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Abstract: This study investigates the influence of atmospheric stability and ground effects on wind 11 

turbine wake recovery, challenging the conventional linear relationship between turbulence inten- 12 

sity and wake expansion coefficient. Through comprehensive field measurements and numerical 13 

simulations, we demonstrate that the linear wake expansion assumption is invalid at far-wake loca- 14 

tions under high turbulence conditions, primarily due to ground effects. We propose a novel non- 15 

linear wake expansion model that incorporates both atmospheric stability and ground effects by 16 

introducing a logarithmic relationship between the wake expansion coefficient and turbulence in- 17 

tensity. Validation results reveal superior prediction accuracy of the proposed model compared to 18 

typical engineering wake models, with root mean square errors of wake wind speed predictions 19 

ranging from 0.04 to 0.063. This proposed model offers significant potential for optimizing wind 20 

farm layouts and enhancing overall wind energy production efficiency. 21 
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 23 

1. Introduction 24 

Wind turbine wakes, characterized by reduced velocity and increased turbulence, 25 

significantly impact downstream turbine performance. These wakes are influenced by at- 26 

mospheric conditions, ground effects, and turbine characteristics. Engineering wake mod- 27 

els, crucial for wind farm design and operation, have evolved from simple linear models 28 

to more complex Gaussian models. However, most existing models assume a linear rela- 29 

tionship between wake expansion and turbulence intensity, often neglecting the effects of 30 

atmospheric stability and ground interactions. This assumption may be invalid under 31 

high turbulence conditions or in far-wake regions, especially in unstable atmospheric 32 

states where ground effects become significant. There is a need for more sophisticated 33 

models that can accurately capture these complex wake behaviors. 34 

Numerous wind tunnel [1-3] and field experiments [4-6] have demonstrated that at- 35 

mospheric stability can significantly affect wind turbine wakes. Chamorro et al. [1] 36 

through analysis of wind tunnel experiment data, found that under stable conditions, 37 

larger vertical gradients in wind speed compared to neutral conditions could enhance 38 

turbulence intensity in the wake region and extend its influence. Zhang et al [3] in wind 39 

tunnel experiments, observed that under unstable conditions, higher turbulence intensity 40 

compared to neutral conditions promotes wake recovery, resulting in a reduction of wake 41 

losses by approximately 15% and an increase in maximum turbulence intensity by 20%. 42 

Currently, engineering wake models that consider the influence of atmospheric stability 43 

primarily include the improved Jensen model by Peña et al. [7] and the wake model pro- 44 

posed by Cheng et al. [8]. The improved Jensen model predicts a wake profile resembling 45 
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a “top-hat”, which differs significantly from the measured Gaussian-like distribution 46 

shape. The Cheng model [8] has only been validated using numerical simulation results 47 

and lacks validation with field measurements, thus its reliability requires further investi- 48 

gation.  49 

Ground effects on wind turbine wakes are multifaceted and significant. The ground 50 

surface plays a crucial role in several aspects of the wake behavior. These include (1) 51 

Ground-induced turbulence and anisotropy: the ground significantly contributes to tur- 52 

bulence in the lower atmosphere. Under neutral conditions, larger ground roughness in- 53 

creases turbulence intensity, accelerating wake recovery [9]. This ground-induced turbu- 54 

lence is also anisotropic, causing disparities between vertical and horizontal wake recov- 55 

ery rates [10]. (2) Wake profile shearing: the presence of the ground causes shearing of the 56 

wake profiles, introducing additional complexity to wakes. Several three-dimensional 57 

wake models have been proposed in recent years [11-13]. (3) Momentum interaction: at 58 

far-wake region, the ground interaction of the wake impedes wake expansion toward the 59 

surface and may break down the linear wake expansion assumption [14]. At near and 60 

intermediate wake locations (approximately 3-5 rotor diameters downstream), the vertical 61 

distribution of the streamwise velocity deficit exhibits symmetry around the hub height. 62 

However, this symmetry breaks down in the far-wake region [15]. For simplicity, we focus 63 

on examining how ground effects influence wake expansion in this study. 64 

This study addresses the above issues using numerical simulations to investigate the 65 

inhibitory effect of the ground on the wake expansion coefficient of wind turbines. A non- 66 

linear wake expansion model that incorporates atmospheric stability and ground effects 67 

is proposed based on both measured data and relevant numerical simulation results. The 68 

remainder of this paper is organized as follows. The effects of ground and atmospheric 69 

stability on wind turbine wake expansion are studied in Section 2. The improved Jensen 70 

wake model and several typical models are introduced in Section 3. The nonlinear wake 71 

expansion model based on the experimental and numerical results is proposed in Section 72 

4 and validated in Section 5. The conclusions are presented in Section 6. 73 

2. Effects of ground on the wind turbine wake expansion 74 

2.1. FullRF turbulence model for wake modeling 75 

 The study applies the FullRF turbulence model [16] and the actuator disk model to 76 

simulate wind turbine wake, with the control equations adopted as: 77 

 78 

  (1) 79 

  (2) 80 

  (3) 81 

  (4) 82 

83 

 (5) 84 
where and  represent the velocity components along the and axes respec- 85 

tively, 𝑝 is pressure, is molecular viscosity, µt is the turbulent viscosity and   is the 86 

momentum source term exerted by the wind turbine on the  axis.  is the potential 87 

temperature, Pr = 0.9 is the laminar Prandtl number, αt ≡ µt/Prt is the turbulent heat con- 88 

ductivity and is the turbulent Prandtl number. The similarity functions  89 

and  are described in Section 2.1.1. k is the turbulence kinetic energy (TKE), ε is the 90 
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TKE dissipation, , , , . The turbulent kinetic en- 91 

ergy generation rate  due to the mean velocity gradient and the turbulent kinetic en- 92 

ergy generation rate  due to the buoyancy force can be expressed under the Boussinesq 93 

assumption: 94 

             (6) 95 

                    (7) 96 

where is the component of gravitational acceleration along the  axis. 97 

This section uses the BEM method to simulate the wind turbine model. The Boundary 98 

Element Method (BEM) is a numerical computational technique used to solve partial dif- 99 

ferential equations, requiring discretization only on the boundary of the problem domain. 100 

In the BEM-based actuator disk model, the rotor plane consists of N actuator lines, 101 

each of which is split into M element sections (Figure 1). The element section collects the 102 

local velocity and rotor speed Ω to calculate the element force, and applies this force to 103 

the neighboring cells of the element section. The reference velocity is first assessed from 104 

the disk-averaged velocity, and is then applied to evaluate the rotor speed.  105 

 106 

Figure 1. Mesh element and schematic diagram of forces of actuated disc model based on BEM. 107 

By transforming the local velocity at the blade element into polar velocity compo- 108 

nents (Ωr, uθ, and un), the force of the blade element is  109 

  (8) 110 

where B is the number of blades, c is the chord length, and ∆r is the element section length. 111 

The drag coefficient of the element section, CD, and its lift coefficient, CL, which are func- 112 

tions of the attack angle α, are estimated from XFOIL [17] and then corrected by the three- 113 

dimensional rotational effects of the blades based on Du et al. [18]. According to Figure 1, 114 

α = φ − (β + γ), where φ = arctan [un/(Ωr + uθ)] is the flow angle, β is the blade installation 115 

angle, and γ is the pitch angle.  116 

The element force is distributed across neighboring cells. The force added to a cell is 117 

calculated by  118 

  (9) 119 

where si,j is the distance of the i-th element to the cell and s is the cut-off length scale that 120 

takes a value between two and three cell sizes [19]. Ftip and Fhub are the Prandtl tip loss and 121 

hub loss functions [20]:  122 

  (10) 123 



Energies 2024, 17, x FOR PEER REVIEW 4 of 22 
 

 

  (11) 124 

where R is the rotor radius, Rhub is the hub radius, and r is the radial distance between the 125 

element and rotor center. 126 

2.1.1 Turbulence Modeling 127 

In the FullRF turbulence model, an TKE source term and the coefficient  are cal- 128 

ibrated to keep flow homogeneity: 129 

           (12) 130 

  (13) 131 

where the similarity functions are 132 

                        (14) 133 

                  (15) 134 

                        (16) 135 

                           (17) 136 

The source term  for turbulent kinetic energy dissipation is applied within a 137 

cylindrical region downstream of the wind turbine with a distance of 0.25 times the rotor 138 

diameter, aiming to correct the issue of rapid wake recovery induced by the  stand- 139 

ard turbulence model. 140 

  (18) 141 

in which . 142 

In addition, Alinot and Masson [21], M.P. van der Laan [22], proposed two near-sur- 143 

face turbulence models based on the Businger-Dyer similarity function, which are referred 144 

to as the AM model and the Laan mode. Section 2.2.3 will study the effects of atmospheric 145 

stability on wind turbine wake for the aforementioned models. 146 

2.1.2 Boundary Conditions 147 

The boundary conditions consistent with similarity functions are applied to model 148 

the atmospheric boundary stratification. The inlet profiles of wind speed, potential tem- 149 

perature, TKE, and its dissipation are given by 150 

  (19) 151 

  (20) 152 

  (21) 153 

  (22) 154 

The vertical profiles of wind speed are estimated in numerical integration. Zero gra- 155 

dients of U, Θ, ε, and k are applied at the outlet. For the top boundary, the upstream flow 156 

properties are maintained constant. The left and right sides of the computational domain 157 

are symmetrical. The near-wall treatment of Temel et al. [23] is implemented in the near- 158 
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ground region to calculate the turbulent dissipation rate and TKE production Gk,p owing 159 

to shear and buoyancy: 160 

  (23) 161 

  (24) 162 

where the subscript p denotes the first cell center above the ground, the equivalent friction 163 

wind speed is , and the wall shear stress is . The 164 

eddy viscosity  and the turbulent heat conductivity are imposed at the first cell center 165 

above the ground as [24]: 166 

  (25) 167 

  (26) 168 

2.2. Model validation 169 

2.2.1 Test Case 170 

For the validation of the FullRF model, the scenarios outlined in reference [16] only 171 

involved wind turbines with capacities below 1 MW and lacked examinations under neu- 172 

tral and unstable atmospheric conditions. In this study, wake measurement data from the 173 

Jingbian wind farm [4] are used to further substantiate the FullRF model. Figure 2 shows 174 

the wind farm's topography and the layout of wind turbines; the X and Y axes are oriented 175 

towards the east and north, respectively. The southern region of the wind farm, charac- 176 

terized by a valley with complex topography, contrasts with the relatively flat northern 177 

expanse. The experimental wind turbine #14 has a rated capacity of 2 MW, rotor diameter 178 

of 90 m, and hub height of 67 m, and is situated in a transitional zone between the valley 179 

and flat terrain. Consequently, wake measurements were executed using masts M1 and 180 

M3, positioned to the south and north of turbine #14, at horizontal distances approxi- 181 

mately 1.45 times and 2.15 times the rotor diameter, respectively. The masts were 182 

equipped with Thies First Class cup anemometers, temperature and wind direction sen- 183 

sors, and Metek 3D ultrasonic anemometers, which provided wind speed and tempera- 184 

ture data at a frequency of 35 Hz. The study included approximately 190 days of valid 185 

acoustic measurements and an additional 310 days of supplementary data, including non- 186 

acoustic mast data and operational information from the wind farm. Since the atmos- 187 

pheric boundary layer classification relies on acoustic measurements, this study uses 190 188 

days of data for analysis. 189 

 190 

Figure 2. Complex terrains and layout of the Jingbian wind farm. 191 
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Masts were strategically positioned on both the north and south sides of wind turbine 192 

#14, as shown in Figure 3. This setup enabled the acquisition of the wake wind velocity 193 

and turbulence intensity profiles at axial distances of 1.45D and 2.15D behind the turbine. 194 

Given that wind turbines are typically spaced more than 4D apart, calculations of wind 195 

resources and forecasts of wind power are primarily concerned with the far-wake region 196 

of turbines. Additionally, the nacelle wind speed, when combined with the nacelle trans- 197 

fer function, provides a partial estimation of the wind speed at the turbine. To augment 198 

this data, an experimental setup involving additional turbine #12 was introduced near the 199 

M1 mast to capture the wake profile at a further axial distance of 5D, as depicted in Figure 200 

4. 201 

 202 

Figure 3. Wake measurements for downstream distances of 1.45D and 2.15D. D represents the rotor 203 
diameter of the wind turbine, same as above for the subsequent text. 204 

 205 

 206 

Figure 4. Wake measurements for downstream distances of 5D. 207 

The wind speed of the hub corresponding to the wake measurement data of the wind 208 

turbine is 6 m/s, the atmospheric roughness is 0.05 m. The flow parameters corresponding 209 

to each stability degree are listed in Table 1, where “Classical” stands for the Businger- 210 

Dyer similarity functions [25, 26]. 211 

Table 1. Inflow parameters for wake simulations of Haizhuang 2WM wind turbine. 212 

Atmosphere 

stability 
L (m) Measured Iu (%) 

CFD u* (m/s) CFD Iu (%) 

Classical FullRF Classical FullRF 

Unstable -30 17.6 0.425 22.8 

Netural  11.6 0.333 10.6 

Stable 30 7.8 0.131 0.208 4 9 

2.2.2 Computational Domain, Meshing and Solver Settings 213 
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The calculation domains of the wind turbine wake simulation are 20D, 10D, and 10D, 214 

respectively (Figure 5). To effectively incorporate the wind turbine source term into the 215 

computational cells and capture the wake structure, the mesh of the computational do- 216 

main is segmented into four refinement levels. A cell at level i can be subdivided into four 217 

cells at level i+1. The background grid with refinement level 0 contains 100 (long) × 60 218 

(wide) × 60 (high) cells. The background grid is uniformly divided in the horizontal plane, 219 

and refined near the ground in the height direction, and the height of the grid is set to 220 

7.38z0 [27]. The grid refinement level in the region of the wind turbine actuator is set to 3, 221 

distributing approximately 80 grid nodes across the diameter and length of the turbine 222 

[28]. The actuator disk regions 5D and 10D downstream are refined to levels 2 and 3, re- 223 

spectively, to ensure detailed capture of the wake structures. The computational domain 224 

contains approximately 1.6 million cells. In this study, turbulence models are imple- 225 

mented in OpenFOAM [29] using the finite volume method. A large time-step transient 226 

solver using the PIMPLE algorithm is applied to simulate wakes of wind turbines. During 227 

the iteration, the source terms Su and Sε,wake are modeled based on local flow information 228 

via user-specified finite volume options. For temporal and spatial discretization in the 229 

simulations, a second-order backward difference scheme and a second-order central dif- 230 

ference scheme are applied, respectively. 231 

 232 

Figure 5. Sketch of computational domain and meshing. 233 

2.2.3 Results 234 

Figure 6 presents a comparison between the relative wind speeds predicted by the 235 

wake model at various axial distances and the corresponding empirical measurements. 236 

Here, FullRF denotes the utilization of the FullRF turbulence model coupled with the 237 

BEM-based actuator disk model, whereas FullRF-CT refers to the adoption of the FullRF 238 

turbulence model integrated with an actuator disk model that employs thrust coefficients. 239 

   240 

(a)                                         (b) 241 
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 242 

(c) 243 

Figure 6. Relative wind speed in the wake of Haizhuang wind turbine: (a) 1.45D; (b) 2.15D; (c) 5D. 244 

Figure 7 illustrates the correlation between the root mean square error (RMSE) of 245 

wind speed at different axial distances. Since the actuator disk model based on the thrust 246 

coefficient does not add a momentum source term to the nacelle position, the actuating 247 

disk resembles a ring shape, forming a bimodal phenomenon when the wind speed de- 248 

creases at a hub height of 1.45D after the wind wheel. Compared with the AM model and 249 

the Laan model, the wake predicted by the FullRF and FullRF-CT models has a lower 250 

RMSE relative to the wind speed, which has a good agreement with the measured values. 251 

Under stable conditions, the AM model and the Laan models significantly overestimate 252 

the wind speed loss in the wake region, and overestimate the wake loss by approximately 253 

40% at 5D, and the corresponding RMSE is maintained at approximately 0.15. The RMSE 254 

of the wake predicted by the FullRF and FullRF-CT models is only about 0.7 on average, 255 

which effectively improves the phenomenon of overestimating the wind speed loss 256 

caused by the Businger-Dyer similarity functions. Under unstable conditions, the turbu- 257 

lence intensity of the reference flow provided by the model is 22.8%, which is greater than 258 

the measured value of 18%, which accelerates the recovery speed of the wake in the sim- 259 

ulation results, resulting in the wind speed predicted by the model being higher than the 260 

measured values (Figure 6).  261 

 262 

Figure 7. RSME of the wake deficit at hub height under the stable condition: “-CT” represents mod- 263 
els using AD based on the thrust coefficient. 264 
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2.3. Effects of ground on wake expansion 265 

Figure 8 depicts the distribution of wake wind speeds in the vertical cross-section of 266 

a wind turbine at various distances downstream under unstable, neutral, and stable at- 267 

mospheric conditions. The dark line encircling the wake indicates the wake boundary, 268 

characterized by a wake deficit of 0.05. The illustration reveals varying degrees of down- 269 

stream wake center displacement at the 10D position behind the turbine across different 270 

operating conditions. The displacement is most pronounced under unstable conditions, 271 

which feature high turbulence intensity. Under such conditions, wake expansion occurs 272 

more rapidly compared to scenarios with lower turbulence. Additionally, the interaction 273 

between the ground and the wake is enhanced under high turbulence. This will cause the 274 

wake's centerline to shift downward toward the ground in the far-wake region, and the 275 

linear expansion of the wake at hub height is suppressed. Further investigations are con- 276 

ducted in Section 4 to assess whether the wake maintains linear expansion under the in- 277 

fluences of high turbulence and ground effects.  278 

 279 

Figure 8. Cross-sectional diagram of wake deficits under different stability conditions. 280 

3. Typical Engineering Wake Models with Linear Wake Expansion 281 

3.1. A Modified Jensen Model Considering Atmospheric Stability Conditions 282 

In the Jensen wake model [30], the wind speed deficit at distance x downstream of 283 

the rotor is calculated as follows: 284 

  (27) 285 

where is the inflow velocity,  is the thrust coefficient,  is the wake expan- 286 

sion rate and could be used to determine the wake boundary: at ， 287 

 where  represents the radial distance. In this paper, the coor- 288 

dinate of the wind turbine rotor's rotation center is set as the origin, i.e. 289 

. 290 

For wind turbine wakes in a neutral atmospheric boundary layer, the suggested 291 

values of k are 0.075 for onshore cases and 0.04 or 0.05 for offshore ones [31, 32]. To 292 

account for the influence of atmospheric stability on the wake, Peña et al. [33] related 293 

the wake expansion coefficient to incoming wind speed, friction velocity, and hub 294 

height: 295 

  (28) 296 

  (29) 297 
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where z0 is the aerodynamic roughness length, H represents the hub height. 298 

3.2. Guassian-shaped Wake Models 299 

Because of the assumption of a top-hat distribution for wake deficit profiles, the mod- 300 

ified Jensen model is not able to capture the radial dependence of the wake. In fact, the 301 

wake deficit has an approximately Gaussian symmetric shape after some downwind dis- 302 

tances [1] . By applying conservation of mass and momentum, Bastankhah and Porté-Agel 303 

[34] suggested to replace the top-hat assumption with a Gaussian distribution for the wake 304 

deficit in the wake: 305 

  (30) 306 

where is the wake width. 307 

As shown in various numerical and experimental studies on wind turbine wakes [34, 308 

35], the wake width is approximately linear with x after some downstream distance: 309 

  (31) 310 

in which represents the wake expansion coefficient corresponding to the 311 

Gaussian distribution wake model and  characterizes the near-wake length, defined 312 

as the axial distance where the wind speed deficit exhibits a Gaussian distribution-like 313 

profile. is the parameter equivalent to the wake width at (x = 0) as assumed in the 314 

Gaussian wake profile model. Since the wind speed deficit at the rotor varies from the 315 

Gaussian distribution,  is often considered a linear function of the longitudinal turbu- 316 

lence intensity [34]. is then divided into two categories: one being a linear function of 317 

[34] and the other related to , as well as the near-wake length x0 [36]: 318 

  (32) 319 

Bastankhah et al. [36] divided the wake of a wind turbine into three regions: the near- 320 

wake core region, the outer atmospheric free-flow region, and the boundary layer region 321 

between them (Figure 9). They derived a formula for calculating by relating the growth 322 

rate of the boundary layer thickness to the turbulence intensity and the difference in wind 323 

speeds inside and outside the wake. The formula is as follows: 324 

  (33) 325 

with  and is typically set to 2.32 in wind tunnel experiments. Based on the 326 

analysis of field wake observations by Fuertes et al. [37], the near-wake length  of wind 327 

turbines in wind farms is observed to be smaller than the values observed in wind tunnels 328 

under equivalent turbulence intensity and thrust coefficient conditions. Therefore, in 329 

wind farms, is typically set to the value recommended by Fuertes et al. [37], which is 330 

3.6.  for unyawed conditions. 331 

 332 

Figure 9. Schematic overview of wind turbine near-wake and far-wake regions. 333 
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Turbulence plays a significant role in the evolution of wind turbine wakes and is 334 

generally considered to have a linear relationship with the wake expansion coefficient . 335 

This study introduces three typical Gaussian wake models: the Fuertes model [37], Cheng 336 

model [8], and Campagnolo model [38] (Table 2). These models are compared with the 337 

engineering model proposed in this study for predicting wind turbine wake wind speeds 338 

under different atmospheric stability conditions. 339 

Table 2. Typical Gaussian wake models, where Iu and Iv is longitudinal turbulence intensity and 340 
lateral turbulence intensity, respectively. 341 

Model Fuertes Cheng Campagnolo 

Scale 

The experimental 

measurement of the 

nacelle lidar 

Considering lateral 

turbulence 
Wind tunnel experiment 

    

  
Equation(32), 

,  

3.3. Estimation of the Streamwise Turbulence Intensity at Hub Height 342 

To assess the prediction accuracy of the model, this study first utilizes existing meas- 343 

urements of longitudinal turbulence intensity. If such measurements are unavailable, a 344 

proposed similarity function is employed for estimation. Based on the similarity function 345 

at a height of 70m: 346 

  (34) 347 

the FullRF similarity function is employed for , with  set to 0.4 and -0.5 for stable 348 

and unstable conditions, respectively.  349 

The lateral turbulence intensity is estimated using the method recommended in the 350 

ESDU [39]: 351 

  (35) 352 

in which represents the boundary layer height, Ω=72.9×10−6 rad/s 353 

denotes the Earth's rotational angular velocity, and ϕ represents the local latitude. 354 

4. The Proposed Engineering Wake Expansion Model 355 

Atmospheric stability significantly influences the dynamics of wind turbine wakes 356 

by affecting turbulence intensity. Consequently, this study delineates the impact of atmos- 357 

pheric stability by establishing a correlation between turbulence intensity and the wake 358 

expansion coefficient. Equation (32) provides a method for estimating the wake expan- 359 

sion width based on the length of the near wake. This study predominantly utilizes nu- 360 

merical simulations to construct the model under high turbulence scenarios. Furthermore, 361 

under stable conditions, classical similarity functions often overpredict the vertical gradi- 362 

ents of wind speed and underpredict the incoming turbulence intensity [16]. To address 363 

these discrepancies, the chapter uses similarity functions, adjusted based on measured 364 

data from a wind farm in China, to simulate wake effects. The simulation results are then 365 

used to create a data training set and a validation set, which are employed to develop an 366 

engineering wake model that takes atmospheric stability into account. For specific details, 367 

refer to Figure 10. 368 
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 369 

Figure 10. Workflow for training and testing the logIu model. 370 

4.1. Wake Model Development Data Set 371 

The dataset consists of two parts: training data used to fit the correlation between 372 

and , and testing data used to validate the reliability of the developed wake model. The 373 

dataset description is shown in Table 3. The dataset includes wind speed data from the 374 

wake region of 13 types of wind turbines, obtained through wind tunnel experiments, 375 

field measurements, and numerical simulations, along with relevant inflow information. 376 

The shaded sections in the table indicate cases that involve non-neutral operating condi- 377 

tions. The cases are primarily matched with the name of the wind turbine, and when the 378 

turbine name is unknown, they correspond to the author and publication date of the data 379 

source. The subclass denotes the presence of multiple operating environments or condi- 380 

tions for the same wind turbine, where TSR represents the Tip Speed Ratio. The three 381 

stability levels indicate the presence of neutral, unstable, and stable operating environ- 382 

ments. In the subclass, LES stands for Large Eddy Simulation, with inflow conditions set 383 

based on the Businger-Dyer similarity functions, considering the influence of the atmos- 384 

pheric boundary layer thickness. The effect of the atmospheric boundary layer thickness 385 

is confirmed by applying a pressure gradient within the computational domain to ensure 386 

that the Reynolds stress decreases to zero at the top of the atmospheric layer. RANS refers 387 

to Reynolds-Averaged Navier-Stokes simulations using the FullRF turbulence model to 388 

simulate wind turbine wakes. 389 

Table 3. Basic information of the wake dataset. 390 

Experiment 

type 
Cases Subcases D(m) H(m) 

Wake 

Range (D) 

Wind tun-

nel tests 

Dou2019 [40, 41] TSR=4,5,6 0.2 0.75 4.5~10 

WiRE-01[42]  0.15 0.125 4~10 

Ruland-913[43] In turbulent flows 0.9 1.12 2.5~8.5 

G1[38] Three offshore cases 1.1 0.83 5~10 

Hancock2014 [2, 

44, 45] 

Neutral, unstable 

and stable cases 

0.416 0.3 3~10 

Field ex-

periments 

Nibe-B [46, 47] CT=0.67,0.77,0.82 40 45 2.5~7.5 

Liberty C96 [37]  96 80 0.6~10 

Vestas V80-

2MW [9] 

Neutral (LES)：4 

types of z0 and three 
80 70 3~15 
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stability classes 

(LES) 

Danwin [48-50] 

Nordtank [5] 

Neutral：

CT=0.65,0.82 23 35 4.2~9.6 
Non-neutral (Experi-

ments+RANS) 

Haizhuang [4] Three stability clas-

ses (Experiments 

+RANS) 

41 36 2~5 

Nibe-B [46, 47]  93 67 1.45,2.15,5 

The wind turbine operating conditions corresponding to wind tunnel experiments 391 

are as follows: (1) A two-bladed wind turbine in the Dou 2019 case [40, 41], operating at 392 

different tip-speed ratios (TSR=4, 5, 6), pitch angles, and yaw angles. (2) A model wind 393 

turbine (WiRE-01) with a diameter of 15 cm, operating at the optimum tip-speed ratio 394 

( ), corresponding to a thrust coefficient [42]. (3) A six-bladed Rut- 395 

land 913 model wind turbine operating under turbulent conditions ( ) [43]. (4) 396 

The G1 turbine operates in two environments: one simulating offshore wind farm condi- 397 

tions with a turbulence intensity of 6.1% and the other simulating onshore wind farm con- 398 

ditions with a turbulence intensity of 11% [38]. (5) The Hancock 2014 case involves a three- 399 

bladed model wind turbine operating under neutral, stable, and unstable conditions [2, 400 

44, 45] . 401 

For non-wind tunnel experiments, the Vestas V80-2MW wind turbine only has wake 402 

results from LES results[9], while other turbines have field-measured data. Turbines with 403 

observed wake data and operating conditions include: (1) A 40m diameter three-bladed 404 

Nibe-B 630kW wind turbine operating at 33 rpm [46, 47]. (2) The 2.5MW Liberty C96 wind 405 

turbine with a thrust coefficient of approximately 0.82, capable of measuring wake wind 406 

speeds from 0.6 to 10 rotor diameters using a laser radar mounted on the nacelle [37]. (3) 407 

The three-bladed Danwin 180kW wind turbine operating under different atmospheric 408 

thermal stability conditions [48-50]. (4) The actively stalled 500kW Nordtank wind turbine 409 

equipped with a pulsed laser radar mounted on the nacelle, capable of measuring wake 410 

wind speeds behind the rotor at different atmospheric stability conditions [5]. (5) The 411 

Haizhuang 2MW wind turbine, with wind measurement towers installed on both the 412 

north and south sides and related wind turbine SCADA operational data, providing wind 413 

speed data at positions 1.45D, 2.15D, and 5D behind the rotor under various stability con- 414 

ditions [4]. Table 4 provides supplementary parameters for the wake simulation cases of 415 

wind turbines, with the wake expansion coefficient obtained through least squares fitting 416 

of numerical simulation data. 417 

Table 4. Supplementary wind turbine wake simulation cases. 418 

Turbine z0(m) L(m) u*(m) Iu(%) k*(10-3) 

Haizhuang 

5×10-8 

∞ 

0.114 3.6 5.79 

5×10-6 0.146 4.7 6.28 

5×10-5 0.17 5.4 8.07 

0.05 
-100 0.382 16.2 37.47 

-1000 0.5122 17.4 44.05 

0.5 

-100 0.601 25.6 69.38 

-50 0.655 31.6 70.13 

-20 0.755 45 83.43 

Nordtank 0.2 ∞ 0.542 14.6 51.26 

Danwin 5×10-4 35 0.198 4.5 3.23 

4.1.1 The Training Dataset 419 
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Table 5 presents turbulence intensity and thrust coefficients for the training data. The 420 

turbulence intensity provided in the training data ranges from 1.6% to 45%. Given that 421 

LES numerical results from Vestas wind turbines frequently informed the development 422 

of wake models, these simulations have also been incorporated into the training dataset 423 

for this study [51-53].  424 

Table 5. The hub-height turbulence intensity and thrust coefficient of wind turbine. 425 

Training Cases Iu(%) CT 

Wind tunnel exper-

iments 

Dou2019(TSR=4) 1 0.85 

G1: offshore 6.1 0.79,0.73,0.68 

Rutland-913 14.5 0.94 

Field measurement 
Nibe-B 11 0.77,0.82 

Liberty C96 1.6~17 0.82 

LES numerical sim-

ulation 

Vestas: neutral 4.8~13.4 0.8 

Vestas: three stabil-

ity classes 
6.5~10 0.8 

RANS numerical 

simulation 

Haizhuang 3.6~44.7 0.84 

Nordtank 6.1~18.3 0.83 

Danwin 4.5~10 0.82 

4.1.2 Validation data 426 

Apart from the training data, other cases will be employed to verify the accuracy and 427 

reliability of the proposed model in predicting wind turbine wakes. The inflow conditions 428 

and thrust coefficients for these validation cases are listed in Table 6. 429 

Table 6. The inflow information and thrust coefficient of wind turbine for the validation case. 430 

Case validation U∞ L(m) Iu (%) CT 

Wind 

tunnel 

Dou2019(TSR=5,6) 6 ∞ 1 0.91,0.94 

WIRE-01 5 ∞ 7  

Hancock2014 2.3,2.3,1.47 0.956, ∞

,-1.26 

8.5,6.6,5.3 0.42,0.48,0.48 

Field 

Nibe-B 11.52 ∞ 10.5 0.67 

Danwin  8,11,8 -50,∞

,90.6 

9.7,6,7.6 0.82,0.65,0.82 

Nordtank 6.82,7.03,6.76 -84.8,∞,29 14,15,10 0.71,0.75,0.83 

 4.2. The logIu Engineering Wake Model 431 

The relationship between the wake expansion coefficient and the longitudinal tur- 432 

bulence intensity obtained from the training data is shown in Figure 11. The training 433 

data suggests a proportional relationship between the wake expansion coefficient and the 434 

longitudinal turbulence when the longitudinal turbulence intensity is below 10%. Beyond 435 

this threshold, the rate of change of the wake expansion coefficient diminishes with in- 436 

creasing turbulence intensity. In light of supplementary RANS numerical simulations, the 437 

Fuertes model significantly overestimates the wake expansion coefficient at . 438 

Based on this finding, a logarithmic relationship is proposed and updated as formalized 439 

in Equation (36) in this study. The newly developed engineering wake model, termed 440 

“logIu”, incorporates this logarithmic relationship, with “Iu” denoting the model’s de- 441 

pendence of the model on longitudinal turbulence intensity. 442 

  (36) 443 
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 444 

Figure 11. The relationship and fitting curve between k* and Iu from different data sources. The 445 

training data for the Fuertes2018 model [37] comes from a nacelle-mounted lidar wake measurement 446 

experiment and the Campagnolo2019 model [38] also defines the wake expansion coefficient as a 447 

linear function of the streamwise turbulence intensity. 448 

The nonlinear relationship between the wake expansion coefficient and longitudinal 449 

turbulence intensity is influenced by the proximity to the ground or sea surface. As the 450 

wake expands downstream, it may interact with the ground, producing a compressive 451 

effect on the expanding wake. This interaction can increase wind speeds near the ground 452 

while decreasing them at hub height, effectively diminishing the wake expansion coeffi- 453 

cient. At lower turbulence intensities (<12%), the wake expansion coefficient and range 454 

are minimal, resulting in weaker compressive effects from the ground. Thus, the wake 455 

expansion coefficient increases linearly with an increase in longitudinal turbulence inten- 456 

sity. However, once turbulence intensity surpasses a critical threshold (12%), the ground's 457 

compressive effect becomes pronounced, inhibiting the linear growth of the wake expan- 458 

sion coefficient with turbulence intensity. 459 

5. Validation and Evaluation of the logIu wake expansion model 460 

5.1. Wind Tunnel Experiment Validation 461 

Figure 12 compares the measured wind speeds at hub height under neutral condi- 462 

tions in a wind tunnel against predictions from various engineering models. Specifically, 463 

Figure 12 delineates the wind speeds along the wake centerline at  for the 464 

Dou2019 case. The proposed model shows better agreements with the experiment than 465 

other models. The Campagnolo model, which is formulated based on wind tunnel wake 466 

measurement data, tends to underestimate wake wind speeds at . Similarly, other 467 

wake models also show varying degrees of underestimation, with the Jensen model dis- 468 

playing a notably significant deviation. For identical wake widths, the Jensen model dis- 469 

tributes the wind speed reduction uniformly across the wake, leading to an overestima- 470 

tion of speeds near the wake centerline and an underestimation at the edges of the wake 471 

width. 472 
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 473 

Figure 12. Wake model prediction of the relative velocity on the wake centerline of Dou2019 case. 474 

The prediction accuracy of the wake speed for WiRE-01 of the proposed model is also 475 

higher than those of other models (Figure 13). Relative to the logIu model, the Cam- 476 

pagnolo model significantly overestimated the wind speed loss at x = 4D by approxi- 477 

mately 37% near the wake centerline. In contrast, other models predict lower wake deficits 478 

near the wake center, with the Cheng model showing the most substantial underestima- 479 

tion. In this verification case, the longitudinal turbulence intensity of the hub height is Iu 480 

= 7%. However, according to the original method described in the Cheng model's litera- 481 

ture, it is only 5.6%. This discrepancy suggests that the Cheng model underestimates wake 482 

deficits when using a lower turbulence intensity. Meanwhile, the predictions by the Fuer- 483 

tes model fall between those of the logIu and Cheng models: Fuertes model utilizes a 484 

larger a∗ than logIu model in wind tunnel scenarios, resulting in a smaller calculated near- 485 

wake length and a faster predicted wake recovery, whereas the Cheng model employs a 486 

higher turbulence intensity, leading to a quicker wake recovery rate than that of Fuertes. 487 

 488 

Figure 13. Wake model prediction of the relative velocity on the wakes of WiRE-01 case. 489 

Figure 14 shows the predicted versus actual wind speeds for various models under 490 

different atmospheric conditions. The wake measurement data from the Hancock 2014 491 



Energies 2024, 17, x FOR PEER REVIEW 17 of 22 
 

 

study highlights the influence of atmospheric stability on wind turbine wakes:  at 492 

 the maximum wake deficit is only 15% under unstable conditions, whereas it is 493 

25% under stable conditions. Among the models, the logIu model demonstrates the high- 494 

est accuracy in predicting wakes. Under non-neutral conditions, the Campagnolo model 495 

tends to overestimate wake deficits, failing to deliver accurate predictions at . 496 

This indicates that despite being optimized with wind tunnel data and performing ade- 497 

quately under neutral conditions, the Campagnolo model lacks satisfactory prediction ca- 498 

pability for wind turbine wakes under non-neutral conditions. Similar to neutral condi- 499 

tions, the Jensen, Fuertes, and Cheng models markedly underestimate wake deficits, es- 500 

pecially in the near-wake region and under stable atmospheric conditions. 501 

 502 

Figure 14. Wake wind speed predictions at hub height from different models for the Hancock2014 503 

case. 504 

5.2. Field Observation Experiment Validation 505 

5.2.1 Neutral Conditions 506 

Figure 15 evaluates the wake velocity models against measurement data at locations 507 

, , and  for the Nibe B wind turbine under neutral conditions. The re- 508 

sults reveal that the wind speeds predicted by the logIu model align most closely with the 509 

actual measurements. The accuracy of the Fuertes and Cheng models are slightly less pre- 510 

cise than that of logIu, although the discrepancy is not marked. The Jensen model still 511 

underestimates the wake deficits at the wake center ( ) and overestimating it at the 512 

wake edge ( ). Because the parameter in the Campagnolo model is 513 

optimized through wind tunnel tests and is much smaller than the recommended value 514 

3.6 for actual wind farms, the Campagnolo model predicts a higher value for  and thus 515 

overestimates wake deficits. 516 
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 517 

Figure 15. Wake wind speed predictions at hub height from different models for the Nibe-B wind 518 
turbine. 519 

5.2.2 Non-neutral Conditions 520 

Figure 16 compares the model-predicted wind speeds under different stability con- 521 

ditions with four wind turbine field measurement values. Overall, aside from overesti- 522 

mating the wind speed loss near the wake center under strong unstable conditions 523 

( ) and strong stable conditions ( ), the logIu model generally offers reliable 524 

predictions across different atmospheric stabilities.  The Fuertes and Cheng models ex- 525 

hibit a slightly lower overall predictive accuracy than logIu, with a more pronounced dis- 526 

crepancy evident in the Danwin scenario. The "top-hat" shape of the Jensen model still 527 

exhibits poor accuracy in predicting wakes in the near-wake region (up to 35% at 528 

) and overestimates wake deficits at . In contrast, the Campagnolo 529 

model significantly overestimates wake deficits in these cases, with overestimation ratios 530 

reaching up to 170% at  and 30% to 40% at , illustrating substantial 531 

predictive errors in actual wind farm applications. 532 

 533 
(a)                          (b) 534 

Figure 16. The wake wind speed predictions at hub height from different models: (a) Danwin; (b) 535 
Nordtank. 536 

5.3. Overall Model Evaluation 537 

Figure 17 compares the RMSE ( )  values for various models across different 538 

operational environments. The wake velocities predicted by the logIu and Campagnolo 539 

models are closer to the measured values of wind turbine wakes in the wind tunnel com- 540 

pared to the predictions of other engineering models. The RMSE values for logIu and 541 

Campagnolo models range from 0.04 to 0.06, which is substantially lower than the 0.07 to 542 
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0.09 range observed for alternative models. The prediction accuracy of logIu exhibits a 543 

slight decline in actual wind farms, with the corresponding RMSE increasing from ap- 544 

proximately 0.04 in the wind tunnel to 0.063. This value remains marginally lower than 545 

the 0.07 RMSE associated with Fuertes’s model.  The decrease in prediction accuracy 546 

may be attributed to the increased complexity of operational environments in real wind 547 

farms and potential limitations in measurement instrumentation precision. The prediction 548 

accuracy of Fuertes and logIu in actual wind farms are similar because the functional re- 549 

lationships between the wake expansion coefficient and turbulence intensity for the two 550 

models demonstrate convergence at . The prediction accuracy of the 551 

Cheng model is slightly lower than that of the Fuertes model, but both are higher than 552 

that of the Jensen model considering atmospheric stability. For all cases, logIu has the 553 

highest accuracy in wake prediction, followed by the Fuertes and Campagnolo models, 554 

with the Jensen model exhibiting the lowest accuracy in wake velocity predictions. 555 

 556 

Figure 17. The RMSE(U/U∞) of each model corresponding to different operating environments. 557 

The RMSE ( ) values of various models under different atmospheric stability 558 

conditions are shown in Figure 18. The logIu model demonstrates the lowest RMSE across 559 

all examined stability conditions, indicating superior overall prediction accuracy. Except 560 

for Campagnolo, the reliability of investigated models in predicting wake velocities gen- 561 

erally decreases with increasing stability. In both wind tunnel simulations and real atmos- 562 

pheric boundary layer conditions, increasing stability is associated with a decrease in the 563 

boundary layer height. This phenomenon allows wind turbines to exceed the surface layer, 564 

where the Reynolds stresses are relatively constant. Above the surface layer, the Reynolds 565 

stresses diminish with increasing height, resulting in more pronounced disparities in the 566 

turbulence intensity between the upper and lower sections of the wind turbine rotor 567 

sweep area. The models studied in this study assume that the relative wind speed loss is 568 

symmetrically distributed along the wake centerline, which is not conducive to capturing 569 

the increasing difference in turbulence intensity between the upper and lower parts of the 570 

rotor sweep area as the stability increases. This limitation in the underlying assumptions 571 

of the models may contribute to the observed decrease in predictive accuracy under con- 572 

ditions of heightened atmospheric stability.  573 
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 574 

Figure 18. The RMSE (U/U∞) of each model under different stability conditions. 575 

6. Conclusion 576 

This study examines the influence of ground effects on wake expansion and proposes 577 

a novel nonlinear wake expansion model that incorporates both atmospheric stability and 578 

ground effects. The proposed model is calibrated using extensive datasets comprising 579 

wake measurements from wind-tunnel experiments, field observations, and numerical 580 

simulations. A comparative analysis is conducted between the wake wind speeds pre- 581 

dicted by the proposed model and those of other typical models. The principal findings 582 

of this study are summarized as follows. 583 

(1) Ground effects tend to suppress wake expansion at far-wake locations, and this 584 

suppression becomes more pronounced under high turbulence. This ground-wake inter- 585 

action at far-wake locations, particularly under high turbulence intensity, has the poten- 586 

tial to induce a downward displacement of the wake centroid and thus suppress wake 587 

expansion at the hub height. 588 

(2) The experimental data and simulation results indicate that the previously as- 589 

sumed linear relationship between the wake expansion coefficient and turbulence inten- 590 

sity is invalid at high turbulence levels. Instead, the wake expansion coefficient exhibits a 591 

logarithmic relationship with longitudinal turbulence intensity.  592 

(3) The proposed logIu model demonstrates superior overall accuracy in predicting 593 

wake wind speeds, with corresponding RMSE values ranging from 0.04 to 0.063. The pre- 594 

diction accuracy of the wake wind speeds across various models generally exhibits an 595 

inverse relationship with increasing atmospheric stability. This trend suggests that wake 596 

prediction is the most challenging task under stable atmospheric conditions. 597 

These findings contribute to the advancement of wake modeling techniques and pro- 598 

vide valuable insights into the complex interactions among atmospheric conditions, 599 

ground effects, and wake behavior in wind energy applications. 600 

 601 

Author Contributions: Conceptualization, X. X. H. and C. X.; methodology, T. G. W. and X.D. M.; 602 
software, J.M. Z. and Z. C.; validation, S. F. F. and F. F. X.; formal analysis, Z. C.; investigation, S. F. 603 
F.; resources, J. M. Z.; data curation, J. M. Z.; writing—original draft preparation, X. X. H.; writing— 604 
review and editing, J. M. Z. and X. D. M.; visualization, X. X. H.; supervision, C. X.; project admin- 605 
istration, F. F. X.; funding acquisition, X. X. H. All authors have read and agreed to the published 606 
version of the manuscript. 607 

Funding: This research was funded by the National Natural Science Foundation of China, grant 608 
number 52106238, the Fundamental Research Funds for the Central Universities (Grant No. 609 
B230201051) and Royal Society International Exchanges under Grant IEC\NSFC\223091. 610 

Conflicts of Interest: The authors declare no conflicts of interest. 611 



Energies 2024, 17, x FOR PEER REVIEW 21 of 22 
 

 

References 612 

1. Chamorro, L.P. and F. Port-Agel, Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine 613 

Wakes: A Wind-Tunnel Study. Boundary-Layer Meteorology, 2010. 136(3): p. 515-533. 614 

2. Hancock, P.E. and F. Pascheke, Wind-tunnel simulation of the wake of a large wind turbine in a stable boundary layer: Part 2, the wake 615 

flow. Boundary-layer meteorology, 2014. 151(1): p. 23-37. 616 

3. Zhang, W., C.D. Markfort, and F. Port-Agel, Wind-turbine wakes in a convective boundary layer: A wind-tunnel study. Boundary- 617 

layer meteorology, 2013. 146(2): p. 161-179. 618 

4. Han, X., et al., Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain. 619 

Renewable energy, 2018. 126: p. 640-651. 620 

5. Machefaux, E., et al., An experimental and numerical study of the atmospheric stability impact on wind turbine wakes. Wind Energy, 621 

2016. 19(10): p. 1785-1805. 622 

6. Foreman, R.J., B. Cañadillas, and N. Robinson, The Atmospheric Stability Dependence of Far Wakes on the Power Output of 623 

Downstream Wind Farms. Energies, 2024. 17(2): p. 488. 624 

7. Peña, A., P.-E. Réthoré, and O. Rathmann, Modeling large offshore wind farms under different atmospheric stability regimes with the 625 

Park wake model. Renewable Energy, 2014. 70: p. 164-171. 626 

8. Cheng, Y., et al., A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory. Applied Energy, 2019. 239: 627 

p. 96-106. 628 

9. Wu, Y.-T. and F. Port-Agel, Atmospheric turbulence effects on wind-turbine wakes: An LES study. energies, 2012. 5(12): p. 5340-5362. 629 

10. Abkar, M. and F. Port-Agel, Influence of Atmospheric Stability on Wind-Turbine Wakes: A Large-Eddy Simulation Study. Physics of 630 

Fluids, 2015. 27(3): p. 035104. 631 

11. Gao, X., et al., Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements. Applied 632 

Energy, 2020. 260: p. 114272. 633 

12. Huanqiang, Z., et al., Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind 634 

and wave. Applied Energy, 2024. 365: p. 123189. 635 

13. Ling, Z., et al., A three-dimensional wake model for wind turbines based on a polynomial distribution of wake velocity. Ocean Engineering, 636 

2023. 282: p. 115064. 637 

14. Wang, Z. and X. Yang, Upward Shift of Wind Turbine Wakes in Large Wind Farms. Energies, 2023. 16(24): p. 8051. 638 

15. Chamorro, L.P. and F. Porté-Agel, A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects. 639 

Boundary-Layer Meteorology, 2009. 132(1): p. 129-149. 640 

16. Han, X., et al., Monin–Obukhov Similarity Theory for Modeling of Wind Turbine Wakes under Atmospheric Stable Conditions: Breakdown 641 

and Modifications. Applied Sciences, 2019. 9(20): p. 4256. 642 

17. Drela, M., XFOIL: An analysis and design system for low Reynolds number airfoils, in Low Reynolds number aerodynamics. 1989, 643 

Springer: Berlin. p. 1-12. 644 

18. Du, Z. and M. Selig. A 3-D stall-delay model for horizontal axis wind turbine performance prediction. in 1998 ASME Wind Energy 645 

Symposium. 1998. Reno,NV,U.S.A.: Reno,NV,U.S.A. 646 

19. Shen, W.Z., W.J. Zhu, and J.N. Sørensen, Actuator line/Navier–Stokes computations for the MEXICO rotor: Comparison with detailed 647 

measurements. Wind Energy, 2012. 15(5): p. 811-825. 648 

20. Shen, W.Z., et al., Tip loss corrections for wind turbine computations. Wind Energy, 2005. 8(4): p. 457-475. 649 

21. Alinot, C. and C. Masson, $k-$ Model for the Atmospheric Boundary Layer Under Various Thermal Stratifications. Journal of Solar 650 

Energy Engineering, 2005. 127(4): p. 438-443. 651 

22. van der Laan, M.P., M.C. Kelly, and N.N. Srensen, A new k-epsilon model consistent with Monin--Obukhov similarity theory. Wind 652 

Energy, 2017. 20(3): p. 479-489. 653 

23. Temel, O. and J. van Beeck, Two-equation eddy viscosity models based on the Monin-Obukhov similarity theory. Applied Mathematical 654 

Modelling, 2017. 42: p. 1-16. 655 

24. Chang, C.-Y., et al., A consistent steady state CFD simulation method for stratified atmospheric boundary layer flows. Journal of Wind 656 

Engineering and Industrial Aerodynamics, 2018. 172: p. 55-67. 657 

25. Businger, J.A., et al., Flux-profile relationships in the atmospheric surface layer. Journal of the atmospheric Sciences, 1971. 28(2): p. 658 

181-189. 659 

26. Dyer, A.J., A review of flux-profile relationships. Boundary-Layer Meteorology, 1974. 7(3): p. 363-372. 660 

27. Zhang, X., CFD simulation of neutral ABL flows. 2009. 661 

28. Sørensen, J.N., et al., Simulation of wind turbine wakes using the actuator line technique. Philosophical Transactions of the Royal 662 

Society A: Mathematical, Physical and Engineering Sciences, 2015. 373(2035): p. 20140071. 663 



Energies 2024, 17, x FOR PEER REVIEW 22 of 22 
 

 

29. Weller, H.G., et al., A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 664 

1998. 12(6): p. 620-631. 665 

30. Jensen, N.O., A note on wind generator interaction. 1983, Roskilde, Denmark: Ris{\o} National Laboratory. 666 

31. Barthelmie, R.J., et al., Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy, 2009. 12(5): 667 

p. 431-444. 668 

32. Gmen, T., et al., Wind turbine wake models developed at the technical university of Denmark: A review. Renewable and Sustainable 669 

Energy Reviews, 2016. 60: p. 752-769. 670 

33. Peña, A., P.E. Réthoré, and M.P. van der Laan, On the application of the Jensen wake model using a turbulence-dependent wake decay 671 

coefficient: the Sexbierum case. Wind Energy, 2016. 19(4): p. 763-776. 672 

34. Bastankhah, M. and F. Port-Agel, A new analytical model for wind-turbine wakes. Renewable Energy, 2014. 70: p. 116-123. 673 

35. Johnson, P.B., et al. On the spread and decay of wind turbine wakes in ambient turbulence. in Journal of Physics: Conference Series. 2014. 674 

Bristol (UK): IOP Publishing. 675 

36. Bastankhah, M. and F. Port-Agel, Experimental and theoretical study of wind turbine wakes in yawed conditions. Journal of Fluid 676 

Mechanics, 2016. 806: p. 506-541. 677 

37. Carbajo Fuertes, F., C. Markfort, and F. Port-Agel, Wind turbine wake characterization with nacelle-mounted wind lidars for analytical 678 

wake model validation. Remote Sensing, 2018. 10(5): p. 668. 679 

38. Campagnolo, F., et al. Comparison of Analytical Wake Models with Wind Tunnel Data. in Journal of Physics: Conference Series. 2019. 680 

Bristol (UK): IOP Publishing. 681 

39. Lawson, T.V. and others, ESDU 85020 Characteristics of atmospheric turbulence near the ground. Part II: single point data for strong 682 

winds (neutral atmosphere). 2001. 683 

40. Dou, B., et al., Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel. Energy, 2019. 684 

166: p. 819-833. 685 

41. Dou, B., et al., Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions. Applied energy, 2019. 242: p. 1383- 686 

1395. 687 

42. Bastankhah, M. and F. Port-Agel, A new miniature wind turbine for wind tunnel experiments. Part ii: Wake structure and flow dynamics. 688 

Energies, 2017. 10(7): p. 923. 689 

43. Chu, C.-R. and P.-H. Chiang, Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine. Journal of 690 

Wind Engineering and Industrial Aerodynamics, 2014. 124: p. 82-89. 691 

44. Hancock, P.E. and S. Zhang, A wind-tunnel simulation of the wake of a large wind turbine in a weakly unstable boundary layer. 692 

Boundary-Layer Meteorology, 2015. 156(3): p. 395-413. 693 

45. Hancock, P.E., et al., Wind Tunnel Simulation of a Wind Turbine Wake in Neutral, Stable and Unstable Wind Flow. Journal of Physics: 694 

Conference Series, 2014. 555(1): p. 012047. 695 

46. Pederson, B.M. and P. Nielson. Description of the two Danish 630kW wind turbines, Nibe-A and Nibe-B, and some preliminary test 696 

results, DEFU, Denmark. in Third International Symposium on Wind Energy Systems. 1980. Copenhagen, Denmark: BHRA Fluid 697 

Engineering. 698 

47. Taylor, G.J., Wake measurements on the Nibe wind-turbines in Denmark. 1990, Leatherhead (UK): National Power, Technology and 699 

Environment Centre. 700 

48. Magnusson, M., K.G. Rados, and S.G. Voutsinas, A study of the flow downstream of a wind turbine using measurements and 701 

simulations. Wind Engineering, 1996: p. 389-403. 702 

49. Magnusson, M. and A.-S. Smedman, Influence of atmospheric stability on wind turbine wakes. Wind Engineering, 1994: p. 139-152. 703 

50. Magnusson, M. and A.-S. Smedman, Air flow behind wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 704 

1999. 80(1-2): p. 169-189. 705 

51. Niayifar, A. and F. Porté-Agel, Analytical modeling of wind farms: A new approach for power prediction. Energies, 2016. 9(9): p. 741. 706 

52. Ishihara, T. and G. Qian, A New Gaussian-Based Analytical Wake Model for Wind Turbines Considering Ambient Turbulence Intensities 707 

and Thrust Coefficient Effects. Journal of Wind Engineering and Industrial Aerodynamics, 2018. 177. 708 

53. Ge, M., et al., A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes. Applied energy, 2019. 709 

233: p. 975-984. 710 

 711 

 Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 712 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any 713 

injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 714 


