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Abstract

In this paper we present a framework in which the relational description of General Relativity can
be used to smoothly continue cosmological dynamical systems through the Big Bang without invoking
quantum gravity effects. Cosmological spacetimes contain as a key dynamical variable a notion of scale
through the volume factor ν. However no cosmological observer is ever able to separate their measuring
apparatus from the system they are measuring, in that sense every measurement is a relative one and
measurable dynamical variables are in fact dimensionless ratios. This is manifest in the identification of
a scaling symmetry or “Dynamical Similarity” in the Einstein-Hilbert action associated with the volume
factor. By quotienting out this scaling symmetry, we form a relational system defined on a contact
manifold whose dynamical variables are decoupled from scale. When the phase space is reduced to shape
space, we show that there exist unique solutions to the equations of motion that pass smoothly through
the initial cosmological singularity in flat FLRW, Bianchi I and Quiescent Bianchi IX cosmologies.
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1 Introduction

One of the biggest conceptual and practical problems in contemporary cosmology is that of singularities in
General Relativity (GR). The Hawking-Penrose theorems [1] establish that a wide class of spacetimes are
geodesically incomplete. Without going into the details of measures on a space of theories, this is generally
taken to mean that maximally extended space-times without any singularities are a set of measure zero.
Solutions to the Einstein Field Equations (EFE) provide the metric structure and manifold geometry at each
point in spacetime, when the EFE become indeterminate, the spacetime structure cannot be defined. In this
sense there is a boundary beyond which physics cannot be deterministically continued which we know as a
singularity. Typically this is characterised by some component of the Ricci tensor growing arbitrarily large [2],
although this is not always the case. The most comprehensive understanding of singularities is provided by
the Hawking-Penrose theorems, in which geodesic incompleteness necessitates a spacetime singularity, there
will be a boundary beyond which a null or timelike geodesic terminates after finite affine length [1, 3]. This
poses a problem for General Relativity. Many physical solutions are bound to contain a point region beyond
which physics cannot be continued in a deterministic manner. In particular, cosmological solutions to GR
contain a Big Bang singularity, characterised by the vanishing of the scale factor and the infinite growth of
the Hubble parameter. Study of the Big Bang has been at the centre of contemporary cosmology research [4].
In most modern literature, attempts to resolve spacetime singularities invoke a quantisation of gravity, be
it perturbatively through string theory [5–7] or non-perturbatively through Loop Quantum Gravity [8–13].
These resolutions can be broadly fit into two camps. In the first camp the singularity is avoided dynamically
through, e.g. the introduction of a new type of matter, or repulsive force at small scales. In the second,
the space-time geometry is replaced by a quantum counterpart such as a quantum foam. In both cases
the resolution requires that GR be ‘corrected’ in the neighbourhood of the singularity. The need for these
corrections informs two key aspects in the study of quantum gravity. In the first the necessity of replacing
GR by a quantum counterpart is underlined by the presence of singular points at which the theory needs to
be corrected. In turn this means that that such points are the focus of where quantum theories of gravity
should provide observable deviations from GR.

In this work, we present an approach to the resolution of spacetime singularities in an entirely classical
manner, appealing to the relationalist framework of Shape Dynamics (SD) [14,15]. A key dynamical variable
in the cosmological sector of GR is the scale factor a. The scale factor however, is not a physical observable.
One never measures (or more precisely, is not able to measure) the size of the universe a, only the size
compared to some reference scale a/aref. Any measurement of the size of universe is a relative one, as our
measuring apparatus is indeed part of the system we are attempting to measure. The relationalist framework
laid out by Barbour and Bertotti [16] seeks to track only the intrinsic change of a dynamical system. This has
formed the foundation of the Shape Space, and recently, Dynamical Similarity [17] approach to cosmology.
In this paper, we synthesise recent work on the Shape Dynamics formalism [18,19] and Dynamical Similarity
to show how, starting with the ADM description of Hamiltonian GR, one can move formally to a description
of cosmology with equivalent physical dynamics that never makes reference to a notion of absolute scale. In
this description the dynamical system of physical observables defined on the phase space manifold remains
well defined through the initial cosmological singularity and in this sense it is resolved classically. In this
description the principle mathematical objects, namely the Hamiltonian and contact structure, remain finite
and well defined, which hints at a rigorous route to quantisation.

This classical resolution is possible because we relax the requirement that our physical system consists of a
pseudo-Riemannian geometry at all times. With the elimination of scale from our system we form a physical
entity which, away from the singularity, can always be embedded within a pseudo-Riemannian framework
through the additional assignment of scale. However, while this assignment breaks down at the singularity,
crucially the integrability of the equations of motion does not. Therefore within this framework the singularity
is not an endpoint of physics, but rather a point at which the pseudo-Riemannian description in terms of a
three dimensional spatial manifold with volume is no longer appropriate. The paper is structured as followed.
In section 1.1 we detail the mechanics of contact manifolds, which will be used to describe the phase space
of dynamical systems later on. In section 2.1 we describe dynamical similarities, which deal with the fact
that, physically measurable quantities in cosmology are insensitive to the overall volume ν ∼ a3 represents a
redundancy in the description of the system. The formalism of dynamical similarities will be used to quotient
out the redundancy of the scale factor, moving from the even-dimensional symplectic manifold description
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in canonical ADM General Relativity, to a system defined on an odd-dimensional contact manifold with
no reference to the scale factor. This constitutes the “Contact Reduction” formalism. Section 2.2 gives a
brief overview of the ADM formalism and the homogeneous spacetimes with which we will be concerned.
In sections 2.4 and 2.5 we show that flat FLRW and Bianchi Cosmologies can be contact-reduced to form
dynamical systems that are fully decoupled from scale. In section 3 we show that the equations of motion
of the new contact-reduced systems, when projected to Shape Space satisfy the Picard-Lindelöf theorem in
a neighbourhood of the initial singularity. Thus there exists unique solutions to the equations of motion
that pass smoothly through the singularity. In section 4 we provide numerical solutions to the equations
of motion for all of the cosmologies considered in this paper. In section 5 we discuss the results and how
this formalism fits into the wider literature of attempts to resolve spacetime singularities, particularly with
respect to quantisations of GR.

1.1 Contact Mechanics

Typically Lagrangian systems in physics admit an equivalent Hamiltonian description, defined on a symplec-
tic manifold (M,ω). In GR it is possible, although not trivial, to find such a Hamiltonian description. It is
non-trivial because GR does not admit a natural time parameterisation which is needed for the Hamiltonian
description. Choosing a particular time parameterisation breaks general covariance of the theory. However,
by assuming the spacetime manifold to be globally hyperbolic, so that is has the topology M = R×Σ, where
Σ is a 3-dimensional orientable manifold. The globally hyperbolic spacetime manifold can be foliated by
spacelike hypersurfaces Σt labelled by a parameter t ∈ R. This is the basis for the ADM formalism [20,21],
which provides a Hamiltonian description of GR by considering the evolution of these hypersurfaces with
the parameter t.

The tools of symplectic geometry can be used to write Hamilton’s equations of motion in a coordinate
invariant way, which is obviously useful in the context of the ADM formalism as we will be interested in
dynamics on spatial 3-manifolds Σt. A symplectic manifold (M,ω) is a 2n-dimensional manifold M along
with a non-degenerate, closed 2-form ω called the symplectic structure. If H : M → R is a time-independent
Hamiltonian function on M , then Hamiltons equations of motion are generated by the symplectic form

iXH
ω = dH (1)

Henceforth we shall assume all Hamiltonian functions in this paper to be time independent, but the standard
results can be trivially extended to time-dependent Hamiltonians [22,23]. Typically, we work within a context
where the even-dimensional manifold in question is a cotangent bundle T ∗Q of the configuration space Q.
We may always find local Darboux coordinates (qi, p

i) on the cotangent bundle such that there is a natural
symplectic structure [24,25]

ω = dqi ∧ dpi (2)

and the unique Hamiltonian vector field satisfying 1 is

XH =
∂H

∂pi
∂

∂qi
− ∂H

∂qi

∂

∂pi
(3)

The solutions to Hamiltons equations of motion are then integral curves of the Hamiltonian vector field

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(4)

The natural symplectic form admits a Poisson bracket structure on the cotangent bundle manifold, such
that the time evolution of any smooth function F (qi, p

i) ∈ C∞(M) is given by

dF

dt
= XH [F ] = {F,H} = ω(XF , XH) (5)

Symplectic geometry is concerned with even dimensional manifolds, but in this paper we will make use
of symmetry-reduced models where one degree of freedom, namely the scale factor ν has been removed.
The manifolds on which such systems live are odd-dimensional, so we will need the mechanics of contact
structures [22,23,26].

4



Like a symplectic manifold, a contact manifold (M,η) is a pair consisting of an odd-dimensional manifold
M with dim(M) = 2n+ 1 and a non-degenerate 1-form η called the contact form, satisfying

η ∧ (dη)n ̸= 0 (6)

Physical paths of the system on the contact manifold are again integral curves of a unique Hamiltonian
vector field XH satisfying

−iXH
η = dH −R(H)η, iXH

η = H (7)

where R is the Reeb vector field. This is a unique vector field satisfying

η(R) = 1, dη(R) = 0 (8)

Just as in the symplectic manifold case, if M = T ∗Q × R, where T ∗Q is the cotangent bundle, it is always
possible to find local Darboux coordinates in which the contact form is

η = −dS + pidqi (9)

where (qi, p
i, S) are local coordinates on M . In these local Darboux coordinates, the Reeb vector field is

R = − ∂

∂S
(10)

and the unique Hamiltonian vector field satisfying 7 is

XH =
∂H

∂pi
∂

∂qi
−
(
∂H

∂qi
+ pi

∂H

∂S

)
∂

∂pi
+

(
pi
∂H

∂pi
−H

)
∂

∂S
(11)

The integral curves satisfied by physical paths on the manifold are then

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

− pi
∂H

∂S

Ṡ = pi
∂H

∂pi
−H

(12)

The contact Hamiltonian equations of motion are a natural generalisation of the standard symplectic Hamil-
ton equations of motion. If the contact Hamiltonian is independent of S, one recovers the symplectic
equations of motion for (qi(t), p

i(t)). The time evolution of any smooth functions F ∈ C∞(M) is generated
by a natural Poisson bracket-structure admitted by the Hamiltonian vector field

dF

dt
= XH [F ] = −H∂F

∂S
+ {F,H}(qi,pi) + pi{F,H}(S,pi) (13)

where {·, ·}(q,p) denotes the standard Poisson bracket defined by

{F,G}(q,p) =
∂F

∂q

∂G

∂p
− ∂F

∂p

∂G

∂q
(14)

It is well known that in the symplectic case, the Hamiltonian is conserved along its flow, expressing energy
conservation of the system. Consequently Liouville’s theorem holds and the Lie drag of the symplectic
volume form ωn is zero along the physical paths of the system.

LXH
ωn = 0 (15)

Likewise the symplectic form itself is also conserved

LXH
ω = 0 (16)
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For a contact system this is not necessarily the case that the Lie drag volume form η ∧ (dη)n along the
Hamiltonian vector field is generally conserved. There is however an analogy to the Liouville theorem, the
Lie drag can be shown to be explicitly [27]

LXH
(η ∧ (dη)n) = −(n+ 1)

∂H

∂S
(η ∧ (dη)n) (17)

While the contact form itself is not conserved along Hamiltonian flows, it is conserved along the Reeb
direction LRη = 0, which follows trivially from the definition of the Reeb vector field in eq. 8 and Cartan’s
identity LRη = d(iRη) + iRdη.

From equation 13 one can see that the total time derivative of the Hamiltonian is

dH

dt
= −H∂H

∂S
(18)

the time derivative of the Hamiltonian and Lie drag of the volume form along Hamiltonian flows are both
in general non-zero unless the Hamiltonian is independent of the global phase space coordinate S or H = 0
everywhere.

Just as how in the symplectic case, one can just as equally start with a Lagrangian function L : TQ→ R
such that the physical paths on the manifold satisfy the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (19)

if and only if they are stationary paths of the action

S =

∫
L(qi(t), q̇i(t))dt (20)

and use a Legendre transformation FL : TQ → T ∗Q to go between the Lagrangian and symplectic Hamil-
tonian [28] H(q, p) = piq̇i − L(qi, q̇i), assuming that the Lagrangian is regular and convex.

In the case of contact mechanics, one can start with a Lagrangian function on an odd-dimensional (2n+1)
manifold L : TQ×R → R, and define a contact form ηL. The tangent bundle TQ comes naturally equipped
with a canonical endomorphism E : TQ → TQ, which in the local Darboux coordinates may be expressed
as

E = dqi ⊗
∂

∂q̇i
(21)

This allows the formation of a contact form associated with the Lagrangian.

ηL = −dS + E∗(dL)

= −dS +
∂L

∂q̇i
dqi

(22)

where (qi, q̇i) are the bundle coordinates on TQ and S is global the coordinate on R. On any contact
manifold, there exits a unique Reeb vector field R satisfying

Given the contact form 22, the Reeb vector field satisfying 8 expressed in the local coordinates is

RL = − ∂

∂S
+W ij ∂2L

∂q̇j∂S

∂

∂q̇i
(23)

where W ij is the inverse Hessian

Wij =
∂2L

∂q̇i∂q̇j
(24)

which is assumed to be regular. To achieve the Herglotz equations of motion, which are generalised Euler-
Lagrange equations, one takes the physical paths on the manifold to be the integral curves of a unique
Lagrangian vector field ξL satisfying

IL(ξL) = dEL + [EL −RLEL] ηL (25)

6



where IL is a the vector bundle isomorphism IL : T (TQ×R) → T ∗(TQ×R) admitted by the contact form
ηL

IL(v) = (ivηL)ηL − iv(dηL) (26)

and EL is the scalar energy of the system defined by

EL = q̇i
∂L

∂q̇i
− L (27)

the integral curves of ξL satisfy the Herglotz equations of motion [23,29]

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=
∂L

∂S

∂L

∂q̇i
(28)

which reduce the standard Euler-Lagrange equations for qi and q̇i in the case L(qi, q̇i, S) = L(qi, q̇i). We refer
the reader to appendix A for a more detailed outline of the geometric derivation of the Herglotz equations of
motion, and references [29–31] for it’s derivation from the variational principle. The integral curves satisfy
the Herglotz equations of motion 28 if and only if they are stationary paths of the action.

S =

∫
L(qi, q̇i, S)dt (29)

As one would expect, these two geometric descriptions of the Euler-Lagrange and Hamiltonian equations
of motion are equivalent. Given a contact form η = −dS + pidqi on T ∗Q × R and a Legendre transform
FL : TQ× R → T ∗Q× R of a Herglotz Lagrangian function L(qi, q̇i, S) defined as

FL(qi, q̇i, S) = (qi, p
i, S), pi =

∂L

∂q̇i
(30)

the pullback of η by FL is explicitly

FL∗(η) = −dS +
∂L

∂q̇i
dqi = ηL (31)

thus a Legendre transformation moves between the contact Hamiltonian and contact Lagrangian equations
of motion.

2 Contact Reduction Theory

2.1 Dynamical Similarity

Here we present how scale invariance can be used to reduce a theory from a symplectic manifold to a contact
manifold. For a formal mathematical exposition see [32]. Scale invariance is an important aspect of the
analysis of dynamical systems in cosmology. In any cosmological measurement, the scale factor is never
directly observable as we are only able to infer relative changes. Consider for example the Kepler problem
as in [33]. We consider the Lagrangian of two unit mass particles interacting through Newtonian gravity

L =
1

2
ṙ2 +

1

2
r2θ̇2 +

G

r
(32)

where r is the separation in the centre of mass frame. There exists a coordinate transformation that moves
between indistinguishable solutions of the equations of motion. In particular this coordinate transformation
is a multiplicative rescaling by a non-zero constant λ

r → λr, t→ λ
3
2 t (33)

Under this rescaling, the action

S =

∫
L(r, ṙ, θ̇)dt (34)
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transforms also by a multiplicative rescaling S → λ
1
2S and hence the equations of motion whose solutions

are critical paths of the action δS = 0, remain unchanged. This is an example of a dynamical similarity [17],
which is a scaling symmetry of the dynamical system. As we will see in sections 2.2 and 2.3, Lagrangians of
relevant cosmological models exhibit a dynamical similarity associated with the scale factor. In this section
(2.1) we show how the identification of a dynamical similarity can be used to quotient out a redundant
symmetry of the symplectic phase space, and define a system with equivalent dynamics on a contact manifold
phase space.

Consider a symplectic system with Lagrangian L(qi, q̇i) : TQ→ R and action

S =

∫
L(qi, q̇i)dt (35)

integrated over physical paths γ of the tangent bundle manifold TQ of a configuration space Q, parameterised
by time over some interval I ⊆ R. The physical curves γ on TQ are tangent lifts of curves γ̄ on the
configuration space. In this paper we will consider Lagrangians that have a configuration space scaling
symmetry (CSSS). We define a CSSS to be a vector field D̄ on Q× I such that

• For all curves γ̄ : I → Q whose tangent lifts are stationary paths of the action 35, D̄γ̄ are also stationary
paths of the action.

• DL = ΛL, where Λ ∈ R and D is the tangent lift of the CSSS

The scaling symmetry D̄ moves between curves on configuration space Q, which represent indistinguishable
solutions of the equations of motion as the Lagrangian scales by a multiplicative constant Λ which we call the
degree of the CSSS. The CSSS is defined only up to a non-zero scalar factor, which we may fix by demanding
that D preserves the Lie drag of the Lagrange one-form

LDµL = µL, µL =
∂L

∂q̇i
dqi (36)

Consider a scaling symmetry of one of the configuration space variables x ∈ Q and possibly of the time
coordinate t ∈ I and write the new coordinates under the scaling symmetry as

(x̄, t̄) = (Ax,Bt) = (D̄x, D̄t), D̄ = Dx∂x +Dt∂t (37)

Thus the CSSS can be written locally w.l.o.g. as

D̄ = Ax
∂

∂x
+Bt

∂

∂t
(38)

which has tangent lift acting on the Lagrangian DL = ΛL

D = Ax
∂

∂x
+ (A−B)ẋ

∂

∂ẋ
−Bq̇i

∂

∂q̇i
+Bt

∂

∂t
(39)

where qi ∈ Q are the configuration space coordinates unaffected by the scaling symmetry. We next make a
coordinate and lapse transformation

ρ = x
1
A , dτ = ρ−Bdt (40)

under which the CSSS is isochronal (B = 0) and has tangent lift

D = A

(
x
∂

∂x
+ x′

∂

∂x′

)
∼ x

∂

∂x
+ x′

∂

∂x′
, Normalising A = 1 (41)

where ′ denotes derivatives w.r.t. the new time coordinate τ . We know show that given a Lagrangian function
L : TQ→ R with a CSSS D of degree 1, it is possible to construct a Herglotz Lagrangian LH : TQ×R → R
that describes the same dynamics on TQ/D. Firstly, consider the converse. Let LH(q, q̇, S) be a Herglotz
Lagrangian, and define

L = eρ
(
LH + ρ̇S

)
, ρ = −∂L

H

∂S
(42)
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Since LH is a Herglotz Lagrangian, the physical paths on the manifold satisfy eq 28. Thus one can show
that the original tangent bundle coordinates (q, q̇) satisfy the Euler-Lagrange equations generated by L.

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=

d

dt

(
∂LH

∂q̇

)
− ∂LH

∂q
+ ρ̇

∂LH

∂q̇

=
d

dt

(
∂L

∂q̇
− ∂LH

∂q

)
− ∂LH

∂S

∂LH

∂q̇
= 0

(43)

Thus the dynamics of all (q, q̇) ∈ TQ generated by L and LH are equivalent. Lastly make a change of
coordinate x = eρ, under which the Lagrangian becomes

L = xLH + ẋS (44)

The Lagrangian 44 clearly has a scaling symmetry of degree 1 given by

D = x∂x + ẋ∂ẋ (45)

Now consider the converse, let L : TQ → R be a Lagrangian with the scaling symmetry 45 of degree 1. By
the definition of D we have DL = L thus

x
∂L

∂x
+ ẋ

∂L

∂ẋ
= L (46)

We identify the partial derivatives as

LH =
∂L

∂x
, S =

1

x
iDµL =

∂L

∂ẋ
(47)

where LH(q, q̇, S) : TQ× R can be shown to be a Herglotz Lagrangian with equivalent dynamics to L. The
physical paths satisfy the Euler-Lagrange equations generated by L, which can be written in terms of LH .

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0

=⇒ x
d

dt

(
∂LH

∂q̇

)
− x

∂LH

∂x
− LHδx,q + Ṡδẋ,q̇ − x

∂LH

∂S

∂LH

∂q̇
= 0

=⇒ d

dt

(
∂LH

∂q̇

)
− ∂LH

∂q
− ∂LH

∂S

∂LH

∂q̇
= 0

(48)

Thus the physical paths also satisfy the Herglotz equations of motion generated by LH on the symmetry
reduced manifold TQ/D.

2.2 Cosmological Space-times

In this section we present a brief review of the ADM formalism of General Relativity and cosmological
spacetimes of interest in this paper, namely Bianchi (I and IX) and flat FLRW. We refer the reader to [21]
for more detail.

Within the framework of General Relativity, spacetime is assumed to be a 4-dimensional Lorentzian
differentiable manifold M with metric gµν . The manifold is assumed to be globally hyperbolic, so that it
has the topological structure of R × Σ where Σ is a spatial 3-manifold. Since M is globally hyperbolic, it
can be foliated by such spacelike hypersurfaces. The full spacetime metric may be decomposed as

gµν =

(
NiN

i −N2 Nj

Ni γij

)
(49)

where the shift vector N i, lapse function N and spatial 3-metric γij fully determine the 4-dimensional
spacetime metric gµν .
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With the 3+1 foliation of spacetime described above, one may start with the Einstein-Hilbert action and
decompose it into dynamical variables defined on the 3-geometry

S =

∫
d4x

√
−gR

=

∫
d4xN

√
γ

(
3R(γ) +K2 +KijK

ij − 2∇nK − 2

N
DiDiN

) (50)

where 3R is the Ricci scalar associated with the spatial 3-metric γij , Kij is the extrinsic curvature of the
spatial spatial slice Σt given by

Kij = −γσi γ
ρ
j∇σnρ =

1

2N
(DiNj +DjNi − γ̇ij) (51)

K = γijK
ij is the extrinsic curvature scalar, Di are the spatial covariant derivatives and ∇nK is the covariant

derivative along the normal vector to the spatial 3-manifold nµ, normalised to nµnµ = −1. It is important
to note that the objects γij , Kij and Di are non-zero only on the spatial 3-manifold and therefore only have
Latin subscripts. The action in eq. 50 is equivalent to

S =

∫
d4xN

√
γ
[
3R(γ) +KijK

ij −K2
]

(52)

up to boundary terms that have no effect on the equations of motion as their variation can be set to zero.
Thus we have the Einstein-Hilbert Lagrangian

L = N
√
γ
[
3R(γ) +KijK

ij −K2
]

(53)

from which we may find the conjugate momenta of the dynamical variables {N,N i, γij}. Firstly one sees
immediately that the lapse N and shift vector N i have no conjugate momenta as their velocities do not
enter into the Lagrangian. We will see that the lapse and shift vector actually turn out to be non-dynamical
variables, as variation of the action with respect to them results in constraint relations which are fundamental
to the Hamiltonian description of GR. On the other hand, the conjugate momenta to the spatial 3-metric is
given by

πij =
∂L
∂γ̇ij

=
√
γ
(
Kγij −Kij

)
(54)

The Hamiltonian density can then be obtained from a Legendre transform H = πij γ̇ij − L, giving the
Hamiltonian

H =

∫
Σt

d3xH =

∫
Σt

d3xN

[
1
√
γ

(
πijπij −

1

2
π2

)
−√

γ
3
R(γ)

]
+ 2

∫
Σt

d3xπijDiNj (55)

The term in the second integral of eq 55 can be written in terms of a spatial covariant derivative of πij up
to a boundary term which we may neglect. Thus the Hamiltonian that is conventionally presented in the
ADM literature is

H =

∫
Σt

d3xN

[
1
√
γ

(
πijπij −

1

2
π2

)
−√

γ
3
R(γ)

]
− 2

∫
Σt

d3xN iDjπij (56)

As usual, the physical paths on the solution space are the stationary paths of the action. Requiring the
variation of the action 52 with respect to the lapse and shift vector produces

√
γ
3
R(γ) = KijK

ij −K2 =
1
√
γ

(
πijπij −

1

2
π2

)
= 0 (57)

Diπij = 0 (58)
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respectively. These are constraint equations which must be satisfied by solutions to the equations of motion.
The first constraint eq 57 is known as the Hamiltonian constraint and eq 58 is the diffeomorphism constraint.
The expression of the ADM Hamiltonian 55 can be written in terms of the constraints by defining

H[N ] =

∫
Σt

d3xN

[
1
√
γ

(
πijπij −

1

2
π2

)
−√

γ
3
R(γ)

]
≈ 0 (59)

D[N i] = −2

∫
Σt

d3xN iDjπij ≈ 0 (60)

Where ≈ 0 denotes zero for solutions of the equations of motion which lie on the spacelike hypersurfaces Σt.
Thus the Hamiltonian is written as

H = H[N ] + D[N i] ≈ 0 (61)

In this sense the lapse function and shift vector are non-dynamical Lagrange multipliers. The spatial 3-metric
γij and conjugate momentum πij satisfy Hamiltons equations of motion

γ̇ij =
∂H
∂πij

, πij = − ∂H
∂γij

(62)

2.3 Homogeneous Cosmologies

In this paper we will be concerned with spatially homogeneous cosmological spacetimes. The isomotries of
a spatially homogeneous but not necessarily isotropic spacetime are captured by the Bianchi classification
[21, 34, 35], which we will describe briefly here. A spatially homogeneous spacetime M = R × Σ is one for
which there exists a Lie group G such that for any point p on the spatial 3-manifold, every point q ∈ Σt

lies in the group orbit of p. In other words, ∀p, q ∈ Σt there exists a unique g ∈ G such that q = g(p). the
group isomotries on the spatial manifold have 3-independent Killing vector fields ξa as their infinitesimal
generators satisfying the commutation relation

[ξa, ξb] = Cc
abξc (63)

where Cc
ab are the structure constants of the Lie group G. Up until this point we have worked in a coordinate

basis ei = ∂i, e
i = dxi. Note that where the spatial slice is non-compact, we replace Σt with a fiducial cell -

a compact region within the spatial slice which encodes all information due to homogeneity. The existence
of the Killing vector fields on a homogeneous spacetime implies the existence of a non-coordinate basis ea
satisfying the same commutation relation as the Killing vector field

[ea, eb] = Cc
abec (64)

that is invariant under the group action generated by the Killing vector fields. The Bianchi classification is
thus the identification of all (inequivalent) Lie groups of dimension 3. This classification is of course well
known and has been studied extensively in the literature. Type A Bianchi cosmologies are those which
admit a Hamiltonian description and are thus the only ones we will be concerned with in this paper. Their
structure constants may be decomposed as

Cc
ab = ϵabdC

dc (65)

where ϵabd is the Levi-Civita symbol and Cdc is a symmetric matrix, fully characterised by its eigenvalues
n1, n2, n3 ∈ {−1, 0, 1}. In this paper we will be concerned with the Bianchi I and Bianchi IX models which
are described by the eigenvalues ni = 0 and ni = 1 respectively.
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In the case of a Bianchi I cosmology, the structure constants are all identically zero and the invariant
basis coincides with the coordinate basis. The Hamiltonian constraint in this case can be written as

H[N ] =

∫
Σt

d3xN

[
1
√
γ

(
πijπij −

1

2
π2

)]
(66)

as the 3-Ricci scalar is everywhere zero. The invariant basis coinciding with the coordinate basis also means
that the diffeomorphism constraint is satisfied trivially.

D[Na] = −2

∫
Σt

d3xNaDbπab(t) = 0 (67)

Thus the Bianchi I Hamiltonian can be written as

HBI =
n
√
γ

(
1

2
πabπab −

1

2
π2

)
(68)

where n =
∫
Σt
d3xN is the lapse function spatially integrated over the fiducial cell. The integration over the

fiducial cell takes us from field theory of GR with an infinite number of degrees of freedom (although a finite
number per point), to a particle theory with a finite number of degrees of freedom. This is a non-dynamical
Lagrange multiplier and so can be set to unity without loss of generality. The remaining degrees of freedom
can be used to work in the Taub gauge where the metric and it’s conjugate momentum are diagonal. In
particular we choose

γab = α diag
(
e
−x+ y√

3 , e
x+ y√

3 , e
− 2√

3
y
)

(69)

πab = α−1 diag

[(
−px

2
+

py

2
√

3
+D

)
e
x− y√

3 ,

(
px
2

+
py

2
√

3
+D

)
e
−x− y√

3 ,

(
− py√

3
+D

)
e

2√
3
y

]
(70)

where α is an overall scale factor and x, y are the Misner anisotropy parameters with conjugates D, px and
py respectively. In this choice of variables the Bianchi I Hamiltonian becomes

HBI = α− 3
2

[
1

2

(
p2x + p2y

)
− 3

2
D2

]
(71)

To this Hamiltonian into the form that is conventionally used in the literature we make a final change of
variables

α = ν
2
3 , D =

ντ

2
(72)

where ν is the volume factor and it’s conjugate momentum τ is the known as the York time. In these
variables, the Bianchi I Hamiltonian is

HBI = ν−1

[
−3

8
ν2τ2 +

1

2

(
p2x + p2y

)]
(73)

The Bianchi IX cosmology is not as straightforward, as in this case the structure constants are given by
the Levi-Civita symbol Cc

ab = ϵcab. A choice of the invariant 1-form basis in terms of the coordinate basis is
given by

ω1 = − sin r dθ + cos r sin θ dϕ

ω2 = − cos r dθ − sin r sin θ dϕ

ω3 = dr + cos θ dϕ

(74)

Where (r, θ, ϕ) are spherical coordinates. The Hamiltonian and diffeomorphism constraints from eq 59
and 60 (which are written in the coordinate basis) become

H[N ] =

∫
Σt

d3x
N sin θ
√
γ

[
Trγ2 − 1

2
(Trγ)

2
+ πabπab −

1

2
π2

]
(75)

D[Na] = −2

∫
Σt

d3xNa sin θϵcabπ
bcγbc (76)
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Just as in the Bianchi I case, the spatially integrated lapse function can be packaged into a variable n

n =

∫
Σt

d3xN sin θ (77)

which enters as a Lagrange multiplier, and thus the overall factor of n can be set to unity in both the
Hamiltonian and diffeomorphism constraint giving

H =
1
√
γ

(
Trγ2 − 1

2
(Trγ)

2
+ πabπab −

1

2
π2

)
≈ 0 (78)

N = −2ϵcabπ
bcγbc ≈ 0 (79)

The diffeomorphism constraint can be written in terms of a commutator that strongly suggests the same
gauge fixing should as in the Bianchi I case should be used here

[πac, γcb] ≈ 0 (80)

To this end we impose the Taub gauge where the 3-metric and conjugate momentum are diagonal and choose
the same Misner anisotropy parameter variables as in eq’s 69 and 70. Following the same transformation of
variables one arrives at the Bianchi IX ADM Hamiltonian

HBIX = ν−1

[
−3

8
ν2τ2 +

1

2
(p2x + p2y) + ν

4
3Vs(x, y)

]
(81)

where the function Vs(x, y) is the “shape potential” given by

Vs(x, y) = f(−
√

3x+ y) + f(
√

3x+ y) + f(−2y)

f(z) =
1

2
e
√

2
3 z − e

− z√
6

(82)

The shape potential originates from the 3-Ricci scalar on the spatial hypersurface, which in the chosen
coordinates is simply the volume factor multiplied by a “scale-free” part 3R(γ) = ν−

2
3Vs(x, y). There is an

important comparison between the Bianchi IX and Bianchi I Hamiltonian. One may view the Bianchi IX
Hamiltonian as determining the dynamical evolution of a massless particle in 2-dimensions (x, y) under a
potential Vs(x, y). The Bianchi I cosmology can be seen as the potential-free case of a Bianchi IX evolution
(or vice-versa with Bianchi IX being viewed as Bianchi I evolution under a particle potential).

2.4 FLRW

In section 2.1 we established that it is possible to reduce the standard symplectic description of a system to a
contact one when there exists a scaling symmetry D such that the Lie drag of the Lagrangian moves between
indistinguishable solutions LDΛL = ΛL. In this section we will describe the process of contact-reducing the
flat (k = 0) FLRW (+ free massless scalar field) Lagrangian by removing a redundant, non-physical degree
of freedom, the volume factor ν leaving a dynamical system which is described in therms of the physical
relational quantities such as the Hubble factor ν′/ν. We start by considering the action of a scalar field
minimally coupled to the FLRW metric

S =

∫
R

∫
Σt

d4x
√
−g
(
R+

1

2
ϕ̇2 − V (ϕ)

)
(83)

where the spacetime M = R×Σt is foliated by spacelike hypersurfaces Σt. The metric gµν is the FLRW
metric with line element ds2 = −dt2 +a(t)2(dx2 +dy2 +dz2). This is a homogeneous and isotropic universe.
The condition of isotropy will later be dropped to study Bianchi cosmologies.

The Ricci scalar associated with the FLRW metric is

R = 6

[
ä

a
+

(
ȧ

a

)2
]

(84)
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In terms of the volume factor ν(t) = a(t)3 the action is

S =

∫
d4x ν

[(
ν̇

ν

)2

+
1

2
ϕ̇2 − V (ϕ)

]
(85)

As is customary, we have set to zero the boundary term due to ν̈. The Lagrangian

L = ν

[
−2

3

(
ν̇

ν

)2

+
1

2
ϕ̇2 − V (ϕ)

]
(86)

exhibits a scaling symmetry of the volume factor

ν = λν̄ =⇒ L = λν̄

[
−2

3

(
˙̄ν

ν̄

)
+

1

2
ϕ̇2 − V (ϕ)

]
= λL̄, λ ∈ R/{0} (87)

The CSSS that generates this scaling symmetry is D̄ = ν∂ν with tangent lift D = ν∂ν + ν̇∂ν̇ By acting
on the Lagrangian with D one sees clearly that this is already a scaling symmetry of degree 1 (therefore no
coordinate transformations are required before forming the Herglotz Lagrangian). As per section 2.1, there
exits a Herglotz Lagrangian LH given by eq 47 which describes the same physics as L on the symmetry-
reduced contact manifold TQ/D. In the following sections we will switch notation from S → h to describe
the global coordinate on the contact manifold.

h =
1

ν
iDµL = −4ν̇

3ν

LH(q, q̇, h) =
∂L
∂ν

=
3

8
h2 +

1

2
ϕ̇2 − V (ϕ)

(88)

The contact Hamiltonian given by the Legendre transformation and contact form are

Hc = −3

8
h2 +

1

2
p2ϕ + V (ϕ), η = −dh+ pϕdϕ (89)

In the contact formalism, scalar field has been decoupled from the redundant scale factor variable in the
symplectic system, however this still does not make (h, ϕ) the correct choice of coordinates to describe the
manifold geometry near the Big Bang singularity. These variables still diverge as we approach the Big Bang.
We will show in section 3 that making a compactification onto shape space provides a suitable description in
which the dynamical variables, contact form and Hamiltonian are well defined through the Big Bang. The
Herglotz equations of motion for the Lagrangian 88 are

d

dt

(
∂LH

∂ϕ̇

)
− ∂LH

∂ϕ
=
∂LH

∂h

∂LH

∂ϕ̇
=⇒ ϕ̈+ ∂ϕV =

3

4
hϕ̇ (90)

ḣ = LH =⇒ ḣ =
3

8
h2 +

1

2
ϕ̇2 − V (ϕ) (91)

In this example it’s quite clear how a contact manifold is a useful description of frictional systems. The
equation of motion for ϕ(t) 90 can be seen as a driven harmonic oscillator with a time dependant frictional
term h(t). In this case the oscillator is being driven by its potential V (ϕ) with friction generated by the
Hubble factor h(t).

In the potential-free case these equations can be solved exactly, with solution

h(t) = − 4

3t
, ϕ(t) = ϕ0 +

2√
3

ln |t| (92)

It is explicitly clear that there still exits a divergence of the dynamical variables as we reach the big bang
at t → 0. In the shape space representation, the dynamical variables of the contact Hamiltonian/Herglotz
Lagrangian will remain well defined.
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2.5 Bianchi

2.5.1 Vacuum Bianchi

The ADM Hamiltonian of a type A Bianchi cosmology with shape potential Vs(x, y) is given by [21,36,37]

HB = ν−1

[
−3

8
ν2τ2 +

1

2

(
p2x + p2y

)
+ ν

4
3Vs(x, y)

]
(93)

where (x, y) are the anisotropy parameters with conjugate momenta ki, ν is the scale factor with conjugate
τ (York time). For Bianchi I the shape potential is everywhere zero and for Bianchi IX it is given by

Vs(x, y) = f(−
√

3x+ y) + f(
√

3x+ y) + f(−2y)

f(z) =
1

2
e
√

2
3 z − e

− z√
6

(94)

whilst Bianchi cosmologies are most easily studied in the Hamiltonian/ADM formalism, for the purpose of
applying the contact-reduction scheme outlined in section 2.1 we will use Lagrangian given by the Legendre
transformation

L = ν

[
−2

3

(
ν̇

ν

)2

+
1

2

(
ẋ2 + ẏ2

)
− ν−

2
3Vs(x, y)

]
(95)

In the Bianchi I case Vs = 0 the Lagrangian reduces to

L = ν

[
−2

3

(
ν̇

ν

)2

+
1

2

(
ẋ2 + ẏ2

)]
(96)

which is identical in form to the FLRW Lagrangian except we have the anisotropy parameters as our dynam-
ical variables rather than a scalar field. Contact-reducing this Lagrangian thus follows the exact same steps
as in part 2.2. For this section we will show the contact-reduction with the general non-zero shape potential.
starting with the Bianchi Lagrangian eq 95, we see that there is a scaling symmetry ν = λν̄, t = λβ t̄ under
which the Lagrangian transforms as

L = λν̄

[
−2

3
λ−2β

(
ν̄′

ν̄

)2

+
1

2
λ−2β(x′2 + y′2) − λ−

2
3 ν̄Vs(x, y)

]
, q′ =

dq

dt̄
(97)

We require β = 1/3 in order for the shape potential term to scale the same with λ as the other two terms in
the brackets. Making the CSSS vector field

D̄ = ν
∂

∂ν
+

1

3
t
∂

∂t
(98)

The CSSS is only defined up to a non-zero constant factor, so with foresight we will choose to work with

D̄ =
3

2
ν
∂

∂ν
+

1

2
t
∂

∂t
(99)

which has tangent lift

D =
3

2
ν
∂

∂ν
+ ν̇

∂

∂ν̇
− 1

2
ẋ
∂

∂ẋ
− 1

2
ẏ
∂

∂ẏ
+

1

2
t
∂

∂t
(100)

This is a non-isochronal scaling symmetry with degree 1/2, therefore we require a coordinate transformation
and reparameterisation of the time variable in order to form an isochornal, degree 1 scaling symmetry.
Consider the transformation ρ = ν

2
3 , dτ = ρ−

1
2 dt under which the action becomes

S =

∫
L(ν, ν̇,x, ẋ)dt =

∫
ρ

[
−3

2

(
ρ′

ρ

)2

+
1

2
(x′2 + y′2) − Vs(x, y)

]
dτ, q′ =

dq

dτ
(101)
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We identify the transformed Lagrangian

L = ρ

[
−3

2

(
ρ′

ρ

)2

+
1

2
(x′2 + y′2) − Vs(x, y)

]
(102)

which clearly has a scaling symmetry D = ρ∂ρ + ρ′∂ρ′ of degree 1. Thus there is a Herglotz Lagrangian LH

on TQ/D given by

h =
1

ρ
iDµL =

∂L
∂ρ′

= −3
ρ′

ρ

LH(x, ẋ, h) =
∂L
∂ρ

=
1

6
h2 +

1

2
(x′2 + y′2) − Vs(x, y)

(103)

In this contact manifold description, the volume factor of the universe becomes decoupled in the Lagrangian
from the anisotropy parameters and shape potential. Herglotz equations of motion for this system are similar
in form to those of the FLRW with scalar field in section 2.2, but with a shape potential of the anisotropy
parameters rather than a scalar field potential. The Kasner universe is the vacuum Bianchi I cosmology,
which corresponds to the potential-free case Vs = 0 for which the equations of motion reduce to (we now use
the ordinary q̇ to denote time derivatives rather than q′)

ḣ =
1

6
h2 +

1

2

(
ẋ2 + ẏ2

)
q̈ =

1

3
hq̇, q = x, y

(104)

These equations can be solved analytically, with solutions

h(t) = −3

t
(105)

q(t) = q0 + Cq ln |t|,
∑
q

C2
q = 3 (106)

At this point we note that, whilst the quantities h(t), x(t), y(t) may diverge as t→ 0, relational quantities
like x(t)/y(t) remain finite, as well as

h(t)e
− 1

2

∑
q

q(t)
Cq (107)

This will motivate our choice of variables when we project the system onto shape space in section 3.
Once the Herglotz Lagrangian has been obtained it is possible to move to the contact Hamiltonian

representation by a Legendre transformation

Hc = −1

6
h2 +

1

2

(
p2x + p2y

)
+ Vs(x, y) (108)

with contact form
η = −dh+ pxdx+ pydy (109)

The Hamiltonian representation will be used in making the projection to shape space in section 3.

2.5.2 Minimally Coupled Scalar Field

The case of a scalar field minimally coupled to a Bianchi cosmology changes the procedure slightly, since the
scalar field potential V (ϕ) couples to the scale factor differently to the shape potential Vs(x, y)

L = ν

[
−2

3

(
ν̇

ν

)2

+
1

2
ϕ̇2 +

1

2

(
ẋ2 + ẏ2

)
− ν−

2
3Vs(x, y) − V (ϕ)

]
(110)

In the case of Bianchi I, the shape potential is everywhere zero and thus the Lagrangian reduces to a form
that immediately has a scaling symmetry of degree 1 associated with the scale factor ν. Therefore the exact
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same procedure may be followed in section 2.2, whereby the contact Hamiltonian for Bianchi I + matter is
given by

Hc
BI = −1

6
h2 +

1

2
(p2x + p2y) +

1

2
p2ϕ + V (ϕ) (111)

For Bianchi cosmologies with a shape potential that is not everywhere zero, the scaling symmetry we pre-
viously identified in section 2.2.1 ν = λν̄, t = λ

1
2 t̄ is not a symmetry for this Lagrangian in eq 110. However,

the scaling symmetry can be restored by introducing a velocity term k̇ and forming a new Lagrangian

L∗ = ν

[
−2

3

(
ν̇

ν

)2

+
1

2
ϕ̇2 +

1

2

(
ẋ2 + ẏ2

)
− ν−

2
3Vs(x, y)

]
−
√
νk̇V (ϕ) (112)

The new variable k is a cyclic coordinate with constant momentum, it is possible to choose an appropriate
boundary condition for k̇ such that the equations of motion generated by L coincide with those generated by
the new Lagrangian L∗. The advantage of working with L∗ is that it has the scaling symmetry we require in
order to make a contact-reduction. The equations of motion generated by the original Lagrangian 110 are

−4

3

d

dt

(
ν̇

ν

)
=

2

3

(
ν̇

ν

)2

+
1

2

(
ẋ2 + ẏ2

)
+

1

2
ϕ̇2 − 1

3
ν

1
3Vs − V (ϕ)

d

dt
(νq̇) = −ν 1

3 ∂qVs, q = x, y

d

dt

(
νϕ̇
)

= −ν∂ϕV (ϕ)

(113)

and the equations of motion generated by the new Lagrangian L∗ are

−4

3

d

dt

(
ν̇

ν

)
=

2

3

(
ν̇

ν

)2

+
1

2

(
ẋ2 + ẏ2

)
+

1

2
ϕ̇2 − 1

3
ν

1
3Vs

d

dt
(νq̇) = −ν 1

3 ∂qVs, q = x, y

d

dt

(
νϕ̇
)

= −1

2

√
νk̇

V (ϕ)
∂ϕV (ϕ)

C = −1

2

√
νV (ϕ)

k̇
, C = constant

(114)

One can see that choosing the boundary condition C = − 1
4 restores the original equations of motion.

Choosing a boundary condition on 4k̇ = C−2V (ϕ)ν is equivalent to choosing an overall scale of the potential
field potential V (ϕ), which would have to be chosen in order to specify a solution. So while it may appear
at first that the new Lagrangian L∗ requires additional information to specify a solution compared to L, in
in fact does not, only the choice in scale of the potential is made explicit through k̇, rather than implicit in
the definition of V (ϕ). The new Lagrangian L∗ now generates the same dynamics as the original in eq 110

whilst retaining the desired scaling symmetry ν = λν̄, t = λ
1
3 t̄. Choosing to work with the CSSS

D̄ =
3

2
ν
∂

∂ν
+

1

2
t
∂

∂t
(115)

we have the tangent lift

D =
3

2
ν
∂

∂ν
+ ν̇

∂

∂ν̇
− 1

2
ẋ
∂

∂ẋ
− 1

2
ẏ
∂

∂ẏ
− 1

2
ϕ̇
∂

∂ϕ̇
− 1

2
k̇
∂

∂k̇
+

1

2
t
∂

∂t
(116)

We again make a coordinate transformation and reparameterisation of the time coordinate under

ρ = ν
2
3 , dt = ρ−

1
2 dτ (117)
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which the action transforms as

S =

∫
L∗dt =

∫
ρ

[
−3

2

(
ρ′

ρ

)2

+
1

2

(
x′2 + y′2

)
+

1

2
ϕ′2 − Vs(x, y) −

√
k′V (ϕ)

]
dτ (118)

and identify the transformed Lagrangian as

L = ρ

[
−3

2

(
ρ′

ρ

)2

+
1

2

(
x′2 + y′2

)
+

1

2
ϕ′2 − Vs(x, y) −

√
k′V (ϕ)

]
(119)

This has scaling symmetry D = ρ∂ρ + ρ′∂ρ′ of degree 1, hence there is a Herglotz Lagrangian given by

h =
1

ρ
iDµL = −3

ρ′

ρ

LH =
∂L
∂ρ

=
1

6
h2 +

1

2

(
x′2 + y′2

)
+

1

2
ϕ′2 − Vs(x, y) −

√
k′V (ϕ)

(120)

The contact Hamiltonian obtained from a Legendre transformation and contact form are

Hc = −1

6
h2 +

1

2

(
p2x + p2y

)
+

1

2
p2ϕ + Vs(x, y) − V (ϕ)

4pk

η = −dh+ pkdk + pϕdϕ+ pxdx+ pydy

(121)

The cast the Hamiltonian into the form that will be used for the shape space projection, we make one last
parity transformation of the pk momentum and absorb the factor constant factor 4pk → −pk so that we may
work with a positive pk. Thus we arrive at

Hc = −1

6
h2 +

1

2

(
p2x + p2y

)
+

1

2
p2ϕ + Vs(x, y) +

V (ϕ)

pk

η = −dh− 1

4
pkdk + pϕdϕ+ pxdx+ pydy

(122)

We now have contact Hamiltonians for FLRW + scalar field, vacuum Bianchi and Bianchi + scalar field
cosmologies. Although the overall scale factor of the universe ν(t) is decoupled from the dynamical variables
in the contact description, as demonstrated through the cases of potential-free FLRW and Kasner solutions,
the dynamical variables still diverge at the initial singularity. There is no apriori reason why this choice of
coordinates on the contact manifold should be a suitable one for describing the universe at the Big Bang.
In section 3 we will outline a procedure that projects the system onto shape space. We will then prove
that the equations of motion have unique solutions in a neighbourhood of the initial singularity via the
Picard-Lindelöf theorem.

3 Shape Space Projection and Proof of Existence and Uniqueness
Through β = π/2

In the following section we will take the symmetry-reduced models of FLRW and Bianchi I and IX on
contact manifolds, and describe the procedure for projecting them onto shape space. The configuration space
coordinates of the symplectic systems that one starts with have as their spatial manifolds, Σ n-dimensional
real space Rn. In forming the contact system, this space is quotiented by a scaling symmetry resulting in
n-dimensional real-projective space RPn. An important property of the gnomonic projection is that it maps
straight lines in the plane to great circles on the sphere. Thus we see the geodesic motion of a free particle
in the plane represented by a great circle in shape space coordinates. For a concrete example of this, we
refer the reader to appendix C.

The projection onto shape space of the contact Hamiltonian systems under consideration is a gnomonic
projection of the dynamical variables in RPn onto the unit sphere Sn. The dimensionality n will depend
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on the number of dynamical variables. The gnomonic projection constitutes of a compactification of RPn

onto an n sphere. In choosing the sign of the triads used to describe the geometry, we implicitly decide on
an orientation of the manifold, which does not affect the physical dynamics. The gnomonic projection maps
points on the surface of an n-sphere to a tangent plane at one of the poles by drawing a straight line from the
centre of the sphere through the surface point and intersects it with the plane. We must form a double cover
in order to describe both orientations of the real projective space. In n = 2 dimensions, this consists of two
distinctly oriented tangent planes at antipodal points of an S2 surface. The gnomonic projection maps the
asymptotic boundaries of the planes to the equator of the sphere, forming a border between the two planes.

We first consider the cases of FLRW with one and then two scalar fields and show how the compactification
to shape space works in the simplest cases. Once the Hamiltonian has been written in shape space variables,
we show that there exist unique, smooth solutions to the equations of motion at the big bang, which is
mapped to the equator of Sn under the gnomonic projection. We then progress to the Bianchi I and IX
cosmologies at show the same result.

3.1 FLRW + 1 scalar field

We start with the contact Hamiltonian and contact form derived in eq 89 for FLRW + a minimally coupled
scalar field

Hc = −3

8
h2 +

1

2
p2ϕ + V (ϕ)

η = −dh+ pϕdϕ
(123)

Consider the mapping of ϕ on the real line onto S1 through a gnomonic projection

ϕ = | tanβ| (124)

Under the gnomonic projection, the initial singularity is mapped to |β| = π/2. We will also make a trans-
formation of the Hubble factor h(t).

h = sem+a| tan β|, s = Sign(tanβ), a = constant (125)

Although we expect h(t) to diverge as we approach the singularity, the global coordinate m(t) will tend to
a finite value. Next we compute the transformed contact form

η = −h
(
dm+ sa sec2 βdβ

)
+ spϕ sec2 βdβ (126)

We may divide both the contact form, and shortly the Hamiltonian by a non-zero factor, as this is equivalent
to making a change of lapse. In particular we choose

η → η

sh
= −sdm+

(pϕ
h

− a
)

sec2 βdβ

= −sdm+ (sχ− a) sec2 βdβ
(127)

where we have defined χ = pϕ/|h|. From the contact form 127, the pβ momentum associated with β can be
identified as

pβ (sχ− a) sec2 β (128)

In these new variables the contact Hamiltonian is

Hc =
1

2
h2
(
p2β cos4 β + 2apβ cos2 β + a2 − 3

4

)
+ V (ϕ) (129)

The constant a may be set freely, a convenient choice of a =
√

3/2 cancels the constant term in eq 129 which
diverges like h2. Finally, choosing to divide the contact Hamiltonian by a factor of h2 cos2 β (equivalent to
a change of lapse) we arrive at the shape space Hamiltonian for FLRW + a minimally coupled scalar field

H =
Hc

h2 cos2 β
=

1

2
p2β cos2 β +

√
3

2
pβ + U(β)e−2m

U(β) = V (β)e−
√
3| tan β| sec2 β

(130)
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Heuristically, we see that provided the potential V (β) does not grow faster than the exponential factor

e−
√
3| tanβ|, any divergence from the potential and the sec2 β factor as β → π/2 will be exponentially

suppressed, keeping U(β) finite at the initial singularity. The contact Hamiltonian equations of motion for
this system 12 are

β̇ = pβ cos2 β +

√
3

2

ṗβ = p2β cosβ sinβ + (2sUpβ − ∂βU) e−2m

ṁ = −s

(√
3

2
pβ + 2Ue−2m

) (131)

Where in the last line we have used the fact that the ADM Hamiltonian of general relativity satisfies the
constraint H := 0 on the spacial hypersurfaces Σt. In the potential free-case this system of ODE’s can be
solved exactly. Firstly the Hamiltonian constraint must be satisfied at all times.

1

2
p2β

(
pβ cos2 β +

√
3
)

= 0 (132)

Thus there is one non-physical diverging solution pβ = −
√

3 sec2 β and one that remains finite at the initial
singularity pβ = 0. Although in this case the finite solution is a constant pβ = 0, we will show shortly that
this not need the case, one may have a finite solution with non-zero potential and momentum. The pβ = 0
solution gives

β̇ =

√
3

2
, =⇒ β(t) = β0 +

√
3

2
t

ṁ = 0 =⇒ m(t) = m0

(133)

Thus we reach the initial singularity at β = π/2 in finite proper time. At this point the dynamical variables,
Hamiltonian and contact form remain finite and well defined. In the next section 2.2, we will prove in detail
that the Picard-Lindelöf theorem is satisfied in a neighbourhood of β = π/2.

3.2 FLRW + 2 Scalar Fields

In anticipation of projecting the vacuum Bianchi contact Hamiltonian, which contains two dynamical fields
x(t) and y(t), we shall first show how the projection to S2 works with a contact FLRW + 2 scalar fields
cosmology. The contact-reduction results of section 2.2 can be arbitrarily extended to n scalar fields in the
usual way. The field ϕ is simply replaced with a vector of fields ϕ and ϕ̇2 becomes the Euclidean norm

squared of ϕ̇. The contact Hamiltonian for FLRW + 2 scalar fields is thus

Hc = −3

8
h2 +

1

2

(
p21 + p22

)
+ V (ϕ1, ϕ2) (134)

In section 3.1 we had a single field and made a gnomonic projection of the real (projective) line onto S1,
here there are two fields and thus it required a gnomonic projection of RP2 to S2 given by(

ϕ1
ϕ2

)
= | tanβ|

(
cosα
sinα

)
(135)

and a projection of the momenta into polar coordinates(
p1
p2

)
= p

(
cos θ
sin θ

)
(136)

We make the same transformation of the Hubble factor as in eq 125, but now with the foresight to fix
a =

√
3/2

h = sem+
√

3
2 | tan β|, s = Sign(tanβ) (137)
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The contact form under this transformation becomes

η = −h

(
dm+ s

√
3

2
sec2 β

)
+ sp cos(θ − α) sec2 βdβ + p sin(θ − α)| tanβ|dα (138)

again defining the variable ratio χ = p/|h| and scaling the contact form by the non-zero factor 1
sh gives

η → η

sh
= −sdm+

[
sχ cos(θ − α) −

√
3

2

]
sec2 βdβ + χ| tanβ| sin(θ − α)dα (139)

and identify the momenta

pβ =

[
sχ cos(θ − α) −

√
3

2

]
sec2 β (140)

pα = χ| tanβ| sin(θ − α) (141)

Returning to the contact Hamiltonian, it is written in terms of the new variables as

Hc = −1

2
h2
(
χ2 − 3

4

)
+ V (α, β) (142)

Once more, rescaling by the non-zero factor h−2 sec2 β, we arrive at the shape space Hamiltonian for FLRW
+ 2 scalar fields

H =
Hc

h2 cos2 β
=

1

2
p2β cos2 β +

√
3

2
pβ +

p2α
2 sin2 β

+ U(α, β)e−2m

U(α, β) = V (α, β)e−
√
3| tan β| sec2 β

(143)

With equations of motion

α̇ =
pα

sin2 β

β̇ = pβ cos2 β +

√
3

2

ṗα = (2sUpα − ∂αU) e−2m

ṗβ = p2β cosβ sinβ + (2sUpβ − ∂βU) e−2m

ṁ = −s

(√
3

2
pβ + 2Ue−2m

)
(144)

Just as with the single field case in section 3.1, we can analyse the potential-free cosmology analytically. In
this case the equations of motion reduce to

α̇ =
pα

sin2 β

β̇ = pβ cos2 β +

√
3

2
pα = constant

ṗβ = p2β cosβ sinβ

ṁ = −s
√

3

2
pβ

(145)

The Hamiltonian constraint H := 0 must also be enforced. For the shape space Hamiltonian 143, we can
think of the constraint as a quadratic equation in pβ

sin2 β cos2 βp2β +
√

3 sin2 βpβ + p2α = 0 (146)
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with solutions

p±β =

√
3

2
sec2 β

(
−1 ±

√
1 − 4

3
p2α cot2 β

)
(147)

At a first glance it may seem that both solutions become undefined at β = π/2 due to the factor of sec2 β,
but if one considers the series expansion of the p+β solutions, valid for tan2 β ≥ 4p2α/3

p+β =

√
3

2
sec2 β

[
−1 +

(
1 − 2p2α cot2 β − 1

2
cot4 β + O(cot6 β)

)]
= − p2α

2
√

3 sin2 β

[
2 +

1

2
p2α cot2 β + O(cot4 β)

] (148)

In the series expansion it is clear that p+β is finite through the initial singularity at β = π/2. Just as pβ has
been parameterised in terms of β in equation 148, we may also look for the solution α(β).

dα

dβ
=
α̇

β̇
=

2pα

sin2 β
√

3 − 4p2α cot2 β
(149)

Equation 149 has the solution
2pα√

3
cotβ = sin[

√
2(α0 − α)] (150)

Thus we have a solution of dynamical variables, Hamiltonian and contact form that remain well defined
through the initial singularity. Furthermore, equation 150 is the equation of a great circle on shape space.
This is to be expected since the potential-free motion corresponds to a straight line in the (ϕ1, ϕ2) plane and
gnomonic projections map straight lines in the plane to great circles on the sphere.

3.3 Bianchi I

3.4 Vacuum Bianchi

We know turn to the case of a contact-reduced vacuum Bianchi spacetime with shape potential Vs(x, y). As
shown in section 2.3, the contact Hamiltonian is given by

Hc = −1

6
h2 +

1

2

(
ẋ2 + ẏ2

)
+ Vs(x, y) (151)

By simply inspecting the Hamiltonian, it is clearly functionally the same as the FLRW + 2 scalar field
Hamiltonian in eq. 134. The projection to shape space thus follows the exact same procedure as that
described in section 3.2, setting a = 1/

√
3 to account for the coefficient of − 1

6 on the Hubble factor. The
shape space Hamiltonian for a vacuum Bianchi cosmology is thus

H =
1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β

+ U(α, β)e−2m

U(α, β) = V (α, β)e
− 2√

3
| tan β|

sec2 β

(152)

with equations of motion

α̇ =
pα

sin2 β

β̇ = pβ cos2 β +
1√
3

ṗα = (2sUpα − ∂αU) e−2m

ṗβ = p2β cosβ sinβ + (2sUpβ − ∂βU) e−2m

ṁ = −s
(

1√
3
pβ + 2Ue−2m

)
(153)
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The Kasner solutions thus correspond to great circles on S2 given by

√
3pα cotβ = sin[2(α0 − α)] (154)

The Picard-Lindelöf theorem states that, given an ordinary differential equation of the form

r′(t) = f(t, r), r(t0) = r0 (155)

there exists a unique, local solution if f(t, r) is continuous in t and locally Lipschitz continuous in r. This
extends to a system of ODE’s

r′i(t) = fi(t, r), ri(t0) = ri0 (156)

where the functions fi(t, r) are required to be continuous in r and locally Lipschitz continuous in ri. The
Picard-Lindelöf theorem applies immediately to the equations of motion 153, the RHS’s are not explicitly
dependant on time and are locally Lipschitz around β = π/2 provided that the potential U(α, β) are its
derivatives are locally bounded around β = π/2. Assuming that the potential satisfies these conditions, there
exists a unique local solution of the equations of motion that continues smoothly through the big bang. In
the case of the vacuum Bianchi I cosmology, this is satisfied trivially as the shape potential is everywhere
zero. However for Bianchi IX the shape potential is such that the exponential suppression in U(α, β) is killed
off exactly. The shape potential is given by

Vs(x, y) =
1

2
e

2√
3
y (
e2x + e−2x

)
− e

− 1√
3
y (
ex + e−x

)
+

1

2
e
− 4√

3
y − e

2√
3
y

(157)

In terms of the shape space coordinates (α, β) this can be written as

Vs(α, β) =
1

2
ef1(α)| tan β| +

1

2
ef2(α)| tan β| − ef3(α)| tan β| − ef4(α)| tan β| +

1

2
ef5(α)| tan β| − ef6(α)| tan β| (158)

The functions fi(α) are given by

f1(α) =
2√
3

sinα+ 2 cosα, f2(α) =
2√
3

sinα− 2 cosα

f3(α) = − 1√
3

sinα+ cosα, f4(α) = − 1√
3

sinα− cosα

f5(α) = − 4√
3

sinα, f6(α) =
2√
3

sinα

(159)

One can see that clearly, some of these functions will surpass fi(α) = 2/
√

3, cancelling the exponential

suppression of e
− 2√

3
| tan β|

in U(α, β).
In figure 1 we plot the functions fi(α) over the entire range 0 ≤ α ≤ 2π. Fro all values of α, there is at

least one functions that is greater than or equal to 2/
√

3. So it is not possible in vacuum Bianchi IX to find
a subset of α ∈ [0, 2π] for which the exponential suppression in U(α, β) is not cancelled out.

The fact that local Lipschitz continuity is not in general satisfied for the Vacuum Bianchi IX cosmology
should not come as a surprise, as it is well known that Bianchi IX cannot achieve quiescence without the
presence of a matter field [21, 37, 38]. The spacetime geometry goes through infinitely many Kasner epochs
before reaching the singularity.

3.5 Bianchi + Scalar Field

Having seen in section in section 3.3 how Lipschitz continuity fails in the case of vacuum Bianchi, we are
now motivated to consider the shape space projection of the contact Bianchi + scalar field Hamiltonians.

The simplest case is that of Bianchi I + scalar field, since the shape potential is everywhere zero. The
contact Hamiltonian for such a system is given by eq. 111

Hc
BI = −1

6
h2 +

1

2
(p2x + p2y) +

1

2
p2ϕ + V (ϕ) (160)
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Figure 1: Plots of the functions fi(α) − 2√
3

for 0 ≤ α ≤ 2π.

with contact form
η = −dh+ pϕdϕ+ pxdx+ pydy (161)

The configuration space variables (ϕ, x, y) are projected onto S3 through the gnomonic projectionϕx
y

 = | tanβ|

 cos γ
sin γ cosα
sin γ sinα

 ,

pϕpx
py

 = p

 cos θ
sin θ cosψ
sin θ sinψ

 (162)

and the Hubble factor is transformed as

h = se
m+ 1√

3
| tan β|

, s = Sign(tanβ) (163)

Under this set of transformations, the rescaled contact form and Hamiltonian become

η → η

sh
= −sdm+ pαdα+ pβdβ + pγdγ (164)

HBI =
Hc

BI

h2 cos2 β
=

1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ Uϕ(β, γ)e−2m

Uϕ(β, γ) = Vϕ(β, γ)e
− 2√

3
| tan β|

sec2 β

(165)

The equations of motion generated by the shape space Bianchi I Hamiltonian 165 are

α̇ =
pα

sin2 β sin2 γ

β̇ = pβ cos2 β +
1√
3

γ̇ =
pγ

sin2 β

ṗα = (2sUϕpα − ∂αUϕ) e−2m

ṗβ = p2β cosβ sinβ +
p2α cosβ

sin3 β sin2 γ
+
p2γ cosβ

sin3 β
+ (2sUϕpβ − ∂βUϕ) e−2m

ṗγ =
p2α cos γ

sin2 β sin3 γ
+ (2sUϕpγ − ∂γUϕ) e−2m

ṁ = −s
(

1√
3
pβ + 2Uϕe

−2m

)

(166)
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The right hand sides of the equations of motion 166 are locally Lipschitz continuous around β = π/2 provided
that the field potential does not grow faster than the exponential suppression in Uϕ(β, γ) i.e.

lim
β→π

2

(
Vϕ(β, γ)e

− 2√
3
| tan β|

)
= 0 (167)

Since the right hand-sides of the equations of motion are locally Lipschitz continuous, by Picard-Lindelöf
there exists a unique local solution to the initial value problem.

In section 2.3.2 the contact Hamiltonian and contact form for a Bianchi cosmology with non-zero shape
potential and field potential is shown to be 122

Hc = −1

6
h2 +

1

2

(
p2x + p2y

)
+

1

2
p2ϕ + Vs(x, y) +

V (ϕ)

pk

η = −dh− 1

4
pkdk + pϕdϕ+ pxdx+ pydy

(168)

This had to be handled differently to the vacuum Bianchi case as the shape potential and field potential
terms scale differently with ν. We now show the projection of this system onto shape space. In doing so, we
will see how the well known conditions for Bianchi IX quiescence translate to the shape space representation.
Beginning with the gnomonic projection of (ϕ, x, y) onto S3, and writing the momenta in terms of polar
coordinates ϕx

y

 = | tanβ|

 cos γ
sin γ cosα
sin γ sinα

 ,

pϕpx
py

 = p

 cos θ
sin θ cosψ
sin θ sinψ

 (169)

along with the transformation

h = se
m+ 1√

3
| tan β|

, s = Sign(tanβ) (170)

and finally we define the variables χ and Ω as

χ =
p

|h|
, Ω = − pk

4|h|
(171)

the rescaled contact form then becomes

η

sh
= −sdm− a sec2 βdβ + Ωdk + χ cos θdϕ+ χ sin θ cosψdx+ χ sin θ sinψdy

= −sdm+ Ωdk + pαdα+ pβdβ + pγdγ
(172)

We identify the shape space momenta as

pα = χ| tanβ| sin γ sin θ sin(ψ − α)

pβ = sec2 β [sχ (cos γ cos θ + sin γ sin θ cos(ψ − α)) − a]

pγ = χ| tanβ| [− sin γ cos θ + cos γ sin θ cos(ψ − α)]

(173)

The re-scaled shape space Hamiltonian is therefore

H =
Hc

h2 cos2 β
=

1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ U(α, β, γ)e−2m +

Uϕ(β, γ)

sΩ
e−3m

U(α, β, γ) = Vs(α, β, γ)e
− 2√

3
| tan β|

sec2 β

Uϕ(β, γ) = Vϕ(β, γ)e−
√
3| tan β| sec2 β

(174)
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The equations of motion generated by the shape space Hamiltonian are

α̇ =
pα

sin2 β sin2 γ

β̇ = pβ cos2 β +
1√
3

γ̇ =
pγ

sin2 β

k̇ = − Uϕ

sΩ2
e−3m

ṗα =

[(
3Uϕ

Ω
e−m + 2sU

)
pα − ∂αU

]
e−2m

ṗβ = p2β cosβ sinβ +
p2α cosβ

sin3 β sin2 γ
+
p2γ cosβ

sin3 β
+

[(
3Uϕ

Ω
e−m + 2sU

)
pβ − ∂βU − e−m

sΩ
∂βUϕ

]
e−2m

ṗγ =
p2α cos γ

sin2 β sin3 γ
+

[(
3Uϕ

Ω
e−m + 2sU

)
pγ − ∂γU − e−m

sΩ
∂γUϕ

]
e−2m

Ω̇ =
(
3Uϕe

−m + 2sΩU
)
e−2m

ṁ = −s
(

1√
3
pβ + 2Ue−2m

)
− 3Uϕ

Ω
e−3m

(175)

The right-hand sides of the equations of motion 175 will be locally Lipschitz continuous around β = π/2
provided that |Ω| > 0, and the potentials U and Uϕ and their derivatives are locally bounded around β = π/2.
One see’s that the conditions on the potentials will be satisfied if Vs and Vϕ do not grow faster than their
exponential suppression. In particular, the condition

lim
β→π

2

(
Vϕ(β, γ)e−

√
3| tan β|

)
= 0 (176)

is the direct translation to shape space of the field potential quiescence condition for mixmaster behaviour
to end in a finite number of bounces in Bianchi IX.

In section 3.4 it was established that in the vacuum Bianchi IX model, for any given value of α, there
was always at least one function fi(α) such that fi(α) − 2/

√
3 ≥ 0 and thus the potential

U(α, β) = sec2β
∑
i

cie

(
fi(α)− 2√

3

)
| tan β|

(177)

diverges at β = π/2. In the case of Bianchi IX + a scalar field, the anisotropy parameters are given by

x = | tanβ| sin γ cosα, y = | tanβ| sin γ sinα (178)

and the potential term in the shape space Hamiltonian 174 becomes

U(α, β, γ) = sec2 β
∑
i

cie

(
fi(α) sin γ− 2√

3

)
| tan β|

(179)

where the functions fi(α) as defined as they were in eq. 159 with coefficients ci. One can now use the
additional degree of freedom γ ∈ [0, π] to ensure exponential suppression at β = π/2. Define the set

M =

{
max

0≤α≤2π
fi(α)|i = 1, 2..., 6

}
(180)

Then the exponential suppression will be retained for any α ∈ [0, 2π] if

sin γ <
2√

3 sup(M)
(181)
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The form of all functions fi(α) are known and the supremum of M is sup(M) = 4/
√

3. Thus we have the
quiescence condition

sin γ <
1

2
(182)

The conditions under which unique solutions passing through the big bang for the various Bianchi (and
FLRW) cosmologies now been established. In the next section we present numerical solutions to the equations
of motion for various example models.

4 Numerical Simulations

In this section we will present numerical solutions to the equations of motion for a variety of the models
discussed in this paper. It will be shown that there exist solutions who pass smoothly through the big bang.
Under the gnomonic projection, the initial singularity of General Relativity is mapped to β = π/2. The
contact Hamiltonians are defined on a contact manifold T ∗Q×R where T ∗Q is an 2n-dimensional cotangent
bundle. The gnomonic projection maps the dynamical variables on T ∗Q to Sn.

4.1 FLRW + 1 Scalar Field

The simplest model we can consider is that of FLRW + 1 scalar field. The gnomonic projection in this case
maps the dynamical variable ϕ onto S1. The shape space Hamiltonian for this model is given by eq.130.

H =
1

2
p2β cos2 β +

√
3

2
pβ + U(β)e−2m

U(β) = Vϕ(β)e−
√
3| tan β| sec2 β

(183)

In section 3.1 it was shown that the free-field solution is exactly solvable, constant, everywhere-zero momen-
tum pβ and linear solution for β(t)

β(t) = β0 +

√
3

2
t (184)

The system reaches the Big Bang in finite coordinate time

ts =
1√
3

(π − 2β0) (185)

We will consider the numerical solution for a scalar field in a harmonic potential. In the shape space
representation this potential is

V (ϕ) =
1

2
ϕ2 =

1

2
tan2 β (186)

The potential function U(β) is locally Lipschitz continuous around β = π/2, and so Picard-Lindelöf is
expected to hold here.

In figure 2 we plot the numerical solution Hamiltonian for the FLRW + scalar field in a harmonic potential
model. The Hamiltonian constraint requires H := 0, this is satisfied within machine precision, in this case
on the order of 10−7. The initial conditions are chosen at t = 0 as

β(0) =
π

8
, pβ =

√
3

2
sec2 β

[
−1 +

√
1 − 8

3
U(β)e−2m cos2 β

]
m(0) = 0

(187)

where the pβ momentum is determined by the Hamiltonian constraint H := 0.
In figure 3 we plot the numerical solution of β(t), transformed so that it intercepts the t-axis exactly when

β = π/2. We see explicitly that the solutions pass through β = π/2 in finite coordinate time. As shown in
eq 185, the time at which the free field system passes through the big bang can be calculated analytically, as
ts ≈ 1.4 for these particular initial conditions. The harmonic potential solutions and free-field solutions lie
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Figure 2: Plot of the numerical solution Hamiltonian for FLRW + Harmonic Potential over the time domain
t ∈ [−1, 8].

Figure 3: Plot of 2
πβ(t) − 1 for both the free field (red, dashed) and harmonic potential (blue) models.

Showing explicitly that both solutions pass through β = π/2 at approximately ts = 1.5.

very close together, particularly near β = π/2 which is to be expected as the potential becomes exponentially
suppressed close to the big bang and thus the harmonic potential model becomes approximately free.

The other dynamical variables for this model are the momentum pβ and frictional global coordinate
m(t). In the free field case the momentum is everywhere zero and m(t) is a constant, which for the initial
conditions 187 is also zero.
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Figure 4: (β, pβ) phase space plot for the numerical solution of the FLRW + harmonic potential model.

The phase space of the numerical solution to the harmonic potential model is plotted in figure 4. The
numerical solution of pβ(β) is π-periodic, with a cyclical structure as the spatial manifold undergoes inversions
of orientation and Sign(tanβ) changes between 1 and -1. The momentum also has the expected characteristic
exponential suppression where | tanβ| → ∞. Most importantly, the momentum is well defined through
β = π/2.

Figure 5: Numerical solution of m(t) for the FLRW + harmonic potential model.

Lastly, we plot in figure 5 the numerical solution for m(t) for the harmonic potential model. This solution
also displays a periodic structure and remains well defined through the big bang.

As well as simple toy models such as a harmonic potential, it is also possible to find numerical solutions
for more complicated potentials, provided that they satisfy the conditions for Lipschitz continuity of U(β).
As an example, consider the Quartic Hilltop potential

VQH(ϕ) = Λ

[
1 − λ

(
ϕ

mpl

)4
]

(188)

which has been of particular interest in inflationary cosmology [39–45]. The parameter λ is required to
be very small, λ ≲ 10−4, in order for the inflationary predictions of the Quartic Hilltop potential to be
consistent with 2018 Planck data [42]. Λ is a constant energy density scale. In shape space the Quartic
Hilltop potential becomes (in units where mpl = 1)

VQH(β) = Λ(1 − λ tan4 β) (189)

The Quartic Hilltop potential is well known to be unbounded below with no stable vacuum. One stabilised
version of the potential which has been investigated in detail is the Quartic Hilltop Squared (QHS) model [41],
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with potential

VQHS(ϕ) = Λ

[
1 − λ

(
ϕ

mpl

)4
]2

VQHS(β) − Λ
(
1 − λ tan4 β

)2 (190)

For both the Quartic Hilltop and Quartic Hilltop Squared potentials, the potential function U(β) is clearly
still locally Lipschitz continuous around β = π/2. So there will exist a unique local solution that passes
through the big bang.

Figure 6: Plot of the numerical solutions Hamiltonian for the FLRW + Quartic Hilltop (green) and Quartic
Hilltop Squared (blue) models with initial conditions 187.

In figure 6 the numerical solution Hamiltonian for Quartic Hilltop and Quartic Hilltop Squared models,
which are approximately zero to within machine precision over the time domain. The initial conditions
are taken as those in eq 187, the energy-density scale is chosen as Λ = 1/3 and the potential parameter
is λ = 10−2. We have chosen a λ a few orders of magnitude larger than what is actually required for
observational consistency for illustrative purposes that become apparent when one examines the numerical
solutions of the dynamical variables.

Figure 7: Plots of 2
πβ(t) − 1 for the free field (red, dashed), Quartic Hilltop (green) and Quartic Hilltop

Squared (blue) models, showing explicitly that the system evolves through β = π/2 in finite coordinate time
ts ≈ 1.5.

In figure 7 we plot the numerical solutions for the free-field, Quartic Hilltop and Quartic Hilltop Squared
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models, again transformed so that they intercept the t-axis exactly when β = π/2 at ts ≈ 1.5 . For a
small potential parameter λ the QH and QHS potentials are approximately equal far from the QHS vacuum
expectation value, and thus the solutions lie almost on top of each other. An even smaller value of λ closer to
what is required for observational consistency with inflationary measurements would force these two solutions
closer together.

Figure 8: (β, pβ) phase space plot for the numerical solutions of the Quartic Hilltop (green) and Quartic
Hilltop Squared (blue) models.

Although the numerical solutions for β(t) are almost indistinguishable, the solutions of the momentum
pβ(t) displayed in the phase space diagram of figure 8 are quite distinct, particularly in a neighbourhood
around β = π/2. Both momenta go to zero at the big bang and are thus well defined.

Figure 9: Numerical solution of m(t) for the Quartic Hilltop (green) and Quartic Hilltop Squared (blue)
models.

In figure 9 we plot the numerical solutions of the final dynamical variable, the frictional global coordinate
m(t) for the Quartic Hilltop and Quartic Hilltop Squared models. Just as for the other dynamical variables,
the QH and QHS solutions are approximately equal far from the big bang but distinct in a neighbourhood
around ts ≈ 1.5. For both models m(t) is well defined through the big bang. Thus all dynamical variables,
the Hamiltonian and contact form are well defined through the big bang.

4.2 FLRW + 2 Scalar Fields

In this section we present examples of a higher dimensional system than that of section 4.1. In the case of
FLRW + 2 scalar fields, the shape space projection maps the scalar fields onto S2. The evolution of the fields
can be visualised as a path on S2. We showed in section 3.2 that the free-field case was exactly solvable,
with the solutions being great circles on S2 150. The shape space Hamiltonian and equations of motion for
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FLRW + 2 scalar fields are

H =
Hc

h2 cos2 β
=

1

2
p2β cos2 β +

√
3

2
pβ +

p2α
2 sin2 β

+ U(α, β)e−2m

U(α, β) = V (α, β)e−
√
3| tan β| sec2 β

(191)

α̇ =
pα

sin2 β

β̇ = pβ cos2 β +

√
3

2

ṗα = (2sUpα − ∂αU) e−2m

ṗβ = p2β cosβ sinβ + (2sUpβ − ∂βU) e−2m

ṁ = −s

(√
3

2
pβ + 2Ue−2m

)
(192)

In this example we consider a two-field harmonic potential, which has the following forms in field-space
and shape shape respectively

V (ϕ1, ϕ2) =
1

2

(
ϕ21 + ϕ22

)
Vϕ(α, β) =

1

2
tan2 β

(193)

Figure 10: Numerical solution Hamiltonians for the free field (red, dashed) and two-field harmonic potential
(blue).

In figure 10 we plot the numerical solution Hamiltonians for the free-field and harmonic potential models
for the initial conditions at t = 0

β(0) = 1, pβ(0) =

√
3

2
sec2 β

[
−1 +

√
1 − 4

3
cos2 β

(
p2α

sin2 β
+ 2Ue−2m

)]
α(0) =

π

4
, pα(0) = 0.5

m(0) = 0

(194)

Both solutions are stopped just as they become numerically unstable due to the machine precision of the
discretised equations of motion becoming insufficient [46]. This point occurs at different times for each
solution, with the harmonic potential solution running for much longer than the free-field solution.

In figure 11 we plot the numerical solutions of β(t) for the free-field (red, dashed) and harmonic potential
(blue) models. Both solutions pass smoothly through β = π/2 in finite coordinate time. We see the
characteristic exponential suppression of the potential function U(α, β) near β = π/2, making both solutions
approximately equal near the big bang.

In figure 12 we plot the (β, pβ) slice of the full 4-dimensional phase space (α, β, pα, pβ), for the free
field and harmonic potential numerical solutions. In this figure it is easier to see why the Hamiltonians
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Figure 11: Numerical solutions of β(t) for the free field (red, dashed) and two-field harmonic potential (blue).

Figure 12: (β, pβ) phase space plot for the free-field (red, dashed) and harmonic potential (blue) numerical
solutions.

are becoming numerically unstable, particularly for the harmonic potential solutions. As β(t) approaches
0, π the momentum starts to oscillate rapidly. It is unlikely that this is the true behaviour of the system,
but rather due to the numerically instability of solving a still system of coupled ODEs. Despite this, the
momentum remains well defined at the big bang.
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(a) Parametric plot of (β(t), α(t)) for the
free-field (red, dashed) and harmonic po-
tential (blue) numerical solutions.

(b) Parametric plot of (β(t), pα(t)) for
the free-field (red, dashed) and harmonic
potential (blue) numerical solutions.

Figure 13

The parametric plots of (β(t), α(t)) and (β(t), pα(t)) are presented in figures 13a and 13b respectively for
the free-field and harmonic potential numerical solutions. Both dynamical variables α(t) and pα(t) remain
well defined through β = π/2. In particular, in the free-field case pα is simply a constant. In figure 13a we
see that the two solutions are approximately equal near β = π/2, again due to the exponential suppression of
the potential close to the big bang. The potential suppression is also manifest in figure 13b, for the harmonic
potential solutions, the pα becomes approximately constant near β = π/2.

Figure 14: Parametric plot of (β(t),m(t)) for the free-field (red, dashed) and harmonic potential (blue)
numerical solutions.

Lastly in figure 14 we plot the global frictional variable m(t) parameterised by β(t) for the free-field and
harmonic potential solutions. Both solutions remain well defined through the big bang at β = π/2 and
display the characteristic potential suppression.
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Figure 15: Free-field (red, dashed) and Harmonic potential (blue) numerical solutions of (α(t), β(t)) plotted
as a path on S2. The solid red line is the shape space equator β = π/2, corresponding to the big bang under
the gnomonic projection.

In figure 15 we plot the free-field and harmonic potential solutions (α, β) as a path on S2, with the
equator at β = π/2 corresponding to the big bang under the shape space gnomonic projection. Recall that
we showed explicitly in section 3.2 how the free-field solution is a great circle on shape space 150. This
can be seen clearly in figure 15. The great circle is incomplete due to the numerical solution being stopped
just before it becomes unstable. Most importantly figure 15 shows clearly how the system evolves smoothly
through the shape space equator.

4.3 Bianchi I

We will now look at numerical results in the shape space representation of the Bianchi I cosmology, which
contains flat FLRW geometries at the S2 poles of shape space β = 0, π. The vacuum case simply corresponds
to the Kasner solution. The Kasner cosmology is exactly solvable, with the solutions being great circles on S2.
In figure 16 below, we present the numerical solution of one such Kasner cosmology, which are parameterised
by a single constant momentum pα 154.

We will now consider in more detail, the case of Bianchi I + a scalar field. In this particular case.
The shape space projection now maps the dynamical variables onto S3, as we start with the anisotropy
parameters and a single scalar field. We will consider the case of a free-field and harmonic potential. With
the Hamiltonian and equations of motion given by eq’s 165 and 166 respectively. Reproduced here for
convenience.

HBI =
1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ Uϕ(β, γ)e−2m

Uϕ(β, γ) = Vϕ(β, γ)e
− 2√

3
| tan β|

sec2 β

(195)
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Figure 16: Numerical solution of (α(t), β(t)) to the vacuum Bianchi I (Kasner) equations of motion 153,
showing a great circle solution (blue) passing smoothly through the shape space equator (red) β = π/2.

α̇ =
pα

sin2 β sin2 γ

β̇ = pβ cos2 β +
1√
3

γ̇ =
pγ

sin2 β

ṗα = (2sUϕpα − ∂αUϕ) e−2m

ṗβ = p2β cosβ sinβ +
p2α cosβ

sin3 β sin2 γ
+
p2γ cosβ

sin3 β
+ (2sUϕpβ − ∂βUϕ) e−2m

ṗγ =
p2α cos γ

sin2 β sin3 γ
+ (2sUϕpγ − ∂γUϕ) e−2m

ṁ = −s
(

1√
3
pβ + 2Uϕe

−2m

)

(196)

The harmonic potential in field space and shape space is given by

V (ϕ) =
1

2
ϕ2

Vϕ(β, γ) =
1

2
tan2 β cos2 γ

(197)

For this examples, we look for a numerical solution to the equations of motion 196. subject to the
following initial conditions at t = 0.

α(0) =
3

2
π, pα(0) = 0.1

β(0) = 1.1, pβ(0) =

√
3

2
sec2 β

[
−1 +

√
1 − 4

3
cos2 β

(
p2α

sin2 β
+ 2Ue−2m

)]
γ(0) =

π

4
, pγ(0) = 1

m(0) = 0

(198)
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For this section and the following, we provide the Hamiltonian numerical solution plots in appendix B. In
particular, one may find the numerical solution Hamiltonian for Bianchi I + free-field and harmonic potential
models in figure 37.

Just as for the FLRW + 2 scalar fields model, we also see in Bianchi I + matter that the free-field
solution becomes numerically unstable faster than the harmonic potential model and has to be stopped after
a shorter time. We next check the numerical solutions of β(t) to confirm that the solutions pass through the
big bang in finite coordinate time.

Figure 17: Numerical solution of β(t) for the Bianchi I + free-field (red, dashed) and harmonic potential
(blue) models.

In figure 17 we plot the numerical solutions of β(t) for the free-field and harmonic potential model. Both
solutions pass smoothly through the big bang at β = π/2. In this case the there is a bigger difference between
the free-field and harmonic potential solutions over the entire time domain. This is due to the fact that the
initial conditions for each solution are slightly different. We choose pβ to be set by the Hamiltonian constraint
H := 0 (This choice is arbitrary, in principle we could have chosen any of the other dynamical variables).
This means that given a set of initial α, pα, γ, pγ and m, the boundary condition on pβ is determined by

pβ =

√
3

2
sec2 β

[
−1 +

√
1 − 4

3
cos2 β

(
p2α

sin2 β
+ 2U(α, β)e−2m

)]
(199)

The potential term U(α, β) is non-zero for our chosen initial conditions in the harmonic potential case, and
thus the initial pβ will be different in the free-field and harmonic potential cases.
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(a) Phase space plot of (β(t), pβ(t)) for the numerical
solutions of the Bianchi I + free-field (red, dashed)
and harmonic potential (blue) models.

(b) Numerical solution of pβ(t) for the numerical so-
lutions of the Bianchi I + free-field (red, dashed) and
harmonic potential (blue) models.

Figure 18

In figure 18a the numerical solution of pβ parameterised by β(t) ((β, pβ) slice of phase space) for the
free-field and harmonic potential models. Both solutions, as expected pass smoothly through the big bang
at β = π/2. In figure 18b we plot pβ(t) parameterised by the time coordinate. This plot shows explicitly
that the initial pβ ’s at t = 0 are quite different for each model, so it is no surprise that the numerical
solutions differ by quite a large amount as compared to some of the previous examples, even near the big
bang singularity where the potential is exponentially suppressed.

(a) Parametric plot of (β(t), α(t)) for the Bianchi I +
free-field (red, dashed) and harmonic potential (blue)
numerical solutions.

(b) Parametric plot of (β(t), pα(t)) for the Bianchi
I + free-field (red, dashed) and harmonic potential
(blue) numerical solutions.

Figure 19

In figures 19a and 19b we plot the numerical solutions of α and pα respectively, parameterised by β(t).
As we expect, both solutions pass smoothly though the big bang at β = π/2 along with some other expected
features. In figure 19b, we see that the free-field pα momentum is everywhere constant, as it should be since
ṗα = 0 everywhere for zero-potential. Likewise, near the big bang where the potential becomes exponentially
suppressed, the harmonic potential pα momentum becomes approximately constant.
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(a) Parametric plot of (β(t), γ(t)) for the Bianchi I +
free-field (red, dashed) and harmonic potential (blue)
numerical solutions.

(b) Parametric plot of (β(t), pγ(t)) for the Bianchi
I + free-field (red, dashed) and harmonic potential
(blue) numerical solutions.

Figure 20

In figures 20a and 20b we plot the numerical solutions of γ and pγ respectively, parameterised by β(t).
We again see that the numerical solutions are well-defined through the big bang at β = π/2. Additionally,
we see a small oscillatory behaviour in γ around γ = π/2. The interpretation of this will becomes clear when
we look at the original configuration space variables (ϕ, x, y, ) shortly.

Figure 21: Parametric plot of (β(t),m(t)) for the Bianchi I + free-field (red, dashed) and harmonic potential
(blue) numerical solutions.

The last dynamical variable to check is the global frictional coordinate m(t), which we plot in figure 21 for
the free-field and harmonic potential models. In both models the numerical solution is well defined through
the big bang at β = π/2. Thus all dynamical variables, the Hamiltonian and contact form are well defined
through β = π/2 as we expect due to the potential function U(α, β, γ) being locally Lipschitz continuous
around β = π/2.

In the case of a Bianchi + scalar field cosmology, the shape space projection is a compactification onto
S3 (rather than S2 as in the FLRW case), thus we can think of solutions a path on S3. One way to visualise
this is to consider constant α, β or γ slices of S3, which are S2 surfaces.
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Figure 22: Constant γ slice of the Bianchi I + matter S3 shape space. The (α, β) solutions for the free-field
(red, dashed) and harmonic potential (blue) are plotted as paths on the S2 surface. The solid red line is the
S2 slice equator at β = π/2 which corresponds to the GR singularity.

In figure 22 we plot a constant γ slice of the full S3 shape space with the free-field and harmonic potential
paths plotted on the surface. The equator is the line β = π/2 which represents the big bang, both solutions
pass smoothly through the shape space equator. However the paths are not symmetric on either side of the
equator, despite there being a symmetric (or no) potential, since this is only a constant γ slice of the full S3

shape space, on which the path would be symmetric either side of the big bang. Likewise we could also look
at constant α and constant β slice of shape space.

(a) Constant α slice of the Bianchi I + matter S3

shape space. The (γ, β) solutions for the free-field
(red, dashed) and harmonic potential (blue) are plot-
ted as paths on the S2 surface. The solid red line is
the S2 slice equator at β = π/2 which corresponds
to the GR singularity.

(b) Constant β slice of the Bianchi I + matter S3

shape space. The (γ, α) solutions for the free-field
(red, dashed) and harmonic potential (blue) are plot-
ted as paths on the S2 surface. The solid red line is
the S2 slice equator at α = π/2 which does not cor-
respond to any GR singularity.

Figure 23

In figures 23a and 23b we plot constant α and β slices of the full S3 shape space respectively. In the
constant α slice, the solid red line is again the β = π/2 equator, representing the initial GR singularity. The
solution path passes smoothly through the big bang equator for both solutions. In the constant β slice, the
solid red line is the α = π/2 equator, which does not correspond to any GR singularity and thus the system
passing through this line is not of any particular significance in relation to GR singularities.

In this section we have seen examples of the shape pace dynamical variables and mathematical structures
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remain well defined through the big bang, as was to be expected from the potential function U(α, β, γ)
satisfying the conditions for Lipschitz continuity. It is still the case however that the original configuration
space dynamical variables ϕ, x, y are ill-defined though the big bang. One may transform back to the original
variables and see this explicitly for the numerical solutions.

Figure 24: Plot of the original scalar field variable ϕ(t) = | tanβ(t)| cos γ(t) for the Bianchi I + free-field
(red, dashed) and harmonic potential (blue) numerical solutions.

In figure 24 we plot the scalar field under the shape space projection 162 for the free-field and harmonic
potential numerical solutions. Since β(t) passes smoothly through β = π/2, the scalar field diverges at
the big bang due to the | tanβ| factor in the gnomonic projection, but is well defined on either side of
the big bang. We also see oscillations of the scalar field around the vacuum ϕ0 = 0 on both sides of the
GR singularity, although they are more pronounced on the right-half plane. In shape space, these vacuum
oscillations manifest as γ oscillating around γ = π/2 as seen in figure 20a.

(a) Plot of the original anisotropy parameter x(t) =
| tanβ(t)| sin γ(t) cos γ(t) for the Bianchi I + free-field
(red, dashed) and harmonic potential (blue) numer-
ical solutions.

(b) Plot of the original anisotropy parameter x(t) =
| tanβ(t)| sin γ(t) sin γ(t) for the Bianchi I + free-field
(red, dashed) and harmonic potential (blue) numer-
ical solutions.

Figure 25

In figures 25a and 25b we plot the anisotropy parameters x(t) and y(t) given by the shape space projection
162 for the free-field and harmonic potential numerical solutions. The anisotropy parameters also diverge at
the big bang. One would expect from solving the original configuration space equations of motion generated
from the Herglotz Lagrangian

LH =
1

6
h2 +

1

2
(ẋ+ ẏ) +

1

2
ϕ̇− V (ϕ) (200)

that the anisotropy parameters are related to each other by a linear relationship y(x) = y0 + Cyx. in figure
26 we display the parametric plot (x(t), y(t)) and see that indeed this linear relationship is satisfied. Each
solution has two straight line branches, as the system evolves through the big bang the spatial manifold
undergoes an inversion of orientation and moves from one branch to the other.
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Figure 26: Parameteric plot of (x(t), y(t)) for the Bianchi I + free-field (red, dashed) and harmonic potential
(blue) numerical solutions. As the system evolves through the Big Bang at β(ts) = π/2, the spatial manifolds
orientation inverts and system moves between straight line branches.

4.4 Quiescent Bianchi IX

In this section we look at a numerical example of quiescent Bianchi IX cosmology and show that it continues
smoothly through the big bang in the shape space representation. Unlike Bianchi I, the Bianchi IX cosmology
has a non-trivial Lie algebra, which leads to generally non-zero shape potential and contains flat FLRW
cosmologies. In shape space potential function U(α, β, γ) for Bianchi IX is given in equation 179, with the
functions fi(α) defined in equation 159. The flat FLRW-cosmologies are contained at β = 0, π and γ = 0, π.
However the time parameterisation we have chosen, implicit in the re-scaling of the contact Hamiltonian by
h−2 sec2 β is not suited for investigating these sub-geometries as the Hamiltonian is undefined for β, γ = 0, π.

We will consider Bianchi IX cosmologies minimally coupled to a scalar field in the free-field (massless)
and harmonic potential cases. As we have already shown, in the case of a everywhere-zero field potential,
the shape space Hamiltonian is

H =
1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ U(α, β, γ)e−2m

U(α, β, γ) = sec2 β
∑
i

cie

(
fi(α) sin γ− 2√

3

)
| tan β|

(201)

In section 3.5 we showed that, including a generally non-zero field potential changes the shape space Hamil-
tonian to

H =
1

2
p2β cos2 β +

1√
3
pβ +

p2α
2 sin2 β sin2 γ

+
p2γ

2 sin2 β
+ U(α, β, γ)e−2m +

Uϕ(β, γ)

sΩ
e−3m

U(α, β, γ) = sec2 β
∑
i

cie

(
fi(α) sin γ− 2√

3

)
| tan β|

Uϕ(β, γ) = Vϕ(β, γ)e−
√
3| tan β| sec2 β

(202)

as additional degrees of freedom (k,Ω) are required in order to retain the original scaling symmetry of the
action. We consider the numerical solutions to the equations of motion 175 subject to the following initial
conditions at t = 0. Simply for demonstrative purposes, we have chosen to use the Hamiltonian constraint
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to determine the initial condition on pα, rather than pβ as in previous sections.

α(0) =
1

2
π, pα(0) = | sinβ sin γ|

√
−2

(
1

2
p2β cos2 β +

1

2

p2γ

2 sin2 β
+

1√
3
pβ + Ue−2m +

Uϕ

sΩ
e−3m

)
β(0) =

1

8
π, pβ(0) − 0.5

γ(0) =
1

8
π, pγ(0) = 0.1

m(0) = 0

k(0) = 0, Ω(0) = −1

(203)

Figure 27: Plots of 2
πβ(t)−1 for the Bianchi IX β(t) numerical solutions, including the free-field (red, dashed)

and harmonic potential (blue) models.

In figure 27 we plot 2
πβ(t) − 1 where β(t) is the Bianchi IX numerical solution for the free-field and

Harmonic potential models, showing explicitly that the system passes through the Big Bang at β = π/2.
In the free-field case, the discretised system equations of motion become numerically unstable shortly after
passing through the Big Bang.

Figure 28: Plots of ln |pβ(t)| parameterised by β(t) for the Bianchi IX pβ(t) numerical solutions, including
the free-field (red, dashed) and harmonic potential (blue) models.

In figure 28 we plot ln |pβ(t)| parameterised by β(t), one can see clearly that in both cases the pβ
momentum is well defined through β = π/2. In this particular case we choose to plot the logarithm as the
free-field and harmonic potential solutions of pβ differ by approximately two orders of magnitude near the
big bang.
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(a) Parametric plot of (β(t), α(t)) for the Bianchi
IX + free-field (red, dashed) and harmonic poten-
tial (blue) numerical solutions.

(b) Parametric plot of (β(t), pα(t)) for the Bianchi
IX + free-field (red, dashed) and harmonic potential
(blue) numerical solutions.

Figure 29

In figures 29a and 29b we plot the numerical solutions of the shape space coordinate α and associated
momentum pα respectively, parameterised by β. In both figures we see that the dynamical variables remain
well defined through the big bang at β = π/2 as we expect. In the case of Bianchi I, pα is constant for
free-field solutions as the equation of motion for ṗα contains only terms with factors of Uϕ and ∂Uϕ. However
in the Bianchi IX case, which contains a shape potential which is not everywhere zero, the equation of motion
for ṗα contains terms which have factors of the shape potential function U as well as the field potential Uϕ,
so even in the free-field case where Uϕ = 0, the momentum pα is not constant for all time as we see in the
numerical solution of figure 29b.

(a) Parametric plot of (β(t), γ(t)) for the Bianchi
IX + free-field (red, dashed) and harmonic poten-
tial (blue) numerical solutions.

(b) Parametric plot of (β(t), pγ(t)) for the Bianchi
IX + free-field (red, dashed) and harmonic potential
(blue) numerical solutions.

Figure 30

In figures 30a and 30b we plot the numerical solutions of γ and pγ parameterised by β for the Bianchi
IX + free-field and harmonic potential models. Both dynamical variables remain well defined through the
big bang at β = π/2. In addition to the shape degrees of freedom, for the Bianchi IX + matter cosmology
we also have the additional degrees of freedom k and its associated momentum Ω(t) which were introduced
to retain the scaling symmetry of the symplectic Lagrangian when there is a field potential present.
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(a) Parametric plot of (β(t), k(t)) for the Bianchi IX
+ harmonic potential numerical solution.

(b) Parametric plot of (β(t),Ω(t)) for the Bianchi IX
+ harmonic potential numerical solutions.

Figure 31

In figures 31a and 31b we plot the numerical solutions of k and Ω parameterised by β(t) for the Bianchi
IX + harmonic potential model. Both dynamical variables are well defined through the big bang at β = π/2.
One one can see from the plot of (k, β) that the numerical solution becomes unstable shortly after passing
through the big bang as k → ∞.

The last dynamical variable is the frictional global coordinate m(t), plotted in figure 32 m is also well

Figure 32: Parametric plot of (β(t),m(t)) for the Bianchi IX + harmonic potential numerical solution.

defined through the big bang and displays the characteristic “cusp” its time-derivative changes sign as the
system passes through the big bang, due to the overall factor of Sign(tanβ) in the equation of motion 175.

Thus we demonstrate that as expected, all dynamical variables, the Hamiltonian and contact form remain
well defined as the system passes through the Bianchi IX big bang when the quiescence conditions are
satisfied.
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Once more can visualise the evolution of the cosmology in terms of a paths on S2 slices of the full S3

shape space.

Figure 33: Constant γ slice of the Bianchi IX + matter S3 shape space. The (α, β) solutions for the free-field
(red, dashed) and harmonic potential (blue) are plotted as paths on the S2 surface. The solid red line is the
S2 slice equator at β = π/2 which corresponds to the GR singularity.

Figure 33 displays a constant gamma S2 slice of shape space. The free-field and harmonic potential
solutions are plotted in red/dashed and blue respectively. Both solution paths pass smoothly through the
big bang, represented by the solid red equator at β = π/2.

(a) Constant α slice of the Bianchi IX + matter S3

shape space. The (γ, β) solutions for the free-field
(red, dashed) and harmonic potential (blue) are plot-
ted as paths on the S2 surface. The solid red line is
the S2 slice equator at β = π/2 which corresponds
to the GR singularity.

(b) Constant β slice of the Bianchi I + matter S3

shape space. The (γ, α) solutions for the free-field
(red, dashed) and harmonic potential (blue) are plot-
ted as paths on the S2 surface. The solid red line is
the S2 slice equator at α = π/2 which does not cor-
respond to any GR singularity.

Figure 34

Figures 34a and 34b display constant α and constant β S2 slices respectively. In figure 34a the equator
is still at β = π/2 corresponding to the big bang, which both paths cross smoothly. However in figure 34a,
where a constant β S2 slice is displayed, the equator is at α = π/2. which does not correspond to any GR
singularity.

Having numerically solved the system in the shape space representation, one can then transform back to
the original configuration space dynamical variables of the scalar field ϕ and anisotropy parameters (x, y). In
particular, it is much easier in this representation to see explicitly, the quiescence behaviour of the cosmology.
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Figure 35: Plot of the original scalar field variable ϕ(t) = | tanβ(t)| cos γ(t) for the Bianchi IX + free-field
(red, dashed) and harmonic potential (blue) numerical solutions.

Firstly we plot in figure 35 the scalar field ϕ = | tanβ| cos γ for the free-field and harmonic potential
numerical solutions, which as expected is undefined at the big bang. Note that the free-field and harmonic
potential solutions pass through the big bang at different coordinate times. From figure 27 one can see that
the free-field model passes through the big bang at approximately ts,free ≈ 5.9 and the numerical solutions
becomes unstable very shortly after, so the divergence is hard to see in figure 35’s plot of ϕ(t). The harmonic
potential model passes through the big bang at ts,ϕ2 ≈ 4.2 and the numerical solution does not becomes
unstable until a few coordinate time units later. Thus the divergence in ϕ(t) can be seen much clearer for
the harmonic potential model in figure 35.

(a) Numerical solution of the anisotropy param-
eters (x(t), y(t)) for the Bianchi IX + free-field
(red, dashed) and harmonic potential (blue) mod-
els. With the anisotropy parameters given by x =
| tanβ| sin γ cosα, y = | tanβ| sin γ sinα.

(b) Numerical solution of the anisotropy parame-
ters (x(t), y(t)) for the Bianchi IX + free-field (red,
dashed) and harmonic potential (blue), over subset
of the time domain t ∈ [0, ts] (ts being the time at
which each model passes through the big bang sin-
gularity). With the anisotropy parameters given by
x = | tanβ| sin γ cosα, y = | tanβ| sin γ sinα.

Figure 36

In figure 36a we plot the anisotropy parameters for the Bianchi IX + free-field and harmonic potential
numerical solutions, over the full time domain. Transforming back to the original configuration space vari-
ables makes it much easier to see the quiescent behaviour of the Bianchi IX cosmology. In particular, in
figure 36b we plot the anisotropy parameter numerical solutions on a subset of the time domain, from t = 0
until t = ts, where ts is the time at which the models pass through the big bang singularity in shape space.
Here we see explicitly Tuab transitions and the bounces of (x, y) off the shape potential wall before being
set off one one final Kasner epoch, which the cosmology remains on until it reaches the big bang and spatial
contact manifold undergoes and inversion of orientation.
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5 Discussion

The notion of a singularity in General Relativity is a subtle one. Generally speaking, in classical field theo-
ries we tend to think of singularities as points at which physical quantities become indeterminate and grow
unboundedly. In GR, we solve the Einstein Field Equations for the spacetime manifold and its endowed
metric structure. In this sense we can’t think of a singularity in general relativity as a point on the manifold
where the curvature invariant grows unboundedly, as the Einstein Field Equations need to be solved in an
neighbourhood of that point in order to define the spacetime manifold and metric. Therefore the contem-
porary interpretation of a singularity in GR is that of a boundary to the spacetime manifold on which the
curvature invariants become indeterminate [47, 48]. In this work we show how the physical quantities of
the cosmological dynamical system and the mathematical structures which generate dynamics (Hamiltonian
and contact form) and be smoothly continued across this boundary that stitches two identical, oppositely
spatially oriented cosmologies together.

Hawking and Penrose showed that singularities in General Relativity are of a generic nature [1, 47, 48],
the theory breaks itself with relatively lenient requirements for timelike and null geodesic incompleteness.
The fact that singularities occur so generically in GR is the main motivating reason to believe that the
theory is incomplete. Many hope that the key to resolving singularities in GR lies at the quantum level,
and there is a large school of thought that singularities are where one should look to for effects of quantum
gravity. Whilst GR is perturbatively non-renormalisable, non-perturbative approaches like loop quantum
gravity [49] have been successful in resolving spacetime singularities at the quantum level [8–13]. Within the
Loop Quantum Gravity framework, the singularities of FLRW (flat, open and closed) [11,50–52], In much of
the literature, it is assumed that quantum effects are necessary to resolve singularities in GR, particularly
the initial cosmological singularity due to the small length scales involved [13,53]. In the relational dynamics
approach however, the Hamiltonian makes no reference to the overall length scale of the universe, which
is not a physically observable. The shape dynamical system is subtly different from general relativity in
that the fundamental gauge symmetry is that of spatial conformal invariance of the metric, rather than
local diffeomorphism invariance [14, 15, 54] and its configuration space is an equivalence class of conformal
3-geometries, rather than the space of Riemann 3-geometries.

In this paper we shown how one may form a relational, shape space description of flat FLRW, Bianchi
I and Quiescent Bianchi IX cosmologies that contains no reference to the scale factor ν, by identifying a
dynamical similarity scaling symmetry associated with the scale factor in the Einstein Hilbert action. While
the curvature invariant remains divergent at the initial singularity, in this relational description the system
remains autonomous and well defined at the initial singularity and in this sense it is resolved at the classical
level. In the literature, homogeneous and black-hole interior spacetime have been continued through their
GR singularities [18,55] by forming dimensionless dynamical variables with equations of motion generated by
the usual symplectic ADM Hamiltonian. Deterministic continuation through the singularity is established
by investigating integrability of the equations of motion. In this work we first form a fully relational contact
system by quotienting out the scaling symmetry and forming a symmetry-reduced contact manifold with
physically equivalent dynamics to the original symplectic manifold. The equations of motion in the relational
system are generated directly from a contact Hamiltonian, which makes no reference to the overall scale of
the universe. A gnomonic projection is performed which compactifies the phase space onto space space, the
dynamics of this contact system can thus be viewed as equivalent to the motion of a particle evolving on the
surface of a sphere. Under this gnomonic projection, the initial GR singularity is mapped to the equator.
We then investigate the integrability of this system and have shown that there exist unique solutions to
the contact Hamiltonian equations of motion in the shape space description which evolve smoothly through
the big bang. Moreover, the mathematical structures that generate time evolution, namely the Hamiltonian
and contact form remain well defined. This is a key development both in terms of defining the solution
space, and when considering potential quantisations of the theory. In this manner we are able to define a
classical Hamiltonian that is well defined across the big bang, which may be of particular interest in canonical
quantisations of GR, where the Hamiltonian and symplectic structure are of fundamental importance. Similar
work has also been performed in modified gravity theories, where the initial singularity in Bianchi I solutions
is replaced by a bounce. In [56] the authors show that in such models the Kasner plane can be compactified
onto a sphere and derive transition rules for the quasi Kasner exponents through non singular bounces.
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Shape Dynamics presents a possible new path to a towards a quantum theory of gravity, in particular
it offers a solution to the fundamental problem of time in the canonical approach to quantum gravity [57],
in which the Hamiltonian constraint when quantised demands a stationary wavefunction. Shape Dynamics
manages to decouple dynamical evolution from scale and admits unambiguous evolution in terms of the York
time [58,59].

Alongside showing analytically that cosmological dynamical system on a contact manifold may be con-
tinued uniquely through the initial singularity, in this work we have provided complete numerical solutions
of the relational equations of motion for each of the cosmologies described above. These numerical solutions
show the asymptotic potential-free behaviour near the big bang corresponding to great circles which con-
tinue smoothly through the shape space equator. In the case of the Bianchi spacetimes, these great circles
represent Kasner solutions. As a result of the analytical treatment, we see that the Mixmaster behaviour
of Bianchi IX cosmologies must be resolved to quiescence by the introduction of a suitable matter field (in
this case a scalar field) in order for the equations of motion to satisfy the Picard-Lindelöf theorem near the
initial singularity. In other words, Bianchi IX quiescence must be achieved in order for the dynamical system
to have a unique, smooth continuation through the big bang. In the numerical solution examples given for
quiescent Bianchi IX in section 4.4, we see explicitly the final Kasner epochs and Taub transitions before
the system passes through the initial singularity.

There exists in the literature a number of works on the quantisation of classical contact Hamiltonian
systems from the geometric perspective. In the work of [60] the authors implement a BRST quantisation
regime of time dependant Hamiltonian systems which are described by a contact phase space, in which general
covariance is implemented from the ground up. In this quantisation regime, each point in the phase space
is a fibre of an underlying vector bundle, with its own copy of canonical quantum mechanics. The operator-
valued connection which allows comparison of quantum wave functions at different phase space points in
the nilpotent BRST charge Q̂2 = 0 (up to a factor of −iℏ). The nilpotency imposes a flat connection
as a consequence of geometric quantisation. BRST quantisation of contact Hamiltonian systems is also
explored in [61]. In [62] quantisation of contact manifolds describing thermodynamics systems, which have
odd-dimensional state spaces, is studied. Quantisation is implemented through generalising the canonical
commutation relations to Legendre bracket structures. The work of [63] establishes a direct contact analogue
to the Kostant-Souriau quantisation of symplectic manifolds [64].

In the canonical quantisation of symplectic Hamiltonian systems, dynamical variables are promoted to
operators and the natural Poisson bracket induced by the symplectic structure is replaced with a commutator
structure. Within the context of GR, this means promoting dynamical elements of the metric to operators,
this includes the volume factor. We present a reformulation of cosmological solutions of GR in which the
scale factor has been eliminated and dynamics remain well defined at the initial GR singularity. That the
scale factor can be removed at the classical level, leaving behind a autonomous dynamical system that is
well defined at points on the manifold in which GR breaks down suggests that the contact system may be a
more appropriate starting point for quantisation. At this point it is an open question as to how one would
implement the contact reduction of a covariant field theory exhibiting a dynamical similarity associated with
the metric.
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Appendices

A Herglotz Equations of Motion

Recalling equations 25 & 26 the Lagrangian vector field is the unique solution of

IL(ξL) = dEL + [EL −RLEL] ηL (204)

where the vector bundle isomorphism IL(v) is defined by

IL(v) = (ivηL)ηL − iv(dηL) (205)

Expanding the Lagrangian vector field in local Darboux coordinates, we write

ξL = Ai
∂

∂qi
+Bi

∂

∂q̇i
+ C

∂

∂S
(206)

where the coefficients (Ai, Bi, C) are to be determined by enforcing ξL as the solution to equation 204. The
physical paths are the flow of the Lagrangian vector field. Once the coefficients are found we will have

q̇i = Ai, q̈i = Bi, Ṡ = C (207)

starting with the definition of the vector bundle isomorphism, we have

IL(ξL) = (iξLηL) ηL − iξL (dηL) (208)

The lagrangian contact form is given in equation 22, and thus using the local Darboux expansion of the
Lagrangian vector field one finds

IL(ξL) =

[
Aj

∂L

∂q̇i

∂L

∂q̇j
− C

∂L

∂q̇i
−BjWij − C

∂

∂S

(
∂L

∂q̇i

)]
dqi+

AjWijdq̇i +

[
C −Ai

∂L

q̇i
+Ai

∂

∂S

(
∂L

∂q̇i

)]
dS

(209)

where Wij is the Hessian of the Lagrangian defined in eq. 24.
The energy of the Lagrangian system EL and the Reeb vector field are given in equations 27 & 23

respectively, repeated here for convenience

EL = q̇i
∂L

∂q̇i
− L (210)

RL = − ∂

∂S
+W ij ∂2L

∂q̇j∂S

∂

∂q̇i
(211)

We may therefore calculate the RHS of equation 204 to be

IL(ξL) =

[
q̇j

∂2L

∂qi∂q̇j
+ q̇j

∂L

∂q̇i

∂L

∂q̇j
− ∂L

∂qi
− L

∂L

q̇i
− ∂L

∂q̇i

∂L

∂S

]
dqi

+ q̇jWijdq̇i +

[
q̇i

∂2L

∂q̇i∂S
− q̇i

∂L

∂qi
+ L

]
dS

(212)

Comparing equations 209 & 212 one has Ai = q̇i, C = L and the Bi coefficients must satisfy

BjWij = −q̇j
∂2L

∂qi∂q̇j
+
∂L

∂q̇i
+
∂L

∂q̇i

∂L

∂S
− L

∂2L

∂q̇i∂S
(213)

We now use the fact that the physical paths on the manifold are integral curves of ξL, and thus Bi = q̈i.
Equation 213 can then be written as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

∂L

∂q̇i∂S
(214)

yielding the Herglotz equations of motion. Of course this is not the only way to arrive at the Herglotz
equations. It can also be arrived by starting with a variational principle. We refer the reader to [29,31] and
section II of [30].
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B Bianchi Numerical Solution Hamiltonians

Figure 37: Numerical solution Hamiltonian for the Bianchi I + free field (red, dashed) and harmonic potential
(blue) models. The discretised equations of motion for the free-field model become numerically faster than
the harmonic potential model thus the numerical solution is valid over a smaller time domain.

In figure 38a we plot the numerical solution Hamiltonians for Bianchi IX, the numerical solution Hamil-
tonians are larger in magnitude than the previous cases we have looked at in this paper, however the Hamil-
tonian itself is still much smaller than the individual terms that it is comprised of. For example consider the
first term in the Hamiltonian 201

H1 =
1

2
p2β cos2 β (215)

The relative size of H/H1 is typically small except where H1 → 0, as demonstrated in figure 38b

(a) Bianchi IX numerical solution Hamiltonian for
the free-field (red, dashed) and harmonic potential
models.

(b) Plot of the ratio H/H1 for the Bianchi IX numer-
ical solution Hamiltonians.

Figure 38

C Gnomonic Projection Example

Consider the motion of a free-particle in two dimensions, in the standard symplectic mechanics context. The
Lagrangian for such a system is simply

L =
1

2

(
ẋ2 + ẏ2

)
(216)

and the solutions, which are straight lines on the R2 plane are of course obtained trivially. The solutions are
characterised by two constant momenta (px, py) each associated with one of the coordinates on the plane

x(t) = x0 + pxt, y(t) = y0 + pyt (217)
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In this appendix we show explicitly how, after making a gnomonic projection to shape space, the solutions
of the equations of motion are great circles on S2. Recall that the gnomonic projection is a compactification
onto the surface of a sphere, in this case a 2-sphere. This projection takes a unit sphere tangent to the plane
at the origin and draws a straight line from a point P (x, y) on the plane to the centre of the tangent sphere.
P (x, y) is then identified with the coordinates on the 2-sphere (α, β) where the line intersects the sphere.
The shape space coordinates are the angle subtended from the pole β and the azimuthal angle α. Explicitly
the projection map is written as (

x
y

)
= | tanβ|

(
cosα
sinα

)
(218)

In these shape space coordinates the Lagrangian in

L =
1

2

(
β̇2 sec4 β + α̇2 tan2 β

)
(219)

From which one may find the canonical momenta

pα = α̇ tan2 β, pβ = β̇ sec4 β (220)

and obtain the Hamiltonian through a Legendre transformation

H =
1

2
p2β cos4 β +

p2α
2 tan2 β

(221)

One may now simply use the symplectic Hamiltons equations of motion [23]

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

(222)

to obtain
α̇ =

pα
tan2 β

, ṗα = 0 (223)

β̇ = pβ cos4 β, ṗβ = 2p2β cos3 β sinβ + p2α
cosβ

sin3 β
(224)

In symplectic mechanics, the Hamiltonian is a conserved, constant quantity and therefore one may determine
that

dα

dβ
=
α̇

β̇
=

pα

sin2 β
√

2H− p2α cot2 β
(225)

Equation C has the solution

cos(α− α0) =
pα√

2H tanβ
(226)

which is the equation of a great circle on the 2-sphere, whose orientation relative to the R2 is controlled by
pα/

√
2H.
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