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Abstract: This paper reviews renewable energy integration with the electrical power grid through 13 
the use of advanced solutions at the device and system level, using smart operation with better 14 
utilization of design margins, and power flow optimisation with machine learning. The paper first 15 
highlights the significance of credible temperature measurements for device advanced power flow 16 
management, particularly the use of advanced fibre optic sensing technology. The potential to ex- 17 
pand renewable energy generation capacity, particularly of existing wind farms, by exploiting ther- 18 
mal design margins, is then explored. Dynamic and adaptive optimal power flow models are sub- 19 
sequently reviewed, for optimisation of resource utilisation and minimisation of operational risks. 20 
The paper suggests that system-level automation of these processes could improve power capacity 21 
exploitation and network stability economically and environmentally. Further research is needed to 22 
achieve these goals. 23 
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 26 

1. Introduction 27 

Considerable efforts are being made to de-carbonise electrical power networks, 28 

where renewable energy resources such as wind and solar present a viable alternative to 29 

carbon-based sources. The ongoing availability and security of global energy is one of the 30 

key blockages to future sustainability [1] and further research and investment is needed 31 

for effective large-scale adoption in the coming years. The continued growth of renewa- 32 

bles capacity, led by wind and solar, complicates the power grid composition and in par- 33 

ticular how it is operated to deliver energy reliably. Intelligent solutions are needed to 34 

ensure optimal exploitation and grid integration of renewables. This paper addresses two 35 

vital aspects of renewables integration by exploring possibilities for advanced solutions 36 

in this space from both the generating device and the power system operation perspec- 37 

tives. The first aspect examines how the capacity of existing wind turbine (WT) generators 38 

may be expanded at low cost through advanced control to exploit device design margins. 39 

The second aspect considers the application of machine learning methods to assist with 40 

the necessary power flow optimisation in a power network dominated by low carbon re- 41 

newables. . 42 

Enhanced utilisation of the existing wind turbine capacity essentially looks at a low- 43 

cost retrofitable extension of the wind generator’s nominal operational envelope. Such a 44 

solution could increase in-service capacity above the pre-installation design rating, with- 45 

out replacing major system components. However, this requires the system components 46 

to be operated at higher than nominal rating, hence better understanding the in-service 47 
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stresses is required. Improved sensing through advanced condition monitoring tech- 48 

niques for thermal feedback, integrated with the WT control for power generation man- 49 

agement is generally needed to facilitate such schemes. Thermal margins in WT electrical 50 

generators [34] and power electronic converters [2]can be sizeable and their full exploita- 51 

tion could provide an increase in in-service system capacity.  52 

The WT industry has reported limited exploration of technologies to increase the per- 53 

formance of in-service WT generators and hence annual energy production: up to 5% in- 54 

crease is identified through the use of ‘over-rating control’, depending on the size and 55 

specifications of the upgraded WT system[3][4]. This was accomplished by inserting ad- 56 

ditional hardware and software upgrades, taking into account site conditions such as am- 57 

bient temperature, wind speed, generator and grid side voltages and most importantly 58 

the drive-train components’ current loading, which are seen as key factors in determining 59 

the WT operational envelope [3]. However,[5] argues that the limiting factor is hotspot 60 

temperature, rather than current, so credible real-time WT drive-train temperature meas- 61 

urements are necessary to extend the WT operation envelope. The existing WT drive- 62 

trains employ conventional temperature sensors such as thermocouples and resistance 63 

temperature detectors for this purpose [6]. Despite offering effective low-cost sensing so- 64 

lutions these conventional sensors have access limitations and are electrically conductive 65 

which may cause safety issues [7]. Crucially it is difficult to locate conventional sensors 66 

where the key device hotspots occur (e.g. generator winding coil centres, power electronic 67 

switch junctions).  68 

Fibre optic fibre Bragg grating (FBG) sensing technology has recently emerged as a 69 

viable alternative, offering the capability for in-situ, in-service distributed hotspot meas- 70 

urement that simultaneously provides electrical isolation and is immune to electromag- 71 

netic interference [8]. Despite its wide commercial usage for WT blade strain monitor- 72 

ing[9], FBG sensing applications for WT drive-train temperature measurements have not 73 

yet received much attention among WT manufacturers. However, academic research 74 

works have shown the feasibility and robustness of FBG sensors for temperature meas- 75 

urements in various parts of electrical machines for instance end-windings, stator slot cen- 76 

tres, rotor surfaces, [8][10] but also in power electronic switches where direct thermal on- 77 

chip thermal sensing was shown to be possible [11][12][13]. These sensing applications 78 

allow for an unparalleled awareness of the thermal conditions of key device locations and 79 

could be integrated into modern WT generators, which can directly be translated into 80 

much improved understanding of the in-service operating envelope. 81 

The real-time integration of temperature sensors with an electrical machine and 82 

power converter controller would thus provide a way to extend the wind generator’s op- 83 

erating capacity in-service, past the conservative nominal values, in a controllable man- 84 

ner. Research works have demonstrated bespoke electrical machine drives with closed- 85 

loop thermal feedback integrated with the relevant field-oriented controllers for improved 86 

performance in automotive applications [14][15][16] but schemes of this type have not 87 

been widely researched in wind power generation. Similarly, the research on FBG sensing 88 

application in electrical machines and drives has to date been largely devoted to under- 89 

standing the sensing implementation without integrating these capable sensors with real 90 

time control for improved performance management. This paper aims to review the avail- 91 

able literature and build on this to explore a possible framework to implement FBG sens- 92 

ing and thermal management of a WT generator with overrating control, and the general 93 

requirements for its implementation. 94 

The second aspect of this paper centres on the transformative impact that machine 95 

learning (ML) technologies have on Optimal Power Flow (OPF) within modern power 96 

systems, which are integrating renewable energy sources at an unprecedented rate. As the 97 

energy landscape shifts towards renewables like wind and solar, the inherent variability 98 

and unpredictability of these sources pose significant challenges to traditional OPF mod- 99 

els [17] . These models, originally designed for more stable and predictable energy 100 
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sources, are not equipped to handle the dynamic fluctuations that renewable energies in- 101 

troduce. This situation necessitates a paradigm shift from static and deterministic OPF 102 

models to those that are dynamic and adaptive, capable of real-time analysis and re- 103 

sponse. ML offers an innovative solution, employing sophisticated algorithms to process 104 

continuous streams of data from grid sensors and smart meters. By doing so, ML enables 105 

the real-time optimization of power flows and predictive monitoring of the system’s op- 106 

erational health. This dynamic learning and adaptive response capability ensure that the 107 

grid can maintain stability and efficiency even under the fluctuating conditions that re- 108 

newables introduce [18]. Moreover, the integration of ML into OPF can lead to more in- 109 

formed and proactive management strategies, enhancing the grid's ability to cope with 110 

immediate and future challenges while optimizing resource utilization and minimizing 111 

operational risks. 112 

Expanding further, the incorporation of machine learning into OPF redefines the 113 

boundaries of grid management from a computational task to a strategic governance 114 

framework. With ML, the grid is not only a network of physical power flows but also a 115 

platform for intelligent decision-making, where data-driven insights lead to better control 116 

and optimization decisions [19]. This advanced approach facilitates a transition from re- 117 

active to proactive grid management, where potential issues can be anticipated and miti- 118 

gated before they escalate. Furthermore, the ability of ML to integrate with existing grid 119 

infrastructure introduces a layer of resilience and adaptability previously unattainable 120 

with conventional OPF methods [20].  This paper will therefore also review the specific 121 

ML techniques that enhance OPF, such as deep learning and reinforcement learning, ex- 122 

amining their roles in optimizing grid operations against the backdrop of increasing re- 123 

newable integration. This discussion will complement this review by providing an outline 124 

of the necessary technological advancements and proposing changes in regulatory frame- 125 

works to effectively incorporate these intelligent systems into everyday grid operations. 126 

The underlying aim is to provide insights into a possible path forward for energy systems, 127 

emphasizing the critical role of machine learning in ensuring that the grid not only sur- 128 

vives but continues to improve it functionality in the face of evolving global energy de- 129 

mands and the push towards sustainability. 130 

This paper is organised as follows. Section 2 starts with a brief background regarding 131 

the advanced monitoring and control for over-rating operation of a WT. The rest of Section 132 

2 is devoted to reviewing the relevant topics such as the WT thermal condition monitor- 133 

ing, electrical machine thermal design limitations and margins, thermal feedback integra- 134 

tion  electrical machine controller, and WT power curve upgrade. Section 3 reviews the 135 

application of machine learning methods to optimal power flow, discussing both deter- 136 

ministic and probabilistic OPF models, the integration of deep learning and reinforcement 137 

learning techniques, and the role of these technologies in enhancing real-time grid opera- 138 

tion and management. 139 

2. Advanced monitoring and control for optimized exploitation 140 

 This section presents a review of challenges and opportunities for improving the 141 

exploitation of WT generators through over-rating control, underpinned by advanced in- 142 

situ thermal monitoring. The WT generator thermal monitoring is first reviewed, followed 143 

by an overview of the generator operating margins and limitations. The possible control 144 

architectures are then presented and the general implementation requirements of the ther- 145 

mally controlled over-rating capability in variable speed WT generators are explored. 146 

Monitoring of thermal, mechanical and electrical operating parameters in wind tur- 147 

bines (WTs) has a vital role to play in managing their in-service utilisation. This is partic- 148 

ularly relevant for the WT drivetrain and its generator and converter, which are the main 149 

electromechanical energy conversion components. In-service abnormalities can cause de- 150 

viations from recognised parameter values for operation in the nominal range [21]. The 151 

ability to measure these key operating parameters of WT subassemblies whilst in-service 152 
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is imperative for recognition of abnormal operating states, in time to establish mitigating 153 

actions.  154 

Targeted observation of temperature rise in WT components has been used for fault 155 

detection [22]. The nominal current ratings of the WT generator and power converter are 156 

directly associated with permissible thermal levels in their windings and power electronic 157 

switch junctions respectively. The accurate observation of worst-case, in-service, temper- 158 

ature in these, may permit over-rating power to be extracted by the WT in order to yield 159 

a desirable increase in energy recovery. The aim is to load the generator beyond the design 160 

temperature in nominal conditions whilst ensuring its integrity is not, or is minimally, 161 

compromised. For this to be achieved, in addition to improved monitoring, advanced con- 162 

trol routines are needed that can react intelligently to improved sensing feedback and are 163 

able to deliver improved WT operational capability, while keeping its assets within safe 164 

integrity margins. Examples include allowing controlled overloads under cold ambient 165 

conditions, or for short durations, with no or minimal risk of damage or alternatively ex- 166 

tending service life in faulty conditions through redistributing load to other WTs. The 167 

availability of such solutions would open attractive opportunities to develop more resili- 168 

ent WT systems needed to underpin our Net Zero transition. 169 

2.1 Wind turbine thermal condition monitoring  170 

WT thermal monitoring has long been used and remains standard in practical appli- 171 

cations, with a range of thermal sensors fitted to WT drivetrains [23]. The sensor type and 172 

location, and its measurand fidelity and resolution can vary across different possible mon- 173 

itoring solutions, extending from e.g. low resolution measurements provided through WT 174 

supervisory control and data acquisition (SCADA) systems to higher resolution measure- 175 

ments from dedicated condition monitoring platforms [24]. This section provides an over- 176 

view of the general thermal monitoring techniques and their use in WT drivetrains, and 177 

identifies potential techniques for achieving improved sensing. 178 

Existing regulations for WT system certification stipulate the minimal set of thermal 179 

and other sensing points for the entire WT structure and in particular its drivetrain [6]. 180 

Where thermal monitoring of the drivetrain and the generator is concerned, the use of 181 

conventional thermal sensing elements (e.g. thermocouple (TC), or resistance temperature 182 

detector (RTD)) is recommended. Sensors may be embedded in various locations of inter- 183 

est, such as the end winding, winding slot centre and stator pack laminations [25]. A Sie- 184 

mens WT commercial condition monitoring system known as SIPLUS CM [26] utilises 185 

vibration signals as well as temperature signals measured from the WT drive train com- 186 

ponents including the generator, through an SIMATIC S7 module supporting the use of 187 

various different TC and RTD sensors.  188 

Conventional TC and RTD thermal sensors are electrically conductive and require 189 

wiring, so cannot easily be placed in close contact with the active current-carrying copper 190 

conductor in an arbitrary position. Due to these sensor’s installation requirements and 191 

bulk the locations where hottest temperatures occur can be impractical or challenging to 192 

measure in and hence the hottest temperature measurement of the active copper conduc- 193 

tors in a machine may be underestimated. One such scenario is illustrated in Fig. 1 where 194 

for practical reasons TC sensors were installed away from the slot centre where the 195 

hotspot temperature occurs [25]. 196 
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 197 

Figure 1. Illustration of typical conventional sensors positions  198 
 199 

The sensors and wiring can occupy a relatively large space, and so cannot provide suffi- 200 

cient temperature measurement points for detailed thermal mapping. The electrical con- 201 

ductivity of conventional sensor-based thermal sensing makes the monitoring system 202 

complicated and less reliable [27]. In addition, conventional sensors have low immunity 203 

to electromagnetic interference (EMI).  204 

Due to the these disadvantages of TC and RTD sensors for temperature monitoring, 205 

there is a continued interest in alternative temperature sensors, which could operate ef- 206 

fectively in EMI rich and electrically conductive environments. A fibre optic sensing tech- 207 

nology known as Fibre Bragg Grating sensors (FBGs) has emerged that offers the desired 208 

features needed to provide improved in-service monitoring solutions for electrical ma- 209 

chines. The FBGs can perform multi-physical sensing [10], possess a multiplexing capa- 210 

bility, are electrically non-conductive, exhibit a high level of immunity to EMI, are suitable 211 

for use in harsh environments, and are of small size and thus suited to applications where 212 

weight and size are critical [28]. An additional beneficial feature of FBGs is their superior 213 

data transmission over a long distance without any data loss [29].  214 

FBGs require a laser source and interrogation unit, which is expensive compared 215 

with TC and RTD technologies. However, FBGs are widely employed by WT manufac- 216 

turers as strain-sensors for WT blades and for structural health monitoring. The FBGs can 217 

be installed at multiple points on the turbine blades or tower, facilitating the detection of 218 

small cracks and abnormalities in rotating blades and their structure [9]. Examples of com- 219 

mercially installed FBGs in Portugal, the United Kingdom, and France for strain measure- 220 

ment operated at various sampling rates of 25 Hz, 100 Hz, and 2 kHz, and were designed 221 

and utilised to detect cracks in the blades, unbalanced turbine towers or blades, and icing 222 

thickness [30].  223 

Despite being commercially employed for strain measurements, FBGs have not yet 224 

received sufficient attention from WT manufacturers for drive train monitoring applica- 225 

tions, particularly for generator and converter thermal condition monitoring. Recent re- 226 

search has demonstrated the feasibility of thermal sensing using FBGs embedded in vari- 227 

ous locations within electrical machines, such as stator end-windings [31], slot centres [7], 228 

rotors [32], and bearings [33], as well as power electronic switches [12]. In these studies, a 229 

single FBG or an array of FBGs was installed in the points of interest in the studied device 230 

geometry, and in-service tests were performed under different practical healthy and fault 231 

conditions, indicating reliable response and measurement of temperature. 232 

There are specific requirements for successful implementation of FBGs during instal- 233 

lation and operation [34]. The FBG’s intrinsic cross-sensitivity to temperature and strain 234 

needs addressing through appropriate sensor packaging, to allow exclusive sensing of 235 

thermal only or strain only [7]. FBGs are of small size and flexible and thus allow for in- 236 

situ observation of localised excitation, however the accurate determination of precise lo- 237 

cations of highest excitation to sense in, can be a challenge in practical device geometries. 238 
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Experimentally-verified modelling [7] has therefore been employed to determine the op- 239 

timal FBG sensor positions. The FBG sensor-to-measurand interface also requires careful 240 

consideration, where often suitable packaging is required to protect the sensor and ensure 241 

proper functionality during electrical machine operation [31]. While FBGs have shown 242 

reliable, in-situ thermal and other monitoring, the interpretation of the diagnostic infor- 243 

mation contained in the high fidelity thermal data requires further research [8], including 244 

for WT drivetrains.  245 

 246 

2.2 Thermal design limits and margins 247 

Three factors: electromagnetic, mechanical, and thermal, limit the current or torque 248 

density in electrical machines [35]. The saturation level of the core magnetic materials se- 249 

lected in the design phase determines electromagnetic limitations. The maximum me- 250 

chanical operating speed is constrained by the stiffness of the bearings and shaft. The ther- 251 

mal limit of electrical motors and generators is determined by the winding insulation tem- 252 

perature as one of the most vulnerable parts of the machine when subjected to thermal 253 

excitation caused by nominal or abnormal operating conditions. In permanent magnet 254 

machines, temperature dependency of the demagnetisation characteristic is also a con- 255 

straint.  256 

The National Electrical Manufacturers Association (NEMA) [36] classified insulation 257 

system classes by letters: A, B, F, and H, specifying thermal ratings associated with each 258 

class. The ambient temperature of 40℃ has been established as a reference for all of the 259 

insulation classes, followed by the maximum temperature rise of each class. The combi- 260 

nation of the ambient temperature and the temperature rise determines the maximum 261 

allowed operating temperature for a given insulation class. For example for all induction 262 

machines rated above 1 kW, continuously operating at a service factor (SF) of 1 and 1.15, 263 

insulation class A has the lowest permitted temperature rise of 60℃, and 65℃ respec- 264 

tively while, insulation class H has the highest temperature rise of 125℃ and 135℃, as 265 

shown in Table 1. The Table 1 data is obtained by the average winding temperature meas- 266 

urement using the “resistance method” detailed by the IEEE Std 112 [37], since winding 267 

resistance is temperature-dependent. This method neglects winding hotspot temperature 268 

measurement. To overcome this issue, NEMA utilises slot-embedded TCs and RTDs tem- 269 

perature sensors to measure the winding hotspot temperature in the slots. Table 2 shows 270 

the NEMA stipulated temperature rise of all insulation classes for induction machine rat- 271 

ings above 1120 kW at SF 1 and 1.15 (continuous operation) measured by the winding 272 

slot-embedded sensors. The limitations of slot-embedded TCs and RTDs have been de- 273 

tailed in the previous section: due to the practical challenges of measuring the point of 274 

highest temperature reliably with these sensors often a hot spot temperature allowance is 275 

introduced to provide a thermal safety margin. An interesting in-situ sensing alternative 276 

is presented by the FBG sensor, where sensors can be embedded in slot centre to facilitate 277 

credible measurement of the winding temperature hotspots without safety and size con- 278 

cerns [7]. 279 

 280 

 281 

 282 
Table 1: Insulation class rating measured by resistance method at service factors 1 and 1.15 for all 283 
induction machine above 1 kW rating [36]  284 

NEMA insulation class rating meas-

ured by resistance method 

Temperature rise in degrees, ℃ starting from the ambient temperature of 40 

℃ 

Insulation class SF 1 SF 1.15 
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A 60 65 

B 80 85 

F 105 110 

H 125 135 

 285 
Table 2: Insulation class rating measured by slot-embedded TC and RTD at service factors 1 and 286 
1.15 for induction machine of over 1120 kW rating [36]  287 

NEMA insulation class rating meas-

ured by slot-embedded sensors 

Temperature rise in degrees, ℃ starting from the ambient temperature of 40 

℃ 

Insulation class SF 1 SF 1.15 

A 65 75 

B 85 95 

F 110 120 

H 135 145 

 288 

The values in Table 1 and 2 give winding insulation temperature thresholds that are 289 

typically higher than the hotspot temperatures of in-service machines operating in their 290 

nominal rated conditions [38]. For instance, the winding hotspot temperatures of a com- 291 

mercial 0.55 kW induction motor and 5.5 kW permanent magnet motor, measured using 292 

FBGs in a healthy full-load continuous duty cycle (S1) were 96℃ at an ambient tempera- 293 

ture of 23℃ [7] and 80℃ at an ambient temperature of 21℃ [31] respectively. The test 294 

motor insulations were class F with class B temperature rise, corresponding to a thermal 295 

rating of 155℃, with an 85℃ rise, as specified by NEMA. For large machines, thermal 296 

sensing using FBGs for a 42 MW hydropower generator, was reported in [39] where the 297 

recorded stator winding surface temperature was 95℃ during full-load operation condi- 298 

tions. Therefore, it is clear that, typically, there is a thermal design margin in practical 299 

applications. This margin offers insulation lifetime extension and further thermal safety 300 

[38], as the lifetime of winding insulation is inversely proportional to winding operating 301 

temperature. For any 10℃ increase in winding temperature, the insulation lifetime is de- 302 

creased by half [35]. Similarly, by lowering the winding operating temperature by 10℃  303 

the insulation lifetime is doubled. Steady-state operation within a lower temperature 304 

range can also increase thermal safety margins in overload conditions, with a variable- 305 

speed drive, and with a time-varying duty cycles and transients [38]. However, the poten- 306 

tial extra capacity that could be extracted through over-rating, by exploiting of the thermal 307 

design margins (i.e. by running windings hotter) can present attractive opportunities for 308 

increasing the output in some applications.  309 

2.3 Integration of closed-loop thermal feedback with electrical machine control  310 

Despite the possible extra capacity contained in the thermal margins, only a limited 311 

number of researchers have explored the operation of electrical machines close to their 312 

thermal design limits. This would only be possible if the thermal state of the machine is 313 

reliably and accurately measured and integrated with real-time control able to facilitate 314 
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an optimal trade-off between more torque (or power) and higher temperature, which can 315 

potentially reduce insulation lifetime for a given operating scenario [40].  316 

Closed-loop temperature feedback for active thermal management has been imple- 317 

mented on a switched reluctance motor [14], a permanent magnet motor [15], and an in- 318 

duction motor [16] for automotive applications to extract short bursts of higher maneu- 319 

vering torque. [14] [15] [16] have employed model predictive control (MPC) in conjunction 320 

with simple and complex lumped parameter thermal networks for temperature estima- 321 

tion. Motor losses were first calculated as inputs to the thermal network and then the tem- 322 

peratures were predicted, converted into a current limit and fed back to a field-oriented 323 

torque controller as illustrated in Figure 2. This mechanism enables a thermally controlled 324 

machine to limit the operating temperature to a desired reference point, which cannot be 325 

guaranteed in a controlled machine without thermal estimated temperature feedback ei- 326 

ther sensed or derived from a lumped parameter thermal network (LPTN) or an alterna- 327 

tive estimator [15]. With this proposed active thermal control, if a measured temperature 328 

is lower than its set point, the machine can be pushed to allow a higher current and so 329 

torque, and if a machine's temperature is close to/or exceeding the design limit, the con- 330 

troller acts to reduce the current or torque limit leading to temperature reduction. Further 331 

research explored an increase in performance of an emulated automotive drive using ac- 332 

tive thermal management integrating both the power electronic device and the motor 333 

winding  334 

  335 

Figure 2. Induction motor active thermal management using model predictive control [16] 336 
  337 

temperatures in real-time with a field-oriented controller considering not only conven- 338 

tional voltage and current boundaries but also the thermal design limits [40]. The thermal 339 

monitoring in this work is however either estimated using a simple thermal model which 340 

could underestimate the temperature, or via a complex thermal model which could be 341 

subject to error and increases computational requirements. While limited, the existing re- 342 

search on active thermal control of electric motors and drives indicates a strong potential 343 

for intelligent and reasonably low-cost output capacity improvement. In addition, the ex- 344 

isting work is largely based on utilising estimator type models for thermal monitoring, 345 

hence improving the quality of real-time thermal measurement feedback would be of ben- 346 

efit to further improve the efficacy of schemes of this type in various applications.  347 

2.4 Wind turbine overload capability and extracting more energy  348 

Improvements in the existing WT systems to capture more wind energy through 349 

over-rating, have been investigated independently by WT manufacturers. The “Energy 350 

thrust” by Siemens Gamesa [3] and “PowerPlus” by Vestas [4] both claim to enable an 351 

annual increased energy production (AEP) of up to 5%. Examples of the upgraded com- 352 

mercial turbine models are SWT 2.3, 3 and 3.6 manufactured by Siemens Gamesa, and 353 

V82-1.65MW, V90-1.8MW and V100-1.8MW manufactured by Vestas. Both turbine man- 354 

ufacturers have upgraded the entire power curve operating regions in this process: the 355 

maximum power point tracking (MPPT) region, the constant power region, and the cut- 356 



 9 of 30 
 

 

out wind speed extension. The original and the upgraded power curves reported for a 357 

typical WT by Vestas are displayed in Figure 3 [41][4] . In the MPPT region, the aerody- 358 

namics has been upgraded using vortex generators mounted on the turbine blades. In the 359 

full load operating region (i.e. the constant power region), the original power curve has 360 

been uprated by making use of load margins performed by  361 

 362 

Figure 3. Vestas typical original and upgraded WT power curves reproduced from [4] 363 
 364 

taking into account the site condition thresholds (ambient temperature, current rat- 365 

ings of WT system components, gusty wind level, and the magnitudes of both converter 366 

and grid side voltages), implemented through adjustment of control parameters. In the 367 

constant power region of operation, the WT operates at a new maximised capacity with 368 

no upgrade or replacement to the core components such as the generator or power con- 369 

verter hardware. The turbine cut-out wind speed is also extended from 25 m/s to 30 m/s 370 

contributing to the increase in turbine output power.  371 

The manufacturers have indicated that the effective implementation of these tech- 372 

niques is highly reliant on more reliable sensing of multiple WT measurands. However, 373 

due to the lack of information available in the public domain, the details of the existing 374 

work on WT power curve upgrade through over-rating are not fully understood. The 375 

commercial work adjusts the current limits in key turbine power conversion components 376 

based on ambient temperature [41] with control of the WT operating point through a com- 377 

bination of reference torque and pitch control.  378 

Since the fundamental physical constraint is temperature, rather than current, ther- 379 

mal design limits and temperature measurements offer a better way to the set the degree 380 

of WT over-rating. Enhanced closed-loop thermal feedback, similar to that discussed in 381 

the previous section for electric vehicles, could be applied to a WT[42] [5][ref your pa- 382 

pers?] For increased power yield a distributed FBG sensor network is proposed to monitor 383 

in-situ, thermal hotspots across the WT power electronic drive and the electrical generator 384 

to be integrated with a dedicated real time controller (as illustrated in Figure 4). With such 385 

feedback, an appropriate control would be able to react to prevailing wind conditions and 386 

real-time grid demand, to set the generator/drive operating point to achieve different 387 

goals. For example: 388 

a) operating close to, or at the thermal design limit, in conditions of high wind, so 389 

the WT energy yield is increased,  390 
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b) temporarily exceeding the thermal design limit, in a controlled fashion in scenar- 391 

ios requiring a sudden and large power injection into the grid, for grid frequency 392 

support, or to compensate for the failure of another WT.  393 

The availability of such an active thermal sensing scheme would have the potential 394 

to provide more resilient WT drives, capable of more intelligent usage of the existing hard- 395 

ware capacity. 396 

 397 

Figure 4. Vision for WT drive train controllable thermal management using FBG sensors 398 

2.5 Discussion and Summary 399 

With the push towards clean energy, over-rating of existing renewable generation 400 

installations is attractive, particularly in wind power, where there are plentiful opportu- 401 

nities to uprate existing WTs to increase the available energy output. The key to this is 402 

ensuring improved, real-time monitoring of component temperatures with more intelli- 403 

gent power management. FBG temperature sensors have been shown to be effective in 404 

power conversion devices and generator systems. Moreover, FBG sensors are applied for 405 

structural monitoring in WTs already, so some of the implementation infrastructure is 406 

available in the field. The integration of improved sensor feedback with enhanced control 407 

would allow the development of more resilient WT drives, able to utilise active thermal 408 

control for increased power output or grid support at a minimal cost where there is an 409 

already existing fibre optic interrogation infrastructure (such as that used for in-situ blade 410 

strain monitoring). However, while the general cost of FBG sensing is continuously re- 411 

ducing and FBG sensors are now largely generally comparable in cost to alternative con- 412 

ventional sensing the cost of interrogator systems needed to illuminate and operate the 413 

sensing fibres remains reasonably high. While this cost can be prohibitive for condition 414 

monitoring and sensing applications of FBG technology in low value assets, for large high 415 

value assets such as WT systems it is comparable to alternative commercially available 416 

high end condition monitoring solutions [8]. Furthermore, the operational advantages 417 

and possible ancillary service potential of WT systems retro-fitted with active thermal ca- 418 

pability would have the potential to generate extra revenue from energy production and 419 

grid support that would over time offset the installation cost of in-situ monitoring sys- 420 

tems. Finally, the development of alternative low cost solutions for reliable thermal feed- 421 

back based on advanced in-situ sensing based validated thermal estimators would pro- 422 

vide alternate low cost methods for thermal monitoring but requires further research.  423 

This would allow for both the improvement of legacy WT equipment that has been 424 

in field operation for extended time and the enhancement of modern WT designs. There 425 
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is already demonstrable industrial interest in development and application of these tech- 426 

niques, however much further work is needed to facilitate the over-rating functionality in 427 

the field on a large scale and ensure the methodology is transparent and applicable to 428 

more modern WT designs 429 

3. Optimal power flow with machine learning 430 

An optimal power flow (OPF) was initially proposed in 1962 by Carpentier [43]. The 431 

OPF is a non-convex, non-linear, and large-scale optimization problem. OPF problems 432 

have been solved by the grid operator by finding the most economic generation dispatch 433 

point to meet electric demand while satisfying all the equality and inequality constraints 434 

of the network[44].  In other words, OPF assists the grid operator in controlling the power 435 

flow within the power gird without violating grid constraints. Moreover, it gives the op- 436 

erator useful support in the planning and operation of the grid [45].  437 

The OPF problems can be categorized into two groups. The first group is determin- 438 

istic OPF (D-OPF) and the other group is probabilistic OPF (P-OPF)[46]. D-OPF has been 439 

widely used in solving optimal flow. This type of OPF does not consider stochastic fea- 440 

tures, which means explicit values of the electricity demand and sustainable generation 441 

are required to deal with this type of problem.  A variety of methods have been devel- 442 

oped to solve D-OPF, e.g., evolutionary algorithm [47] and swarm intelligence [48]. How- 443 

ever, the nonlinearity characteristics of equality constraints in the power network intro- 444 

duced by loads or generators make the swarm intelligence approaches unsuitable in solv- 445 

ing OPF problems effectively. In contrast, evolutionary algorithms can be highly effective 446 

to optimize P-OPF when the solution space is adequately small or a considerable amount 447 

of time is available for the optimization process [49].  448 

However, the electrical power systems have now become highly stochastic and un- 449 

certain, especially when distributed generators (DGs) like wind turbines, and solar pho- 450 

tovoltaics are connected in the generation process.  In fact, it is difficult to use the opti- 451 

mization methods mentioned above in solving the OPF within a sufficient time, princi- 452 

pally when the stochastic behaviour of the DGs and uncertainty of the demand are con- 453 

sidered [50].  454 

 455 

3.1 Machine learning methods for OPF  456 

Recently, driven by the growing amount of data due to using extensively smart sen- 457 

sors and meters in energy production and consumption, data-driven approaches with ma- 458 

chine learning (ML) have been developed to use these data to overcome the limitation of 459 

the aforementioned methods in solving the OPF problems. ML methods provide the sys- 460 

tem the capability to automatically learn from historical data and improve its abilities 461 

without requiring an entire system identification or prior information of the environment 462 

[51]. In other words, ML methods are an efficient tool to deal with the uncertainty of the 463 

power system by generating optimisation and control decisions in real-time. Therefore, 464 

ML methods are very powerful for solving OPF in real time by taking into consideration 465 

the uncertainty and stochastic of the power system variables. ML approaches are divided 466 

into many methods, two of which are considered the most promising approaches in solv- 467 

ing OPF in real-time, namely i) deep learning (DL) and ii) reinforcement learning (RL) 468 

[52].  469 

DL is a part of machine learning. In DL, computers train the models to process and 470 

learn from raw data, and that is possible by dint of deep Neural networks (DNNs) model. 471 

The structure of DNNs is inspired by the human brain which is made up of multiple lay- 472 

ers. The first layer is the input layer, whereas the last layer is the output layer and the 473 

layers in the middle are called hidden layers. These layers consist of many processors 474 

called neurons, which are connected to each other. The input layers receive raw data from 475 

an environment, e.g., the data from power grid components, which are sent to hidden 476 

neurons through connections. The hidden neurons become activated through weighted 477 
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connections and the results are produced from the output layer. This process is called a 478 

feed-forward neural network. If the results of DNN do not match the correct results, the 479 

backpropagation algorithm is used to update these weights optimally. The loss function 480 

is the difference between the true value and the predicted value that is obtained from 481 

DNN. The DNN uses the backpropagation algorithm, e.g., gradient descent to reduce the 482 

difference between true and predicted values. A DL method is suitable to work with high- 483 

dimensional environments[53].  484 

RL is also a subset of machine learning, concerned with how the agent takes a se- 485 

quence of actions in a dynamic and uncertain environment in order to increase the cumu- 486 

lative reward. RL has a number of base elements including agents, environments, states, 487 

actions, and rewards. An agent takes some actions in an environment to maximize the 488 

rewards. An action is the group of potential moves that the agent is able to make at each 489 

state. An environment is a place where the agent can take actions. A state is a situation 490 

where the agent locates itself. RL can be formulated as a Markov decision process (MDP) 491 

that consists of state space, action space, reward function, transition probability function, 492 

and discount factor. 493 

In data-driven RL OPF methods, the agent of RL shows great capabilities to make 494 

sequences of decisions in the absence of power grid information. Using reinforcement 495 

learning in a power grid decision-making has significant advantages. The agent seeks to 496 

make optimal actions for each state by interacting with grid components.  RL agent does 497 

not require any initial knowledge to make these actions on the grid. Moreover, the RL 498 

agent can achieve many objectives through offline training and online implementation. 499 

Lastly, the RL is easier to be applied in different scenarios in real-time OPF as compared 500 

with traditional optimization approaches. The reason is that a trained RL agent is able to 501 

calculate real-time optimization problems in a grid within several milliseconds [54]. Con- 502 

sequently, the RL is a very efficient tool to be used to solve real-time optimization prob- 503 

lems. However, RL does not work appropriately in continuous state-space like OPF. Fur- 504 

thermore, it suffers from dealing with large dimension data and faces various challenges 505 

related to transition function uncertainty and inefficient data usage. 506 

To enhance the ML performance, researchers have made efforts to fill the gap by 507 

combining RL with DL to create a deep reinforcement learning (DRL). As mentioned 508 

above, RL has great capabilities to make sequences of decisions in an uncertain environ- 509 

ment by learning the optimal action through interactions with a stochastic or deterministic 510 

environment. To increase the performance of RL in solving the high-dimensional real- 511 

time problem, researchers have combined a deep neural network (DNN) with RL, where 512 

the DNN works as a function approximator. 513 

  514 

3.2 OPF based on objective functions 515 

Each optimization problem like OPF has a dedicated objective function, which needs 516 

to be optimized with respect to the target variables of the power system in the presence 517 

of constraints imposed on those variables. The aim of this part is to classify the OPF in 518 

terms of objective function.  Different DRL approaches are applied to find the best OPF 519 

solution for the proposed objective function. 520 

 521 

3.2.1 Operating cost minimization  522 

OPF supports the network operators to minimize operational costs. Since reducing 523 

the electricity cost is considered as one of the main goals for the operator of the grid, it has 524 

been used widely as an objective function [55].  525 

Due to the high-level penetration of distributed generators (e.g. solar PVs, wind tur- 526 

bines) in distributed networks, controlling these devices become very important to mini- 527 

mize the running cost. In [17], a soft actor-critic is proposed for solving the optimal active 528 

power dispatch on the IEEE 118-bus. The Lagrange multiplier method is used to improve 529 

the performance of the soft actor-critic algorithm in a high-dimensional discrete action 530 
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environment. The proposed algorithm is more effective in finding active power dispatch 531 

points when compared with the proximal policy optimization and double deep Q-net- 532 

work. To deal with a continuous action space, the authors in [56] introduces a Lagrangian- 533 

based DRL to solve the continuous real-time OPF. The objective of this work is to find the 534 

least generation dispatching cost while the security constraints are satisfied. The critic net- 535 

works are not used due to inducing higher approximation errors. Instead of that, the de- 536 

terministic gradient is approximated analytically. The proposed method reached the best 537 

solution as compared with the supervised learning method. Twin-delayed deep determin- 538 

istic policy gradient (TD3) algorithm is used in [18] to minimize the summation of pro- 539 

duction costs by determining the active power of the generators on the IEEE 118-bus sys- 540 

tem, where a Levenberg-Marquardt method is introduced to the TD3 to mitigate the risk 541 

of divergence solutions. The proposed method is able to find a better solution as compared 542 

with the Deep Deterministic Policy Gradient (DDPG) that is used in [56].  543 

Energy storage (ES), on other hand, is used widely in electrical grids to store excess 544 

power from distributed generators and can be managed optimally to minimize the oper- 545 

ating cost. In [57] DDPG is proposed to control a battery with lookahead constraints in 546 

real-time. A safety layer and two replay buffers are introduced to promote the RL agent’s 547 

action, where the goal of the agent is to increase revenue by operating the energy storage 548 

optimally. The proposed method can reach a cost which is close to the ideal cost, while 549 

the computational time is reduced multiple times as compared with Model Predictive 550 

Control (MPC). In [58], a DRL-based method is proposed to control energy storage and 551 

distributed generators in a microgrid to reduce the purchases of power from the main 552 

grid. The authors in [59] proposed a bottom-up energy internet architecture to model the 553 

integrated multi-microgrid to minimize the overall cost by the optimal control of the en- 554 

ergy storage and distributed generators. The DRL method is utilized to manage the power 555 

sources in the bottom layer and dispatches the decision to the up layer which is connected 556 

to the main grid. The simulation results show that the proposed method outperforms 557 

MPC in minimizing the running cost. 558 

Due to the increasing number of electric vehicles (EVs) which are able to work as a 559 

load or a power source, the authors in[60] developed a control strategy to minimize the 560 

power cost in a microgrid by considering stochasticity associated with electricity price and 561 

renewable resources. TD3 algorithm is utilised to control the distributed generators and 562 

electric vehicles, and simulation results show that the proposed control strategy outper- 563 

forms the traditional particle swarm optimization (PSO) method. To deal with the un- 564 

known transition probability of a distribution network equipped with large-scale electric 565 

vehicle charging and distributed generators, the nodal multi-target policy is proposed in 566 

[61] to schedule the optimal electric vehicle charging while a soft actor-critic algorithm is 567 

used to determine the target levels for the policy. The proposed approach achieves lower 568 

system costs as compared with the proximal policy optimization (PPO) method. 569 

Flexible loads are considered as one of the efficient ways that help to minimize oper- 570 

ating costs. To study the feasibility of using flexible loads, the authors in [62] proposed a 571 

graph reinforcement learning to manage an electrical network that contains both energy 572 

storage and flexible loads. The proposed method is implemented based on a graph atten- 573 

tion network to extract the topology structure information from the electrical grid and 574 

send this information to DDPG to find the optimal formulation in order to manage the 575 

controllable assets. The proposed method is carried out within an IEEE 123-bus system, 576 

and the simulation results show the ability of the method to find the optimal operational 577 

status compared to PSO. To exploit the interruptible loads at the demand side, the authors 578 

in [63] used the dueling deep Q network (DQN) algorithm to minimize the daily load cost. 579 

When faults occur in the distributed networks, the grid operators often try to discon- 580 

nect a number of buses to isolate the affected transmission lines, attempting to ensure the 581 

grid to work continuously without considering the operational cost. The authors in [64] 582 

proposed a method to minimize the running cost even when the faults occur by optimal 583 

controlling the topology and distributed generators. Three-stage reinforcement learning 584 
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is presented to manage an IEEE 33-bus system and the simulation results show the capa- 585 

bility of this approach to reduce the operating cost even when one of the transmission 586 

lines is disconnected. In [65], a batch-constrained soft actor-critic algorithm is developed 587 

to minimize the operational cost by finding the optimal configuration for a power grid 588 

under unforeseen states. The test results show that the proposed method is better than 589 

DQN and SAC in terms of decreasing the system running costs. 590 

Minimizing power loss is deemed one of the techniques to reduce the overall operat- 591 

ing cost by controlling the active and reactive power of the controllable component in the 592 

electric grid. In [55], the OPF is modelled as a stochastic nonlinear programming problem, 593 

and the proximal policy optimization (PPO) is proposed to find the best solution for the 594 

optimization problem by modifying the active and reactive power of the energy storage. 595 

The DRL-based approach reaches the least operational cost for IEEE 33-bus as compared 596 

to the stochastic programming. In [105], TD3 is presented to optimally control the com- 597 

munity microgrid networks with integrated solar PVs, wind turbines and energy storage. 598 

The DRL agent is able to manage the active and reactive power of the grid to minimize 599 

the total power loss. The related work for minimizing the operating cost is summarized 600 

in Table 3.   601 

 602 

 3.2.2 Voltage deviation minimization 603 

An increased number of distributed generators in an electrical grid may lead to a 604 

disturbance in the voltage of the grid. The high penetration of these resources could make 605 

unforeseen fluctuations in the voltage profile due to their stochasticity nature [66]. Inef- 606 

fective controlling of the grid voltage affects the power flow dispatch in the distribution 607 

networks, therefore, the transmission line losses and the electrical price will increase even- 608 

tually [67].  609 

One of the techniques to improve the voltage quality is to control the distributed 610 

generators in an effective way. Optimal reactive power control of the distributed genera- 611 

tors is used widely to decrease the fluctuation of the voltage. The authors in [68] used 612 

DDPG to control the reactive power of the PV inverters in a low-voltage network. Their 613 

simulation results show that the proposed method is able to keep the voltage fluctuation 614 

within the desired limits. The MADDPG algorithm and the attention model are used in 615 

[69] for enhancing the voltage control strategy in the IEEE-123-bus system, where the re- 616 

sults demonstrated that the proposed approach can achieve a better control performance 617 

as compared with a standard MADDPG algorithm. The authors in [70] proposed a two- 618 

stage control scheme to manage DG inverters in the IEEE 123-bus system. In the first stage, 619 

which is called an off-line stage, a jointly adversarial soft actor-critic algorithm is used to 620 

make the inverter agents more robust to reach an optimal solution. Then, the SAC is used 621 

in the second stage (online stage) to control the inverters in real time. The proposed 622 

method outperforms the state-of-art DRL algorithm. Instead of using smart inverters to 623 

control the voltage profile, the authors in [71] proposed the PPO and imitation learning 624 

method to find the optimal set-points for 38 conventional generators in Illinois 200-bus 625 

systems to ensure the voltage within the acceptable range. The proposed method was able 626 

to solve the OPF problem much faster than the interior-point method. 627 

Energy storage technologies have experienced a huge development recently; as a re- 628 

sult they have become another feasible solution to reduce voltage fluctuation. Energy stor- 629 

age can play an important role in distribution networks to participates in minimizing 630 

power fluctuations caused by distributed generators [72]. DQN is proposed in [73] to mit- 631 

igate voltage fluctuations by controlling a single battery. The results showed that a battery 632 

is able to reduce voltage violation caused by the stochasticity of the distributed generators. 633 

Overvoltage issues are caused by high levels of penetration of distributed generators, and 634 

energy storages may not be sufficient to ingest extra power especially during the light 635 

load intervals. Energy storages capacity problem are addressed in [20], where reinforce- 636 

ment learning is combined with MPC to prevent voltage violations under high generating 637 
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conditions. Electric vehicles can be considered as the mobile energy storage, which can 638 

play a significant role to support grid voltage.  The average weighted deep double Q- 639 

network (DDQN) algorithm is introduced in [74] to work as a voltage controller for EVs. 640 

The proposed method outperformed DDQN and DQN in terms of keeping the voltage 641 

within the safe limits. A multi-agent DQN approach is used in [75] to control EVs and ESs 642 

in a low-voltage grid. The distributed generators are integrated with energy storage units 643 

to mitigate the risk of voltage fluctuation. The authors in [76] used DDPG to find the op- 644 

timal schedule of PV and energy storage inverters in an IEEE-34 bus system, and achieved 645 

a better performance as compared to DQN in minimizing voltage fluctuations.  646 

Other approach to regulate the voltage of the grid is to use capacitor banks which is 647 

essentially one type of reactive power compensation devices. DQN algorithm is proposed 648 

to control two capacitor banks in a microgrid [77]. Capacitor banks is categorized as a 649 

slow-timescale device based on the response speed. Two-timescale voltage management 650 

plan is therefore developed in [78], to minimize voltage deviations. DQN algorithm is 651 

utilized to optimize the setpoints of PV inverters on a fast timescale for reducing the in- 652 

stantaneous voltage violations. Capacitor banks can also be configured by the proposed 653 

algorithm for controlling the long-term voltage deviations. The second type of reactive 654 

power compensation devices is associated with the on-load tap changers which can be 655 

used to regulate the voltage. The DDPG algorithm is used in [79] to learn an optimal set- 656 

ting of on-load tap changers in terms of mitigation of the voltage sags. Constrained soft 657 

actor-critic algorithm is presented in [80]to find an optimal configuration of on-load tap 658 

changers and capacitor banks. The simulation results show that the proposed algorithm 659 

achieves a better performance as compared with the state-of-the-art RL algorithms and 660 

the conventional optimization-based algorithms. A static VAR compensator (SVC) is a 661 

compensation device used for providing fast-acting reactive power in distribution sys- 662 

tems. The soft actor critic algorithm is introduced in [81] to enhance the ability of the grid 663 

to accommodate the high fluctuation of the voltage caused by DGs. The proposed algo- 664 

rithm appears the best to control the reactive power of PV inverters and SVCs to mitigate 665 

the risk of voltage violations as compared to the PSO algorithm. A multi-agent soft actor- 666 

critic algorithm is used to achieve decentralized control of SVCs and energy storage units 667 

for voltage regulation in the distribution system [82] .The sparse pseudo-Gaussian process 668 

is integrated with the proposed algorithm to learn the relationship between the power 669 

injections and voltage magnitude of each bus. The results show that multi-agent soft actor- 670 

critic (MASAC) outperformed the single-agent SAC and the traditional optimization- 671 

based algorithms. 672 

Reconfiguration of the distribution network plays a significant role in increasing the 673 

voltage quality of the grid by finding the optimal configuration of switching devices over 674 

a particular time period. The DQN algorithm is used as a smart controller to manage the 675 

power flow by controlling grid switches to make the voltage fluctuation within acceptable 676 

limits [83]. To examine the ability of the network reconfiguration approach in reducing 677 

the voltage violation under different loading and generating conditions, the PPO algo- 678 

rithm is proposed in [84]to control 9 switches (sectionalism and tie switches) in a mi- 679 

crogrid. The experimental results show that the proposed algorithm produces an effective 680 

and much faster solution as compared with DQN. 681 

Load shedding is considered as one of the effective and economic approaches to pro- 682 

tect the power system against voltage swings. The DDPG algorithm is combined with the 683 

convolutional neural networks to learn the optimal load-shedding configuration to max- 684 

imize voltage stability [85]. The proposed method successfully increased the quality of the 685 

voltage by determining the location and amounts of load shedding in the New England 686 

39-bus system. The MASAC approach is also presented in [86] for voltage regulation in a 687 

low-voltage network, where the MASAC algorithm uses a decentralized execution frame- 688 

work to control loads in commercial buildings for mitigating voltage swings. The experi- 689 

mental results demonstrate that MASAC outperformed the MADDPG algorithm. The re- 690 

lated work for minimizing the voltage deviation is summarized in Table 4.   691 
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 692 

3.2.3  Emission cost minimization  693 

Climate change and global warming are considered as one of the main challenges 694 

that faces our world presently. Traditional generators and vehicles produce almost 60% 695 

of greenhouse gases [87]. The reason behind using fossil fuel-based generators is their low 696 

prices and reliability in contrast to DGs. Greenhouse gas emissions must be reduced to 697 

save our planet. Due to the increasing environmental awareness, the DGs have grown 698 

unprecedentedly in distribution systems; however, this growth creates significant prob- 699 

lems for the grid. Power curtailment of DGs is necessary to minimise the voltage rise and 700 

congestion.  701 

Real-time OPF can play an important role to minimise the curtailment of renewable 702 

energy and maximize the quality of the voltage and grid capacity. Management of the DG 703 

outputs is one approach to increase the penetration of renewable energy sources.  704 

The authors in [88] proposed a dueling DQN algorithm to control DGs in an IEEE 14- 705 

bus system fed with 40% renewable energy sources. The experimental results showed that 706 

dueling DQN is able to increase the capacity of the grid to accommodate higher renewable 707 

energy rates and maintain the stability of the system. A two-timescale control framework 708 

is presented in [89] to manage a grid with high PV penetration (120% of the feeder capac- 709 

ity). In a slow timescale control, a model-based approach is used to organize the voltage. 710 

On the other hand, the DDPG algorithm is proposed to control the setpoints of PV invert- 711 

ers in a fast timescale. The results showed that the proposed framework achieved lower 712 

voltage deviations and PV curtailment in contrast to a traditional optimization method 713 

based on Volt-VAR control. A Soft actor-critic based multi-agent DRL algorithm is pro- 714 

posed in [90] to control the active and reactive PV inverter for the Colorado U.S. grid with 715 

80% penetration of renewable power. The proposed method succeeded to manage 77 PVs 716 

in the 759-bus system and minimize the PV curtailment while keeping the grid voltage 717 

within acceptable limits as compared with the traditional Volt-VAR control method. 718 

Energy storage units and EVs are effective methods to decrease the curtailment of 719 

DGs by storing the excess power especially when the demand is low. A microgrid with 720 

hydrogen storage units is introduced in [91] and the DDPG algorithm is used as a control 721 

agent to reduce the curtailment of PV generation.  Simulation results showed that the 722 

DRL agent reduced the operation and emission cost by 5% when compared with the ge- 723 

netic algorithm. A vehicle-to-grid framework is developed in [92] to utilize EVs features 724 

to support the grid. This framework helps the EVs to work in a cooperative way to achieve 725 

a number of goals, e.g., minimizing the operational and emission costs. A hybrid multi- 726 

agent PPO algorithm is used to determine the routing and scheduling of the EVs inside 727 

the grid. Moreover, the parameter-sharing method is integrated with DRL to stabilize the 728 

training performance. The results showed that the proposed framework is able to reduce 729 

the traveling time of the EVs, energy, and emission cost. 730 

The optimal configuration of the status of switches in a distribution network can play 731 

a vital role to raise the hosting capacity of transmission lines, and the curtailment of the 732 

excess renewable energy is therefore minimized. The DQN algorithm is used in [93] to 733 

find best network configuration for a 16-bus distribution system. Simulation results 734 

showed that the proposed policy is able to minimize the operating cost and the curtail- 735 

ment power of DGs while the voltage profile is improved. Optimal management of reac- 736 

tive power devices can be used also to increase the hosting capacity of DGs. The multi- 737 

agent DRL algorithm is investigated in [94] to control the bus voltages by specifying the  738 

setpoint for the SVCs. The MADDPG agents succeeded in decreasing the system loss and 739 

improving the hosting capacity of the grid as compared with conventional model-based 740 

method. The related work for minimizing the emission cost is summarized in Table 5. 741 

   742 

3.2.4 Increasing system reliability  743 
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Solving real-time OPF problems is an effective method to increase the robustness and 744 

reliability of the power system to withstand any type of contingencies without violating 745 

system constraints. The authors in [95] utilized the PPO algorithm to find the optimal 746 

generator setpoints in a 200-bus system.  One random transmission line outage is in- 747 

cluded to assess the performance of the proposed algorithm under a contingency state. 748 

The results demonstrated that the PPO algorithm is able to deal with topology changes 749 

and find near-optimal OPF solutions. Optimal management of PV inverters can be used 750 

also to increase the robustness of the system. The PPO algorithm is investigated in [96] to 751 

mitigate the voltage unbalance at the point of common coupling by controlling the Volt– 752 

VAR of the PV inverters. 753 

Energy storage units and EVs can play essential roles for supporting the system reli- 754 

ability. The DDPG algorithm is presented in [97] to reduce power fluctuations caused by 755 

large wind fluctuation. The proposed method is able to manage efficiently the energy stor- 756 

age units to minimize the wind fluctuation as compared with the DQN algorithm. Energy 757 

storage units can be used as an efficient approach for peak load shifting. The DDPG algo- 758 

rithm is used in [98] to deal optimally with the uncertainty of load demand at peak time 759 

by controlling the storage units. Q-learning algorithm has been used in grid-to-vehicle 760 

and vehicle-to-grid services to increase the efficiency of the grid by minimizing the peak 761 

load in [99]. The authors in [100] used energy storage units as controlled by the SAC algo- 762 

rithm to reduce the voltage violations in an unbalanced low-voltage grid. 763 

Short-term voltage instability is a fast event that usually takes seconds, where fast 764 

actions are required to return the voltage to the normal range. Load shedding is one of the 765 

effective emergency methods to deal with voltage instability, especially short-term events.  766 

A parallel augment random search (PARS) algorithm is adopted in [101] to mitigate short- 767 

term voltage by shedding 20% of the total load. The DRL algorithm is integrated with 768 

LSTM to support the learning rate. The proposed algorithm outperformed the MPC ap- 769 

proach in terms of computational efficiency and robustness in learning. The load-shed- 770 

ding method is often used in an emergency state. The DDPG algorithm is proposed in  771 

[102]to deal with line faults by using the load-shedding method, where the DRL approach 772 

is used to choose which bus participates in the shedding process and the amount of load 773 

shedding. The shedding must be less than 40% of the original load power. The results 774 

showed that the proposed approach is able to return the voltage of the bus to the normal 775 

value after the emergency event. 776 

Topology reconfiguration is the one of the best approaches for the grid operator to 777 

increase the stability of the network. Topology reconfiguration is considered as the most 778 

economical solution for distribution violations when compared with other approaches 779 

like load shedding, peak shaving and transmission line expansion. The actor-critic (A3C) 780 

algorithm is combined with domain knowledge of power system operators to prevent 781 

cascading line outages by using topology reconfiguration [103]. Due to the high genera- 782 

tion of DGs in a distribution system, an online reconfiguration scheme is proposed in [104] 783 

to alleviate line congestion and voltage violations. The DQN algorithm is used as a con- 784 

troller to find optimal distribution topologies. The performance of the DRL algorithm out- 785 

performed the genetic algorithm and Brute-force Search. The related work for minimizing 786 

the system instability is summarized in Table 6. 787 

Abbreviations used in the tables are: soft actor-critic: SAC, deep deterministic policy 788 

gradient: DDPG, twin delayed DDPG: TD3, dueling deep Q network: DDQN, proximal 789 

policy optimization: PPO, multi-agent deep reinforcement learning: MADRL, distributed 790 

generators: DGs, energy storage: ES, electric vehicle: EV, flexible load: FL ,static var com- 791 

pensation: SVC, microgrid: MG, jointly adversarial soft actor-critic algorithm: JASAC, im- 792 

itation learning method: IL, weighted deep double Q-network: AWDDQN, capacitor bank: 793 

CB, tap-changer, TC:. 794 

  795 
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 796 

Table 3: OPF through minimizing the operating cost 797 

Ref Optimization 

Method 

Objective Function Application Action Power System 

Size 

[17] Lagrange Mul-

tiplier SAC 

Maximize operational re-

wards, minimize generation 

costs, maintain system con-

straints (power balance, 

voltage limits) 

Optimal active power dis-

patch for DGs in systems 

with renewable energy 

 

Discrete 

actions 

IEEE 118-bus 

power system 

[56] Lagrangian-

based DDPG 

Minimize total generation 

cost 
 

Optimizing real-time 

power flow in systems with 

intermittent distributed re-

newable generators 

Continu-

ous action 

IEEE 118-bus 

power system 

[18] TD3 and Le-

venberg Mar-

quardt 

Minimize total generation 

cost 
 

Real-time optimal power 

flow management, control-

ling DG outputs 

Continu-

ous action 

IEEE 118-bus 

power system 

[57] DDPG with 

safety layer 

and dual re-

play buffer 
 

Minimize expected time av-

erage cost over control hori-

zon, accounting for mone-

tary costs at PCC and dis-

patch plan deviation cost 

 

Real-time control of ES in 

active distribution grids 

with distributed energy re-

sources  

Continu-

ous action 

34-bus Swiss 

grid 

[58] DQN Minimize operational costs 

of microgrid 
 

Management of conven-

tional generators, DGs, ESs, 

and grid interactions 

Discrete 

actions 

Microgrid 

(size not spec-

ified) 

 

[59] A2C with Cur-

riculum Learn-

ing 

Minimize overall opera-

tional costs of microgrids, 

considering generation 

costs, storage management, 

and penalties for operational 

constraint violations. 

Energy management of 

controllable DGs in a net-

work of microgrids 

Continu-

ous action 

Network of 

intercon-

nected mi-

crogrids (size 

not specified) 

[60] TD3 Minimize operating costs in-

cluding generation, transac-

tion, and EV charging costs, 

with incentives for renewa-

ble energy use 

Intelligent energy manage-

ment in a hybrid DGs and 

EVs system 

Continu-

ous action 

Microgrid 

(size not spec-

ified) 

[61] SAC with 

Nodal Multi-

Target (NMT) 

approach 

Minimize energy costs and 

penalties related to EV 

charging non-completion 

EV charging scheduling in 

a power distribution net-

work 

Continu-

ous action 

IEEE 37-node 

test feeder 

with 2500 EV 

stations 
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[62] Graph RL with 

Graph Atten-

tion Networks 

(GAT) and 

DDPG 

Minimize costs including 

network transactions, power 

losses, load control, and 

voltage deviations 

Real-time optimal schedul-

ing of FLs, DGs, ES sys-

tems, and SVCs in active 

distribution networks 

Continu-

ous action 

Modified 

IEEE 33-bus 

system 

[63] DDQN Maximize long-term profit 

by managing interruptible 

loads to reduce peak de-

mand and operation costs, 

while maintaining voltage 

limits 

Demand response manage-

ment of interruptible load 

(FL) in power distribution 

networks 

Discrete 

actions 

Enhanced 

IEEE 33-node 

test feeder 

system 

[64] Three-stage 

DDQN  and 

DDPG 

Minimize operational costs 

while ensuring network sta-

bility and reliability, reduc-

ing power losses, managing 

load demands, and optimiz-

ing distributed energy re-

sources (DERs) 

Real-time operation of dis-

tribution networks, con-

trolling DGs, load points, 

switches, and ESSs 

Discrete 

and contin-

uous ac-

tions 

IEEE 33-bus  

[65] Batch-Con-

strained Soft 

Actor-Critic 

(BCSAC) 

Minimize overall opera-

tional costs including elec-

tricity consumption, line 

losses, and switching opera-

tions 

Dynamic distribution net-

work reconfiguration, con-

trolling remotely operable 

switches 

Discrete 

actions 

119-bus dis-

tribution net-

work 

[19] PPO Minimize the cost of power 

loss across the distribution 

network with constraints re-

lated to renewable energy 

and storage devices opera-

tions 

Optimal power flow in net-

works with DGs and ESs 

Continu-

ous actions 

Modified 

IEEE 33-bus 

network with 

added renew-

ables and 

storage 

[105] TD3 Minimize total power loss 

within a community mi-

crogrid 

Power flow optimization in 

community microgrids, 

controlling DERs and ESS 

Continu-

ous actions 

IEEE 14-bus 

test system 

[106] Improved DRL Minimize operational costs 

in day-ahead dispatch, in-

cluding costs from power 

purchases, network losses, 

and curtailment of renewa-

ble energy 

Day-ahead optimal dis-

patch in active distribution 

networks, controlling DGs, 

ESS, and CBs 

Discrete 

and contin-

uous ac-

tions 

IEEE 33-bus 

test system 

[107] Deep LSTM-

based DQN 

Minimize overall daily oper-

ational cost of the grid-tied 

microgrid, optimizing 

power flow from BESS and 

Economic energy dispatch 

of ES systems in a grid-tied 

microgrid 

Discrete 

actions 

Residential 

microgrid 

(specific size 

not provided 
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managing grid interactions 

to reduce costs and maxim-

ize revenue 

[108] Multi-Agent 

Deep Deter-

ministic Policy 

Gradient 

(MADDPG) 

Minimize total generation 

and interaction costs, balanc-

ing production costs and 

revenue/costs associated 

with power flow between 

microgrids and the main 

grid 

Economic dispatch of ES 

and DG in active distribu-

tion networks with multi-

ple microgrids 

Continu-

ous actions 

Multiple mi-

crogrids, un-

specified the 

size 

[109] Double DQN Minimize reactive power-re-

lated losses and voltage de-

viations, expressed as a 

weighted sum of costs asso-

ciated with line losses and 

voltage deviations 

Reactive power optimiza-

tion in distribution net-

works, controlling reactive 

power compensators 

Discrete 

actions 

IEEE 37-bus 

test system 

[110] DQN Minimize annual opera-

tional costs including energy 

losses and the operation of 

dispersed generation units 

Energy management in dis-

tribution networks with 

EVs and DGs 

Discrete 

actions 

57-bus IEEE 

grid 

 798 

 799 

 800 

 801 

 802 

Table 4: OPF through minimizing the voltage deviation 803 

Ref. Optimization 

Method 

Objective Function Application Action Power System 

Size 

[68] DDPG Minimize voltage fluctua-

tions 

DGs  Continuous 

action 

IEEE 21-bus 

[69] MADDPG Minimize voltage fluctua-

tions 

DGs  Continuous 

action 

123-bus systems 

[70] JASAC Minimize voltage devia-

tion and active power loss 

DGs  Continuous 

action 

IEEE 123-bus 

[71] PPO with IL 

 

Minimize voltage devia-

tion and generator costs 

Conventional generators  Continuous 

action 

 IEEE 200-bus 

[73] DQN Minimizing the average 

voltage fluctuation and 

maximizing the SoC of 

Energy storage  

ESs Discrete ac-

tion 

IEEE 33-bus 
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[20] RL with MPC Minimize Voltage devia-

tion and active power loss 

and overall cost 

ESs Continuous 

action 

IEEE 33-bus 

[74] AWDDQN 

 

Minimize voltage fluctua-

tions 

EVs and DGs Discrete ac-

tion 

IEEE 123-bus 

system 

[75] MADQN Increase the proportion of 

PV power generation used 

locally and minimize volt-

age fluctuations 

EVs and ESs Discrete ac-

tion 

Low voltage grid 

[76] DDPG Voltage regulation and 

power loss minimization 

DGs and ESs Continuous 

action 

IEEE-34 

[77] DQN Minimize voltage devia-

tion 

CBs Discrete ac-

tion 

13-bus 

[78] DQN Minimizing the long and 

short-term average volt-

age deviation 

DGs and CBs Discrete ac-

tion 

The Southern Cal-

ifornia Edison 47-

bus 

[79] DDPG Minimizing the voltage 

swell and power losses 

TCs Continuous 

action 

IEEE 33-bus sys-

tem 

[80] Constrained 

SAC 

Minimizing voltage devi-

ation and generating costs 

TCs and CBs Discrete ac-

tion 

123-bus 

[81] SAC Minimizing voltage devi-

ation and power loss and 

generating cost 

DG inverters and CBs Continuous 

action 

33-bus 

[82] Multi-agent 

SAC and sparse 

pseudo-Gauss-

ian process 

Minimizing the voltage 

deviation and PV curtail-

ment 

ESs, DGs and SVCs  Continuous 

action 

IEEE 123-bus 

[111] Multi-agent RL 

algorithms 

Minimizing voltage devi-

ation and active power 

loss 

Conventional generators and capac-

itor bank  

Discrete ac-

tion 

IEEE 162-Bus 

[112] DDPG Minimizing voltage devi-

ation and active power 

loss 

TCs Continuous 

action 

IEEE 123-bus 

[113] DQN Minimizing the voltage 

deviation 

Conventional generators, CBs and 

TCs 

Discrete ac-

tion 

IEEE 14-bus 

[114] Multi-agent 

SAC 

Minimizing the voltage 

deviation 

DGs, CBs and TCs Continuous 

action 

IEEE 123-bus 

[115] DDPG and 

Monte Carlo 

Minimizing voltage devi-

ation and power loss 

EVs, CBs and TCs Continuous 

action 

IEEE 123-bus 
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[83] DQN Minimizing voltage devi-

ation, power loss and 

switch action cost 

Topology  Discrete ac-

tion 

Taiwan power 

company      

84-bus 

[84] PPO Minimizing voltage devi-

ation and power loss 

Topology Discrete ac-

tion 

IEEE 34-bus 

[85] DDPG  with 

CNN 

Minimizing voltage devi-

ation 

Load shedding (FL) Continuous 

action 

New England 39-

bus system 

[86] Multi-agent 

SAC 

Minimizing voltage devi-

ation, energy cost and in-

door thermal discomfort 

Load shedding (FL) Continuous 

action 

Low-voltage net-

work 6-bus 

[87] Convolutional 

LSTM with 

DQN 

Minimizing short-term 

voltage deviation 

Load shedding (FL) Discrete ac-

tion 

China Southern 

Power Grid 23-

bus 

 804 

Table 5: OPF through minimizing the emission cost 805 

Ref. Optimization 

Method 

Objective Function Application Action Power System Size 

[89] Dueling DQN Minimizing operating cost and cur-

tailment of RE  

DGs Discrete ac-

tions 

IEEE 14-bus 

[90] DDPG and model-

based approach 

Minimizing line losses, voltage de-

viations and curtailment of RE 

DGs Continuous 

action 

 

IEEE 34-bus 

[91] MASAC Minimizing voltage deviations and 

curtailment of RE 

DGs Continuous 

action 

Colorado U.S. grid 

759-bus 

[92] DDPG Minimizing operating and emission 

cost 

DGs and ES Continuous 

action 

Microgrid 

[93] MAPPO with 

parameter-sharing 

Minimizing operating and emission 

cost 

EVs Continuous + 

discrete action 

15-bus radial distri-

bution 

[94] DQN Minimizing line losses, voltage de-

viations and curtailment of RE 

Reconfiguration (To-

pology) 

Discrete ac-

tion 

16-bus 

[116] DQN with multi-ob-

jective bacterial for-

aging optimization 

Minimizing PV power curtailment, 

power loss and generation cost 

Reconfiguration 

(Topology) 

Discrete ac-

tion 

IEEE 118-bus 

[117] MADDPG Minimizing line losses, voltage de-

viations and curtailment of RE 

SVC Continuous 

action 

IEEE 300-bus and 

China 157-node 

 806 

Table 6: OPF through minimizing the system instability 807 

Ref. Optimization 

Method 

Objective Function Application Action Power System 

Size 
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[95] PPO Maximize power system security Conventional gener-

ators  

Continuous ac-

tion 

 200-bus 

[96] PPO Minimize voltage unbalance at the 

PCC 

 DGs Continuous ac-

tion 

IEEE 34 bus 

[97] DDPG Minimizing the power fluctuations 

and power cost 

ESs Continuous ac-

tion 

IEEE 14 bus 

[98] DDPG Minimizing the operating cost and 

net load fluctuations 

 ESs Continuous ac-

tion 

11 bus 

[118] Safety-constrained 

SAC 

Peak shaving and voltage regulation  DG inverters and 

ESs 

Continuous ac-

tion 

IEEE 123-bus 

[99] Q-learning algo-

rithm, and enhanced 

Grasshopper optimi-

zation  

Peak shaving and minimizing the 

power loss  

DG and EVs Discrete action IEEE 33-bus 

[100] SAC Minimizing the total daily cost and 

voltage regulation in unbalanced 

grid 

ESs Continuous ac-

tion 

IEEE 34-bus 

[101] PARS with LSTM Minimizing the total load shedding 

amount and the voltage violations 

Load shedding (FL) Continuous ac-

tion 

IEEE 300-bus 

[102] DDPG Minimizing voltage violations Load shedding (FL) Continuous ac-

tion 

IEEE 39-bus 

[103] A3C Minimizing the total line loading Topology  Discrete action IEEE 14-bus 

[104] DQN Mitigating line congestion and volt-

age violations 

Topology  Discrete action IEEE 123-bus 

[119] Q-learning Minimizing the load shedding cost 

and frequency instability 

DGs, ES, and de-

mand response (FL) 

Discrete action IEEE 37-node MG 

[120] Clipped PPO Maximizing long-term voltage sta-

bility 

ES and demand re-

sponse (FL) 

Continuous ac-

tion 

Nordic 32-bus 

[121] Q-learning with 

CNN 

Maximizing frequency stability af-

ter the fault 

Load shedding (FL) Discrete action IEEE 39-bus 

3.3 Discussion and Summary  808 

Figure 5 below reveals significant insights into the integration of DRL with OPF in 809 

terms of categories of objective function, application, optimization method and power sys- 810 

tem size. The use of objective functions emphasizes a predominant focus on minimizing 811 

costs (56%), followed by managing voltage fluctuations (26%) and emissions (11%), which 812 

underscore the economic, operational, and environmental imperatives in current research. 813 

Applications are largely dominated by DGs at 36%, highlighting a shift towards decen- 814 

tralized power generation models, while ES systems, EVs and VRD (voltage regulation 815 

devices) at 20%, 5% and 16% respectively, appear as emerging roles in dynamic grid man- 816 

agement. The utilization of DQN and DDPG methods at 28% and 22% indicates a robust 817 

exploration of DRL techniques suitable for the complex and high-dimensional state spaces 818 

typical in power systems. This evolving integration from simple cost minimization to 819 
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complex objectives like volatility and emissions management reflects a maturing field, 820 

where future work must address scalability and real-world applicability, ensuring ad- 821 

vancements in ML to propel the transition towards more sustainable and resilient power 822 

systems while aligning with evolving regulatory frameworks to maximize benefits and 823 

mitigate associated risks. 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

Figure 5. Pie chart analysis of the machine learning methods used in optimal power flow 835 

 836 

Our reviews explore the significant role of ML in enhancing OPF for electrical net- 837 

works that integrate renewable energy sources. OPF is crucial for determining the optimal 838 

operational points of distributed generators, with objectives such as minimizing opera- 839 

tional costs or reducing power loss. These operational points must adhere to stringent 840 

constraints, particularly maintaining network voltage within specified limits to ensure 841 

stability and efficiency. Exceeding these voltage thresholds renders the operational points 842 

unacceptable, highlighting the importance of precise control mechanisms. Through our 843 

review, we found that all studied approaches not only aim to optimize cost functions but 844 

also prioritize maintaining network voltage within acceptable limits. The integration of 845 

ML techniques has shown promising results in managing these complexities more effec- 846 

tively, providing real-time solutions that adapt to the variability inherent in renewable 847 

energy sources. Our reviews underscore the transformative potential of machine learning 848 

in making energy systems more efficient and sustainable. 849 

The paper delves into the transformative role of ML in modernizing OPF systems, 850 

highlighting a significant shift from traditional deterministic models to more dynamic, 851 

adaptive models equipped to handle the complexities introduced by the increasing use of 852 

renewable energy sources. This evolution fosters enhanced real-time decision-making and 853 

increases the resilience of power systems through the adoption of sophisticated ML tech- 854 

niques like DL and RL. These technologies not only adeptly manage the variability and 855 

unpredictability inherent in renewable sources such as wind and solar but also transform 856 

grid operations into intelligent, proactive management frameworks. This shift to a more 857 

anticipatory strategy improves the ability to forecast and react to changes in power flow, 858 

optimizing both stability and efficiency. The integration of ML into OPF presents notable 859 

challenges, including high computational requirements and the critical dependence on 860 

the quality and availability of data. Furthermore, effective deployment of these advanced 861 

technologies requires supportive regulatory frameworks that facilitate innovation while 862 

ensuring alignment with broader objectives such as sustainability and public safety. As 863 
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the paper indicates, embracing these challenges and opportunities is essential for devel- 864 

oping power systems that are not only more efficient but also robust and adaptable to the 865 

evolving demands of energy management. 866 

 867 

4. Conclusions 868 

This paper reviews two vital aspects of renewable integration by exploring possibil- 869 

ities for advanced solutions from the generating device and power system operation per- 870 

spectives. The review covers recent developments in thermal condition monitoring to ex- 871 

amine how the capacity of existing renewable energy generators such as wind turbines 872 

can be expanded at low cost, and in power flow optimisation with machine learning to 873 

examine how a low-carbon renewable dominated power network can be achieved. Utili- 874 

zation of the thermal design margins for power equipment has the potential to expand 875 

renewable energy generation capacity. This is particularly true for wind power generation 876 

where uprating of existing wind turbines could increase the available renewable energy 877 

output. In-situ fibre optic thermal sensing was identified as the technique that can facili- 878 

tate the required thermal monitoring capability for WT generators; retrofitting fibre optic 879 

sensors to in-service machinery in-situ may be challenging in practice and the application 880 

of effective thermal estimators, where available, would also be of interest in these cases. 881 

Furthermore, development of dynamic and adaptive of optimal power flow models can 882 

lead to a more informed and proactive management strategy for the power grids while 883 

optimizing resource utilization and minimizing operational risks. With machine learning, 884 

the power grid can redefine its management boundaries and realise a platform for intelli- 885 

gent decision-making. System level automation of this process by combining thermal con- 886 

dition monitoring with optimal power flow is highly desirable yet remains a challenge for 887 

control and management of renewable energy integration into the grid. The advanced 888 

sensor/sensing systems and machine learning approaches reviewed in this paper hold po- 889 

tential to provide a viable and efficient solution to improve power capacity exploitation 890 

and maintain network stability in an economic and environmentally affordable way. 891 

However, considerable further research is needed to achieve this goal. 892 

 893 
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