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For bichromatically excited diatomic molecules modelled in a shifted Tietz-Wei molecular po-
tential, we demonstrate the occurrence of vibrational resonance (VR) when a saddle-node (SN-)
bifurcation takes place, and its non-occurrence in the absence of an SN-bifurcation. We have ex-
amined the VR phenomenon and its connection with SN-bifurcation for eight diatomic molecules,
namely, H2, N2, Cl2, I2, O2, HF, CO, and NO, consisting of homogeneous, heterogenous and halo-
gen molecules. We demonstrate that each of them vibrates at a distinct resonant frequency but
with a spread in frequency. The high-frequency amplitude at which VR occurs corresponds to the
SN-bifurcation point. We validate our analytic results by numerical simulations, and show that the
homonuclear halogens respond only weakly to bichromatic fields, which may perhaps be linked to
their absence of SN-bifurcation.
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I. INTRODUCTION

Interest in the effect of bichromatic excitation on the
dynamics of nonlinear systems, and an appreciation of its
importance, dates back to the 1970s when Ambartzumlan
and Letokhov reported [1] that the dissociation of poly-
atomic molecules may more easily be achieved by using a
biharmonic (rather than a monochromatic) infrared laser
field. Since then, there has been remarkable growth in
theoretical and experimental investigation of bichromatic
fields across physics, biology, chemistry, and other areas
of science [2–11]. Many of the earlier studies focused
on coherent control of the molecular dynamics based on
the nonlinear theory of classical conservative systems [2–
5]; a few considered dissipative systems [6, 7]. Recently,
however, the latter have received renewed interest due
to the rich and fascinating dynamical properties arising
from the interplay between the frequency components.
These properties are distinct from those displayed by the
corresponding conservative systems.

The most frequently observed and investigated phe-
nomena in bichromatically driven dissipative systems re-
late to their nontrivial complex dynamics, and include
quasiperiodicity and strange nonchaotic attractors [12],
bursting, i.e. mixed-mode oscillations [13–15], synchro-
nization, i.e. phase-locked states, and resonances [16–18].
Although ubiquitous in many natural and technologi-
cal systems and with a range of potential applications,
these phenomena and the mechanisms underlying them
are not fully understood, either theoretically or experi-
mentally, despite much effort [17–20]. In particular, the
diverse manifestation of resonances in mechanical, elec-
trical, acoustic, biological, quantum, and molecular sys-
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tems makes resonance oscillations increasingly appealing
for exploitation in a wide range of investigations [17–21].
In molecular systems, when two slow atoms interact such
that there is matching between a bound state energy in
the interatomic potential, and the excitation/vibrational
energy of the atoms, a resonance phenomenon known as
vibrational Feshbach resonance (VFR) occurs [22, 23].
Since its discovery, VFR has been reported in numer-
ous molecular systems [23]. VFR is now well established
as the mechanism underlying positron annihilation poly-
atomic molecules [23–26]. In this paper, we report on a
different kind of vibrational resonance (VR) in molecular
systems which may arise when they are driven by bichro-
matic frequency fields. This form of VR phenomenon
and its potential applications have recently been clas-
sified and enumerated [18–20, 27]. It encompass: the
detection, amplification and transmission of very weak
signals; diagnosis of faults in bearings and rotating ma-
chinery; the harvesting of electrical energy from environ-
mental vibrations; the operation of memory devices such
as set-reset logic gates; and nano-electromechanical res-
onators [15, 18–20]. In addition, experimental applica-
tions to a thermo-optic optomechanical nanocavity [28]
and to an optoelectronic artificial spiking neuron [29]
have been reported very recently.

In VR, the response of a non-linear system to the effect
of the lower-frequency (Lf ) component of the bichromatic
excitation can be amplified by the presence of the high-
frequency (Hf ) component when the difference between
the two frequencies is sufficiently large [16]. Landa and
McClintock [16] reported the VR phenomenon in 2000,
linking it to stochastic resonance (SR) – a noise-induced
resonance, in which stochastic excitation amplifies the
output of a weak signal [30, 31]. Following the theoretical
validation of VR by Gitterman and others [32, 33]), there
have also been several experimental investigations of the
effect [28, 29, 34–38].
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In what follows, we investigate VR in a classical dissi-
pative oscillator akin to that used by Knop and Lauter-
born [39], Jing et al. [40] and Abirami et al. [41] to model
interatomic potentials. Such oscillators can be used to
describe the molecular dynamics at moderate and high
rotational and vibrational quantum numbers [42]. No-
tably, however, they have been neglected in the study of
VR, despite their applications in molecular physics and
mechanics, as well as in chemistry and material science,
for elucidating molecular properties, and especially those
of diatomic molecules. Several suitable interatomic po-
tentials have been proposed for this purpose. The first of
these, and the one most conventionally used for diatomic
molecules, was the Morse potential (MP) [43] investi-
gated for VR by Abirami et al. [17, 41]. In addition to the
MP, many other interatomic potential energy representa-
tions have also been proposed for diatomic molecules [44].
These variants and, in particular, their shifted forms with
multi-parameters, offer possible advantages over the MP.
For instance, the shifted Tietz-Hua (sTH), proposed by
Falaye et al. [45]), also known as the shifted Tietz-Wei
(sTW), essentially represents the Tietz-Wei (TW) po-
tential [42, 46, 47], shifted by the dissociation energy,
V0. Its energy spectrum for diatomic molecules shows
better agreement than either the MP or the TW poten-
tial for arbitrary quantum numbers. This advantage is
attributable to its multi-parameter properties. Unsur-
prisingly, interatomic potentials with a larger number of
parameters tend to fit experimental data better [48, 49].

Motivated by these considerations, there have been
several studies based on the sTW potential system, some
of which are described in Refs. [50–57]. Here, we investi-
gate and report the occurrence of VR phenomena in the
sTW potential under the influence of a biharmonic signal.
We focus on the following diatomic molecules for which
experimental values of the ch parameter (see table I) in
the sTW potential exist: N2, O2, NO, CO, I2, H2, Cl2
and HF. Each consists of two covalently bonded atoms,
of either identical or nonidentical chemical species [58].
Diatomic molecules are, of course, very commonly en-
countered in natural and industrial processes, such as
combustion, atmospheric chemistry, nuclear water reac-
tors, and laser spectroscopy. This makes them a subject
of significant scientific interest [59, 60]. We will show that
the amplitude of the fast excitation for which VR arises
corresponds to a saddle-node (SN-) bifurcation parame-
ter value, and that a molecule will vibrate at a distinct
resonant frequency corresponding to the SN-bifurcation,
with a broadened frequency width. Furthermore, we
show that, in general, the homogeneous halogens, do not
undergo an SN-bifurcation or any known bifurcation in
the fast oscillation parameter space investigated. Conse-
quently, they respond only weakly to bichromatic fields.
This behaviour could be attributed to their relatively
heavy masses compared to those of the non-halogen and
heterogeneous halogen diatomic molecules studied as well
as other chemical properties peculiar to them. Our theo-
retical analysis of these phenomena, based on the method

of the separation of time scales, has been validated by nu-
merical simulations of the equations. .
The paper is structured as follows: In section II, we

present the model equation. In section III, a theoretical
analysis of VR is carried out. In section IV, the numeri-
cal simulation results and our findings are discussed. In
section V, we summarize and conclude the paper.

II. MODEL

We examine the classical motion of a bichromatically
excited oscillator in a model interatomic potential. The
dissipative nonlinear dynamics of the system may be
written in terms of inter-nuclear distance (r) as [39–41]

r̈ + δṙ +
dV (r)

dr
= F cosωt+G cosΩt. (1)

Here, the time-periodic functions, F cosωt and G cosΩt
are respectively the low-frequency (LF ) and high-
frequency (HF ) components of the bichromatic excita-
tion, d is the dissipation coefficient, F is the amplitude
of the slow excitation component of frequency ω, G is the
amplitude of the fast excitation component of frequency
Ω, and V (r) is the shifted Tietz-Wei (sTW) potential. In
practice, the two frequency fields, may arise from a com-
bination of Aharanov-Bohm and magnetic flux fields [61–
64] or electromagnetic fields [61, 65–67] – all which can
impact on the quantum levels as well as on the vibrational
energy states, as demonstrated by Falaye et al. [62] for
a hydrogen atom in a quantum plasma through coopera-
tion between a strong electric field and a weak magnetic
field [62].
The sTW potential model integrates the effects of an-

harmonicity and other nonidealities. It is characterized
by four parameters: the parameter trio of angular fre-
quency ωe, equilibrium bond length re, and dissociation
energy V0; plus an additional adjustable parameter ch.
This latter was introduced to reduce the difference be-
tween calculated values and those obtained ab initio or
from Rydberg-Klein-Rees (RKR) potentials [56, 57]. The
sTW potential is written as

V (r) = V0

(
Ae−bh(r−re) −Be−2bh(r−re)

(1− che−bh(r−re))2

)
, (2)

where A = 2(ch − 1), B = (c2h − 1), ch is the optimiza-
tion parameter, bh = γ(1 − ch), V0 is the dissociation
energy, re is the molecular bond length, and γ is the

Morse constant, defined as γ = ωe

√
2π2 c

2µ
V0

, with µ be-

ing the reduced molecular mass. The sTW potential is
similar to the Morse potential when ch = 0, but differs
when ch ̸= 0. This difference enables the STW potential
to simulate atomic interactions more effectively than the
conventional Morse potential [45].
The shape of the sTW potential is shown in Fig. 1

for the different diatomic molecules investigated in this
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paper, namely, H2, O2, HF, Cl2, I2, CO, NO, and N2.
The values of the spectroscopic parameters used are given
in table I.

III. THEORETICAL ANALYSIS

Inserting Eq. (2) into Eq. (1), it is straightforward to
show that the system to be analysed becomes

r̈ + δṙ − V0bh

(
Ae−bh(r−re) + 4Ache

−2bh(r−re)

− 2Be−2bh(r−re) + 9Ach
2e−3bh(r−re) − 6Bche

−3bh(r−re)

+ 6Ach
3e−4bh(r−re) −12Bch

2e−4bh(r−re)
)

= F cosωt+G cosΩt.

(3)

To solve this equation, we employed the method of sepa-
ration of time scales, thus separating the solution for the
inter-nuclear distance r(t) into two parts related to the
slow and fast motions respectively. Because Ω ≫ ω, we
assume that the solution of Eq. (3) is of the form:

r(t) = χ(t) + ψ(t, τ), where t =
2π

ω
and τ = Ωt. (4)

Here χ and ψ are respectively the slow motion variable
with frequency ω and period 2π

ω , and the fast motion

variable in fast time τ with frequency Ω and period 2π
Ω .

Substituting Eq. (4) into Eq. (3), we obtain the equation
for the slow motion as:

χ̈+ δχ̇− V0bh

(
Ae−bh(χ−re)⟨e−bhψ⟩

+ (4Ach − 2B)e−2bh(χ−re)⟨e−2bhψ⟩

+ (9Ach
2 − 6Bch)e

−3bh(χ−re)⟨e−3bhψ⟩
)

= F cos(ωt),

(5)

and that for the fast motion component as:

ψ̈ + δψ̇ − V0bh

(
Ae−bh(χ−re)(e−bhψ − ⟨e−bhψ⟩)

+ (4Ach − 2B)e−2bh(χ−re)(e−2bhψ − ⟨e−2bhψ⟩)

+ (9Ach
2 − 6Bch)e

−3bh(χ−re)(e−3bhψ − ⟨e−3bhψ⟩) + Γ1

)
= G cos(Ωt),

(6)

where

Γ1 = (6Ach
3 − 12Bch

2)e−4bh(χ−re)(e−4bhψ − ⟨e−4bhψ⟩).

Since ψ is a rapidly changing function of time τ then,
by employing the inertial approximation ψ̈ ≫ ψ̇ ≫ ψ,
we can approximate Eq. (6) as ψ̈ = g cos(Ωt), ψ̇ =

TABLE I. Spectroscopic parameter values for diatomic
molecules modelled by the shifted Tietz-Wei molecular po-
tential [68–73]

.

Molecule µ (u) re(Å) V0 (eV) bh (Å−1) ch

N2 7.0034 1.0940 9.90 2.7859 −0.0323

NO 7.5215 1.1508 8.044 2.7156 0.0137

CO 6.8607 1.1283 10.845 2.2048 0.1499

O2 7.9975 1.208 5.1567 2.5910 0.0273

I2 63.4522 2.662 1.5818 2.1234 −0.1390

H2 0.5039 0.7416 4.7446 1.6189 0.1701

Cl2 17.6083 1.987 2.5139 2.2035 −0.0970

HF 9.5014 0.917 6.120 1.9421 0.1278
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FIG. 1. The shape of shifted Tietz-Wei molecular potential
for different diatomic molecules.

g
Ω sin(Ωt), and ψ = g

Ω2 cos(Ωt). Let ζ = g
Ω2 . Then

ψ = −ζ cos(Ωt), and the following time averages ap-
ply: ⟨e−bhψ⟩ = I(bhζ) = I1, ⟨e−2bhψ⟩ = I(2bhζ) = I2,
⟨e−3bhψ⟩ = I(3bhζ) = I3, and ⟨e−4bhψ⟩ = I(4bhζ) = I4,
where I1, I2, I3 and I4 are zeroth-order modified Bessel
functions of the first kind. Use of the time averages al-
lows us to simplify Eq. (5), so that the equation for the
slow motion becomes

χ̈+ δχ̇− V0bh

(
Ae−bh(χ−re)I1

+ (4Ach − 2B)e−2bh(χ−re)I2

+ (9Ach
2 − 6Bch)e

−3bh(χ−re)I3 + Γ1

)
= F cos(ωt),

(7)

where Γ = (6Ach
3 − 12Bch

2)e−4bh(χ−re)I4. The effective
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potential, Veff of the oscillator Eq. (7) then becomes:

Veff (χ) = V0

(
α1I1e

−bh(χ−re)

+
α2I2
2

e−2bh(χ−re) +
α3I3
3

e−3bh(χ−re)

+
α4I4
4

e−4bh(χ−re)
)
,

(8)

where A = α1, (4Ach − 2B) = α2, (9Ach
2 − 6Bch) = α3,

and (6Ach
3 − 12Bch

2) = α4.
Irrespective of the system parameters, Veff (χ) is al-

ways a single well with a minimum located at χx =
re− 1

bh
ℓnk, where e

−bh(χx−re) = k and bh(re−χx) = ℓnk.
The deviation from the minimum Y = χ−χx is given by

Ÿ+δẎ − V0bh

(
α1I1e

−bhY e−bh(χx−re)

+ α2I2e
−2bhY e−2bh(χx−re)

+ α3I3e
−3bhY e−3bh(χx−re)

+α4I4e
−4bhY e−4bh(χx−re)

)
= F cos(ωt).

(9)

By expansion, e−bhY ≈ 1− bhY , e−2bhY ≈ 1− 2bhY ,
e−3bhY ≈ 1− 3bhY , and e−4bhY ≈ 1− 4bhY . Thus,
Eq. (9) becomes:

Ÿ + δẎ + V0
(
α2I2k

2b2h + 2α3I3k
3b2h

+3α4I4k
4b2h

)
Y = F cos(ωt),

(10)

which can be rewritten as,

Ÿ + δẎ + ω2
rY = F cos(ωt), (11)

where

ω2
r = V0

(
α2I2k

2b2h + 2α3I3k
3b2h + 3α4I4k

4b2h
)
,

and ωr is the natural resonant frequency of the oscillator
in its stable state.

To obtain the theoretical expression for the response
Q of the slow motion of the oscillator to high frequency
excitation, we solve the linear differential Eq. 11 by the
differential operator method. This yields, the solution
for Y as

Y ≡ A cos(ωt) +B sin(ωt) = RL cos(ωt+ θ), (12)

where A =
(ω2

r−ω
2)F

(ω2
r−ω2)2+d2ω2 , B = dFω

(ω2
r−ω2)2+d2ω2 , and θ

is the phase angle of the oscillator. Then, by defining
R2
L = A2 +B2, one can show that

RL =
F√

((ω2
r − ω2)2 + d2ω2)

. (13)

Thus, the analytic response amplitude, Q at the fre-
quency F of the weak excitation is given by

Q =
RL
F

=
1√

(ω2
r − ω2)2 + d2ω2

. (14)
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FIG. 2. The effective potential Veff (χ) of the bi-harmonic
system of equation (8) for the H2 diatomic molecule, with
Ω = 70, ω =

√
20, and f = 0.1, with other parameters of the

molecule as shown in Table I, for different amplitudes of the
fast excitation amplitude G = 0, 1000, 3000, 3400, 3800 and
6000. The shape of the potential and its well depth can be
seen to depend on the high-frequency amplitude G.

IV. NUMERICAL SIMULATION

We now describe the numerical procedures used and
then report the results obtained, comparing them with
the analytic results of Sec. III.

A. Numerical procedures

To solve Eq. (3) numerically, we transform it into the
equivalent system of two first-order ODEs:

dx

dt
= Y

dy

dt
= V0bh

(
Ae−bh(r−re) + 4Ache

−2bh(r−re) − 2Be−2bh(r−re)

+ 9Ach
2e−3bh(r−re) − 6Bche

−3bh(r−re)

+ 6Ach
3e−4bh(r−re) − 12Bch

2e−4bh(r−re)
)

− δy + F cosωt+G cosΩt.

(15)

Equation (15) was solved numerically using the Simulink
platform – a MATLAB add-on product – modeling and
simulating the components of the system as shown in
Fig. 17 [74].
Table I presents details of the spectroscopic parameters

of the diatomic molecules used in the simulation. Unless
otherwise specified, the following parameters remained
fixed: δ = 0.1, Ω = 70.0, ω =

√
20, F = 0.1, and time

step of the simulation was T
200 . To calculate the response
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to the external excitation, we note that any periodic func-
tion can be expressed as the sum of its Fourier compo-
nents, where T = 2π

ω represents the period of oscillation
of the low-frequency force LF . Thus, we computed the
system’s response amplitude Q at the frequency of the
slow excitation from the output signal’s Fourier spectrum
in the usual form:

Q =

√
Q2
S +Q2

C

F
, (16)

where QS and QC are the Fourier sine and cosine com-
ponents of the time series of the output signal r(t), re-
spectively, and are expressed as

QS =
2

nT

∫ nT

0

r(t) sinωtdt, (17)

QC =
2

nT

∫ nT

0

r(t) cosωtdt. (18)

The numerical integration was performed over the time
interval of nT , where n = 1, 2, 3, ... is the number of
complete oscillations.

B. Frequency response

Figure 3 shows the frequency-response curve, illustrat-
ing the dependence of Q on the frequency ω of the slow
excitation for different amplitudes of the fast excitation
component of the bichromatic drive. The parameters
used are those of the H2 molecule and Q was calculated
for four different values of G — the amplitude of the fast
component (G = 0, 1000, 3000, and 6000). At G = 0, the
fast excitation is absent. The primary resonance then
occurs at the resonant frequency ω0 = 5.9. With in-
creasing values of G, the response Q grows near ω0 but
experiences a sudden discontinuous jump at ω0, with a
peaks ranging from 1.1 for G = 0 to 1.8 for G = 6000.
Discontinuous resonance jumps are often connected with
dynamical hysteresis in which a system jumps between
coexisting attractors in an irreversible fashion as a system
parameter is varied forward and backward [75–79]. No-
tably, the resonance peaks occur in the frequency range
3.0 ≤ ω ≤ 7.0. The amplification is accompanied by
shifts in the resonance frequency (ω0) to lower ω0 val-
ues: when G = 1000, ω0 = 5.6; G = 3000, ω0 = 4.7;
and at G = 6000, ω0 = 3.8. There is reasonable agree-
ment between the numerical and the analytical response
curves.

Next, we examine the dependence of Q on the fre-
quency (Ω) of the fast signal, while setting its amplitude
to G = 0, 1000, 3000, and 6000 for an H2 molecule. From
Fig. 4 we observe that, as the value of G is increased, the
Hf frequency bandwidth increases proportionally. In the
absence of high frequency forcing, i.e. at G = 0, the Hf
frequency bandwidth is narrower. For the Hf amplitude

of G = 3000, Q peaks within the range 91.5 ≥ Ω ≥ 97.5.
Notably, at G = 6000, Q peak occurs within the range
97.5 ≥ Ω ≥ 105. Again, the jump phenomenon ap-
pears. In this case, however, Q grows and attains its
peak, then suddenly drops. Thus, the parameters of the
high-frequency component of the excitation can be tuned,
appropriately, to achieve the desired frequency-response
or to avoid some frequency range.
We also examined the response curve when the system

is controlled by the slow component of the excitation (at
frequency ω), as shown in Fig. 5. It can be seen that the
width of the system’s response Q broadens substantially
as ω2 decreases. However, the height of the resonance
peak remains unaltered. Evidently, as the value of ω2

increases, the width of the resonance curve decreases.
However, as ω2 increases, the value of G at which the
resonance occurs shifts to the left. For ω2 = 10, 15, and
20, the peak occurred at 3400, 6000, and 10, 000, respec-
tively. These numerically computed resonance curves are
in satisfactory agreement with those calculated analyti-
cally from Eq. (14). Again, the parameters of the poten-
tial correspond to those of an H2 molecule

3 4 5 6 7
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FIG. 3. The frequency-response curve, showing the de-
pendence of response amplitude Q on the slow excitation
frequency ω for Ω = 70.0, δ = 0.1, F = 0.1, and for
G = 0, 1000, 3000, and 6000, using the parameters for the
H2 diatomic molecule given in table I). The continuous line
represents the numerically computed Q from Eq. (15) using
Eq. (16), while the markers represent the corresponding ana-
lytic solution given by Eq. (14).

C. VR for diatomic molecules

In the preceding discussion, we established the occur-
rence of VR in diatomic molecules, using the H2 molecule
as an example. We now proceed to examine the responses
to fast excitations of each of the eight examples of di-
atomic molecules proposed for investigation: O2, N2, H2,
CO, HF, Cl2, I2 and NO. In doing so, we hope to un-
ravel the features specific to each molecule and to each
molecular group. The values of the spectroscopic pa-
rameters used for each molecule are given in Table I. It
is well known that quantized vibrational modes arise in



6

85 90 95 100 105 110
0

0.5

1

1.5

2

G = 0

G = 0(Ana)

G = 1000

G = 1000(Ana)

G = 3000

G = 3000(Ana)

G = 6000

G = 6000(Ana)

FIG. 4. The frequency-response curve, Q vs. Ω, the frequency
of the fast excitation, for different values of its amplitude G =
0, 1000, 3000, and 6000, for δ = 0.1, F = 0.1, and ω =

√
20,

for an H2 diatomic molecule with the parameter values given
in table 1. The continuous curves represent the numerically
computed Q from Eq. (15) using Eq. (16), while the analytical
solutions obtained from Eq. (14), are indicated by markers.

homonuclear diatomic molecules, such as hydrogen (H2),
oxygen (O2), and nitrogen (N2), due to the symmetri-
cal bonding between identical atoms [80]. The two ho-
mogenous halogens: iodine (I2) and chlorine (Cl2) are
also homonuclear diatomic molecules. In contrast, het-
eronuclear diatomic compounds, such as carbon monox-
ide (CO), nitric oxide (NO), and hydrogen fluoride (HF),
exhibit complex vibrational landscapes due to the differ-
ent masses and electro-negativities of the pairs of atoms
forming each molecule [80].

We begin by considering the low frequency responses
plotted in Fig. 6, which shows results for all eight di-
atomic molecules. It illustrates the dependence of Q on
the slow excitation frequency ω keeping the amplitude of
the fast excitation fixed at G = 0 (upper panel, with no
high frequency excitation) or G = 12, 000 (lower panel),
respectively. Comparing the two panels, we can see that
each molecule vibrates at a different resonant frequency
as the fast excitation is turned off or on. The primary res-
onances (ω0) of the eight diatomic molecules differ. We
obtained a numerical value of the resonance frequency for
each of them: for H2, ω0 = 8.35; for I2, ω0 = 4.9; for Cl2,
ω0 = 6.1; for HF, ω0 = 11.05; for O2, ω0 = 12.1; for NO,
ω0 = 11.35; for N2, ω0 = 12.7; and for CO, ω0 = 12.85.
When the high frequency forcing is switched on (lower
panel), the resonant frequencies for H2, I2, Cl2, HF, O2,
NO, N2, and CO change to 4.15, 1.9, 2.65, 5.2, 5.35, 2.35,
2.95, and 3.55, respectively. The analytic response curves
agree reasonably well with the numerical simulations.

Figure 7, shows the response amplitude Q plotted
against the amplitude G of the high frequency force for
each of the molecules. There is a distinct and well-defined
resonance peak for each of the non-halogens and non-
homonuclear halogens; in contrast, each of the homonu-
clear halogens oscillates minimally in its quiescent mode
without exhibiting a resonance. One possible inference
could be that VR depends on the molecular mass (See

Table I). The H2 molecule, which is the lightest, with a
mass of 2 u, exhibits the highest response peak, occurring
in the neighbourhood of G = 0.5 and the narrowest res-
onance width – a signature of a well-defined and stable
vibrational state with slower transitions [80]. Weak re-
sponses were observed for the Cl2 and I2 molecules, which
have atomic masses of 71 u and 135 u, respectively. These
two molecules are the heaviest among those investigated,
and they belong to halogen group in the periodic table.
Their relatively weak responses to the high frequency ex-
citation probably relate to their higher masses relative
to the non-halogen molecules examined: CO, N2, and
NO have moderate atomic masses of 28 u, 28 u, and
30 u, respectively, and relatively high dissociation ener-
gies relative to the other molecules. For these molecules,
resonances occur at high values of G with approximately
equal peak heights. In general, the resonance width of
all the molecules broadens as the amplitude G of the fast
excitation increases. The response curves for HF and
O2 overlap, both in height and width – with the peaks
appearing at relatively low values of G. Their narrow
resonance widths suggests slower transitions in and out
of their resonant states [80].
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 = 10

2
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2
 = 15

2
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2
 = 20

2
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FIG. 5. Dependence of the response amplitude Q on the am-
plitude G of the fast oscillation, for Ω = 70.0, d = 0.1, and
F = 0.1, for different values of ω2 = (10, 15, and 20), using
the parameters for the H2 diatomic molecule. The response
amplitude Q computed by the numerical solution of equation
(15) in equation (16) is shown by continuous lines, while the
markers represent the analytic solution derived from equation
(14).

Figure 8 plots the response amplitude Q against the
frequency Ω of the high frequency excitation for all of the
molecules investigated. For CO, N2, and NO, VR occurs
at lower values of Ω, with relatively decreased resonance
widths compared to the other molecules. HF and O2 ex-
hibit broader widths at higher values of Ω, with nearly
overlapping response curves and the same resonance fre-
quency for the fast excitation. The H2 molecule exhibited
the highest response peak, at the highest value of Ω, and
a broader resonance width. The I2 and Cl2 molecules
exhibited the weakest response to high-frequency excita-
tion.
To unravel the underlying dynamical mechanism asso-

ciated with the occurrence of VR at distinct parameter
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FIG. 6. The low-frequency response-curve for F = 0.1, d =
0.1, Ω = 70, and G = 0 (upper panel) and G = 12, 000 (lower
panel) for eight different diatomic molecules. The continuous
curves represent numerical computations, while the analytic
solutions are indicated by marker points.
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FIG. 7. Dependence of the response amplitude Q on the fast
excitation amplitude G, with F = 0.1, d = 0.1, ω =

√
20, and

Ω = 70.0 for eight different diatomic molecules. The continu-
ous curves represent the numerically computed Q, while the
analytic solutions are indicated by marker points.

values of the faster excitation for the non-halogens and
heterogeneous halogens, and its non-occurrence for the
homogeneous halogens in the same parameter space, we
explored the bifurcations of the periodic orbits in the
Poincaré surface of section, using the slow motion dy-
namics around the equilibrium point, χx, given by Eq. 11.
We therefore compute the orbits as a series of points in
(r, ṙ) phase-space, plotting a single point per cycle of the
low-frequency ω excitation, in the relevant bifurcation
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FIG. 8. The high-frequency response curve for F = 0.1, d =
0.1, ω =

√
20, and G = 10, 000 for the eight different diatomic

molecules. The continuous curves represent the numerically
computed Q, while the analytic solutions are indicated by
marker points.
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FIG. 9. Bifurcation diagrams of r, varying the high-frequency
forcing parameters G and Ω for H2, O2 and HF, with F = 0.1,
d = 0.1, and ω =

√
20.

parameter regimes. We choose G and Ω as the bifurca-
tion parameters, as shown in Fig. 9(a) and (b), respec-
tively, for the H2, O2 and HF molecules. We find that in
both plots, the saddle-node (SN-) bifurcation occurs at
exactly the same G and ω values as those at which reso-
nance appeared in Figs. 7 and 8, respectively. Similarly,
the bifurcation diagrams for NO, CO, and N2 are shown
in Fig. 10. Again, the SN-bifurcations occur at exactly
the same G and ω values as those at which resonance
appeared in Figs. 7 and 8, respectively, for these three
molecules. For the homogeneous halogens I2 and Cl2, the
bifurcation structures plotted in Fig. 11 show no evidence
of SN-bifurcations, nor of any other form of bifurcation in
the parameter space. Rather, the orbit grows exponen-
tially with varying G and saturates at a G value above
which it attains the quiescent state. On the contrary,
with a fixed value of G, and Ω as the bifurcation parame-
ter, the orbit decays exponentially, moving with negative
velocity against increasing Ω. Thus, the occurrence of
SN-bifurcations seems to be associated with the appear-
ance of VR for the non-halogens and heterogenous halo-
gen studied, and the non-occurrence of SN-bifurcations
seems to be associated with the non-appearance of VR



8

0 1 2 3 4

10
4

-0.08

-0.04

0

0.04 NO

CO

N
2

20 30 40 50 60

NO

CO

N
2

FIG. 10. Bifurcation diagrams of r, varying the high-
frequency forcing parameters G and Ω for NO, CO, and N2,
with F = 0.1, d = 0.1, and ω =

√
20.

0 5000 10000

-0.08

-0.04

0

I
2

Cl
2

20 60 100

I
2

Cl
2
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in the parameter space of the fast excitation component
of the homogeneous halogens.

To gain further insights into the transition, we explored
the corresponding phase portraits. We present these for
five different values of the fast oscillation amplitudes G,
for each of the molecules. In each case, the phase por-
traits consist of closed periodic orbits within the phase
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FIG. 12. Phase portraits for F = 0.1, ω =
√
20, Ω = 70.0. (a)

O2 diatomic molecule for G = 0, 4000, 7000, 10000, 15000. (b)
HF diatomic molecule for G = 0, 20000, 26000, 30000, 40000).
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FIG. 13. Phase portraits for F = 0.1, ω =
√
20,

Ω = 70.0. (a) NO diatomic molecule for G =
0, 10000, 15000, 20000, 30000). (b) CO diatomic molecule for
G = 0, 20000, 26000, 30000, 40000.
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FIG. 14. Phase portraits for F = 0.1, ω =
√
20, Ω = 70.0. (a)

N2 diatomic molecule for G = 0, 15000, 22000, 25000, 30000.
(b) H2 diatomic molecule for G = 0, 3000, 4000, 5000, 10000.

space, thus signifying repetitive patterns in the vibra-
tional dynamics of all the molecules studied. Figure 12(a)
shows the phase space for G = 0, 4000, 7000, 10000, and
15000 for the O2 molecule. As the amplitude G of the
fast excitation increases, the phase portrait reveals in-
teresting dynamics exhibited by the O2 molecule. When
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FIG. 15. Phase portraits for F = 0.1, ω =
√
20, Ω = 70.0. (a)

I2 diatomic molecule for G = 0, 2000, 4000, 8000, 10000. (b)
Cl2 diatomic molecule for G = 0, 2000, 4000, 8000, 10000.
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G = 0, the orbits exhibit minimal vibrational motion in
a periodic cycle in the close neighbourhood of the zero
equilibrium. As G is increased the periodic orbit ex-
pands, indicating an enhanced vibration. At G ≈ 7000,
however, the orbit reaches a maximum vibration ampli-
tude. For G > 7000 the orbits begin to shrink again and,
at G = 10000 and 15000, a change in the periodic behav-
ior occurs. Thus increasing the fast excitation amplitude
beyond G = 10000 does not lead to a corresponding in-
crease in the amplitude of vibrational motion. Instead,
the molecular vibration saturates.

Figure 12(b) displays the phase portrait of an HF
molecule for G = 0, 4000, 7000, 10000, and 15000. The
orbit behaves in similar manner to that of O2, except
that the maximum vibrational response for HF molecule
occurs at G = 7000. At G = 10000, 15000, the orbit
attains its saturation point above which further increase
in the amplitude does not lead to the expansion of the
molecular orbit; rather it shrinks it.

Comparable behaviour was found for the other non-
halogen molecules. Figure 13 shows the phase portraits
for, respectively: (a) the NO molecule at G = 0, 10000,
15000, 20000, and 30000; and (b) the CO molecule at
G = 0, 20000, 26000, 30000, and 40000. The maximum
vibrational responses for the two molecules occur at G =
15000 and G = 26000.

Figure 14 shows the phase portraits: for (a) N2 at G =
0, 15000, 22000, 25000, and 30000; and for (b) H2 at G =
0, 3000, 4000, 5000, and 10000. For the N2 molecule, the
orbit experiences a maximum vibrational state when the
fast excitation amplitude is G = 22000, and as the am-
plitude is further increased, the orbits contracts progres-
sively. Similarly, beyond the maximum vibrational state
at G = 4000, the phase space plot for the H2 molecule
shows that the orbit no longer expands but contracts to
lower value of the amplitude where G = 3000 and close
to orbit when G = 0, as the Hf amplitude is further
increased to G = 10000.

The phase portraits for I2 and Cl2 in Fig. 15(a) and
(b) display distinctly different behaviour compared to
that of the other diatomic molecules studied, whose
results are presented in Figs. 12 – 14. Both I2 and
Cl2, shows their maximum vibrational response to be at
G = 0, with monotonically decreasing responses with
increasing excitation amplitude from G = 0 through
G = 2000, 4000, 8000, and10000, respectively.

To illuminate broader features of the response in the
parameter spaces of the eight diatomic molecules, we fur-
ther explored three-dimensional plots in two-parameter
spaces of the biharmonic field. Figure 16 shows 3-D plots
of the response Q in the parameter space of the high fre-
quency signal for all the eight diatomic molecules studied.
We thus explore the fast excitation parameter-space for
which each of the diatomic molecules exhibits VR relative
to Figures 7 and 8. The plots confirmed the evidence for
just a single resonance peak for each molecule, in agree-
ment with Figures 7 and Fig. 8. Moreover, it is clear
that high frequency parameter spaces of the molecules

FIG. 16. Three-dimensional plots showing the dependence of
the response amplitude Q on the parameters (Ω, G) of the
high frequency force parameters, for F = 0.1, d = 0.1, and
ω =

√
20. (a) O2, (b) HF, (c) Cl2, (d) I2, (e) NO, (f) N2, (g)

CO, and (h) H2 diatomic molecules, respectively. The molec-
ular responses to the high-frequency driving force are shaded
with increasing color density, from cyan(gray) to red(black)
color, where the cyan(gray) color denotes weak/moderate re-
sponse and red (black) denotes the parameter regime for max-
imum response.

for which resonance occurs differ significantly between
each other. For instance, in Fig. 16 while VR will not
occur for G > 10000 in O2, it will occur for G > 10000
in HF. On the other hand, for Ω > 100, VR will occur in
O2, but will not occur in HF. In contrast to the behavior
of these two molecules, the scenario is again, completely
different for Cl2 and I2. While there is clearly no evidence
of VR in I2, VR does occur within the weak amplitude
region of the high frequency driving force, with its win-
dow increasing with Ω and with G. The observed pattern
differs from behavior exhibited by NO, N2 and CO, but
the response amplitude of H2 appears to increase pro-
portionally with increase in the parameters of the fast
component of the bichromatic excitation. This is consis-
tent with the dependence of Q on Ω for different diatomic
molecule as shown in Fig. 8 and also with the bifurcation
structures shown in Fig. 10.
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V. CONCLUDING REMARKS

Diatomic molecules are encountered in numerous natu-
ral and industrial processes, including but not limited to
combustion, atmospheric chemistry, water-cooled nuclear
reactors, and laser spectroscopy. Their ubiquitous na-
ture has made them a subject of interdisciplinary interest
and close scientific study for decades [44, 48, 49, 59, 60].
We discuss above vibrational resonance in a classical di-
atomic model, with parameters matching eight diatomic
molecules excited by bi-harmonic fields in the shifted
Tietz-Wei molecular potential. Our theoretical and nu-
merical study has revealed evidence that VR – the am-
plification of the response of the molecules to a low-
frequency field when also acted upon by a high-frequency
field – will occur in a molecule at distinct parameter val-
ues of the high frequency field. The VR arises where
SN-bifurcation takes place, and does not occur in the ab-
sence of SN-bifurcation. Specifically, with the fast exci-
tation amplitude G chosen as the bifurcation parameter,
six of the diatomic molecules considered exhibited sin-
gle resonance peaks at different values of G, while the
homogeneous halogens (I2 and Cl2) exhibited no reso-
nance within the simulated G-parameter space. Simi-
larly, with the fast signal frequency (Ω) treated as the
bifurcation parameter, I2 showed no resonance, and Cl2
showed a weak response; while each of the non-halogens
H2, O2, HF, CO, NO and N2 exhibited single resonance
peaks. The phase portraits showed that the orbits for all
the non-halogen molecules expanded progressively as G
increased above the SN-bifurcation value where VR oc-
curred, the orbits for I2 and Cl2 did not expand beyond
G = 0, where the primary resonance exists. We conjec-
ture that the weak response of the homogeneous halo-

gens, linked to the nonoccurrence of SN-bifurcation, may
also be attributable to their heavier masses compared to
those of the non-halogens studied.
Our results provide a novel approach for exploring and

elucidating the rich properties and vibrational dynamics
of homogeneous and heterogeneous diatomic molecules,
with potential implications for several fields, includ-
ing chemical kinetics and molecular spectroscopy. Be-
yond advancing existing knowledge of VR and diatomic
molecules, this work motivates future experimental stud-
ies aimed at exploring the unique properties and co-
herent control of vibrational dynamics in molecular sys-
tems. The application of the theoretical method has es-
tablished that the observed distinct complex behaviours
of diatomic molecules in the sTW potential can also be
used to predict the behaviour of other gaseous diatomic
molecules, such as CsO, CsF, and CsCl [56], and per-
haps more broadly, dimers and polyatomic molecules.
Perhaps also taking account of some recently proposed
shifted-potential functions, the study of VR could ad-
vance knowledge of molecular properties, including those
of polyatomic molecules, for which appropriate molecu-
lar potentials from fitting the spectroscopic parameter
values are now available.
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FIG. 17. A block diagram of the MATLAB-Simulink-designed dual-frequency driven shifted Tietz-Wei oscillator (Eq. 15) that
describes the dynamics of bichromatically excited diatomic molecules. Subsystem 1 of Fig. 17 is a Simulink subsystem designed
to take x as its only input and compute z = e−bh(x−re). Subsystem 2 in Fig. 17 takes z, 1, and chz as inputs 1, 2, and 3,
respectively. It is made up of product and sum blocks that result in the output A(1+ chz)−2Bz. Subsystem 3 takes 1 and chz
as inputs and consists of a sum and power function block that computes (1− chz)

3. Susbsystem 4 is a time-function block that
takes time as an input and outputs the sinusoidal functions F cosωt and G cosωt. The outputs of the Subsystems 1-3 were
combined with a product block, which serves as the input for the gain block, which amplifies the input signal by the factor
V0bh. A sum block was used to feed the appropriate signals to the two integrator blocks, resulting in the desired solutions x
and y as seen through a connected scope. Simx and Simy are two interconnected data logging blocks.
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