model, or heuristic, captures

unique aspects of the decision process. We should view the various heuristic strate-

gies as complementary rather than competing accounts of behaviour.

Since the toolbox model is econometrically a mixture model (Stahl, 2018), it pro-

vides a percentage accuracy of each heuristic for all decisions. Obviously, with the

inclusion of more strategies (a larger toolbox) comes the potential dilemma of over-

fitting due to an overly flexible toolbox; a problem that is likely to have caused ambi-

guity in existing results. In simple terms, if a toolbox is unable to capture behaviour

accurately, one could keep adding strategies until the noise is virtually non-existent,
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which in turn does not provide us with reliable insights. Scheibehenne, Rieskamp,

and Wagenmakers (2013), however, provide a solution to this problem by using a

Bayesian Hierarchical Approach.

While toolbox models have been widely developed throughout the psychology

literature, the use of toolbox models is quite restricted in the economics literature;

particularly in the field of risky choice. Most of the literature focuses on the compar-

ison between a single heuristic against compensatory expectation based models like

CPT, providing overwhelming support in favour of the latter (Glöckner and Pachur

2012; Peterson et al. 2021; Balcombe and Fraser 2015; Brandstätter, Gigerenzer, and

Hertwig 2006).

There have been a few attempts to estimate toolbox models in a risk context

but most suffer of simplification assumptions that hinder the proper identification

of the model (Stahl 2018; Olschewski and Rieskamp 2021). These simplification is-

sues arise in 2 main forms. The first being that existing studies have not allowed for

individual heterogeneity in toolboxes, where they assume each subject selects strate-

gies from the same limited toolbox. Secondly, the structure of experimental designs

have generated ties for heuristics in the toolbox. Therefore, we wish to assess the

explanatory power of toolboxes with more holistic designs and heterogeneous as-

sumptions. There is experimental evidence in the strategy selection literature that

highlights an individual’s tendency to alter their strategies in correspondence with

the structure of the choice problem, and whether the characteristics of the task re-

quire speedy decision-making, or increased attention to detail (Mohnert, Pachur,

and Lieder 2019; Payne, Bettman, and Johnson 1988). A less restricted approach

allowing for heterogeneity, and adopting an econometric framework that can effec-

tively recover strategies (e.g. (Scheibehenne, Rieskamp, and Wagenmakers, 2013))

will increase the likelihood of model identification.

B.2 Table of Heuristics
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TABLE B.1: Table of heuristics.

Heuristic Description

1. Priority Heuris-
tic

Go through reasons in the order of: minimum gain, prob-
ability of minimum gain, and maximum gain. Stop exam-
ination if the minimum gains differs by 1/10 (or more) of
the maximum gain; otherwise, stop examination if prob-
abilities differ by 1/10 (or more) of the probability scale.
Choose the gamble with the more attractive gain (proba-
bility). For loss gambles, the heuristic remains the same ex-
cept that “gains” are replaced by “losses”. For mixed gam-
bles, the heuristic remains the same except that “gains” are
replaced by “outcomes”.

2. Equiprobable Calculate the arithmetic mean of all outcomes for each
gamble. Choose the gamble with the highest mean.

3. Equal-weight Calculate the sum of all outcomes for each gamble. Choose
the gamble with the highest sum.

4. Better than aver-
age

Calculate the grand average of all outcomes from all gam-
bles. For each gamble, count the number of outcomes equal
to or above the grand average. Then choose the gamble
with the highest number of such outcomes.

5. Tallying Give a tally mark to the gamble with (a) the higher min-
imum gain, (b) the higher maximum gain, (c) the lower
probability of the minimum gain, and (d) the higher proba-
bility of the maximum gain. For losses, replace “gain” with
“loss” and “higher” with “lower” (and vice versa). Choose
the gamble with the highest number of tally marks.

6. Probable Categorize probabilities as probable (i.e., ≥ 1/2 for a two-
outcome gamble, ≥ 1/3 for a three-outcome gamble, etc.)
or improbable. Cancel improbable outcomes. Then calcu-
late the arithmetic mean of the probable outcomes for each
gamble. Finally, choose the gamble with the highest mean.

7. Minimax Choose the gamble with highest minimum outcome.

8. Maximin Choose the gamble with the highest outcome.

9. Lexicographic Determine the most likely outcome of each gamble and
choose the gamble with the better outcome. If both out-
comes are equal, determine the second most likely out-
come of each gamble, and choose the gamble with the bet-
ter (second most likely) outcome. Proceed until a decision
is reached.

10. Least likely Identify each gamble’s worst outcome. Then choose the
gamble with the lowest probability of the worst outcome.

11. Most likely Identify each gamble’s most likely outcome. Then choose
the gamble with the highest, most likely outcome.

Notes: Heuristics are from Thorngate (1980) and Payne, Bettman, and
Johnson (1993), later used in Brandstätter, Gigerenzer, and Hertwig

(2006) and Glöckner and Pachur (2012).
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Chapter 4 Appendix

C.1 Tasks

This Appendix briefly describes the procedure Moffatt, Sitzia, and Zizzo (2015) are

using to generate the lotteries for their experiment. Consider the following lottery

Sα:

S3 =



80, with probability 0.40

100, with probability 0.30

150, with probability 0.30

This simple lottery with 3 outcomes, can generate a complex lottery with 9 outcomes,

and a very complex lottery with 9 outcomes. In vector form, this lottery can be

written as Sα = (p, x) =

(
(p1 p2 p3)′, (x1, x2, x3)′)

)
. A complex lottery Cα can be

generated from Sα using the formula:

Cα =

(
vec(pp′); vec

(
1
2

xi′3 +
1
2

i3x′
))

where i3 is a vector of size 3 consisting of ones and vec(A) is the function that trans-

forms a n × n matrix A into a n2 × 1 (column) vector consisting of the elements of A.

This lottery is equivalent to playing Sα twice and using the arithmetic mean outcome

from the two plays as the outcome.

Applying this to the above lottery, we get:
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vec(p× p′) =



0.16 0.12 0.12

0.12 0.09 0.09

0.12 0.09 0.09


=

0.16 0.12 0.12 0.12 0.09 0.09 0.12 0.09 0.09



and vec(pp′ generates a vector of size eleven with the element of the p × p′ matrix.

Then, for the payoffs:

vec
(

1
2

xi′3 +
1
2

i3x′
)
=

80 90 115 90 100 125 115 125 150


which gives the lottery

C3 =



80, with probability 0.16

90, with probability 0.24

100, with probability 0.09

115, with probability 0.24

125, with probability 0.18

150, with probability 0.09

S3 =



80, with probability 0.40

100, with probability 0.30

150, with probability 0.30

Using a similar procedure, it is possible to create a very complex lottery with 27

outcomes. For the full set of tasks please see Moffatt, Sitzia, and Zizzo (2015, Table

2a, pp. 152-153).
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C.2 List of Heuristics
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TABLE C.1: Table of heuristics

Heuristic Description

1. Priority Heuris-
tic (PRIO)

Go through reasons in the order of: minimum gain, prob-
ability of minimum gain, and maximum gain. Stop exam-
ination if the minimum gains differs by 1/10 (or more) of
the maximum gain; otherwise, stop examination if prob-
abilities differ by 1/10 (or more) of the probability scale.
Choose the gamble with the more attractive gain (proba-
bility).

2. Equiprobable
(EQUI)

Calculate the arithmetic mean of all outcomes for each
gamble. Choose the gamble with the highest mean.

3. Equal-weight
(EQW)

Calculate the sum of all outcomes for each gamble. Choose
the gamble with the highest sum.

4. Better than aver-
age (BTA)

Calculate the grand average of all outcomes from all gam-
bles. For each gamble, count the number of outcomes equal
to or above the grand average. Then choose the gamble
with the highest number of such outcomes.

5. Probable
(PROB)

Categorize probabilities as probable (i.e., ≥ 1/2 for a two-
outcome gamble, ≥ 1/3 for a three-outcome gamble, etc.)
or improbable. Cancel improbable outcomes. Then calcu-
late the arithmetic mean of the probable outcomes for each
gamble. Finally, choose the gamble with the highest mean.

6. Minimax (MINI) Choose the gamble with highest minimum outcome.

7. Maximax
(MAXI)

Choose the gamble with the highest outcome.

8. Lexicographic
(LEX)

Determine the most likely outcome of each gamble and
choose the gamble with the better outcome. If both out-
comes are equal, determine the second most likely out-
come of each gamble, and choose the gamble with the bet-
ter (second most likely) outcome. Proceed until a decision
is reached.

9. Least likely (LL) Identify each gamble’s worst outcome. Then choose the
gamble with the lowest probability of the worst outcome.

10. Most likely (ML) Identify each gamble’s most likely outcome. Then choose
the gamble with the highest, most likely outcome.

Notes: Heuristics are from Thorngate (1980) and Payne, Bettman, and
Johnson (1993), later used in Brandstätter, Gigerenzer, and Hertwig

(2006) and Glöckner and Pachur (2012).
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