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Abstract 7 

In this paper, a novel microscopic modeling strategy is proposed to investigate the effective 8 
thermal conductivity of composites with consideration of stochastic interface defects. To this end, 9 
the subdomain boundary element method combined with asymptotic homogenization is proposed 10 
to effectively solve the thermal conduction problem. In order to accurately capture the heat flux on 11 
the boundary and the internal region in the representative volume element (RVE), a parameterized 12 
sub-cell is constructed to discretize the RVE. On this basis, the influence of stochastic interface 13 
defects on the thermal conductivity of composites is investigated by utilizing the Monte Carlo 14 
method. Specifically, the effect of the location, length, thickness, and area of the interface defects 15 
on the thermal conductivity is investigated. A proportional decrease in the transverse thermal 16 
conductivity coefficient is found for interface defect areas ranging from 1% to 10%. 17 

 18 
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 21 
1. Introduction 22 

Fiber-reinforced composites (FRC) have been increasingly used in the automobiles, aerospace, 23 
bridges and railway applications. Considering the influence of ambient temperature variations, 24 
extensive attention has been given to heat-related issues of the FRC. However, heat transfer in 25 
composites is complex due to their inherent heterogeneity and diverse internal structures, which 26 
brings challenges to the study of these issues. 27 

In the last few decades, various approaches have been proposed in the literature to evaluate the 28 
effective thermal conductivity of composites, including experimental analysis [1-2], theoretical 29 
models [3-4], and numerical models, such as Finite Element Method (FEM) [5-6], Extended Finite 30 
Element Method [7], Generalized Finite Difference Method [8], etc. Naturally, a composite material 31 
has complex and diverse internal structures that have to be simplified to model it either analytically 32 
or numerically. For example, by assuming that the size and shape of inclusions in the matrix material 33 
of a composite are all the same and the inclusions are distributed periodically within the matrix, a 34 
so-called representative volume element (RVE) can be conveniently selected to approximately 35 
represent the microstructure of material [9-11]. Thus, micro-scale models can be used to study the 36 
macroscopic physical properties of a composite material [12]. In this respect, Wang and Qin [13] 37 
investigated interface effects on the micro- and macro-thermal behaviors of square-pattern 38 
unidirectional FRC. Zhao et al. [14] developed a 2D finite volume method (FVM) to evaluate 39 
transverse thermal conductivity of continuous FRCs. To determine the effective thermal 40 
conductivity of short FRC, Vieira et al. [15] used hexahedral elements to discretize RVE at a 41 
microscopic scale. Although significant progress has been made, including the aforementioned, 42 
some concerns still remain. For instance, a very dense mesh is needed for a FEM or FVM model in 43 
the regions of concentrated heat flow or complex geometry, which has a significant negative impact 44 
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on the computation efficiency. This becomes even more challenging when interface defects are 45 
considered, which inevitably requires more elements for the interphase layer. 46 
  Boundary element method (BEM) exhibits an attractive potential in solving heat transfer 47 
problems for composite materials. Compared to FEM and FVM, BEM only discretizes the boundary 48 
of a solution domain, which results in a significant reduction in the number of required discrete 49 
elements, so that a higher calculation efficiency can be achieved when the interfaces are considered 50 
[16]. Ochiai [17] demonstrated that three-dimensional heat conduction in non-homogeneous and 51 
functionally gradient materials can be studied approximately without the use of a domain integral 52 
by the triple-reciprocity BEM. Fahmy [18] developed a new boundary element formula for 53 
simulating nonlinear temperature distribution of electrons, ions, and phonons in carbon nanotube 54 
fiber-reinforced composites embedded with dense rigid line inclusions. It is, however, not 55 
convenient to use BEM in the domain of multiphase materials since it is normally difficult to obtain 56 
fundamental solutions for such heterogeneous materials. In recent years, the subdomain boundary 57 
element method (SBEM) was developed to divide a domain into many subdomains for a partitioned 58 
non-uniform media, where the media of each subdomain is uniform. For example, Oberg et al. [19] 59 
studied the thermal conductivity of two-dimensional materials with non-uniform composition using 60 
SBEM. Wang et al. [20] developed a fast SBEM for three-dimensional large-scale thermal analysis 61 
of FRC. Dong et al. [21] used SBEM and the Maxwell uniform scheme to calculate the effective 62 
thermal conductivity of two-dimensional and three-dimensional heterogeneous materials. Qu et al. 63 
[22] utilized the generalized self-consistent scheme in conjunction with the isogeometric SBEM to 64 
investigate effective thermal conductivity. Gong et al. [23] used integral equations to calculate the 65 
effective thermal conductivity of steady-state composites, considering only the temperature on the 66 
interface as the unknown. Sapucaia et al. [24] proposed an effective 2D pixel-based boundary 67 
element formula to calculate the effective thermal conductivity of heterogeneous materials by 68 
representing each pixel of a digital image as a subdomain with four boundary elements. The above 69 
research has significantly promoted the development and application of SBEM in investigating the 70 
effective thermal conductivity of composites. However, all the above studies assumed that interfaces 71 
were perfect, i.e., by ignoring the imperfections of the interfaces between the matrix and the fiber. 72 
Consequently, these simplified models resulted in less accurate predictions of the thermal 73 
conductivity. 74 

During the manufacturing process of a FRC, defects inevitably form inside the composite. These 75 
defects can be classified, based on their location, into matrix, fiber, and interface defects. Among 76 
them, interface defects include delamination in composite laminates and defects between fiber and 77 
matrix [25], such as interfacial pores between matrix and fibers [26]. This is attributed to the 78 
different thermal expansion coefficients of the matrix and the fibers, as well as the challenges in 79 
process control. The interface studied in this paper specifically refers to the interface between fibers 80 
and matrix, a channel for transmitting thermal loads between different constituents. Early work 81 
almost exclusively introduced a third-phase material named the interphase layer between fibers and 82 
matrix to study the influence of interface defects. Hasselman et al. [27] investigated the effect of 83 
interface defects on heat transfer by incorporating an equivalent contact thermal resistance into the 84 
continuous boundary condition of heat flow. In the studies mentioned above, the interface defects 85 
are always simplified as a thin layer structure that surrounds the fibers, and the influence of interface 86 
defects can be introduced by changing effective thermal conductivity [28-29]. It has been recognized 87 
that the simplification of interface defects as a thin layer structure is not sufficiently accurate 88 
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because the influence of the location of interface defects, which often leads to local concentration 89 
of heat flux, is ignored. This is also an important factor in the heat conduction analysis of composites. 90 
To address these concerns and improve the accuracy of heat transfer analysis in composites with 91 
interface defects, modeling interface defects with stochastic position needs to be further investigated. 92 
Apart from the location, the shape of interface defects also needs to be considered. In real situations, 93 
interface defects may be irregularly shaped and influenced by multiple factors. In theoretical or 94 
numerical analyses, interface defects may be idealized as defects of simpler geometric shape to 95 
facilitate calculation. The idealized shapes include but are not limited to hemispherical, semi-96 
circular [30], and elliptical defects [31], etc. A sector ring can also be used as an idealized geometric 97 
model for interface defects, and it follows the well-known cavitation phenomenon in a variety of 98 
matrices [32]. 99 

This paper proposes a new computing framework that combines asymptotic homogenization 100 
theory with SBEM to calculate effective thermal conductivity of FRC with consideration of the 101 
influence of location, length, thickness, especially, the area of interface defects. The framework 102 
provides a new approach to improve the accuracy of the predicted thermal conductivity of composite 103 
materials with stochastic interfacial defects. The paper is organized as follows. Section 2 briefly 104 
introduces the asymptotic homogenization method and SBEM modeling, which is utilized to study 105 
thermal conductivity and steady-state heat transfer of composite materials. Section 3 focuses on 106 
studying the effect of fiber volume fraction (FVF) on the effective thermal conductivity and local 107 
heat flux field. The accuracy of the proposed method is verified by comparing it with experimental 108 
data. The temperature field and heat flux distribution are then studied. In Section 4, the node pair 109 
decoupling method is used to simulate interface defects, and the Monte Carlo method is 110 
implemented to describe the stochastic interface defects. Specifically, the influences of length ratio, 111 
thickness, and area of the defects are considered. Section 5 is the conclusion.  112 

2. Modeling process of continuous FRC 113 

2.1. The asymptotic homogenization with multi-scale method for heat conduction of FRC  114 

For a typical periodic composite material, the multi-scale modeling process for FRC is shown in 115 
Fig.1, where a body of FRC occupying the region, Ω , described by the macro- coordinate system 116 

1 2 3- -x x x  with boundary, Γ , as shown in Fig. 1(a). Γ  consists of temperature boundary 1Γ  and 117 

heat flux boundary 2Γ  , thus 1 2Γ Γ = Γ   and 1 2Γ Γ = Ø  . At the microscopic scale, it is 118 

considered that the reinforcement phase is periodically distributed in the matrix. Fig. 1(b) shows the 119 
periodic fiber arrangement in the FRC. The RVE can be used as to a microscopic model for the 120 

analysis. Fig. 1(c) shows a selected RVE with a local coordinate system 1 2 3- -y y y . It is the periodical 121 

cell (Y) of the FRC. 122 
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 123 

If the body shown in Fig.1(a) is a homogeneous media, as well known, the governing equation 124 
for steady-state heat conduction without internal heat sources can be expressed as: 125 

 0ij
i j

Tk
x x
 ∂ ∂

= 
∂ ∂  

 (1) 126 

subjected to the following boundary conditions: 127 

 
0 1

0 2

    on 

    on     

T T
Tk

= Γ

 ∂
− = Γ ∂

q
n

 (2) 128 

where 0T   denotes temperature T   on boundary 1Γ  . 0q   is a heat flux on boundary 2Γ . 129 

( )1 2 3, ,n n nn =  is the unit outward normal vector of boundary Γ . i ij
j

Tq k
x
∂

= −
∂

 is the heat flux 130 

parameter, and ijk  denotes thermal conductivity. 131 

As for the composite material shown in Fig. 1, the governing equation for the steady-state thermal 132 
conduction at a point of the composite without internal heat sources is: 133 

 ( )
( )

0ij
i j

Tk
x x

ε
ε ∂ ∂
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∂ ∂  

 (3) 134 

with the boundary conditions: 135 
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Here ε  is a perturbation parameter, which is associated with the characteristic dimension of 137 
inhomogeneity of the composite. For a periodic structure, ε  is the dimension of the periodical cell 138 

(RVE), as seen in Fig. 1. Since the characteristic dimension of the periodic cell to the macroscopic 139 
body Ω  is very small. ε  is a very small positive number, i.e., 0 1ε< << . Mathematically, this 140 
fact is formalized in the form 0ε →  [33]. The heterogeneous macrostructure of the composite can 141 

be regarded as a homogeneous macrostructure. 142 

Fig. 1. Macro- and micro-structure of the composites: (a) FRC, (b) Periodical arrangements of the 

reinforced fibers, (c) RVE. 
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The relationship between the macroscopic scale coordinate x  and the micro scale coordinate 143 
y  for the periodical structure can be expressed as: 144 

 / ε=y x   (5) 145 

Due to the assumption of periodicity, the thermal conductivity coefficient, ( )
ijk ε  can be described 146 

by periodic functions in spatial variable of the following form: 147 

 ( ) ( ) ( )/ij ij ijk k kε ε= =x y  (6) 148 

A direct numerical solution of Eq. (3) is challenging due to the rapid oscillation of the coefficients 149 

( )
ijk ε . The asymptotic homogenization theory provides an alternative approach to solve the problem. 150 

Mathematically, by letting 0ε → , the weak limit of differential Eq. (3) results in: 151 

 0H
ij

i j

Tk
x x
 ∂ ∂

= 
∂ ∂  

 (7) 152 

with the boundary condition: 153 

 
0 1

0 2

            on 

     on     H
ij

T T
Tk

= Γ

 ∂
− = Γ ∂

q
n

 (8) 154 

where H
ijk   is the homogenized constant tensors, i.e., effective thermal conductivity, T is the 155 

homogenized temperature. As a result, Eq. (3) is reduced to the steady-state heat conduction 156 
problem of a homogenized material [33]. 157 

The temperature ( ) ( )T ε x  can be expressed as an asymptotic expansion of the small parameter 158 

ε , that is: 159 

 ( ) ( ) [ ] ( ) [ ] ( ) [ ] ( )0 1 22, , ,T T T Tε ε ε= + + +x x y x y x y  (9) 160 

where / ε=y x  is the “fast” variable and x  is the “slow” variable of a two-scale expansion. n  161 

is the asymptotic order. 162 

By / ε=y x , there exists the following chain rule: 163 

 
1

i i ix x yε
∂ ∂ ∂

→ +
∂ ∂ ∂  (10) 164 

After inserting Eq. (10) and Eq. (9) into Eq. (3), the following equation is obtained by organizing 165 

the terms in terms of the same order of ε :  166 

 
[ ] ( ) [ ] ( ) [ ] ( )
[ ] ( ) [ ] ( ) [ ] ( ) [ ]
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x y x y x y
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where,  168 

( ) ( ) ( ) ( )1 2 3, ,  , , ,  ,ij ij ij ij
i j i j i j i j

L k L k k L k
y y y x x y x x
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − = − − = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

x y x y x y x y . (11.2) 169 

To be identical to zero, each factor of the power of ε  in Eq. (11) must be equal to zero. For 170 
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example, for 2ε − , [ ] ( )0
1 , 0L T =x y . Therefore, [ ]0T  is only a function of x , independent of the 171 

microscopic coordinate y . Thus Eq. (9) can be rewritten as [33-35]: 172 

 ( ) ( ) [ ] ( ) [ ] ( )0

1
,nn

n
T T Tε ε

∞

=

= +∑x x x y    (12) 173 

Functions [ ] ( ),nT x y  are assumed to be periodical in terms of y. Function [ ] ( )0T x  is a function 174 

of x , and is the homogenized temperature solution of Eq. (7). 175 

The first order solution of [ ] ( )1 ,T x y  associated with the term of 1ε −  in Eq. (11) can be written 176 

as, 177 

 [ ] ( ) ( )
[ ]0

1 , j

j

TT
x

χ ∂
=

∂
x y y  (13) 178 

where ( )jχ y   is the characteristic function which is only related to the microscopic scale 179 

coordinate, independent of the macroscopic scale coordinate system, and the periodicity in y  with 180 

periodical cell (RVE)Y, which is given by: 181 
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j
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j

k k y Y
y y y
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= ∈∂

y
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 (14) 182 

  The homogenized thermal conductivity coefficient can be defined by the characteristic function183 

( )jχ y : 184 

 
( )1 j

H
ij ij iqY

q

k k k dY
Y y

χ ∂
= +  ∂ 

∫
y

 (15) 185 

where Y  is the volume of the RVE. 186 

Eq. (14) can be converted into the following form, 187 

 
( ) ( ) 0

j j

iq
i q q

k
y y y

χ γ  ∂ ∂∂
 − + =   ∂ ∂ ∂  

y y
 (16) 188 

where 
( )j

jq
qy

γ
δ

∂
=

∂
y

 is the temperature gradient along qy  , and ( ), 1,  2,  3jq j qδ =  is the 189 

Kronecker tensor. Moreover, the temperature gradient vector 
j

j
q

qy
γγ ∂

∇ =
∂ can be further expressed 190 

explicitly as: 191 
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 1 2 3

1 0 0
0 1 0
0 0 1

γ γ γ
     
     ∇ = ∇ = ∇ =     
     
     

 (17) 192 

Considering Eq. (17), the right-hand side of Eq. (14) can be further expressed as follows: 193 

 j
ij iq q

i i

k k
y y

γ∂ ∂
= ∇

∂ ∂
 (18) 194 

Eq. (16) can be further simplified as, 195 

 ( )( ) 0j
iq q

j

k W
y
∂

∇ =
∂  (19) 196 

where j j jW χ γ= + .  197 

The boundary conditions are specified by Eq. (17). The temperature on the boundary of the RVE 198 
is subjected to the unit average temperature gradients with only one nonzero component in the 199 
respective coordinate directions. The effective thermal conductivity Eq. (15) can be then expressed 200 
as: 201 

 

( )( )

( )( )

( )( )

1

1    

1    

1    

H j
ij ij iq qY

j j
ij iq q qY

j
iq qY
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q dY
Y

χ

γ
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= + ∇ −
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= −

∫

∫

∫

∫

 (20) 202 

where iq   is the flux components corresponding to jW  . This paper employs the subdomain 203 

boundary element method to solve the heat flux within an RVE numerically. Initially, the boundary 204 
integral equation with periodical boundary conditions is discretized. In a steady-state condition, at 205 
the interfaces between the matrix and fibers, the temperatures are considered the same in both 206 
materials. Thus, the heat fluxes and temperatures of all the elements on the boundary and interface 207 
can be calculated. Next, the temperature and heat flux at any internal point of the RVE can be 208 
calculated by following the standard boundary element solution procedure. Finally, the 209 

homogenized tensor H
ijk  can be calculated by Eq. (20), which is detailed in Section 2.2 and 2.3. 210 

2.2. SBEM for composites 211 

Based on the analysis presented in the previous section, the asymptotic homogenization approach 212 

converts the solution of a steady-state heat conduction problem (Eq. (3)) into a local unit cell 213 

problem (Eq. (14)) and a macroscopic homogenization problem (Eq. (20)), effectively alleviating 214 

the complexity associated with directly solving multiscale heat conduction problems using 215 
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numerical methods. Compared with other domain methods, the unique feature of the boundary 216 

element method is that it only requires mesh partitioning at the boundaries or internal interfaces of 217 

the solution region. Moreover, while maintaining a high accuracy, the number of degrees of freedom 218 

in a boundary element discretization is significantly fewer than that in a finite element discretization. 219 

Consequently, employing the BEM to solve unit cell problems not only simplifies the task of 220 

meshing these cells but also drastically reduces the cost of the computation, thereby significantly 221 

enhancing computational efficiency. The following sections present the discretization process and 222 

the algorithmic workflow for the BEM.  223 

To solve the first-order cell problem using the BEM, it is required to formulate the boundary 224 

integral equation corresponding to Eq. (14), which jχ   satisfies. For the boundary integral 225 

equation that satisfies Eq. (14), the fundamental solution satisfies Eq. (21) is [35]: 226 

 ( ) ( ) ( ) ( ) ( )
* ,

i i

u Q P
k Q T Q d k P T P

y yΩ

 ∂∂
Ω = −  ∂ ∂ 

∫  (21) 227 

where Q  and P  are the field point and source point, respectively; ( )T P  is the temperature at 228 

source point P  ; ( )q Q   is the heat flux at the field point Q  ; ( )* ,u Q P  is the fundamental 229 

solution of the two- dimension (2D) or three-dimension (3D) problem, as follows: 230 

 ( )*

1 1In   for 2D problems
2,

1            for 3D problems
4

ru Q P

r

π

π

  
   = 




 (22) 231 

In Eq. (22), r  is the distance between P  and Q . 232 

Using the fundamental solution *u  as the weight function and integrating Eq. (14) result in: 233 

 ( ) ( ), , 0
j

ij
iqY Y

i q i

k
u Q P k dY u Q P dY

y y y
χ∗ ∗

  ∂∂ ∂
+ =  ∂ ∂ ∂ 

∫ ∫  (23) 234 

Integrating by parts the first integral in Eq. (23) and considering the Gauss divergence theorem 235 

and the fundamental solution, the integration of the left-hand-side of Eq. (23) becomes: 236 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, ,

, ,
                         

j
j

Y Y
i q

j j

Y Y
i i

Q
u Q P k Q dY C P k P P u Q P q Q dS

y y

u Q P u Q P kk Q Q dS Q dY
y y

χ
χ

χ χ

∗ ∗

∂

∗ ∗

∂

 ∂∂
= − −  ∂ ∂ 

∂ ∂ ∂
− +

∂ ∂ ∂

∫ ∫

∫ ∫n

 (24) 237 
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where ( ) ( )( )
j Q

q Q k Q
χ∂

= −
∂n

, ( ) ( )

2

1      for 2D problems, 2,
1    for 3D problems

4

r
u Q P rq Q P

r
r

π

π

∗
∗

∂−∂  ∂= =  ∂∂ −
 ∂

n
n

n

. 238 

Then, the integral equation associated to the characteristic function can be obtained: 239 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, ,

,
                

j j

Y Y

j

Y
i i

C P k P W P u Q P q Q dS q Q P k Q W Q dS

u Q P k Q
W Q dY

y y

∗ ∗

∂ ∂

∗

− = +

∂ ∂
−

∂ ∂

∫ ∫

∫
 (25) 240 

where ( ) 1
2

C P θ
π

= −  is the geometric coefficient at the source point P ; θ  is the external angle 241 

of the boundary at point P . The boundary is assumed to be smooth, thus, C  is 0.5. 242 

The first two terms in Eq. (25) are boundary integrals, while the other integrals in the equation 243 
are domain integrals that are the results of the varying thermal conductivity of the heterogeneous 244 
materials. In this study, the domain integrals can be avoided by using the subdomain boundary 245 
element method (SBEM) that establishes boundary integral equations for fibers and matrix 246 
separately. 247 

By SBEM. The solution domain can be further divided into several sub-regions according to the 248 
computational needs, over which the respective boundary integral equations are established. 249 
Naturally, new equations on the interfaces between the adjacent regions are formed.  250 

A two-dimensional model of the RVE is shown in Fig. 2. The boundary integral equations for the 251 
matrix and fiber can be established as, 252 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A A A

' '' ' ''
, ,C P u P q Q P u Q d Q u Q P q Q d Q∗ ∗

Γ Γ Γ Γ
+ Γ = − Γ∫ ∫ 

 (26) 253 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )B B B

'' ''
, ,C P u P q Q P u Q d Q u Q P q Q d Q∗ ∗

Γ Γ
+ Γ = − Γ∫ ∫  (27)  254 

where, ju kχ= , and the matrix contains the outer boundary 'Γ  and the inner boundary ''Γ , the 255 

latter represents the common boundary between fibers and matrix. The superscripts A  and B  256 
denote matrix and fiber, respectively. The outer boundary 'Γ  consists of temperature boundary 257 

1'Γ  and heat boundary 2'Γ . 258 

Eqs. (26) -(27) are further expressed in a matrix form, that is, 259 

 
A A

A A A A1 1
1 2 1 2A A

2 2

         =            

u q
H H G G

u q
 (28) 260 

or 261 

 B B B B=H u G q  (29) 262 

where matrix H  contains the integrals of heat flux fundamental solution *q  on the boundary. The 263 

matrix G  contains the integrals of temperature fundamental solution *u  on the boundary. A
1u  264 
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and A
1q  are the nodal temperatures and heat fluxes on the external boundary 'Γ , respectively. 265 

A
2u  and A

2q  are the nodal temperatures and heat fluxes at the interface ''Γ . From the continuity 266 

of the temperatures and the equilibrium conditions of the heat flux, one has the following relations: 267 

 A B
2 =u u  (30) 268 

 A B
2 = −q q  (31) 269 

 ( ) 1A B B A
2 2

−
= −q G H u  (32) 270 

Let, 271 

 ( ) 1B B−
= −QU G H  (33) 272 

Thus, Eq. (32) becomes, 273 

 [ ]A A
2 2=q QU u   (34) 274 

Substituting Eq. (34) into Eq. (28) yields: 275 

 [ ]
A

A A A A A1
1 2 2 1 1A

2

   − =     

u
H H G QU G q

u
 (35) 276 

After applying the periodic temperature boundary conditions to all the nodes of the outer 277 
boundary 'Γ  of the RVE, Eq. (35) can be rearranged and expressed in the form of the following 278 
linear algebraic equations: 279 

 [ ]{ } { }A X F=  (36) 280 

Where { }X  is a vector containing the unknown nodal temperature and heat flux on the boundary.  281 

From Eq. (22), it can be obtained that: 282 

 ( ) ( )
,

*

,
,

2

         for 2D problems, 2,      
       for 3D problems  

4

i

i
ii

r
u Q P ru Q P

rx
r

π

π

∗


−∂ = = 

∂ −

 (37) 283 

where r  and ,ir  are, respectively: 284 

 ( )2

1

Q P
i i

i
r x x

β

=

−= ∑  (38) 285 

 ,

Q P
i i

Q
i

i
x xrr

rx
−∂

= =
∂

 (39) 286 
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In which β  is the dimension of the problem, and 
,

,

Q P
i i

iQ
i

Q P
i i

iP
i

x xr r
rx

x xr r
rx

 −∂
= =

∂


−∂ = − = −∂

. 287 

Therefore, 

288 

 ( )
* *

,
,

1
2 2

i
iP P

i i

ru u r r
r r rx x π π

∂ ∂ ∂  = = − − = ∂∂ ∂  
 (40a) 289 

 ( )
* *

,
,

1
2 2

i
iQ Q

i i

ru u r r
r r rx x π π

∂ ∂ ∂  = = − = − ∂∂ ∂  
 (40b) 290 

From Eq. (40a) and Eq. (40b), it is noted that 
* *

P Q
i i

u u
x x
∂ ∂

= −
∂ ∂

. Furthermore, the heat flux at an 291 

internal point can be calculated by: 292 

 * *
, ,( ) ( , ) ( ) ( ) ( , ) ( ) ( )i i iq P u Q P q Q d Q q Q P q Q d Q

Γ Γ
= − Γ − Γ∫ ∫  (41) 293 

where the fundamental solution *
,iq  can be derived from Eq. (42): 294 

 
, ,* 2

*
,

, ,3

1 2  for 2D problems 
2( , )

1 3  for 3D problems 
4

i i j j

i
i

i i j j

n r r n
u rq Q P

x n r r n
r

π

π

  − −   ∂ ∂ =   ∂ ∂   − − 
n

 (42) 295 

2.3. Discretization of the RVE  296 

A two-dimensional model of the RVE (Fig. 2(a)) is discretized by the boundary elements (Fig. 297 
2(b)). The SBEM can calculate the heat flux and temperature at each node on the boundary. In order 298 
to accurately solve the internal flux distributions and conveniently performed the integration, the 299 
RVE is further discretized into a series of parametric sub-cells, as depicted in Fig. 2(c). The 300 
coordinate mapping relationship is shown in Fig. 2(d), where the four-node isoperimetric element 301 
is a typical internal parametric sub-cell. For the thk thk sub-cell, the node mapping relationship 302 

between the coordinate system ( )2 3,y y  and the reference coordinate system ( ),ξ η  is as follows 303 

[36]: 304 

 
4

( , )

1

( , ) ( , ) , 2,3f k
i f i

f

y N y iη ξ η ξ
=

= =∑  (43) 305 

where 1,2,3,4f =   and 1 1f + →   when 4f =  . The superscript k   represents the number of 306 
quadrilateral sub-cells. The coordinates ξ  and η  range from -1 to 1. In the coordinate system, 307 

the shape function can be written as a function of the node coordinates, that is: 308 
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1 2

3 4

1 1( , ) (1 )(1 ), ( , ) (1 )(1 )
4 4
1 1( , ) (1 )(1 ), ( , ) (1 )(1 )
4 4

N N

N N

η ξ η ξ η ξ η ξ

η ξ η ξ η ξ η ξ

= − − = + −

= + + = − +
 (44) 309 

 310 

3. Thermal conductivity of unidirectional FRC 311 

The mixing rate formula has been proved to be an effective method to predict the longitudinal 312 
thermal conductivity with a high accuracy [37]. The investigation of transverse thermal conductivity 313 
has attracted more attention due to the influence of the non-uniform material properties and 314 
geometric shapes, which exhibit periodical variations. Herein transverse thermal conductivity of 315 
unidirectional composites is investigated. 316 

3.1. Thermal conductivity of composites with different fiber content 317 

To study the influence of fiber volume fraction (FVF) on the transverse thermal conductivity, 318 
carbon FRC and glass FRC are both considered. The constituent material parameters are shown in 319 

Table l, where fK  and mK  represent transverse thermal conductivity of the matrix and the fibers, 320 

respectively. FVF of 0.2～0.7 with an interval of 0.05 are considered. To verify the proposed method, 321 

numerical results obtained from FEM and the experimental tests are compared [38] in Fig. 3. From 322 
the numerical results, it can be seen that the transverse thermal conductivity increases exponentially 323 
with the increase of FVF. In addition, it can be observed that the numerical results from the SBEM 324 
show good consistency with the experimental data, and is closer to the experimental results than the 325 
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Fig. 2. Microscopic modeling scheme of the continuous FRCs: (a) 3D RVE, (b) Discretized boundary, 

(c) Discretized RVE with parametric sub-cells, (d) Mapping relation between the reference coordinate system 

and the actual coordinate system. 
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FEM results.  326 
Table 1  327 

Thermal conductivity parameters of the constituent materials. 328 

Materials 
Transverse thermal conductivity ( )1 1K W m K− −⋅  

fK  mK  

Carbon FRCs 66.6 0.1 

Glass FRCs 1.06 0.24 

 329 

 330 

3.2. Local temperature and heat flux analysis  331 

Consider a glass FRC with a FVF of 0.45. A transverse temperature gradient of 1 /m℃ is applied 332 

on the RVE, where the temperature on the left- and right-hand sides of the RVE boundaries are 333 
- 0. 5℃  and 0. 5℃  , respectively. The numerical results of the local heat flux and local 334 
temperature distributions are shown in Fig. 4. For comparisons, the numerical results obtained by 335 
the FEM are also shown in the figure. The local heat flux fields predicted by the two methods agree 336 
with each other well. In addition, from the obtained heat flux and the temperature on the RVE 337 
boundary, the SBEM can analytically compute the heat flux of an arbitrary point in the domain, 338 
which makes it more convenient to study the heat flux of any region of interest. 339 
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 340 
To further investigate the influences of FVF on the heat flux, three different fiber contents are 341 

considered in Fig. 5. It can be found that there is a significant increase in the local heat flux within 342 
the RVE as the FVF increases. In addition, a concentration of heat flux is clearly observed at the 343 
interface region, indicating an uneven distribution and notable heat accumulation between the 344 
matrix and the fiber. Consequently, this non-uniform heat flux distribution may result in microscopic 345 
thermal damage on the interface. The patterns of the flux distribution are similar to those from other 346 
studies [33, 39], since the same principle of the homogenization procedure is followed, and similar 347 
geometry of the selected RVE are used. 348 

349 

3.3. Temperature/flux distribution on the interface  350 
To calculate the temperature and flux distributions with high accuracy, the circumferential 351 

interface is averagely discretized into 360 elements. FVFs of 0.35, 0.45 and 0.55 are considered, 352 

respectively, and the numerical results are shown in Fig. 6. It should be noted that some interface 353 
nodes are hidden deliberately for better display of the nodal information. Fig. 6 (a) illustrates the 354 
temperature distribution on the interface. It can be seen that the temperature profile, with 355 
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consideration of the FVF, is smooth and continuous. Fig. 6 (b) and Fig. 6 (c), which depict the heat 356 

flux components on the interface along the 2 -y and 3-y directions, respectively. Under the same 357 

temperature gradient conditions, the variation range of the temperature and the heat flux on the 358 
interface are sensitive to the FVF. An increase in the FVF can significantly increase the variation 359 
range of the temperature and heat flux. This means that volume fraction plays an important role in 360 

influencing local response, especially in the 2 -y  direction, which is the main direction of heat 361 

conduction.  362 

 363 
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 365 

4. Influences of interface defect on the effective thermal conductivity 366 

In the preparation process of a composite, some stochastic defects (pores or microcracks) are 367 
prone to occur at the interface [40] and potentially influence the properties of the composite. Due to 368 
the fact that the thickness of microcracks is much smaller than the size of pores, their effect on 369 
material thermal conductivity is relatively limited [41]. In view of this, this study only focuses on 370 
pores with clear thickness characteristics as representatives of interface defects. To evaluate the 371 
influences of interface defects on the thermal conductivity, the position, length and thickness of the 372 
defects are taken into consideration. 373 

4.1. Modeling and analysis  374 

4.1.1. Interface defect modeling 375 
To accurately describe the defects on the circumferential interface, a parameter p  is introduced, 376 

which is the ratio of the total length of interface defects to the entire circumferential interface length. 377 
As shown in Fig. 7, the central circular and the surrounding area are the fiber and matrix, 378 
respectively. The shaded regions surrounding the fiber are the interface defects between the fiber 379 
and the matrix. The defect thickness t  is defined by the dimensionless parameter /t r , where r  380 
is the fiber radius. Thus, 0 1p≤ ≤ , where 1p =  indicates that a fiber is completely detached 381 
from the surrounding matrix, while 0p =   denotes that the interface between a fiber and the 382 

surrounding matrix is perfect. 383 
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 384 
During the numerical simulation by the SBEM, the node decoupling technique is used to simulate 385 

the interface defects. When a perfect interface is considered, the elements of the fiber and the matrix 386 
share a common node, e.g., A or B, as shown in Fig. 8(a). However, when interfacial damage is 387 

taken into account, as shown in Fig. 8(b), the node pairs B -B+ −  and A -A+ −  are positioned at the 388 
same coordinates on the interface, belonging to the subdomains on both sides of the interface. Herein 389 

the inner nodes A−  and B−  are the fiber nodes, and the outer nodes A+  and B+  are the matrix 390 
nodes. Interface defect is also considered as an air gap, assuming it possesses a thermal conductivity 391 

value of ( )1 10.026 W m K− −⋅  [5].  392 

 393 
The method presented by Hasselman [27] is used to quantify the influence of defects on thermal 394 

conductivity by introducing an equivalent contact thermal resistance. The presence of contact 395 
thermal resistance results in a temperature difference between the fiber boundary and the matrix 396 
boundary, which is ultimately reflected by the temperature difference of the interface nodes. In other 397 

words, interface nodes A+   and A−   have different temperature. However, the heat flux of the 398 
fiber phase and the matrix phase at the same interface node remains equal. The mathematical 399 
equations are as follows: 400 

 ( ) m f
f f f c

T T
n k T k

t
−

− − ∇ =  (45) 401 

(a)  (b)  (c)  

Interface defect Interface defect Perfect interface 

r r r 

t 

Fig. 7. Interface defects between fiber and matrix in composites: (a) , 

(b) ,(c) . 

Matrix Matrix Matrix 

Fiber Fiber Fiber 

t 

A+ A- B- B+ A B 

Interface defect  

Fig. 8. Node pairs at the interface: (a) Coupled node pairs, (b) Uncoupled node pairs. 
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 ( ) f m
m m m c

T T
n k T k

t
−

− − ∇ =  (46) 402 

where, fn  and mn  are the normal vectors of the fiber and matrix on the interface, respectively. 403 

fk , mk  and ck  are the thermal conductivity of the fiber, matrix, and air, respectively. fT∇  and 404 

mT∇   denote the respective temperature gradients within the fiber and the matrix. t   is the 405 

thickness of the interface defect. 406 
4.1.2 Numerical analysis 407 

To evaluate the influences of the interface defects, an RVE model containing interface defects 408 
with / 0.025t r =  and 45 / 360 12.5%p = =  is selected in the simulation. The position of a defect 409 

on the circumference interface can be defined in a polar coordinate system with the fiber center 410 
being the origin, where the endpoints A and B of the defect are shown in Fig. 9(a). As shown in Fig. 411 

4 and Fig. 5 and Fig. 6, the heat flux concentration appears near the 0  position of the interface 412 

and decreases sharply along the interface from 0 degrees to the other end at / 4π  position. The 413 

impact of interface defects located in this region on heat flux and temperature deserves further study. 414 

To this end, the ends at 0  and / 4π  are labeled as points B and A, respectively in the following 415 

discussion. The influence of this interface defect on the local heat flux and temperature field are 416 
investigated. The simulation results of the local heat flux are shown in Fig. 9(b-c). For comparisons, 417 
a finite element model is developed in this paper with interfacial defects located on the matrix side 418 
of the interface. The interfaces are modelled by a third-phase material that has the material properties 419 
of air. The position, length, and thickness of the defect are the same as those used in the boundary 420 
element model. The numerical results obtained are also shown in the figure. It can be seen that the 421 
local heat flux fields predicted by the two methods agree with each other well. The heat flux shows 422 

significant changes along the 2 -y and 3-y directions near the defect. In other words, the presence of 423 

the interface defect results in heat flux concentration and heat accumulation. Consequently, the 424 
effective thermal conductivity is affected. 425 
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 426 

The simulation results of the local temperature distribution are shown in Fig. 10(b, c). Due to the 427 
relatively large temperature difference of the background, the influence of interface defects shown 428 
in Fig. 10(b) is not significant compared to the perfect interface (Fig. 4). Therefore, a distribution 429 
map of the temperature fields of the two is presented, as shown in Fig.10(c). It can be clearly seen 430 
from Fig.10 that the interface defects hinder the heat transfer, resulting in different temperatures on 431 
the two sides of the defect (Fig.10(c)). The temperatures on the immediate right- and left-hand sides 432 
are higher and lower, respectively, than the temperatures of the same positions of the interface 433 

without the defect. The maximum temperature difference is 0.073 C  and located at the center of 434 

the defect.  435 

 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 

 444 
 445 
 446 

 447 
The temperature and heat flux profiles of the matrix along the interface with a defect are shown 448 
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Fig. 9. Local flux distribution of model with interface defects comparisons between the FEM 

and the proposed SBEM under transverse . 
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in Fig. 11. The simulation results show a significant change in the temperature and flux in the defect 449 
area. From Fig. 11(a), it can be seen that the presence of the interface defect causes a notable increase 450 
in the temperature within the defect area. This is attributable to that the interface defects hinder the 451 
normal heat flow, resulting in a local temperature increase and local heat flux decrease within this 452 
region. The heat flux in Figs. 11(b)-(c) shows abrupt changes at both ends of the defect. Notably, it 453 
can be seen in Fig. 11(b) that the abrupt change in the heat flux at point B is greater than that at 454 

point A. More specifically, the heat flux 2q  jumps from 20.19 /W m−  to 20.527 /W m−  at point 455 

A, and drops from 20.40 /W m−   to 21.69 /W m−  at point B. The existence of defects leads to a 456 
concentration of heat flux at both tips of the defect, and the degree of concentration is related to the 457 
location of the defect tips. If a defect tip appears in a region where interfacial heat flux is high, the 458 
degree of heat flux concentration is more intensive. The abrupt change is also observed in Fig. 11(c) 459 

for 3q  at both ends of the interface defect. 460 

 461 
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 463 

4.1.3. The effects of stochastic defect on heat flux 464 
By using the proposed SBEM, the effective thermal conductivity of the FRC with consideration 465 

of interface defects can be evaluated. Herein, the influences of defect length, thickness and position 466 
on the thermal conductivity are further investigated. Fig. 12 shows four RVEs with defects of 467 
identical thickness and total defect length that are randomly distributed along the interface. The total 468 
defect length is 50%p =  and the thickness is / 0.15t r = . Fig. 12 shows the defect distributions 469 

of the four RVEs and their respective distributions of 2q . The calculated values of the effective 470 

thermal conductivity considering the different positions of interface defects are 1 10.3912W m K− −⋅ , 471 
1 10.4092W m K− −⋅ , 1 10.4157W m K− −⋅  and 1 10.4273W m K− −⋅ , respectively.  472 

 473 

0 /2 3 /2 2
-1.5

-1

-0.5

0

0.5

1  Interface with defect
 Perfect interface

0 /2 3 /2 2

 Interface with defect
 Perfect interface

Fig. 11. Temperature and heat flux distributions on the interface: (a) ,(b) ,(c) . 
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4.2 The influence of interface defect location on the effective thermal conductivity 474 
4.2.1 The location of interface defect along the circumference 475 

The interface defect in the RVE of length 8.33%p = , thickness / 0.1t r =  is chosen to study the 476 

effect of defect location on the thermal conductivity. The location of a defect along the 477 
circumference interface is defined by the position of the middle point of the defect, i.e., by the angle 478 
θ  in the polar coordinates. The effective thermal conductivity of the RVE having defects at various 479 

positions is calculated, and compared with that of the RVE with perfect interface, as shown in Fig. 480 
13. It is shown clearly that the location of the interface defect has a significant effect on the effective 481 
thermal conductivity. When the defect is located at 0 or π , the equivalent thermal conductivity is 482 
the minimum. When the defect is at / 2π  or 3 / 2π , the equivalent thermal conductivity is almost 483 

the same as that of the perfect interface. This suggests that the smaller the angle between the radial 484 
direction of the defect center and the direction of heat conduction, the greater the impact of interface 485 
defects on heat conduction.  486 

  487 
4.2.2 Randomly distributed interface defects along the circumference 488 

In the real situation, a composite may contain many fibers with interface defect randomly 489 
distributed along fiber circumferences. The influence of the interface defects on the effective 490 
thermal conductivity needs to be assessed statistically. In this paper, the Von Mises distribution is 491 
used to describe the position of circumferential defects. The probability density function of the Von 492 
Mises distribution can be expressed as: 493 
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This formula describes how the probability density of an angle θ  on the unit circle varies with 495 
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its proximity to the mean direction µ  and as a function of the concentration parameter k , which 496 

governs the degree of clustering around the mean. Where, θ   is an angle within the range of 497 

[ ]0,2π . µ  is the mean of the distribution and is also an angle within the range of [ ]0,2π . κ  is 498 

the concentration parameter of the distribution, which is a non-negative real number. When 0κ = , 499 

it represents a uniform distribution. ( )0I κ  is the modified Bessel function of the first kind. 500 

RVEs of fixed interface defect length of 10%p =  , / 0.1t r =   are considered. There are 36 501 

identical defects randomly distributed along the interface. In the polar coordinates, starting from 0, 502 
the mean value µ  of the Von Mises distribution of interface defects are set at every / 4π  interval 503 

for the different position. The parameter κ  is set as 0,3.0,6.0,10.0κ = for different concentration. 504 

Five hundred Monte Carlo simulations are conducted for each combination of the distribution 505 
parameters to obtain RVEs samples featuring interface defects at varying locations along the 506 
interface. Subsequently, the effective thermal conductivity of each of the samples is calculated, and 507 

the results are presented in Fig.14, wherein the horizontal axis denotes the mean ( )µ value of the 508 

angular (position) distributions, and the vertical axis denotes the expected value of the effective 509 
thermal conductivity of the distributions. It is evident that when the concentration is higher (κ  510 
value is large), the µ  has a significant impact on the thermal conductivity coefficient. When µ  511 

is at 0 and π , the equivalent thermal conductivity reaches its minimum value, and at / 2π  and 512 
3 / 2π , it reaches the maximum value. However, when the concentration is poor (κ  value is small), 513 

the impact of position on the thermal conductivity becomes less significant. As κ  approaches 0, 514 
i.e., the distribution of interface defects around the circumference of the fiber tends to be uniform, 515 

the effective thermal conductivity approaches ( )1 10.4368 W m K− −⋅ . This observation suggests that 516 

when the number of defects on an interface is sufficiently large, the thermal conductivity can be 517 
considered independent of the position of the individual interface defects. 518 
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 519 

4.3. Effect of stochastic interface defects on the effective thermal conductivity 520 

The microstructure of a composite with random interface defects can be characterized by a 521 

random unit cell sw . Assuming that a unit cell contains I randomly distributed interface defects, 522 

the set of all defects in this random cell can be defined as: 523 

 ( )1 2, ,s s s s
Iw δ δ δ=   (48) 524 

where one defect is represented by the following parameters: 525 

 ( , , )p tδ θ=  (49) 526 

Thus, the thermal conductivity of the composite material with random interface defects is an 527 

oscillation function related to the random variable sw , and the effective thermal conductivity tensor 528 

is defined as [42]: 529 

 ( ) ( ) ( ) ( ),1 , ,
| |

j s
H s s s
ij ij iqY q

w
k w k w k w dY

Y y

χ ∂
 = +
 ∂
 
∫

y
y y  (50) 530 

The probabilistic moments of the effective thermal conductivity are obtained using the statistical 531 

estimation methods, from which the expected effective thermal conductivity tensor is calculated as: 532 

 
1 M

H Ht
ij ij

t

E k k
M

  =  ∑  (51) 533 

where ( ) , 1, ,Ht s
ijk w t M=  are given series of the randomly generally tensor components. 534 

To effectively investigate the effect of the stochastic interface defects, the Monte Carlo method 535 
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is implemented into the SBEM. A RVE model with stochastic interface defects is taken as an 536 
example to calculate the effective thermal conductivity. The entire circular interface of the RVE is 537 
discretized into 360 boundary elements, the nodes of some of which are decoupled to represent the 538 
interface defects with specified length. For instance, if a defect extends across E consecutive 539 
elements on the circular interface, 1E −  internal nodes of the elements are decoupled. With full 540 
consideration of their randomness, these defects can be generated by using a random function within 541 

the range of 0 ,360° °    . The impact of stochastic interface defects on the effective thermal 542 

conductivity of the FRC is then studied by varying the total defect length and thickness in the 543 
simulation. Fig. 15(a) is the Quantile-Quantile (Q-Q) plot, which confirms the predictions 544 
approximately follow a normal distribution as, 545 

 ( )2~ ,X N µ σ  (52) 546 

where X   represents the effective thermal conductivity. The parameter µ   is the mean of the 547 

predictions with full consideration of different random variables. The variance 2σ  indicates the 548 

degree of deviation from the mathematical expectation.  549 

 550 

4.4. Determine the appropriate sample size 551 

The sample size plays a significant role in determining the calculation accuracy during the 552 

numerical calculation by utilizing the Monte Carlo method. Considering the calculation accuracy 553 

and computational efficiency, 10 sets of samples. i.e., 200, 500, 800, 1000, 1200, 1600, 2000, 2500, 554 

3500, and 5000, are selected for determining an appropriate sample size. The dimensionless 555 

interface defect thickness /t r  and the defect length p  are, respectively, 0.01 and 33.33%. Table 556 

2 shows the predicted thermal conductivity using the selected samples, which clearly indicates that 557 

using over 800 samples has virtually the same degree of accuracy. 558 

Table 2  559 

Convergence trend of different specimen numbers 560 

Sample number The mean of effective thermal conductivity coefficient ( )1 1W m K− −⋅  Variance 
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Fig. 15. Probability distribution with 5000 specimens: (a) Q-Q plot, 

(b) A comparison between statistical results and fitting results. 
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200 0.4242 3.4E-5 

500 0.4242 3.1E-5 

800      0.4241      2.7E-5 

1000      0.4241      2.5E-5 

1200 0.4241 2.6E-5 

1600 0.4241 2.8E-5 

2000 0.4241 2.8E-5 

2500 0.4241 2.7E-5 

3500 0.4241 2.7E-5 

5000 0.4241 2.7E-5 

To study the distribution of each of the group using frequency density histograms and probability 561 
density function curves, the statistical grouping method proposed by Freedman and Diaconis [43] 562 
is used in the data sorting. Based on the distance between the upper limit b  and lower limit a  of 563 

the calculated thermal conductivity, the results of all the samples are divided into 30 groups, thus, 564 

the class interval ∆  is 
30

b a−
∆ = . The shaded area in the frequency density histogram of Fig. 16 565 

(a) is the statistical frequency F   of one interval. Correspondingly, the shaded area in the 566 
probability density function graph of Fig. 16 (b) is the statistical probability P  of the same interval. 567 
Considering that the data has a normal distribution, thus, 568 

 
2

2
( )
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x

P e d
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 −
−  
 

∆
= ∆∫  (53) 569 

The probability function is integrated over each of the interval ∆ . With the obtained F  and 570 

P , the difference of them can be calculated as the error function. For the thi  interval i∆ , the 571 

corresponding iF , iP , and the absolute error i iF P−  can be obtained, from which the average 572 

error P  is calculated by: 573 
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 575 

From the statistics, the error P   will converge to a small value when the sample size is 576 
sufficiently larger. Fig. 17 shows the tendency of the calculated error P  for each of the sample 577 
groups, which shows that the average error approaches and converges to 0.006 as the sample count 578 
surpasses 1000. To consider calculation accuracy and computational efficiency, 1000 is considered 579 
an appropriate sample size for this study.  580 

 581 

4.5 The influencing factors of interface defects on thermal conductivity 582 

4.5.1 Defect length  583 
RVEs with a fixed defect thickness / 0.1t r =  and five different defect lengths, i.e., 25%p = , 584 

33.33%, 41.67%, 50% and 60%, are considered, respectively. The frequency density histogram and 585 
the probability density chart of the statistical results are presented in Fig. 18. It is evident that the 586 
defect length represents a notable impact on the effective thermal conductivity. Specifically, as the 587 
increase of the defect length, the mean of the effective thermal conductivity decreases from 588 

1 10.431W m K− −⋅  to 1 10.401W m K− −⋅  with a change of the variance from 4.133E-6 to 7.022E-5. 589 
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Fig. 16. Comparison between statistical results and fitting results: (a) Frequency density, 

(b) Probability density curve. 
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 590 
To gain a deeper insight into the data distribution, a box plot is further featured in Fig. 19(a). This 591 

visual representation of the statistical data includes a series of essential indicators, including the 592 
median, minimum, and maximum values, the upper quartile and lower quartile, as well as the outlier 593 
data. Herein the thermal conductivity of the perfect interface is also depicted in the graph by using 594 
the red dashed lines for comparisons. It is evident that the median of effective thermal conductivity 595 
decreases with the increase of the defect length p . Moreover, the distribution range of the effective 596 

thermal conductivity is larger when the defect length p is greater. In addition, the presence of the 597 
outliers below the lower edge of the distribution range indicates that the overall data distribution 598 
represents a leftward skew. This skewness is attributed to the interface defects, which results in a 599 
reduction in thermal conductivity. The correlation between the mean value of the effective thermal 600 
conductivity (y) and the defect length (x) of the interface is shown in Fig. 19(b). The fitting equation 601 
derived from the numerical results can be written as: 602 

 0.0906 0.455y x= − +    (55) 603 

 604 
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In the heat conduction process, the interface serves as a heat transfer channel between the matrix 605 

and the fiber phase. However, interface defects always hinder the normal heat transfer process. The 606 

length and thickness of interface defects are two main factors that affect thermal conductivity. In 607 

this evaluation, the thickness of the interface defects is fixed, and the defect length changes. When 608 

the defect length is small, the influence of defect thickness is a dominating factor. Thus, the 609 

reduction in the effective thermal conductivity is relatively slow as the length increases. However, 610 

when the length exceeds a certain value (33.33%), the influence of defect length becomes the main 611 

factor. Thus, the reduction in the effective thermal conductivity is relatively fast as the length 612 

increases. In general, as the defect length increases, the effective thermal conductivity decreases 613 

approximately linearly. 614 

4.5.2 Defect thickness  615 
RVEs of fixed interface length 33.33%p =  with five different interface defect thicknesses 616 

/ 0.01,  0.05,  0.10,  0.15,  0.2t r =  are considered. The frequency histogram and probability density 617 

chart are shown in Fig. 20(a) and Fig. 20(b), respectively. It is evident that the thickness of the 618 
defects also plays a crucial role in determining the effective thermal conductivity. Similar to the 619 
analyses on the defect length, the effective thermal conductivity obviously decreases as the defect 620 
thickness increases, with an increasing variance. 621 

 622 

Fig. 21(a) presents a box plot depicting the relationship between the interface defect thickness 623 
/t r  and the thermal conductivity of the FRC with a fixed defect length. Herein the red dashed line 624 

represents the thermal conductivity of the FRC with perfect interface bonding. It is noticeable that 625 
the median of the effective thermal conductivity experiences a certain decrease as /t r  increases. 626 
However, the downward trend gradually levels off. Once the defect thickness /t r  reaches 0.15, 627 

the quartile difference (length of the box) for each group remains relatively constant, indicating a 628 
stabilization in the dispersion of the data. In addition, it is observed that the outliers are concentrated 629 
below the boundaries of the box plot, indicating that the overall data distribution is skewed towards 630 
the left-hand side since interface defects only reduce the thermal conductivity. Fig. 21(b) depicts the 631 
correlation between the mean value of the effective thermal conductivity (y) and the thickness (x) 632 
of the interface defect. In general, the relationship between the two is approximately linear. The 633 
fitting equation is as follows: 634 
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 0.0667 0.431y x= − +   (56) 635 

 636 

4.5.3. Area of Defect 637 
When considering the influence of the area of interface defects on the thermal conductivity, Eq. 638 

(57) is proposed to take into account the arc length and the thickness of an interfacial defect. Fig. 639 
22 shows the determination of the defect area that can be calculated as follows: 640 

 
( 2 )

360
( 2 )

narea t t r

p t t r

π

π

= × × +

= × × +
 (57) 641 

where the parameter, n, is the degree of the central angle relative to the dimensionless defect length 642 

p , and 
360

np = . 643 

 644 
 645 
 646 
 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 

The RVEs with interface defect areas 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.1 655 
are considered, respectively, with variable defect length, p , and thickness, t . The defect length 656 
p  is randomly chosen, and the defect thickness is calculated then from Eq. (57). The randomly 657 

chosen defect length and the calculated thickness are required to be smaller than their respective 658 
pre-defined maximum values, which is practically possible. Based on the maximum defect length, 659 
thickness and the given area, the minimum value of defect length and thickness can be determined. 660 
1000 defect samples are generated for each of the above 10 defect areas by Monte Carlo experiments. 661 
The effective thermal conductivity of the samples is statistically analyzed, and the results are shown 662 
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in Fig. 23. 663 

 664 
Fig. 24(a) presents a box plot depicting the effective thermal conductivity distributions. It is 665 

evident that the median effective thermal conductivity exhibits a uniform decreasing trend with the 666 
increase of the defect area. The correlation between the mean value of the effective thermal 667 
conductivities and the interface defect area is depicted in Fig. 24(b). It represents a strong linear 668 
correlation, and the fitting equation is expressed as:  669 

 0.181 0.432y x= − +  (58) 670 

 671 

5. Conclusions 672 

The present investigation proposes a new micromechanical model for the prediction of the 673 
effective thermal conductivity of FRC with full consideration of random interface defects. This 674 
study uses glass fiber-reinforced composite materials as the research object, but the method and 675 
computer program can be easily extended to other fiber-reinforced composite materials. Under the 676 
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assumption that the material solely comprises interface defects, the model idealizes these defects as 677 
discontinuous circular arc-shaped segments distributed along the circumference of the interfaces. 678 
This approach facilitates a quantitative examination of how the length, thickness, and area of 679 
interface defects influence thermal conductivity. The effect of defects on thermal conductivity is 680 
quantified by introducing an equivalent contact thermal resistance. This method streamlines the 681 
complex heat transfer process at the contact interface but overlooks the true physical characteristics 682 
of the interface, which can similarly affect the accuracy of the predictions. It is noteworthy that the 683 
model developed herein is a two-dimensional RVE model, suitable only for investigating the impact 684 
of interface defects on transverse heat conduction. To analyze the axial thermal conductivity, the 685 
establishment of a three-dimensional RVE model is necessitated. In addition, the current model has 686 
not fully captured all the intricacies present in real materials, thereby potentially impacting the 687 
accuracy of predictions. The main conclusions of this study are summarized as follows: 688 
1) The proposed microscopic model is effective in predicting the effective thermal conductivity 689 

of FRC, which is evidenced by the validations through comparisons with the FEM and the 690 
experimental results. 691 

2) At the microscopic level, the temperature and heat flux at the interface of FRCs exhibit 692 
fluctuations during heat conduction, and the heat flux distribution inside the RVE is uneven, 693 
resulting in heat flux concentration. 694 

3) The stochastic interface defects significantly reduce the effective thermal conductivity of fiber-695 
reinforced composites, and the degree of reduction is proportional to the length and thickness 696 
of the defects. 697 

4) The simulation results show that the area of the interface defect presents a strong linear 698 
correlation with the transverse thermal conductivity.  699 

5) It is recognized that due to the complexity of the micro-structure of composite materials, 700 
thermal conductivity will inevitably be affected by other factors, such as fiber shape, internal 701 
porosity of the matrix, and the orientation and distribution of fibers, which were not considered 702 
in this study. Further research and more experiments will be carried out to improve our 703 
understanding of this complex issue. 704 
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