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Abstract As one of the most important staple foods globally, rice sustains nearly half of the 15 

world’s population. Accurate and timely paddy rice mapping is, thus, essential for rice-16 

related policy-making to ensure food security in the context of anthropogenic, environmental 17 

and climate changes. However, paddy rice mapping remains a challenging task since it 18 

usually has similar spectral characteristics to other land covers. In this research, for the first 19 

time, an entirely new approach, called RiceTColour, was proposed for mapping rice fields 20 

within the Commission Internationale de l'Eclairage (CIE) colour space based on their unique 21 

spectra during the rice transplanting period as observed in remotely sensed imagery. We 22 

demonstrate that transplanted rice fields, representing a mixture of soil, water and rice 23 

seedlings, consistently exhibit relatively low spectral values in both SWIR and NIR bands 24 

across various geographical locations, leading to their unique dark green colours in the false-25 

colour image composed of SWIR, NIR and Red bands. Based upon this, we transformed 26 
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these three spectral bands into the CIE colour space where paddy rice was found to be readily 27 

and completely separated from the other land covers. Straightforward, but specific 28 

classification criteria were established within the CIE colour space to differentiate paddy rice 29 

from the other land covers. The proposed RiceTColour, thus, represents a new approach for 30 

paddy rice identification, that is mapping paddy rice using the CIE colour space based upon 31 

the previous underexplored remotely sensed spectra of paddy fields during the transplanting 32 

season. The effectiveness of the proposed method was investigated over five rice-planting 33 

regions distributed across different geographical regions, characterised by different climates, 34 

rice cropping intensities, irrigation schemes and cultural practices. Specifically, the mapping 35 

criteria established in a training site (S1) were directly generalised to the other four sites (S2 36 

to S5) for paddy rice mapping. Experimental results demonstrated that the RiceTColour 37 

method consistently achieved the most accurate and balanced classifications across all five 38 

sites compared with four benchmark comparators: a SAR-based method, an index-based 39 

method and two supervised classifier-based methods. In particular, the RiceTColour method 40 

performed relatively stable, producing an overall accuracy exceeding 95% in the training site 41 

(S1) as well as the four generalised sites (S2 to S5), which is an encouraging result. Such 42 

efficient yet stable rice mapping results across various rice-planting regions suggest a very 43 

strong generalisation capability of the proposed RiceTColour method. In consideration of the 44 

relatively large planting area of paddy rice fields globally, the proposed parameter-free, 45 

efficient, and generalisable RiceTColour method, thus, holds great potential for widespread 46 

application in various rice-planting areas worldwide. 47 

Keywords: paddy rice; rice mapping; classification method; transplanting period; colours of rice 48 

fields 49 

1. Introduction 50 

Paddy rice, a common staple food, feeds nearly half of the world’s population while occupying 51 

only 12% of the global cropland area (Bouman, 2009; FAO, 2022). The global production of 52 
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paddy rice in 2020 was about 757 million tonnes, accounting for more than 8% of the world’s 53 

total grain production (FAO, 2022). As the only major crop planted and grown in flooded soil 54 

(Xu et al., 2023), paddy rice consumes more water than other crops at the field level; roughly 55 

one quarter to one-third of the Earth’s accessible freshwater reserves are designated for 56 

irrigating paddy rice fields (Bouman, 2009). Moreover, as a major source of CH4 emissions, 57 

paddy rice accounted for approximately 8% of the total anthropogenically-induced global 58 

methane emissions from 2008 to 2017 (Saunois et al., 2020). As a result, accurate and timely 59 

mapping of paddy rice is not only fundamentally important to ensure global food security, but 60 

also essential for studying environment-related issues, such as climate change and water 61 

resource management.  62 

Compared with traditional field surveys, satellite remote sensing has demonstrated distinctive 63 

advantages in terms of paddy rice mapping and monitoring, including large area coverage, 64 

timely monitoring, and low cost (Xiao et al., 2005; Qin et al., 2015; Kontgis et al., 2015; Han 65 

et al., 2022). Besides, remote sensing-based rice mapping is relatively objective and less 66 

influenced by human experience. Historical time-series images of paddy rice are, therefore, 67 

comparable from regional-to-national scales, which is especially beneficial for accurately 68 

identifying expanding or shrinking areas of paddy rice (Kontgis et al., 2015; Dong et al., 2016; 69 

Carrasco et al., 2022; Han et al., 2022).  70 

Previous research has illustrated that rice-planting areas can be characterised during the early 71 

growing season using remote sensing (Stroppiana et al., 2019; Zhan et al., 2021), which 72 

provides strong support for decision-making amongst governments and farmers regarding rice 73 

planting and marketing. Since the launch of Landsat-1 in 1972, satellite remotely sensed images 74 

have been employed widely for paddy rice mapping and monitoring using a variety of 75 

classification and mapping methods (McCloy et al., 1987; LeToan et al., 1997; Xiao et al., 76 
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2005; Dong et al., 2016; Ni et al., 2021; Xu et al., 2023), which can be generally categorised 77 

into three types: classifier-based, phenology-based and index-based methods. 78 

Classifier-based methods are the most commonly-used for rice mapping, especially supervised 79 

classifiers which depend on training samples (Dong and Xiao, 2016). The maximum likelihood 80 

classifier (MLC) was adopted widely in the 1980s and 1990s (e.g., McCloy et al., 1987; 81 

Panigrahy and Parihar, 1992), but the accuracy of this parametric classifier is largely dependent 82 

on the representativeness of the Gaussian model of the data distribution (Lu and Weng, 2007). 83 

Benefiting from the rapid development in computer science and artificial intelligence 84 

technologies, machine learning (ML) algorithms, such as random forests (RFs), artificial neural 85 

networks (ANNs) and support vector machines (SVMs), which are independent of the data 86 

distribution, have gradually evolved as mainstream classifiers (Shao et al., 2001; Chen and 87 

McNairn, 2006; Onojeghuo et al., 2018; Ni et al., 2021). However, these data-driven classifiers, 88 

typically consisting of one or two shallow layers, are unable to extract deep features from 89 

remotely sensed imagery to aid the classification (Chen et al., 2015). Recently, deep learning, 90 

a novel variant of ML, has garnered increasing interest in the field of image classification owing 91 

to its capability of obtaining deep feature representations (Krizhevsky et al., 2012; LeCun et 92 

al., 2015). Although these ML classifiers have been employed widely in rice mapping 93 

applications, both shallow and deep-structured classifiers typically encounter two critical 94 

issues. First, their high accuracy often relies heavily on acquiring a large-volume of high-95 

quality samples, which can be challenging to achieve in practice, especially over expansive 96 

regions (Nogueira et al., 2017). Second, these are essentially local optimal models established 97 

based on specific samples. Consequently, these classifiers, along with their optimised 98 

hyperparameters, are very challenging to generalise to unseen data (Zhang et al., 2020). 99 

Phenology-based approaches differentiate paddy rice from other land covers by analysing the 100 

temporal variation in vegetation indices, such as the Land Surface Water Index (LSWI), 101 
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Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), 102 

throughout the full year (growing season) time-series (Xiao et al., 2002; Xiao et al., 2005). 103 

Phenology-based methods typically adopt a set of classification rules expressed in the form of 104 

decision trees, in which one or more thresholds need to be determined. The primary hypothesis 105 

behind such methods is that paddy rice is the sole crop cultivated in flooded soil, consequently 106 

possessing distinctive physical characteristics and displaying specific signals, such as higher 107 

water content, in the time-series of vegetation indices during the early growing season 108 

(flooding and transplanting periods). Using optical remotely sensed imagery, Xiao et al. (2002) 109 

was the first to discover that the LSWI (water content indicator) temporally exceeds the NDVI 110 

(EVI) (vegetation greenness indicator) during the unique flooding and transplanting periods of 111 

paddy rice. Based on this unique signal, Xiao et al. (2005) proposed a simple yet effective 112 

phenology- and pixel-based paddy rice mapping (PPPM) method using MODIS time-series. 113 

Since then, this method has gained increasing attention within the crop mapping community, 114 

and several variants have been developed for rice mapping in a range of rice-planting areas 115 

(Xiao et al., 2006; Sakamoto et al., 2009; Peng et al., 2011; Kontgis et al., 2015; Dong et al., 116 

2015; Dong et al., 2016; Maiti et al., 2022). Phenology-based methods, based on the unique 117 

and stable physical features of paddy rice, do not rely on training samples and consequently 118 

tend to perform more robustly than classifier-based methods (Rad et al., 2019; Tian et al., 2023; 119 

Zhang et al., 2023). However, they usually require a full year (growing season) time-series to 120 

detect paddy rice and build masks of other land covers, which not only consumes a significant 121 

amount of time and effort in preparation, but can also be difficult to attain in real applications 122 

due to cloud contamination, especially for satellites with long revisit cycles, such as the Landsat 123 

satellite series. As such, most of the previous studies selected daily-acquired MODIS imagery 124 

as the data source for rice mapping (Xiao et al., 2006; Peng et al., 2011; Bridhikitti and 125 

Overcampb, 2012; Zhang et al., 2015; Luintel et al., 2021). Furthermore, it can be challenging 126 
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to generalise these methods to large new regions with fixed thresholds in consideration of the 127 

great variabilities of paddy rice caused by climatic conditions, rice variety and farmers’ 128 

management practices (Le Toan et al., 1997; Dong et al., 2016). 129 

Index-based methods combining several spectral bands at different wavelengths to highlight 130 

the difference between the target class and other classes have been employed widely for crop 131 

mapping and monitoring (Ashourloo et al., 2019; Xu et al., 2023). They have apparent 132 

advantages over phenology-based methods in their simplicity and low computational cost (e.g., 133 

Chen et al., 2023). Boschetti et al. (2014) evaluated extensively the capability of various 134 

Normalised Difference Spectral Indices for the detection of flooded rice fields using MODIS 135 

imagery, and the Normalized Difference Water Index (NDWI) was found to perform most 136 

accurately amongst the indices. Recently, Xu et al. (2023) proposed a SAR-based Paddy Rice 137 

Index (SPRI) to map paddy rice using Sentinel-1 time-series collected during the transplanting-138 

vegetative period. However, few studies have developed specific vegetation indices for paddy 139 

rice mapping from optical remotely sensed imagery. Besides, similar to phenology-based 140 

methods, determining universal thresholds for accurate rice mapping over different rice-141 

planting areas is generally very challenging due to the high temporal and spatial variability 142 

across rice fields (Le Toan et al., 1997; Dong et al., 2016). 143 

Although the above-mentioned developments in methods have made great contributions to 144 

paddy rice mapping and have yielded promising results in specific regions, there remain three 145 

main challenges to progress: (1) they are hard to generalise to new rice-planting areas; (2) there 146 

exist difficulties in determining the optimal hyperparameters or thresholds; and (3) they usually 147 

rely on full year (growing season) image time-series. In fact, despite variations in climate 148 

conditions and cultural practices, paddy rice fields have similar physical features during the 149 

transplanting period across different regions, characterised by a mixture of soil, water and 150 

vegetation. Consequently, they should consistently present unique and stable spectra, along 151 
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with distinct colours in remote sensed imagery when an appropriate combination of spectral 152 

bands is adopted. This suggests potential opportunities for the development of new mapping 153 

approaches to detect rice using the Commission Internationale de l'Eclairage (CIE) colour 154 

space, in which colours perceived by human eyes have specific numerical positions on the CIE 155 

chromaticity diagram (C.I.E, 1932). However, to the best of our knowledge, a methodology for 156 

mapping paddy rice according to its unique spectra (meaning unique colours observed in 157 

remotely sensed imagery) leveraging the CIE colour space has not yet been reported. 158 

To fill this knowledge gap, for the first time, we propose an entirely new approach named 159 

RiceTColour for mapping paddy rice based on its unique spectra during transplanting using the 160 

CIE colour space. Our RiceTColour represents a new approach to rice mapping, addressing all 161 

of the above three challenges directly. Specifically, the advantages of our proposed 162 

RiceTColour method are (1) it has strong transferability capacity; (2) it is a parameter-less and 163 

threshold-less method and (3) it utilises just a single image or composite imagery collected 164 

during transplanting. The proposed RiceTColour method was validated on five rice-planting 165 

areas, encompassing diverse climates, irrigation scenarios and cropping systems.  166 

2. Study area and data 167 

2.1 Study area 168 

A total of five typical rice-planting areas (Fig. 1) under distinct environmental conditions were 169 

selected carefully to test comprehensively and thoroughly the effectiveness and generalisability 170 

of the developed RiceTColour rice mapping approach. These regions differ greatly in terms of 171 

their climates (tropical, cold, arid, temperate and subtropical), rice crop intensities (single-172 

cropping and double-cropping), irrigation scenarios (surface water-fed and groundwater-fed) 173 

and crop rotations (rice-rice, rice-other and rice-fallow) (Table 1). 174 

 175 
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 176 

Figure 1. Geographical locations of the five study areas: S1, Chiayi and Tainan counties, Taiwan Island; 177 

S2, Fujin county, Heilongjiang Province; S3, Yinchuan and Shizuishan cities, Ningxia Autonomous 178 

Region; S4, Gushi county, Henan Province; S5, Binyang county, Guangxi Autonomous Region. Details 179 

of each study area are displayed by true-colour Landsat 8 imagery. Note that S1 was enlarged to 180 

demonstrate the training polygons for rice and other land covers. 181 

The first study area (S1), comprising two counties (Chiayi and Tainan), is located in the 182 

southwest of Taiwan Island, with a total area of 4,155 km2. The western region of S1 is the 183 

Chianan Plain, while the eastern region is dominated by mountain ranges. S1 is characterised 184 
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by a tropical climate, with an annual mean temperature over 24°C and annual precipitation of 185 

approximately 2,000 mm (Son et al., 2021). There are two distinct seasons, a summer wet 186 

season lasting from May to October and a winter dry season spanning the remaining months 187 

(Huang et al., 2021). Although the eastern region is dominated primarily by mountain ranges, 188 

the majority of the western Chianan Plain is cultivated as farmland. Rice is the major crop in 189 

this region, encompassing approximately a quarter of the total farmland area. It generally 190 

transplanted from January to March and harvested in June and July during the wet season, and 191 

transplanted in July and August and harvested in November and December during the dry 192 

season. The primary source of irrigation water in this area comes from reservoirs, supplemented 193 

by rivers and underground water. In addition to rice, vegetables, orchards and fruit trees are 194 

also widely distributed across this region. Being managed by smallholder farmers, the farmland 195 

fields here are relatively small, with an average size of rice field of ~0.2 ha, scattered across 196 

the Chianan Plain.  197 

Table 1. Summarised descriptions of the five study areas.  198 

Study 

areas 

Location Climate Major crop 

categories 

Area (%) of 

crops to study 

area 

Irrigation 

sources 

Rotation 

systems 

Cropping 

intensities 

S1 Chianan Plain Tropical Rice, orchards 

and fruit trees 

(OFT), and 

vegetables (VT) 

Rice: 11.07% 

OFT: 13.08% 

VT: 5.37% 

Reservoirs 

and rivers 

Rice-Rice 

Rice-Other 

Double  

S2 Sanjiang Plain Cold Rice and corn Rice: 39.70% 

Corn: 16.09%  

Rivers and 

underground 

water 

Rice-

Fallow 

Single  
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S3 Yinchuan 

Plain 

Arid Rice, corn and 

spring wheat 

(SW) and fodder 

crops (FC) 

Rice: 5.56% 

Corn: 4.82% 

SW: 2.15% 

FC: 1.26% 

Rivers Rice-

Fallow 

Single  

S4 Middle-lower 

Yangtze Plain 

Temperat

e 

Rice and spring 

wheat 

Rice: 39.28% 

SW: 12.56%  

Reservoirs Rice-

Fallow 

Single  

S5 Nanning 

Basin 

Subtropi

cal 

Rice, sugarcane 

(SC), corn and 

sweet potato (SP) 

Rice: 12.23% 

SC: 8.16% 

Corn: 3.49% 

SP: 1.33% 

Reservoirs Rice-Rice 

Rice-Other 

Double 

 199 

The second to fifth (S2 to S5) study areas are located in the mainland of China, specifically in 200 

Sanjiang Plain, Northeast (NE) China (S2), Yinchuan Plain, Northwest (NW) China (S3), 201 

Middle-lower Yangtze Plain, Central and East (CE) China (S4), and Nanning Basin, South 202 

China (S5). The total areas of S2 to S5 are 8,227 km2, 14,335 km2, 2,946 km2 and 2,314 km2, 203 

respectively. They represent typical rice-planting areas distributed across China. For example, 204 

S2 (Fujin county) and S4 (Gushi county) are the largest rice-planting counties in Heilongjiang 205 

and Henan provinces, respectively, while S5 (Binyang county) is the second-largest rice-206 

planting county in the Guangxi Autonomous Region. Amongst the four study areas, S2 to S4 207 

are dominated by single rice cropping with similar rice planting calendars, involving seeding 208 

and transplanting in spring and harvesting in autumn. However, as the three regions are situated 209 

at different latitudes across the mainland of China from north to south, they experience 210 

disparate climates, characterised as cold (S2), arid (S3), and temperate (S4), respectively (Beck 211 

et al., 2018). In contrast, with a humid subtropical climate, the rice in S5 is typically cultivated 212 

twice a year, with the first-season rice being planted during March to April, followed by the 213 

second-season rice in June to July. Temperature and precipitation vary greatly amongst the four 214 
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areas. With hot and rainy summers and cold and dry winters, S2 has an average annual 215 

temperature of 2.6℃ and annual precipitation of 536 mm, with the length of frost-free days 216 

ranging from 130 to 140 days. Located in an arid region, S3 experiences a relatively small 217 

average annual precipitation of only 188 mm, which is just one-tenth of its annual evaporation 218 

amount (1825 mm) (Zhang et al., 2022). In contrast, located in the Pishihang Irrigation District, 219 

the annual precipitation in humid S4 is markedly greater, measuring about 1287 mm, 220 

accompanied by an average temperature of approximately 15 °C. Similarly, the temperature 221 

and precipitation in S5 are sufficient for rice production, as substantiated by an average annual 222 

temperature of 20.8 °C and an annual rainfall of 1589.2 mm. The four sites also have varying 223 

terrain conditions. While the terrain is almost flat across S2 to S4, they differ significantly in 224 

altitude, with an average altitude between 1100-1200 m for S3, and 60-80 m for S2 and S4. In 225 

contrast, the terrain in S5 is a mixture of plains, hills and mountains, with an average altitude 226 

ranging between 100-120 m. Different natural conditions over S2-S5 have resulted in different 227 

crop planting structures and irrigation schemes. Specifically, the agricultural landscapes of S2 228 

and S4 are quite simple, dominated by paddy rice. In contrast, the remaining two sites exhibit 229 

a relatively complex landscape with four major crops according to our field investigations: 230 

paddy rice, corn, spring wheat and fodder crops for S3, and paddy rice, sugarcane, corn and 231 

sweet potato for S5. The proportion of paddy fields to the total cropland area for S2 to S5 is 232 

89.54%, 20.06%, 76.65% and 20.91%, respectively. Regarding the irrigation schemes, the 233 

primary sources of irrigation water in S2 come from both the Songhua River and underground 234 

water extracted by pumps. Based on irrigation networks, rice fields in S3 are predominantly 235 

irrigated from the Yellow River, while those in both S4 and S5 primarily rely on reservoir water 236 

for irrigation (Table 1).  237 

2.2 Data 238 
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2.2.1 Ground reference data 239 

To observe the patterns of crop fields, a typical rice planting area was selected for each study 240 

area and the corresponding very fine resolution (VFR) remote sensing image was acquired 241 

from Google Earth Pro (Fig. 2). As can be seen from the figure, the rice fields in tropical S1, 242 

with typically rectangular shapes, are relatively small, fragmented and scattered, often 243 

intermixed with diverse dry farmland crops and land cover types. Similarly, the rice fields in 244 

temperate S4 and subtropical S5 are also small and fragmented, but they lack regular shapes. 245 

In contrast, the agricultural landscapes in the cold S2 and dry S3 are relatively homogeneous, 246 

characterised by large and regular-shaped rice fields due to a very high level of agricultural 247 

mechanisation (Chen et al., 2022). Considering the complicated and heterogeneous agricultural 248 

landscape in S1, we conducted the analysis and demonstration of spectra for paddy rice and 249 

other land cover types in S1. The remaining study areas (S2 to S5) are employed to validate 250 

the transferability of our developed rice mapping approach. We hypothesize that if the 251 

proposed method can identify accurately paddy rice over complex regions like S1, it should 252 

also work effectively in other rice planting regions. 253 

 254 

S1, Tainan

23/01/2020

S2, Fujin

10/05/2018

S3, Yinchuan

11/07/2019

S4, Gushi

16/11/2020

S5, Binyang

23/10/2022

2 km
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Figure 2. Very fine resolution remotely sensed imagery over typical rice-planting area in each study 255 

area. The location and acquisition date are labelled in each image. Note that all the images are at the 256 

same spatial scale. 257 

The ground reference data (training and validating sample plots) for the study areas were 258 

collected through reference rice maps, field surveys and VFR images (such as Google Earth 259 

(GE) VFR data). Note that the training samples were collected only from S1 to establish the 260 

rice mapping models, whereas the validating samples were acquired in each of the five study 261 

areas to assess the effectiveness of the models. A stratified random sampling scheme was used 262 

to acquire the training samples. Specifically, a total of 378 training polygons were identified, 263 

including 188 field patches for paddy rice and 190 for other land covers. The paddy rice 264 

polygons were selected randomly according to a set of Taiwan rice distribution (TRD) maps 265 

generated by the Council of Agriculture Executive Yuan of Taiwan, while those for other land 266 

covers were obtained in reference to the VFR images. Note that the TRD maps were produced 267 

through digitizing aerial remote sensing photos and were comprehensively validated using field 268 

survey data, thus, possessing very high accuracy (Son et al., 2021). The training polygons were 269 

subsequently overlaid with the Landsat 8 data, and the pixels falling within the training 270 

polygons were utilised as training samples, resulting in 3,503 rice sample plots and 7,842 non-271 

rice sample plots (including 1,216 dry farmland, 2,303 woodland, 1,509 water, 1,203 built-up 272 

area and 1,611 bare soil). These training sample plots were employed to visualize the 273 

distribution patterns of paddy rice and other land covers in the CIE colour space, based on 274 

which the separation boundaries between rice and other land covers were determined, as 275 

elaborated in detail in the following methodology section.  276 

To validate extensively the effectiveness of the proposed method, validation samples were 277 

collected in each of the five study areas using a stratified random sampling scheme. Following 278 
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the recommendations by Stehman and Foody (2019), the sample size (𝑛) was determined using 279 

the following formula: 280 

     𝑛 =
𝑧2𝑝(1−𝑝)

𝑑2                                                                         (1) 281 

where 𝑝 denotes the expected overall accuracy (expressed as a proportion), 𝑑 represents the desired 282 

half-width of the confidence interval, and 𝑧 is a corresponding percentile from the standard normal 283 

distribution (e.g., 𝑧=1.96 for a 95% confidence interval). Rice mapping is a binary classification, and 284 

we anticipate that classified maps should have very high confidence. In our experiments, the 𝑑 was set 285 

as 0.02 (i.e., a 98% confidence interval), with the corresponding 𝑧 value of 2.33. Besides, the 𝑝 was set 286 

as 0.5 to acquire as many validation samples as possible. As a result, a total of 3393 validation samples 287 

(determined using Eq. (1)) were collected for each study area. For S1, the rice and non-rice 288 

validation samples were acquired according to the TRD map and Google Earth VFR images, 289 

respectively. For the remaining study areas (S2 to S5), validation samples were obtained 290 

through both field surveys and interpretation of VFR images. The number of samples for rice and 291 

non-rice classes in each study area was strictly proportional to the total area of each class. 292 

2.2.2 Rice calendar data 293 

The proposed RiceTColour method is based on the unique spectra of paddy rice fields exhibited 294 

in remote sensing images during the transplanting period. The method, thus, depends on 295 

knowledge of the rice calendar. In this research, the phenological stages of paddy rice in each 296 

study area are classified into three categories: transplanting, growing and harvesting, as 297 

summarised and demonstrated in Fig. 3. As can be seen from the figure, that the timing of 298 

paddy rice transplanting varies greatly across the five study sites, spanning from January in S1 299 

to August in both S1 and S5. Specifically, the duration of transplanting is considerably longer 300 

in tropical S1 (first rice) and temperate S4, typically around 2.5 months, while relatively shorter 301 

in cold S2, dry S3 and subtropical S5 (both first and second rice), lasting about 1.5 months. 302 
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The rice growing period lasts for approximately four months in both S2 and S3 because of their 303 

relatively low annual average temperature, whereas paddy rice in the remaining sites (S1, S4 304 

and S5) matures in only around three months thanks to the warm climate. 305 

 306 

Figure 3. Rice calendars for the five study areas. 307 

2.2.3 Satellite sensor data 308 

In this research, the USGS Landsat 8 Collection 1 (C1) Surface Reflectance Tier 1 products (T1_SR) 309 

available in the Google Earth Engine (GEE) cloud computing platform were obtained and employed 310 

for paddy rice mapping. The Landsat Tier 1 products are of the highest data quality amongst the Landsat 311 

products since they are generated using only those images that meet standard geometric and radiometric 312 

quality criteria (Wulder et al., 2019). The products are made at a 30 m spatial resolution using 313 

specialized software named the Land Surface Reflectance Code (LaSRC) developed by NASA (Sayler, 314 

2020). With calibration parameters from the metadata, LaSRC generates Landsat Top of Atmosphere 315 

(TOA) reflectance data, to which atmospheric correction routines are further applied using auxiliary 316 

input data (e.g., water vapor data, terrain data, etc.). The SR products include a Pixel Quality 317 

Second half yearFirst half yearStudy area

Dec.Nov.Oct.Sep.Aug.Jul.Jun.May.Apr.Mar.Feb.Jan.

First riceS1

Second rice

S2

S3

S4

First rice
S5

Second rice

HarvestingGrowingTransplanting
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Assessment (pixel_qa) band in which cloud, cloud shadow and snow/ice features are flagged using the 318 

CFMASK (C code Function of Mask) algorithm (Sayler, 2020).   319 

To collect Landsat 8 data, we checked the availability of cloud-free T1_SR products for each study area 320 

collected during the transplanting period on GEE (Table 2). Cloud-free single images were available in 321 

both S3 and S5 where the weather often remains clear in spring. However, acquiring cloud-free images 322 

over the remaining three areas was extremely difficult, especially the rainy and cloudy S1 and S4 where 323 

sunny days are rare. We, therefore, employed single images in S3 and S5 and composite images in S1, 324 

S2 and S4 for rice mapping. To test the robustness of the rice mapping methods, the selected images 325 

for each study site were collected in different years (from 2015 to 2020). Details of the Landsat 8 image 326 

acquisitions used in this research are given in Table 2. 327 

Table 2. Details of Landsat 8 and Sentinel-1 image acquisitions for rice mapping.  328 

Study 

site 
Year 

Landsat 8 Sentinel-1 

Date of 

acquisitions 

Type of 

imagery 

Acquisitio

n period  

Number of 

observatoins 
Orbit 

Incidence 

angle (◦) 

S1 2020 

21/01, 06/02, 

22/02 

Composite 

02/01-

27/12  

30 

Desce

nding 

37.30-42.34 

S2 2018 27/05, 03/06 Composite 

03/01-

29/12 

31 

Desce

nding 

32.54-41.62 

S3 2019 08/06 Single-date 

11/01-

25/12 

30 

Asce

nding 

36.79-44.89 

S4 2017 30/04, 16/05 Composite 

01/01-

27/12 

26 

Asce

nding 

38.31-41.93 

S5 2015 14/04 Single-date - -   
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In addition to Landsat 8, Sentinel-1 SAR data were collected over the study areas for comparison. 329 

Sentinel-1, equipped with a single C-band SAR instrument, was launched by the European Space 330 

Agency (ESA) in 2014 (Zhan et al., 2021). In this study, year-round Sentinel-1 Ground Range Detected 331 

(GRD) SAR data covering S1 to S4 were accessed from Google Earth Engine (GEE), with 332 

approximately 30 valid observations for each area (Table 2). The GRD data were calibrated and ortho-333 

corrected dual polarization (VV/VH) products, with a spatial resolution of 10 m (Xu et al., 2023). The 334 

SRTM DEM or the ASTER DEM for high latitudes (> 60° or < -60°) were employed during the ortho-335 

correction process to convert data to backscatter coefficient. Due to the unavailability of SAR data for 336 

the period from January to May in S5, this region was excluded from SAR-based rice mapping.  337 

3. Methodology 338 

 339 

Figure 4. Workflow of the proposed RiceTColour method for rice mapping. 340 
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In this research, we proposed an entirely new method named RiceTColour to detect paddy 341 

fields based on their unique spectra during the transplanting period using the CIE colour space. 342 

The workflow of the RiceTColour is demonstrated in Fig. 4 and elaborated in detail as follows.  343 

3.1 Unique spectra and colours of rice fields during the transplanting period 344 

Different from upland crops that are seeded directly in soil, rice is the only crop that is transplanted (or 345 

seeded) and grown in flooded soil, a mixture of water and soil (Le Toan et al., 1997; Xiao et al., 2002; 346 

Dong et al., 2015). A few weeks after transplanting the rice plants will grow large enough to fully cover 347 

the rice fields, and no discernible signal differences can be detected between rice and upland crops 348 

during canopy closure in remote sensing imagery (Dong et al., 2016). Therefore, the transplanting stage, 349 

characterised by an open rice canopy and a unique soil-water-rice mixture environment, is crucial for 350 

differentiating rice from other crops (Zhan et al., 2021).  351 

Spectral ranges of paddy rice and other land covers in the visible, near infrared (NIR) and shortwave 352 

infrared (SWIR) bands in S1 are demonstrated in Fig. 5. As can be seen from the figure, paddy rice 353 

presents unique spectra in the SWIR (an indicator of moisture) and NIR (an indicator of greenness) 354 

bands. Due to the moist backgrounds, the reflectance values of both paddy rice and water are relatively 355 

low (mainly lower than 0.05) in the SWIR bands, and they are generally lower than those of other land 356 

covers, especially in the SWIR1 band (Fig. 5 (e)). Although most of the incident infrared light is 357 

transmitted and reflected through the uppermost leaves of vegetation, the NIR values of paddy rice are 358 

also relatively low (mainly from 0.10 to 0.15) compared to those of other land covers due to its small 359 

amount of vegetation (rice seedlings). However, they are higher than those of water with smooth 360 

surfaces (Fig. 5 (d)). 361 
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 362 

Figure 5. Box plot and violin plot depicting the reflectance of paddy rice and the other land covers in 363 

visible, NIR and SWIR bands. Box plot consists of black rectangle and vertical lines and white median, 364 

which are surrounded by the dark cyan violin plot.   365 
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 366 

Figure 6. Typical images of the five study sites composed of different spectral bands. The images in the 367 

left, middle and right columns are comprised of Red, Green and Blue (true-colour image), NIR, Red 368 

and Green (false-colour image), and SWIR, NIR and Red (false-colour image), respectively. 369 

The rich spectral bands contained in Landsat imagery enable the generation of different types of 370 

composite image for visual interpretation. These include a true-colour composite image displaying 371 

natural colours by utilising the Red, Green and Blue bands as the red, green and blue channels, 372 

respectively, and false-colour composite images showing non-natural colours by employing band 373 

RGB: Red, Green, Blue RGB: NIR, Red, Green RGB: SWIR, NIR, Red
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combinations different from those used in the true-colour image (Patra et al., 2006). In consideration of 374 

the unique spectra of paddy rice in SWIR and NIR bands during the transplanting period as mentioned 375 

above, the SWIR1 (hereafter SWIR), NIR and Red bands were selected and utilised as the red, green 376 

and blue channels, respectively, to demonstrate the image. The Red band was selected because it has 377 

been widely demonstrated to be sensitive to vegetation biomass and leaf area index (LAI) (Heiskanen, 378 

2006). As can be seen from Fig. 6, we discovered and confirmed that transplanted paddy rice fields 379 

exhibit unique dark green colours in false-colour composite imagery, composed of the SWIR (R), NIR 380 

(G) and Red (B) bands, as expected. Based on these specific colours, it is straightforward and easy to 381 

discern rice fields from other land covers in the imagery (right column of Fig. 6), which provides the 382 

basis for developing novel rice mapping methods using the CIE colour space. For comparison, we also 383 

demonstrated the true-colour imagery and the commonly-used false-colour imagery (RGB: NIR, Red, 384 

Green). However, we observed that visually discerning transplanted rice fields in both images is very 385 

challenging (left and middle columns of Fig. 6) as they display similar colours to other land covers.  386 

3.2 Rice mapping within the CIE colour space 387 

Based on the unique colours displayed by transplanted rice fields, this research proposes an entirely 388 

new method for rice mapping within the colour space created by the International Commission on 389 

Illumination (abbreviated as CIE according to its French name, Commission Internationale de 390 

l'Eclairage) in the year of 1931 (C.I.E, 1932). The main idea of the method is to establish classification 391 

criteria to differentiate paddy rice from other land covers through analysing the spatial distribution 392 

patterns of training samples of paddy rice as well as other land covers within the CIE colour space. The 393 

greatest advantage of the CIE colour space is that it enables the transformation of any colour composed 394 

of the traditional three tristimulus values (RGB: red, green and blue) into a quantified two-dimensional 395 

(2D) colour space (C.I.E, 1932; Shen et al., 2019). In other words, any colour observed in remote 396 

sensing imagery by the human eye has a specific numerical position within the CIE colour space, which 397 

lays the foundation for quantitatively characterising colour (class) similarities (Fig. 7 (a)).  398 
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399 

Figure 7. (a) An illustration of the CIE chromaticity diagram (i.e., colour space). (b) Point density map 400 

of the training samples for paddy rice in S1 within the CIE colour space. (c) Scatterplots of the training 401 

samples for paddy rice and the other five land covers (dry farmland, woodland, water, built-up area and 402 

bare soil) in S1 within the CIE colour space. 403 

The conversion of the three tristimulus values within the RGB colour space to the 2D CIE chromaticity 404 

coordinates (𝑥, 𝑦) can be achieved using the following equations: 405 

     𝑥 = 𝑋 (𝑋 + 𝑌 + 𝑍)⁄                                                                (2) 406 
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𝑦 = 𝑌 (𝑋 + 𝑌 + 𝑍)⁄  407 

𝑋 = 2.7689𝑅 + 1.7517𝐺 +  1.1302𝐵 408 

𝑌 = 1.0000𝑅 +  4.5907𝐺 +  0.0601𝐵 409 

𝑍 = 0.0000𝑅 +  0.0565𝐺 +  5.5943𝐵 410 

where 𝑅, 𝐺 and 𝐵 represent the red, green and blue bands, respectively; 𝑥 and 𝑦 represent the X and Y 411 

coordinates of the CIE colour space.  412 

As mentioned above, rice fields are distinguishable in the false-colour image composed of the SWIR, 413 

NIR and Red bands of Landsat 8 imagery, rather than in the true colour image (Fig. 6). As such, in this 414 

research the SWIR (band 6, 1570–1650 nm), NIR (band 5, 850–880 nm) and Red (band 4, 640–670 415 

nm) bands were employed, respectively, as the 𝑅, 𝐺 and 𝐵 bands to transform the observed colours 416 

into the CIE colour space using Eq. (2). Paddy rice, with its unique dark green colours, is expected to 417 

occupy specific areas within the CIE colour space so that it can be differentiated from other land covers. 418 

Based on the collected training samples in S1 (section 2.2.1), we first extracted the reflectance values 419 

of the three used bands (i.e., SWIR, NIR and Red) for each sample point. Subsequently, we transformed 420 

the extracted values of each point into the 2D CIE colour space using Eq. (2), and generated scatterplots 421 

for paddy rice and the other five land covers (dry farmland, woodland, water, built-up area and bare 422 

soil), as demonstrated in Fig. 7 (c). It is encouraging to observe from the figure that paddy rice is visually 423 

distinguishable and can be separated fully from the other land covers within the CIE space (Fig. 7 (c)), 424 

except for a very tiny overlap between paddy rice and water. As expected, nearly all of the sample 425 

points for paddy rice fall within the greenish gamut of the CIE chromaticity diagram (Fig. 7 (a)), which 426 

is consistent with the dark green colours of transplanted paddy rice exhibited in the SWIR-NIR-Red 427 

false-colour composite imagery (the images in the right column of Fig. 6).  428 

To separate paddy rice from the other land covers within the CIE space, we established the lower 429 

boundary for the scattered points of paddy rice. This boundary corresponds to the lightest green colour 430 
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of the selected paddy rice samples, and points above it correspond to paddy rice pixels displaying darker 431 

and greener colours. A polynomial regression boundary was generated and fitted to the sample points 432 

of paddy rice. First, we identified all of the convex hull vertices (points) of the paddy rice samples. 433 

Second, the vertices with the minimum and maximum x-coordinate values were selected to form a line, 434 

and the vertices above the line were deleted. Third, a third-order polynomial regression was produced 435 

by fitting the remaining vertices (Fig. 7 (b)). The established polynomial regression boundaries are as 436 

follows: 437 

                     𝑦lower = 282.82119𝑥3 − 227.05549𝑥2 + 60.62184𝑥 − 5.03751                              (3) 438 

In the equation, the coefficients of the cubic term, quadratic term and linear term determine the curve's 439 

opening direction, shape and position, respectively. Herein, 282.82119 and 60.62184 are both positive, 440 

resulting in the curve opening upwards, while -227.05549 is negative, leading to a valley shape for the 441 

curve. 442 

As can be seen from Fig. 7 (c), the sample pixels of paddy rice are distributed within specific ranges 443 

within the CIE space: 0.235 to 0.346 along the 𝑥 coordinate axis, and below 0.5 along the 𝑦 coordinate 444 

axis. We, therefore, classify each candidate pixel (𝑥, 𝑦) of remotely sensed imagery as paddy rice if it 445 

satisfies the following criteria within the CIE space:  446 

                                                𝑦lower < 𝑦 < 0.5      and      0.235 < 𝑥 < 0.346                                                (4)       447 

3.3 Practical workflow for rice mapping with the RiceTColour method 448 

The practical workflow of the proposed method consists of the following three steps (Fig. 4): 449 

First, remove contaminated pixels (noise) from the remotely sensed imagery since they can 450 

impact the rice mapping results. In this research, pixels of Landsat 8 imagery contaminated by 451 

cloud, cloud shadow and snow/ice were first identified and eliminated using the ‘pixel_qa’ 452 

band. Cirrus clouds may also affect the reflectance of Landsat 8 data (Qiu et al., 2020) and, 453 

thus, pixels contaminated by cirrus clouds were also removed from further analysis. 454 
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Subsequently, any saturated pixels were removed using the ‘radsat_qa’ band, although 455 

saturation is uncommon in Landsat 8 imagery. Besides, a few pixels were occasionally found 456 

to exhibit abnormally negative reflectance values in one or more spectral bands (bands 2 to 7). 457 

These were identified as contaminated pixels and removed from subsequent analysis. 458 

Additionally, in practice we observed that open water can be easily misclassified as 459 

transplanted rice fields due to their similar spectral characteristics. To mitigate such 460 

interference in rice mapping, we excluded open water from the remotely sensed imagery using 461 

a commonly-used threshold method: any pixel with an NDVI lower than 0 was identified as 462 

water and removed from subsequent analysis (Jarchow et al., 2017). 463 

Second, image compositing was undertaken using a pixel-based minimum SWIR method. In 464 

tropical and temperate regions, it is challenging to collect cloud-free remotely sensed imagery 465 

during the rice transplanting period. Importantly, due to the differences in natural conditions 466 

and farmer’s management practices, the timing of transplanting always varies greatly across 467 

rice fields. It is often difficult to capture transplanting signals for all rice fields using a single-468 

date image. Consequently, image compositing is generally necessary to produce cloud-free 469 

imagery for rice mapping. Since the SWIR is highly sensitive to water content (Tian and 470 

Philpot, 2015), it is considered as the primary indicator of transplanted paddy rice fields. Herein, 471 

a pixel-based minimum SWIR (i.e., maximum water content) composite method (PMS-CM) 472 

was applied to the collected images to generate composite imagery. Specifically, for each pixel 473 

of an image, the one with the minimum SWIR value across the collected image time-series was 474 

selected to constitute the composite image. By doing this, the most significant signal (i.e., the 475 

maximum water content) of each pixel in rice fields can be captured. Nevertheless, in regions 476 

where cloud-free single images are available, there is no need to perform the image composite 477 

procedure.  478 
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Third, paddy rice mapping within the CIE colour space. Select the three bands (i.e., SWIR, 479 

NIR and Red) from the processed composite imagery (or single imagery), and transform 480 

reflectance values into the 2D CIE-colour space using Eq. (2) for each pixel of imagery. Based 481 

on the established paddy rice classification criteria (Eq. (4)), a rice map is produced for each 482 

study site.  483 

3.4 Benchmarks and accuracy assessment 484 

In this research, the effectiveness of the proposed rice mapping approach (RiceTColour) was 485 

evaluated against four other benchmark methods: a SAR-based method, an index-based method 486 

and two supervised classifier-based methods. For the SAR-based method, the recently 487 

proposed Automated Rice Mapping using Synthetic Aperture Radar Flooding Signals (ARM-488 

SARFS) was adopted due to its superior performance over other SAR-based methods (Zhan et 489 

al., 2021). ARM-SARFS includes four pre-defined thresholds, namely T1, T2, T3 and T4. The 490 

first two are designed to mask out non-cropland land covers, while the last two are used to 491 

differentiate paddy rice from other crops. In our experiments, the optimal values for T1 and T2 492 

for each study area were tuned using a grid search from -30 to -10 with a step size of 1. The 493 

optimal combinations of T1 and T2 for S1 to S4 were found to be -20 and -23, -25 and -25, -494 

25 and -25, and -20 and -20, respectively. T3 and T4 are fixed thresholds dependent on rice 495 

type (early rice, middle rice and late rice), and the recommended values by Zhan et al. (2021) 496 

were adopted directly for rice mapping. For the index-based method, we selected the 497 

normalized difference water index (NDWI), which is calculated as the normalized difference 498 

of the green band (i.e., band 3 of Landsat 8) and SWIR band (i.e., band 6 of Landsat 8) (Ji et 499 

al., 2009). This is because previous studies demonstrated its superior performance in detecting 500 

rice fields compared with other vegetation indices (Boschetti et al., 2014). The threshold of 501 

NDWI was tuned from -0.30 to -0.10 with a step of 0.002 through cross-validation, and the 502 

optimal threshold was found to be -0.228, which was equivalent to that determined by Boschetti 503 
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et al. (2014). For the supervised classifier-based method, the random forest classifier (RFC) 504 

and the one-class support vector machine (OCSVM) were adopted as comparators. To ensure 505 

a fair comparison, the SWIR, NIR and Red bands of Landsat 8 imagery were employed as input 506 

for both classifiers, consistent with the input of the proposed RiceTColour method. The RFC 507 

is intrinsically a tree-based ensemble classifier (Breiman, 2001), thus, performing relatively 508 

robustly in various crop mapping applications (Belgiu and Drăguţ, 2016). To ensure model 509 

stability, the number of trees for the RFC in our experiments was optimised as 200. The 510 

OCSVM, a variant of standard SVM, is designed specifically for one-class classification tasks 511 

(Schölkopf et al., 2001). The superiority of OCSVM for rice detection was demonstrated 512 

extensively by previous studies (Clauss et al., 2016; Ni et al., 2021; Zhang et al., 2021). 513 

Following the recommendations by Clauss et al. (2016), an OCSVM with a Radial Basis 514 

Function (RBF) kernel was applied in our experiments. The two vital parameters of OCSVM, 515 

𝛾 and 𝜈, which control the width of the kernel and the proportion of outlier samples for the 516 

target class, respectively, need to be determined carefully. Following the recommendations by 517 

Ni et al. (2021), the optimal 𝛾 and 𝜈 were optimised as 10 and 0.01, respectively, from (0.01, 518 

0.05, 0.1, 0.5, 1, 2.5, 5, 10, 25) and (0.01, 0.05, 0.1, 0.5, 1, 2.5, 5, 10, 25) using a grid-search 519 

approach.  520 

To evaluate quantitatively the accuracy of the produced rice maps, four metrics were employed, 521 

including the overall accuracy (OA), producer's accuracy (PA), user's accuracy (UA) and F1-522 

score (Foody, 2021). The F1-score is a harmonic mean of PA and UA. Compared with OA, it 523 

can better indicate the model capability of identifying imbalanced classes (Zhong et al., 2019). 524 

Additionally, two mutually exclusive metrics, quantity disagreement and allocation 525 

disagreement (Pontius and Millones, 2011), were also adopted to measure quantitatively the 526 

differences between classified maps and the reference. They have been proven to be more 527 
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reasonable and useful than the commonly-used Kappa coefficient, which is advocated for 528 

removal from classification accuracy analysis (Stehman and Foody, 2019). 529 

4. Results and analysis 530 

4.1 Rice mapping results by RiceTColour 531 

The pixel-based minimum SWIR composite method was applied in S1, S2 and S4 to produce 532 

composite images for rice mapping, whereas for S3 and S5 single-date images were used for 533 

rice classification (Table 2). The mapping results produced by the proposed RiceTColour 534 

method along with the corresponding satellite sensor images over all five study sites are shown 535 

in Fig. 8. It can be seen from the figure that the produced rice maps are highly consistent with 536 

the spatial patterns of paddy rice fields (identifiable by their dark green colours) as observed in 537 

the satellite sensor images across the five study areas. This demonstrates the effectiveness and 538 

remarkable generalisation capability of the proposed method for rice detection over rice-539 

planting regions under various natural conditions and management practices. Specifically, as 540 

can be interpretated visually from the satellite maps, although paddy rice is one of the major 541 

crops in S1, S3 and S5, it occupies a relatively small proportion of the total area in these regions 542 

due to the limited availability of arable land. Rice fields are primarily distributed in the western 543 

plains and central hills and plains in S1 and S5, respectively, with scattered fields in other 544 

regions. For S3, the rice fields are concentrated mainly in the northern region between 545 

Yinchuan City and Shizuishan City, with fragmented occurrences on both sides of the Yellow 546 

River in the southern area. Surprisingly, the spatial distribution of both the clustered and 547 

scattered rice fields were captured accurately and precisely by the RiceTColour method (Fig. 548 

8). In contrast, the majority of areas in both S2 and S4 are occupied by rice fields. Rice fields 549 

in S2 are generally regular and large, and distributed contiguously due to the high level of 550 

mechanisation in the Sanjiang Plain (Chen et al., 2022). In contrast, those in S4 are irregular 551 

and highly fragmented due to the widely distributed road networks, towns and villages, and 552 
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small ponds. Fortunately, the proposed RiceTColour method detected completely and precisely 553 

the clustered and dispersed patterns of rice fields in S2 and S4, respectively. 554 

 555 

Figure 8. Rice mapping results by the proposed RiceTColour method and the corresponding satellite 556 

sensor images (RGB: SWIR, NIR, Red) over the five study sites. 557 

Accuracy assessment of the rice maps was undertaken using the validation samples over the 558 

five study sites, and the confusion matrices along with the corresponding classification 559 
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accuracies are listed in Table 3. As shown in the table, the RiceTColour method achieved very 560 

high mapping accuracies, with an OA above 95% for all study sites. Importantly, the 561 

RiceTColour method was highly stable across the five study sites, producing an OA of around 562 

97% (ranging from 95.76% to 98.50%), demonstrating its remarkable generalisation capability 563 

for rice detection. Besides, it generated relatively balanced PA and UA for paddy rice, the target 564 

class of this research. The PA exceeded 92% at all study sties (except S3), indicating that nearly 565 

all (over 92%) of the rice fields in each study site were successfully detected by the proposed 566 

method. The UA of paddy rice was also greater than 90% for most of the sites (S2, S4 and S5), 567 

suggesting that just a small proportion of non-rice pixels were incorrectly labelled as paddy 568 

rice. The balanced rice mapping accuracies can be also observed from the F1-score, which 569 

ranges between 0.87 and 0.97 across the five sites (Table 3). 570 

Table 3. Confusion matrices of the classification maps produced by the RiceTColour method along with 571 

the corresponding classification accuracies in the five study sites. 572 

Study 

site 

Sample size 

(rice:non-rice) 

 Classification 

PA UA Accuracy 

Reference Rice Non-rice 

S1 376:3017 Rice 348 61 92.55% 85.09% OA = 97.38% 

  Non-rice 28 2956   F1-score = 0.89 

S2 1347:2046 Rice 1300 47 96.51% 96.51% OA = 97.23% 

  Non-rice 47 1999   F1-score = 0.97 

S3 189:3204 Rice 169 31 89.42% 84.50% OA = 98.50% 

  Non-rice 20 3173   F1-score = 0.87 

S4 1333:2060 Rice 1285 71 96.40% 94.76% OA = 95.76% 
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  Non-rice 48 1989   F1-score = 0.96 

S5 352:3041 Rice 334 37 94.89% 90.03% OA = 98.38% 

  Non-rice 18 3004   F1-score = 0.92 

4.2 Benchmark comparison for rice mapping 573 

The rice mapping results of the proposed RiceTColour method were further benchmarked with 574 

four comparators (ARM-SARFS, NDWI, RFC and OCSVM) across the five study areas. 575 

Visual inspection as well as quantitative accuracy assessment was conducted to validate the 576 

rice mapping results of the five methods. To aid visual inspection, one-to-two typical rice-577 

planting areas were selected at the five study sites for comparison. The original Landsat 8 578 

satellite sensor images along with the mapping results of the various methods for these areas 579 

are shown in Fig. 9. As demonstrated by the figure, the proposed RiceTColour method 580 

consistently achieved the most accurate and desirable paddy rice maps across S1 to S5. For S1 581 

(Fig. 9 (a) and (b)), it is evident that ARM-SARFS failed to identify a substantial number of 582 

rice fields, while both NDWI and RFC misclassified a significant portion of built-up areas and 583 

fish ponds as paddy rice. Besides, NDWI, RFC and OCSVM frequently misidentified roads 584 

within and outside farm fields as paddy rice. In contrast, the RiceTColour method differentiated 585 

accurately paddy rice from built-up areas, fish ponds and road networks (clearly observable on 586 

the map) (Fig. 9 (a) and (b)). For the generalised study areas (S2 to S5), SAR-based ARM-587 

SARFS produced inaccurate rice classification maps, missing a significant proportion of rice 588 

fields, particularly in S3. Although the remaining three comparators (NDWI, RFC and OCSVM) 589 

performed more accurately than ARM-SARFS, NDWI tended to overestimate paddy rice, 590 

while both RFC and OCSVM were prone to underestimating paddy rice (Fig. 9 (c), (d), (f), and 591 

(g)). For example, the majority of the river in S2, as well as parts of the built-up areas in S2 592 

and S4, were misidentified as paddy rice by NDWI. NDWI overestimated paddy rice 593 
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increasingly seriously in S3, where large areas of dry farmland, built-up area and bare soil were 594 

wrongly labelled as paddy rice (Fig. 9 (d) and (e)). On the contrary, OCSVM omitted a 595 

relatively large portion of paddy rice in S2, S3 and S5, as well as the edges of most rice fields 596 

in S4. Although RFC was better than OCSVM in mitigating underestimation, it still failed to 597 

detect a number of small-area rice fields across S2 to S4. The proposed RiceTColour method, 598 

surprisingly, rectified almost all of the abovementioned misclassifications and detected rice 599 

precisely and completely, as demonstrated by Fig. 9 (c) to (g). 600 

 601 

Figure 9. Comparison of paddy rice mapping results achieved by the RiceTColour method and the 602 

benchmark methods in the five study sites. Columns from left to right represent the Landsat 8 satellite 603 

sensor images, and the results of the ARM-SARFS, NDWI, RFC, OCSVM and the proposed 604 

Satellite image NDWI OCSVM RiceTColour

S1

(a)

(b)

S2

S3

S4

S5

(c)

(d)

(e)

(f)

(g)No Data

ARM_SARFS RFC



33 
 

RiceTColour, respectively. Note that the produced rice maps (in dark red) were overlaid on the satellite 605 

images for easy visual interpretation.  606 

Table 4. Accuracies of paddy rice maps generated by the five methods (ARM-SARFS, NDWI, RFC, 607 

OCSVM and RiceTColour) in the five study sites. The largest (best) value in each line is highlighted in 608 

bold font.  609 

Study site  
Rice mapping accuracies by different methods 

ARM-SARFS NDWI RFC OCSVM RiceTColour 

S1 OA (%) 91.13 86.86 95.14 94.31 97.38 

 PA (%) 42.26 98.14 98.67 93.62 92.55 

 UA (%) 65.31 45.67 69.87 67.56 85.09 

 F1-score 0.52 0.62 0.82 0.78 0.89 

S2 OA (%) 81.29 96.73 92.46 89.30 97.23 

 PA (%) 70.97 98.52 89.46 77.21 96.51 

 UA (%) 81.29 93.58 91.36 94.89 96.51 

 F1-score 0.76 0.96 0.90 0.85 0.97 

S3 OA (%) 92.99 88.98 98.50 98.26 98.50 

 PA (%) 37.04 91.01 86.77 76.72 89.41 

 UA (%) 37.04 32.51 86.32 90.63 84.50 

 F1-score 0.37 0.48 0.86 0.83 0.87 

S4 OA (%) 74.65 94.87 96.46 91.54 96.49 

 PA (%) 60.77 98.65 92.95 79.37 96.40 

 UA (%) 70.62 89.40 97.94 98.88 94.76 

 F1-score 0.65 0.94 0.95 0.88 0.96 

S5 OA (%) - 96.70 98.20 94.81 98.38 

 PA (%) - 98.86 95.17 55.97 94.89 

 UA (%) - 76.32 88.39 90.37 90.03 

 F1-score - 0.86 0.92 0.69 0.92 
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Quantitative accuracy assessment further demonstrated the effectiveness and superiority of the 610 

proposed method. As shown in Table 4, the RiceTColour method achieved consistently the 611 

highest OA compared with the benchmarks across all five study sites, which aligns with the 612 

previous visual inspection results (see Fig. 9). Although ARM-SARFS attained moderate 613 

overall accuracies (75%-90%) across S1 to S4, it achieved very low producer’s accuracies 614 

(<71%), particularly in S1 and S3 (only 42.26% and 37.04%, respectively), where the 615 

proportion of paddy fields is relatively low (Table 1). NDWI achieved highly accurate PA 616 

(91%-99%) over all study areas; however, this was obtained at the cost of high commission 617 

error (i.e., low UA). For example, the UA in S3 was only around 33%, indicating that over 618 

two-thirds (67%) of the pixels classified as rice were misclassified (i.e., non-rice pixels were 619 

erroneously identified as rice pixels). In other words, the area of rice was prominently 620 

overestimated, particularly in regions with relatively small proportions of paddy rice (S1, S3 621 

and S5). Both supervised-based classifiers (RFC and OCSVM) acquired promising accuracies 622 

(OA and PA) in S1, comparable to those of RiceTColour. However, their producer’s accuracies 623 

decreased markedly when generalised to S2 to S5. For example, OCSVM achieved a very poor 624 

PA, ranging between 55.97% (S5) and 79.37% (S4), when generalised to S2 to S5. In other 625 

words, OCSVM failed to detect approximately 20%-45% of the rice fields when applied to 626 

unseen imagery. Similarly, the PA of RFC also decreased markedly when generalised to S2 to 627 

S5, particularly in S2 (89.46%) and S3 (86.77%). In contrast to the unbalanced benchmarks, 628 

the proposed RiceTColour method achieved very high yet balanced rice mapping accuracies 629 

not only at the model training site (S1), but also in the generalised areas (S2 to S5). The OA, 630 

as well as the PA and UA, exceeded 89% across all five sites (except for UA in S1 and S3). 631 

Similarly, the F1-socre was consistently the highest across all sites, indicating that the 632 

RiceTColour method consistently maintained a strong balance between rice identification and 633 

misclassification between rice and the other land covers. The superiority of the proposed 634 
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method can be more intuitively demonstrated using the quantity disagreement and allocation 635 

disagreement (Fig. 10). As shown in the figure, RiceTColour achieved a total disagreement 636 

(the sum of quantity disagreement and allocation disagreement) below 4% for all five study 637 

sites, suggesting a very small difference between the reference data and the generated rice maps. 638 

ARM_SARFS and NDWI acquired significantly larger total disagreement than the 639 

RiceTColour across the five study sites, with total disagreement exceeding 10% in S2 and S4 640 

for ARM_SARFS and in S1 and S3 for NDWI. Similarly, both supervised classifiers (RFC and 641 

OCSVM) were less accurate compared to RiceTColour, particularly in S2, indicating their 642 

struggles with unseen imagery. 643 

 644 

Figure 10. Comparison of the quantity disagreement and allocation disagreement amongst the 645 

ARM_SARFS, NDWI, RFC, OCSVM and RiceTColour methods across the five study sites. 646 
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5. Discussion 647 

5.1 Mapping transplanted paddy rice fields within original spectral space 648 

 649 

Figure 11. Scatter plots of the training samples for different land covers in the training site (S1) within 650 

(a) 2D SWIR-NIR space, (b) 2D SWIR-Red space, (c) 2D NIR-Red space, and (d) 3D SWIR-NIR-Red 651 

space. 652 

Paddy rice mapping has long been a significant and persistent challenge in the field of remote 653 

sensing because of the substantial spectral overlap between rice and other land covers (e.g., 654 

crops, water). We discovered and demonstrated that rice fields exhibit stable and unique spectra 655 

(i.e., relatively low values in both SWIR and NIR bands) during the transplanting period in the 656 

SWIR and NIR bands (Fig. 5). To investigate whether transplanted paddy rice can be detected 657 
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directly within original spectral spaces, we illustrated scatter plots of the training samples for 658 

different land covers within the 2D spaces and 3D SWIR-NIR-Red space in Fig. 11. As can be 659 

seen from the figure, paddy rice was mixed together with other land covers within both the 2D 660 

and 3D spectral spaces, especially woodland, dry farmland and water. In other words, it is very 661 

challenging to discriminate paddy rice from the other land covers within original spectral space 662 

constituted by the SWIR, NIR and Red bands even though unique spectra of paddy rice were 663 

seen in them.  664 

 665 

Figure 12. Changes in the accuracy of paddy rice mapping of RFC and OCSVM using different number 666 

of spectral bands. Note that ‘Three bands’ represents SWIR, NIR and Red bands, and ‘Six bands’ 667 

denotes all the six spectral bands of Landsat 8 images. 668 

To investigate whether the number of spectral bands affects the performance of supervised 669 

classifiers, we summarised the changes in the accuracy of paddy rice mapping using both RFC 670 

and OCSVM with different number of bands in Fig. 12. As can be seen from the figure, both 671 

classifiers achieved similarly high mapping accuracies (around 95%) using different numbers 672 

of bands in the training site (S1). This indicates that both classifiers can consistently find 673 

classification criteria to discriminate paddy rice from other types, regardless of the number of 674 

spectral bands used. However, the mapping accuracies of both classifiers decreased 675 
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significantly when generalising the established classification criteria to unseen data (S2 to S5). 676 

This suggests that it is very challenging for both RFC and OCSVM to establish generalisable 677 

criteria for detecting paddy rice fields under various environmental conditions, whether in 678 

three-band or six-band spectral space.  679 

5.2 Discrimination of transplanted paddy rice fields using the CIE colour space 680 

Differing from commonly used classifier-based, phenology-based and index-based methods, 681 

this research proposed an entirely new rice mapping method called RiceTColour, based on the 682 

unique spectra (in SWIR and NIR bands) of transplanted rice fields using the CIE colour space. 683 

By transforming the SWIR, NIR and Red bands into the CIE colour space, the scatterplots of 684 

the training samples for different land covers within the CIE coordinate system and the 685 

corresponding satellite sensor image are generated and demonstrated in Fig. 13 (a). As depicted 686 

by the figure, paddy rice, represented by unique dark colours (the right column of Fig. 13 (a)), 687 

can be readily distinguished from the other land covers in the novel false-colour imagery 688 

composed of the SWIR (R), NIR (G) and Red (B) bands. More importantly, as mentioned in 689 

the methodology section, paddy rice occupies specific, exclusive areas within the 2-D CIE 690 

space, with very little overlap with the other land covers, suggesting that paddy rice can be 691 

easily discriminated from them (the left column of Fig. 13 (a)). The SWIR band that has been 692 

reported widely to be sensitive to soil moisture (Xiao et al., 2006; Wang et al., 2007; Tian et 693 

al., 2015) was used as the red channel. The converted x value in the CIE coordinate system, 694 

therefore, signifies the strength of dryness (the lower the SWIR value, the higher the water 695 

content) (Eq. (2) and Fig. 13 (a)). Paddy rice and water with low SWIR values acquired 696 

relatively low x values (below 0.35) in the CIE coordinate system, making them being 697 

distributed in the green and blue gamut. The NIR band, positioned within the visible-light 698 

absorption area (where chlorophyll in plant leaves absorbs visible light) and sensitive to 699 

vegetation greenness, was used as the green channel. Thus, the converted y values of paddy 700 
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rice with rice seedlings (generally exceeding 0.35) are higher than those of water, refining 701 

paddy rice being located in the green gamut. This explains why transplanted rice fields locate 702 

in unique regions in the CIE colour space, and exhibit corresponding unique colours in the 703 

false-colour imagery composited using these three bands Fig. 13 (a).  704 

 705 

Figure 13. Scatterplots of the training samples within the CIE colour space (left column) in the training 706 

site (S1) using different band combinations and their corresponding satellite sensor images (right 707 
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column). (a) False-colour imagery composited using the SWIR, NIR and Red bands, (b) true-colour 708 

imagery, and (c) false-colour imagery using the NIR, Red and Green bands. Typical land covers are 709 

marked and labelled in the satellite sensor images. 710 

To make a comparison, we also demonstrate the scatterplots of the training samples within the 711 

CIE colour space using the other two types of imagery: the true-colour imagery using the Red, 712 

Green and Blue bands (Fig. 13 (b)) and the conventional false-colour imagery using the NIR, 713 

Red and Green bands (Fig. 13 (c)). To facilitate visual interpretation, typical land covers were 714 

marked and labelled on the imagery. For each image, we also demonstrated the corresponding 715 

satellite sensor images composited with different bands (see the right column of Fig. 13). For 716 

the true-colour imagery, the land covers were found to overlap each other within the CIE space 717 

(the left column of Fig. 13 (b)). Accordingly, it is very challenging to visually differentiate one 718 

land cover from another in the satellite sensor image (the right column of Fig. 13 (b)). Similarly, 719 

paddy rice, built-up area and bare soil were mixed together within the CIE space using the 720 

conventional false-colour imagery (the left column of Fig. 13 (c)). As expected, it is almost 721 

impossible to discern paddy rice from built-up area and bare soil since they exhibit similar gray 722 

colours in the imagery (the right column of Fig. 13 (c)). It is evident from the above analysis 723 

that if a certain land cover can be visually discriminated from the others in the imagery, it can 724 

also be readily differentiated within the CIE colour space.   725 

5.3 Transferability of RiceTColour 726 

While RiceTColour was established based on the training samples collected in S1, it achieved 727 

surprisingly high (above 95%) and relatively stable (OA ranging between 95.76% and 98.50%) 728 

mapping accuracies across all five study sites (including the generalised four sites S2 to S5), 729 

as shown by Table 4 and Fig. 10. In other words, the proposed RiceTColour method possesses 730 

strong transferability for rice mapping, which can be primarily attributed to two reasons: 731 
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 732 

Figure 14. (a) Scatterplots of the validation samples for paddy rice across the five sites within the CIE 733 

colour space. (b) Point density of all the validations samples in the five sites within the CIE colour 734 

space. Changes in spectral features for the corresponding NIR (c) and SWIR (d) bands. 735 

First, the distinctive physical feature of rice is its exclusive cultivation in flooded soils (Xiao 736 

et al., 2005), which creates a unique mixed soil-water-rice environment during the transplanting 737 

period. Such a unique and exclusive environment remains consistent across various rice-738 

planting regions, as evidenced by the consistently dark green colour of paddy rice in all five 739 

study areas shown in Fig. 6. We, therefore, speculate that samples of transplanted paddy rice 740 

fields from different geographical regions should fall in similar areas within the CIE colour 741 

space because of their similar spectra (colours). To validate this hypothesis, we created the 742 

scatterplots of the validation samples for paddy rice across the five sites within the CIE colour 743 

space (Fig. 14 (a) and (b)). Besides, we also demonstrated the changes in the spectral values 744 
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for the corresponding NIR and SWIR bands of these samples (Fig. 14 (c) and (d)). As expected, 745 

the samples from different study areas are concentrated together in the CIE chromaticity 746 

coordinates, with only a very few points distributed outside the main cluster (Fig. 14 (a)). As 747 

shown by the point density map (Fig. 14 (b)), the samples are primarily located in an area with 748 

CIE-x values varying between 0.24-0.34 and CIE-y values ranging from 0.35 to 0.48 in the CIE 749 

chromaticity coordinates. This benefits from the stable and unique spectral features of 750 

transplanted paddy rice in the NIR and SWIR bands. As shown in Fig. 14 (c) and (d), the 751 

variations in both bands are relatively small across all five sites, with NIR ranging from 0.05 752 

to 0.20 and SWIR varying between 0 and 0.10. In summary, with similar spectra in NIR and 753 

SWIR bands, transplanted rice fields fall in similar areas within the CIE colour space regardless 754 

of geographical region, which is the fundamental reason for the strong robustness and 755 

transferability of our method.  756 

Second, the proposed RiceTColour method is a completely parameter-free rice mapping 757 

method. The established classification criteria (Eq. (4)) in this research can, therefore, be 758 

adopted directly by users for rice mapping in other regions (like S2 to S5 in our experiments), 759 

which avoids complicated and tedious parameter-tuning work. In contrast, existing methods 760 

rely heavily on parameter (hyperparameter) settings for accurate rice mapping, which is 761 

responsible for their relatively weak transferability. For example, several previous efforts have 762 

illustrated that rice mapping results were strongly influenced by the key parameters of 763 

supervised classifiers (e.g., the gamma and penalty parameters for SVM) (Sonobe et al., 2014; 764 

Son et al., 2018; Ni et al., 2021). Similarly, phenology-based methods with a set of rules 765 

(Torbick et al., 2011; Dong et al., 2015; Xia et al., 2021; Zhan et al., 2021), as well as index-766 

based methods (Boschetti et al., 2014; Xu et al., 2023), generally require several parameters 767 

(thresholds) to be determined for rice mapping. It is widely acknowledged that the process of 768 

parameter tuning is technologically-challenging, physically arduous, and time-intensive 769 
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(Zhang and Zhang, 2022). Further, the recommended optimal parameters are essentially only 770 

optimal locally and usually vary significantly between different regions (Dong et al., 2016; Xu 771 

et al., 2023). This results in a lack of generalisability for existing methods, as demonstrated by 772 

the supervised classifier (RFC and OCSVM) in this research (see Table 4 and Fig. 10). 773 

5.4 Applicable conditions of RiceTColour at large scales 774 

With the availability of a large volume of remotely sensed imagery and the rapid development 775 

of online efficient satellite sensor image processing platforms (such as GEE), there is an 776 

emerging trend for mapping paddy rice at large scales, such as the national, hemispheric or 777 

even global scales (e.g., Xiao et al., 2005; Dong et al., 2016; Carrasco et al., 2022; Han et al., 778 

2022). This poses new requirements for paddy rice mapping and classification methods, which 779 

should be accurate, efficient and transferable. Moreover, methods are expected to utilise as few 780 

images as possible since the greater the volume of used imagery, the more challenging the data 781 

collection, which is a primary obstacle to large-scale mapping (Dong and Xiao, 2016). 782 

Obviously, the proposed straightforward, parameter-free and transferable RiceTColour method 783 

fully satisfies the requirements regarding efficiency and transferability. Furthermore, instead 784 

of requiring a full year (or full growing season) image time-series like the classifier-based and 785 

phenology-based methods (Kontgis et al., 2015; Dong et al., 2016; Cao et al., 2021; Ni et al., 786 

2021; Carrasco et al., 2022), the proposed RiceTColour method utilises only images collected 787 

during rice transplanting, which is especially beneficial for rice mapping over large scales.  788 

While the developed method is evidently suitable for large-scale mapping given its unique 789 

advantages, some precautions should be taken into account as they might affect the 790 

generalisation of the method. First, while the transplanting-based RiceTColour method 791 

removes the requirement for full year (or full growing season) time-series images, the relatively 792 

short time period of transplanting might result in a lack of available imagery in certain regions 793 

due to cloud contamination, especially for those optical satellite sensors with long revisit cycles, 794 
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such as the Landsat series. For example, in our experiments, a total of 14, 15 and 10 satellite 795 

sensor observations were available for S1, S2 and S4 during the transplanting period, but only 796 

3, 8 and 4 of these observations were deemed valid (with cloud cover < 20%), respectively. In 797 

fact, in addition to transplanting, the preceding flooding, characterised by flooded soil, or open 798 

water yet not transplanted (or planted) rice seedlings, represents another unique period for 799 

paddy rice (Dong et al., 2015; Zhan et al., 2021). Future research should explore the possibility 800 

of including the flooding period in RiceTColour, which could broaden the applicability of the 801 

proposed method to a wider time period. Second, since the proposed method is established 802 

based on the spectra of Landsat 8 imagery, its rice detection capability might be affected if 803 

other optical images, such as Sentinel-2, are used as the data source. This is because the optical 804 

sensors generally differ in spectral bandwidth and spectral response function (Shang and Zhu, 805 

2019). Therefore, spectral harmonization is needed to ensure multi-sensor spectral consistency 806 

when generalising the proposed method to other types of optical imagery. Third, since the 807 

proposed RiceTColour is designed to detect the mixed soil-water-rice environment for rice 808 

mapping, it could potentially misclassify wetlands and regions surrounding water bodies (e.g., 809 

lakeshore and riverside areas) as paddy rice (Xiao et al., 2005), as these areas often consist of 810 

soil, water and grass during the rice transplanting period. Future research may seek to 811 

incorporate images collected at other phenological stages to the proposed method to further 812 

refine the classification of paddy rice based on phenological differences between human-813 

managed paddy rice and natural grass (Zhou et al., 2016). It should also be noted that the 814 

proposed method might not be applicable for detecting direct-seeded rice fields where rice 815 

grows in moist soil with a small amount of water (Sah et al., 2023), rather than flooded soil as 816 

in transplanted rice fields. Fourth, since RiceTColour relies on imagery collected during 817 

transplanting, it is necessary to obtain access to crop calendar information to determine the 818 

transplanting period. Such information might not be readily available to users who are not 819 
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familiar with a given study area. Besides, cropping calendars may vary greatly across large 820 

areas owing to variation in climate, terrain conditions, irrigation schemes and farmer's 821 

management practices (Laborte et al., 2017; Mishra et al., 2021). Under such circumstances, it 822 

would be better to adopt composite images (such as S1, S2 and S4 in our experiments) for rice 823 

detection, as some paddy fields where transplanting has not yet occurred might be omitted 824 

when using single images. Besides, users should seek to incorporate the proposed method with 825 

algorithms capable of detecting crop calendars automatically for paddy rice mapping over large 826 

areas (e.g., Zhang et al., 2015; Dong et al., 2016). 827 

5.5 Final Remarks 828 

The CIE colour space has been adopted within the remote sensing community for mapping and 829 

classification tasks. However, this is primarily in the research field of water colour remote 830 

sensing (Pitarch et al., 2019), with applications generally classified into two groups: water 831 

colour mapping (Wang et al., 2015; Shen et al., 2019) and algal bloom detection (e.g., Liu et 832 

al., 2022; Dai et al., 2023). Only a few studies have introduced the CIE space in land remote 833 

sensing (Silva et al., 2018). This can be attributed mainly to the relatively simple composition 834 

of categories in the water environment, compared to much more complex compositions on land. 835 

To the best of our knowledge, this is the first effort to employ the CIE space for crop mapping. 836 

Traditional feature space analysis across various spectral bands has been adopted for remote 837 

sensing of various land surface variables (e.g., soil moisture) by establishing mathematical 838 

formulations representing the relationships between distributions in feature space (Zhan et al., 839 

2007; Cai et al., 2023). However, it can be challenging to identify classification rules within 840 

spectral feature space due to the complexity of the land environment. This complexity often 841 

means that distributions representing different land covers overlap in feature space, as 842 

demonstrated in Fig. 11 of this research, and in previous studies (Zhan et al., 2007; Cai et al., 843 

2023). By transforming the spectra from the traditional feature space to the CIE colour space, 844 
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we observed that paddy rice fields with unique spectra (colours) can be readily discriminated 845 

from other land covers (Fig. 7), indicating the superiority of the CIE space over feature space 846 

for land cover mapping. We further demonstrated that the CIE space has the potential to 847 

discriminate certain land categories if they present unique colours (spectra) in remotely sensed 848 

imagery. This finding opens up new avenues for land cover mapping and classification.  849 

SAR data have received increasing attention from researchers for developing rice detection 850 

methods (Dong and Xiao, 2016; Zhan et al., 2021; Xu et al., 2023). This is primarily because 851 

the acquisition of SAR data is not affected by weather conditions (Dong and Xiao, 2016). 852 

However, in this research, the proposed optical imagery-based method was found to be 853 

significantly more accurate than the SAR-based methods, primarily due to its two advantages. 854 

First, the parameter-free RiceTColour method avoids the complex and tedious parameter 855 

tuning work, making it perform relatively stably across different regions. In contrast, SAR-856 

based methods typically involve a large number of sensitive parameters that usually need to be 857 

adjusted in different regions (Zhan et al., 2021), which may affect significantly their mapping 858 

capability. Second, the proposed method is established based on optical remotely sensed 859 

imagery, thereby, avoiding heavy salt-and-pepper noise, as observed in the classified maps 860 

generated by the SAR-based methods in our experiments (Fig. 9). Despite this, SAR data can 861 

serve as a substitute in regions with concentrated paddy rice (e.g., S2 and S4 in this paper) 862 

when optical data during the transplanting period are not available. SAR data are not suggested 863 

to be applied to regions with scattered paddy rice (e.g., S1 and S3 in this paper), where over 864 

half of the rice fields were omitted according to our experiments. 865 

5. Conclusions 866 

As the only crop grown in flooded soil, paddy rice experiences a unique growing environment 867 

(i.e., mixture of soil, water and rice seedlings) during the transplanting period, which provides 868 

excellent opportunities for identifying paddy rice from other land covers. In this paper, an 869 
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entirely new method, called RiceTColour, was proposed for detecting paddy rice according to 870 

its unique spectra during the period of rice transplanting as observed in remotely sensed 871 

imagery. We discovered and demonstrated for the first time that transplanted rice fields 872 

consistently exhibit distinctive spectra in the SWIR and NIR bands, irrespective of 873 

geographical location. Based on this critical finding, the two spectral bands with the Red band 874 

were transformed into the 2-D CIE colour space, where paddy rice was found to occupy specific 875 

regions (representing unique colours) that can be readily and completely separated from other 876 

land covers. Straightforward, but specific classification criteria were, therefore, established 877 

within the CIE colour space to differentiate paddy rice from the other land covers. The proposed 878 

RiceTColour method represents a new paradigm for paddy rice mapping, established upon the 879 

previous underexplored unique spectra of transplanted paddy fields exhibited in remotely 880 

sensed imagery using the CIE colour space.  881 

In total, five rice-planting regions distributed across different geographical regions, 882 

characterised by different climates, rice cropping intensities, irrigation schemes and cultural 883 

practices, were selected to investigate the effectiveness and transferability of the proposed 884 

method. Experimental results demonstrated that the RiceTColour method consistently achieved 885 

the most accurate and balanced classifications compared with the benchmark comparators 886 

across all five sites. In particular, RiceTColour performed relatively stably, producing an 887 

overall accuracy exceeding 95% in the training site (S1), as well as the four testing-only sites 888 

(S2 to S5), which is an encouraging and impressive result. Such efficient yet stable rice 889 

mapping results across various rice-planting regions suggest the strong generalisation 890 

capability of the proposed parameter-free and efficient RiceTColour method. Paddy rice 891 

accounts for approximately 12% of global cropland area, and is an important staple crop 892 

feeding approximately half of the world’s population. Mapping paddy rice is, thus, a key 893 

requirement in ensuring global food security. The proposed efficient, robust and generalisable 894 
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RiceTColour method holds great potential for widespread application in various rice-planting 895 

areas worldwide. 896 
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