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Abstract

We show that under mild assumptions the Segre product of two graded
cluster algebras has a natural cluster algebra structure.

MSC: 13F60

1 Introduction

The map σ : Pn × Pm ↪→ Pn+m+nm of projective spaces defined by

σ((x0 : . . . : xn), (y0 : . . . : ym)) = (x0y0 : x1 : y0 : . . . : xnym)

is known as the Segre embedding—it is injective and its image is a subvari-
ety of Pn+m+nm. We may then define the Segre product of two projective
varieties X ⊆ Pn and Y ⊆ Pm as the image of X × Y with respect to the
Segre embedding. We denote the Segre product by X⊗Y def

= σ(X × Y ).
In what follows, rather than the geometric setting described above, we

will be interested in the dual notion of the Segre product of graded algebras.
Let A =

⊕
i∈NAi and B =

⊕
i∈NBi be N-graded K-algebras. Then their

Segre product A⊗B is the N-graded algebra

A⊗B def
=
⊕
i∈N

Ai ⊗K Bi (1)

with the usual tensor product algebra multiplication. Letting X and Y be
projective varieties with homogeneous coordinate rings A and B respectively,
the Segre product A⊗B is the homogeneous coordinate ring of X⊗Y .
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Cluster algebras are a class of combinatorially rich algebras arising in
a number of algebraic and geometric contexts (see [FWZ21] and references
therein). The additional data of a cluster structure leads to the existence of
canonical bases, closely related to the canonical bases arising in Lie theory.
Important examples of cluster algebras of this type include coordinate alge-
bras of projective varieties and their various types of cells, e.g. Grassman-
nians ([Sco06]), Schubert cells ([GLS11]) and positroid varieties ([GL19]).

In all known examples when the cluster algebra is the coordinate algebra
of a projective variety, we have a compatible grading on the cluster algebra,
with all cluster variables being homogeneous. Such cluster algebras are
naturally called graded cluster algebras and the general theory of these is
set out in work of the first author ([Gra15]).

In this note, inspired by [Pre23, Remark 4.14], we define a cluster algebra
structure on the Segre product of graded cluster algebras. This generalises
the particular case arising in [Pre23] in the study of cluster algebra structures
on positroid varieties and in doing so, we are able to clarify the required input
data to be able to form a Segre product.

We show that from the point of view of cluster algebras, forming the
Segre product is given by a gluing operation on suitable frozen variables.
We also record some simple observations on the preservation or otherwise of
cluster-algebraic properties under taking Segre products.
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2 Segre Products of Graded Cluster Algebras

It was shown by Galashin and Lam in [GL19] that coordinate rings of
positroid varieties in the Grassmannian have cluster algebra structures. This
class is closed under Segre product and in [Pre23], Pressland shows how the
Galashin–Lam cluster structure on the product is related to that on the
factors.

In what follows, we aim to generalise this construction to the case of
graded skew-symmetric cluster algebras: we start with two graded cluster
algebras and show that their Segre product has a natural cluster structure.
For coordinate rings of positroid varieties, Pressland’s result shows that the
Galashin–Lam cluster structure on the product is equal to that obtained by
the Segre product construction we give here.
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We start by establishing some notation; readers unfamiliar with graded
cluster algebras may wish to refer to [Gra15] for further details and examples.

First, let Ai = (xi, exi, Bi, Gi) be (skew-symmetric) graded cluster alge-
bras, for i ∈ {1, 2}, such that

• x1 = {x1, . . . , xn1} and x2 = {y1, . . . , yn2} are the respective initial
clusters;

• exi ( xi is the set of mutable cluster variables;

• every frozen variable (i.e. those elements in xi \ exi) is invertible;

• Bi is an exchange matrix (with rows indexed by xi and columns by
exi) with skew-symmetric principal part;

• Gi ∈ Zni is a grading vector, i.e. a vector such that BT
i Gi = 0.

It is common to visualise cluster mutation using quivers; see e.g. [Mar14].
We will do the same: an exchange matrix Bi will be represented by an ice
quiver having vertices • labelled by the elements of xi. The frozen variables
indicated by a box �, to indicate that mutation is not carried out there.
Arrows are determined by Bi: the number of arrows from xj to xk is (Bi)jk.

Throughout, we will work over a field K, so that our cluster algebras are
K-algebras and we take all tensor products to be over K. As we will see, the
underlying field plays essentially no role in our construction.

Let x be a cluster with x a cluster variable and B the exchange matrix
associated to x. We denote by Bx the row of B indexed by x and by B̂x

the matrix obtained from B by removing the row Bx. If x is frozen, B̂x is
again an exchange matrix.

Remark 2.1. In the above we require at least one frozen cluster variable in
each cluster algebra—this will be important when defining a cluster structure
on their Segre product since this will involve ‘gluing’ at frozen variables.

We have also asked that every frozen variable is invertible, which is a
common but not universal assumption in cluster theory. In fact, an exam-
ination of our construction shows that this assumption can be weakened to
only asking that the glued frozen variables are invertible, which may be a
more appropriate assumption for geometric applications.

We wish to define a cluster algebra structure on the Segre product
A1⊗A2. Following the approach of [Pre23], we aim to construct a new
cluster algebra from A1 and A2 by gluing at frozen variables of the same
degree, which we will show coincides with the Segre product under suitable
further conditions.
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2.1 A gluing construction

Fix x ∈ x1 \ ex1 and y ∈ x2 \ ex2 such that (G1)x = (G2)y. That is, x and y
are frozen variables in their respective clusters and their degrees are equal.
We will identify the frozen variables x and y, denoting a new proxy variable
replacing both of these by z.

The initial data for our new cluster algebra is as follows. For the initial
cluster, we take

x1�x2
def
= (x1 \ {x}) ∪ (x2 \ {y}) ∪ {z}.

The mutable variables are ex1 ∪ ex2, and for the initial exchange matrix, we
form the block matrix

B1�B2
def
=

B̂x
1 0

0 B̂y
2

Bx
1 By

2

 .
Finally, for the initial grading vector we take

G1�G2
def
=

Ĝx1Ĝy2
Gz1


where Ĝx1 is the grading vector G1 with the entry indexed by x removed (and

similarly for Ĝy2) and Gz1
def
= (G1)x = (G2)y. We can now define a cluster

algebra
A1�A2 = A(x1�x2, ex1 ∪ ex2, B1�B2, G1�G2)

from this initial data.
Let us extend the above notation to write

x′1�x
′
2 = (x′1 \ {x}) ∪ (x′2 \ {y}) ∪ {z},

where x′1, x
′
2 are now allowed to be any clusters of A1 and A2, respectively,

and say that x′1�x
′
2 is obtained by gluing x and y. This is well-defined since

x and y are frozen. Similarly, we extend the notation B1�B2 and G1�G2

to any appropriate input matrices/vectors.
The process of gluing at frozen variables with matching degree is illus-

trated in the example below. Here and elsewhere, 1 denotes the vector
(1, . . . , 1)T .

Example 2.2. Let A1 = (x1 = {x1, x2, x3}, ex1 = {x1}, Q1, G1 = 1) and
A2 = (x2 = {y1, y2, y3}, ex2 = {y1}, Q2, G1 = 1) be cluster algebras with
exchange quivers as follows:

x2
Q1 :

x1 x3 y3
Q2 :

y1 y2
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The quiver obtained by ‘gluing’ at the frozen variables x3 and y3 is shown
below—we denote the new variable by z.

x2
Q :

x1 z y1 y2

The cluster algebra A1�A2 is then given by the initial data

(x = {x1, x2, y1, y2, z}, ex = {x1, y1}, Q,G = 1).

We will show in Theorem 2.7 that this gives a cluster structure on the Segre
product A1⊗A2.

We record some straightforward observations about the cluster algebra
A1�A2.

Lemma 2.3. Let A1 and A2 be graded cluster algebras. Fix x ∈ x1 \ ex1

and y ∈ x2 \ ex2 such that (G1)x = (G2)y. Then the cluster algebras A1�A2

and A2�A1 are isomorphic as cluster algebras.

Proof. This is clear from comparing the initial data for A1�A2 and A2�A1

and in particular noting that the two initial clusters are equal up to permu-
tation of the entries.

Lemma 2.4. Let A1 and A2 be graded cluster algebras. Fix x ∈ x1 \ ex1

and y ∈ x2 \ ex2 such that (G1)x = (G2)y.

(i) Every cluster variable of A1�A2 is naturally identified with a cluster
variable of A1, a cluster variable of A2 or is equal to z.

(ii) There is a bijection between pairs of clusters (x′1, x
′
2) and clusters of

A1�A2 given by gluing, i.e. sending (x′1, x
′
2) to x′1�x

′
2 for a cluster x′1

of A1 and x′2 of A2.

Proof. This follows from observing that our gluing process does not intro-
duce any new arrows between mutable vertices. Since mutation is a local
phenomenon and concentrated on mutable vertices, it is straightforward to
see that mutating at vertices indexed by ex1 is independent of mutating at
vertices indexed by ex2 and the (mutable) variables obtained are exactly as
if the gluing had not been carried out. The frozen variables of A1�A2 are
those of A1 and A2 excluding x and y, along with the glued frozen z.

For the second part, note that the same argument shows that there is
a similar bijection for the clusters of A1 ×A2, where the latter denotes the
“disconnected” product of cluster algebras, where one simply takes the union
of clusters and direct sum of exchange matrices. Now there is evidently a
bijection between the clusters of A1 × A2 and those of A1�A2, given by
x′1 ∪ x′2 7→ x′1�x

′
2, from which the claim follows.
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Corollary 2.5. Let A1 and A2 be graded cluster algebras. Fix x ∈ x1 \ ex1

and y ∈ x2 \ ex2 such that (G1)x = (G2)y.
Then

(i) A1�A2 is of finite type if and only if A1 and A2 are;

(ii) writing κ(A) for the number of cluster variables of a cluster algebra
A, we have κ(A1�A2) = κ(A1) + κ(A2) − 1 when these numbers are
all finite; and

(iii) writing K(A) for the number of clusters of A, we have K(A1�A2) =
K(A1)K(A2) when these numbers are all finite.

Proof. These are now immediate from the previous lemma. Note that there
is an overall reduction of one in the number of cluster variables because
we have glued two previously distinct frozen variables; this highlights the
difference between this construction and the disconnected product.

Remark 2.6. One might hope that this construction extends straightfor-
wardly to graded quantum cluster algebras (cf. [GL14]). However, computa-
tion in small examples shows that this is not the case.

For if one tries the näıve approach in which initial quantum cluster vari-
ables from A1 commute with those from A2, one rapidly finds situations in
which after performing a mutation, the new variable does not quasi-commute
with the rest of its cluster. For it to do so requires the compatibility con-
dition between the exchange and quasi-commutation matrices for the glued
data and this imposes a collection of “cross-term” requirements between B1

and L2 (respectively, B2 and L1) in respect of the glued frozen variables.

2.2 Relationship with the Segre product

Our main result is the following theorem, showing that the cluster alge-
bra construction A1�A2 induces a cluster algebra structure on the Segre
product. The isomorphism we will use is directly analogous to the map δsrc

defined in [Pre23].

Theorem 2.7. Let Ai = (xi, exi, Bi, Gi), i = 1, 2 be graded cluster algebras
such that there exist x ∈ x1 \ ex1 and y ∈ x2 \ ex2 both of degree 1.

Then the map ϕ : A1�A2 → A1⊗A2 given on initial cluster variables by

ϕ(xj) = xj ⊗ ydeg xj for xj ∈ x1 \ {x},
ϕ(yj) = xdeg yj ⊗ yj for yj ∈ x2 \ {y} and

ϕ(z) = x⊗ y

is a graded algebra isomorphism, with the property that the above formulæ
hold for any cluster of A1�A2.
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Proof. Recalling that we set

x1�x2 = (x1 \ {x}) ∪ (x2 \ {y}) ∪ {z},
let ϕ denote the algebra homomorphism ϕ : K(x1�x2) → K(x1) ⊗ K(x2)
obtained from the above specification on generators of the domain. This
map is injective since the elements ϕ(xj), ϕ(yj) and ϕ(z) are algebraically
independent.

Now let ϕ denote the restriction of the above map to A1�A2. We first
claim that the restricted map ϕ takes values in the subalgebra A1⊗A2. To
prove this, we proceed by induction on the number of mutation steps from
the initial cluster.

We may take as base case that of zero mutations from the initial cluster:
there is nothing to do, since we see immediately that ϕ(xj), ϕ(yj) and ϕ(z)
lie in A1 ⊗A2 by definition.

Now assume that the result holds r−1 mutations from the initial cluster
x = x1�x2 (for r ≥ 1) of A1�A2. That is, let y = µkr−1µkr−2 · · ·µk1(x).
Set B = µkr−1µkr−2 · · ·µk1(B1�B2).

By Lemma 2.4(ii), we have that y = y
1
�y

2
for some clusters y

1
, y

2
of

A1 and A2 respectively. Moreover, there is a decompostion

{k1, . . . , kr−1} = {l1, . . . , ls} t {m1, . . . ,mt}

such that y
1

= µls · · ·µl1(x1) and y
2

= µmt · · ·µm1(x2).
Let y

1
= {x1, . . . , xn1} and y

2
= {y1, . . . , yn2}, so that

y = y
1
�y

2
= ({x1, . . . , xn1} \ {x}) t ({y1, . . . , yn2} \ {y}) t {z}

Let C = µls · · ·µl1(B1), D = µmt · · ·µm1(B2), H = µls · · ·µl1(G1) and
K = µmt · · ·µm1(G2). Then in particular B = C�D and Hj = deg xj and
Kj = deg yj . We also set [n]+ = max{n, 0} and [n]− = max{−n, 0}.

We then compute ϕ for one further mutation in direction kr = k. We
first consider the case in which xk ∈ y1 is mutable.

We have

ϕ(µk(xk)) = ϕ

(
1

xk

[( ∏
xj∈y1\{x}

x
[Bxj,xk

]+

j

)( ∏
yj∈y2\{y}

y
[Byj,xk

]+

j

)
z[Bz,xk

]+

+

( ∏
xj∈y1\{x}

x
[Bxj,xk

]−
j

)( ∏
yj∈y2\{y}

y
[Byj,xk

]−
j

)
z[Bz,xk

]−

])

= ϕ

(
1

xk

[( ∏
xj∈y1\{x}

x
[Bxj,xk

]+

j

)
z[Bz,xk

]+ +

( ∏
xj∈y1\{x}

x
[Bxj,xk

]−
j

)
z[Bz,xk

]−

])

= ϕ

(
1

xk

[( ∏
xj∈y1\{x}

x
[Cxj,xk

]+

j

)
z[Cx,xk

]+ +

( ∏
xj∈y1\{x}

x
[Cxj,xk

]−
j

)
z[Cx,xk

]−

])
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=
1

xk ⊗ ydeg xk

[ ∏
xj∈y1\{x}

(
x
[Cxj,xk

]+

j ⊗ y[Cxj,xk
]+ deg xj

)
x[Cx,xk

]+ ⊗ y[Cx,xk
]+

+
∏

xj∈y1\{x}

(
x
[Cxj,xk

]−
j ⊗ y[Cxj,xk

]− deg xj

)
x[Cx,xk

]− ⊗ y[Cx,xk
]−

]

=
1

xk ⊗ ydeg xk

[ ∏
xj∈y1

x
[Cxj,xk

]+

j ⊗ yd +
∏
xj∈y1

x
[Cxj,xk

]−
j ⊗ yd

]

=
1

xk

( ∏
xj∈y1

x
[Cxj,xk

]+

j +
∏
xj∈y1

x
[Cxj,xk

]−
j

)
⊗ yd−deg xk

= µk(xk)⊗ yd−deg xk

= µk(xk)⊗ ydegµk(xk)

where

d =
∑
xj

[Cxj ,xk ]+ deg xj =
∑

Cxj,xk
>0

Cxj ,xkHxj

=
∑

Cxj,xk
<0

−Cxj ,xkHxj =
∑
xj

[Cxj ,xk ]− deg xj

noting that the third equality holds since CTH = 0. Also, we use that
degµk(xk) = d− deg xk.

Note that the fifth equality is where the assumption that deg x = 1 is
used: without it, the claimed equality of d with the other stated quantities
need not hold.

An analogous argument shows that ϕ(µk(yk)) = xdeg µk(yk) ⊗ µk(yk) for
yk ∈ y2 mutable, noting that this time, it is deg y = 1 that is required.

Since we have deg x = deg y = 1, the above tells us that for any cluster
variable x′ ofA1�A2, we either have ϕ(x′) = x′⊗ydeg x′ or ϕ(x′) = xdeg x

′⊗x′
and hence ϕ(x′) ∈ (A1)deg x′⊗(A2)deg x′ . That is, the image of ϕ is contained
in the Segre product A1⊗A2 without any further constraints and the map
ϕ is a graded map.

It remains to check surjectivity. Note that a generating set for A1⊗A2 is
given by taking the elementary tensors with components in generating sets
for A1 and A2, i.e.

{z1 ⊗ z2|z1 ∈ (A1)d, z2 ∈ (A2)d cluster variables, d ∈ Z}

Now

z1 ⊗ z2 = (z1 ⊗ yd)(xd ⊗ z2)(x−d ⊗ y−d) = ϕ(z1)ϕ(z2)ϕ(z)−d.

Hence, Imϕ contains a generating set for A1⊗A2, and so ϕ is surjective onto
A1⊗A2. The claim follows.
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Remark 2.8. One might be tempted to try changing the specification of the
map ϕ to

ϕ(xj) = xdeg yj ⊗ ydeg xj for xj ∈ x1 \ {x},

ϕ(yj) = xdeg yj ⊗ ydeg xj for yj ∈ x2 \ {y} and

ϕ(z) = xdeg y ⊗ ydeg x

in an attempt to avoid the deg x = deg y = 1 assumption. Note that one
should however ask for deg x and deg y strictly positive, to avoid issues with
needing inverses of arbitrary cluster variables.

While this does indeed fix the issue with d that occurs in the calculation
in the above proof for xk ∈ y1, the appearance of xdeg y in the first tensor
factor means that we do not obtain µk(xk) unless deg y = 1.

More explicitly, following the same approach as in the previous proof,
one would arrive at

1

xdeg yk ⊗ ydeg xk

[ ∏
xj∈y1

x
[Cxj,xk

]+ deg y

j ⊗ yd +
∏
xj∈y1

x
[Cxj,xk

]− deg y

j ⊗ yd
]

but this is not equal to

1

xdeg yk

( ∏
xj∈y1

x
[Cxj,xk

]+

j +
∏
xj∈y1

x
[Cxj,xk

]−
j

)deg y

⊗ yd−deg xk

if deg y 6= 1.
By symmetry, the other case tells us that we also need deg x = 1. That

is, the degree 1 assumption is unavoidable.

Remark 2.9. Notice that in proving surjectivity, we required ϕ(z) = x⊗ y,
and hence x and y themselves, to be invertible, but no other frozen variables
needed to be invertible for the proof to hold.

Remark 2.10. Via Lemma 2.4, we see that the cluster structure on A1�A2

and hence that on A1⊗A2 is independent of the choices of initial seeds.
Therefore the only requirements to obtain a cluster structure on the Segre
product are the existence of a frozen variable of degree 1 for each factor.

Graded cluster algebras with at least one frozen variable of degree one are,
perhaps surprisingly, ubiquitous. Many examples arising geometrically have
this property: coordinate rings of Grassmannians and more generally partial
flag varieties and their cells ([GLS11]), double Bruhat cells ([BFZ05]) and,
as motivated this work, positroid varieties ([GL19]).

Note too that the claims on the cluster structure of A1�A2 in Corol-
lary 2.5 therefore also apply to the induced cluster structure on the Segre
product.
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