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Abstract

We investigate the low-energy electronic properties of rhombohedrally-stacked

graphite (RG). Chapter 1 discusses the history of graphene and provides the context

for our work. In Chapter 2 we introduce the tight-binding model and demonstrate

its application in describing the Hamiltonians and electronic band structures of

several graphitic systems. We also present three one-dimensional models describing

topological insulators, and show, through dimensional reduction, that these are

similar to the graphene systems under investigation. Chapters 3 and 4 describe

the original research work in the thesis. Chapter 3 describes stacking faults in thin

films of RG. We find that each stacking fault produces two localised low-energy states

near the Dirac points. In comparison to the one-dimensional models, such faults are

effectively a soliton-antisoliton pair, and it is impossible to realise a single, isolated

state on a stacking fault in RG. In Chapter 4 we consider rhombohedrally-stacked

systems with alternating onsite energies, and, particularly, the properties of solitons

consisting of a change in texture of the onsite energies. We show that, depending

on parameter values, a single localised energy band may be isolated within the bulk

band gap, in contrast to stacking faults in RG. For both types of faults, in Chapters

3 and 4, we derive low-energy effective Hamiltonians to describe hybridisation of the

localised soliton states with localised surface states, and we model the robustness of

the properties of these states in the presence of disorder.
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Chapter 1

Introduction

Graphene is an atomically-thick layer of carbon atoms arranged on a honeycomb

lattice [3], shown in figure 1.1. It was first isolated in 2004 by the Manchester

University research group led by Andre Geim and Konstantin Novoselov [4], who

were awarded the Nobel Prize in Physics 2010 “for groundbreaking experiments

regarding the two-dimensional material graphene”.

Figure 1.1: Diagram of the graphene honeycomb lattice. Circles represent atoms
and lines represent σ bonds. Open and solid circles show atoms on the A and B
sublattices, respectively.

Graphene found immediate research interest because it is stable at room tem-

perature, an excellent electrical conductor, and it is easy to tune the carrier density

with a back gate. The low-energy effective Hamiltonian of graphene resembles that

of the Dirac equation, rather than the usual Schrödinger equation as found for con-

ventional semiconductors.

Graphene was studied theoretically for many years before it was first fabricated
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because of the need to build models to understand three-dimensional graphite. The

electronic band structure of graphene was described by Wallace in 1947 [5], the

Landau level spectrum by McClure in 1956 [6], and the model of graphene has been

used as the building block of buckyballs [7] and carbon nanotubes [8]. The material

graphite [9] is formed of many layers of graphene which are weakly-coupled together

in the out-of-plane direction.

Graphene was initially produced by researchers at Manchester university [4] via

mechanical exfoliation (also called the ’Scotch tape’ or ’Sticky tape’ method). This

method can produce high quality samples, but is labour intensive and provides low

yields.

Recent improvements in fabrication methods mean that very high-quality sam-

ples of ABC graphene can be produced [10–18], and, notably, researchers at Manch-

ester university were able to fabricate up to 50 layers of rhombohedrally-stacked

graphite in 2020 [19]. ABC graphene refers to the stacking configuration consisting

of three different layer positions, as shown in figure 1.2.

Graphene possesses several interesting physical properties, all of which add to its

research interest. It has an intrinsic strength of ∼ 130 GPa [20], making it incredi-

bly strong. Graphene is very resistant to compression in the in-plane direction, with

a Young’s modulus of ∼ 1 TPa [20], but is flexible in the out-of-plane direction,

with a bending stiffness of ∼ 1 eV [21]. Graphene is an excellent electrical con-

ductor, with high-quality samples upon a substrate demonstrating mobilities above

105 cm2V−1 s−1 [22, 23], which means that ballistic transport may be supported for

distances exceeding 1 µm at room temperature [24]. Graphene is also an excellent

thermal conductor, with thermal conductivity up to ∼ 5000 Wm−1K−1 at room

temperature [25].

The honeycomb lattice, figure 1.1, consists of two nonequivalent atomic posi-

tions, dubbed A and B. Multilayer graphene can generally form with one of three

different stacking types: Bernal (ABA), Rhombohedral (ABC), or AA, these are
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shown in figure 1.2. Bernal stacked graphene is the most commonly found stacking

type as it is the most energetically favourable of the three. Rhombohedrally-stacked

graphene is the next most commonly found stackng type, and AA graphene is far

less commonly found, and generally only considered theoretically.

A B

ABA ABC AA

Figure 1.2: Schematic side view of the three graphene stacking types. Open and
filled circles represent the atoms on the A and B sublattices, respectively, and each
horizontal pair of A, B atoms represents a unit cell of monolayer graphene. Horizon-
tal solid lines represent the intralayer coupling and vertical dashed lines represent
the interlayer coupling.

In chapters 3 and 4 we will discuss isolated states that reside within the bulk band

gap in graphene-like systems. These low-energy states are partly due to alternating

the sign of the onsite potential, but it is not practical to induce this effect in pure

graphene systems [2].

However, these results would apply to rhombohedrally-stacked compounds with

a honeycomb lattice and consisting of two different atomic species, for example

hexagonal boron nitride (h-BN) [26–31]. Boron phosphide [32–34] and silicon car-

bide [35–37] are two thin films with a honeycomb structure, and both have a direct

band gap at the K point. Other similar materials include gallium nitride [38–41],

zinc oxide [42–46], transition metal dichalcogenides [36, 47–51], and III-VI semicon-

ductors [52–56]. We expect that these materials will support localised soliton states

similar to those discussed in this thesis.
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Chapter 2

Theoretical Background

2.1 General Tight-Binding Model in Two Dimen-

sions

We consider a two-dimensional (2D) periodic lattice. A Bravais lattice is an infinite

array, R, of discrete points generated by primitive lattice vectors a1 and a2,

R = ma1 + na2, (2.1.1)

where m and n are integers. There are five possible Bravais lattices in 2D [57],

but more complicated crystal structures can be represented by the combination of

a Bravais lattice and a basis - the arrangement of atomic orbitals surrounding each

Bravais lattice point. The positions of the atoms with respect to the lattice point

are denoted τj where j = 1, 2, . . . indexes the different orbitals. The total position

vector for each atom within the crystal is then given by Rj = R+ τj.

A crystal lattice is spanned by tesselating areas called unit cells, and a primitive

unit cell is a unit cell that contains only a single lattice point. Each primitive unit

cell has the same shape and area, and the primitive unit cells together fully span

the crystal lattice. A Wigner-Seitz cell is a type of primitive unit cell containing all

points in space that are closer to a particular lattice point than to any other lattice

point. This cell may be constucted by drawing the perpendicular bisectors of each

lattice vector connecting a lattice point to all of its nearest neighbours. There are

many possible choices of unit cell, but only one Wigner-Seitz cell may be found for
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a given lattice. The area of the primitive unit cell is always |a1 × a2|.

The reciprocal lattice exists in wave vector space (known as reciprocal space or

k-space) and its primitive reciprocal lattice vectors b1 and b2 are related to the real

(or direct) lattice via the relation

ai · bj = 2πδi,j, (2.1.2)

where δi,j is the Kronecker delta

δi,j =

1, for i = j

0, for i ̸= j.

(2.1.3)

The reciprocal lattice is similarly defined by its primitive lattice vectors

G = ub1 + vb2, (2.1.4)

where u and v are integers. The Wigner-Seitz cell centred on the lattice point at

G = 0 is called the first Brillouin zone (BZ). The centre of the BZ is labelled Γ and

points of high symmetry are labelled “L”, “X”, “W ”, “K”, etc.

The placement of atomic sites on the crystal lattice leads to a periodic potential,

which means that Bloch’s theorem can be applied [57]. This states that energy

eigenstates of a single-particle Hamiltonian can be found of the form

Φ (r) = eiq·ru (r) , (2.1.5)

where u is a function with the same periodicity as the Bravais lattice u (r +R) =

u (r) and q is the wave vector describing different positions in reciprocal space, the

primitive reciprocal lattice vectors b1 and b2 are written in the basis of (qx, qy), so

q = 0 describes the centre of the BZ, G = 0, or the Γ point.

All physically distinct wave functions are labelled by q within the first BZ,

and wave vectors outside of the BZ can always be described with the substitution

q′ = q +G.
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2.2 Tight-Binding Hamiltonian

In this section we will derive the tight-binding Hamiltonian [57–59] for a general

lattice with two orbitals per unit cell, labelled A and B. This will apply for any

number of spatial dimensions, but will be especially relevent for later discussions of

the Su-Schreiffer-Heeger (SSH) model 2.6 and graphene 2.4.

The Hamiltonian H is written in terms of the atomic orbitals |RA, A⟩ and

|RB, B⟩, where RA = R + τA denotes the position of the A atom in terms of the

lattice vector R and the basis vector τA, and similarly RB = R + τB. The atomic

orbitals are assumed to be localised around their atoms (tightly-bound orbitals) and

any overlap between orbitals on different atoms is neglected, giving

⟨RA, A|R′
B, B⟩ = 0, (2.2.1)

⟨RA, A|R′
A, A⟩ = δRA,R′

A
, (2.2.2)

⟨RB, B|R′
B, B⟩ = δRB ,R′

B
. (2.2.3)

To describe the system in reciprocal space, we use the following Fourier transforms

|q, A⟩ = 1√
N

∑
RA

|RA, A⟩ eiq·RA , (2.2.4)

|RA, A⟩ =
1√
N

∑
q

|q, A⟩ e−iq·RA , (2.2.5)

|q, B⟩ = 1√
N

∑
RB

|RB, B⟩ eiq·RB , (2.2.6)

|RB, B⟩ = 1√
N

∑
q

|q, B⟩ e−iq·RB . (2.2.7)

Here N is the number of unit cells, N =
∏d

i Ni, Ni is the number of primitive unit

cells in the direction of lattice vector ai, and d is the number of spatial dimensions.

We use periodic boundary conditions (see appendix A) so that |RA +Nlal, A⟩ =

|RA, A⟩, which, applied to equation (2.2.5), gives

eiq·Nlal = e2πiml , (2.2.8)

q · al =
2πml

Nl

, (2.2.9)
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where ml is an integer.

Because the separation of q values decreases with system size, given a large

enough system we can replace the summation over q points with a continuous integral

∑
q

(. . .) =

(
L

2π

)d ∫
ddq (. . .), (2.2.10)

where d is the number of spatial dimensions and Ld is the corresponding volume of

the system.

As we have stated, there is no overlap between orbitals on different atomic sites,

so

⟨q, A|q′, A⟩ = 1

N

∑
RA,R′

A

⟨RA, A|R′
A, A⟩ eiq

′·R′
A−iq·RA ,

=
1

N

∑
RA,R′

A

δRA,R′
A
eiq

′·R′
A−iq·RA ,

=
1

N

∑
RA

eiRA·(q′−q),

= δq,q′ .

(2.2.11)

Hence

⟨q, A|q′, B⟩ = 0, (2.2.12)

⟨q, A|q′, A⟩ = δq,q′ , (2.2.13)

⟨q, B|q′, B⟩ = δq,q′ . (2.2.14)

The tight-binding Hamiltonian H satisfies

H |Φn,q⟩ = En (q) |Φn,q⟩ , (2.2.15)

The energy bands are indexed by integer n, and given the two orbitals in our system

there will be two energy bands. We apply Bloch’s theorem as we have translational

invariance, allowing us to express the eigenstates as linear combinations of the Bloch

states

|Φn,q⟩ = αn (q) |q, A⟩+ βn (q) |q, B⟩ , (2.2.16)
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where αn, βn are expansion coefficients. Note that |q, A⟩ is of the form (2.2.4) and

this satisfies Bloch’s theorem (2.1.5). By substituting the eigenstate back into the

Schrödinger equation (2.2.15) we get

αnH |q, A⟩+ βnH |q, B⟩ = αnEn |q, A⟩+ βnEn |q, B⟩ . (2.2.17)

Then multiply by ⟨q, A| or ⟨q, B|

αn ⟨q, A|H|q, A⟩+ βn ⟨q, A|H|q, B⟩ = αnEn,

αn ⟨q, B|H|q, A⟩+ βn ⟨q, B|H|q, B⟩ = βnEn.
(2.2.18)

These equations can be considered as rows found by expanding the eigenvalue equa-

tion

H (q) |un (q)⟩ = En (q) |un (q)⟩ , (2.2.19)

where

|un (q)⟩ =

αn (q)

βn (q)

 . (2.2.20)

Here H (q) is a 2 × 2 matrix and the eigenstate |un (q)⟩ is a 2 × 1 column vector

(also known as a spinor) consisting of the expansion coefficients α, β of the real

space eigenstate |Φn,q⟩ in terms of the Bloch functions |q, A⟩ and |q, B⟩. A matrix

element of H (q) is given by

Hi,j (q) = ⟨q, i|H|q, j⟩ , i, j ∈ {A,B}. (2.2.21)

We will refer to the matrix H (q) as the Bloch Hamiltonian, and this formalism

will be used in our discussion of graphene. In other literature it may be referred

to as the “canonical” Bloch Hamiltonian, or the “Basis II” Hamiltonian, because,

in this representation of the Hamiltonian, the Fourier transforms depend on the

atomic positions RA and RB. This Hamiltonian has the unfortunate property of

not being periodic about the Brillouin zone, H (q + 2π) ̸= H (q), but other forms

of the tight-binding Hamiltonian can be found as shown in our discussion of the

Su-Schreiffer-Heeger model 2.6 and in appendix B.

In order to determine the matrix elements of the Bloch Hamiltonian (2.2.21)
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we substitute in the Bloch functions then apply the Fourier transforms (2.2.4). We

begin with the diagonal matrix elements,

Hj,j (q) = ⟨q, j|H|q, j⟩ ,

=
1

N

∑
Rj ,R′

j

⟨Rj, j|H|R′
j, j⟩ e

iq·(R′
j−Rj).

(2.2.22)

If we only take into account contributions from the same atomic sites then ⟨Rj, j|H|R′
j, j⟩ =

⟨Rj, j|H|Rj, j⟩ δRj ,R′
j
. In this case the diagonal elements are

Hj,j (q) =
1

N

∑
Rj

⟨Rj, j|H|Rj, j⟩ = ⟨Rj, j|H|Rj, j⟩ , (2.2.23)

as each site of type j gives the same contribution. The diagonal elements of the

q-space Hamiltonian are real numbers, and we will refer to them as onsite energies.

The off-diagonal matrix elements are found similarly:

Hi,j (q) = ⟨q, i|H|q, j⟩ ,

=
1

N

∑
Ri,Rj

⟨Ri, i|H|Rj, j⟩ eiq·(Rj−Ri).
(2.2.24)

In our Hamiltonian H we will only include nearest-neighbour contributions. For a

given atom of type i, there will be a small number of nearest-neighbours of type

j, which we will index with l = 1, 2, . . . , lmax. Each nearest-neighbour has a lattice

vector δl = Rl
j −Ri relative to the first atom i. We only require these neighbouring

atoms in the sum when calculating the off-diagonal terms

Hi,j (q) =
1

N

∑
Ri

lmax∑
l=1

⟨Ri, i|H|Ri + δl, j⟩ eiq·δl . (2.2.25)

If we also require that matrix elements ⟨Ri, i|H|Ri + δl, j⟩ are independent of l (i.e.

all bonds are of the same length and evenly distributed around the site i), then the
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overlap can be taken out of the sum over l

Hi,j (q) =
1

N

∑
Ri

⟨Ri, i|H|Ri + δl, j⟩
lmax∑
l=1

eiq·δl ,

= ⟨Ri, i|H|Ri + δl, j⟩
lmax∑
l=1

eiq·δl .

(2.2.26)

The matrix element ⟨Ri, i|H|Ri + δl, j⟩ is in general complex, but here we will

choose a gauge in which all matrix elements are real numbers. Then, just as before

with the diagonal term becoming an onsite energy, we refer to it as a “tight-binding

parameter”, “hopping parameter”, or “coupling parameter”. The material specific

information is contained in the sum of phase factors due to nearest neighbours∑lmax

l=1 e
iq·δl .
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2.3 What is Graphene?

Graphene is an atomically-thick single layer of carbon atoms arranged in a hon-

eycomb lattice. The more commonly found graphite consists of many layers of

graphene connected by weak interlayer bonds. The graphene honeycomb lattice is

not a Bravais lattice, but is instead formed of two interlocked triangular lattices as

shown in figure 2.1. This leads to a unit cell of two atoms, one from each triangular

lattice, and we choose to use the lattice vectors

a1 =

(√
3a

2
,
a

2

)
, a2 =

(√
3a

2
,−a

2

)
, (2.3.1)

where a = |a1| = |a2| =
√
3acc and acc is the distance between neighbouring carbon

atoms.

The reciprocal lattice vectors are found using a dummy unit vector in the z-axis,

a3 = (0, 0, 1):

b1 = 2π
a2 × a3

a3 · (a1 × a2)
, b2 = 2π

a3 × a1

a3 · (a1 × a2)
, b3 = 2π

a1 × a2

a3 · (a1 × a2)
(2.3.2)

b1 =
2π

a

(
1√
3
, 1

)
, b2 =

2π

a

(
1√
3
,−1

)
. (2.3.3)

The reciprocal lattice vectors and the first Brillouin zone are shown in figure 2.1. The

first Brillouin zone is defined as all of the points in momentum space that are closer

to one reciprocal lattice point than all others. The first Brillouin zone is found using

a Wigner-Seitz cell, and connecting all perpendicular bisectors of vectors between

the given reciprocal lattice point and all other neighbouring reciprocal lattice points.

The corners of the first Brillouin zone (where the perpendular bisectors meet each

other) are called “K points” or “Dirac points”. They are labelled K or K ′, and are

shown as blue circles in the right-hand side of figure 2.1. The two K points along

the qx-axis have reciprocal space coordinates

K =

(
4π

3a
, 0

)
, K ′ =

(
−4π

3a
, 0

)
. (2.3.4)
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These points are chosen for simplicity, but the others are equivalent to them as they

are all connected to K or K ′ via a reciprocal lattice vector. The K points will be

the focus of this work, because the low-energy phenomena of graphene occur in the

vicinity of the K valleys, which will be shown in section 2.4.

x

y

δ1

δ2δ3

a1

a2

a

qx

qy

Γ
KK ′

b1

b2

Figure 2.1: Left: monolayer graphene lattice. White circles show sites on the
A sublattice, and black circles show sites on the B sublattice. An example unit
cell is highlighted in grey. The lattice vectors a1 and a2 are shown in blue. The
nearest-neighbour vectors δ are shown in grey. Right: reciprocal lattice of monolayer
graphene. The reciprocal lattice vectors, b1 and b2 are shown in red, the midpoints
to all adjacent reciprocal lattice points are marked with black crosses, the K and K ′

points are marked with blue circles, and the first Brillouin zone is the black hexagon.
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2.4 Graphene Tight-Binding Model

The bonding electrons in graphene undergo sp2 hybridisation so that each atom’s

single 2s orbital and two of the 2p orbitals combine, forming three strong in-plane

covalent σ bonds, which form the lattice bonds in figure 2.1. This leaves a single pz

orbital on each atomic site, which forms π-bonds with the other carbon atoms. As

electronic transport is controlled by the π-bonds, we will treat the graphene lattice

as having one orbital per site, with the two atoms per unit cell giving a total of two

energy bands. The tight-binding Hamiltonian of graphene in position space is

H = −γ0
∑
⟨i,j⟩

|RAi, A⟩ ⟨RBj, B|+ h.c., (2.4.1)

where |RAi, A⟩ represents a pz orbital on the ith atom of type A, ⟨i, j⟩ means a sum

over nearest-neighbour atoms, and h.c. stands for the Hermitian conjugate. The

hopping parameter is the same for all nearest-neighbour bonds,

γ0 = −⟨RAi, A|H|RBj, B⟩ , (2.4.2)

which is defined with a minus sign so that γ0 > 0 for graphene (γ0 ≈ 3.16 eV [60]).

The Bloch Hamiltonian is found using (2.2.21), with all of the important information

revealed by the relative position of the three nearest neighbours δl = Rl
B − RA,

l = 1, 2, 3. The off-diagonal matrix element is

HAB (q) = −γ0f (q) ; f (q) =
3∑

l=1

eiq·δl , (2.4.3)

where the δl are the nearest neighbour vectors with respect to an atom on sublattice

A:

δ1 =

(
0,

a√
3

)
; δ2 =

(
a

2
,− a

2
√
3

)
; δ3 =

(
−a
2
,− a

2
√
3

)
. (2.4.4)

The q space tight-binding Hamiltonian is

H (q) =

 0 −γ0f (q)

−γ0f ∗ (q) 0

 , (2.4.5)
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where

f (q) = eiqya/
√
3 + 2e−iqya/2

√
3 cos (qxa/2). (2.4.6)

The eigenvalues of the Hamiltonian 2.4.5 are then given by

E± = ±γ0|f (q)|, (2.4.7)

and the dispersion relation is shown in figure 2.2

a)

b) c)

H(q)

Figure 2.2: Dispersion relations of monolayer graphene found via numerical diago-
nalisation of the Hamiltonian (2.4.5). Figure a) shows the full dispersion relation
of both energy bands in two-dimensional reciprocal space. Figure b) shows a heat
map of the upper energy band. Figure c) shows the energy bands with qy = 0 as a
function of qx only. Parameters used are γ0 = 3.16 eV [60] and a = 2.46 Å[58].
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2.4.1 Bilayer Graphene

x

y
A1 B1γ0

A2 B2

γ4 γ4

γ1

γ3

Figure 2.3: Left: Plan of the bilayer graphene lattice. Atoms in sublattices A1 and
B1 of the lower layer are shown as white and black circles, and atoms in sublattices
A2 and B2 on the upper layer are shown as black and grey circles, respectively. An
example unit cell is highlighted in grey. Right: Side view of a single unit cell of
bilayer graphene, showing the four Slonczewski-Weiss-McClure parameters [61–63].

In the bilayer graphene lattice, there are four atoms in the unit cell - an A and B

site from each layer, labelled j = A1, B2, A2, B2. Further tight-binding parameters

can be defined in the same way as γ0 (2.4.2), and we use the Slonczewski-Weiss-

McClure (SWM) notation [61–63]:

γ0 = −⟨RA1|H|RB1⟩ = −⟨RA2|H|RB2⟩ ,

γ1 = ⟨RB1, B|H|RA2, A⟩ ,

γ3 = −⟨RA1|H|RB2⟩ ,

γ4 = ⟨RA1|H|RA2⟩ = ⟨RB1|H|RB2⟩ .

(2.4.8)

These parameters are shown in the right hand side of figure 2.3. The onsite potentials

are represented by

ϵi = ⟨Ri|H|Ri⟩ , i ∈ {A1, B1, A2, B2}. (2.4.9)

20



These parameters give the 4× 4 tight-binding Hamiltonian

Hb (q) =


ϵA1 −γ0f (q) γ4f (q) −γ3f ′∗ (q)

−γ0f ∗ (q) ϵB1 γ1 γ4f (q)

γ4f
∗ (q) γ1 ϵA2 −γ0f (q)

−γ3f ′ (q) γ4f
∗ (q) −γ0f ∗ (q) ϵB2

 . (2.4.10)

The top-left and bottom-right 2 × 2 blocks of Hb (q) are the same as the isolated

monolayer (2.4.5); they describe the on-site energies and the nearest neighbour in-

tralayer hopping. The top-right and bottom-left 2 × 2 matrix block in Hb describe

how the two layers couple. Parameter γ1 describes vertical interlayer hopping be-

tween pairs of orbitals on dimer sites B1 and A2. Because this coupling is entirely

vertical (for AB stacked bilayer), the parameter does not include a term in f (q).

Parameter γ3 descibes interlayer coupling between the non-dimer sites A1 and B2,

and γ4 describes interlayer coupling between dimer and non-dimer orbitals; A1 to

A2, or B1 to B2. Both γ3 and γ4 couplings are “skew” - not completely vertical,

but with a component of in-plane hopping. The γ3 terms are multiplied by the

function f ′ (q), which has the same form as f (q), but the lattice vector terms a are

all multiplied by a factor of two.

Figure 2.4 shows the dispersion relation of bilayer graphene plotted using the

eigenvalues of 2.4.10. We plot along the qx axis, passing through the K−, K+ and

Γ points. The tight-binding parameters were determined via infrared spectroscopy

γ0 = 3.16 eV, γ1 = 0.381 eV, γ3 = 0.38 eV, γ4 = 0.14 eV, ϵB1 = ϵA2 = 0.022 eV,

and ϵB1 = ϵA2 = 0 [60]. At the K points one conduction and valence band close

the gap and meet at zero energy, with the other two bands separated by an energy

of the order of the interlayer coupling parameter γ1. The bands that are separated

from zero energy at the K points are due to the dimer sites B1 and A2, while the

zero energy states are due to the edge atoms A1 and B2, as they do not couple to

another layer via the interlayer coupling γ1.
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Figure 2.4: Dispersion relation of bilayer graphene with qy = 0 as a function of qx
only. Found via numerical diagonalisation of Hamiltonian (2.4.10). The parameters
used are γ0 = 3.16 eV, γ1 = 0.381 eV, γ3 = 0.38 eV, γ4 = 0.14 eV, ϵB1 = ϵA2 = 0.022
eV, ϵB1 = ϵA2 = 0 [60], and a = 2.46 Å[58].
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2.4.2 Expansion Near the Dirac Points

When describing the low-energy phenomena of graphene systems it is useful to

describe the wave vector relative to the K points using q = K +k, where k is very

small. We expand the function f (q) in powers of k to get

f (q) = eiqya/
√
3 + 2e−iqya/2

√
3 cos (qxa/2),

f (k) ≈ −
√
3a

2
(ξkx − iky) , ξ = ±1.

(2.4.11)

The full details of the expansion are given in appendix C. We introduce complex

wave vectors π and π†

π = ℏ (ξkx + iky) , π† = ℏ (ξkx − iky) , (2.4.12)

which allow us to write the low-energy Hamiltonian in the compact form

Hm =

ϵA vπ†

vπ ϵB

 , (2.4.13)

where v =
√
3aγ0/ (2ℏ) is the band velocity. For intrinsic graphene the onsite

potentials are ϵA = ϵB = 0, and the eigenvalues will be

E± = ±|vπ|,

= ±ℏvk.
(2.4.14)

This is the famous linear dispersion relation of monolayer graphene. As the energy

is only dependent on the magnitude of the wave vector, the dispersion relation is

isotropic in the vicinity of the K valleys, and “Dirac cones” are formed, shown in

figure 2.5. In figure 2.5 we plot the energy eigenvalues of the Hamiltonian (2.4.13)

as a function of kx, normalised by the characteristic wave vector kc = γ1/ (ℏv) [64],

and the energy is plotted in units of γ1.
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a) b)

Figure 2.5: Dispersion relations of monolayer graphene near the Dirac points found
via numerical diagonalisation of Hamiltonian (2.4.13). Figure a) shows the full
dispersion relation of both energy bands in two-dimensional reciprocal space. Figure
b) shows the energy bands with ky = 0 as a function of kx only. Parameters used are
ϵA = ϵB = 0, γ0 = 3.16 eV [60] and a = 2.46 Å[58]. In both figures the wave vectors
are normalised by the characteristic wave vector kc = γ1/ (ℏv) and the energy is
given in units of γ1.

In bilayer graphene, equation (2.4.10) is reduced to

Hb =


ϵA1 vπ† −v4π† v3π

vπ ϵB γ1 −v4π†

−v4π γ1 ϵA2 vπ†

v3π
† −v4π vπ ϵB2

 , (2.4.15)

where we have introduced the effective velocities v3 =
√
3aγ3/2ℏ and v4 =

√
3aγ4/2ℏ.

Figure 2.6 shows the dispersion relation of bilayer graphene near the K point

plotted using the eigenvalues of 2.4.15. We plot along the kx axis and normalise

by the characteristic wave vector kc. The tight-binding parameters are the same as

those used in section 2.4.1: γ0 = 3.16 eV, γ1 = 0.381 eV, γ3 = 0.38 eV, γ4 = 0.14

eV, ϵB1 = ϵA2 = 0.022 eV, and ϵB1 = ϵA2 = 0 [60]. In figure 2.6 the black lines show

the eigenvalues with all parameters present, and red lines show the same dispersion

but in the minimal model, with only nearest-neighbour hopping: γ3 = γ4 = 0.
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Figure 2.6: Dispersion relations of bilayer graphene near the Dirac points. Both sets
of eigenvalues were found using numerical diagonalisation of Hamiltonian (2.4.15),
with black lines showing results using all parameters and red lines showing results
with nearest-neighbour hopping only. We have set ky = 0 and plotted the energy as
a function of kx only. Parameters used are γ0 = 3.16 eV, γ1 = 0.381 eV, γ3 = 0.38
eV, γ4 = 0.14 eV, ϵB1 = ϵA2 = 0.022 eV, ϵB1 = ϵA2 = 0 [60], and a = 2.46 Å[58].
The wave vector kx is normalised by the characteristic wave vector kc = γ1/ (ℏv)
and the energy is given in units of γ1.
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2.4.3 N-layer Graphite

The Hamiltonian of N -layer rhombohedrally-stacked graphite in the minimal model

(nearest-neighbour hopping only), and in the basis of all 2N atomic sites is given by

H =



D V 0 0 . . .

V † D V 0 . . .

0 V † D V . . .

0 0 V † D . . .
...

...
...

...
. . .


, (2.4.16)

where the 2× 2 matrix blocks are

D =

 0 vπ†

vπ 0

 , V =

 0 0

γ1 0

 , π = ℏ (ξkx + iky) . (2.4.17)

Here ξ = ±1, depending on if the momentum is being calculated relative to a K

or K ′ point, ℏ is the reduced Planck’s constant, and v =
√
3aγ0/ (2ℏ) is the group

velocity. The matrix block D describes hopping within one graphene sheet, and

matrix block V describes hopping between atomic sites Bn on layer n and An+1 of

the layer above. The matrix block V will vary depending on the stacking type, i.e.

for rhombohedral stacking it acts to connect site Bn on layer n to the An+1 site of

the layer above. For Bernal stacking the off diagonal blocks must alternate between

V and V ′ and for AA stacking V would be a diagonal matrix block.

The dispersion relation for N = 10 layers of rhombohedrally stacked graphite is

shown in figure 2.7. Here we numerically diagonalise the Hamiltonian (2.4.16), and

plot the energy in units of γ1 as a function of the wave vector kx, which is normalised

by the characteristic wave vector kc. For N-layers of rhobohedrally-stacked graphite

there are two zero-energy states for |k| < kc due to the non-dimer sites on the top

and bottom layers, and the rest of the states are in the bulk conductance and valence

bands. The wavevector |k| = kc corresponds to the point of the phase transition

between the topological and topologically trivial phases of the SSH model, this

explains why there are zero-energy edge states for |k| < kc and why they are no

longer present for |k| ≥ kc.
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Figure 2.7: Dispersion relation for a rhombohedrally-stacked graphite system of
N = 10 layers found using numerical diagonalisation of Hamiltonian (2.4.16). The
energy is given in units of interlayer hopping γ1, and the momentum in terms of the
critical momentum kc = γ1/ℏv. The parameters used are γ0 = 3.16 eV, γ1 = 0.381
eV [60], and a = 2.46 Å[58]. The wave vector kx is normalised by the characteristic
wave vector kc = γ1/ (ℏv) and the energy is given in units of γ1.
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2.4.4 Low-Energy Model

A low-energy effective Hamiltonian can be formed from the full 2N by 2N Hamil-

tonian by eliminating orbitals relating to dimer sites. We reproduce the steps as

derived by McCann and Koshino [65] here. First change the Hamiltonian basis so the

low- and high-energy states are separated. The low-energy components are grouped

into matrix block θ and the dimer components are grouped into matrix block χ,hθ u

u† hχ

θ
χ

 = E

θ
χ

 . (2.4.18)

Then find an expression for χ using the second row and substitute it into the first

to get an effective eigenvalue equation for the low-energy components,

χ = (E − hχ)
−1 u†θ, (2.4.19)

[
hθ + u (E − hχ)

−1 u†
]
θ = Eθ, (2.4.20)[

hθ − uh−1
χ u†

]
θ ≈ ESθ, (2.4.21)

where S = 1+uh−2
χ u†. Equation (2.4.21) is accurate up to linear terms in E. Finally,

perform a transformation Φ = S1/2θ:

[
hθ − uh−1

χ u†
]
S−1/2Φ ≈ ES1/2Φ, (2.4.22)

S1/2
[
hθ − uh−1

χ u†
]
S−1/2Φ ≈ EΦ. (2.4.23)

This transformation ensures that the normalisation of Φ is consistent with that of

the original states:

Φ†Φ = θ†Sθ = θ†
(
1 + uh−2

χ u†
)
θ, (2.4.24)

≈ θ†θ + χ†χ, (2.4.25)

where we have used equation (2.4.19) for small E: χ ≈ −h−1
χ u†θ. Thus, the effective

Hamiltonian for low-energy components is given by equation (2.4.23):

H(eff) ≈ S−1/2
[
hθ − uh−1

χ u†
]
S−1/2, (2.4.26)
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S = 1 + uh−2
χ u†. (2.4.27)

This expression will be used in chapters 3 and 4 to derive low-energy Hamilto-

nians for the multilayer systems with stacking faults. A worked example using this

model to find the low energy effective Hamiltonian of bilayer graphene is given in

appendix D.
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2.5 Symmetries

In order to classify physical systems into different categories we study their symme-

tries. The three non-spatial symmetries (time-reversal, chiral, and charge-conjugation

symmetry) describe universal properties of systems. For example, time-reversal sym-

metry can be used to describe the energy level statistics of a system, meaning that

the same energy level statistics will be the same across different systems with the

same type of time-reversal symmetry. In this way, symmetries can then be used to

predict which physical phenomena will be present.

For a Hamiltonian H (k), chiral (S), time-reversal (T ), charge-conjugation (C),

and spatial inversion (P ) symmetries are defined by

chiral: U †
S (k)H (k)US (k) = −H (k) ,

time: U †
T (k)H∗ (k)UT (k) = H (−k) ,

charge: U †
C (k)H∗ (k)UC (k) = −H (−k) ,

space: U †
P (k)H (k)UP (k) = H (−k) ,

(2.5.1)

where each of these are unitary or antiunitary matrices with

US (k)US (k) = I,

UT (k)U∗
T (−k) = ±I,

UC (k)U∗
C (−k) = ±I.

(2.5.2)

The three non-spatial symmetries are related by US (k) = U∗
C (k)UT (−k).

Given an energy eigenvalue equation H (k)ψ± (k) = E± (k)ψ± (k) for two energy

bands E± (k) and eigenstates ψ± (k), the effects of the symmetries are

chiral: E± (k) = −E ∓ (k) ,

time: E± (−k) = E± (k) ,

charge: E± (−k) = −E ∓ (k) ,

space: E± (−k) = E± (k) .

(2.5.3)

In position space, the symmetry operators for chiral, time, or charge-conjugation

30



are written as

chiral: S†HS = −H, SS = I

time: T H∗T = H, T T ∗ = ±I,

charge: C†H∗C = −H, CC∗ = ±I,

space: P†HP = H,

(2.5.4)

where the matrices S, T , C, and P are unitary, and related by S = T ∗C. Note that

while there are three types of time reversal symmetry (T = ±1, T = 0), throughout

this thesis we will only consider position-space Hamiltonians whose matrix elements

are all real, meaning that the time reversal operator will always square to T 2 = 1.

Given a system with symmorphic symmetry (one that does not involve a translation),

the position space symmetry operators act locally within a unit cell, and may be

represented by J × J matrices Sx, Sy, or Sz acting in the atomic basis as

Sx =



0 1 0 0 . . . 0 0

1 0 0 0 . . . 0 0

0 0 0 1 . . . 0 0

0 0 1 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1

0 0 0 0 . . . 1 0


, (2.5.5)

Sy =



0 −i 0 0 . . . 0 0

i 0 0 0 . . . 0 0

0 0 0 −i . . . 0 0

0 0 i 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 −i

0 0 0 0 . . . i 0


, (2.5.6)
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Sz =



1 0 0 0 . . . 0 0

0 −1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 −1 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 −1


, (2.5.7)

where J is the number of atoms in the system.

Spatial inversion symmetry (parity) P is non-local, and may be represented by

the J × J matrices Px, Py, Pz, or P0, where

Px =



0 0 0 . . . 0 1

0 0 0 . . . 1 0
...

...
...
. . .

...
...

0 0 1 . . . 0 0

0 1 0 . . . 0 0

1 0 0 . . . 0 0


, (2.5.8)

Py =



0 0 0 . . . 0 1

0 0 0 . . . −1 0
...

...
...

. . .
...

...

0 0 −1 . . . 0 0

0 1 0 . . . 0 0

−1 0 0 . . . 0 0


, (2.5.9)

Pz =



0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 −1
...

...
...

...
. . .

...
...

0 0 1 0 . . . 0 0

0 0 0 −1 . . . 0 0

1 0 0 0 . . . 0 0

0 −1 0 0 . . . 0 0


, (2.5.10)
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P0 =



0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 1
...

...
...

...
. . .

...
...

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0


, (2.5.11)

These matrices will be used in sections 2.6 and 2.7 to calculate the polarisation of

the SSH and CDW models in real space.

33



2.6 Su-Schreiffer-Heeger Model

v w

Figure 2.8: Diagram showing the SSH chain. Each unit cell contains two atoms;
a black circle on sublattice A and a white circle on sublattice B. The alternating
coupling strengths v and w are shown with solid and dashed lines, respectively.

The Su-Schreiffer-Heeger (SSH) [66–69] model was originally used to model poly-

acetylene; a polymer chain of carbon atoms with alternating double and single

bonds, and one hydrogen bonded to each carbon atom. The model consists of a

one-dimensional chain of atoms with alternating hopping parameters v and w as

shown in figure 2.8. The chain is formed of N unit cells, each with two atomic sites,

labelled A and B. The electronic properties can be described by a single particle

Hamiltonian [67] of the form

Ĥ = v
N∑

m=1

|xm,A, A⟩ ⟨xm,B, B|+ w
N−1∑
m=1

|xm,B, B⟩ ⟨xm+1,A, A|+ h.c., (2.6.1)

where the first term describes intracell hopping with strength v and the second term

describes intercell hopping with strength w. The terms |xm,A, A⟩ and |xm,B, B⟩ rep-

resent states with atomic positions xm,A = ma and xm,B = (m+ 1/2) a on sub-

lattices A and B, respectively, and h.c. stands for Hermitian conjugate. As spin

is not included, the SSH model describes spin-polarised electrons. The real space

Hamiltonian Ĥ 2.6.1 can be written using a matrix H as Ĥ = Ψ†HΨ, where Ψ is a

column vector of atomic orbitals. For a chain of N = 4 unit cells the matrix H is

H =



0 v 0 0 0 0 0 0

v 0 w 0 0 0 0 0

0 w 0 v 0 0 0 0

0 0 v 0 w 0 0 0

0 0 0 w 0 v 0 0

0 0 0 0 v 0 w 0

0 0 0 0 0 w 0 v

0 0 0 0 0 0 v 0



. (2.6.2)
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The majority of the important physical properties of this system will be defined by

the bulk, because in the thermodynamic limit, N → ∞, only a negligible part of the

system is described by anything other than the bulk physics. To investigate the bulk

properties first apply periodic boundary conditions |xm+N,A, A⟩ = |xm,A, A⟩ and use

the following Fourier transforms to find the momentum-space Hamiltonian for an

infinitely long SSH chain.

|k,A⟩ = 1√
N

∑
m

|xm,A, A⟩ eikma, (2.6.3a)

|xm,A, A⟩ =
1√
N

∑
k

|k,A⟩ e−ikma, (2.6.3b)

|k,B⟩ = 1√
N

∑
m

|xm,B, B⟩ eikma, (2.6.3c)

|xm,B, B⟩ = 1√
N

∑
k

|k,B⟩ e−ikma. (2.6.3d)

Here k is the wave vector measured relative to the Γ point. As in appendix A the

periodic boundary conditions applied to the Fourier transforms lead to

eikNa = 1, ⇒ k =
2πl

Na
, (2.6.4)

where k is chosen to be within the first Brillouin zone −π/a < k ≤ π/a and l is an

integer l = − (N/2) + 1, 1, . . . ,−1, 0, 1, . . . , (N/2). We assume there is no overlap

between the atomic orbitals

⟨xm,A, A|xm′,A, A⟩ = δm,m′ ; ⟨k,A|k′, A⟩ = δk,k′ . (2.6.5)

The bulk momentum-space Hamiltonian in the basis of the A and B atomic sites is

H (k) =

 0 v + we−ika

v + weika 0

 . (2.6.6)

In real space, with a finite length chain of atoms, the definition of the unit cell is

simple because it must span the system. This means for the SSH model it will have

one boundary on the left edge of the chain (including an atom on sublattice A) and

extend until just before the next atom of sublattice A. This unit cell then repeats
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all the way until the end of the chain. However, in k-space the definition of the

unit cell is ambiguous. This is because to define the SSH chain in k-space you must

either consider a chain of infinite physical length, or a chain whose ends connect to

form a ring, and in both cases there will be no restriction on the first boundary of

the unit cell. The ambiguity of the definition of the unit cell leads to subtle changes

in the resulting Bloch Hamiltonian, which is why we defined the Fourier transforms

(2.6.3) in such a way as to not be dependent on the chosen unit cell. These Fourier

transforms also specify that the A and B sites within the same unit cell share the

same physical space, but this does not change the tight-binding parameters v and

w.

The derivation of the Hamiltonian (2.6.6) was chosen so that it is periodic about

the first Brillouin zone, this is an important property that is necessary to understand

the topology of the system, and without a periodic Hamiltonian it is impossible to

calculate the winding number, which is presented later in this section. See appendix

B for more details on alternate Hamiltonians.

The bulk momentum space Hamiltonian (2.6.6) has simple eigenvalues

E (k) = ±
√
v2 + w2 + 2vw cos ka. (2.6.7)

The dispersion relation will have different forms depending on the relationship be-

tween the two hopping terms v and w. This can happen naturally in solid state

systems through Peierls instability [70]. Figure 2.9 shows dispersion relations of the

bulk momentum-space Hamiltonian 2.6.6 for different values of the hopping parame-

ters v and w. If the hopping terms are equal, v = w, then the system is a conductor,

and there is no band gap between the contuctance and valence electron bands. The

staggered hopping opens a gap ∆ = 2|v − w|, but if either parameter is zero then

the system breaks into dimers with energies E (k) = ±v or E (k) = ±w.

The symmetry operators of the SSH model for chiral, time-reversal, charge-

conjugation, and spatial-inversion symmetry are represented in k-space and position

space in table 2.1. The combination of symmmetries found in this model mean it is

in the symmetry class BDI [69, 71].

The chiral symmetry of the SSH model is represented by Sz (2.5.7) in position
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Figure 2.9: Dispersion relations for SSH chains with different values of hopping
parameters v and w. The graphs on the far left and right show the fully dimerised
chains, with w = 0 or v = 0, respectively. The centre graph shows equal hopping
parameters, v = w. The band gap is shown to close at k = ±π. Either side of the
centre are the graphs with v ̸= w ̸= 0. In all five cases the band gap is ∆ = 2|v−w|.

k-space position space
chiral σz Sz

time σ0 I
charge σz Sz

space σx Px

Table 2.1: Symmetries of the Su-Schreiffer-Heeger model in k-space and position
space. σx and σz are the Pauli matrices, Sz and Pz are defined in section 2.5 as
equations (2.5.7) and (2.5.10).

space. We consider the expectation value of the chiral operator

pz = ⟨ψ|Sz|ψ⟩ , (2.6.8)

and refer to this as a generalisation of electric polarisation.

The SSH model is an example of a two-band model. The charge-density wave

(CDW) model, which will be discussed in section 2.7, and the Rice Mele model,

discussed in section 2.8, are also two-band models. The bulk momentum-space

Hamiltonians of any two-band model can be represented by the Hamiltonian (2.6.9)

[69]

H (k) = σ · d =

 dz dx − idy

dx + idy −dz

 , (2.6.9)

where σ is the vector of Pauli spin matrices, and d is a vector whose components

are real numbers specific to the model in question.

The eigenvalue equation H |n⟩ = En |n⟩ can be solved using det (E±I2 −H) = 0

to give eigenvalues

E± = ±d, (2.6.10)
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where

d = |d| =
√
d2x + d2y + d2z. (2.6.11)

This means that the eigenvalues only depend on the magnitude of d and not the

direction of the vector. The spinor eigenstates can also be found in terms of com-

ponents of d by expanding the second row of the energy eigenvalue equation with

the spinor eigenstates written as |n±⟩ = ( A
B )

 dz dx − idy

dx + idy −dz

A
B

 = E±

A
B

 (2.6.12)

(dx + idy)A− dzB = E±B

→ (dx + idy)A = (dz ± d)B,
(2.6.13)

where the substitution E± = ±d has been used. The eigenstates are then

|n±⟩ =

A
B

 ,

=

(dz ± d)A

(dz ± d)B

 ,

= A

 dz ± d

dx + idy

 .

(2.6.14)

In the second line the spinor has been multiplied by a constant (dz ± d) and in the

third line we have substituted in our result from equation (2.6.13). The remaining

prefactor A can be considered as a normalisation constant.

The components of d for the SSH model (2.6.6) are

dx (k) = v + w cos ka, dy (k) = w sin ka, dz (k) = 0. (2.6.15)

Substituting these into equation (2.6.10) returns the eigenvalues (2.6.7) we had

directly calculated from the Bloch Hamiltonian (2.6.6). As the wave vector k spans

the Brillouin zone −π/a < k ≤ π/a, the vector d traces a circle on the dx-dy plane.
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The equation of this circle is

(dx − v)2 + d2y = w2, (2.6.16)

having radius w, and being centred at (v, 0).

In order for these parameters to describe an insulator, the path that the vector

d (k) traces as k passes through the Brillouin zone must be a closed loop that does

not pass through the origin. If the loop passes through the origin, d (k) = 0, and

the system is no longer an insulator (there will be no band gap).

Different topological phases of the SSH model can be described using the winding

number, nw, which counts the number of times the path of d (k) wraps around the

origin in the (dxdy) plane. Given a system with v > w, the radius of the loop is

always less than the distance of the centre of the loop from the origin. This means

that the loop cannot touch nor enclose the origin, so the winding number will be

nw = 0. For this reason, the system with v > w is called the “topologically trivial”

case. The other case is the “topologically nontrivial” case with v < w. Here the

radius now exceeds the distance between the centre of the circle and the origin, so

the loop will wrap around the origin once, giving a winding number nw = 1. The

final phase of the SSH model is the metallic phase, with equal hoppings v = w. In

this case, the loop will always pass through the origin, closing the band gap, and

the winding number cannot be defined.

The winding number can be used to make a connection between the bulk and

edges of the system, this is known as the bulk-edge correspondence. First consider a

long one-dimensional system where the left hand side of the chain is in the topologi-

cally trivial phase (v > w), and the right hand side is in the topologically nontrivial

phase (v < w). In the centre of the system there must then be an interface where

the winding number changes, and at this point the band gap must close. The same

phenomena applies given a finite system, where there must be an interface between

the chain and vacuum. If the winding number is non zero in the chain, then at the

edge the gap must close to form the interface. For the SSH model with its zero

onsite potential, this results in zero-energy states at the edges.

In order to change the winding number, the path of the endpoint of d must

be changed so that it wraps around the origin a different number of times. To do
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this, the path can either i) be pulled across the origin by modifying parameters

v, w or ii) lifting the path out of the dxdy plane and placing it in a new position

so that the origin is now enclosed/excluded. Method i) involves the path crossing

through the origin, at which point the system enters a metallic phase, and method

ii) means changing parameter dz, which breaks chiral symmetry, as any finite dz is

not compatible with our definition of chiral symmetry, equation (2.5.1).

The winding number nw is protected by the chiral symmetry of the system.

Instead of the endpoint of d exploring the full three-dimensional spherical parameter

space, it is restricted to a circle in the dxdy plane, so the winding number will always

be well-defined.

Solitons in the SSH Model

Any deviation from the usual order of hopping parameters in the SSH model can

lead to interesting physical properties. These interruptions are known as solitons,

an example soliton in the middle of an SSH chain is shown in figure 2.10.

w v v w

Figure 2.10: SSH chain with a fault in the centre. Between the second and third
unit cells, the intracell v and intercell w hopping terms have swapped, and the new
hopping texture continues for the remainder of the chain.

Solitons divide areas with different textures and each provide one additional

topologically-protected low energy state. We consider two types of soliton: “sharp”

and “smooth”. A sharp soliton is defined by a sudden change in the parameter

being modified, as shown in figure 2.10 - the order of hopping strength changes

at the fault only, and the new ordering, or “texture”, of hopping parameters will

continue throughout the rest of the chain.

A soliton does not necessarily have to be atomically sharp (as in figure 2.10), but

can instead be represented by a smooth texture. Often in numerics a tanh function

will be used

∆j = −∆0 tanh

(
j −m

ξ

)
, (2.6.17)

where j indexes the unit cells, ∆0 is the difference between the hopping terms at

the end of the chain (or far from the soliton centre), ∆j = vj − wj is the difference
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between hopping terms for each unit cell, m is the location of the soliton centre,

and ξ is the soliton width. For the soliton to be in the centre of the system m must

be an even number plus 1/2. The tanh function is shown in figure 2.11, this shows

how the original parameter ∆0 is modified on each atomic site. A smooth soliton

involves a gradual decrease of the magnitude of the parameter being changed up to

the soliton centre, then the change in texture occurs while the parameter is very

small. After the order of parameters is swapped the magnitude of the parameter

strength gradually increases back to its original value.

The elements of the real-space Hamiltonian (2.6.2) are modified according to

Hi+1,i = Hi,i+1 =

t+
1
2
∆j, for odd j

t− 1
2
∆j, for even j,

(2.6.18)

where t = (v + w)/2 is the mean average of the original two hopping parameters.

j

-t
an

h
((

j-
m

)/
ξ
)

Figure 2.11: The negative tanh function (2.6.17) as a function of atomic position j.
All results are for N = 16 unit cells (32 atoms) and the soliton centre is m = 16.5,
in order to be in the centre of the system. The black curve shows a soliton width of
ξ = 2, red shows ξ = 4, and blue shows ξ = 6.
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Jackiw-Rebbi Mechanism

Solitons in the SSH model can be shown to host localised zero-energy states, as

described by the Jackiw-Rebbi mechanism [72, 73]. We first find the continuum

limit Hamiltonian by re-writing the Bloch Hamiltonian 2.6.6 in a different gauge

HSSH
B =

 0 2t cos (ka/2) + i∆sin (ka/2)

2t cos (ka/2)− i∆sin (ka/2) 0

 , (2.6.19)

where ∆ = v−w is the difference between the two hopping parameters, and t is the

mean average hopping parameter, t = (v + w) /2. We make the substitution k →

(π/a)+ p̂/ℏ, where p̂ is the momentum operator, in order to find the Hamiltonian in

the continuum limit. The expansion is performed about k = π/a because the band

gap is located here. This substitution gives

HSSH
c =

 0 vp̂+ i∆

vp̂− i∆ 0

 , (2.6.20)

where v = at/ℏ is the velocity. The soliton profile of the hopping energies ∆ (x)

centered on x = 0 has limits given by

lim
x→−∞

∆(x) = −s∆0; lim
x→∞

∆(x) = s∆0, (2.6.21)

where ∆0 > 0 is the soliton strength at infinity, and the two textures are described

by s = ±1. The specific soliton profile could be one of any number of functions, a

straight line would suffice, or the tanh function described previously (2.6.17). For

each texture, the localised zero-energy state is given by

ψs (x) = e−
s
ℏv

∫ x
0 ∆(x′)dx′

(1− s) /2

(1 + s) /2

 . (2.6.22)

The column vector in (2.6.22) shows that the wavefunctions will be polarised, as it

is an eigenstate of σz. The form of the soliton function ∆ can be anything as long

as it satisfies the boundary conditions (2.6.21).
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Polarisation in the SSH model

We investigate the polarisation of the wavefunctions in the SSH model. Figures

2.12 and 2.13 show the amplitudes of the wavefunction ψ on each site within an

SSH chain of N = 16 unit cells, with white and black bars representing the A and

B sites, respectively. Figure 2.12 shows the chain in the topological phase, with

v < w. In this case, especially for small values of v, the wavefunctions are almost

fully localised on the ends of the chain, and towards the left and right ends of the

chain the are fully localised on the A and B sublattices, respectively. While the

system is fully polarised at the edges, the overall polarisation of the system is still

py = 0. Figure 2.13 shows the amplitudes oft he same system, but this time in the

topologically trivial phase, with v > w. In this case the zero-energy edge states are

no longer present, and the edges are not polarised.

Ψ

Ψ

j j

j j

Ψ

v=0.0

j j

jj

v=0.5 w v=0.75 w

Ψ

a) b)

v=0.15 w

e) f)

Ψ

Ψ Ψ

Ψ

c) d)

g) h)

Figure 2.12: Wavefunction amplitudes of the two degenerate zero-energy states in
an SSH chain of N = 16 unit cells. In each figure v < w which means this shows
the topological phase.

Previous work has shown that the low-energy edge states in the SSH model

are topologically protected, and will remain gapless even in the presence of weak

hopping disorder [1, 74–77], whereas onsite disorder will break the chiral symmetry

and the edge states are no longer protected [1, 78].
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Figure 2.13: Wavefunction amplitudes of the two degenerate zero-energy states in
an SSH chain of N = 16 unit cells. In each figure v > w indicating that this is the
topologically trivial phase.
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2.7 Charge-Density-Wave Model

The Charge-Density-Wave (CDW) model is similar to the SSH model, but instead

of alternating the hopping potentials, it alternates the sign of the onsite potential

on each atom and has constant hopping t.

+ − + − + − + − + −
t t

Figure 2.14: Diagram showing the Charge-Density-Wave (CDW) chain. Each unit
cell contains two atoms; a black circle on sublattice A and a white circle on sublattice
B. All hopping terms are the same (t) and the sign of the onsite potential alternates
between lattice sites.

The real-space Hamiltonian is

Ĥ = U
N∑

m=1

|xm,A, A⟩ ⟨xm,A, A| − U
N∑

m=1

|xm,B, B⟩ ⟨xm,B, B|

+

[
t

N∑
m=1

|xm,A, A⟩ ⟨xm,B, B|+ t
N−1∑
m=1

|xm,B, B⟩ ⟨xm+1,A, A|+ h.c.

]
,

(2.7.1)

where the first two summations describe the positive and negative onsite potentials of

strength U on the A and B sites, respectively, and the inter- and intracall hopping is

given by parameter t. The terms |xm,A, A⟩ and |xm,B, B⟩ represent states with atomic

positions xm,A = ma and xm,B = (m+ 1/2) a on sublattices A and B respectively.

h.c. represents the Hermitian conjugate. The real space Hamiltonian Ĥ 2.7.1 can

be written using a matrix H as Ĥ = Ψ†HΨ, where Ψ is a column vector of atomic

orbitals. For a chain of N = 4 unit cells the matrix H is

H =



U t 0 0 0 0 0 0

t −U t 0 0 0 0 0

0 t U t 0 0 0 0

0 0 t −U t 0 0 0

0 0 0 t U t 0 0

0 0 0 0 t −U t 0

0 0 0 0 0 t U t

0 0 0 0 0 0 t −U



. (2.7.2)
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As in section 2.6 we use Fourier transforms in order to find the Bloch Hamiltonian,

which, in the basis of the A and B sites, is

HCDW =

 U 2t cos (ka/2)

2t cos (ka/2) −U

 , (2.7.3)

where |U | is the magnitude of the alternating onsite potential, k is the wave vector,

and a is the length of the lattice vector. This two-band Hamiltonian can be written

in terms of the vector d, with components

dx (k) = 2t cos (ka/2), dy (k) = 0, dz (k) = U. (2.7.4)

The corresponding eigenvalues are

E± = ±|d| = ±
√
U2 + 4t2 cos2 (ka/2), (2.7.5)

these are plotted in figure 2.15. There is a band gap of Eg = 2|U | located at

k = ±π/a, so for U = 0 the system is in a metallic phase.

Figure 2.15: Dispersion relation of a CDW chain with U = 1.0, t = 1. The alter-
nating onsite potential opens a band gap.

In this gauge, dx is not 2π periodic, a closed loop is not formed, and a winding

number cannot be defined. A different topological index has been proposed by
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Shiozaki et. al. [79], which we will call µ2. This Z2 topological index is defined by

counting whether the trajectory crosses the negative dx axis an even or odd number

of times. If it is even, µ2 = 0, and if it is odd, µ2 = 1. Because dx is not 2π

periodic, the trajectory will not form a closed loop, but we know that the initial

and final values of the dx component must be equal, and that dy (2π) = −dy (0).

These two restrictions mean that it is impossible to change the topological index µ2

via an adiabatic deformation. The distinction between the two phases is difficult to

show with only nearest neighbour hopping parameters, so more details are given in

appendix E.

The symmetries of the CDW model are shown in table 2.2. The chiral symmetry

of the CDW model in reciprocal space is simply represented by σy. This only applies

in the continuum limit - realised by an infinitely long chain of atoms, or a large loop

with periodic boundary conditions. In real space the chiral symmetry of the CDW

model is nonsymmorphic, this means that the symmetry requires the combination of

a translation (by a vector that is not a primitive lattice vector) with either a mirror

reflection or a rotation. The chiral symmetry of the CDW model in real space is

represented by Sy = Ta/2Sz, where Sz is equation (2.5.7) and Ta/2 (2.7.6) describes

translation by an atomic spacing a/2. This symmetry only holds for infinitely long

systems. The combination of symmmetries found in this model mean it is in the

nonsymmorphic symmetry class A1 [69, 71].

k-space position space
chiral σy Ta/2Sz

time σ0 I
charge σy Ta/2Sz

space σ0 P0

Table 2.2: Symmetries of the charge density wave model in k-space and position
space. σy and σ0 are the Pauli matrices, and matrices Ta/2, Sz and P0 are defined
in section 2.5 as equations (2.7.6), (2.5.7), and (2.5.11).
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Ta/2 =



0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1

1 0 0 0 . . . 0 0


. (2.7.6)

Solitons in the CDW Model

Solitons can be added to the CDW model by modifying the pattern of positive and

negative onsite potenitals. A sharp soliton would be introduced by repeating the

sign of the onsite potential, and continuing the pattern afterwards. This reverses

the texture of the CDW chain, as for a finite chain with an even number of atoms,

the first and last atom will now have the same sign of onsite potential.

A smooth soliton can be introduced in the same way as in section 2.6. We modify

the onsite potential of each atom according to some function U (x). Within each

unit cell, j, the atom on sublattice A has onsite potential given by

UA,j = −U0 tanh

(
j −m− 1/2

ξ

)
, (2.7.7)

and the corresponding B atom in the same unit cell has onsite potential UB,j =

−UA,j. U0 gives the magnitude of the soliton potential at x = ±∞, m gives the

location of the soliton centre, and ξ is the soliton width.

Jackiw-Rebbi Mechanism

Solitons in the CDW model can be shown to host localised zero-energy states, as

described by the Jackiw-Rebbi mechanism [72, 73]. We first find the continuum

limit Hamiltonian by substituting k → (π/a) + p̂/ℏ into the Bloch Hamiltonian

2.7.3, where p̂ is the momentum operator. This gives
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Hc =

U (x) vp̂

vp̂ −U (x)

 , (2.7.8)

where v = at/ℏ is the velocity. The soliton profile of the onsite energies U (x)

centered on x = 0 has limits given by

lim
x→−∞

U (x) = −sU0; lim
x→∞

U (x) = sU0, (2.7.9)

where U0 > 0 is the soliton strength at infinity, and the two textures are described

by s = ±1. For each texture, the localised zero-energy state is given by

ψs (x) = e−
s
ℏv

∫ x
0 U(x′)dx′

 1

is

 . (2.7.10)

Polarisation in the CDW Model

We investigate the polarisation of the wavefunctions in the CDW model. Figures

2.16 and 2.17 show the amplitudes of the wavefunction ψ on each site within a CDW

chain of N = 16 unit cells, with white and black bars representing the A and B sites,

respectively. Figure 2.16 shows the chain for small values of the hopping parameter,

t, and it shows that the wavefunctions are fully localised on the ends of the chain, as

well as fully localised on the A or B sublattices. Figure 2.17 shows the amplitudes

of the same system with larger values of the hopping parameter, t. In this case the

system is no longer polarised on the A and B sublattices, nor polarised on the ends

of the chain.

Previous work [72] has shown that although solitons in the CDW model will

break the nonsymmorphic chiral symmetry, the polarisation of the soliton state will

approach py = 1 for a large enough soliton width.
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Figure 2.16: Wavefunction amplitudes of the two flat bands in a CDW chain of N =
16 unit cells for small values of the hopping parameter t. Figures a-d) corrrespond
with the negative energy band at E = −U and figures e-h) correspond with the
positive energy band E = U .
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Figure 2.17: Wavefunction amplitudes of the two flat bands in a CDW chain of N =
16 unit cells for large values of the hopping parameter t. Figures a-d) corrrespond
with the negative energy band at E = −U and figures e-h) correspond with the
positive energy band E = U .
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2.8 Rice-Mele Model

+ − + − + − + − + −
v w

Figure 2.18: Diagram showing the Rice-Mele chain. Each unit cell contains two
atoms; a black circle on sublattice A and a black circle on sublattice B. Atoms on
sublattice A have a postive onsite potential energy, and atoms on sublattice B have
a negative onsite potential energy. The alternating coupling strengths v and w are
shown with solid and dashed lines, respectively.

The Rice-Mele model [80] can be seen as a combination of the two previous

models - it is a one-dimensional chain of atoms with alternating hopping terms and

alternating sign of the onsite potentials, as shown in figure 2.18. The Rice-Mele

Hamiltonian in the basis of the A and B atomic sites is

HRM =

 U veika/2 + we−ika/2

ve−ika/2 + weika/2 −U

 , (2.8.1)

where v and w are the alternating hopping terms, U is the strength of the alternating

onsite potentials, k is the wave vector, and a/2 is the atomic spacing - giving lattice

vector length a. The components of the vector d are

dx (k) = (v + w) cos (ka/2), dy (k) = − (v − w) sin (ka/2), dz (k) = U. (2.8.2)

The corresponding eigenvalues are

E = ±|d| = ±
√
U2 + v2 + w2 + 2vw cos (ka) (2.8.3)

Given positive parameters U , v, w, the band gap will be at the edges of the Brillouin

zone, with value Eg = 2
√
U2 + v2 + w2 − 2vw.

The Rice-Mele model does not have chiral or charge conjugation symmetry, but

does have time-reversal symmetry. It is in the symmetry class AI [69, 71].

In chapter 4 we will use dimensional reduction to relate our model of rhombo-

hedral graphite to the Rice-Mele model.
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2.9 Numerical Methods

In our research presented in Chapters 3 and 4 we calculate energy eigenvalues by

numerically diagonalising tight-binding Hamiltonians similar to that of equation

2.4.16. The parameters chosen are those found experimentally for Bernal stacked

bilayer graphene γ0 = 3.16 eV, γ1 = 0.381 eV [60], a = 2.46 Å[58]. The dispersion

relations are shown in the vicinity of the Dirac point K+, which has wave vector

K+ = (4π/3a, 0), and calculated using wave vector k = q −K+, with k = (kx, ky).

The eigenvalues are calculated on a square grid of points centred on K+. For low

energies the dispersion relations are approximately isotropic about the Dirac point,

so figures show the eigenvalues as functions of kx only, with ky = 0. The kx axis is

also normalised by the characteristic wave vector kc = γ1/ℏv, where ℏv =
√
3aγ0/2

is the group velocity related to intralayer hopping. The density of states per unit

energy per unit area, L2, is calculated using a Lorentzian approximation with finite

width δL,

g (E) =
1

πL2

∑
n

δL

(E − En)
2 + δ2L

. (2.9.1)
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Chapter 3

Solitons Due to Stacking Faults

3.1 Pristine Rhombohedrally-Stacked Graphite

Multilayer graphite systems with rhombohedral stacking can be modelled similarly

to the SSH model, where the alternating hopping terms v and w are replaced by the

intralayer hopping γ0 and vertical interlayer hopping γ1. The two triangular lattices

lead to a two atom unit cell, which matches the two atom unit cell of the SSH

model. Dimensional reduction describes the mapping of a problem from a higher to

a lower dimension, and in this work we do this by setting a component of k to a

fixed constant [71, 81, 82]. By using dimensional reduction the dispersion relation of

rhombohedrally-stacked graphite can be directly compared to the dispersion relation

of the SSH model, as shown in figure 3.1. There the eigenvalues of the SSH model

are always equal to the eigenvalues of the graphite system, in units of its interlayer

hopping γ1. The critical momentum, kc = γ1/ℏv, is the point where the intralayer

hopping becomes equal to the interlayer hopping.

The Hamiltonian of N -layer rhombohedrally-stacked graphite in the minimal

model (nearest-neighbour hopping only), and in the basis of all 2N atomic sites is
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v

w=1

b)a)

k/kc

E/γ1 E

Figure 3.1: a) Dispersion relation near the K point for a rhombohedrally-stacked
graphite system of N = 10 layers. The energy is given in units of interlayer hopping
γ1, and the momentum in terms of the critical momentum kc = γ1/ℏv. Calculated
using Hamiltonian (2.4.16) and the method and parameters outlined in section 2.9.
b) Dispersion relation of an SSH chain of N = 10 unit cells. Calculated using
Hamiltonian (2.6.2).

given in equation (2.4.16)

H =



D V 0 0 . . .

V † D V 0 . . .

0 V † D V . . .

0 0 V † D . . .
...

...
...

...
. . .


, (2.4.16)

where the 2× 2 matrix blocks are

D =

 0 vπ†

vπ 0

 , V =

 0 0

γ1 0

 , π = ℏ (ξkx + iky) . (3.1.1)

ξ = ±1, depending on if the momentum is being calculated relative to a K or K ′

point, ℏ is the reduced Planck’s constant, and v is the group velocity. The matrix

block D describes hopping within one graphene sheet, and matrix block V describes

hopping between layers n and n+1, with the γ1 term specifying the hopping between

atomic sites Bn on layer n and An+1 of the layer above.

We find dispersion relations and density of states throughout this chapter using
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the methods in section 2.9, and the Hamiltonians used are specified in each figure.

The behaviour of the low energy states can be analysed by forming a low energy

effective Hamiltonian using the method described in 2.4.4. For pristine rhombohedrally-

stacked multilayer graphite the effective Hamiltonian (3.1.2) is in the basis of the

edge states ψA,1 and ψB,N only, and they are weakly coupled with strength decreasing

with the number of layers, N .

Heff = −γ1

 0
(
−κ†

)N
(−κ)N 0

 . (3.1.2)

Here κ = (ξkx + iky) /kc and κ
† = (ξkx − iky) /kc. This gives the simple eigenvalues

near the K point

ϵ = ±γ1 (k/kc)N . (3.1.3)

Equation (3.1.3) shows that for a large number of layers N , the states are at zero

energy for k < kc. For k > kc the energies are dispersive. Figure 3.2a) shows the

dispersion relation for N = 16 layers of rhombohedrally-stacked graphite. We show

numerical results with black lines and plot the analytical expression 3.1.3 with blue

dashed lines. This figure shows that our analytical expression for the low-energy

states shows good agreement with the numerical results for k < kc. The density of

states plot 3.2b) shows a sharp peak at E = 0, corresponding with the flat bands in

the dispersion.

We consider two types of stacking faults in rhombohedrally-stacked graphite [1,

83–85]. Figure 3.3 a) shows a diagram of the usual rhombohedral stacking. Figure

3.3 b) shows the stacking interrupted by a Bernal fault, where the usual ABC order

is swapped for a short ABA section. Figure 3.3 c) show a twin-boundary fault in

rhombohedral graphite, where two ABC sections are connected via one of the layers,

but otherwise do not follow the same stacking structure. Both types of stacking fault

act as domain walls separating two graphite sections, which we will explore in the

rest of this chapter.
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w=1

E/γ1

a) b)

g(E)γ1a
2k/kc
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Figure 3.2: Dispersion relation (a) and density of states (b) for N = 16 layers
of pristine rhombohedrally-stacked graphite. The numerics are plotted using black
lines and the analytical expressions (3.1.3) are plotted in blue dashed lines. Numerics
found using Hamiltonian 2.4.16. Parameters used are γ0 = 3.16 eV, γ1 = 0.381 eV
[60], and a = 2.46 Å[58]. The Lorentzian width used is δL = 0.01γ1.

3.2 Graphite with a Bernal Fault

The first type of stacking fault considered here is the Bernal fault, shown in figure

3.3b). We define stacking faults via two integers (m,n), with m being the number

of layers before the faults and n the number of layers after the fault, such that the

total number of layers N is N = m + n. As an example, figure 3.3b)shows a (3, 5)

Bernal fault. This fault acts as a boundary, or domain wall, between two regularly-

stacked RG sections. The low-energy properties can be simply seen by imagining

the intralayer coupling k → 0. In this regime the system forms vertically-connected

dimer pairs, and the four remaining monomers form the low-energy states. These

states are localised on the top and bottom edge states, and the two sites either

side of the fault that do not directly couple to an adjacent layer. The full 2N × 2N

Hamiltonian, HB, is formed similarly to (2.4.16), but with slightly different interlayer

connections either side of the fault.
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a) Rhombohedral Graphite b) Bernal Fault c) Twin Boundary Fault

Figure 3.3: Diagram of the side view of a pristine rhombohedral graphene lattice,
a single Bernal stacking fault, and a single twin boundary stacking fault. The
filled and open circles represent the atoms on the A and B sublattices, respectively.
Horizontal lines represent the intralayer coupling γ0 and vertical lines represent the
interlayer coupling γ1.

HB =



. . .
...

...
...

... . .
.

. . . D V 0 0 . . .

. . . V † D V † 0 . . .

. . . 0 V D V . . .

. . . 0 0 V † D . . .

. .
. ...

...
...

...
. . .


, (3.2.1)

where the 2× 2 matrix blocks are the same as previously

D =

 0 vπ†

vπ 0

 , V =

 0 0

γ1 0

 , π = ℏ (ξkx + iky) . (3.2.2)

The stacking faults each contribute two additional low energy states, as shown in

the dispersion relation 3.4 a). We can form a low-energy effective Hamiltonian

in the basis of the now four low-energy states. For the Bernal fault the effective

Hamiltonian is in the basis ψA,1, ψB,m, ψA,m+1, ψB,N .

Hm,n
Bernal =


0 −

(
−κ†

)m
0

(
−κ†

)m+n−2

− (−κ)m 0 −cmn (k/kc)
2(l−1) κ2 0

0 −cmn (k/kc)
2(l−1) (κ†)2 0 −

(
−κ†

)n
(−κ)m+n−2 0 − (−κ)n 0


(3.2.3)

where cmn = (1 + δmn) /2 and l = min (m,n), and only the leading term in k/kc

has been kept for the nonzero elements between A and B sites. Note that k is the
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magnitude of the wavevector (meaning k/kc is the magnitude of the corresponding

κ) while κ is the vector containing kx and ky components. The Hamiltonian (3.2.3)

has chiral symmetry, so all matrix elements between two A sites or between two B

sites are zero [1]. The eigenvalues of this Hamiltonian are

(E/γ1)
2 =

1

2
βB (k/kc)±

1

2

√
β2
B (k/kc)− 4ηB (k/kc),

βB (x) = x2m + x2n + x2m+2n−4 + c2mnx
4l,

ηB (x) = x2m+2n + 2cmnx
2m+2n+2l−2 + c2mnx

2m+2n+4l−4.

(3.2.4)

These eigenvalues are shown as blue dashed lines in figure 3.4a), and show strong

agreement with the full numerical calculation for k < kc. As in figure 3.2, the

density of states plot shows a peak at E = 0, corresponding to the flat bands in the

dispersion relation.

E/γ1

a) b)

g(E)γ1a
2k/kc

E/γ1

Figure 3.4: Dispersion relation (a) and density of states (b) for N = 16 layers of
rhombohedrally-stacked graphite with a Bernal stacking fault in the centre. The
numerics are plotted using black lines and the analytical expressions (3.2.4) are
plotted in blue dashed lines. Numerics found using Hamiltonian 3.2.1. Parameters
used are γ0 = 3.16 eV, γ1 = 0.381 eV [60], and a = 2.46 Å[58]. The Lorentzian
width used is δL = 0.01γ1.

Figure 3.4a) shows the dispersion relation of N = 16 layers of RG with a Bernal

stacking fault in the centre. There are four zero-energy states for k < kc, and these

lead to a sharp peak in the density of states, shown in figure 3.4b).
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3.3 Graphite with Twin-Boundary Fault

The second stacking fault is called a twin-boundary fault, and is shown in the third

section of figure 3.3. Here the low energy states are the edges, the monomer site at

the fault, and the odd combination of the trimer at the fault. The full Hamiltonian,

HT , can be found by swapping the interlayer coupling blocks for all layers following

the stacking fault.

HT =



. . .
...

...
...

... . .
.

. . . D V 0 0 . . .

. . . V † D V † 0 . . .

. . . 0 V D V † . . .

. . . 0 0 V D . . .

. .
. ...

...
...

...
. . .


, (3.3.1)

where the 2× 2 matrix blocks are the same as previously

D =

 0 vπ†

vπ 0

 , V =

 0 0

γ1 0

 , π = ℏ (ξkx + iky) . (3.3.2)

Again, an effective Hamiltonian can be found in the basis of low-energy states, which

is: ψA,1, (ψB,m−1 + ψB,m+1) /
√
2, ψB,m, ψA,N .

Hm,n
twin = γ1


0 −

(
−κ†

)m−1
/
√
2 0 −

(
−κ†

)m
/2

− (−κ)m−1 /
√
2 0 (−κ)n−1 /

√
2 0

0
(
−κ†

)n−1
/
√
2 0 −

(
−κ†

)m
/2

− (−κ)m /2 0 − (−κ)n /2 0


(3.3.3)

The eigenvalues of this are given by

(E/γ1)
2 =

1

2
βt (k/kc)±

1

2

√
β2
t (k/kc)− 4ηt (k/kc),

βt (x) =
1

2

(
x2m−2 + x2n−2

)
+

1

4

(
x2m + x2n

)
ηt (x) =

1

2

(
x2m+2n−2

) (3.3.4)

59



The dispersion relations found from both analytical expressions and numerical cal-

culation for N = 16 layers of RG with a twin boundary fault are shown in figure

3.5 a). Here the analytical expressions (blue dashed lines) show good agreement

with the numerics for small values of k/kc. There are four zero-energy states for

k < kc, and these lead to a sharp peak in the density of states at zero energy. The

dispersion relation behaves similarly to that of the system with a Bernal fault, but

there is a slightly larger separation between the two positive and two negative bands,

respectively, and this separation stays constant for k > kc.

E/γ1

a) b)

g(E)γ1a
2k/kc

E/γ1

Figure 3.5: Dispersion relation (a) and density of states (b) for N = 16 layers of
rhombohedrally-stacked graphite with a twin-boundary stacking fault in the centre.
The numerics are plotted using black lines and the analytical expressions (3.3.4) are
plotted in blue dashed lines. Numerics found using Hamiltonian 3.3.1. Parameters
used are γ0 = 3.16 eV, γ1 = 0.381 eV [60], and a = 2.46 Å[58]. The Lorentzian
width used is δL = 0.01γ1.
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3.4 Disorder

The presence of flat bands at zero energy creates a sharp peak in the density of

states. In this section, we investigate how robust this peak is in the presence of

disorder. In particular, the Hamiltonians posses chiral symmetry as can be seen by

examining the low-energy Hamiltonians (3.1.2), (3.2.3), and (3.3.3). We consider

two types of disorder: onsite energy disorder and interlayer hopping disorder. The

former breaks chiral symmetry and the latter preserves it.

We investigate the band gap, Eg, of the three graphene systems described above

in the presence of both types of disorder. The first type of disorder modifies the

layer energies. For disorder of strength δ the magnitude of the diagonal elements

of the Hamiltonian HAn,An and HBn,Bn are increased by δn for n = 1, 2, . . . , N ,

where the δn take uniformly distributed random values in the range [−δ, δ]. The

second type of disorder modifies the interlayer coupling γ1. The coupling elements

HBn,An+1 = HAn+1,Bn = γ1 + δn for n = 1, 2, . . . , N − 1, where the δn take uniformly

distributed values in the range [−δ, δ].

We have defined the band gap, Eg, as the separation of the low-energy states. The

mean values of the band gap for faultless RG, a Bernal fault, and a twin-boundary

fault are given as a function of disorder strength δ in figure 3.6. Results for random

layer energies are plotted with crosses and random interlayer hopping energies are

plotted with circles. The band gaps are the average over twenty different realisations

of disorder. All three parts of figure 3.6 show that the band gap of the RG systems

are unaffected by interlayer disorder, and slightly increase in the presence of random

layer energies.

The disorder-averaged density of states for all three systems with random layer

energies are shown in figure 3.7. The first column shows the density of states without

disorder (δ = 0.0), the second colunm shows the average of twenty realisations of

disorder with a strength of δ = 0.1γ1, and the third column has a disorder strength

of δ = 0.2γ1. The density of states initially shows a sharp peak at zero energy,

which is due to the highly-localised flat edge states in the band structure. There are

also smaller peaks due to the minima of the conduction bands and maxima of the

valence bands. With weak disorder applied to the onsite energies of each layer, the
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Eg/γ1

Bernal Fault

δ (meV)
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Eg/γ1
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Faultless RG
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δ/γ1

Twin Boundary Fault
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c)

Eg/γ1

Figure 3.6: The disorder-averaged band gaps (in units of γ1) for (a) faultless RG
(b) a Bernal fault and (c) a twin-boundary fault as a function of disorder strenth
δ. Crosses show the random layer energies and circles show the random interlayer
hopping energies. All points are the mean average of twenty different realisations
of disorder, and error bars give the standard error. The upper x-axis shows the
disorder strength in units of γ1.

density of states loses its defining features, and the peak at zero energy is completely

destroyed. When the disorder strength is further increased, almost all features of

the density of states are lost.

The disorder-averaged density of states for all three RG systems with random

interlayer coupling energies are shown in figure 3.8. The left column is the same

as that of figure 3.7 - the density of states with no disorder applied. The second

column shows the systems with interlayer disorder of strength δ = 0.1γ1, and the

third shows a disorder strength of δ = 0.2γ1. The increases in disorder strength

acts only to smooth the small peaks in the conductance and valence bands, but the

near-zero-energy peak is robust to this disorder.

To understand why the three RG systems are all robust to interlayer disorder,

but not to onsite energy disorder, we must return to the low energy effective Hamil-

tonians (3.1.2), (3.2.3), and (3.3.3). In each of these, the energies of the edge states

appear along the diagonal elements, so any disorder applied to these states will di-

rectly affect the eigenvalues of the system. The interlayer coupling appears in the

off diagonal elements of these Hamiltonians as HA1,BN = −γ1 (−κ)N in (3.1.2), and

the lowest power for a Bernal fault would be − (−κ)l (3.2.3), or for a twin-boundary

fault − (−κ)l−1 (3.3.3). This means that the coupling between either opposing sur-

face states, or the coupling between a surface and a fault state is a product of each

disorder parameter between the two. For N ≫ 1, the system will self-average so
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that the effect of any single interlayer disorder parameter δn on the low-energy bands

will be negligible.

δ=0.1γ1δ=0.0 δ=0.2γ1
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2 g(E)γ1a
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Faultless

c)

Eg/γ1

e)

Eg/γ1Eg/γ1
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g(E)γ1a
2 g(E)γ1a

2 g(E)γ1a
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Bernal
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2 g(E)γ1a

2 g(E)γ1a
2

Twin Boundary
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Figure 3.7: The disorder averaged density of states for N = 16 layers of faultless
RG (top row), RG with a Bernal stacking fault in the centre (middle row), and
RG with a twin-boundary fault in the centre (bottom row). The left column shows
the density of states of each system, then the middle and right columns show the
disorder-averaged density of states for δ = 0.1γ1 and 0.2γ1, respectively. Disorder
is applied to the onsite energies and each disorder-averaged calculation is averaged
over twenty realisations of disorder.

In our model of disordered rhobohedral graphite we have assumed translational

invariance within each graphene plane. This is necessary in order to find a k-

space Hamiltonian using Bloch’s theorem. In order to fully analyse disorder within

graphene would take a much greater computational effort, as modelling localised dis-

order in graphene requires the use of position space Hamiltonians, and the Hamil-

tonian matrices would become very large when modelling large enough graphene

sheets and the matrix size would also need to be multiplied by the number of layers

used.
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Figure 3.8: The disorder averaged density of states for N = 16 layers of faultless
RG (top row), RG with a Bernal stacking fault in the centre (middle row), and
RG with a twin-boundary fault in the centre (bottom row). The left column shows
the density of states of each system, then the middle and right columns show the
disorder-averaged density of states for δ = 0.1γ1 and 0.2γ1, respectively. Disorder is
applied to the interlayer coupling energies and each disorder-averaged calculation is
averaged over twenty realisations of disorder.
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3.5 Finite Onsite Potential U

Graphene systems will usually have zero onsite potential U , but the following investi-

gation can be applied to a honeycomb lattice with two different atomic species, such

hexagonal boron nitride [2, 26] and other materials described in the introduction.

An interaction-induced band gap was investigated in our paper [1]. The effects

of this can be mimicked using a single particle gap acting via a staggered potential.

The gap parameters are given in the paper but here they are added to the diagonal

terms of the Hamiltonian phenomenologically.

H =



D V 0 0 . . .

V † D V 0 . . .

0 V † D V . . .

0 0 V † D . . .
...

...
...

...
. . .


, (3.5.1)

where the 2× 2 matrix blocks are

D =

U vπ†

vπ −U

 , V =

 0 0

γ1 0

 , π = ℏ (ξkx + iky) . (3.5.2)

The alternating onsite potentials ±U act to open a band gap of 2U . The onsite

values are added to Hamiltonians (3.2.1) and (3.3.1) similarly.

Figure 3.9 shows the dispersion relations and density of states for faultless RG,

RG with a Bernal fault in the centre, and RG with a twin-boundary fault in the

centre, all with onsite potentials U = 0.1γ1. Figure 3.9 a) shows that the finite onsite

potential acts to open a gap between the two zero-energy states, which remain as

flat bands for k < kc, and become dispersive for k > kc as in figure 3.2. The

corresponding density of states plot, figure 3.9 d) shows pronounced peaks that

correspond with the zero energy states, at energies E = ±U .

Figure 3.9 b) and e) show the dispersion relation and density of states for RG

with a Bernal fault in the centre. In this case, there are four flat bands for k < kc,

and the additional flat bands lead to an increase in the size of the peaks in the

density of states, again at energies E = ±U .
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Figure 3.9 c) and f) show the dispersion relation and density of states for RG

with a twin-boundary fault in the centre. In the same way as for the Bernal fault,

there are four flat bands for k < kc, and the additional flat bands lead to an increase

in the size of the peaks in the density of states, again at energies E = ±U .
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Figure 3.9: Dispersion relations and density of states for N = 16 layers of RG with
a stacking fault in the centre, and with alternating onsite of magnitude U = 0.1γ1.
a,d) show no stacking fault, b,e) show a Bernal fault, c,f) show a twin-boundary
fault.
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3.6 Disorder with Finite U

Disorder is added in the same way as in section 3.4. We first investigate the band

gap in the presence of disorder, and then the disorder-averaged density of states.

As compared with our investigation of disorder in section 3.4, the presence of finite

onsite potential U will break chiral symmetry.

Figure 3.10 shows the band gap, Eg, as a function of both interlayer and onsite

energy disorder. With a finite separation of the bands, U = 0.1γ1, the gap is initially

at 2U , but with increasing onsite disorder the band gap decreases. However, as

before, the band gap is unaffected by the increasing interlayer disorder.

b)

Eg/γ1

Bernal Fault

δ (meV)

δ/γ1
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Faultless RG

δ (meV)

δ/γ1

Twin Boundary Fault

δ (meV)

δ/γ1

c)

Eg/γ1

Figure 3.10: The disorder averaged band gaps (in units of γ1) for (a) faultless RG
(b) a Bernal fault and (c) a twin-boundary fault as a function of disorder strenth δ.
The onsite potential is U = 0.1γ1. Results for random layer energies are plotted with
crosses and results for random interlayer hopping energies are plotted with circles.
All points are the mean average of twenty different realisations of disorder, and error
bars give the standard error. The upper x-axis shows the disorder strength in units
of γ1.

Similarly to the disorder-averaged density of states calculations shown in section

3.4, figure 3.11 shows that the onsite disorder acts to remove all sharp features from

the density of states plots. Figure 3.12 shows that only the smaller peaks in the

conduction and valence bands are smoothed by the addition of interlayer hopping

disorder, but the sharp peaks at E/γ1 = ±U are resistant to the effects of disorder.

Even though the presence of U breaks chiral symmetry, the low-energy states re-

main robust in the presence of interlayer hopping disorder. Thus, we don’t attribute

this behaviour to symmetry-protected topology, but simply to the self-averaging

argument, as described at the end of section 3.4.
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Figure 3.11: The disorder averaged density of states for N = 16 layers of faultless
RG (top row), RG with a Bernal stacking fault in the centre (middle row), and
RG with a twin-boundary fault in the centre (bottom row). In each case the initial
onsite energy U = 0.1γ1 The left column shows the density of states of each system,
then the middle and right columns show the disorder-averaged density of states for
δ = 0.1γ1 and 0.2γ1, respectively. Disorder is applied to the onsite energies and each
disorder-averaged calculation is averaged over twenty realisations of disorder.
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Figure 3.12: The disorder averaged density of states for N = 16 layers of faultless
RG (top row), RG with a Bernal stacking fault in the centre (middle row), and
RG with a twin-boundary fault in the centre (bottom row). In each case the initial
onsite energy U = 0.1γ1 The left column shows the density of states of each system,
then the middle and right columns show the disorder-averaged density of states for
δ = 0.1γ1 and 0.2γ1, respectively. Disorder is applied to the interlayer coupling
energies and each disorder-averaged calculation is averaged over twenty realisations
of disorder.
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3.7 Polarisation

As described in section 2.6, the chiral symmetry of the SSH model is described by

the Sz operator.

We find that for RG systems with onsite potential U = 0, the polarisation

pz = ⟨ψ|Sz|ψ⟩ of the low energy states is zero for all values of kx. This result is the

same for the faultless, Bernal fault, and Twin-Boundary fault systems. To better

understand this result, we inspect the amplitudes of the wavefunctions in figures

3.13, 3.14, and 3.15.

For figures 3.13, 3.14, and 3.15a)-d) the wavevector k = 0, and there can be no

hybridisation between states. The wavefunction amplitudes of the low energy states

are then fully localised on the edge and fault sites, as shown by the amplitudes of

ψ = 1 at the far left and right ends and at the location of the stacking fault. In

the case of the twin-boundary stacking fault, the low-energy states are due to the

monomer (3.15b)) and the odd combination of the trimer sites either side of the

fault (3.15d)).

With a finite wavevector k, the states begin to hybridise. Figures 3.13e) and f)

show that the two edge states form an odd and even combination. The white bars

in each figure show amplitude on A sites, and black bars show amplitude on B sites.

It is then clear that at the ends of the chain (on the top and bottom monomer sites)

the states are fully polarised, but because they are hybridised the total polarisation

pz over the entire system is still zero. At larger values of k the edge states can be

seen to more strongly influence the centre of the system.

With a Bernal fault the system presents as if there are two sets of edge states.

Figures 3.14a)-d) show the four fully localised edge states with k = 0 (with no

hybridisation), and figures 3.14e)-h) show the slight hybridisation of the edge states.

Again they are even and odd combinations of A and B sites.

With a twin-boundary fault, there are again four localised states, but instead of

them all presenting like simple edge states, one of the states at the fault is due to

the odd combination of the trimer of B sites either side of the fault.

As described in section 2.7, the chiral symmetry of the CDW model is described

by the Sy operator. Figure 3.16 shows the dispersion relations and polarisation py
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of the three graphene systems with a finite onsite potential, U = 0.1γ1. This shows

that the flat bands still have the polarisation of py = ±1, even though they are

no longer zero-energy states. As k approaches kc the flat bands separate and move

towards the bulk bands, and the states are no longer fully polarised. Each case is

in agreement with the polarisation shown in the CDW model (see figures 2.16 and

2.17). The low-energy states due to the stacking faults behave in the same way as

the low-energy states due to the edges of the system.
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Figure 3.13: The amplitudes of the wavefunction Ψ of the four low-energy states in
a faultless RG system of N = 16 layers with onsite potential U = 0. Figures a)-d)
show results with k = 0, e)-h) with k = 0.15 kc, i)-l) with k = 0.5 kc, and m)-p)
with k = 0.75 kc.
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Figure 3.14: The amplitudes of the wavefunction Ψ of the four low-energy states in
a faultless RG system of N = 16 layers with a Bernal fault in the centre and onsite
potential U = 0. Figures a)-d) show results with k = 0, e)-h) with k = 0.15 kc, i)-l)
with k = 0.5 kc, and m)-p) with k = 0.75 kc.
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Figure 3.15: The amplitudes of the wavefunction Ψ of the four low-energy states in
an RG system of N = 16 layers with a twin-boundary fault in the centre and onsite
potential U = 0. Figures a)-d) show results with k = 0, e)-h) with k = 0.15 kc, i)-l)
with k = 0.5 kc, and m)-p) with k = 0.75 kc.
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Figure 3.16: The dispersion relations and polarisation pz of the low-energy bands
of N = 16 layer RG with no fault (top row), a Bernal fault in the centre (middle
row), or a twin-boundary fault in the centre (bottom row). Only the bands near
zero energy are shown, and colours correspond across rows. Each system has a finite
onsite potenital U = 0.1.
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3.8 Conclusion

We have shown that both Bernal faults and twin-boundary faults each provide a

pair of low-energy energy eigenstates. These states act in the same way as the

energy eigenstates caused by the isolated edge states on the top and bottom layers

of faultless RG.

We have shown that the low-energy states due to edges of a finite RG system

and due to both types of stacking fault are affected by disorder applied to the onsite

potentials, but resistant to interlayer disorder via a self-averaging effect. This is the

case with and without the addition of an alternating onsite potential ±U , as our

results show that the strong peaks in density of states plots appear at E = ±U ,

even in the presence of interlayer disorder.

Our investigation into the polarisation of the low-energy states has shown that

the zero energy states are topologically protected, with a polarisation of py = ±1

for k < kc, corresponding to the range for which E = ±U .

76



Chapter 4

Solitons Due to Onsite Potentials

4.1 Single Sharp Soliton

As shown in Chapter 3, stacking faults in rhombohedrally-stacked thin films support

localised states, manifested as flat bands in quasi-2D. Such bands tend to appear

in pairs at about the same energy because the sequence of intra- and interlayer

bonding either side of the fault is fixed, i.e., the texture of bonding strengths away

from the fault cannot be changed by the fault. Hence, such faults are effectively

coupled soliton-antisoliton pairs.

In this Chapter, we investigate the possible existence of a single, isolated band

localised on a stacking fault in rhombohedrally-stacked thin films by adding different

onsite energies UA
i and UB

i to the two atomic sites per layer i. Graphene systems will

usually have zero onsite potential U , but the following investigation can be applied

to a honeycomb lattice with two different atomic species, for example hexagonal

boron nitride [2, 26] and others described in the introduction.

Dimensional reduction describes the mapping of a problem from a higher to a

lower dimension, and in this work we do this by considering the in-plane wave vector

kx as a fixed parameter [71, 81, 82]. By using dimensional reduction we relate the

Hamiltonian to that of the Rice-Mele model. This is generally not topological, but,

at certain wave vectors (|k| = kc), the intra- and interlayer hoppings are effectively

equal, and rhombohedral stacking is related to the charge density wave (CDW)

model. Thus, stacking faults in the order of onsite energies for rhombohedral stack-

ing are analogous to solitons in the CDW model, albeit only at a cetain wave vector.

77



The aim is to explore this analogy. The 2N × 2N Hamiltonian of pristine, faultless,

a)

A B
γ0

γ1

b)

+ −γ0

γ1

+ −

+ −
c)

+ −γ0

γ1

− +

− +

Figure 4.1: Diagram of the graphene system. The circles show the positions of the
atoms in one unit cell of RG, filled black circles are sites on the A sublattice and
open circles are sites on the B sublattice. The solid lines show intralayer hopping
γ0, and the dotted lines show intralayer hopping γ1. Figure a) shows the simple RG
system, b) shows the same with alternating onsite potential ±U , and c) shows the
same with a soliton after the first layer, so that m = 1, n = 2.

rhombohedrally-stacked N-layer graphite in the vicinity of the K point is given by

(see section 2.4.3)

HABC =



D1 V 0 0 0 . . .

V † D2 V 0 0 . . .

0 V † D3 V 0 . . .

0 0 V † D4 V . . .
...

...
...

...
...

. . .


, (4.1.1)

where the 2× 2 matrix blocks are

Di =

UA
i vπ†

vπ UB
i

 , V =

 0 0

γ1 0

 , π = ℏ (ξkx + iky) , (4.1.2)

and the UA
i and UB

i are the onsite energies of atoms on the A and B sublattices,

respectively.

In this chapter we investigate whether a single, isolated band may be contained

within the bulk band gap of an RG system. We introduce a soliton to the RG

system by first alternating the sign of the onsite energy between atoms on the same

layer, UB
i = −UA

i . A system of N layers will have the fault described by parameters

(m,n), where m is the number of layers preceeding the fault, and n the number of

layers that follow so that N = m + n. For a “sharp” soliton, the magnitudes of all
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Ui are equal, and the order of the onsite energy signs reverses after m layers, and is

swapped for the remaining n layers, for a total of N = m+ n. Figure 4.1 illustrates

the different variations of onsite potentials. The presence of the soliton means that

two neighbouring sites in different layers will now have a negative potential, and the

reversal of the onsite energy texture means that the sites on the top and bottom

layers with no interlayer neighbour will have the same sign. Later in this chapter

we will describe “smooth” solitons, but the location of the fault is described with

the same nomenclature.

We find dispersion relations and density of states throughout this chapter using

the methods in section 2.9, and the Hamiltonians used are specified in each figure.

To interpret our numerical results we use dimensional reduction [71] (a mapping of

a problem to one with a lower number of spatial dimensions), considering the wave

vector k as a fixed parameter, with focus on values k = 0 and k = kc. At k = 0

we expect this model to behave similarly to the CDW model, and at k = kc we

expect it to behave similarly to the Rice-Mele model. In this way, the model RG

system can be compared to a one-dimensional tight-binding model. The Rice-Mele

model has two orbitals per unit cell, alternating nearest-neighbour hopping, and

alternating onsite potentials. The SSH phase 2.6 and the CDW phase 2.7 of the

Rice-Mele model contain chiral symmetry.
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Figure 4.2: The dispersion relations and density of states of an RG system of N = 16
layers with a sharp soliton in the centre. The onsite potential U is varied from
U = 0.0γ1 to U = 1.1γ1. Calculated using Hamiltonian 4.1.1.

80



Figure 4.2 shows the dispersion relations and density of states for an RG system

of N = 16 layers with a single sharp soliton in the centre for varying values of the

onsite energy U . 4.2 a) shows the dispersion and density of states for an RG system

with onsite energy U = 0.0. With no finite potential there can be no soliton - this

regime describes pristine faultless rhombohedral graphite. Here the two flat bands

at zero energy are due to the surface states A1 and BN , and these flat bands lead

to a sharp peak in the density of states at the same energy. The remaining figures

have a finite onsite potential, with the soliton specified by m = n = 8. The soliton

acts to displace two of the energy bands. As U is increased one band from the bulk

conduction bands and one from the bulk valence bands show a slight reduction in

energy. At U = 0.5γ1, the soliton state and two edge states are triply degenerate, as

shown in 4.2 f). For U ≤ 0.5γ1 the soliton band will hybridise with the surface states,

and the density of states is nonzero. For U > 0.5γ1 the soliton will be separated

from all other states, and alone within the band gap.

The states are simple to understand at k = 0, as with no intralayer hopping

present, the RG system reduces to a system of dimers, with only the edge states

as monomers with energy +U . There are (N − 2) dimers with onsite energies ±U ,

each providing states at E = ±
√
U2 + γ21 , then the two states at the soliton remain,

which have energies E = −U±γ1. The state which I am referring to as the “soliton”

state has the higher energy of the two.

Es = −U + γ1 for k = 0. (4.1.3)

For U ≈ γ1/2 and k ≪ kc we can derive a low-energy effective Hamiltonian using

the method described in section 2.4.4. The low energy sites used are the two edge

states, ψA1 and ψBN
, and the positive combination of the dimer sites that support

the soliton ψsol =
(
ψBm + ψAm+1

)√
2,

Hm,n
sol

γ1
=


1
2
+∆+ 2

9

(
4
5

)2(m−1) (
κκ†
)m 1√

2

(
−4

5

)m−1 (
κ†
)m −2

9

(
−4

5

)m+n−2 (
κ†
)m+n

1√
2

(
−4

5

)m−1
κm 1

2
−∆− 4

5
cm,nκκ

† 1√
2

(
−4

5

)n−1 (
κ†
)n

−2
9

(
−4

5

)m+n−2
κm+n 1√

2

(
−4

5

)n−1
κn 1

2
+∆+ 2

9

(
4
5

)2(n−1) (
κκ†
)n
 ,

(4.1.4)

where ∆ is a very small dimensionless onsite energy U/γ1 = 1/2 + ∆, ∆ ≪ 1, κ is
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a dimensionless wave vector κ = (ξkx + iky) /kc, κ ≪ 1, and cm,n depends on the

position of the soliton within the system,

cm,n =

1 if m = n,

1
2

if m ̸= n.

(4.1.5)

Only the leading order in |κ| is kept in each element of (4.1.4).

To analyse the hybridisation of the soliton band with the surface states, the

Hamiltonian (4.1.4) is simplified. We consider a soliton in the centre of the RG

system, m = n, N = 2m, and also consider a large number of layers N ≫ 1 so that

terms of order (k/kc)
N may be neglected,

Hm,n
sol ≈ γ1


1
2
+∆ β† 0

β 1
2
−∆− α β†

0 β 1
2
+∆

 , (4.1.6)

where α = (4/5) |κ|2 and β =
(
1/
√
2
)
(−4/5)m−1 κm. The three eigenvalues of

(4.1.6) are

E

γ1
=

1

2
+ ∆, (4.1.7)

E

γ1
=

1

2
− α

2
±
√(

∆+
α

2

)2
+ 2|β|2. (4.1.8)

By reversing the substitution U/γ1 = 1/2+∆, the eigenvalues can be found in terms

of physical parameters,

E = U, (4.1.9)

E

γ1
=

1

2
− 2

5

(
k

kc

)2

±

√√√√[U
γ1

− 1

2
+

2

5

(
k

kc

)2
]2

+

(
4

5

)N−2(
k

kc

)N

. (4.1.10)

The corresponding unnormalised eigenstates are

ψ0 =


1

0

−1

 , ψ± =


1

1
2β

[
α + 2∆±

√
α + 4α∆+ 4∆2 + 8|β|2

]
1

 , (4.1.11)
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which show that the eigenstate corresponding to the flat band, ψ0, has no weight

on the soliton - it is only a linear combination of the two surface states. An avoided

crossing can be predicted using the two other eigenvalues (4.1.8). With the higher-

order term in β2 removed, the eigenvalues become

E±

γ1
=

1

2
− α

2
± |∆+

α

2
|. (4.1.12)

For ∆ > 0, these become
E+

γ1
=

1

2
+ ∆, (4.1.13)

E−

γ1
=

1

2
−∆− α, (4.1.14)

which do not interact for any values of κ. For ∆ < 0, there are two regimes to

consider, first with q ≪ ∆. Substitute ∆ = −δ,

E+

γ1
=

1

2
+ δ − α,

E−

γ1
=

1

2
− δ. (4.1.15)

When α > 2∆
E+

γ1
=

1

2
− δ,

E−

γ1
=

1

2
+ δ − α, (4.1.16)

the order of the bands is reversed, and the lower energy band follows the trajectory

that the higher energy band previously had. The avoided crossing occurs at the

momentum

α = 2|∆|, ∆ < 0. (4.1.17)

In physical parameters the avoided crossing is located at momentum

(
k

kc

)2

=
5

2
∆, ∆ < 0. (4.1.18)

Figure 4.3 shows a comparison of the numerics and analytics for the system

described above (N = 16, m = n = 8) near the triply-degenerate point U = γ1/2.

Only the numerical eigenvalues describing the soliton state and both edge states are

shown, and the analytical eigenvalues (4.1.10). This shows very good agreement for

k < kc.

Figure 4.4 shows the dispersion relations for an RG system of N = 16 layers
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Figure 4.3: The dispersion relations of the edge states and soliton state near U =
0.5γ1. The RG system has N = 16 layers, with the soliton in the centre (m = n = 8).
The top row show the numerical calulation using Hamiltonian 4.1.4 and the bottom
row shows the analytical result of equation (4.1.10).

with a sharp soliton following different numbers of layers m. The onsite potential

is fixed at U = 0.6γ1. The dispersion relations are shown from m = 1, where the

soliton follows the very first layer, to m = 8, where the soliton is in the centre. After

m = 8 the symmetry of the system is shown, ie. the dispersion relation for m = 9

is identical to that of m = 7 and so on. Figure 4.4 shows that the position of the

sharp soliton has a very minimal effect on the dispersion of the soliton state - for all

cases it starts at energy Esol = −U + γ1 at k = 0, then crosses the band gap as k

increases. The soliton position is shown to have an effect on the edge state that it is

closer to, as this state is pushed higher into the conductance bands for small values

of k, but still unaffected at k = 0. This effect is most prominent in figure 4.4 a).
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Figure 4.4: Dispersion relations for an RG system of N = 16 layers with a sharp
soliton after different numbers of layers m. The onsite potential is U = 0.6γ1.
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4.2 Soliton-Antisoliton Pair

A soliton-antisoliton pair is introduced to the RG system by swapping the order of

onsite potentials after l layers (creating the soliton) and then swapping the order

again after an additional m layers (creating the antisoliton). There will be a further

n layers for a total of N = l +m+ n. The band structure and density of states for

this system with l = m = n = 8 and varying onsite magnitudes are shown in figure

4.5. For U = 0.0, the soliton-antisoliton pair has no effect on the system, and the

band structure is unchanged, see figure 4.5 a). For a small finite onsite potential,

the flat bands gain a slight separation, and the band associated with the soliton

state falls from the bulk conductance bands, while the antisoliton band rises from

the bulk valence bands. At k = 0, the soliton has energy Esol = −U + γ1, and the

antisoliton has energy Esol = U − γ1, and the surface states have energy ±U . For

onsite energies U ≤ γ1/2, the soliton and antisoliton states can be seen to hybridise

with the bottom (+U) and top(−U) edge states, respectively, as shown in 4.5 c)-e).

For U = γ1/2, 4.5 f), and k = 0, the soliton state is degenerate with the bottom

edge state, and the antisoliton states is degenerate with the upper edge state. For

U > γ1/2, the magnitudes of the soliton and antisoliton energies are lower than

that of the surface state energies, and they hybridise with each other, showing an

anticrossing near zero energy. For U ≤ γ1, the density of states is nonzero. For

U > γ1, 4.5 l), the antisoliton state has higher energy than the soliton state for all

values of k, and there is an overall band gap of Eg = 2 (U − γ1).

By expanding near energy U ≈ γ1/2 we can derive an effective 4×4 Hamiltonian

in the basis ψA1 , (ψBl
+ ψAl+1

)/
√
2, (ψBl+m

+ ψAl+m+1
)/
√
2, ψBN

.

H
(l,m,n)
pair

γ1
=


αl β†

l Λ†
l,m 0

βl
1
2
−∆− fl,mκκ

† β†
m/

√
2 Λ†

n,m

Λl,m βm/
√
2 −1

2
+∆+ fn,mκκ

† −β†
n

0 Λn,m −βn −αn

 , (4.2.1)
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where

αj =
1

2
+ ∆+

2

9

(
4

5

)2(j−1) (
κκ†
)j
, (4.2.2)

β
(†)
k =

1√
2

(
−4

5

)k−1 (
κ(†)
)k
, (4.2.3)

Λ
(†)
j,k = − 1

3
√
2

(
−4

5

)j+k−2 (
κ(†)
)j+k

, (4.2.4)

and U/γ1 = 1/2 + ∆, |∆| ≪ 1, and κ = (ξkx + iky) /kc, |κ| ≪ 1. Here the terms

of order |κ|N are neglected in elements
(
H

(l,m,n)
pair

)
14

=
(
H

(l,m,n)
pair

)
41
, and fn,m is a

numerical factor dependent on the position of the soliton or antisoliton,

fn,m =



2
9

for n = 1 and m = 1,

2
5

for n = 1 and m > 1,

28
45

for n > 1 and m = 1,

4
5

for n > 1 and m > 1.

(4.2.5)

For U ≈ γ1, and k = 0, the soliton and antisoliton bands are at zero energy, and

they hybridise for k ̸= 0. To describe the relationship between the soliton and

antisoliton states, we use a two-component basis and derive another low-energy

effective Hamiltonian. The basis is
(
ψBl

+ ψAl+1

)
/
√
2,
(
ψBl+m

+ ψAl+m+1

)
/
√
2,

H
(l,m,n)
pair = γ1

−δ − gm,lκκ
† −

(
−κ†/2

)m
− (−κ/2)m δ + gm,nκκ

†

 , (4.2.6)

where U/γ1 = 1 + δ, |δ| ≪ 1, |κ| ≪ 1, and gm,l depends on the relative positions of

the soliton and antisoliton,

gm,l =



5
8

for m = 1 and l = 1,

3
8

for m = 1 and l > 1,

3
4

for m > 1 and l = 1,

1
2

for m > 1 and l > 1.

(4.2.7)

The eigenvalues of the 2× 2 Hamiltonian 4.2.6 are
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E

γ1
=

1

2
(gm,n − gm,l)

(
k

kc

)2

±

√√√√[U
γ1

− 1 +
1

2
(gm,n + gm,l)

(
k

kc

)2
]2

+

(
k

2kc

)2m

,

(4.2.8)
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Figure 4.5: The dispersion relations and density of states of an RG system of N = 24
layers with a sharp soliton-antisoliton pair evenly spaced throughout the layers. The
onsite potential U is varied from U = 0.0γ1 to U = 1.1γ1.
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4.3 Smooth Solitons

A smooth soliton is formed by gradually decreasing the magnitudes of the onsite

potentials until you reach the soliton layer, and then gradually increasing it back to

the original magnitude. The magnitude of onsite potentials on the same layer are

kept the same, and the onsite potential can be described using equation 4.3.1. The

energies of an A site of the jth layer are given by

ϵA,j = −U tanh

(
j −m− 1/2

ξ

)
, (4.3.1)

where j = 1, . . . , N , and m is the number of layers preceeding the soliton, U is the

magnitude of the onsite potential at infinite distance from the soliton centre, and ξ

is the width of the smooth soliton (the physical width divided by the atomic spacing

a). The energy of the B site on the jth layer is the negative of the corresponding A

site, ϵB,j = −ϵA,j, so that each layer remains charge neutral.

Figure 4.6 shows the dispersion relations and density of states for an RG system

of N = 16 layers with a smooth soliton of width ξ = 8 after 8 layers. Results are

shown with onsite values at the edges of the system of U = 0.0 to U = 1.1γ1. The

energy of the soliton state is Esol ≈ 0 for k = 0, regardless of the onsite value U . The

soliton state always decreases in energy and falls to the valence band as k increases,

so the density of states are nonzero for all energies.

When k = 0, the system separates into dimers (other than the two edge states),

and the soliton is localised on the two sites Bm and Am+1, which are connected

via interlayer hopping γ1. The two sites will have equal onsite potentials, ϵA,m+1 =

ϵB,m = −U tanh (1/2ξ). The soliton state is the higher of the two states localised

on this dimer

Esol = γ1 − U tanh

(
1

2ξ

)
for k = 0. (4.3.2)

In the limit ξ → 0, this returns the result shown for sharp solitons, Esol = γ1−U , as

expected. For solitons with a large width, ξ → ∞, the soliton energy will converge

to the value Esol ≈ γ1, for all values of U .

For k = kc, the soliton energy is Esol ≈ 0. This is because here the system is

90



analogous to the CDW model and, in this system, a soliton in the continuum limit

supports a zero energy level.
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Figure 4.6: The dispersion relations and density of states of an RG system of N = 16
layers with a smooth soliton of width ξ = 8 after 8 layers. The onsite potential at
infinity, U , is varied from U = 0.0γ1 to U = 1.1γ1.
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A soliton-antisoliton pair is created by using equation (4.3.1) twice, once at the

soliton position as usual, then a second time at the antisoliton position, with the

signs of all onsite potentials reversed. For sites affected by both the soliton and the

antisoliton, the lower of the two onsite potential values is used.

Figure 4.7 shows the dispersion relations and density of states for an RG system

with a soliton-antisoliton pair. Here N = 24, l = m = n = 8, the widths of both

the soliton and antisoliton are ξ = 8. The onsite potentials at infinity for both

the soliton and antisoliton are kept equal to each other, and varied from U = 0.0

to U = 1.1γ1. As in the systems discussed before, the soliton state is initially in

the conductance band at k = 0, and as in the case of the sharp soliton-antisoliton

pair, 4.5, the antisoliton state is initially in the valence band at k = 0. The soliton

state falls and the antisoliton state rises as k is increased, with both states crossing

the band gap. For U < γ1, the soliton and antisoliton states show an avoided

crossing with their closest edge state (the soliton being closer to the bottom and the

antisoliton closer to the top). For all values of U the soliton and antisoliton states

show an avoided crossing at k = kc, where they interact at zero energy.
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Figure 4.7: The dispersion relations and density of states of an RG system of N = 24
layers with a smooth soliton-antisoliton pair specified by l = m = n = 8, both of
width ξ = 8. The onsite potential at infinity, U , for both features is varied from
U = 0.0γ1 to U = 1.1γ1. 94



Figure 4.8 shows the dispersion relations for an RG system with a single smooth

soliton with the soliton centre following different numbers of layers m.

Figure 4.9 shows the dispersion relations for an RG system of N = 16 layers

with a smooth soliton after m = 8 layers with varying widths ξ. For smooth solitons

with small widths, 4.9 a) the system acts similarly to the sharp soliton of the same

onsite potential U , in agreement with equation (4.3.2). As the width of the soliton

is increased, the energy of the soliton state at k = 0 rises above the energies of the

edge states and into the conduction band, reaching the value Esol ≈ γ1. The width

of the soliton has a negligible effect on the other states.
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Figure 4.8: Dispersion relations for an RG system of N = 16 layers with a smooth
soliton of width ξ = 8 after different numbers of layers m. The onsite potential at
infinity is U = 0.6γ1.
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Figure 4.9: Dispersion relations for an RG system of N = 16 layers with smooth
solitons afterm = 8 layers with varying widths, ξ. The onsite potential is U = 0.6γ1.
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4.4 Polarisation

As described in chapter 2.7, the chiral symmetry of the CDW model in real space

is represented by US = Ta/2Sz in position space, and σy in reciprocal space. This

means that, in position space, the chiral symmetry is broken by the ends of the

chain (at the top and bottom layers), and also broken by a texture in the onsite

potentials (which any soliton will create). In the case of a sharp soliton, the change

in texture is sudden, and occurs over the length scale of the interlayer spacing. In

the case of a smooth soliton, with a large enough width, ξ, the texture changes over

a long distance. The reciprocal space representation of the chiral symmetry is found

assuming an infinite system - it is in the continuum limit. For a large enough finite

system, the polarisation can be seen to be approaching the continuum limit, and

the texture of the smooth soliton interrupts the continuity far less than that of the

sharp soliton.

Figure 4.10 shows the polarisation py = ⟨ψsol|Ta/2Sz|ψsol⟩ as a function of kx.

Plots are shown for systems with sharp solitons with onsite potentials U = 0.6γ1

(solid line) and U = 1.8γ1 (dashed line), and also systems with smooth solitons

with onsite potentials U = 0.6γ1 (dashed-and-dotted line) and U = 1.8γ1 (dotted

line). In all systems the polarisation initially has the value py = 0.5 at kx = 0, then

increases close to unity as kx increases. The polarisation asymptotically approaches

unity because the ends of the chain have already broken the chiral symmetry of the

system. The polarisation sees a far steeper increase for both smooth soliton systems,

as these are closer to the continuum limit. In the case of the smooth soliton system

at U = 0.6γ1, the band structure, 4.6 g), shows an avoided crossing . At the avoided

crossing the bands become degenerate, and it is not possible to assign a particular

wavefunction a particular energy, neither a polarisation value. Near the avoided

crossing the polarisation has been interpolated, this area is shown in red.
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Figure 4.10: Polarisation of N = 16 layers with a soliton after m = 8 layers. The
solid line shows polarisation of a sharp soliton with onsite potential U = 0.6γ1, the
dashed line shows the same system with potential U = 1.8γ1, the dashed-and-dotted
line shows a smooth soliton of width ξ = 8 with potential U = 0.6γ1, and the dotted
line shows the same system again with potential U = 1.8γ1. There red section of the
dashed-and-dotted line covers the vicinity of an avoided crossing, where polarisation
for the soliton state is not clearly defined.
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Figure 4.11 shows the polarisation py of the soliton state at k = kc, U = 0.6γ1 for

an RG system ofN = 16 layers, with sharp solitons (plotted with circles) and smooth

solitons of width ξ = 8 (plotted with crosses) at different positions throughout the

system. In both cases the polarisation is shown to be much smaller when the soliton

is centered at either end of the system, and is close to unity when in the middle of

the RG system. Because the sharp soliton has no width, it has negligible interactions

with the edges of the system until very close to the edges, so the polarisation curve

is flat for m = 4 to m = 12, and falls sharply beyond those positions. The smooth

soliton has a width of ξ = 8, so when its centre is moved closer to the edges of

the system its width will cause an interaction sooner than in the sharp soliton case.

This is why the polarisation of the system with a smooth soliton rapidly decreases

for m < 6 or m > 10. When the soliton centre is located at the end of the chain

(m = 1 or 15) it acts similarly to a defect, but the smooth soliton still has influence

over a larger area, so this disruption lowers the polarisation more than in the case of

a system with a sharp soliton. When the soliton is in the middle of the system, the

smooth soliton has greater polarisation because it is closer to the continuum limit

than the system with a sharp soliton.
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Figure 4.11: Polarisation py of the soliton state at k = kc, U = 0.6γ1 for RG systems
of N = 16 layers as a function of the soliton position, where m gives the number of
layers preceeding the soliton centre. The circles show results for sharp solitons, and
the crosses show results for smooth solitons of width ξ = 8.
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4.5 Disorder

We investigate the robustness of the soliton state in the presence of two types of

disorder - random layer energies, and random interlayer coupling energies. Disorder

is applied at a given disorder strength δ by generating random numbers δn within

a uniform distribution [−δ, δ]. In the case of random layer energies, these values

are applied to the diagonal matrix elements HAn,An = HBn,Bn = δn for layer index

n = 1, 2, 3, . . . , N . Random interlayer coupling energies are applied to the matrix

elements between layer matrix blocks, i.e. HB1,A2 = HA2,B1 = γ1 + δ1, HB2,A3 =

HA3,B2 = γ1 + δ2, etc., n = 1, 2, 3 . . . , N − 1.

Figure 4.12 shows the energy of the soliton state Es at k = kc for an RG system

of N = 16 layers with a sharp soliton in the centre of the system as a function of

disorder strength δ, with 4.12a) showing random layer energies and 4.12b) showing

random interlayer coupling energies. In both graphs the lower x axis shows the

disorder strength in units of meV, and the upper x axis displays these values in

units of γ1. The onsite potential is fixed at u = 0.6γ1. Each data point is an average

over twenty different realisations of disorder, hence the increasing size of error bars

with disorder strength as the standard deviation increases while the number of

realisations remains constant. The mean value of the soliton energy Es slightly

decreases with disorder strength δ for both onsite and interlayer disorder, but the

results for interlayer disorder decrease a little more than for onsite disorder. The

standard error grows more rapidly for interlayer disorder.

Figure 4.13 shows the energy of the soliton state Es at k = kc for an RG system

of N = 16 layers with a smooth soliton of width ξ = 8 in the centre of the system

as a function of disorder strength δ, with 4.13a) showing random layer energies and

4.13b) showing random interlayer coupling energies. In both graphs the lower x axis

shows the disorder strength in units of meV, and the upper x axis displays these

values in units of γ1. The onsite potential is fixed at u = 0.6γ1. As in figure 4.12

the mean value of the soliton energy Es slightly decreases with disorder strength δ

for both onsite and interlayer disorder, and again the results for interlayer disorder

decrease more than for onsite disorder. Figure 4.13a) shows that both the decrease

in energy and the size of the error bars are far smaller for onsite disorder with a
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Figure 4.12: disorder averaged soliton energy at k = kc for a sharp soliton in the
centre. N = 16, m = n = 8. a) shows disorder applied to the onsite potentials, b)
shows disorder applied to the interlayer hopping energies. Disorder given in units of
γ1 instead of meV. Onsite energy is U = 0.6γ1

smooth soliton than they were with a sharp soliton (in figure 4.12a)).
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Figure 4.13: disorder averaged soliton energy at k = kc for a smooth soliton in
the centre. N = 16, m = n = 8, ξ = 8. a) shows disorder applied to the onsite
potentials, b) shows disorder applied to the interlayer hopping energies. Disorder
given in units of γ1 instead of meV. Onsite energy is U = 0.6γ1

Figure 4.14 shows the disorder-averaged density of states for both onsite and

interlayer disorder applied to systems with both smooth and sharp solitons. We

consider an RG system of N = 16 layers, with an onsite potential of U = 0.6γ1. The

soliton is located in the middle of the system, m = n = 8, and in the case of smooth

solitons has a width of ξ = 8. The first two columns show the dispersion relation

and density of states of the non-disordered systems. The third and fourth columns
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show the disorder-averaged density of states for disorder strengths δ = 0.1γ1 and

δ = 0.2γ1, respectively. These are calculated by averaging the density of states of

twenty different realisations of disorder. These figures show that interlayer onsite

energy disorder (the first and third row) acts to remove sharp features of the density

of states, while the presence of interlayer disorder (the second and fourth row) does

not remove the peaks in the density of states. However, the peaks in these density

of states plots are caused by the flat bands, which are not directly related to the

soliton state itself. The flat bands are a result of the edges of the system. The

soliton state is the one that crosses from the conduction band to the valence bands,

leading to a non-zero density of states, and this feature is still seen in the presence

of disorder.

We also considered correlated disorder, where each disorder parameter is smoothed

by a gaussian curve of width η,

δϵA,j
=

∑
mwm exp (−|j −m|2/η2)√∑

m exp (−|j −m|2/η2)
. (4.5.1)

Here η is the correlation length in units of the interlayer spacing. The summa-

tion is over all disorder parameters (m = 1, 2, . . . , N for onsite disorder, or m =

1, 2, . . . , N − 1 for interlayer disorder). The wm are the list of “sharp” disorder val-

ues, generated from the uniform distribution −W ≤ wm ≤ W for disorder strength

W . Charge neutrality is maintained within each layer so that δϵB,j
= −δϵA,j

for all

layers j. The square root factor is used to normalise equation (4.5.1) so that smooth

disorder interpolates between sharp disorder (as discussed previously) for η ≪ 1

and sample-to-sample parameter variations for η ≫ N . In the case of the latter,

for a given realisation of disorder, the tight-binding parameters are changed by the

same amount over the whole system. By choosing Gaussian widths of 1 < η < N ,

“smooth” disorder can be considered. In this case, equation (4.5.1) takes the original

list of “sharp” disorder parameters, and modifies the values so the change in disorder

from site to site is not as dramatic. Figure 4.15 shows the energy of the soliton state

Es at k = kc as a function of disorder strength δ for all four types of disorder - sharp

and smooth, onsite and interlayer. Figures 4.15a) and b) show results for and RG

system of N = 16 layers with a sharp soliton in the centre, m = n = 8, with onsite

energy value U = 0.6γ1. The “sharp onsite” results in 4.15a) are shown in the cor-
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Figure 4.14: Disorder-averaged density of states for a soliton in the centre. N = 16,
m = n = 8. The first two rows show results for a system with a sharp soliton, with
onsite and interlayer disorder, respectively. The third and fourth rows show results
for a system with a smooth solion of width ξ = 8, with onsite and interlayer disorder,
respectively. The first column shows the dispersion relation with no disorder. The
second column shows the density of states with no disorder. The third column and
fourth column show the disorder-averaged density of states over twenty realisations
of disorder, with disorder strengths δ = 0.1γ1 and δ = 0.2γ1, respectively.

rect position, while the other results are shifted by multiples of 0.05γ1. Each point

is averaged over twenty realisations of disorder. 4.15b) shows the standard error σs

for each set of realisations used in a). Figures 4.15c) and d) show the same results

but with a system containing a smooth soliton of width ξ = 8. The movement of the

points in 4.15a) and c) show that interlayer disorder is more disruptive that onsite

disorder, for both smooth and sharp solitons and disorder. Figure 4.15b) and d)

show that the standard error increases more rapidly for smooth disorder than sharp,

whether onsite or interlayer disorder is applied to either smooth or sharp soliton

systems.
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Figure 4.15: Energy of the soliton state Es at k = kc (figures a,c) and the standard
errors σ (figures b, d) as a function of disorder strength δ for an RG system ofN = 16
layers with a soliton in the centre. The onsite potential is fixed to U = 0.6γ1. Figures
a) and b) show results with a sharp soliton, while figures c) and d) show results for
a smooth soliton of width ξ = 8, in both cases the solitons are in the centre of the
system. The top row shows results for a sharp soliton and the bottom row shows
results for a smooth soliton. Each data point is calculated using twenty realisations
of disorder. Black markers show onsite disorder, red for interlayer disorder, green for
smooth (gaussian) onsite disorder of width η = 0.1N , and blue for smooth interlayer
disorder of width η = 0.1N . In figures a) and c) the results are offset by multiples
of 0.05γ1.
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4.6 Conclusion

In this chapter we have used the minimal tight-binding model to investigate the elec-

tronic properties of rhombohedrally-stacked systems, where each unit cell contains

a pair of atoms with opposing onsite potential sign. By reversing the texture of the

onsite potentials, we were able to describe an electronic state that can be isolated

within the bulk band gap - this has been identified as the “soliton state”.

For onsite magnitudes U ≤ γ1/2, the soliton state hybridises with the surface

states, with the three states triply degenerate at k = 0, U = γ1/2. For larger values

of U , the soliton state is fully isolated. We also considered “smooth” solitons, where

the texture of onsite potentials was changed over a length scale larger than the

interlayer distance. In systems containing these solitons, the soliton state begins in

the conduction band for k = 0, and crosses the band gap as k increases.

The soliton state is generally dispersive, leading to a smooth nonzero density

of states whereas surface states give flat bands producing peaks in the density of

states. The surface states, and corresponding peaks in the density of states, are

quite robust in the presence of interlayer disorder, which we attribute to the self-

averaging effect discussed in Chapter 3. However, the energy of the soliton state

is generally more robust to onsite energy disorder, particularly for smooth solitons,

which we attribute to the chirality of the CDW model.

These results do not necessarily apply to graphene systems, but instead those

systems that contain two different atoms per unit cell, and have rhombohedral stack-

ing. An example material is hexagonal boron-nitride, which can be fabricated with

rhombohedral stacking [27, 29–31, 86].
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Chapter 5

Conclusion

This thesis models the electronic properties of rhombohedrally-stacked layers of thin

graphite films, focusing on the influence of stacking faults. Chapters 3 and 4 describe

the original research work in the thesis. Although rhombohedrally-stacked graphite

(RG) is related, through dimensional reduction, to the SSH model, we show in

Chapter 3 that it is not possible to realise stacking faults in RG that are analogous to

single solitons in the SSH model because a stacking fault cannot change the order of

intra- and interlayer hopping either side of the fault. Instead, the fault is effectively

a coupled soliton-antisoliton pair. Such faults support two localised states which,

along with surface states, are generally dispersionless leading to sharp peaks in the

density of states (DOS) at low energy. In the minimal model, the Hamiltonians

for RG in the presence of stacking faults possess sublattice chiral symmetry and the

sharp peaks in the DOS are shown to be robust in the presence of interlayer disorder

which preserves chiral symmetry. We incorporate alternating onsite energies which

break chiral symmetry and create a band gap at low energy. Nevertheless, the states

localised on stacking faults and surfaces are still dispersionless and the sharp peaks

remain either side of the gap in the DOS. Surprisingly, we find that such peaks are

still robust in the presence of chiral-preserving disorder and we attribute this to a

self-averaging effect.

In Chapter 4 we consider whether it is possible for a stacking fault to support a

single isolated, localised band. To achieve this, we model the properties of RG with

alternating onsite energies and we consider a stacking fault in the texture of onsite

energies. This is analogous to the Rice-Mele model and, at certain wave vectors,
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to the CDW model which is a one-dimensional Z2 topological insulator. We find a

single soliton state which is generally dispersive, leading to a smooth nonzero density

of states whereas surface states give flat bands producing peaks in the density of

states. Depending on parameter values, the soliton and surface states can strongly

hybridise. The surface states, and corresponding peaks in the density of states, are

quite robust in the presence of interlayer disorder, which we attribute to the self-

averaging effect of Chapter 3. However, the energy of the soliton state is generally

more robust to onsite energy disorder, particularly for smooth solitons, which we

attribute to the chirality of the CDW model.
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Appendix A

Periodic Boundary Conditions

To investigate a very large system without the interference of edge effects we use

Born-von Karman periodic boundary conditions in both primitive lattice directions

Φ (r +Nlal) = Φ (r) where l = 1, 2 in 2D, Nl are integers, N = N1N2 is the number

of primitive unit cells, N ≫ 1. Write q = s1b1 + s2b2 where s1, s2 are to be

determined. This means that q · al = 2πsl. Combine Bloch’s theorem (2.1.5) with

the restrictions given by the periodic boundary conditions to find the permitted

values of wave vectors q:

Φ (r +Nlal) = eiq·reiq·Nlalu (r +Nlal) ,

= eiq·Nlaleiq·ru (r) ,

= eiq·NlalΦ (r) .

(A.0.1)

We use the boundary condition Φ (r +Nlal) = Φ (r) to get Φ (r) = eiq·NlalΦ (r),

then make use of q · al = 2πsl

eiq·Nlal = ei2πslNl = 1 ≡ e2πiml ,

⇒ sl =
ml

Nl

,

⇒ q =
m1

N1

b1 +
m2

N2

b2,

(A.0.2)

where m1,m2 ∈ Z.
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Appendix B

Two Different Types of

Tight-Binding Model

In this appendix we will discuss the two tight-binding Hamiltonians: the basis I

or ’periodic’ Hamiltonian, and the basis II or ’canonical’ Hamiltonian. We will also

show how the models are related, and why one would be chosen instead of the other.

To form the canonical Hamiltonian, the Fourier transforms must be dependent

on the atomic positions of the atoms within the unit cell. In the two band models

we are considering the atomic positions are vectors RA and RB, and the Fourier

transforms are

|k, A⟩ = 1√
N

∑
RA

|RA, A⟩ eik·RA ,

|RA, A⟩ =
1√
N

∑
k

|k, A⟩ e−ik·RA ,

|k, B⟩ = 1√
N

∑
RB

|RB, B⟩ eik·RB ,

|RB, B⟩ = 1√
N

∑
k

|k, B⟩ e−ik·RB .

(B.0.1)

These are the Fourier transforms used in section 2.2. In the case of the SSH model,

with Rm,A = ma and Rm,B = (m+ 1/2) a, the Bloch Hamiltonian will be

Hc (k) =

 0 veika/2 + we−ika/2

ve−ika/2 + weika/2 0

 . (B.0.2)
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The problem with this type of Hamiltonian is that it is not periodic about the first

Brillouin zone; HAB (k + 2π/a) ̸= HAB (k). The trajectory of the vector d will not

form a complete loop as k spans the first Brillouin zone, so a winding number cannot

be defined for this Hamiltonian.

a)
a

A B

v w v w v w v w

A B

b)
a

A B

v w v w v w v w

A B

Figure B.1: Two possible choices of unit cell for a section of an infinite SSH chain.
Atoms on sublattices A and B are shown with filled and empty circles, respectively.
In a) the intracell hopping parameter is v and the intercell hopping paramter is
w,whereas in b) the intracell hopping parameter becomes w and the intercell hopping
parameter is v. The lattice vector has length a and individual atoms are spaced a/2
apart.

The periodic Hamiltonian, as its name suggests, solves this problem. To form

this Hamiltonian the Fourier transforms must not depend on the atomic positions

RA and RB, and instead be dependent only on the lattice vector R. The new

Fourier transforms are

|̃k, A⟩ = 1√
N

∑
R

|R+ τA, A⟩ eik·R,

|R+ τA, A⟩ =
1√
N

∑
k

|̃k, A⟩e−ik·R,

|̃k, B⟩ = 1√
N

∑
R

|R+ τB, B⟩ eik·R,

|R+ τB, B⟩ = 1√
N

∑
k

|̃k, B⟩e−ik·R.

(B.0.3)

Using these Fourier transforms for the SSH model, with R = RA, τA = 0, and

τB = a/2 (as shown in figure B.1a)), the Bloch Hamiltonian will be

Ha
p (k) =

 0 v + we−ika

v + weika 0

 , (B.0.4)
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which is now periodic about the first Brillouin zone. This Hamiltonian depends on

the choice of unit cell, it was formed using R = RA, but swapping to R = RB,

τB = 0, τA = a/2 (figure B.1b))would instead give a different periodic Hamiltonian:

Hb
p (k) =

 0 veika + w

ve−ika + w 0

 . (B.0.5)

Importantly, the choice of unit cell swaps the role of hopping parameters v and w,

which are critical in the definition of the winding number. In the first case (unit

cell a)) the trajectory of the vector d will be a circle of radius w, centred on (v, 0),

whereas in the second (unit cell b)) the trajectory is instead a circle of radius v

centred on (w, 0).

When using the canonical representation, we could also choose that the A and

B atoms are not separated in space at all. Setting Rm,A = Rm,B = ma and using

the first set of Fourier transforms gives the Hamiltonian

Ha
c (k) =

 0 v + we−ika

v + weika 0

 , (B.0.6)

which is exactly the same as the periodic Hamiltonian B.0.4 formed using unit cell

a). If we instead set RA = R and RB = RA+a, the canonical Hamiltonian becomes

Hb
c (k) =

 0 veika + w

ve−ika + w 0

 , (B.0.7)

which is the same as the periodic Hamiltonian B.0.5 formed using unit cell b). Note

that the canonical and periodic Hamiltonians are related by a unitary transform

U (k, s)

U (k, s) =

eiks/2 0

0 eiks/2

 , (B.0.8)

Hα
c (k) = U †Hα

p (k)U ; Hα
p (k) = UHα

c (k)U †, α = a, b, (B.0.9)

where s is the separation between the A and B atomcs within the same unit cell.

For a discussion of more general two-band Hamiltonians see the catalogue [69].
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Appendix C

Expansion Near the Dirac Point

The function f (q) is

f (q) = eiqya/
√
3 + 2e−iqya/2

√
3 cos (qxa/2). (C.0.1)

Investigate the behaviour near the K points using the substitution q = K + k and

the K point K = (ξ4π/3a, 0)

f (K + k) = eikya/
√
3 + 2e−ikya/2

√
3 cos (2π/3 + kxa/2). (C.0.2)

Taylor expand the exponentials and use the cosine double angle to get

f (K + k) =

(
1 +

ikya√
3

)
+2

(
1− ikya

2
√
3

)
[cos (2π/3) cos (kxa/2)− sin (2π/3) sin (kxa/2)]

(C.0.3)

f (K + k) =

(
1 +

ikya√
3

)
+ 2

(
1− ikya

2
√
3

)[
−1

2
cos (kxa/2)−

√
3

2
sin (kxa/2)

]
(C.0.4)

expand for small angles

f (K + k) =

(
1 +

ikya√
3

)
+ 2

(
1− ikya

2
√
3

)[
−1

2
−

√
3

2

(
kxa

2

)]
(C.0.5)

f (K + k) =

(
1 +

ikya√
3

)
−
(
1− ikya

2
√
3

)
−

√
3kxa

2

(
1− ikya

2
√
3

)
(C.0.6)
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f (K + k) =
3ikya

2
√
3

−
√
3kxa

2
(C.0.7)

where the term in kxky was deemed negligibly small. This leaves

f (K + k) =

√
3ikya

2
−

√
3kxa

2

= −
√
3a

2
(kx − iky) .

(C.0.8)

115



Appendix D

Low Energy Model Example:

Bilayer Graphene

We will apply the steps described in the previous section to bilayer graphene. We

start with the bilayer graphene Hamiltonian in the minimal model in the basis of

the atomic sites; A1, B1, A2, B2,

H =


ϵA1 vπ† 0 0

vπ ϵB1 γ1 0

0 γ1 ϵA2 vπ†

0 0 vπ ϵB2

 . (D.0.1)

We manually identify the high- and low-energy states. For a bilayer system the low-

energy states are the edges (A1 and B2) and the high-energy states are the dimer

sites in between (B1 and A2). This means the new basis will be A1, B2, B1, A2.

H =


ϵA1 0 vπ† 0

0 ϵB2 0 vπ

vπ 0 ϵB1 γ1

0 vπ† γ1 ϵA2

 . (D.0.2)

To perform the low-energy expansion, we assume that the intralayer hopping γ1 is

much larger than the other energy terms, and introduce a temporary term z that is

attached to each small energy term, and will be used to monitor which terms become
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vanishingly small as the method progresses. We set xz = vπ/γ1 and µiz = ϵi/γ1,

and divide the Hamiltonian by γ1.

H =


µA1z 0 x†z 0

0 µB2z 0 xz

xz 0 µB1z 1

0 x†z 1 µA2z

 . (D.0.3)

Then the matrix blocks outlined in (2.4.18) are

hθ =

µA1z 0

0 µB2z

 , hχ =

µB1z 1

1 µA2z

 ,

u =

x†z 0

0 xz

 , u† =

xz 0

0 x†z

 .

(D.0.4)

The effective Hamiltonian is found using equations (2.4.26) and (2.4.27). First, find

S−1/2 using the binomial expansion

S−1/2 ≈ 1− 1

2
uh−2

χ u† + . . . , (D.0.5)

with the number of terms used corresponding to the number of layers in the system

(two terms for bilayer). We will also invert hχ using the binomial theorem.

hχ = σx +
1

2
(σ0 + σz)µA2z +

1

2
(σ0 − σz)µB1z

h−1
χ = σx [σ0 + δ]−1

δ =
1

2
σx (σ0 + σz)µA2z +

1

2
σx (σ0 − σz)µB1z

h−1
χ ≈ σx

[
σ0 − δ + δ2 −O

(
z3
)]

(D.0.6)

Keeping only the linear term in z gives

h−1
χ ≈

−µB1z 1

1 −µA2z

 . (D.0.7)
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Find the term uh−2
χ u† needed for the S matrix.

uh−2
χ u† ≈

|x|2z2 0

0 |x|2z2

 , (D.0.8)

where we have neglected terms with powers of z greater than 2. Similarly, uh−1
χ u†

is needed for Heff

uh−1
χ u† ≈

 0
(
x†
)2
z2

x2z2 0

 . (D.0.9)

The term
(
hθ − uh−1

χ u†
)
will be

hθ − uh−1
χ u† =

 µA1z −
(
x†
)2
z2

−x2z2 µB2z

 . (D.0.10)

The effective Hamiltonian Heff is then

Heff =

1− |x|2z2/2 0

0 1− |x|2z2/2

 µA1z −
(
x†
)2
z2

−x2z2 µB2z

1− |x|2z2/2 0

0 1− |x|2z2/2


=

 µA1z −
(
x†
)2
z2

−x2z2 µB2z


(D.0.11)

We reverse the substitution and mutliply the effective Hamiltonian by γ1 to get the

final result

Heff =

 ϵA1 −v2
(
π†)2 /γ1

−v2π2/γ1 ϵB2

 . (D.0.12)

This effective Hamiltonian describes massive chiral electrons. It is similar to the

monolayer graphene Hamiltonian (2.4.13), but with the off-diagonal monomentum

terms being quadratic instead of linear.
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Appendix E

Z2 Topological Index

The basic charge-density-wave model used in section 2.7 does not contain enough

information to properly demonstrate the phases described by the Z2 topological

index. In this appendix we will include next-nearest-neighbour hopping t′ so that the

vector d will better demonstrate the topological index. Start with the Hamiltonian

in the basis of two neighbouring unit cells

H =


∆ t t′ 0

t −∆ t −t′

t′ t ∆ t

0 −t′ t −∆

 , (E.0.1)

where ∆ is the onsite potential, t is the hopping parameter, and t′ is the new

next-nearest-neighbour hopping parameter. In order to preserve chiral symmetry

the next-nearest-neighbour hopping is positive between sites on sublattice A and

negative between sites on sublattice B. The Hamiltonian can then be written in the

form H = σ · d (k), where the components of d (k) are

d0 (k) = 0,

dx (k) = 2t cos (ka/2),

dy (k) = 0,

dz (k) = ∆ + 2t′ cos (ka),

(E.0.2)
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where a is the lattice constant. Using the components of d (k) we can plot the

eigenvalues and its trajectory in the dxdz plane, which are shown in figure E.1. The

eigenvalues are given by

E± (k) = ±
√
d2x + d2z = ±

√
(2t cos (ka/2))2 + (∆ + 2t′ cos (ka))2. (E.0.3)

E

a) b)

ka/π

dz

dx
Figure E.1: a) Dispersion relation and b) trajectory of the CDW model with next-
nearest-neighbour hopping. Arrows show the direction of the trajectory as k spans
the first Brillouin zone 0 ≤ k < 2π/a. The parameters chosen are t = 1, t′ = 0.1,
∆ = 0.1.

Figure E.1 shows that the trajectory of d (k) crosses the negative dx axis once

during its path, so the topological index for these parameters will be µ2 = 1.
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[67] J. K. Asbóth, L. Oroszlány, and A. Pályi. “A Short Course on Topological In-

sulators: Band-structure topology and edge states in one and two dimensions”.

In: (2015). arXiv: 1509.02295.

[68] J Cayssol and J. N. Fuchs. “Topological and geometrical aspects of band the-

ory”. In: Journal of Physics: Materials 4.3 (Apr. 2021), p. 034007.

[69] E. McCann. “Catalog of noninteracting tight-binding models with two energy

bands in one dimension”. In: Physical Review B 107.24 (June 2023).

[70] R. E. Peierls. Quantum Theory of Solids. Oxford University Press, 1955.

[71] S. Ryu et al. “Topological insulators and superconductors: tenfold way and di-

mensional hierarchy”. In: New Journal of Physics 12.6 (June 2010), p. 065010.

[72] R. E. J. Allen et al. “Nonsymmorphic chiral symmetry and solitons in the

Rice-Mele model”. In: Phys. Rev. B 106 (16 Oct. 2022), p. 165409.

[73] R. Jackiw and C. Rebbi. “Solitons with fermion number ½”. In: Phys. Rev. D

13 (12 June 1976), pp. 3398–3409.

[74] L. Li, Z. Xu, and S. Chen. “Topological phases of generalized Su-Schrieffer-

Heeger models”. In: Phys. Rev. B 89 (8 Feb. 2014), p. 085111.

[75] I. Mondragon-Shem et al. “Topological Criticality in the Chiral-Symmetric

AIII Class at Strong Disorder”. In: Phys. Rev. Lett. 113 (4 July 2014), p. 046802.
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[85] A. Garćıa-Ruiz et al. “Spectroscopic Signatures of Electronic Excitations in

Raman Scattering in Thin Films of Rhombohedral Graphite”. In: Nano Letters

19.9 (2019). PMID: 31361497, pp. 6152–6156. eprint: https://doi.org/10.

1021/acs.nanolett.9b02196.

[86] Y Le Godec et al. “Compression and thermal expansion of rhombohedral boron

nitride at high pressures and temperatures”. In: Journal of Physics and Chem-

istry of Solids 61.12 (2000), pp. 1935–1938.

128

https://doi.org/10.1021/acs.nanolett.9b02196
https://doi.org/10.1021/acs.nanolett.9b02196

	Introduction
	Theoretical Background
	General Tight-Binding Model in Two Dimensions
	Tight-Binding Hamiltonian
	What is Graphene?
	Graphene Tight-Binding Model
	Bilayer Graphene
	Expansion Near the Dirac Points
	N-layer Graphite
	Low-Energy Model

	Symmetries
	Su-Schreiffer-Heeger Model
	Charge-Density-Wave Model
	Rice-Mele Model
	Numerical Methods

	Solitons Due to Stacking Faults
	Pristine Rhombohedrally-Stacked Graphite
	Graphite with a Bernal Fault
	Graphite with Twin-Boundary Fault
	Disorder
	Finite Onsite Potential U
	Disorder with Finite U
	Polarisation
	Conclusion

	Solitons Due to Onsite Potentials
	Single Sharp Soliton
	Soliton-Antisoliton Pair
	Smooth Solitons
	Polarisation
	Disorder
	Conclusion

	Conclusion
	Periodic Boundary Conditions
	Two Different Types of Tight-Binding Model
	Expansion Near the Dirac Point
	Low Energy Model Example: Bilayer Graphene
	Z2 Topological Index
	Bibliography



