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Abstract — Given the relevance of aviation as transportation 
network and its remarkable economic impact, the air traffic 
demand is bound to increase. High traffic density in a given 
airspace region can cause safety issues and difficulties in air traffic 
control task, so it is necessary to efficiently organise the airspace 
structure to avoid under and over-loaded areas of the airspace. To 
this end, we model the airspace by means of airspace blocks (3D 
portions of the airspace) and sectors (3D connected unions of 
airspace blocks). A capacity is associated to each sector, limiting 
the maximum number of flights that can enter said sector in a time 
interval. An airspace configuration is the partition of airspace into 
sectors in such a way as to accommodate traffic as efficiently as 
possible. Given a pre-determined set of configurations with related 
capacities and the dynamic air traffic demand in a time horizon, 
we aim to determine a sequence of configurations (configuration 
plan) that optimally meets the demand. The sequence must also 
satisfy operational restrictions that smooth the configuration 
dynamics, as to avoid, e.g., too frequent switching between 
configurations. The problem is known as Dynamic Airspace 
Configuration and is mostly faced by means of heuristic 
approaches. We propose an Integer Linear Programming model 
that provides a configuration plan for a given timeframe that 
minimizes the traffic overload with respect to the capacity, and we 
test it on five days of historical data over the Madrid ACC. We 
compare the results of different time discretizations and the 
impact of traffic increment on the traffic overload of optimal 
configuration sequences. 

Keywords - Dynamic Airspace Configuration; Optimization; 
Integer Linear Programming  

I. INTRODUCTION 
Aviation is one of the most global industries, because of its 
power to connect people cultures and businesses across 
continents. In fact, it provides the only rapid worldwide 
transportation network, making it essential for global business; 

moreover, it generates economic growth, creates jobs and is 
essential for international trade and tourism. According to 
recent estimates by the Air Transport Action Group (ATAG), 
the total economic impact of the European aviation industry has 
reached USD 823 billion in 2016 [1]. 

One of the main issues encountered in Air Traffic Flow 
Management (ATFM) is the delay of flights, which is mainly 
caused by the limited capacity of airports and airspace. The term 
capacity means the ability to provide Air Navigation Services 
(ANS) with a certain volume of air traffic, while maintaining a 
high level of safety during operations. In order to accommodate 
the air traffic demand and reduce congestion, an efficient 
management of the limited airspace capacity is crucial. For the 
purpose of our study, we consider the airspace model based on 
the concepts of airspace block and sector: an airspace block is a 
3D portion of the airspace, while a sector is the union of one or 
more airspace blocks that form a 3D connected portion of the 
airspace suitable for control activity. A configuration is a 
partition of the airspace into disjoint sectors; based on the same 
set of sectors, many different configurations can be achieved. 

The problem of recombining airspace blocks into sectors 
that partition the airspace is known as the airspace configuration 
problem, and recombination can be either static (meaning that it 
is performed only once) or dynamic, i.e. it can be changed 
multiple times during a given timeframe, resulting in a sequence 
of configurations forming a configuration plan. Dynamic 
Airspace Configuration (DAC) can result in a more efficient use 
of the airspace and of its limited resources, as well as in a better 
distributed traffic demand and controllers’ workload. 

In this paper, we present an Integer Programming model for 
the Dynamic Airspace Configuration problem, also considering 
the necessity of avoiding too frequent configuration changes, 
which is highly unpractical from an operational point of view.  
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II. LITERATURE REVIEW 
An airspace configuration is a partition of the airspace into 
sectors. The problem of designing sectors, also referred to as 
sectorization problem, is essentially a set partitioning problem 
under some additional constraints regarding the sectors shape, 
e.g. compactness, connectedness, and convexity. Even in 
absence of such constraints, the set partitioning problem poses 
several computational challenges. Literature adopts two main 
representations of the sectorization problem, leading, 
respectively, to the graph-based approach and to the cell-based 
approach. The graph-based approach models the problem by 
means of a graph whose vertices represent the intersections of 
the existing trajectories (or flows); the edges of the graph 
represent segments of the existing trajectories. In order to 
accurately define the borders of the sectors, Voronoi diagrams 
are employed, as in [15]. In [4], among others, the graph-based 
approach is used to study the static airspace sectorization 
problem. In the cell-based approach, the airspace is initially 
partitioned into basic volumes, or airspace blocks, that are 
smaller than the targeted ones; these blocks are to be combined 
into disjoint sectors, thus creating a configuration. In [8], the 
authors start from a regular mesh of cells and propose a free-
form static airspace sectorization. To solve the problem, 
independently of the chosen representation, different 
optimization methods have been used. The most common 
algorithmic approaches involve either metaheuristics or 
approximate dynamic programming, as in [8]. As far as 
metaheuristics are concerned, genetic algorithms (employed, 
for instance, in [5] and [14]) and deterministic or stochastic 
local search (see, e.g., [2] and [8]) have proved themselves to 
be very popular. These approaches are often complemented 
with machine learning techniques to assess the workload of a 
given configuration, on one side, and to cluster air traffic in 
predominant air traffic flows on the other side (see, e.g. [6]). In 
particular, to assess the workload, or related complexity 
metrics, several machine learning approaches have been 
proposed, such as random forests [11]. 

Once the sectorization provides a set of available sectors, the 
problem of choosing which of them to open as to partition the 
airspace, i.e., which configuration to use, is known as the 
configuration problem. In [10], airspace elements are further 
classified in Airspace Blocks and Shareable Airspace Volumes, 
and an Integer Programming model to assign each building 
block to a configured sector is proposed, within a State-Task 
Network (STN) framework. The solution of the configuration 
problem has been tackled with several methods as well, 
including genetic algorithms, as in [12], machine learning 
techniques such as Neural Network [7], and enumeration 
algorithms. In [13], for instance, a branch-and-price method is 
applied to reduce the number of controllers, while a coin-or-
branch method is used in [9].  

III. MATHEMATICAL MODEL 
Our aim is to compute a sequence of airspace configurations 
over time that allows meeting the expected air traffic demand 
as much as possible, thus reducing the need for traffic 
regulations (delays, deviations etc.). We work under the 
assumption that the family of configurations from which to 
choose the ones to use is given. Therefore, our approach is 
independent from how configurations are obtained (graph-
based or cell-based). We also assume that the air traffic demand 
for each sector over time is known. The problem is to determine 
the configuration to be implemented (active configuration) for 
each time period in the time horizon we consider. The time 
horizon is discretized into time periods and a configuration 
change is only allowed at discrete times corresponding to a time 
period (decision discretization). 

We can formulate the problem as the integer programming 
model in Fig. 1, using the following notation: 

• T is the set of decision time periods in which the time 
horizon is discretized, 

• C is the family of airspace configurations, 

• Et
c is a parameter that measures the overload (or excess) 

of traffic demand in configuration c at decision time 
period t. Section IV further details the computation of 
this parameter, 

• nc denotes the number of sectors in configuration c, 

• ε is a number small enough to ensure that the second 
term of the objective function is always smaller than 1. 

The decision variables are defined as follows: 

• xt
c is a binary variable taking value 1 if configuration c 

is active at time period t, and 0 otherwise, 

• st
c is a binary variable taking value 1 if there is a 

transition to configuration c at time period t (i.e., c is 
active at time period t and not active at time period t–1), 
and 0 otherwise. 

The objective function consists of two terms: the first one 
calls for the minimization of the total traffic overload, while the 
second one is a penalization term using a small enough weight ε 
that, for the same total traffic overload, favours the choice of the 
configuration made of the smallest number of sectors, towards 
underload minimization. Constraint (1) imposes that only one 
configuration is active at each time period; here Ct denotes the 
set of configurations available at time period t. This represents 
the fact that, depending, e.g., on the controllers’ working shifts 
or on other operational requirements, a given configuration may 
be operated only at specific time intervals. Moreover, when the 
active configuration changes, i.e., there is a transition from one 
configuration to another, only certain transitions are allowed.  
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For example, transitions between very different airspace 
configuration may be not operationally supported. This aspect is 
modelled by (2), in which Cc

t+1 is the set of configurations that 
can be reached at time period t+1 if at time period t the active 
configuration is c. To overcome the challenges of frequent 
configuration changes that can happen even in response to 
demand fluctuations of limited entity, (3) imposes that at most 
one transition is allowed within any consecutive tp time periods. 
This is equivalent to imposing that an active configuration has 
to remain active for at least tp time periods, that will be referred 
to as permanence interval. Finally, constraint (4) links variables 
st

c with xt
c. 

IV. NUMERICAL STUDY 
We tested our model on five days of study, in summer 2019, 
considering real data on available airspace configurations and 
traffic demand. All the tests were performed using a 2.20 GHz 
CPU with 8.00 GB of RAM and Cplex 22.1.1 as solver. We 
consider a set of 166 configurations, built using 99 sectors of 
Madrid ACC. In particular, the configurations we consider 
cover a central-southern region of Madrid ACC and were 
obtained with the DAC Framework proposed in [10]. The 
number of sectors in such configurations varies from 2 to 10. In 
our tests, we assume that a transition between any pair of 
configurations is always allowed. For each sector s and each 
time of the day m, the traffic demand is defined by the number 
of entries in s in the one-hour interval starting from m. 
Similarly, the hourly capacity is defined by the maximum 
number of flights that can enter the sector in one hour, which is 
constant during the day. The overload (or excess) of a sector at 
any time of the day is the positive part of the difference between 
the traffic demand and the hourly capacity. The overload of a 
configuration c at time m, denoted by em

c, is obtained by 
summing the overloads associated to all its sectors. In the 

following, time of the day is expressed in number of minutes 
after midnight and ranges from 0 included to 1440 excluded. 

A.  Time discretization 
For data collection, we consider two different time 
discretizations (data discretization, denoted by δ). We divide the 
day either into five-minute (δ=5) or twenty-minute (δ=20) time 
intervals starting from time 0, i.e., overload data em

c are available 
for m∈{0, 5, 10 …} or m∈{0, 20, 40 …}. 

As a configuration’s change is only allowed at discrete times 
(set T), in our tests, we also considered two different decision 
discretization (denoted as d), i.e., five-minute intervals and 
twenty-minute intervals. With d=5, we have 288 decision stages 
(time periods). Therefore, in a generic hour h, we can change 
configuration at h:00, h:05, h:10, etc. With d=20, we have 72 
decision stages and we are allowed to change configuration at 
h:00, h:20, and h:40. To avoid too frequent configurations 
changes, for d=5 we imposed a twenty-minute interval of 
permanence of the configuration, i.e., tp=4.  

We recall that, for the model of Fig. 1, the time horizon is 
discretized using the decision discretization interval, i.e., T = 
{0,d,2d, … ,(D-1)d}, where D is the number of decision time 
periods. Denoting with Δ=d/δ the number of data time periods 
included in one decision time period, we can write the overload 
parameter Et

c as: 

𝐸𝐸𝑡𝑡𝑐𝑐 = �𝑒𝑒𝑡𝑡+𝑖𝑖𝑖𝑖𝑐𝑐 , ∀ 𝑡𝑡 ∈ 𝑇𝑇
Δ−1

𝑖𝑖=0

.                          (5) 

The formula considers the impact of a decision taken at time t 
on the next Δ data discretization time periods. In particular, for 
the case, denoted as Setting 0, of d=δ=5, hence Δ=1, D=288, we 
have: 

𝐸𝐸𝑡𝑡𝑐𝑐 = 𝑒𝑒𝑡𝑡𝑐𝑐, ∀ 𝑡𝑡 ∈ 𝑇𝑇 = {0,5, … , 1435} .                                 (6) 

For d=20, we tested two different settings: in Setting 1, we also 
consider δ=20, while in Setting 2 we consider δ=5; in both 
cases, we have D=72. For Setting 1, we have Δ=1, yielding: 

𝐸𝐸𝑡𝑡𝑐𝑐 = 𝑒𝑒𝑡𝑡𝑐𝑐 , ∀ 𝑡𝑡 ∈ 𝑇𝑇 = {0,20, … , 1420} .                               (7) 

On the other hand, in Setting 2, we have Δ=4, thus obtaining: 

𝐸𝐸𝑡𝑡𝑐𝑐 = �𝑒𝑒𝑡𝑡+5𝑖𝑖𝑐𝑐
3

𝑖𝑖=0

, ∀ 𝑡𝑡 ∈ 𝑇𝑇 = {0,20, … , 1420}.                   (8) 

Let us notice that, in (8), the overload associated to a twenty-
minute period is obtained by summing the overload associated 
to the four five-minute data periods it consists of, while, in (7), 
the overload is given simply by the value of the data period 
(sampled with δ=20) corresponding to the decision period 

min   �𝐸𝐸𝑡𝑡𝑐𝑐 𝑥𝑥𝑡𝑡𝑐𝑐
𝑡𝑡∈𝑇𝑇

+ ε �� 𝑛𝑛𝑐𝑐 𝑥𝑥𝑡𝑡𝑐𝑐
𝑐𝑐∈𝐶𝐶𝑡𝑡𝑡𝑡∈𝑇𝑇

 

𝑠𝑠. 𝑡𝑡.    � 𝑥𝑥𝑡𝑡𝑐𝑐
𝑐𝑐∈𝐶𝐶𝑡𝑡

= 1            ∀ 𝑡𝑡 ∈ 𝑇𝑇                                            (1) 

            𝑥𝑥𝑡𝑡𝑐𝑐  − � 𝑥𝑥𝑡𝑡+1𝑐𝑐′

𝑐𝑐′∈𝐶𝐶𝑐𝑐𝑡𝑡+1
≤ 0               ∀ 𝑡𝑡 ∈ 𝑇𝑇,∀ 𝑐𝑐 ∈ 𝐶𝐶𝑡𝑡    (2) 

          � � 𝑠𝑠𝜏𝜏𝑐𝑐
𝑡𝑡∈𝐶𝐶𝜏𝜏

≤ 1                        ∀ 𝑡𝑡 ∈ 𝑇𝑇

𝑡𝑡+𝑡𝑡𝑝𝑝−1

𝜏𝜏=𝑡𝑡

                     (3) 

           𝑥𝑥𝑡𝑡𝑐𝑐 − 𝑥𝑥𝑡𝑡−1𝑐𝑐 ≤ 𝑠𝑠𝑡𝑡𝑐𝑐                           ∀ 𝑡𝑡 ∈ 𝑇𝑇,∀ 𝑐𝑐 ∈ 𝐶𝐶𝑡𝑡    (4) 

           𝑥𝑥𝑡𝑡𝑐𝑐  , 𝑠𝑠𝑡𝑡𝑐𝑐  ∈  {0,1}                          ∀ 𝑡𝑡 ∈ 𝑇𝑇,∀ 𝑐𝑐 ∈ 𝐶𝐶𝑡𝑡 

Figure 1. An Integer Linear Programming model for DAC 



ICRAT 2024 Nanyang Technological University, Singapore 

 

4 

 

under consideration. This means that, in (7), we are using a 
subset of the data obtained with δ=5. Hence, a configuration 
sequence that minimizes the total overload, as computed in (7), 
does not take into account any traffic excess peaks that might 
occur in the middle of a twenty-minute interval.  

Fig. 2 highlights this phenomenon for one of the activated 
sectors of the July 20th instance. The green and red lines depict 
the traffic demand with δ=5 and δ=20 respectively, while the 
blue line represents the capacity. The shaded orange portion of 
the graphic marks the time intervals in which the sector was 
active. For the most part of these intervals, the traffic demand of 
the sector is lower than its capacity. However, in the interval 
between 4:00 a.m. and 5:00 a.m., when the traffic demand (for 
both discretizations) first exceeds the capacity, there are 
differences (which are magnified in the inset). Indeed, we 
observe a traffic peak at 4:25 a.m. for δ=5 that the coarser 
discretization does not capture until 4:40 a.m. As a result, at 4:20 
a.m., which is a decision time for d=20 (displayed with red bars 
on the inset), the sector is held active with an excess that is zero 
for δ=20, but the green line clearly shows that there are three 
five-minute intervals in which a traffic excess is registered. This 
excess would be captured by (8), i.e., using the same decision 
discretization (d=20) with a finer data discretization (δ=5). If we 
also considered a finer decision discretization, i.e., d=5 (green 
dots), we could decide to deactivate the sector at 4:25 a.m. 
(which is not a decision time for d=20), thus avoiding excess.  

B. Analysis with observed traffic demand 
Table I shows a comparison of the different discretizations we 
tested, in terms of the excess component of the objective 
function (columns “o.f.”) and running times expressed in 
seconds. Parameters et

c are computed according to the observed 
traffic demand in the considered days. We first observe that the 

model is solved, for each 24-hour time frame, in less than 8 
seconds for d=5; the running time is about 1 second for d=20, 
regardless of the adopted data discretization. 

For every discretization and every day, the model finds a 
configuration plan that manages to accommodate all flights 
without exceeding the capacity. We recall that Setting 1 is 
optimized using a coarser data discretization (δ=20) than other 
settings (δ=5). To provide comparable results, we considered the 
optimal sequence of configurations given as output in Setting 1 
and computed the excess of demand associated to that sequence 
according to the five-minute data discretization, as from (8). 
These values are reported in the column “overload” and quantify 
the impact of the phenomenon depicted in Fig. 2 on the overall 
optimization: in every instance, the finer estimate of the daily 
overload obtained by the optimal solution of Setting 1 is greater 
than the overload accounted for in the objective function (zero 
in all the cases). As an example, Fig. 3 illustrates the overload 
computed with δ=5 and associated with the optimal 
configurations sequence output by Setting 1 for July 20th. In this 

TABLE I.  COMPARISON BETWEEN DIFFERENT TIME DISCRETIZATIONS, 20 
MIN OF PERMANENCE 

Day d = 5 d = 20 
Setting 0 Setting 1 Setting 2 

o.f. 
(6) 

time 
(sec.) 

o.f. 
(7)  

overload 
(8) 

time 
(sec.) 

o.f. 
(8)  

time 
(sec.)  

20/07/2019 0.0 7.13 0.0 179.0 1.05 0.0 1.03 

21/07/2019 0.0 6.38 0.0 158.0 1.08 0.0 1.13 

22/07/2019 0.0 7.31 0.0 213.0 1.06 0.0 1.06 

25/07/2019 0.0 5.67 0.0 111.0 1.19 0.0 1.13 

04/08/2019 0.0 7.86 0.0 212.0 1.20 0.0 1.08 

 

 
Figure 2. Comparison between the traffic demand and capacity of a sector for July 20th 
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figure, the represented capacity of a configuration is not given 
by the sum of the capacities of the sectors it consists of, but, 
rather, by the sum of their net capacities: the net capacity of a 
sector is equal to the actual capacity threshold whenever there is 
a traffic excess, otherwise, the net capacity is decreased with 
respect to the actual capacity and takes the value of the traffic 
demand. Notice that plotting the net capacity allows us to 
highlight the total overload: if we simply plotted the sum of the 
actual capacities, the traffic excess in overloaded sectors would 
be artificially compensated by the surplus capacity in other 
underloaded sectors, and no excess would likely be evidenced. 

As we can see from Fig. 3, the traffic demand and the net 
capacity are equal for the most part of the day (blue line and red 
line overlapping) but in some cases the traffic demand exceeds 
the capacity (column “overload” in Table I). The orange line, on 
the other hand, shows the overload accounted for in the 
objective function of Setting 1 (column “o.f.”), which is 
constantly zero. Table I consistently reports such a difference in 
all the days we considered, together with the opportunity of 
obtaining, by Setting 2, a better configuration which is actually 
excess-free. This, alongside Fig. 2 and related observations, 
shows that using a data discretization that is finer than the 
decision discretization allows us to better accommodate any 
traffic peaks that occur in the middle of a decision interval. As 
for the plans that were actually deployed in the days of our study, 
the overload computed with nominal traffic is always greater 
than zero, but we have no information on the overload 
associated with operational data. From now on, we will focus on 
the case with decision and data discretizations of 5 minutes 
(d=δ=5) and 20-minutes permanence constraint (tp=20). 

C. Analysis with traffic increment 
Since, with the current traffic demand, the model is always able 
to provide a solution for which the daily overload is zero, we 
considered three additional scenarios with increased traffic. In 

particular, the demand is increased by 10%, 20% or 30% in 
correspondence of the most prominent traffic peak of each day. 
Both the timing and the duration of the peaks, that spans from 
two to four hours, were determined during the analysis of data 
collected without any traffic increment. For instance, the peak 
we consider for July 20th spans from noon to 2:00 p.m., as we 
can see from Fig. 3.  

1) Time distribution of the traffic overload 

Table II reports the daily traffic overload (columns “ovrl”), the 
average (“avg”) and maximum (“max”) overload over the time 
periods where the excess is greater than zero, and the number of 
time periods interested by an overload (“n”). Except for July 
25th, where no excess is registered in any scenario, the traffic 
increment results in a progressive increase of the daily traffic 
overload, which interests a number of intervals that increases as 
the traffic increment does. To emphasize the advantages of a 
finer decision discretization, we mention that the optimal 
configuration plan for d=20 and δ=5 reports a traffic excess 
which is consistently greater than the excess obtained with d=5. 
In particular, the average overload difference is 0.4 with a 10% 
increment, up to 3.2 with a 30% increment.  

In Table III, we further analyse the time distribution of the 
overload during the day, investigating whether the excess occurs 

 
Figure 3. Comparison between traffic demand and capacity for the optimal solution of Setting 1 on July 20th 

TABLE II.  TRAFFIC EXCESS: COMPARISON OF DIFFERENT TRAFFIC 
INCREMENT SCENARIOS 

Day +10% +20% +30% 

 ovrl avg (max) n ovrl avg (max) n ovrl avg (max) n 

20/07 7 2.33 (4) 3 45 5.00 (9) 9 123 7.69 (17) 16 
21/07 0 0.00 (0) 0 7 1.75 (2) 4 72 2.88 (6) 25 
22/07 2 2.00 (2) 1 17 3.40 (7) 5 43 6.14 (11) 7 
25/07 0 0.00 (0) 0 0 0.00 (7) 0 0 0.00 (0) 0 
04/08 3 1.50 (2) 2 32 3.20 (6) 10 131 6.55 (15) 20 
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in some isolated time periods or if it affects longer time 
intervals. In this light, columns “n” count the number of clusters 
of one or more consecutive time periods in which an excess has 
been detected, while columns “l avg (min-max)” indicate the 
average, minimum and maximum length of a cluster, in number 
of 5-minutes periods. Trivially, in the case of one or zero 
clusters, the minimum, maximum and average length are equal; 
this is always true with 10% traffic increment and for all 
scenarios on July 22nd and 25th. In general, we can see that the 
overload is distributed on a limited number of clusters, six at 
most, with diverse length, up to, respectively, 15, 45 and 70 
minutes with 10, 20, and 30 percent traffic increment.  

Fig. 4 provides a simple graphical representation of the 
overload on July 21st with a 30% traffic increment from 8:00 
a.m. to 12:00 p.m. The figure shows the traffic demand and the 
net capacity (red and blue lines); the shaded areas highlight the 
time intervals in which the traffic exceeds the net capacity (Fig. 
4 also displays the total capacity and the underload, which will 
be discussed later). We observe two longer clusters of 50 and 35 
minutes and four smaller clusters of 5 to 15 minutes. The longer 
clusters are likely justified by sudden and prolonged traffic 
increase, the shorter ones by the permanence constraint. 

2) Configurations statistics and space distribution of the 
traffic excess 

As for the features of the optimal configuration sequence for 
nominal and increased-traffic scenarios, Table IV presents the 
number of transitions between different configurations (“n.t.”), 
the number of different configurations used (“n.c.”), and the 
average (and maximum) number of sectors in a used 
configuration, in columns “s avg (max)”. The last pair of 
metrics is also reported for the configuration plans that were 
actually deployed during the days we consider (columns “AP – 
s avg (max)”). Notice that the average number of sectors is 
weighted by the number of time periods each configuration is 
active. The minimum cardinality of a configuration is omitted, 
since it is always two, in correspondence to the beginning and 
end of each day, when the traffic demand is lower. In the 
nominal scenario, the average size of the configurations is 
about 4, with 7 to 8 sectors as maximum size. With respect to 
the historically deployed configuration plans, we notice that the 
optimized plans for the nominal scenario require “smaller” 
configurations, on average, thanks to the model objective 
functions that, with same minimum overload, penalizes the 
number of sectors in the active configurations. However, to 
achieve minimum overload, traffic peaks require 
configurations with 7 or 8 sectors, instead of 6 as in the 
deployed solution. Observing all the scenarios, the number of 
configurations and transitions does not seem to be linked to the 
traffic increment, whereas both the average and maximum 
cardinality increase with the traffic increment: larger peaks 
require more complex configurations, up to including the ones 
with larger cardinality (10 sectors) in the available set. 

TABLE III.  TIME DISTRIBUTION OF EXCESS: COMPARISON OF DIFFERENT 
TRAFFIC INCREMENT SCENARIOS 

Day +10% +20% +30% 

 n avg l (min-max) n avg l (min-max) n avg l (min-max) 

20/07 1 3.00 (3-3) 1 9.00 (9-9) 2 8.00 (3-13) 
21/07 0 0.00 (0-0) 3 1.33 (1-2) 6 4.17 (1-10) 
22/07 1 1.00 (1-1) 1 5.00 (5-5) 1 7.00 (7-7) 
25/07 0 0.00 (0-0) 0 0.00 (0-0) 0 0.00 (0-0) 
04/08 1 2.0 (2-2) 3 3.33 (1-5) 3 6.67 (1-14) 

 

 
Figure 4. Comparison between traffic demand and capacity for the optimal solution on July 21st, with a 30% traffic increment 
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As for the spatial distribution of the traffic excess, Table V 
provides an insight on the number of simultaneously 
overloaded sectors: columns “s avg (max)” report the average 
and maximum number of sectors in which traffic excess is 
detected in a same time period, while columns “c avg (max)” 
show the average and maximum cardinality of a configuration 
affected by any traffic excess. For traffic increment up to 20%, 
the number of sectors impacted by traffic excess is overall 
limited with respect to the cardinality of the configuration they 
belong to (up to two sectors, about 22% of the active sectors). 
With 30% increment, up to 4 sectors may be simultaneously 
overloaded.  

3) Traffic underload for the proposed plans 

We recall that we first minimize the traffic overload and, 
secondly, we indirectly optimize the underload by minimizing 
the total number of sectors involved in the configuration plan. 
Fig. 5 gives a graphical representation of the underload showing, 
for each day and for each traffic increment, the average (dashed 
horizontal line) and median (solid line) underload, as well as the 
span between minimum and maximum values. In each day, the 
average underload with traffic increments is slightly larger than 
the underload with nominal traffic, even if no relation emerges 
with the entity of the increment. From comparison to Table II, 
the average underload is by far larger than the corresponding 
overload, as expected. More interestingly, high values of 
average and, in particular, maximum underload are associated 
to days that also present high overload; July 20th, for instance, 
reports the highest values of average and maximum underload, 
and among the largest traffic excess (see Table II). To get a 
better understanding of this phenomenon, we go back to Fig. 4, 
showing the total capacity of the active configuration (grey line) 

and the total underload (green line) over time. The total capacity 
normally follows the trend of the traffic demand, as we may 
expect. In particular, the capacity sharply increases in 
correspondence to traffic peaks, in order to accommodate the 
growing traffic demand. However, from Table V, we notice that 
the number of simultaneously overloaded sectors is rather low, 
meaning that high traffic demand is concentrated on a limited 
portion of the airspace; therefore, in many cases, the available 
configuration that better suites the traffic in congested areas also 
increases the capacities in low-traffic areas, leading to 
underload. Above observations are confirmed by the interesting 
exception between 10:10 and 10:50 am: the switch, at 9:55 am, 
from configuration CSS10G (with 10 sectors) to configuration 
CSS8A (8 sectors) drops the capacity, even if overload occurs, 
which may be counterintuitive. The optimization guarantees that 
a configuration with larger total capacity would be of no use (the 
additional capacity would not fit congestion), and the one with 
smallest number of sectors is activated, among all the 
configurations that minimize the traffic excess, leading to 
reduced underload. Fig. 6 shows configurations CSS10G and 
CSS8A: focusing on the bottom of the northern part of the 
considered airspace, we notice that, e.g., the small pink and 
green sectors in CSS10G have been merged into a single sector 
(the violet one) in CSS8A, since the congestion has moved 
away, and capacity can be relaxed. These results point out the 
importance of considering the sector underload in the 
optimization model, as well as the possible need of devising 
further airspace configurations, that are tailored to the spatial 

TABLE IV.  CONFIGURATIONS STATISTICS IN DIFFERENT TRAFFIC INCREMENT SCENARIOS 
Day Nominal +10% +20% +30% 

 n.t. n.c. s avg (max) AP - s avg (max) n.t. n.c. s avg (max) n.t. n.c. s avg (max) n.t. n.c. s avg (max) 

20/07 33 25 4.38 (8) 4.75 (6) 30 23 4.53 (10) 29 21 4.56 (10) 30 22 4.59 (10) 
21/07 33 24 4.33 (8) 4.71 (6) 32 22 4.43 (8) 32 23 4.66 (10) 33 22 4.72 (10) 
22/07 35 19 4.36 (7) 4.83 (6) 37 26 4.47 (8) 36 25 4.52 (8) 39 22 4.54 (8) 
25/07 34 20 4.14 (7) 4.77 (6) 31 13 4.22 (7) 34 23 4.27 (8) 30 14 4.36 (8) 
04/08 32 21 4.23 (8) 4.79 (6) 34 23 4.38 (10) 31 20 4.42 (10) 32 20 4.46 (10) 

 

TABLE V.  SPACE DISTRIBUTION OF DEMAND EXCESS WITH DIFFERENT 
TRAFFIC INCREMENT SCENARIOS 

Day +10% +20% +30% 
 s avg 

(max) 
c avg 
(max) 

s avg 
(max) 

c avg 
(max) 

s avg 
(max) 

c avg 
(max) 

20/07 1.00 (1) 9.00 (9) 1.44 (2) 9.44 (10) 1.69 (3) 9.13 (10) 
21/07 0.00 (0) – 1.00 (1) 8.00 (8) 1.12 (2) 8.32 (10) 
22/07 1.00 (1) 8.00 (8) 1.00 (1) 8.00 (8) 1.00 (1) 8.00 (8) 
25/07 0.00 (0) – 0.00 (0) – 0.00 (0) – 
04/08 1.00 (1) 7.00 (7) 1.50 (2) 8.00 (9) 1.90 (4) 8.50 (10) 

 

 
Figure 5. Underload aggregated by traffic day 
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distribution of the traffic demand and allocate control resources 
according to both congested and low-traffic airspaces. 

V. CONCLUSIONS AND FUTURE WORK 
We proposed an Integer Programming Model for the DAC 
problem, that provides, for a given timeframe discretized in 
time periods, a configuration sequence that primarily 
minimizes the overload in each time period while choosing, 
secondly, the configuration consisting of fewer sectors, as a 
proxy to underload minimization. 

We tested our model on the historical traffic data of five days 
in the summer of 2019 and on a set of configurations built using 
99 sectors of Madrid ACC. We compared the performances of 
different data and decision discretization, highlighting the fact 
that using the finest data discretization, even when considering 
a rougher decision discretization, results in a configuration 
sequence that can better absorb the traffic peaks occurring in the 
middle of a decision interval. 

Moreover, we investigated the impact of an increment of the 
demand with respect to observed traffic, by analysing both the 
amount of daily traffic overload and the overload distribution in 
time and space. The time distribution shows that, under 
moderate traffic increment, overload only occurs with limited 
magnitude and in a few time intervals, whose maximum 
duration is normally less than 20 minutes; further increments 
lead to more excess intervals that may last more than one hour. 
By analysing the spatial distribution of the excess, seen as the 
number of sectors it simultaneously affects, we noticed that it 
usually impacts few sectors and we looked further into the 
matter by computing the average and maximum underload for 
each day and traffic increment. These analyses show some 
disparity between over and under-load and stimulate further 
research. We plan to modify the mathematical model to directly 
account for underload minimization, e.g., replacing the 
objective function with a weighted sum of the configurations’ 
over and under-load, or exploring more advanced bi-objective 
approaches that better balance the sector workloads and fits the 
airspace traffic demand.  
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Figure 6. Configurations CSS10G and CSS8A (traffic peak of July 21st) 
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