ADCL : Toward an Adaptive Network Intrusion Detection System Using Collaborative Learning in IoT Networks

Ma, Zuchao and Liu, Liang and Meng, Weizhi and Luo, Xiapu and Wang, Lisong and Li, Wenjuan (2023) ADCL : Toward an Adaptive Network Intrusion Detection System Using Collaborative Learning in IoT Networks. IEEE Internet of Things Journal, 10 (14). pp. 12521-12536. ISSN 2327-4662

Full text not available from this repository.

Abstract

With the widespread of cyber attacks, network intrusion detection system (NIDS) is becoming an important and essential tool to protect Internet of Things (IoT) environments. However, it is well known that the NIDS performance depends heavily on the effectiveness of the detection model, which can be influenced significantly by the learning mechanism and the available training data. Many existing studies try to mitigate the above challenges, but few of them consider the adaptability and the cost of deploying an NIDS, the integrity of the learning process, the capacity of model based on concrete traffic samples at the same time. To fill this gap and improve the detection performance, we propose a collaborative learning-based detection framework called ADCL, which can mitigate the limitations on the knowledge of a single model by leveraging multiple models trained in similar environments and detecting intrusions in a collaborative manner. Our evaluation results indicate that ADCL can provide better performance compared with a single model on detecting various attacks in IoT networks. Specifically, ADCL improves F-score by up to 80% for adaptability, 42% in mitigating the reliance on learning integrity, 85% for model capacity. Furthermore, the detection results of ADCL guide those single models to update and increase the F-score by 15%.

Item Type:
Journal Article
Journal or Publication Title:
IEEE Internet of Things Journal
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1700/1711
Subjects:
?? signal processinginformation systemsinformation systems and managementcomputer science applicationshardware and architecturecomputer networks and communications ??
ID Code:
223516
Deposited By:
Deposited On:
06 Sep 2024 15:40
Refereed?:
Yes
Published?:
Published
Last Modified:
06 Sep 2024 15:40